blob: 78826d123fb86b83fcab8540c00b8f5fbb25924e [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18#define pr_fmt(fmt) "SVM: " fmt
19
20#include <linux/kvm_host.h>
21
22#include "irq.h"
23#include "mmu.h"
24#include "kvm_cache_regs.h"
25#include "x86.h"
26#include "cpuid.h"
27#include "pmu.h"
28
29#include <linux/module.h>
30#include <linux/mod_devicetable.h>
31#include <linux/kernel.h>
32#include <linux/vmalloc.h>
33#include <linux/highmem.h>
34#include <linux/sched.h>
35#include <linux/trace_events.h>
36#include <linux/slab.h>
37#include <linux/amd-iommu.h>
38#include <linux/hashtable.h>
39#include <linux/frame.h>
40
41#include <asm/apic.h>
42#include <asm/perf_event.h>
43#include <asm/tlbflush.h>
44#include <asm/desc.h>
45#include <asm/debugreg.h>
46#include <asm/kvm_para.h>
47#include <asm/irq_remapping.h>
48#include <asm/microcode.h>
49#include <asm/spec-ctrl.h>
50
51#include <asm/virtext.h>
52#include "trace.h"
53
54#define __ex(x) __kvm_handle_fault_on_reboot(x)
55
56MODULE_AUTHOR("Qumranet");
57MODULE_LICENSE("GPL");
58
59static const struct x86_cpu_id svm_cpu_id[] = {
60 X86_FEATURE_MATCH(X86_FEATURE_SVM),
61 {}
62};
63MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64
65#define IOPM_ALLOC_ORDER 2
66#define MSRPM_ALLOC_ORDER 1
67
68#define SEG_TYPE_LDT 2
69#define SEG_TYPE_BUSY_TSS16 3
70
71#define SVM_FEATURE_NPT (1 << 0)
72#define SVM_FEATURE_LBRV (1 << 1)
73#define SVM_FEATURE_SVML (1 << 2)
74#define SVM_FEATURE_NRIP (1 << 3)
75#define SVM_FEATURE_TSC_RATE (1 << 4)
76#define SVM_FEATURE_VMCB_CLEAN (1 << 5)
77#define SVM_FEATURE_FLUSH_ASID (1 << 6)
78#define SVM_FEATURE_DECODE_ASSIST (1 << 7)
79#define SVM_FEATURE_PAUSE_FILTER (1 << 10)
80
81#define SVM_AVIC_DOORBELL 0xc001011b
82
83#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
84#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
85#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
86
87#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
88
89#define TSC_RATIO_RSVD 0xffffff0000000000ULL
90#define TSC_RATIO_MIN 0x0000000000000001ULL
91#define TSC_RATIO_MAX 0x000000ffffffffffULL
92
93#define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
94
95/*
96 * 0xff is broadcast, so the max index allowed for physical APIC ID
97 * table is 0xfe. APIC IDs above 0xff are reserved.
98 */
99#define AVIC_MAX_PHYSICAL_ID_COUNT 255
100
101#define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
102#define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
103#define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
104
105/* AVIC GATAG is encoded using VM and VCPU IDs */
106#define AVIC_VCPU_ID_BITS 8
107#define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
108
109#define AVIC_VM_ID_BITS 24
110#define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
111#define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
112
113#define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
114 (y & AVIC_VCPU_ID_MASK))
115#define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
116#define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
117
118static bool erratum_383_found __read_mostly;
119
120static const u32 host_save_user_msrs[] = {
121#ifdef CONFIG_X86_64
122 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
123 MSR_FS_BASE,
124#endif
125 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
126 MSR_TSC_AUX,
127};
128
129#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
130
131struct kvm_vcpu;
132
133struct nested_state {
134 struct vmcb *hsave;
135 u64 hsave_msr;
136 u64 vm_cr_msr;
137 u64 vmcb;
138
139 /* These are the merged vectors */
140 u32 *msrpm;
141
142 /* gpa pointers to the real vectors */
143 u64 vmcb_msrpm;
144 u64 vmcb_iopm;
145
146 /* A VMEXIT is required but not yet emulated */
147 bool exit_required;
148
149 /* cache for intercepts of the guest */
150 u32 intercept_cr;
151 u32 intercept_dr;
152 u32 intercept_exceptions;
153 u64 intercept;
154
155 /* Nested Paging related state */
156 u64 nested_cr3;
157};
158
159#define MSRPM_OFFSETS 16
160static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
161
162/*
163 * Set osvw_len to higher value when updated Revision Guides
164 * are published and we know what the new status bits are
165 */
166static uint64_t osvw_len = 4, osvw_status;
167
168struct vcpu_svm {
169 struct kvm_vcpu vcpu;
170 struct vmcb *vmcb;
171 unsigned long vmcb_pa;
172 struct svm_cpu_data *svm_data;
173 uint64_t asid_generation;
174 uint64_t sysenter_esp;
175 uint64_t sysenter_eip;
176 uint64_t tsc_aux;
177
178 u64 msr_decfg;
179
180 u64 next_rip;
181
182 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
183 struct {
184 u16 fs;
185 u16 gs;
186 u16 ldt;
187 u64 gs_base;
188 } host;
189
190 u64 spec_ctrl;
191 /*
192 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
193 * translated into the appropriate L2_CFG bits on the host to
194 * perform speculative control.
195 */
196 u64 virt_spec_ctrl;
197
198 u32 *msrpm;
199
200 ulong nmi_iret_rip;
201
202 struct nested_state nested;
203
204 bool nmi_singlestep;
205 u64 nmi_singlestep_guest_rflags;
206
207 unsigned int3_injected;
208 unsigned long int3_rip;
209
210 /* cached guest cpuid flags for faster access */
211 bool nrips_enabled : 1;
212
213 u32 ldr_reg;
214 struct page *avic_backing_page;
215 u64 *avic_physical_id_cache;
216 bool avic_is_running;
217
218 /*
219 * Per-vcpu list of struct amd_svm_iommu_ir:
220 * This is used mainly to store interrupt remapping information used
221 * when update the vcpu affinity. This avoids the need to scan for
222 * IRTE and try to match ga_tag in the IOMMU driver.
223 */
224 struct list_head ir_list;
225 spinlock_t ir_list_lock;
226};
227
228/*
229 * This is a wrapper of struct amd_iommu_ir_data.
230 */
231struct amd_svm_iommu_ir {
232 struct list_head node; /* Used by SVM for per-vcpu ir_list */
233 void *data; /* Storing pointer to struct amd_ir_data */
234};
235
236#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
237#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
238
239#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
240#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
241#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
242#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
243
244static DEFINE_PER_CPU(u64, current_tsc_ratio);
245#define TSC_RATIO_DEFAULT 0x0100000000ULL
246
247#define MSR_INVALID 0xffffffffU
248
249static const struct svm_direct_access_msrs {
250 u32 index; /* Index of the MSR */
251 bool always; /* True if intercept is always on */
252} direct_access_msrs[] = {
253 { .index = MSR_STAR, .always = true },
254 { .index = MSR_IA32_SYSENTER_CS, .always = true },
255#ifdef CONFIG_X86_64
256 { .index = MSR_GS_BASE, .always = true },
257 { .index = MSR_FS_BASE, .always = true },
258 { .index = MSR_KERNEL_GS_BASE, .always = true },
259 { .index = MSR_LSTAR, .always = true },
260 { .index = MSR_CSTAR, .always = true },
261 { .index = MSR_SYSCALL_MASK, .always = true },
262#endif
263 { .index = MSR_IA32_SPEC_CTRL, .always = false },
264 { .index = MSR_IA32_PRED_CMD, .always = false },
265 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
266 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
267 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
268 { .index = MSR_IA32_LASTINTTOIP, .always = false },
269 { .index = MSR_INVALID, .always = false },
270};
271
272/* enable NPT for AMD64 and X86 with PAE */
273#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
274static bool npt_enabled = true;
275#else
276static bool npt_enabled;
277#endif
278
279/* allow nested paging (virtualized MMU) for all guests */
280static int npt = true;
281module_param(npt, int, S_IRUGO);
282
283/* allow nested virtualization in KVM/SVM */
284static int nested = true;
285module_param(nested, int, S_IRUGO);
286
287/* enable / disable AVIC */
288static int avic;
289#ifdef CONFIG_X86_LOCAL_APIC
290module_param(avic, int, S_IRUGO);
291#endif
292
293/* enable/disable Virtual VMLOAD VMSAVE */
294static int vls = true;
295module_param(vls, int, 0444);
296
297/* enable/disable Virtual GIF */
298static int vgif = true;
299module_param(vgif, int, 0444);
300
301static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
302static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
303static void svm_complete_interrupts(struct vcpu_svm *svm);
304
305static int nested_svm_exit_handled(struct vcpu_svm *svm);
306static int nested_svm_intercept(struct vcpu_svm *svm);
307static int nested_svm_vmexit(struct vcpu_svm *svm);
308static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
309 bool has_error_code, u32 error_code);
310
311enum {
312 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
313 pause filter count */
314 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
315 VMCB_ASID, /* ASID */
316 VMCB_INTR, /* int_ctl, int_vector */
317 VMCB_NPT, /* npt_en, nCR3, gPAT */
318 VMCB_CR, /* CR0, CR3, CR4, EFER */
319 VMCB_DR, /* DR6, DR7 */
320 VMCB_DT, /* GDT, IDT */
321 VMCB_SEG, /* CS, DS, SS, ES, CPL */
322 VMCB_CR2, /* CR2 only */
323 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
324 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
325 * AVIC PHYSICAL_TABLE pointer,
326 * AVIC LOGICAL_TABLE pointer
327 */
328 VMCB_DIRTY_MAX,
329};
330
331/* TPR and CR2 are always written before VMRUN */
332#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
333
334#define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
335
336static inline void mark_all_dirty(struct vmcb *vmcb)
337{
338 vmcb->control.clean = 0;
339}
340
341static inline void mark_all_clean(struct vmcb *vmcb)
342{
343 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
344 & ~VMCB_ALWAYS_DIRTY_MASK;
345}
346
347static inline void mark_dirty(struct vmcb *vmcb, int bit)
348{
349 vmcb->control.clean &= ~(1 << bit);
350}
351
352static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
353{
354 return container_of(vcpu, struct vcpu_svm, vcpu);
355}
356
357static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
358{
359 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
360 mark_dirty(svm->vmcb, VMCB_AVIC);
361}
362
363static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
364{
365 struct vcpu_svm *svm = to_svm(vcpu);
366 u64 *entry = svm->avic_physical_id_cache;
367
368 if (!entry)
369 return false;
370
371 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
372}
373
374static void recalc_intercepts(struct vcpu_svm *svm)
375{
376 struct vmcb_control_area *c, *h;
377 struct nested_state *g;
378
379 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
380
381 if (!is_guest_mode(&svm->vcpu))
382 return;
383
384 c = &svm->vmcb->control;
385 h = &svm->nested.hsave->control;
386 g = &svm->nested;
387
388 c->intercept_cr = h->intercept_cr | g->intercept_cr;
389 c->intercept_dr = h->intercept_dr | g->intercept_dr;
390 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
391 c->intercept = h->intercept | g->intercept;
392}
393
394static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
395{
396 if (is_guest_mode(&svm->vcpu))
397 return svm->nested.hsave;
398 else
399 return svm->vmcb;
400}
401
402static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
403{
404 struct vmcb *vmcb = get_host_vmcb(svm);
405
406 vmcb->control.intercept_cr |= (1U << bit);
407
408 recalc_intercepts(svm);
409}
410
411static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
412{
413 struct vmcb *vmcb = get_host_vmcb(svm);
414
415 vmcb->control.intercept_cr &= ~(1U << bit);
416
417 recalc_intercepts(svm);
418}
419
420static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
421{
422 struct vmcb *vmcb = get_host_vmcb(svm);
423
424 return vmcb->control.intercept_cr & (1U << bit);
425}
426
427static inline void set_dr_intercepts(struct vcpu_svm *svm)
428{
429 struct vmcb *vmcb = get_host_vmcb(svm);
430
431 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
432 | (1 << INTERCEPT_DR1_READ)
433 | (1 << INTERCEPT_DR2_READ)
434 | (1 << INTERCEPT_DR3_READ)
435 | (1 << INTERCEPT_DR4_READ)
436 | (1 << INTERCEPT_DR5_READ)
437 | (1 << INTERCEPT_DR6_READ)
438 | (1 << INTERCEPT_DR7_READ)
439 | (1 << INTERCEPT_DR0_WRITE)
440 | (1 << INTERCEPT_DR1_WRITE)
441 | (1 << INTERCEPT_DR2_WRITE)
442 | (1 << INTERCEPT_DR3_WRITE)
443 | (1 << INTERCEPT_DR4_WRITE)
444 | (1 << INTERCEPT_DR5_WRITE)
445 | (1 << INTERCEPT_DR6_WRITE)
446 | (1 << INTERCEPT_DR7_WRITE);
447
448 recalc_intercepts(svm);
449}
450
451static inline void clr_dr_intercepts(struct vcpu_svm *svm)
452{
453 struct vmcb *vmcb = get_host_vmcb(svm);
454
455 vmcb->control.intercept_dr = 0;
456
457 recalc_intercepts(svm);
458}
459
460static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
461{
462 struct vmcb *vmcb = get_host_vmcb(svm);
463
464 vmcb->control.intercept_exceptions |= (1U << bit);
465
466 recalc_intercepts(svm);
467}
468
469static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
470{
471 struct vmcb *vmcb = get_host_vmcb(svm);
472
473 vmcb->control.intercept_exceptions &= ~(1U << bit);
474
475 recalc_intercepts(svm);
476}
477
478static inline void set_intercept(struct vcpu_svm *svm, int bit)
479{
480 struct vmcb *vmcb = get_host_vmcb(svm);
481
482 vmcb->control.intercept |= (1ULL << bit);
483
484 recalc_intercepts(svm);
485}
486
487static inline void clr_intercept(struct vcpu_svm *svm, int bit)
488{
489 struct vmcb *vmcb = get_host_vmcb(svm);
490
491 vmcb->control.intercept &= ~(1ULL << bit);
492
493 recalc_intercepts(svm);
494}
495
496static inline bool vgif_enabled(struct vcpu_svm *svm)
497{
498 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
499}
500
501static inline void enable_gif(struct vcpu_svm *svm)
502{
503 if (vgif_enabled(svm))
504 svm->vmcb->control.int_ctl |= V_GIF_MASK;
505 else
506 svm->vcpu.arch.hflags |= HF_GIF_MASK;
507}
508
509static inline void disable_gif(struct vcpu_svm *svm)
510{
511 if (vgif_enabled(svm))
512 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
513 else
514 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
515}
516
517static inline bool gif_set(struct vcpu_svm *svm)
518{
519 if (vgif_enabled(svm))
520 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
521 else
522 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
523}
524
525static unsigned long iopm_base;
526
527struct kvm_ldttss_desc {
528 u16 limit0;
529 u16 base0;
530 unsigned base1:8, type:5, dpl:2, p:1;
531 unsigned limit1:4, zero0:3, g:1, base2:8;
532 u32 base3;
533 u32 zero1;
534} __attribute__((packed));
535
536struct svm_cpu_data {
537 int cpu;
538
539 u64 asid_generation;
540 u32 max_asid;
541 u32 next_asid;
542 struct kvm_ldttss_desc *tss_desc;
543
544 struct page *save_area;
545 struct vmcb *current_vmcb;
546};
547
548static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
549
550struct svm_init_data {
551 int cpu;
552 int r;
553};
554
555static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
556
557#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
558#define MSRS_RANGE_SIZE 2048
559#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
560
561static u32 svm_msrpm_offset(u32 msr)
562{
563 u32 offset;
564 int i;
565
566 for (i = 0; i < NUM_MSR_MAPS; i++) {
567 if (msr < msrpm_ranges[i] ||
568 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
569 continue;
570
571 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
572 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
573
574 /* Now we have the u8 offset - but need the u32 offset */
575 return offset / 4;
576 }
577
578 /* MSR not in any range */
579 return MSR_INVALID;
580}
581
582#define MAX_INST_SIZE 15
583
584static inline void clgi(void)
585{
586 asm volatile (__ex(SVM_CLGI));
587}
588
589static inline void stgi(void)
590{
591 asm volatile (__ex(SVM_STGI));
592}
593
594static inline void invlpga(unsigned long addr, u32 asid)
595{
596 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
597}
598
599static int get_npt_level(struct kvm_vcpu *vcpu)
600{
601#ifdef CONFIG_X86_64
602 return PT64_ROOT_4LEVEL;
603#else
604 return PT32E_ROOT_LEVEL;
605#endif
606}
607
608static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
609{
610 vcpu->arch.efer = efer;
611
612 if (!npt_enabled) {
613 /* Shadow paging assumes NX to be available. */
614 efer |= EFER_NX;
615
616 if (!(efer & EFER_LMA))
617 efer &= ~EFER_LME;
618 }
619
620 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
621 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
622}
623
624static int is_external_interrupt(u32 info)
625{
626 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
627 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
628}
629
630static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
631{
632 struct vcpu_svm *svm = to_svm(vcpu);
633 u32 ret = 0;
634
635 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
636 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
637 return ret;
638}
639
640static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
641{
642 struct vcpu_svm *svm = to_svm(vcpu);
643
644 if (mask == 0)
645 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
646 else
647 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
648
649}
650
651static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
652{
653 struct vcpu_svm *svm = to_svm(vcpu);
654
655 if (svm->vmcb->control.next_rip != 0) {
656 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
657 svm->next_rip = svm->vmcb->control.next_rip;
658 }
659
660 if (!svm->next_rip) {
661 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
662 EMULATE_DONE)
663 printk(KERN_DEBUG "%s: NOP\n", __func__);
664 return;
665 }
666 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
667 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
668 __func__, kvm_rip_read(vcpu), svm->next_rip);
669
670 kvm_rip_write(vcpu, svm->next_rip);
671 svm_set_interrupt_shadow(vcpu, 0);
672}
673
674static void svm_queue_exception(struct kvm_vcpu *vcpu)
675{
676 struct vcpu_svm *svm = to_svm(vcpu);
677 unsigned nr = vcpu->arch.exception.nr;
678 bool has_error_code = vcpu->arch.exception.has_error_code;
679 bool reinject = vcpu->arch.exception.injected;
680 u32 error_code = vcpu->arch.exception.error_code;
681
682 /*
683 * If we are within a nested VM we'd better #VMEXIT and let the guest
684 * handle the exception
685 */
686 if (!reinject &&
687 nested_svm_check_exception(svm, nr, has_error_code, error_code))
688 return;
689
690 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
691 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
692
693 /*
694 * For guest debugging where we have to reinject #BP if some
695 * INT3 is guest-owned:
696 * Emulate nRIP by moving RIP forward. Will fail if injection
697 * raises a fault that is not intercepted. Still better than
698 * failing in all cases.
699 */
700 skip_emulated_instruction(&svm->vcpu);
701 rip = kvm_rip_read(&svm->vcpu);
702 svm->int3_rip = rip + svm->vmcb->save.cs.base;
703 svm->int3_injected = rip - old_rip;
704 }
705
706 svm->vmcb->control.event_inj = nr
707 | SVM_EVTINJ_VALID
708 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
709 | SVM_EVTINJ_TYPE_EXEPT;
710 svm->vmcb->control.event_inj_err = error_code;
711}
712
713static void svm_init_erratum_383(void)
714{
715 u32 low, high;
716 int err;
717 u64 val;
718
719 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
720 return;
721
722 /* Use _safe variants to not break nested virtualization */
723 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
724 if (err)
725 return;
726
727 val |= (1ULL << 47);
728
729 low = lower_32_bits(val);
730 high = upper_32_bits(val);
731
732 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
733
734 erratum_383_found = true;
735}
736
737static void svm_init_osvw(struct kvm_vcpu *vcpu)
738{
739 /*
740 * Guests should see errata 400 and 415 as fixed (assuming that
741 * HLT and IO instructions are intercepted).
742 */
743 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
744 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
745
746 /*
747 * By increasing VCPU's osvw.length to 3 we are telling the guest that
748 * all osvw.status bits inside that length, including bit 0 (which is
749 * reserved for erratum 298), are valid. However, if host processor's
750 * osvw_len is 0 then osvw_status[0] carries no information. We need to
751 * be conservative here and therefore we tell the guest that erratum 298
752 * is present (because we really don't know).
753 */
754 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
755 vcpu->arch.osvw.status |= 1;
756}
757
758static int has_svm(void)
759{
760 const char *msg;
761
762 if (!cpu_has_svm(&msg)) {
763 printk(KERN_INFO "has_svm: %s\n", msg);
764 return 0;
765 }
766
767 return 1;
768}
769
770static void svm_hardware_disable(void)
771{
772 /* Make sure we clean up behind us */
773 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
774 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
775
776 cpu_svm_disable();
777
778 amd_pmu_disable_virt();
779}
780
781static int svm_hardware_enable(void)
782{
783
784 struct svm_cpu_data *sd;
785 uint64_t efer;
786 struct desc_struct *gdt;
787 int me = raw_smp_processor_id();
788
789 rdmsrl(MSR_EFER, efer);
790 if (efer & EFER_SVME)
791 return -EBUSY;
792
793 if (!has_svm()) {
794 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
795 return -EINVAL;
796 }
797 sd = per_cpu(svm_data, me);
798 if (!sd) {
799 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
800 return -EINVAL;
801 }
802
803 sd->asid_generation = 1;
804 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
805 sd->next_asid = sd->max_asid + 1;
806
807 gdt = get_current_gdt_rw();
808 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
809
810 wrmsrl(MSR_EFER, efer | EFER_SVME);
811
812 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
813
814 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
815 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
816 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
817 }
818
819
820 /*
821 * Get OSVW bits.
822 *
823 * Note that it is possible to have a system with mixed processor
824 * revisions and therefore different OSVW bits. If bits are not the same
825 * on different processors then choose the worst case (i.e. if erratum
826 * is present on one processor and not on another then assume that the
827 * erratum is present everywhere).
828 */
829 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
830 uint64_t len, status = 0;
831 int err;
832
833 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
834 if (!err)
835 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
836 &err);
837
838 if (err)
839 osvw_status = osvw_len = 0;
840 else {
841 if (len < osvw_len)
842 osvw_len = len;
843 osvw_status |= status;
844 osvw_status &= (1ULL << osvw_len) - 1;
845 }
846 } else
847 osvw_status = osvw_len = 0;
848
849 svm_init_erratum_383();
850
851 amd_pmu_enable_virt();
852
853 return 0;
854}
855
856static void svm_cpu_uninit(int cpu)
857{
858 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
859
860 if (!sd)
861 return;
862
863 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
864 __free_page(sd->save_area);
865 kfree(sd);
866}
867
868static int svm_cpu_init(int cpu)
869{
870 struct svm_cpu_data *sd;
871 int r;
872
873 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
874 if (!sd)
875 return -ENOMEM;
876 sd->cpu = cpu;
877 sd->save_area = alloc_page(GFP_KERNEL);
878 r = -ENOMEM;
879 if (!sd->save_area)
880 goto err_1;
881
882 per_cpu(svm_data, cpu) = sd;
883
884 return 0;
885
886err_1:
887 kfree(sd);
888 return r;
889
890}
891
892static bool valid_msr_intercept(u32 index)
893{
894 int i;
895
896 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
897 if (direct_access_msrs[i].index == index)
898 return true;
899
900 return false;
901}
902
903static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
904{
905 u8 bit_write;
906 unsigned long tmp;
907 u32 offset;
908 u32 *msrpm;
909
910 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
911 to_svm(vcpu)->msrpm;
912
913 offset = svm_msrpm_offset(msr);
914 bit_write = 2 * (msr & 0x0f) + 1;
915 tmp = msrpm[offset];
916
917 BUG_ON(offset == MSR_INVALID);
918
919 return !!test_bit(bit_write, &tmp);
920}
921
922static void set_msr_interception(u32 *msrpm, unsigned msr,
923 int read, int write)
924{
925 u8 bit_read, bit_write;
926 unsigned long tmp;
927 u32 offset;
928
929 /*
930 * If this warning triggers extend the direct_access_msrs list at the
931 * beginning of the file
932 */
933 WARN_ON(!valid_msr_intercept(msr));
934
935 offset = svm_msrpm_offset(msr);
936 bit_read = 2 * (msr & 0x0f);
937 bit_write = 2 * (msr & 0x0f) + 1;
938 tmp = msrpm[offset];
939
940 BUG_ON(offset == MSR_INVALID);
941
942 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
943 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
944
945 msrpm[offset] = tmp;
946}
947
948static void svm_vcpu_init_msrpm(u32 *msrpm)
949{
950 int i;
951
952 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
953
954 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
955 if (!direct_access_msrs[i].always)
956 continue;
957
958 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
959 }
960}
961
962static void add_msr_offset(u32 offset)
963{
964 int i;
965
966 for (i = 0; i < MSRPM_OFFSETS; ++i) {
967
968 /* Offset already in list? */
969 if (msrpm_offsets[i] == offset)
970 return;
971
972 /* Slot used by another offset? */
973 if (msrpm_offsets[i] != MSR_INVALID)
974 continue;
975
976 /* Add offset to list */
977 msrpm_offsets[i] = offset;
978
979 return;
980 }
981
982 /*
983 * If this BUG triggers the msrpm_offsets table has an overflow. Just
984 * increase MSRPM_OFFSETS in this case.
985 */
986 BUG();
987}
988
989static void init_msrpm_offsets(void)
990{
991 int i;
992
993 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
994
995 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
996 u32 offset;
997
998 offset = svm_msrpm_offset(direct_access_msrs[i].index);
999 BUG_ON(offset == MSR_INVALID);
1000
1001 add_msr_offset(offset);
1002 }
1003}
1004
1005static void svm_enable_lbrv(struct vcpu_svm *svm)
1006{
1007 u32 *msrpm = svm->msrpm;
1008
1009 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1010 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1011 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1012 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1013 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1014}
1015
1016static void svm_disable_lbrv(struct vcpu_svm *svm)
1017{
1018 u32 *msrpm = svm->msrpm;
1019
1020 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1021 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1022 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1023 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1024 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1025}
1026
1027static void disable_nmi_singlestep(struct vcpu_svm *svm)
1028{
1029 svm->nmi_singlestep = false;
1030
1031 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1032 /* Clear our flags if they were not set by the guest */
1033 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1034 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1035 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1036 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1037 }
1038}
1039
1040/* Note:
1041 * This hash table is used to map VM_ID to a struct kvm_arch,
1042 * when handling AMD IOMMU GALOG notification to schedule in
1043 * a particular vCPU.
1044 */
1045#define SVM_VM_DATA_HASH_BITS 8
1046static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1047static u32 next_vm_id = 0;
1048static bool next_vm_id_wrapped = 0;
1049static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1050
1051/* Note:
1052 * This function is called from IOMMU driver to notify
1053 * SVM to schedule in a particular vCPU of a particular VM.
1054 */
1055static int avic_ga_log_notifier(u32 ga_tag)
1056{
1057 unsigned long flags;
1058 struct kvm_arch *ka = NULL;
1059 struct kvm_vcpu *vcpu = NULL;
1060 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1061 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1062
1063 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1064
1065 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1066 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1067 struct kvm *kvm = container_of(ka, struct kvm, arch);
1068 struct kvm_arch *vm_data = &kvm->arch;
1069
1070 if (vm_data->avic_vm_id != vm_id)
1071 continue;
1072 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1073 break;
1074 }
1075 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1076
1077 if (!vcpu)
1078 return 0;
1079
1080 /* Note:
1081 * At this point, the IOMMU should have already set the pending
1082 * bit in the vAPIC backing page. So, we just need to schedule
1083 * in the vcpu.
1084 */
1085 if (vcpu->mode == OUTSIDE_GUEST_MODE)
1086 kvm_vcpu_wake_up(vcpu);
1087
1088 return 0;
1089}
1090
1091/*
1092 * The default MMIO mask is a single bit (excluding the present bit),
1093 * which could conflict with the memory encryption bit. Check for
1094 * memory encryption support and override the default MMIO mask if
1095 * memory encryption is enabled.
1096 */
1097static __init void svm_adjust_mmio_mask(void)
1098{
1099 unsigned int enc_bit, mask_bit;
1100 u64 msr, mask;
1101
1102 /* If there is no memory encryption support, use existing mask */
1103 if (cpuid_eax(0x80000000) < 0x8000001f)
1104 return;
1105
1106 /* If memory encryption is not enabled, use existing mask */
1107 rdmsrl(MSR_K8_SYSCFG, msr);
1108 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
1109 return;
1110
1111 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
1112 mask_bit = boot_cpu_data.x86_phys_bits;
1113
1114 /* Increment the mask bit if it is the same as the encryption bit */
1115 if (enc_bit == mask_bit)
1116 mask_bit++;
1117
1118 /*
1119 * If the mask bit location is below 52, then some bits above the
1120 * physical addressing limit will always be reserved, so use the
1121 * rsvd_bits() function to generate the mask. This mask, along with
1122 * the present bit, will be used to generate a page fault with
1123 * PFER.RSV = 1.
1124 *
1125 * If the mask bit location is 52 (or above), then clear the mask.
1126 */
1127 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
1128
1129 kvm_mmu_set_mmio_spte_mask(mask, mask);
1130}
1131
1132static __init int svm_hardware_setup(void)
1133{
1134 int cpu;
1135 struct page *iopm_pages;
1136 void *iopm_va;
1137 int r;
1138
1139 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1140
1141 if (!iopm_pages)
1142 return -ENOMEM;
1143
1144 iopm_va = page_address(iopm_pages);
1145 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1146 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1147
1148 init_msrpm_offsets();
1149
1150 if (boot_cpu_has(X86_FEATURE_NX))
1151 kvm_enable_efer_bits(EFER_NX);
1152
1153 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1154 kvm_enable_efer_bits(EFER_FFXSR);
1155
1156 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1157 kvm_has_tsc_control = true;
1158 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1159 kvm_tsc_scaling_ratio_frac_bits = 32;
1160 }
1161
1162 if (nested) {
1163 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1164 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1165 }
1166
1167 svm_adjust_mmio_mask();
1168
1169 for_each_possible_cpu(cpu) {
1170 r = svm_cpu_init(cpu);
1171 if (r)
1172 goto err;
1173 }
1174
1175 if (!boot_cpu_has(X86_FEATURE_NPT))
1176 npt_enabled = false;
1177
1178 if (npt_enabled && !npt) {
1179 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1180 npt_enabled = false;
1181 }
1182
1183 if (npt_enabled) {
1184 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1185 kvm_enable_tdp();
1186 } else
1187 kvm_disable_tdp();
1188
1189 if (avic) {
1190 if (!npt_enabled ||
1191 !boot_cpu_has(X86_FEATURE_AVIC) ||
1192 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1193 avic = false;
1194 } else {
1195 pr_info("AVIC enabled\n");
1196
1197 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1198 }
1199 }
1200
1201 if (vls) {
1202 if (!npt_enabled ||
1203 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1204 !IS_ENABLED(CONFIG_X86_64)) {
1205 vls = false;
1206 } else {
1207 pr_info("Virtual VMLOAD VMSAVE supported\n");
1208 }
1209 }
1210
1211 if (vgif) {
1212 if (!boot_cpu_has(X86_FEATURE_VGIF))
1213 vgif = false;
1214 else
1215 pr_info("Virtual GIF supported\n");
1216 }
1217
1218 return 0;
1219
1220err:
1221 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1222 iopm_base = 0;
1223 return r;
1224}
1225
1226static __exit void svm_hardware_unsetup(void)
1227{
1228 int cpu;
1229
1230 for_each_possible_cpu(cpu)
1231 svm_cpu_uninit(cpu);
1232
1233 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1234 iopm_base = 0;
1235}
1236
1237static void init_seg(struct vmcb_seg *seg)
1238{
1239 seg->selector = 0;
1240 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1241 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1242 seg->limit = 0xffff;
1243 seg->base = 0;
1244}
1245
1246static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1247{
1248 seg->selector = 0;
1249 seg->attrib = SVM_SELECTOR_P_MASK | type;
1250 seg->limit = 0xffff;
1251 seg->base = 0;
1252}
1253
1254static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1255{
1256 struct vcpu_svm *svm = to_svm(vcpu);
1257 u64 g_tsc_offset = 0;
1258
1259 if (is_guest_mode(vcpu)) {
1260 g_tsc_offset = svm->vmcb->control.tsc_offset -
1261 svm->nested.hsave->control.tsc_offset;
1262 svm->nested.hsave->control.tsc_offset = offset;
1263 } else
1264 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1265 svm->vmcb->control.tsc_offset,
1266 offset);
1267
1268 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1269
1270 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1271}
1272
1273static void avic_init_vmcb(struct vcpu_svm *svm)
1274{
1275 struct vmcb *vmcb = svm->vmcb;
1276 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1277 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1278 phys_addr_t lpa = __sme_set(page_to_phys(vm_data->avic_logical_id_table_page));
1279 phys_addr_t ppa = __sme_set(page_to_phys(vm_data->avic_physical_id_table_page));
1280
1281 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1282 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1283 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1284 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1285 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1286}
1287
1288static void init_vmcb(struct vcpu_svm *svm)
1289{
1290 struct vmcb_control_area *control = &svm->vmcb->control;
1291 struct vmcb_save_area *save = &svm->vmcb->save;
1292
1293 svm->vcpu.arch.hflags = 0;
1294
1295 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1296 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1297 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1298 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1299 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1300 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1301 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1302 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1303
1304 set_dr_intercepts(svm);
1305
1306 set_exception_intercept(svm, PF_VECTOR);
1307 set_exception_intercept(svm, UD_VECTOR);
1308 set_exception_intercept(svm, MC_VECTOR);
1309 set_exception_intercept(svm, AC_VECTOR);
1310 set_exception_intercept(svm, DB_VECTOR);
1311
1312 set_intercept(svm, INTERCEPT_INTR);
1313 set_intercept(svm, INTERCEPT_NMI);
1314 set_intercept(svm, INTERCEPT_SMI);
1315 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1316 set_intercept(svm, INTERCEPT_RDPMC);
1317 set_intercept(svm, INTERCEPT_CPUID);
1318 set_intercept(svm, INTERCEPT_INVD);
1319 set_intercept(svm, INTERCEPT_HLT);
1320 set_intercept(svm, INTERCEPT_INVLPG);
1321 set_intercept(svm, INTERCEPT_INVLPGA);
1322 set_intercept(svm, INTERCEPT_IOIO_PROT);
1323 set_intercept(svm, INTERCEPT_MSR_PROT);
1324 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1325 set_intercept(svm, INTERCEPT_SHUTDOWN);
1326 set_intercept(svm, INTERCEPT_VMRUN);
1327 set_intercept(svm, INTERCEPT_VMMCALL);
1328 set_intercept(svm, INTERCEPT_VMLOAD);
1329 set_intercept(svm, INTERCEPT_VMSAVE);
1330 set_intercept(svm, INTERCEPT_STGI);
1331 set_intercept(svm, INTERCEPT_CLGI);
1332 set_intercept(svm, INTERCEPT_SKINIT);
1333 set_intercept(svm, INTERCEPT_WBINVD);
1334 set_intercept(svm, INTERCEPT_XSETBV);
1335
1336 if (!kvm_mwait_in_guest()) {
1337 set_intercept(svm, INTERCEPT_MONITOR);
1338 set_intercept(svm, INTERCEPT_MWAIT);
1339 }
1340
1341 control->iopm_base_pa = __sme_set(iopm_base);
1342 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1343 control->int_ctl = V_INTR_MASKING_MASK;
1344
1345 init_seg(&save->es);
1346 init_seg(&save->ss);
1347 init_seg(&save->ds);
1348 init_seg(&save->fs);
1349 init_seg(&save->gs);
1350
1351 save->cs.selector = 0xf000;
1352 save->cs.base = 0xffff0000;
1353 /* Executable/Readable Code Segment */
1354 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1355 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1356 save->cs.limit = 0xffff;
1357
1358 save->gdtr.limit = 0xffff;
1359 save->idtr.limit = 0xffff;
1360
1361 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1362 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1363
1364 svm_set_efer(&svm->vcpu, 0);
1365 save->dr6 = 0xffff0ff0;
1366 kvm_set_rflags(&svm->vcpu, 2);
1367 save->rip = 0x0000fff0;
1368 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1369
1370 /*
1371 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1372 * It also updates the guest-visible cr0 value.
1373 */
1374 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1375 kvm_mmu_reset_context(&svm->vcpu);
1376
1377 save->cr4 = X86_CR4_PAE;
1378 /* rdx = ?? */
1379
1380 if (npt_enabled) {
1381 /* Setup VMCB for Nested Paging */
1382 control->nested_ctl = 1;
1383 clr_intercept(svm, INTERCEPT_INVLPG);
1384 clr_exception_intercept(svm, PF_VECTOR);
1385 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1386 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1387 save->g_pat = svm->vcpu.arch.pat;
1388 save->cr3 = 0;
1389 save->cr4 = 0;
1390 }
1391 svm->asid_generation = 0;
1392
1393 svm->nested.vmcb = 0;
1394 svm->vcpu.arch.hflags = 0;
1395
1396 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1397 control->pause_filter_count = 3000;
1398 set_intercept(svm, INTERCEPT_PAUSE);
1399 }
1400
1401 if (kvm_vcpu_apicv_active(&svm->vcpu))
1402 avic_init_vmcb(svm);
1403
1404 /*
1405 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1406 * in VMCB and clear intercepts to avoid #VMEXIT.
1407 */
1408 if (vls) {
1409 clr_intercept(svm, INTERCEPT_VMLOAD);
1410 clr_intercept(svm, INTERCEPT_VMSAVE);
1411 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1412 }
1413
1414 if (vgif) {
1415 clr_intercept(svm, INTERCEPT_STGI);
1416 clr_intercept(svm, INTERCEPT_CLGI);
1417 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1418 }
1419
1420 mark_all_dirty(svm->vmcb);
1421
1422 enable_gif(svm);
1423
1424}
1425
1426static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1427 unsigned int index)
1428{
1429 u64 *avic_physical_id_table;
1430 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1431
1432 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1433 return NULL;
1434
1435 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1436
1437 return &avic_physical_id_table[index];
1438}
1439
1440/**
1441 * Note:
1442 * AVIC hardware walks the nested page table to check permissions,
1443 * but does not use the SPA address specified in the leaf page
1444 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1445 * field of the VMCB. Therefore, we set up the
1446 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1447 */
1448static int avic_init_access_page(struct kvm_vcpu *vcpu)
1449{
1450 struct kvm *kvm = vcpu->kvm;
1451 int ret = 0;
1452
1453 mutex_lock(&kvm->slots_lock);
1454 if (kvm->arch.apic_access_page_done)
1455 goto out;
1456
1457 ret = __x86_set_memory_region(kvm,
1458 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1459 APIC_DEFAULT_PHYS_BASE,
1460 PAGE_SIZE);
1461 if (ret)
1462 goto out;
1463
1464 kvm->arch.apic_access_page_done = true;
1465out:
1466 mutex_unlock(&kvm->slots_lock);
1467 return ret;
1468}
1469
1470static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1471{
1472 int ret;
1473 u64 *entry, new_entry;
1474 int id = vcpu->vcpu_id;
1475 struct vcpu_svm *svm = to_svm(vcpu);
1476
1477 ret = avic_init_access_page(vcpu);
1478 if (ret)
1479 return ret;
1480
1481 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1482 return -EINVAL;
1483
1484 if (!svm->vcpu.arch.apic->regs)
1485 return -EINVAL;
1486
1487 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1488
1489 /* Setting AVIC backing page address in the phy APIC ID table */
1490 entry = avic_get_physical_id_entry(vcpu, id);
1491 if (!entry)
1492 return -EINVAL;
1493
1494 new_entry = READ_ONCE(*entry);
1495 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1496 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1497 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1498 WRITE_ONCE(*entry, new_entry);
1499
1500 svm->avic_physical_id_cache = entry;
1501
1502 return 0;
1503}
1504
1505static void avic_vm_destroy(struct kvm *kvm)
1506{
1507 unsigned long flags;
1508 struct kvm_arch *vm_data = &kvm->arch;
1509
1510 if (!avic)
1511 return;
1512
1513 if (vm_data->avic_logical_id_table_page)
1514 __free_page(vm_data->avic_logical_id_table_page);
1515 if (vm_data->avic_physical_id_table_page)
1516 __free_page(vm_data->avic_physical_id_table_page);
1517
1518 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1519 hash_del(&vm_data->hnode);
1520 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1521}
1522
1523static int avic_vm_init(struct kvm *kvm)
1524{
1525 unsigned long flags;
1526 int err = -ENOMEM;
1527 struct kvm_arch *vm_data = &kvm->arch;
1528 struct page *p_page;
1529 struct page *l_page;
1530 struct kvm_arch *ka;
1531 u32 vm_id;
1532
1533 if (!avic)
1534 return 0;
1535
1536 /* Allocating physical APIC ID table (4KB) */
1537 p_page = alloc_page(GFP_KERNEL);
1538 if (!p_page)
1539 goto free_avic;
1540
1541 vm_data->avic_physical_id_table_page = p_page;
1542 clear_page(page_address(p_page));
1543
1544 /* Allocating logical APIC ID table (4KB) */
1545 l_page = alloc_page(GFP_KERNEL);
1546 if (!l_page)
1547 goto free_avic;
1548
1549 vm_data->avic_logical_id_table_page = l_page;
1550 clear_page(page_address(l_page));
1551
1552 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1553 again:
1554 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1555 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1556 next_vm_id_wrapped = 1;
1557 goto again;
1558 }
1559 /* Is it still in use? Only possible if wrapped at least once */
1560 if (next_vm_id_wrapped) {
1561 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1562 struct kvm *k2 = container_of(ka, struct kvm, arch);
1563 struct kvm_arch *vd2 = &k2->arch;
1564 if (vd2->avic_vm_id == vm_id)
1565 goto again;
1566 }
1567 }
1568 vm_data->avic_vm_id = vm_id;
1569 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1570 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1571
1572 return 0;
1573
1574free_avic:
1575 avic_vm_destroy(kvm);
1576 return err;
1577}
1578
1579static inline int
1580avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1581{
1582 int ret = 0;
1583 unsigned long flags;
1584 struct amd_svm_iommu_ir *ir;
1585 struct vcpu_svm *svm = to_svm(vcpu);
1586
1587 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1588 return 0;
1589
1590 /*
1591 * Here, we go through the per-vcpu ir_list to update all existing
1592 * interrupt remapping table entry targeting this vcpu.
1593 */
1594 spin_lock_irqsave(&svm->ir_list_lock, flags);
1595
1596 if (list_empty(&svm->ir_list))
1597 goto out;
1598
1599 list_for_each_entry(ir, &svm->ir_list, node) {
1600 ret = amd_iommu_update_ga(cpu, r, ir->data);
1601 if (ret)
1602 break;
1603 }
1604out:
1605 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1606 return ret;
1607}
1608
1609static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1610{
1611 u64 entry;
1612 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1613 int h_physical_id = kvm_cpu_get_apicid(cpu);
1614 struct vcpu_svm *svm = to_svm(vcpu);
1615
1616 if (!kvm_vcpu_apicv_active(vcpu))
1617 return;
1618
1619 /*
1620 * Since the host physical APIC id is 8 bits,
1621 * we can support host APIC ID upto 255.
1622 */
1623 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
1624 return;
1625
1626 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1627 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1628
1629 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1630 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1631
1632 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1633 if (svm->avic_is_running)
1634 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1635
1636 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1637 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1638 svm->avic_is_running);
1639}
1640
1641static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1642{
1643 u64 entry;
1644 struct vcpu_svm *svm = to_svm(vcpu);
1645
1646 if (!kvm_vcpu_apicv_active(vcpu))
1647 return;
1648
1649 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1650 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1651 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1652
1653 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1654 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1655}
1656
1657/**
1658 * This function is called during VCPU halt/unhalt.
1659 */
1660static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1661{
1662 struct vcpu_svm *svm = to_svm(vcpu);
1663
1664 svm->avic_is_running = is_run;
1665 if (is_run)
1666 avic_vcpu_load(vcpu, vcpu->cpu);
1667 else
1668 avic_vcpu_put(vcpu);
1669}
1670
1671static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1672{
1673 struct vcpu_svm *svm = to_svm(vcpu);
1674 u32 dummy;
1675 u32 eax = 1;
1676
1677 vcpu->arch.microcode_version = 0x01000065;
1678 svm->spec_ctrl = 0;
1679 svm->virt_spec_ctrl = 0;
1680
1681 if (!init_event) {
1682 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1683 MSR_IA32_APICBASE_ENABLE;
1684 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1685 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1686 }
1687 init_vmcb(svm);
1688
1689 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
1690 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1691
1692 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1693 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1694}
1695
1696static int avic_init_vcpu(struct vcpu_svm *svm)
1697{
1698 int ret;
1699
1700 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1701 return 0;
1702
1703 ret = avic_init_backing_page(&svm->vcpu);
1704 if (ret)
1705 return ret;
1706
1707 INIT_LIST_HEAD(&svm->ir_list);
1708 spin_lock_init(&svm->ir_list_lock);
1709
1710 return ret;
1711}
1712
1713static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1714{
1715 struct vcpu_svm *svm;
1716 struct page *page;
1717 struct page *msrpm_pages;
1718 struct page *hsave_page;
1719 struct page *nested_msrpm_pages;
1720 int err;
1721
1722 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1723 if (!svm) {
1724 err = -ENOMEM;
1725 goto out;
1726 }
1727
1728 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1729 if (err)
1730 goto free_svm;
1731
1732 err = -ENOMEM;
1733 page = alloc_page(GFP_KERNEL);
1734 if (!page)
1735 goto uninit;
1736
1737 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1738 if (!msrpm_pages)
1739 goto free_page1;
1740
1741 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1742 if (!nested_msrpm_pages)
1743 goto free_page2;
1744
1745 hsave_page = alloc_page(GFP_KERNEL);
1746 if (!hsave_page)
1747 goto free_page3;
1748
1749 err = avic_init_vcpu(svm);
1750 if (err)
1751 goto free_page4;
1752
1753 /* We initialize this flag to true to make sure that the is_running
1754 * bit would be set the first time the vcpu is loaded.
1755 */
1756 svm->avic_is_running = true;
1757
1758 svm->nested.hsave = page_address(hsave_page);
1759
1760 svm->msrpm = page_address(msrpm_pages);
1761 svm_vcpu_init_msrpm(svm->msrpm);
1762
1763 svm->nested.msrpm = page_address(nested_msrpm_pages);
1764 svm_vcpu_init_msrpm(svm->nested.msrpm);
1765
1766 svm->vmcb = page_address(page);
1767 clear_page(svm->vmcb);
1768 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1769 svm->asid_generation = 0;
1770 init_vmcb(svm);
1771
1772 svm_init_osvw(&svm->vcpu);
1773
1774 return &svm->vcpu;
1775
1776free_page4:
1777 __free_page(hsave_page);
1778free_page3:
1779 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1780free_page2:
1781 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1782free_page1:
1783 __free_page(page);
1784uninit:
1785 kvm_vcpu_uninit(&svm->vcpu);
1786free_svm:
1787 kmem_cache_free(kvm_vcpu_cache, svm);
1788out:
1789 return ERR_PTR(err);
1790}
1791
1792static void svm_clear_current_vmcb(struct vmcb *vmcb)
1793{
1794 int i;
1795
1796 for_each_online_cpu(i)
1797 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1798}
1799
1800static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1801{
1802 struct vcpu_svm *svm = to_svm(vcpu);
1803
1804 /*
1805 * The vmcb page can be recycled, causing a false negative in
1806 * svm_vcpu_load(). So, ensure that no logical CPU has this
1807 * vmcb page recorded as its current vmcb.
1808 */
1809 svm_clear_current_vmcb(svm->vmcb);
1810
1811 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1812 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1813 __free_page(virt_to_page(svm->nested.hsave));
1814 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1815 kvm_vcpu_uninit(vcpu);
1816 kmem_cache_free(kvm_vcpu_cache, svm);
1817}
1818
1819static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1820{
1821 struct vcpu_svm *svm = to_svm(vcpu);
1822 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1823 int i;
1824
1825 if (unlikely(cpu != vcpu->cpu)) {
1826 svm->asid_generation = 0;
1827 mark_all_dirty(svm->vmcb);
1828 }
1829
1830#ifdef CONFIG_X86_64
1831 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1832#endif
1833 savesegment(fs, svm->host.fs);
1834 savesegment(gs, svm->host.gs);
1835 svm->host.ldt = kvm_read_ldt();
1836
1837 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1838 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1839
1840 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1841 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1842 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1843 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1844 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1845 }
1846 }
1847 /* This assumes that the kernel never uses MSR_TSC_AUX */
1848 if (static_cpu_has(X86_FEATURE_RDTSCP))
1849 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1850
1851 if (sd->current_vmcb != svm->vmcb) {
1852 sd->current_vmcb = svm->vmcb;
1853 indirect_branch_prediction_barrier();
1854 }
1855 avic_vcpu_load(vcpu, cpu);
1856}
1857
1858static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1859{
1860 struct vcpu_svm *svm = to_svm(vcpu);
1861 int i;
1862
1863 avic_vcpu_put(vcpu);
1864
1865 ++vcpu->stat.host_state_reload;
1866 kvm_load_ldt(svm->host.ldt);
1867#ifdef CONFIG_X86_64
1868 loadsegment(fs, svm->host.fs);
1869 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1870 load_gs_index(svm->host.gs);
1871#else
1872#ifdef CONFIG_X86_32_LAZY_GS
1873 loadsegment(gs, svm->host.gs);
1874#endif
1875#endif
1876 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1877 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1878}
1879
1880static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1881{
1882 avic_set_running(vcpu, false);
1883}
1884
1885static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1886{
1887 avic_set_running(vcpu, true);
1888}
1889
1890static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1891{
1892 struct vcpu_svm *svm = to_svm(vcpu);
1893 unsigned long rflags = svm->vmcb->save.rflags;
1894
1895 if (svm->nmi_singlestep) {
1896 /* Hide our flags if they were not set by the guest */
1897 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1898 rflags &= ~X86_EFLAGS_TF;
1899 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1900 rflags &= ~X86_EFLAGS_RF;
1901 }
1902 return rflags;
1903}
1904
1905static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1906{
1907 if (to_svm(vcpu)->nmi_singlestep)
1908 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1909
1910 /*
1911 * Any change of EFLAGS.VM is accompanied by a reload of SS
1912 * (caused by either a task switch or an inter-privilege IRET),
1913 * so we do not need to update the CPL here.
1914 */
1915 to_svm(vcpu)->vmcb->save.rflags = rflags;
1916}
1917
1918static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1919{
1920 switch (reg) {
1921 case VCPU_EXREG_PDPTR:
1922 BUG_ON(!npt_enabled);
1923 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1924 break;
1925 default:
1926 BUG();
1927 }
1928}
1929
1930static void svm_set_vintr(struct vcpu_svm *svm)
1931{
1932 set_intercept(svm, INTERCEPT_VINTR);
1933}
1934
1935static void svm_clear_vintr(struct vcpu_svm *svm)
1936{
1937 clr_intercept(svm, INTERCEPT_VINTR);
1938}
1939
1940static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1941{
1942 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1943
1944 switch (seg) {
1945 case VCPU_SREG_CS: return &save->cs;
1946 case VCPU_SREG_DS: return &save->ds;
1947 case VCPU_SREG_ES: return &save->es;
1948 case VCPU_SREG_FS: return &save->fs;
1949 case VCPU_SREG_GS: return &save->gs;
1950 case VCPU_SREG_SS: return &save->ss;
1951 case VCPU_SREG_TR: return &save->tr;
1952 case VCPU_SREG_LDTR: return &save->ldtr;
1953 }
1954 BUG();
1955 return NULL;
1956}
1957
1958static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1959{
1960 struct vmcb_seg *s = svm_seg(vcpu, seg);
1961
1962 return s->base;
1963}
1964
1965static void svm_get_segment(struct kvm_vcpu *vcpu,
1966 struct kvm_segment *var, int seg)
1967{
1968 struct vmcb_seg *s = svm_seg(vcpu, seg);
1969
1970 var->base = s->base;
1971 var->limit = s->limit;
1972 var->selector = s->selector;
1973 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1974 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1975 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1976 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1977 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1978 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1979 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1980
1981 /*
1982 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1983 * However, the SVM spec states that the G bit is not observed by the
1984 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1985 * So let's synthesize a legal G bit for all segments, this helps
1986 * running KVM nested. It also helps cross-vendor migration, because
1987 * Intel's vmentry has a check on the 'G' bit.
1988 */
1989 var->g = s->limit > 0xfffff;
1990
1991 /*
1992 * AMD's VMCB does not have an explicit unusable field, so emulate it
1993 * for cross vendor migration purposes by "not present"
1994 */
1995 var->unusable = !var->present;
1996
1997 switch (seg) {
1998 case VCPU_SREG_TR:
1999 /*
2000 * Work around a bug where the busy flag in the tr selector
2001 * isn't exposed
2002 */
2003 var->type |= 0x2;
2004 break;
2005 case VCPU_SREG_DS:
2006 case VCPU_SREG_ES:
2007 case VCPU_SREG_FS:
2008 case VCPU_SREG_GS:
2009 /*
2010 * The accessed bit must always be set in the segment
2011 * descriptor cache, although it can be cleared in the
2012 * descriptor, the cached bit always remains at 1. Since
2013 * Intel has a check on this, set it here to support
2014 * cross-vendor migration.
2015 */
2016 if (!var->unusable)
2017 var->type |= 0x1;
2018 break;
2019 case VCPU_SREG_SS:
2020 /*
2021 * On AMD CPUs sometimes the DB bit in the segment
2022 * descriptor is left as 1, although the whole segment has
2023 * been made unusable. Clear it here to pass an Intel VMX
2024 * entry check when cross vendor migrating.
2025 */
2026 if (var->unusable)
2027 var->db = 0;
2028 /* This is symmetric with svm_set_segment() */
2029 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2030 break;
2031 }
2032}
2033
2034static int svm_get_cpl(struct kvm_vcpu *vcpu)
2035{
2036 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2037
2038 return save->cpl;
2039}
2040
2041static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2042{
2043 struct vcpu_svm *svm = to_svm(vcpu);
2044
2045 dt->size = svm->vmcb->save.idtr.limit;
2046 dt->address = svm->vmcb->save.idtr.base;
2047}
2048
2049static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2050{
2051 struct vcpu_svm *svm = to_svm(vcpu);
2052
2053 svm->vmcb->save.idtr.limit = dt->size;
2054 svm->vmcb->save.idtr.base = dt->address ;
2055 mark_dirty(svm->vmcb, VMCB_DT);
2056}
2057
2058static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2059{
2060 struct vcpu_svm *svm = to_svm(vcpu);
2061
2062 dt->size = svm->vmcb->save.gdtr.limit;
2063 dt->address = svm->vmcb->save.gdtr.base;
2064}
2065
2066static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2067{
2068 struct vcpu_svm *svm = to_svm(vcpu);
2069
2070 svm->vmcb->save.gdtr.limit = dt->size;
2071 svm->vmcb->save.gdtr.base = dt->address ;
2072 mark_dirty(svm->vmcb, VMCB_DT);
2073}
2074
2075static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2076{
2077}
2078
2079static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2080{
2081}
2082
2083static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2084{
2085}
2086
2087static void update_cr0_intercept(struct vcpu_svm *svm)
2088{
2089 ulong gcr0 = svm->vcpu.arch.cr0;
2090 u64 *hcr0 = &svm->vmcb->save.cr0;
2091
2092 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2093 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2094
2095 mark_dirty(svm->vmcb, VMCB_CR);
2096
2097 if (gcr0 == *hcr0) {
2098 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2099 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2100 } else {
2101 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2102 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2103 }
2104}
2105
2106static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2107{
2108 struct vcpu_svm *svm = to_svm(vcpu);
2109
2110#ifdef CONFIG_X86_64
2111 if (vcpu->arch.efer & EFER_LME) {
2112 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2113 vcpu->arch.efer |= EFER_LMA;
2114 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2115 }
2116
2117 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2118 vcpu->arch.efer &= ~EFER_LMA;
2119 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2120 }
2121 }
2122#endif
2123 vcpu->arch.cr0 = cr0;
2124
2125 if (!npt_enabled)
2126 cr0 |= X86_CR0_PG | X86_CR0_WP;
2127
2128 /*
2129 * re-enable caching here because the QEMU bios
2130 * does not do it - this results in some delay at
2131 * reboot
2132 */
2133 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2134 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2135 svm->vmcb->save.cr0 = cr0;
2136 mark_dirty(svm->vmcb, VMCB_CR);
2137 update_cr0_intercept(svm);
2138}
2139
2140static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2141{
2142 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2143 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2144
2145 if (cr4 & X86_CR4_VMXE)
2146 return 1;
2147
2148 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2149 svm_flush_tlb(vcpu, true);
2150
2151 vcpu->arch.cr4 = cr4;
2152 if (!npt_enabled)
2153 cr4 |= X86_CR4_PAE;
2154 cr4 |= host_cr4_mce;
2155 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2156 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2157 return 0;
2158}
2159
2160static void svm_set_segment(struct kvm_vcpu *vcpu,
2161 struct kvm_segment *var, int seg)
2162{
2163 struct vcpu_svm *svm = to_svm(vcpu);
2164 struct vmcb_seg *s = svm_seg(vcpu, seg);
2165
2166 s->base = var->base;
2167 s->limit = var->limit;
2168 s->selector = var->selector;
2169 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2170 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2171 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2172 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2173 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2174 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2175 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2176 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2177
2178 /*
2179 * This is always accurate, except if SYSRET returned to a segment
2180 * with SS.DPL != 3. Intel does not have this quirk, and always
2181 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2182 * would entail passing the CPL to userspace and back.
2183 */
2184 if (seg == VCPU_SREG_SS)
2185 /* This is symmetric with svm_get_segment() */
2186 svm->vmcb->save.cpl = (var->dpl & 3);
2187
2188 mark_dirty(svm->vmcb, VMCB_SEG);
2189}
2190
2191static void update_bp_intercept(struct kvm_vcpu *vcpu)
2192{
2193 struct vcpu_svm *svm = to_svm(vcpu);
2194
2195 clr_exception_intercept(svm, BP_VECTOR);
2196
2197 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2198 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2199 set_exception_intercept(svm, BP_VECTOR);
2200 } else
2201 vcpu->guest_debug = 0;
2202}
2203
2204static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2205{
2206 if (sd->next_asid > sd->max_asid) {
2207 ++sd->asid_generation;
2208 sd->next_asid = 1;
2209 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2210 }
2211
2212 svm->asid_generation = sd->asid_generation;
2213 svm->vmcb->control.asid = sd->next_asid++;
2214
2215 mark_dirty(svm->vmcb, VMCB_ASID);
2216}
2217
2218static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2219{
2220 return to_svm(vcpu)->vmcb->save.dr6;
2221}
2222
2223static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2224{
2225 struct vcpu_svm *svm = to_svm(vcpu);
2226
2227 svm->vmcb->save.dr6 = value;
2228 mark_dirty(svm->vmcb, VMCB_DR);
2229}
2230
2231static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2232{
2233 struct vcpu_svm *svm = to_svm(vcpu);
2234
2235 get_debugreg(vcpu->arch.db[0], 0);
2236 get_debugreg(vcpu->arch.db[1], 1);
2237 get_debugreg(vcpu->arch.db[2], 2);
2238 get_debugreg(vcpu->arch.db[3], 3);
2239 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2240 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2241
2242 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2243 set_dr_intercepts(svm);
2244}
2245
2246static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2247{
2248 struct vcpu_svm *svm = to_svm(vcpu);
2249
2250 svm->vmcb->save.dr7 = value;
2251 mark_dirty(svm->vmcb, VMCB_DR);
2252}
2253
2254static int pf_interception(struct vcpu_svm *svm)
2255{
2256 u64 fault_address = svm->vmcb->control.exit_info_2;
2257 u64 error_code = svm->vmcb->control.exit_info_1;
2258
2259 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2260 svm->vmcb->control.insn_bytes,
2261 svm->vmcb->control.insn_len, !npt_enabled);
2262}
2263
2264static int db_interception(struct vcpu_svm *svm)
2265{
2266 struct kvm_run *kvm_run = svm->vcpu.run;
2267 struct kvm_vcpu *vcpu = &svm->vcpu;
2268
2269 if (!(svm->vcpu.guest_debug &
2270 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2271 !svm->nmi_singlestep) {
2272 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2273 return 1;
2274 }
2275
2276 if (svm->nmi_singlestep) {
2277 disable_nmi_singlestep(svm);
2278 /* Make sure we check for pending NMIs upon entry */
2279 kvm_make_request(KVM_REQ_EVENT, vcpu);
2280 }
2281
2282 if (svm->vcpu.guest_debug &
2283 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2284 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2285 kvm_run->debug.arch.pc =
2286 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2287 kvm_run->debug.arch.exception = DB_VECTOR;
2288 return 0;
2289 }
2290
2291 return 1;
2292}
2293
2294static int bp_interception(struct vcpu_svm *svm)
2295{
2296 struct kvm_run *kvm_run = svm->vcpu.run;
2297
2298 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2299 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2300 kvm_run->debug.arch.exception = BP_VECTOR;
2301 return 0;
2302}
2303
2304static int ud_interception(struct vcpu_svm *svm)
2305{
2306 int er;
2307
2308 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2309 if (er == EMULATE_USER_EXIT)
2310 return 0;
2311 if (er != EMULATE_DONE)
2312 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2313 return 1;
2314}
2315
2316static int ac_interception(struct vcpu_svm *svm)
2317{
2318 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2319 return 1;
2320}
2321
2322static bool is_erratum_383(void)
2323{
2324 int err, i;
2325 u64 value;
2326
2327 if (!erratum_383_found)
2328 return false;
2329
2330 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2331 if (err)
2332 return false;
2333
2334 /* Bit 62 may or may not be set for this mce */
2335 value &= ~(1ULL << 62);
2336
2337 if (value != 0xb600000000010015ULL)
2338 return false;
2339
2340 /* Clear MCi_STATUS registers */
2341 for (i = 0; i < 6; ++i)
2342 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2343
2344 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2345 if (!err) {
2346 u32 low, high;
2347
2348 value &= ~(1ULL << 2);
2349 low = lower_32_bits(value);
2350 high = upper_32_bits(value);
2351
2352 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2353 }
2354
2355 /* Flush tlb to evict multi-match entries */
2356 __flush_tlb_all();
2357
2358 return true;
2359}
2360
2361static void svm_handle_mce(struct vcpu_svm *svm)
2362{
2363 if (is_erratum_383()) {
2364 /*
2365 * Erratum 383 triggered. Guest state is corrupt so kill the
2366 * guest.
2367 */
2368 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2369
2370 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2371
2372 return;
2373 }
2374
2375 /*
2376 * On an #MC intercept the MCE handler is not called automatically in
2377 * the host. So do it by hand here.
2378 */
2379 asm volatile (
2380 "int $0x12\n");
2381 /* not sure if we ever come back to this point */
2382
2383 return;
2384}
2385
2386static int mc_interception(struct vcpu_svm *svm)
2387{
2388 return 1;
2389}
2390
2391static int shutdown_interception(struct vcpu_svm *svm)
2392{
2393 struct kvm_run *kvm_run = svm->vcpu.run;
2394
2395 /*
2396 * VMCB is undefined after a SHUTDOWN intercept
2397 * so reinitialize it.
2398 */
2399 clear_page(svm->vmcb);
2400 init_vmcb(svm);
2401
2402 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2403 return 0;
2404}
2405
2406static int io_interception(struct vcpu_svm *svm)
2407{
2408 struct kvm_vcpu *vcpu = &svm->vcpu;
2409 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2410 int size, in, string, ret;
2411 unsigned port;
2412
2413 ++svm->vcpu.stat.io_exits;
2414 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2415 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2416 if (string)
2417 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2418
2419 port = io_info >> 16;
2420 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2421 svm->next_rip = svm->vmcb->control.exit_info_2;
2422 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2423
2424 /*
2425 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2426 * KVM_EXIT_DEBUG here.
2427 */
2428 if (in)
2429 return kvm_fast_pio_in(vcpu, size, port) && ret;
2430 else
2431 return kvm_fast_pio_out(vcpu, size, port) && ret;
2432}
2433
2434static int nmi_interception(struct vcpu_svm *svm)
2435{
2436 return 1;
2437}
2438
2439static int intr_interception(struct vcpu_svm *svm)
2440{
2441 ++svm->vcpu.stat.irq_exits;
2442 return 1;
2443}
2444
2445static int nop_on_interception(struct vcpu_svm *svm)
2446{
2447 return 1;
2448}
2449
2450static int halt_interception(struct vcpu_svm *svm)
2451{
2452 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2453 return kvm_emulate_halt(&svm->vcpu);
2454}
2455
2456static int vmmcall_interception(struct vcpu_svm *svm)
2457{
2458 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2459 return kvm_emulate_hypercall(&svm->vcpu);
2460}
2461
2462static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2463{
2464 struct vcpu_svm *svm = to_svm(vcpu);
2465
2466 return svm->nested.nested_cr3;
2467}
2468
2469static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2470{
2471 struct vcpu_svm *svm = to_svm(vcpu);
2472 u64 cr3 = svm->nested.nested_cr3;
2473 u64 pdpte;
2474 int ret;
2475
2476 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2477 offset_in_page(cr3) + index * 8, 8);
2478 if (ret)
2479 return 0;
2480 return pdpte;
2481}
2482
2483static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2484 unsigned long root)
2485{
2486 struct vcpu_svm *svm = to_svm(vcpu);
2487
2488 svm->vmcb->control.nested_cr3 = __sme_set(root);
2489 mark_dirty(svm->vmcb, VMCB_NPT);
2490 svm_flush_tlb(vcpu, true);
2491}
2492
2493static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2494 struct x86_exception *fault)
2495{
2496 struct vcpu_svm *svm = to_svm(vcpu);
2497
2498 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2499 /*
2500 * TODO: track the cause of the nested page fault, and
2501 * correctly fill in the high bits of exit_info_1.
2502 */
2503 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2504 svm->vmcb->control.exit_code_hi = 0;
2505 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2506 svm->vmcb->control.exit_info_2 = fault->address;
2507 }
2508
2509 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2510 svm->vmcb->control.exit_info_1 |= fault->error_code;
2511
2512 /*
2513 * The present bit is always zero for page structure faults on real
2514 * hardware.
2515 */
2516 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2517 svm->vmcb->control.exit_info_1 &= ~1;
2518
2519 nested_svm_vmexit(svm);
2520}
2521
2522static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2523{
2524 WARN_ON(mmu_is_nested(vcpu));
2525 kvm_init_shadow_mmu(vcpu);
2526 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2527 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2528 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2529 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2530 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2531 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2532 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2533}
2534
2535static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2536{
2537 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2538}
2539
2540static int nested_svm_check_permissions(struct vcpu_svm *svm)
2541{
2542 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2543 !is_paging(&svm->vcpu)) {
2544 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2545 return 1;
2546 }
2547
2548 if (svm->vmcb->save.cpl) {
2549 kvm_inject_gp(&svm->vcpu, 0);
2550 return 1;
2551 }
2552
2553 return 0;
2554}
2555
2556static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2557 bool has_error_code, u32 error_code)
2558{
2559 int vmexit;
2560
2561 if (!is_guest_mode(&svm->vcpu))
2562 return 0;
2563
2564 vmexit = nested_svm_intercept(svm);
2565 if (vmexit != NESTED_EXIT_DONE)
2566 return 0;
2567
2568 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2569 svm->vmcb->control.exit_code_hi = 0;
2570 svm->vmcb->control.exit_info_1 = error_code;
2571
2572 /*
2573 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2574 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2575 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2576 * written only when inject_pending_event runs (DR6 would written here
2577 * too). This should be conditional on a new capability---if the
2578 * capability is disabled, kvm_multiple_exception would write the
2579 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2580 */
2581 if (svm->vcpu.arch.exception.nested_apf)
2582 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2583 else
2584 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2585
2586 svm->nested.exit_required = true;
2587 return vmexit;
2588}
2589
2590/* This function returns true if it is save to enable the irq window */
2591static inline bool nested_svm_intr(struct vcpu_svm *svm)
2592{
2593 if (!is_guest_mode(&svm->vcpu))
2594 return true;
2595
2596 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2597 return true;
2598
2599 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2600 return false;
2601
2602 /*
2603 * if vmexit was already requested (by intercepted exception
2604 * for instance) do not overwrite it with "external interrupt"
2605 * vmexit.
2606 */
2607 if (svm->nested.exit_required)
2608 return false;
2609
2610 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2611 svm->vmcb->control.exit_info_1 = 0;
2612 svm->vmcb->control.exit_info_2 = 0;
2613
2614 if (svm->nested.intercept & 1ULL) {
2615 /*
2616 * The #vmexit can't be emulated here directly because this
2617 * code path runs with irqs and preemption disabled. A
2618 * #vmexit emulation might sleep. Only signal request for
2619 * the #vmexit here.
2620 */
2621 svm->nested.exit_required = true;
2622 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2623 return false;
2624 }
2625
2626 return true;
2627}
2628
2629/* This function returns true if it is save to enable the nmi window */
2630static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2631{
2632 if (!is_guest_mode(&svm->vcpu))
2633 return true;
2634
2635 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2636 return true;
2637
2638 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2639 svm->nested.exit_required = true;
2640
2641 return false;
2642}
2643
2644static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2645{
2646 struct page *page;
2647
2648 might_sleep();
2649
2650 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2651 if (is_error_page(page))
2652 goto error;
2653
2654 *_page = page;
2655
2656 return kmap(page);
2657
2658error:
2659 kvm_inject_gp(&svm->vcpu, 0);
2660
2661 return NULL;
2662}
2663
2664static void nested_svm_unmap(struct page *page)
2665{
2666 kunmap(page);
2667 kvm_release_page_dirty(page);
2668}
2669
2670static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2671{
2672 unsigned port, size, iopm_len;
2673 u16 val, mask;
2674 u8 start_bit;
2675 u64 gpa;
2676
2677 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2678 return NESTED_EXIT_HOST;
2679
2680 port = svm->vmcb->control.exit_info_1 >> 16;
2681 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2682 SVM_IOIO_SIZE_SHIFT;
2683 gpa = svm->nested.vmcb_iopm + (port / 8);
2684 start_bit = port % 8;
2685 iopm_len = (start_bit + size > 8) ? 2 : 1;
2686 mask = (0xf >> (4 - size)) << start_bit;
2687 val = 0;
2688
2689 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2690 return NESTED_EXIT_DONE;
2691
2692 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2693}
2694
2695static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2696{
2697 u32 offset, msr, value;
2698 int write, mask;
2699
2700 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2701 return NESTED_EXIT_HOST;
2702
2703 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2704 offset = svm_msrpm_offset(msr);
2705 write = svm->vmcb->control.exit_info_1 & 1;
2706 mask = 1 << ((2 * (msr & 0xf)) + write);
2707
2708 if (offset == MSR_INVALID)
2709 return NESTED_EXIT_DONE;
2710
2711 /* Offset is in 32 bit units but need in 8 bit units */
2712 offset *= 4;
2713
2714 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2715 return NESTED_EXIT_DONE;
2716
2717 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2718}
2719
2720/* DB exceptions for our internal use must not cause vmexit */
2721static int nested_svm_intercept_db(struct vcpu_svm *svm)
2722{
2723 unsigned long dr6;
2724
2725 /* if we're not singlestepping, it's not ours */
2726 if (!svm->nmi_singlestep)
2727 return NESTED_EXIT_DONE;
2728
2729 /* if it's not a singlestep exception, it's not ours */
2730 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2731 return NESTED_EXIT_DONE;
2732 if (!(dr6 & DR6_BS))
2733 return NESTED_EXIT_DONE;
2734
2735 /* if the guest is singlestepping, it should get the vmexit */
2736 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2737 disable_nmi_singlestep(svm);
2738 return NESTED_EXIT_DONE;
2739 }
2740
2741 /* it's ours, the nested hypervisor must not see this one */
2742 return NESTED_EXIT_HOST;
2743}
2744
2745static int nested_svm_exit_special(struct vcpu_svm *svm)
2746{
2747 u32 exit_code = svm->vmcb->control.exit_code;
2748
2749 switch (exit_code) {
2750 case SVM_EXIT_INTR:
2751 case SVM_EXIT_NMI:
2752 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2753 return NESTED_EXIT_HOST;
2754 case SVM_EXIT_NPF:
2755 /* For now we are always handling NPFs when using them */
2756 if (npt_enabled)
2757 return NESTED_EXIT_HOST;
2758 break;
2759 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2760 /* Trap async PF even if not shadowing */
2761 if (!npt_enabled || svm->vcpu.arch.apf.host_apf_reason)
2762 return NESTED_EXIT_HOST;
2763 break;
2764 default:
2765 break;
2766 }
2767
2768 return NESTED_EXIT_CONTINUE;
2769}
2770
2771/*
2772 * If this function returns true, this #vmexit was already handled
2773 */
2774static int nested_svm_intercept(struct vcpu_svm *svm)
2775{
2776 u32 exit_code = svm->vmcb->control.exit_code;
2777 int vmexit = NESTED_EXIT_HOST;
2778
2779 switch (exit_code) {
2780 case SVM_EXIT_MSR:
2781 vmexit = nested_svm_exit_handled_msr(svm);
2782 break;
2783 case SVM_EXIT_IOIO:
2784 vmexit = nested_svm_intercept_ioio(svm);
2785 break;
2786 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2787 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2788 if (svm->nested.intercept_cr & bit)
2789 vmexit = NESTED_EXIT_DONE;
2790 break;
2791 }
2792 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2793 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2794 if (svm->nested.intercept_dr & bit)
2795 vmexit = NESTED_EXIT_DONE;
2796 break;
2797 }
2798 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2799 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2800 if (svm->nested.intercept_exceptions & excp_bits) {
2801 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
2802 vmexit = nested_svm_intercept_db(svm);
2803 else
2804 vmexit = NESTED_EXIT_DONE;
2805 }
2806 /* async page fault always cause vmexit */
2807 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2808 svm->vcpu.arch.exception.nested_apf != 0)
2809 vmexit = NESTED_EXIT_DONE;
2810 break;
2811 }
2812 case SVM_EXIT_ERR: {
2813 vmexit = NESTED_EXIT_DONE;
2814 break;
2815 }
2816 default: {
2817 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2818 if (svm->nested.intercept & exit_bits)
2819 vmexit = NESTED_EXIT_DONE;
2820 }
2821 }
2822
2823 return vmexit;
2824}
2825
2826static int nested_svm_exit_handled(struct vcpu_svm *svm)
2827{
2828 int vmexit;
2829
2830 vmexit = nested_svm_intercept(svm);
2831
2832 if (vmexit == NESTED_EXIT_DONE)
2833 nested_svm_vmexit(svm);
2834
2835 return vmexit;
2836}
2837
2838static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2839{
2840 struct vmcb_control_area *dst = &dst_vmcb->control;
2841 struct vmcb_control_area *from = &from_vmcb->control;
2842
2843 dst->intercept_cr = from->intercept_cr;
2844 dst->intercept_dr = from->intercept_dr;
2845 dst->intercept_exceptions = from->intercept_exceptions;
2846 dst->intercept = from->intercept;
2847 dst->iopm_base_pa = from->iopm_base_pa;
2848 dst->msrpm_base_pa = from->msrpm_base_pa;
2849 dst->tsc_offset = from->tsc_offset;
2850 /* asid not copied, it is handled manually for svm->vmcb. */
2851 dst->tlb_ctl = from->tlb_ctl;
2852 dst->int_ctl = from->int_ctl;
2853 dst->int_vector = from->int_vector;
2854 dst->int_state = from->int_state;
2855 dst->exit_code = from->exit_code;
2856 dst->exit_code_hi = from->exit_code_hi;
2857 dst->exit_info_1 = from->exit_info_1;
2858 dst->exit_info_2 = from->exit_info_2;
2859 dst->exit_int_info = from->exit_int_info;
2860 dst->exit_int_info_err = from->exit_int_info_err;
2861 dst->nested_ctl = from->nested_ctl;
2862 dst->event_inj = from->event_inj;
2863 dst->event_inj_err = from->event_inj_err;
2864 dst->nested_cr3 = from->nested_cr3;
2865 dst->virt_ext = from->virt_ext;
2866}
2867
2868static int nested_svm_vmexit(struct vcpu_svm *svm)
2869{
2870 struct vmcb *nested_vmcb;
2871 struct vmcb *hsave = svm->nested.hsave;
2872 struct vmcb *vmcb = svm->vmcb;
2873 struct page *page;
2874
2875 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2876 vmcb->control.exit_info_1,
2877 vmcb->control.exit_info_2,
2878 vmcb->control.exit_int_info,
2879 vmcb->control.exit_int_info_err,
2880 KVM_ISA_SVM);
2881
2882 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2883 if (!nested_vmcb)
2884 return 1;
2885
2886 /* Exit Guest-Mode */
2887 leave_guest_mode(&svm->vcpu);
2888 svm->nested.vmcb = 0;
2889
2890 /* Give the current vmcb to the guest */
2891 disable_gif(svm);
2892
2893 nested_vmcb->save.es = vmcb->save.es;
2894 nested_vmcb->save.cs = vmcb->save.cs;
2895 nested_vmcb->save.ss = vmcb->save.ss;
2896 nested_vmcb->save.ds = vmcb->save.ds;
2897 nested_vmcb->save.gdtr = vmcb->save.gdtr;
2898 nested_vmcb->save.idtr = vmcb->save.idtr;
2899 nested_vmcb->save.efer = svm->vcpu.arch.efer;
2900 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
2901 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
2902 nested_vmcb->save.cr2 = vmcb->save.cr2;
2903 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
2904 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2905 nested_vmcb->save.rip = vmcb->save.rip;
2906 nested_vmcb->save.rsp = vmcb->save.rsp;
2907 nested_vmcb->save.rax = vmcb->save.rax;
2908 nested_vmcb->save.dr7 = vmcb->save.dr7;
2909 nested_vmcb->save.dr6 = vmcb->save.dr6;
2910 nested_vmcb->save.cpl = vmcb->save.cpl;
2911
2912 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
2913 nested_vmcb->control.int_vector = vmcb->control.int_vector;
2914 nested_vmcb->control.int_state = vmcb->control.int_state;
2915 nested_vmcb->control.exit_code = vmcb->control.exit_code;
2916 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
2917 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
2918 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
2919 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
2920 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2921
2922 if (svm->nrips_enabled)
2923 nested_vmcb->control.next_rip = vmcb->control.next_rip;
2924
2925 /*
2926 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2927 * to make sure that we do not lose injected events. So check event_inj
2928 * here and copy it to exit_int_info if it is valid.
2929 * Exit_int_info and event_inj can't be both valid because the case
2930 * below only happens on a VMRUN instruction intercept which has
2931 * no valid exit_int_info set.
2932 */
2933 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2934 struct vmcb_control_area *nc = &nested_vmcb->control;
2935
2936 nc->exit_int_info = vmcb->control.event_inj;
2937 nc->exit_int_info_err = vmcb->control.event_inj_err;
2938 }
2939
2940 nested_vmcb->control.tlb_ctl = 0;
2941 nested_vmcb->control.event_inj = 0;
2942 nested_vmcb->control.event_inj_err = 0;
2943
2944 /* We always set V_INTR_MASKING and remember the old value in hflags */
2945 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2946 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2947
2948 /* Restore the original control entries */
2949 copy_vmcb_control_area(vmcb, hsave);
2950
2951 kvm_clear_exception_queue(&svm->vcpu);
2952 kvm_clear_interrupt_queue(&svm->vcpu);
2953
2954 svm->nested.nested_cr3 = 0;
2955
2956 /* Restore selected save entries */
2957 svm->vmcb->save.es = hsave->save.es;
2958 svm->vmcb->save.cs = hsave->save.cs;
2959 svm->vmcb->save.ss = hsave->save.ss;
2960 svm->vmcb->save.ds = hsave->save.ds;
2961 svm->vmcb->save.gdtr = hsave->save.gdtr;
2962 svm->vmcb->save.idtr = hsave->save.idtr;
2963 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2964 svm_set_efer(&svm->vcpu, hsave->save.efer);
2965 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2966 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2967 if (npt_enabled) {
2968 svm->vmcb->save.cr3 = hsave->save.cr3;
2969 svm->vcpu.arch.cr3 = hsave->save.cr3;
2970 } else {
2971 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2972 }
2973 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2974 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2975 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2976 svm->vmcb->save.dr7 = 0;
2977 svm->vmcb->save.cpl = 0;
2978 svm->vmcb->control.exit_int_info = 0;
2979
2980 mark_all_dirty(svm->vmcb);
2981
2982 nested_svm_unmap(page);
2983
2984 nested_svm_uninit_mmu_context(&svm->vcpu);
2985 kvm_mmu_reset_context(&svm->vcpu);
2986 kvm_mmu_load(&svm->vcpu);
2987
2988 /*
2989 * Drop what we picked up for L2 via svm_complete_interrupts() so it
2990 * doesn't end up in L1.
2991 */
2992 svm->vcpu.arch.nmi_injected = false;
2993 kvm_clear_exception_queue(&svm->vcpu);
2994 kvm_clear_interrupt_queue(&svm->vcpu);
2995
2996 return 0;
2997}
2998
2999static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3000{
3001 /*
3002 * This function merges the msr permission bitmaps of kvm and the
3003 * nested vmcb. It is optimized in that it only merges the parts where
3004 * the kvm msr permission bitmap may contain zero bits
3005 */
3006 int i;
3007
3008 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3009 return true;
3010
3011 for (i = 0; i < MSRPM_OFFSETS; i++) {
3012 u32 value, p;
3013 u64 offset;
3014
3015 if (msrpm_offsets[i] == 0xffffffff)
3016 break;
3017
3018 p = msrpm_offsets[i];
3019 offset = svm->nested.vmcb_msrpm + (p * 4);
3020
3021 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3022 return false;
3023
3024 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3025 }
3026
3027 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3028
3029 return true;
3030}
3031
3032static bool nested_vmcb_checks(struct vmcb *vmcb)
3033{
3034 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3035 return false;
3036
3037 if (vmcb->control.asid == 0)
3038 return false;
3039
3040 if (vmcb->control.nested_ctl && !npt_enabled)
3041 return false;
3042
3043 return true;
3044}
3045
3046static bool nested_svm_vmrun(struct vcpu_svm *svm)
3047{
3048 struct vmcb *nested_vmcb;
3049 struct vmcb *hsave = svm->nested.hsave;
3050 struct vmcb *vmcb = svm->vmcb;
3051 struct page *page;
3052 u64 vmcb_gpa;
3053
3054 vmcb_gpa = svm->vmcb->save.rax;
3055
3056 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3057 if (!nested_vmcb)
3058 return false;
3059
3060 if (!nested_vmcb_checks(nested_vmcb)) {
3061 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3062 nested_vmcb->control.exit_code_hi = 0;
3063 nested_vmcb->control.exit_info_1 = 0;
3064 nested_vmcb->control.exit_info_2 = 0;
3065
3066 nested_svm_unmap(page);
3067
3068 return false;
3069 }
3070
3071 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3072 nested_vmcb->save.rip,
3073 nested_vmcb->control.int_ctl,
3074 nested_vmcb->control.event_inj,
3075 nested_vmcb->control.nested_ctl);
3076
3077 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3078 nested_vmcb->control.intercept_cr >> 16,
3079 nested_vmcb->control.intercept_exceptions,
3080 nested_vmcb->control.intercept);
3081
3082 /* Clear internal status */
3083 kvm_clear_exception_queue(&svm->vcpu);
3084 kvm_clear_interrupt_queue(&svm->vcpu);
3085
3086 /*
3087 * Save the old vmcb, so we don't need to pick what we save, but can
3088 * restore everything when a VMEXIT occurs
3089 */
3090 hsave->save.es = vmcb->save.es;
3091 hsave->save.cs = vmcb->save.cs;
3092 hsave->save.ss = vmcb->save.ss;
3093 hsave->save.ds = vmcb->save.ds;
3094 hsave->save.gdtr = vmcb->save.gdtr;
3095 hsave->save.idtr = vmcb->save.idtr;
3096 hsave->save.efer = svm->vcpu.arch.efer;
3097 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3098 hsave->save.cr4 = svm->vcpu.arch.cr4;
3099 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3100 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3101 hsave->save.rsp = vmcb->save.rsp;
3102 hsave->save.rax = vmcb->save.rax;
3103 if (npt_enabled)
3104 hsave->save.cr3 = vmcb->save.cr3;
3105 else
3106 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3107
3108 copy_vmcb_control_area(hsave, vmcb);
3109
3110 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3111 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3112 else
3113 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3114
3115 if (nested_vmcb->control.nested_ctl) {
3116 kvm_mmu_unload(&svm->vcpu);
3117 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3118 nested_svm_init_mmu_context(&svm->vcpu);
3119 }
3120
3121 /* Load the nested guest state */
3122 svm->vmcb->save.es = nested_vmcb->save.es;
3123 svm->vmcb->save.cs = nested_vmcb->save.cs;
3124 svm->vmcb->save.ss = nested_vmcb->save.ss;
3125 svm->vmcb->save.ds = nested_vmcb->save.ds;
3126 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3127 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3128 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3129 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3130 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3131 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3132 if (npt_enabled) {
3133 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3134 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3135 } else
3136 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3137
3138 /* Guest paging mode is active - reset mmu */
3139 kvm_mmu_reset_context(&svm->vcpu);
3140
3141 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3142 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3143 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3144 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3145
3146 /* In case we don't even reach vcpu_run, the fields are not updated */
3147 svm->vmcb->save.rax = nested_vmcb->save.rax;
3148 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3149 svm->vmcb->save.rip = nested_vmcb->save.rip;
3150 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3151 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3152 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3153
3154 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3155 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3156
3157 /* cache intercepts */
3158 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3159 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3160 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3161 svm->nested.intercept = nested_vmcb->control.intercept;
3162
3163 svm_flush_tlb(&svm->vcpu, true);
3164 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3165 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3166 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3167 else
3168 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3169
3170 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3171 /* We only want the cr8 intercept bits of the guest */
3172 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3173 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3174 }
3175
3176 /* We don't want to see VMMCALLs from a nested guest */
3177 clr_intercept(svm, INTERCEPT_VMMCALL);
3178
3179 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3180 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3181 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3182 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3183 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3184 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3185
3186 nested_svm_unmap(page);
3187
3188 /* Enter Guest-Mode */
3189 enter_guest_mode(&svm->vcpu);
3190
3191 /*
3192 * Merge guest and host intercepts - must be called with vcpu in
3193 * guest-mode to take affect here
3194 */
3195 recalc_intercepts(svm);
3196
3197 svm->nested.vmcb = vmcb_gpa;
3198
3199 enable_gif(svm);
3200
3201 mark_all_dirty(svm->vmcb);
3202
3203 return true;
3204}
3205
3206static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3207{
3208 to_vmcb->save.fs = from_vmcb->save.fs;
3209 to_vmcb->save.gs = from_vmcb->save.gs;
3210 to_vmcb->save.tr = from_vmcb->save.tr;
3211 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3212 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3213 to_vmcb->save.star = from_vmcb->save.star;
3214 to_vmcb->save.lstar = from_vmcb->save.lstar;
3215 to_vmcb->save.cstar = from_vmcb->save.cstar;
3216 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3217 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3218 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3219 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3220}
3221
3222static int vmload_interception(struct vcpu_svm *svm)
3223{
3224 struct vmcb *nested_vmcb;
3225 struct page *page;
3226 int ret;
3227
3228 if (nested_svm_check_permissions(svm))
3229 return 1;
3230
3231 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3232 if (!nested_vmcb)
3233 return 1;
3234
3235 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3236 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3237
3238 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3239 nested_svm_unmap(page);
3240
3241 return ret;
3242}
3243
3244static int vmsave_interception(struct vcpu_svm *svm)
3245{
3246 struct vmcb *nested_vmcb;
3247 struct page *page;
3248 int ret;
3249
3250 if (nested_svm_check_permissions(svm))
3251 return 1;
3252
3253 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3254 if (!nested_vmcb)
3255 return 1;
3256
3257 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3258 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3259
3260 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3261 nested_svm_unmap(page);
3262
3263 return ret;
3264}
3265
3266static int vmrun_interception(struct vcpu_svm *svm)
3267{
3268 if (nested_svm_check_permissions(svm))
3269 return 1;
3270
3271 /* Save rip after vmrun instruction */
3272 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3273
3274 if (!nested_svm_vmrun(svm))
3275 return 1;
3276
3277 if (!nested_svm_vmrun_msrpm(svm))
3278 goto failed;
3279
3280 return 1;
3281
3282failed:
3283
3284 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3285 svm->vmcb->control.exit_code_hi = 0;
3286 svm->vmcb->control.exit_info_1 = 0;
3287 svm->vmcb->control.exit_info_2 = 0;
3288
3289 nested_svm_vmexit(svm);
3290
3291 return 1;
3292}
3293
3294static int stgi_interception(struct vcpu_svm *svm)
3295{
3296 int ret;
3297
3298 if (nested_svm_check_permissions(svm))
3299 return 1;
3300
3301 /*
3302 * If VGIF is enabled, the STGI intercept is only added to
3303 * detect the opening of the NMI window; remove it now.
3304 */
3305 if (vgif_enabled(svm))
3306 clr_intercept(svm, INTERCEPT_STGI);
3307
3308 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3309 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3310 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3311
3312 enable_gif(svm);
3313
3314 return ret;
3315}
3316
3317static int clgi_interception(struct vcpu_svm *svm)
3318{
3319 int ret;
3320
3321 if (nested_svm_check_permissions(svm))
3322 return 1;
3323
3324 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3325 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3326
3327 disable_gif(svm);
3328
3329 /* After a CLGI no interrupts should come */
3330 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3331 svm_clear_vintr(svm);
3332 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3333 mark_dirty(svm->vmcb, VMCB_INTR);
3334 }
3335
3336 return ret;
3337}
3338
3339static int invlpga_interception(struct vcpu_svm *svm)
3340{
3341 struct kvm_vcpu *vcpu = &svm->vcpu;
3342
3343 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3344 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3345
3346 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3347 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3348
3349 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3350 return kvm_skip_emulated_instruction(&svm->vcpu);
3351}
3352
3353static int skinit_interception(struct vcpu_svm *svm)
3354{
3355 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3356
3357 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3358 return 1;
3359}
3360
3361static int wbinvd_interception(struct vcpu_svm *svm)
3362{
3363 return kvm_emulate_wbinvd(&svm->vcpu);
3364}
3365
3366static int xsetbv_interception(struct vcpu_svm *svm)
3367{
3368 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3369 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3370
3371 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3372 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3373 return kvm_skip_emulated_instruction(&svm->vcpu);
3374 }
3375
3376 return 1;
3377}
3378
3379static int task_switch_interception(struct vcpu_svm *svm)
3380{
3381 u16 tss_selector;
3382 int reason;
3383 int int_type = svm->vmcb->control.exit_int_info &
3384 SVM_EXITINTINFO_TYPE_MASK;
3385 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3386 uint32_t type =
3387 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3388 uint32_t idt_v =
3389 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3390 bool has_error_code = false;
3391 u32 error_code = 0;
3392
3393 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3394
3395 if (svm->vmcb->control.exit_info_2 &
3396 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3397 reason = TASK_SWITCH_IRET;
3398 else if (svm->vmcb->control.exit_info_2 &
3399 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3400 reason = TASK_SWITCH_JMP;
3401 else if (idt_v)
3402 reason = TASK_SWITCH_GATE;
3403 else
3404 reason = TASK_SWITCH_CALL;
3405
3406 if (reason == TASK_SWITCH_GATE) {
3407 switch (type) {
3408 case SVM_EXITINTINFO_TYPE_NMI:
3409 svm->vcpu.arch.nmi_injected = false;
3410 break;
3411 case SVM_EXITINTINFO_TYPE_EXEPT:
3412 if (svm->vmcb->control.exit_info_2 &
3413 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3414 has_error_code = true;
3415 error_code =
3416 (u32)svm->vmcb->control.exit_info_2;
3417 }
3418 kvm_clear_exception_queue(&svm->vcpu);
3419 break;
3420 case SVM_EXITINTINFO_TYPE_INTR:
3421 kvm_clear_interrupt_queue(&svm->vcpu);
3422 break;
3423 default:
3424 break;
3425 }
3426 }
3427
3428 if (reason != TASK_SWITCH_GATE ||
3429 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3430 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3431 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3432 skip_emulated_instruction(&svm->vcpu);
3433
3434 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3435 int_vec = -1;
3436
3437 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3438 has_error_code, error_code) == EMULATE_FAIL) {
3439 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3440 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3441 svm->vcpu.run->internal.ndata = 0;
3442 return 0;
3443 }
3444 return 1;
3445}
3446
3447static int cpuid_interception(struct vcpu_svm *svm)
3448{
3449 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3450 return kvm_emulate_cpuid(&svm->vcpu);
3451}
3452
3453static int iret_interception(struct vcpu_svm *svm)
3454{
3455 ++svm->vcpu.stat.nmi_window_exits;
3456 clr_intercept(svm, INTERCEPT_IRET);
3457 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3458 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3459 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3460 return 1;
3461}
3462
3463static int invlpg_interception(struct vcpu_svm *svm)
3464{
3465 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3466 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3467
3468 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3469 return kvm_skip_emulated_instruction(&svm->vcpu);
3470}
3471
3472static int emulate_on_interception(struct vcpu_svm *svm)
3473{
3474 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3475}
3476
3477static int rdpmc_interception(struct vcpu_svm *svm)
3478{
3479 int err;
3480
3481 if (!static_cpu_has(X86_FEATURE_NRIPS))
3482 return emulate_on_interception(svm);
3483
3484 err = kvm_rdpmc(&svm->vcpu);
3485 return kvm_complete_insn_gp(&svm->vcpu, err);
3486}
3487
3488static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3489 unsigned long val)
3490{
3491 unsigned long cr0 = svm->vcpu.arch.cr0;
3492 bool ret = false;
3493 u64 intercept;
3494
3495 intercept = svm->nested.intercept;
3496
3497 if (!is_guest_mode(&svm->vcpu) ||
3498 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3499 return false;
3500
3501 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3502 val &= ~SVM_CR0_SELECTIVE_MASK;
3503
3504 if (cr0 ^ val) {
3505 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3506 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3507 }
3508
3509 return ret;
3510}
3511
3512#define CR_VALID (1ULL << 63)
3513
3514static int cr_interception(struct vcpu_svm *svm)
3515{
3516 int reg, cr;
3517 unsigned long val;
3518 int err;
3519
3520 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3521 return emulate_on_interception(svm);
3522
3523 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3524 return emulate_on_interception(svm);
3525
3526 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3527 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3528 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3529 else
3530 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3531
3532 err = 0;
3533 if (cr >= 16) { /* mov to cr */
3534 cr -= 16;
3535 val = kvm_register_read(&svm->vcpu, reg);
3536 switch (cr) {
3537 case 0:
3538 if (!check_selective_cr0_intercepted(svm, val))
3539 err = kvm_set_cr0(&svm->vcpu, val);
3540 else
3541 return 1;
3542
3543 break;
3544 case 3:
3545 err = kvm_set_cr3(&svm->vcpu, val);
3546 break;
3547 case 4:
3548 err = kvm_set_cr4(&svm->vcpu, val);
3549 break;
3550 case 8:
3551 err = kvm_set_cr8(&svm->vcpu, val);
3552 break;
3553 default:
3554 WARN(1, "unhandled write to CR%d", cr);
3555 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3556 return 1;
3557 }
3558 } else { /* mov from cr */
3559 switch (cr) {
3560 case 0:
3561 val = kvm_read_cr0(&svm->vcpu);
3562 break;
3563 case 2:
3564 val = svm->vcpu.arch.cr2;
3565 break;
3566 case 3:
3567 val = kvm_read_cr3(&svm->vcpu);
3568 break;
3569 case 4:
3570 val = kvm_read_cr4(&svm->vcpu);
3571 break;
3572 case 8:
3573 val = kvm_get_cr8(&svm->vcpu);
3574 break;
3575 default:
3576 WARN(1, "unhandled read from CR%d", cr);
3577 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3578 return 1;
3579 }
3580 kvm_register_write(&svm->vcpu, reg, val);
3581 }
3582 return kvm_complete_insn_gp(&svm->vcpu, err);
3583}
3584
3585static int dr_interception(struct vcpu_svm *svm)
3586{
3587 int reg, dr;
3588 unsigned long val;
3589
3590 if (svm->vcpu.guest_debug == 0) {
3591 /*
3592 * No more DR vmexits; force a reload of the debug registers
3593 * and reenter on this instruction. The next vmexit will
3594 * retrieve the full state of the debug registers.
3595 */
3596 clr_dr_intercepts(svm);
3597 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3598 return 1;
3599 }
3600
3601 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3602 return emulate_on_interception(svm);
3603
3604 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3605 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3606
3607 if (dr >= 16) { /* mov to DRn */
3608 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3609 return 1;
3610 val = kvm_register_read(&svm->vcpu, reg);
3611 kvm_set_dr(&svm->vcpu, dr - 16, val);
3612 } else {
3613 if (!kvm_require_dr(&svm->vcpu, dr))
3614 return 1;
3615 kvm_get_dr(&svm->vcpu, dr, &val);
3616 kvm_register_write(&svm->vcpu, reg, val);
3617 }
3618
3619 return kvm_skip_emulated_instruction(&svm->vcpu);
3620}
3621
3622static int cr8_write_interception(struct vcpu_svm *svm)
3623{
3624 struct kvm_run *kvm_run = svm->vcpu.run;
3625 int r;
3626
3627 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3628 /* instruction emulation calls kvm_set_cr8() */
3629 r = cr_interception(svm);
3630 if (lapic_in_kernel(&svm->vcpu))
3631 return r;
3632 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3633 return r;
3634 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3635 return 0;
3636}
3637
3638static int svm_get_msr_feature(struct kvm_msr_entry *msr)
3639{
3640 msr->data = 0;
3641
3642 switch (msr->index) {
3643 case MSR_F10H_DECFG:
3644 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
3645 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
3646 break;
3647 default:
3648 return 1;
3649 }
3650
3651 return 0;
3652}
3653
3654static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3655{
3656 struct vcpu_svm *svm = to_svm(vcpu);
3657
3658 switch (msr_info->index) {
3659 case MSR_IA32_TSC: {
3660 msr_info->data = svm->vmcb->control.tsc_offset +
3661 kvm_scale_tsc(vcpu, rdtsc());
3662
3663 break;
3664 }
3665 case MSR_STAR:
3666 msr_info->data = svm->vmcb->save.star;
3667 break;
3668#ifdef CONFIG_X86_64
3669 case MSR_LSTAR:
3670 msr_info->data = svm->vmcb->save.lstar;
3671 break;
3672 case MSR_CSTAR:
3673 msr_info->data = svm->vmcb->save.cstar;
3674 break;
3675 case MSR_KERNEL_GS_BASE:
3676 msr_info->data = svm->vmcb->save.kernel_gs_base;
3677 break;
3678 case MSR_SYSCALL_MASK:
3679 msr_info->data = svm->vmcb->save.sfmask;
3680 break;
3681#endif
3682 case MSR_IA32_SYSENTER_CS:
3683 msr_info->data = svm->vmcb->save.sysenter_cs;
3684 break;
3685 case MSR_IA32_SYSENTER_EIP:
3686 msr_info->data = svm->sysenter_eip;
3687 break;
3688 case MSR_IA32_SYSENTER_ESP:
3689 msr_info->data = svm->sysenter_esp;
3690 break;
3691 case MSR_TSC_AUX:
3692 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3693 return 1;
3694 msr_info->data = svm->tsc_aux;
3695 break;
3696 /*
3697 * Nobody will change the following 5 values in the VMCB so we can
3698 * safely return them on rdmsr. They will always be 0 until LBRV is
3699 * implemented.
3700 */
3701 case MSR_IA32_DEBUGCTLMSR:
3702 msr_info->data = svm->vmcb->save.dbgctl;
3703 break;
3704 case MSR_IA32_LASTBRANCHFROMIP:
3705 msr_info->data = svm->vmcb->save.br_from;
3706 break;
3707 case MSR_IA32_LASTBRANCHTOIP:
3708 msr_info->data = svm->vmcb->save.br_to;
3709 break;
3710 case MSR_IA32_LASTINTFROMIP:
3711 msr_info->data = svm->vmcb->save.last_excp_from;
3712 break;
3713 case MSR_IA32_LASTINTTOIP:
3714 msr_info->data = svm->vmcb->save.last_excp_to;
3715 break;
3716 case MSR_VM_HSAVE_PA:
3717 msr_info->data = svm->nested.hsave_msr;
3718 break;
3719 case MSR_VM_CR:
3720 msr_info->data = svm->nested.vm_cr_msr;
3721 break;
3722 case MSR_IA32_SPEC_CTRL:
3723 if (!msr_info->host_initiated &&
3724 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
3725 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
3726 return 1;
3727
3728 msr_info->data = svm->spec_ctrl;
3729 break;
3730 case MSR_AMD64_VIRT_SPEC_CTRL:
3731 if (!msr_info->host_initiated &&
3732 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3733 return 1;
3734
3735 msr_info->data = svm->virt_spec_ctrl;
3736 break;
3737 case MSR_F15H_IC_CFG: {
3738
3739 int family, model;
3740
3741 family = guest_cpuid_family(vcpu);
3742 model = guest_cpuid_model(vcpu);
3743
3744 if (family < 0 || model < 0)
3745 return kvm_get_msr_common(vcpu, msr_info);
3746
3747 msr_info->data = 0;
3748
3749 if (family == 0x15 &&
3750 (model >= 0x2 && model < 0x20))
3751 msr_info->data = 0x1E;
3752 }
3753 break;
3754 case MSR_F10H_DECFG:
3755 msr_info->data = svm->msr_decfg;
3756 break;
3757 default:
3758 return kvm_get_msr_common(vcpu, msr_info);
3759 }
3760 return 0;
3761}
3762
3763static int rdmsr_interception(struct vcpu_svm *svm)
3764{
3765 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3766 struct msr_data msr_info;
3767
3768 msr_info.index = ecx;
3769 msr_info.host_initiated = false;
3770 if (svm_get_msr(&svm->vcpu, &msr_info)) {
3771 trace_kvm_msr_read_ex(ecx);
3772 kvm_inject_gp(&svm->vcpu, 0);
3773 return 1;
3774 } else {
3775 trace_kvm_msr_read(ecx, msr_info.data);
3776
3777 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3778 msr_info.data & 0xffffffff);
3779 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3780 msr_info.data >> 32);
3781 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3782 return kvm_skip_emulated_instruction(&svm->vcpu);
3783 }
3784}
3785
3786static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3787{
3788 struct vcpu_svm *svm = to_svm(vcpu);
3789 int svm_dis, chg_mask;
3790
3791 if (data & ~SVM_VM_CR_VALID_MASK)
3792 return 1;
3793
3794 chg_mask = SVM_VM_CR_VALID_MASK;
3795
3796 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3797 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3798
3799 svm->nested.vm_cr_msr &= ~chg_mask;
3800 svm->nested.vm_cr_msr |= (data & chg_mask);
3801
3802 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3803
3804 /* check for svm_disable while efer.svme is set */
3805 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3806 return 1;
3807
3808 return 0;
3809}
3810
3811static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3812{
3813 struct vcpu_svm *svm = to_svm(vcpu);
3814
3815 u32 ecx = msr->index;
3816 u64 data = msr->data;
3817 switch (ecx) {
3818 case MSR_IA32_CR_PAT:
3819 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3820 return 1;
3821 vcpu->arch.pat = data;
3822 svm->vmcb->save.g_pat = data;
3823 mark_dirty(svm->vmcb, VMCB_NPT);
3824 break;
3825 case MSR_IA32_TSC:
3826 kvm_write_tsc(vcpu, msr);
3827 break;
3828 case MSR_IA32_SPEC_CTRL:
3829 if (!msr->host_initiated &&
3830 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
3831 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
3832 return 1;
3833
3834 /* The STIBP bit doesn't fault even if it's not advertised */
3835 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
3836 return 1;
3837
3838 svm->spec_ctrl = data;
3839
3840 if (!data)
3841 break;
3842
3843 /*
3844 * For non-nested:
3845 * When it's written (to non-zero) for the first time, pass
3846 * it through.
3847 *
3848 * For nested:
3849 * The handling of the MSR bitmap for L2 guests is done in
3850 * nested_svm_vmrun_msrpm.
3851 * We update the L1 MSR bit as well since it will end up
3852 * touching the MSR anyway now.
3853 */
3854 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3855 break;
3856 case MSR_IA32_PRED_CMD:
3857 if (!msr->host_initiated &&
3858 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
3859 return 1;
3860
3861 if (data & ~PRED_CMD_IBPB)
3862 return 1;
3863
3864 if (!data)
3865 break;
3866
3867 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3868 if (is_guest_mode(vcpu))
3869 break;
3870 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
3871 break;
3872 case MSR_AMD64_VIRT_SPEC_CTRL:
3873 if (!msr->host_initiated &&
3874 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3875 return 1;
3876
3877 if (data & ~SPEC_CTRL_SSBD)
3878 return 1;
3879
3880 svm->virt_spec_ctrl = data;
3881 break;
3882 case MSR_STAR:
3883 svm->vmcb->save.star = data;
3884 break;
3885#ifdef CONFIG_X86_64
3886 case MSR_LSTAR:
3887 svm->vmcb->save.lstar = data;
3888 break;
3889 case MSR_CSTAR:
3890 svm->vmcb->save.cstar = data;
3891 break;
3892 case MSR_KERNEL_GS_BASE:
3893 svm->vmcb->save.kernel_gs_base = data;
3894 break;
3895 case MSR_SYSCALL_MASK:
3896 svm->vmcb->save.sfmask = data;
3897 break;
3898#endif
3899 case MSR_IA32_SYSENTER_CS:
3900 svm->vmcb->save.sysenter_cs = data;
3901 break;
3902 case MSR_IA32_SYSENTER_EIP:
3903 svm->sysenter_eip = data;
3904 svm->vmcb->save.sysenter_eip = data;
3905 break;
3906 case MSR_IA32_SYSENTER_ESP:
3907 svm->sysenter_esp = data;
3908 svm->vmcb->save.sysenter_esp = data;
3909 break;
3910 case MSR_TSC_AUX:
3911 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3912 return 1;
3913
3914 /*
3915 * This is rare, so we update the MSR here instead of using
3916 * direct_access_msrs. Doing that would require a rdmsr in
3917 * svm_vcpu_put.
3918 */
3919 svm->tsc_aux = data;
3920 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3921 break;
3922 case MSR_IA32_DEBUGCTLMSR:
3923 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3924 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3925 __func__, data);
3926 break;
3927 }
3928 if (data & DEBUGCTL_RESERVED_BITS)
3929 return 1;
3930
3931 svm->vmcb->save.dbgctl = data;
3932 mark_dirty(svm->vmcb, VMCB_LBR);
3933 if (data & (1ULL<<0))
3934 svm_enable_lbrv(svm);
3935 else
3936 svm_disable_lbrv(svm);
3937 break;
3938 case MSR_VM_HSAVE_PA:
3939 svm->nested.hsave_msr = data;
3940 break;
3941 case MSR_VM_CR:
3942 return svm_set_vm_cr(vcpu, data);
3943 case MSR_VM_IGNNE:
3944 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3945 break;
3946 case MSR_F10H_DECFG: {
3947 struct kvm_msr_entry msr_entry;
3948
3949 msr_entry.index = msr->index;
3950 if (svm_get_msr_feature(&msr_entry))
3951 return 1;
3952
3953 /* Check the supported bits */
3954 if (data & ~msr_entry.data)
3955 return 1;
3956
3957 /* Don't allow the guest to change a bit, #GP */
3958 if (!msr->host_initiated && (data ^ msr_entry.data))
3959 return 1;
3960
3961 svm->msr_decfg = data;
3962 break;
3963 }
3964 case MSR_IA32_APICBASE:
3965 if (kvm_vcpu_apicv_active(vcpu))
3966 avic_update_vapic_bar(to_svm(vcpu), data);
3967 /* Follow through */
3968 default:
3969 return kvm_set_msr_common(vcpu, msr);
3970 }
3971 return 0;
3972}
3973
3974static int wrmsr_interception(struct vcpu_svm *svm)
3975{
3976 struct msr_data msr;
3977 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3978 u64 data = kvm_read_edx_eax(&svm->vcpu);
3979
3980 msr.data = data;
3981 msr.index = ecx;
3982 msr.host_initiated = false;
3983
3984 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3985 if (kvm_set_msr(&svm->vcpu, &msr)) {
3986 trace_kvm_msr_write_ex(ecx, data);
3987 kvm_inject_gp(&svm->vcpu, 0);
3988 return 1;
3989 } else {
3990 trace_kvm_msr_write(ecx, data);
3991 return kvm_skip_emulated_instruction(&svm->vcpu);
3992 }
3993}
3994
3995static int msr_interception(struct vcpu_svm *svm)
3996{
3997 if (svm->vmcb->control.exit_info_1)
3998 return wrmsr_interception(svm);
3999 else
4000 return rdmsr_interception(svm);
4001}
4002
4003static int interrupt_window_interception(struct vcpu_svm *svm)
4004{
4005 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4006 svm_clear_vintr(svm);
4007 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4008 mark_dirty(svm->vmcb, VMCB_INTR);
4009 ++svm->vcpu.stat.irq_window_exits;
4010 return 1;
4011}
4012
4013static int pause_interception(struct vcpu_svm *svm)
4014{
4015 struct kvm_vcpu *vcpu = &svm->vcpu;
4016 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4017
4018 kvm_vcpu_on_spin(vcpu, in_kernel);
4019 return 1;
4020}
4021
4022static int nop_interception(struct vcpu_svm *svm)
4023{
4024 return kvm_skip_emulated_instruction(&(svm->vcpu));
4025}
4026
4027static int monitor_interception(struct vcpu_svm *svm)
4028{
4029 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4030 return nop_interception(svm);
4031}
4032
4033static int mwait_interception(struct vcpu_svm *svm)
4034{
4035 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4036 return nop_interception(svm);
4037}
4038
4039enum avic_ipi_failure_cause {
4040 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4041 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4042 AVIC_IPI_FAILURE_INVALID_TARGET,
4043 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4044};
4045
4046static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4047{
4048 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4049 u32 icrl = svm->vmcb->control.exit_info_1;
4050 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4051 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4052 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4053
4054 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4055
4056 switch (id) {
4057 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4058 /*
4059 * AVIC hardware handles the generation of
4060 * IPIs when the specified Message Type is Fixed
4061 * (also known as fixed delivery mode) and
4062 * the Trigger Mode is edge-triggered. The hardware
4063 * also supports self and broadcast delivery modes
4064 * specified via the Destination Shorthand(DSH)
4065 * field of the ICRL. Logical and physical APIC ID
4066 * formats are supported. All other IPI types cause
4067 * a #VMEXIT, which needs to emulated.
4068 */
4069 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4070 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4071 break;
4072 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4073 int i;
4074 struct kvm_vcpu *vcpu;
4075 struct kvm *kvm = svm->vcpu.kvm;
4076 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4077
4078 /*
4079 * At this point, we expect that the AVIC HW has already
4080 * set the appropriate IRR bits on the valid target
4081 * vcpus. So, we just need to kick the appropriate vcpu.
4082 */
4083 kvm_for_each_vcpu(i, vcpu, kvm) {
4084 bool m = kvm_apic_match_dest(vcpu, apic,
4085 icrl & KVM_APIC_SHORT_MASK,
4086 GET_APIC_DEST_FIELD(icrh),
4087 icrl & KVM_APIC_DEST_MASK);
4088
4089 if (m && !avic_vcpu_is_running(vcpu))
4090 kvm_vcpu_wake_up(vcpu);
4091 }
4092 break;
4093 }
4094 case AVIC_IPI_FAILURE_INVALID_TARGET:
4095 break;
4096 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4097 WARN_ONCE(1, "Invalid backing page\n");
4098 break;
4099 default:
4100 pr_err("Unknown IPI interception\n");
4101 }
4102
4103 return 1;
4104}
4105
4106static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4107{
4108 struct kvm_arch *vm_data = &vcpu->kvm->arch;
4109 int index;
4110 u32 *logical_apic_id_table;
4111 int dlid = GET_APIC_LOGICAL_ID(ldr);
4112
4113 if (!dlid)
4114 return NULL;
4115
4116 if (flat) { /* flat */
4117 index = ffs(dlid) - 1;
4118 if (index > 7)
4119 return NULL;
4120 } else { /* cluster */
4121 int cluster = (dlid & 0xf0) >> 4;
4122 int apic = ffs(dlid & 0x0f) - 1;
4123
4124 if ((apic < 0) || (apic > 7) ||
4125 (cluster >= 0xf))
4126 return NULL;
4127 index = (cluster << 2) + apic;
4128 }
4129
4130 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
4131
4132 return &logical_apic_id_table[index];
4133}
4134
4135static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4136 bool valid)
4137{
4138 bool flat;
4139 u32 *entry, new_entry;
4140
4141 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4142 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4143 if (!entry)
4144 return -EINVAL;
4145
4146 new_entry = READ_ONCE(*entry);
4147 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4148 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4149 if (valid)
4150 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4151 else
4152 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4153 WRITE_ONCE(*entry, new_entry);
4154
4155 return 0;
4156}
4157
4158static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4159{
4160 int ret;
4161 struct vcpu_svm *svm = to_svm(vcpu);
4162 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4163
4164 if (!ldr)
4165 return 1;
4166
4167 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4168 if (ret && svm->ldr_reg) {
4169 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4170 svm->ldr_reg = 0;
4171 } else {
4172 svm->ldr_reg = ldr;
4173 }
4174 return ret;
4175}
4176
4177static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4178{
4179 u64 *old, *new;
4180 struct vcpu_svm *svm = to_svm(vcpu);
4181 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4182 u32 id = (apic_id_reg >> 24) & 0xff;
4183
4184 if (vcpu->vcpu_id == id)
4185 return 0;
4186
4187 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4188 new = avic_get_physical_id_entry(vcpu, id);
4189 if (!new || !old)
4190 return 1;
4191
4192 /* We need to move physical_id_entry to new offset */
4193 *new = *old;
4194 *old = 0ULL;
4195 to_svm(vcpu)->avic_physical_id_cache = new;
4196
4197 /*
4198 * Also update the guest physical APIC ID in the logical
4199 * APIC ID table entry if already setup the LDR.
4200 */
4201 if (svm->ldr_reg)
4202 avic_handle_ldr_update(vcpu);
4203
4204 return 0;
4205}
4206
4207static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4208{
4209 struct vcpu_svm *svm = to_svm(vcpu);
4210 struct kvm_arch *vm_data = &vcpu->kvm->arch;
4211 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4212 u32 mod = (dfr >> 28) & 0xf;
4213
4214 /*
4215 * We assume that all local APICs are using the same type.
4216 * If this changes, we need to flush the AVIC logical
4217 * APID id table.
4218 */
4219 if (vm_data->ldr_mode == mod)
4220 return 0;
4221
4222 clear_page(page_address(vm_data->avic_logical_id_table_page));
4223 vm_data->ldr_mode = mod;
4224
4225 if (svm->ldr_reg)
4226 avic_handle_ldr_update(vcpu);
4227 return 0;
4228}
4229
4230static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4231{
4232 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4233 u32 offset = svm->vmcb->control.exit_info_1 &
4234 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4235
4236 switch (offset) {
4237 case APIC_ID:
4238 if (avic_handle_apic_id_update(&svm->vcpu))
4239 return 0;
4240 break;
4241 case APIC_LDR:
4242 if (avic_handle_ldr_update(&svm->vcpu))
4243 return 0;
4244 break;
4245 case APIC_DFR:
4246 avic_handle_dfr_update(&svm->vcpu);
4247 break;
4248 default:
4249 break;
4250 }
4251
4252 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4253
4254 return 1;
4255}
4256
4257static bool is_avic_unaccelerated_access_trap(u32 offset)
4258{
4259 bool ret = false;
4260
4261 switch (offset) {
4262 case APIC_ID:
4263 case APIC_EOI:
4264 case APIC_RRR:
4265 case APIC_LDR:
4266 case APIC_DFR:
4267 case APIC_SPIV:
4268 case APIC_ESR:
4269 case APIC_ICR:
4270 case APIC_LVTT:
4271 case APIC_LVTTHMR:
4272 case APIC_LVTPC:
4273 case APIC_LVT0:
4274 case APIC_LVT1:
4275 case APIC_LVTERR:
4276 case APIC_TMICT:
4277 case APIC_TDCR:
4278 ret = true;
4279 break;
4280 default:
4281 break;
4282 }
4283 return ret;
4284}
4285
4286static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4287{
4288 int ret = 0;
4289 u32 offset = svm->vmcb->control.exit_info_1 &
4290 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4291 u32 vector = svm->vmcb->control.exit_info_2 &
4292 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4293 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4294 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4295 bool trap = is_avic_unaccelerated_access_trap(offset);
4296
4297 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4298 trap, write, vector);
4299 if (trap) {
4300 /* Handling Trap */
4301 WARN_ONCE(!write, "svm: Handling trap read.\n");
4302 ret = avic_unaccel_trap_write(svm);
4303 } else {
4304 /* Handling Fault */
4305 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4306 }
4307
4308 return ret;
4309}
4310
4311static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4312 [SVM_EXIT_READ_CR0] = cr_interception,
4313 [SVM_EXIT_READ_CR3] = cr_interception,
4314 [SVM_EXIT_READ_CR4] = cr_interception,
4315 [SVM_EXIT_READ_CR8] = cr_interception,
4316 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4317 [SVM_EXIT_WRITE_CR0] = cr_interception,
4318 [SVM_EXIT_WRITE_CR3] = cr_interception,
4319 [SVM_EXIT_WRITE_CR4] = cr_interception,
4320 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4321 [SVM_EXIT_READ_DR0] = dr_interception,
4322 [SVM_EXIT_READ_DR1] = dr_interception,
4323 [SVM_EXIT_READ_DR2] = dr_interception,
4324 [SVM_EXIT_READ_DR3] = dr_interception,
4325 [SVM_EXIT_READ_DR4] = dr_interception,
4326 [SVM_EXIT_READ_DR5] = dr_interception,
4327 [SVM_EXIT_READ_DR6] = dr_interception,
4328 [SVM_EXIT_READ_DR7] = dr_interception,
4329 [SVM_EXIT_WRITE_DR0] = dr_interception,
4330 [SVM_EXIT_WRITE_DR1] = dr_interception,
4331 [SVM_EXIT_WRITE_DR2] = dr_interception,
4332 [SVM_EXIT_WRITE_DR3] = dr_interception,
4333 [SVM_EXIT_WRITE_DR4] = dr_interception,
4334 [SVM_EXIT_WRITE_DR5] = dr_interception,
4335 [SVM_EXIT_WRITE_DR6] = dr_interception,
4336 [SVM_EXIT_WRITE_DR7] = dr_interception,
4337 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4338 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4339 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4340 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4341 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4342 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4343 [SVM_EXIT_INTR] = intr_interception,
4344 [SVM_EXIT_NMI] = nmi_interception,
4345 [SVM_EXIT_SMI] = nop_on_interception,
4346 [SVM_EXIT_INIT] = nop_on_interception,
4347 [SVM_EXIT_VINTR] = interrupt_window_interception,
4348 [SVM_EXIT_RDPMC] = rdpmc_interception,
4349 [SVM_EXIT_CPUID] = cpuid_interception,
4350 [SVM_EXIT_IRET] = iret_interception,
4351 [SVM_EXIT_INVD] = emulate_on_interception,
4352 [SVM_EXIT_PAUSE] = pause_interception,
4353 [SVM_EXIT_HLT] = halt_interception,
4354 [SVM_EXIT_INVLPG] = invlpg_interception,
4355 [SVM_EXIT_INVLPGA] = invlpga_interception,
4356 [SVM_EXIT_IOIO] = io_interception,
4357 [SVM_EXIT_MSR] = msr_interception,
4358 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4359 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4360 [SVM_EXIT_VMRUN] = vmrun_interception,
4361 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4362 [SVM_EXIT_VMLOAD] = vmload_interception,
4363 [SVM_EXIT_VMSAVE] = vmsave_interception,
4364 [SVM_EXIT_STGI] = stgi_interception,
4365 [SVM_EXIT_CLGI] = clgi_interception,
4366 [SVM_EXIT_SKINIT] = skinit_interception,
4367 [SVM_EXIT_WBINVD] = wbinvd_interception,
4368 [SVM_EXIT_MONITOR] = monitor_interception,
4369 [SVM_EXIT_MWAIT] = mwait_interception,
4370 [SVM_EXIT_XSETBV] = xsetbv_interception,
4371 [SVM_EXIT_NPF] = pf_interception,
4372 [SVM_EXIT_RSM] = emulate_on_interception,
4373 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4374 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4375};
4376
4377static void dump_vmcb(struct kvm_vcpu *vcpu)
4378{
4379 struct vcpu_svm *svm = to_svm(vcpu);
4380 struct vmcb_control_area *control = &svm->vmcb->control;
4381 struct vmcb_save_area *save = &svm->vmcb->save;
4382
4383 pr_err("VMCB Control Area:\n");
4384 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4385 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4386 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4387 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4388 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4389 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4390 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4391 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4392 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4393 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4394 pr_err("%-20s%d\n", "asid:", control->asid);
4395 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4396 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4397 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4398 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4399 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4400 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4401 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4402 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4403 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4404 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4405 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4406 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4407 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4408 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4409 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4410 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4411 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4412 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4413 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4414 pr_err("VMCB State Save Area:\n");
4415 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4416 "es:",
4417 save->es.selector, save->es.attrib,
4418 save->es.limit, save->es.base);
4419 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4420 "cs:",
4421 save->cs.selector, save->cs.attrib,
4422 save->cs.limit, save->cs.base);
4423 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4424 "ss:",
4425 save->ss.selector, save->ss.attrib,
4426 save->ss.limit, save->ss.base);
4427 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4428 "ds:",
4429 save->ds.selector, save->ds.attrib,
4430 save->ds.limit, save->ds.base);
4431 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4432 "fs:",
4433 save->fs.selector, save->fs.attrib,
4434 save->fs.limit, save->fs.base);
4435 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4436 "gs:",
4437 save->gs.selector, save->gs.attrib,
4438 save->gs.limit, save->gs.base);
4439 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4440 "gdtr:",
4441 save->gdtr.selector, save->gdtr.attrib,
4442 save->gdtr.limit, save->gdtr.base);
4443 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4444 "ldtr:",
4445 save->ldtr.selector, save->ldtr.attrib,
4446 save->ldtr.limit, save->ldtr.base);
4447 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4448 "idtr:",
4449 save->idtr.selector, save->idtr.attrib,
4450 save->idtr.limit, save->idtr.base);
4451 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4452 "tr:",
4453 save->tr.selector, save->tr.attrib,
4454 save->tr.limit, save->tr.base);
4455 pr_err("cpl: %d efer: %016llx\n",
4456 save->cpl, save->efer);
4457 pr_err("%-15s %016llx %-13s %016llx\n",
4458 "cr0:", save->cr0, "cr2:", save->cr2);
4459 pr_err("%-15s %016llx %-13s %016llx\n",
4460 "cr3:", save->cr3, "cr4:", save->cr4);
4461 pr_err("%-15s %016llx %-13s %016llx\n",
4462 "dr6:", save->dr6, "dr7:", save->dr7);
4463 pr_err("%-15s %016llx %-13s %016llx\n",
4464 "rip:", save->rip, "rflags:", save->rflags);
4465 pr_err("%-15s %016llx %-13s %016llx\n",
4466 "rsp:", save->rsp, "rax:", save->rax);
4467 pr_err("%-15s %016llx %-13s %016llx\n",
4468 "star:", save->star, "lstar:", save->lstar);
4469 pr_err("%-15s %016llx %-13s %016llx\n",
4470 "cstar:", save->cstar, "sfmask:", save->sfmask);
4471 pr_err("%-15s %016llx %-13s %016llx\n",
4472 "kernel_gs_base:", save->kernel_gs_base,
4473 "sysenter_cs:", save->sysenter_cs);
4474 pr_err("%-15s %016llx %-13s %016llx\n",
4475 "sysenter_esp:", save->sysenter_esp,
4476 "sysenter_eip:", save->sysenter_eip);
4477 pr_err("%-15s %016llx %-13s %016llx\n",
4478 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4479 pr_err("%-15s %016llx %-13s %016llx\n",
4480 "br_from:", save->br_from, "br_to:", save->br_to);
4481 pr_err("%-15s %016llx %-13s %016llx\n",
4482 "excp_from:", save->last_excp_from,
4483 "excp_to:", save->last_excp_to);
4484}
4485
4486static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4487{
4488 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4489
4490 *info1 = control->exit_info_1;
4491 *info2 = control->exit_info_2;
4492}
4493
4494static int handle_exit(struct kvm_vcpu *vcpu)
4495{
4496 struct vcpu_svm *svm = to_svm(vcpu);
4497 struct kvm_run *kvm_run = vcpu->run;
4498 u32 exit_code = svm->vmcb->control.exit_code;
4499
4500 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4501
4502 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4503 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4504 if (npt_enabled)
4505 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4506
4507 if (unlikely(svm->nested.exit_required)) {
4508 nested_svm_vmexit(svm);
4509 svm->nested.exit_required = false;
4510
4511 return 1;
4512 }
4513
4514 if (is_guest_mode(vcpu)) {
4515 int vmexit;
4516
4517 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4518 svm->vmcb->control.exit_info_1,
4519 svm->vmcb->control.exit_info_2,
4520 svm->vmcb->control.exit_int_info,
4521 svm->vmcb->control.exit_int_info_err,
4522 KVM_ISA_SVM);
4523
4524 vmexit = nested_svm_exit_special(svm);
4525
4526 if (vmexit == NESTED_EXIT_CONTINUE)
4527 vmexit = nested_svm_exit_handled(svm);
4528
4529 if (vmexit == NESTED_EXIT_DONE)
4530 return 1;
4531 }
4532
4533 svm_complete_interrupts(svm);
4534
4535 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4536 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4537 kvm_run->fail_entry.hardware_entry_failure_reason
4538 = svm->vmcb->control.exit_code;
4539 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4540 dump_vmcb(vcpu);
4541 return 0;
4542 }
4543
4544 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4545 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4546 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4547 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4548 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4549 "exit_code 0x%x\n",
4550 __func__, svm->vmcb->control.exit_int_info,
4551 exit_code);
4552
4553 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4554 || !svm_exit_handlers[exit_code]) {
4555 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4556 kvm_queue_exception(vcpu, UD_VECTOR);
4557 return 1;
4558 }
4559
4560 return svm_exit_handlers[exit_code](svm);
4561}
4562
4563static void reload_tss(struct kvm_vcpu *vcpu)
4564{
4565 int cpu = raw_smp_processor_id();
4566
4567 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4568 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4569 load_TR_desc();
4570}
4571
4572static void pre_svm_run(struct vcpu_svm *svm)
4573{
4574 int cpu = raw_smp_processor_id();
4575
4576 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4577
4578 /* FIXME: handle wraparound of asid_generation */
4579 if (svm->asid_generation != sd->asid_generation)
4580 new_asid(svm, sd);
4581}
4582
4583static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4584{
4585 struct vcpu_svm *svm = to_svm(vcpu);
4586
4587 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4588 vcpu->arch.hflags |= HF_NMI_MASK;
4589 set_intercept(svm, INTERCEPT_IRET);
4590 ++vcpu->stat.nmi_injections;
4591}
4592
4593static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4594{
4595 struct vmcb_control_area *control;
4596
4597 /* The following fields are ignored when AVIC is enabled */
4598 control = &svm->vmcb->control;
4599 control->int_vector = irq;
4600 control->int_ctl &= ~V_INTR_PRIO_MASK;
4601 control->int_ctl |= V_IRQ_MASK |
4602 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4603 mark_dirty(svm->vmcb, VMCB_INTR);
4604}
4605
4606static void svm_set_irq(struct kvm_vcpu *vcpu)
4607{
4608 struct vcpu_svm *svm = to_svm(vcpu);
4609
4610 BUG_ON(!(gif_set(svm)));
4611
4612 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4613 ++vcpu->stat.irq_injections;
4614
4615 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4616 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4617}
4618
4619static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4620{
4621 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4622}
4623
4624static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4625{
4626 struct vcpu_svm *svm = to_svm(vcpu);
4627
4628 if (svm_nested_virtualize_tpr(vcpu) ||
4629 kvm_vcpu_apicv_active(vcpu))
4630 return;
4631
4632 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4633
4634 if (irr == -1)
4635 return;
4636
4637 if (tpr >= irr)
4638 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4639}
4640
4641static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
4642{
4643 return;
4644}
4645
4646static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
4647{
4648 return avic && irqchip_split(vcpu->kvm);
4649}
4650
4651static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4652{
4653}
4654
4655static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4656{
4657}
4658
4659/* Note: Currently only used by Hyper-V. */
4660static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4661{
4662 struct vcpu_svm *svm = to_svm(vcpu);
4663 struct vmcb *vmcb = svm->vmcb;
4664
4665 if (!kvm_vcpu_apicv_active(&svm->vcpu))
4666 return;
4667
4668 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4669 mark_dirty(vmcb, VMCB_INTR);
4670}
4671
4672static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4673{
4674 return;
4675}
4676
4677static int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4678{
4679 if (!vcpu->arch.apicv_active)
4680 return -1;
4681
4682 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4683 smp_mb__after_atomic();
4684
4685 if (avic_vcpu_is_running(vcpu))
4686 wrmsrl(SVM_AVIC_DOORBELL,
4687 kvm_cpu_get_apicid(vcpu->cpu));
4688 else
4689 kvm_vcpu_wake_up(vcpu);
4690
4691 return 0;
4692}
4693
4694static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
4695{
4696 return false;
4697}
4698
4699static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4700{
4701 unsigned long flags;
4702 struct amd_svm_iommu_ir *cur;
4703
4704 spin_lock_irqsave(&svm->ir_list_lock, flags);
4705 list_for_each_entry(cur, &svm->ir_list, node) {
4706 if (cur->data != pi->ir_data)
4707 continue;
4708 list_del(&cur->node);
4709 kfree(cur);
4710 break;
4711 }
4712 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4713}
4714
4715static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4716{
4717 int ret = 0;
4718 unsigned long flags;
4719 struct amd_svm_iommu_ir *ir;
4720
4721 /**
4722 * In some cases, the existing irte is updaed and re-set,
4723 * so we need to check here if it's already been * added
4724 * to the ir_list.
4725 */
4726 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4727 struct kvm *kvm = svm->vcpu.kvm;
4728 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4729 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4730 struct vcpu_svm *prev_svm;
4731
4732 if (!prev_vcpu) {
4733 ret = -EINVAL;
4734 goto out;
4735 }
4736
4737 prev_svm = to_svm(prev_vcpu);
4738 svm_ir_list_del(prev_svm, pi);
4739 }
4740
4741 /**
4742 * Allocating new amd_iommu_pi_data, which will get
4743 * add to the per-vcpu ir_list.
4744 */
4745 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4746 if (!ir) {
4747 ret = -ENOMEM;
4748 goto out;
4749 }
4750 ir->data = pi->ir_data;
4751
4752 spin_lock_irqsave(&svm->ir_list_lock, flags);
4753 list_add(&ir->node, &svm->ir_list);
4754 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4755out:
4756 return ret;
4757}
4758
4759/**
4760 * Note:
4761 * The HW cannot support posting multicast/broadcast
4762 * interrupts to a vCPU. So, we still use legacy interrupt
4763 * remapping for these kind of interrupts.
4764 *
4765 * For lowest-priority interrupts, we only support
4766 * those with single CPU as the destination, e.g. user
4767 * configures the interrupts via /proc/irq or uses
4768 * irqbalance to make the interrupts single-CPU.
4769 */
4770static int
4771get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4772 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4773{
4774 struct kvm_lapic_irq irq;
4775 struct kvm_vcpu *vcpu = NULL;
4776
4777 kvm_set_msi_irq(kvm, e, &irq);
4778
4779 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4780 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4781 __func__, irq.vector);
4782 return -1;
4783 }
4784
4785 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4786 irq.vector);
4787 *svm = to_svm(vcpu);
4788 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
4789 vcpu_info->vector = irq.vector;
4790
4791 return 0;
4792}
4793
4794/*
4795 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4796 *
4797 * @kvm: kvm
4798 * @host_irq: host irq of the interrupt
4799 * @guest_irq: gsi of the interrupt
4800 * @set: set or unset PI
4801 * returns 0 on success, < 0 on failure
4802 */
4803static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4804 uint32_t guest_irq, bool set)
4805{
4806 struct kvm_kernel_irq_routing_entry *e;
4807 struct kvm_irq_routing_table *irq_rt;
4808 int idx, ret = -EINVAL;
4809
4810 if (!kvm_arch_has_assigned_device(kvm) ||
4811 !irq_remapping_cap(IRQ_POSTING_CAP))
4812 return 0;
4813
4814 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4815 __func__, host_irq, guest_irq, set);
4816
4817 idx = srcu_read_lock(&kvm->irq_srcu);
4818 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4819 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4820
4821 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4822 struct vcpu_data vcpu_info;
4823 struct vcpu_svm *svm = NULL;
4824
4825 if (e->type != KVM_IRQ_ROUTING_MSI)
4826 continue;
4827
4828 /**
4829 * Here, we setup with legacy mode in the following cases:
4830 * 1. When cannot target interrupt to a specific vcpu.
4831 * 2. Unsetting posted interrupt.
4832 * 3. APIC virtialization is disabled for the vcpu.
4833 */
4834 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4835 kvm_vcpu_apicv_active(&svm->vcpu)) {
4836 struct amd_iommu_pi_data pi;
4837
4838 /* Try to enable guest_mode in IRTE */
4839 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
4840 AVIC_HPA_MASK);
4841 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4842 svm->vcpu.vcpu_id);
4843 pi.is_guest_mode = true;
4844 pi.vcpu_data = &vcpu_info;
4845 ret = irq_set_vcpu_affinity(host_irq, &pi);
4846
4847 /**
4848 * Here, we successfully setting up vcpu affinity in
4849 * IOMMU guest mode. Now, we need to store the posted
4850 * interrupt information in a per-vcpu ir_list so that
4851 * we can reference to them directly when we update vcpu
4852 * scheduling information in IOMMU irte.
4853 */
4854 if (!ret && pi.is_guest_mode)
4855 svm_ir_list_add(svm, &pi);
4856 } else {
4857 /* Use legacy mode in IRTE */
4858 struct amd_iommu_pi_data pi;
4859
4860 /**
4861 * Here, pi is used to:
4862 * - Tell IOMMU to use legacy mode for this interrupt.
4863 * - Retrieve ga_tag of prior interrupt remapping data.
4864 */
4865 pi.is_guest_mode = false;
4866 ret = irq_set_vcpu_affinity(host_irq, &pi);
4867
4868 /**
4869 * Check if the posted interrupt was previously
4870 * setup with the guest_mode by checking if the ga_tag
4871 * was cached. If so, we need to clean up the per-vcpu
4872 * ir_list.
4873 */
4874 if (!ret && pi.prev_ga_tag) {
4875 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4876 struct kvm_vcpu *vcpu;
4877
4878 vcpu = kvm_get_vcpu_by_id(kvm, id);
4879 if (vcpu)
4880 svm_ir_list_del(to_svm(vcpu), &pi);
4881 }
4882 }
4883
4884 if (!ret && svm) {
4885 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
4886 e->gsi, vcpu_info.vector,
4887 vcpu_info.pi_desc_addr, set);
4888 }
4889
4890 if (ret < 0) {
4891 pr_err("%s: failed to update PI IRTE\n", __func__);
4892 goto out;
4893 }
4894 }
4895
4896 ret = 0;
4897out:
4898 srcu_read_unlock(&kvm->irq_srcu, idx);
4899 return ret;
4900}
4901
4902static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4903{
4904 struct vcpu_svm *svm = to_svm(vcpu);
4905 struct vmcb *vmcb = svm->vmcb;
4906 int ret;
4907 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4908 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4909 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4910
4911 return ret;
4912}
4913
4914static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4915{
4916 struct vcpu_svm *svm = to_svm(vcpu);
4917
4918 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4919}
4920
4921static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4922{
4923 struct vcpu_svm *svm = to_svm(vcpu);
4924
4925 if (masked) {
4926 svm->vcpu.arch.hflags |= HF_NMI_MASK;
4927 set_intercept(svm, INTERCEPT_IRET);
4928 } else {
4929 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4930 clr_intercept(svm, INTERCEPT_IRET);
4931 }
4932}
4933
4934static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4935{
4936 struct vcpu_svm *svm = to_svm(vcpu);
4937 struct vmcb *vmcb = svm->vmcb;
4938 int ret;
4939
4940 if (!gif_set(svm) ||
4941 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4942 return 0;
4943
4944 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4945
4946 if (is_guest_mode(vcpu))
4947 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4948
4949 return ret;
4950}
4951
4952static void enable_irq_window(struct kvm_vcpu *vcpu)
4953{
4954 struct vcpu_svm *svm = to_svm(vcpu);
4955
4956 if (kvm_vcpu_apicv_active(vcpu))
4957 return;
4958
4959 /*
4960 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4961 * 1, because that's a separate STGI/VMRUN intercept. The next time we
4962 * get that intercept, this function will be called again though and
4963 * we'll get the vintr intercept. However, if the vGIF feature is
4964 * enabled, the STGI interception will not occur. Enable the irq
4965 * window under the assumption that the hardware will set the GIF.
4966 */
4967 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
4968 svm_set_vintr(svm);
4969 svm_inject_irq(svm, 0x0);
4970 }
4971}
4972
4973static void enable_nmi_window(struct kvm_vcpu *vcpu)
4974{
4975 struct vcpu_svm *svm = to_svm(vcpu);
4976
4977 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4978 == HF_NMI_MASK)
4979 return; /* IRET will cause a vm exit */
4980
4981 if (!gif_set(svm)) {
4982 if (vgif_enabled(svm))
4983 set_intercept(svm, INTERCEPT_STGI);
4984 return; /* STGI will cause a vm exit */
4985 }
4986
4987 if (svm->nested.exit_required)
4988 return; /* we're not going to run the guest yet */
4989
4990 /*
4991 * Something prevents NMI from been injected. Single step over possible
4992 * problem (IRET or exception injection or interrupt shadow)
4993 */
4994 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
4995 svm->nmi_singlestep = true;
4996 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4997}
4998
4999static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5000{
5001 return 0;
5002}
5003
5004static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5005{
5006 struct vcpu_svm *svm = to_svm(vcpu);
5007
5008 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5009 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5010 else
5011 svm->asid_generation--;
5012}
5013
5014static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5015{
5016}
5017
5018static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5019{
5020 struct vcpu_svm *svm = to_svm(vcpu);
5021
5022 if (svm_nested_virtualize_tpr(vcpu))
5023 return;
5024
5025 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5026 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5027 kvm_set_cr8(vcpu, cr8);
5028 }
5029}
5030
5031static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5032{
5033 struct vcpu_svm *svm = to_svm(vcpu);
5034 u64 cr8;
5035
5036 if (svm_nested_virtualize_tpr(vcpu) ||
5037 kvm_vcpu_apicv_active(vcpu))
5038 return;
5039
5040 cr8 = kvm_get_cr8(vcpu);
5041 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5042 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5043}
5044
5045static void svm_complete_interrupts(struct vcpu_svm *svm)
5046{
5047 u8 vector;
5048 int type;
5049 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5050 unsigned int3_injected = svm->int3_injected;
5051
5052 svm->int3_injected = 0;
5053
5054 /*
5055 * If we've made progress since setting HF_IRET_MASK, we've
5056 * executed an IRET and can allow NMI injection.
5057 */
5058 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5059 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5060 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5061 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5062 }
5063
5064 svm->vcpu.arch.nmi_injected = false;
5065 kvm_clear_exception_queue(&svm->vcpu);
5066 kvm_clear_interrupt_queue(&svm->vcpu);
5067
5068 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5069 return;
5070
5071 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5072
5073 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5074 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5075
5076 switch (type) {
5077 case SVM_EXITINTINFO_TYPE_NMI:
5078 svm->vcpu.arch.nmi_injected = true;
5079 break;
5080 case SVM_EXITINTINFO_TYPE_EXEPT:
5081 /*
5082 * In case of software exceptions, do not reinject the vector,
5083 * but re-execute the instruction instead. Rewind RIP first
5084 * if we emulated INT3 before.
5085 */
5086 if (kvm_exception_is_soft(vector)) {
5087 if (vector == BP_VECTOR && int3_injected &&
5088 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5089 kvm_rip_write(&svm->vcpu,
5090 kvm_rip_read(&svm->vcpu) -
5091 int3_injected);
5092 break;
5093 }
5094 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5095 u32 err = svm->vmcb->control.exit_int_info_err;
5096 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5097
5098 } else
5099 kvm_requeue_exception(&svm->vcpu, vector);
5100 break;
5101 case SVM_EXITINTINFO_TYPE_INTR:
5102 kvm_queue_interrupt(&svm->vcpu, vector, false);
5103 break;
5104 default:
5105 break;
5106 }
5107}
5108
5109static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5110{
5111 struct vcpu_svm *svm = to_svm(vcpu);
5112 struct vmcb_control_area *control = &svm->vmcb->control;
5113
5114 control->exit_int_info = control->event_inj;
5115 control->exit_int_info_err = control->event_inj_err;
5116 control->event_inj = 0;
5117 svm_complete_interrupts(svm);
5118}
5119
5120static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5121{
5122 struct vcpu_svm *svm = to_svm(vcpu);
5123
5124 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5125 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5126 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5127
5128 /*
5129 * A vmexit emulation is required before the vcpu can be executed
5130 * again.
5131 */
5132 if (unlikely(svm->nested.exit_required))
5133 return;
5134
5135 /*
5136 * Disable singlestep if we're injecting an interrupt/exception.
5137 * We don't want our modified rflags to be pushed on the stack where
5138 * we might not be able to easily reset them if we disabled NMI
5139 * singlestep later.
5140 */
5141 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5142 /*
5143 * Event injection happens before external interrupts cause a
5144 * vmexit and interrupts are disabled here, so smp_send_reschedule
5145 * is enough to force an immediate vmexit.
5146 */
5147 disable_nmi_singlestep(svm);
5148 smp_send_reschedule(vcpu->cpu);
5149 }
5150
5151 pre_svm_run(svm);
5152
5153 sync_lapic_to_cr8(vcpu);
5154
5155 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5156
5157 clgi();
5158
5159 /*
5160 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5161 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5162 * is no need to worry about the conditional branch over the wrmsr
5163 * being speculatively taken.
5164 */
5165 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5166
5167 local_irq_enable();
5168
5169 asm volatile (
5170 "push %%" _ASM_BP "; \n\t"
5171 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5172 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5173 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5174 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5175 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5176 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5177#ifdef CONFIG_X86_64
5178 "mov %c[r8](%[svm]), %%r8 \n\t"
5179 "mov %c[r9](%[svm]), %%r9 \n\t"
5180 "mov %c[r10](%[svm]), %%r10 \n\t"
5181 "mov %c[r11](%[svm]), %%r11 \n\t"
5182 "mov %c[r12](%[svm]), %%r12 \n\t"
5183 "mov %c[r13](%[svm]), %%r13 \n\t"
5184 "mov %c[r14](%[svm]), %%r14 \n\t"
5185 "mov %c[r15](%[svm]), %%r15 \n\t"
5186#endif
5187
5188 /* Enter guest mode */
5189 "push %%" _ASM_AX " \n\t"
5190 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5191 __ex(SVM_VMLOAD) "\n\t"
5192 __ex(SVM_VMRUN) "\n\t"
5193 __ex(SVM_VMSAVE) "\n\t"
5194 "pop %%" _ASM_AX " \n\t"
5195
5196 /* Save guest registers, load host registers */
5197 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5198 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5199 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5200 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5201 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5202 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5203#ifdef CONFIG_X86_64
5204 "mov %%r8, %c[r8](%[svm]) \n\t"
5205 "mov %%r9, %c[r9](%[svm]) \n\t"
5206 "mov %%r10, %c[r10](%[svm]) \n\t"
5207 "mov %%r11, %c[r11](%[svm]) \n\t"
5208 "mov %%r12, %c[r12](%[svm]) \n\t"
5209 "mov %%r13, %c[r13](%[svm]) \n\t"
5210 "mov %%r14, %c[r14](%[svm]) \n\t"
5211 "mov %%r15, %c[r15](%[svm]) \n\t"
5212#endif
5213 /*
5214 * Clear host registers marked as clobbered to prevent
5215 * speculative use.
5216 */
5217 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5218 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5219 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5220 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5221 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5222#ifdef CONFIG_X86_64
5223 "xor %%r8, %%r8 \n\t"
5224 "xor %%r9, %%r9 \n\t"
5225 "xor %%r10, %%r10 \n\t"
5226 "xor %%r11, %%r11 \n\t"
5227 "xor %%r12, %%r12 \n\t"
5228 "xor %%r13, %%r13 \n\t"
5229 "xor %%r14, %%r14 \n\t"
5230 "xor %%r15, %%r15 \n\t"
5231#endif
5232 "pop %%" _ASM_BP
5233 :
5234 : [svm]"a"(svm),
5235 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5236 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5237 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5238 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5239 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5240 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5241 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5242#ifdef CONFIG_X86_64
5243 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5244 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5245 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5246 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5247 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5248 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5249 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5250 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5251#endif
5252 : "cc", "memory"
5253#ifdef CONFIG_X86_64
5254 , "rbx", "rcx", "rdx", "rsi", "rdi"
5255 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5256#else
5257 , "ebx", "ecx", "edx", "esi", "edi"
5258#endif
5259 );
5260
5261 /* Eliminate branch target predictions from guest mode */
5262 vmexit_fill_RSB();
5263
5264#ifdef CONFIG_X86_64
5265 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5266#else
5267 loadsegment(fs, svm->host.fs);
5268#ifndef CONFIG_X86_32_LAZY_GS
5269 loadsegment(gs, svm->host.gs);
5270#endif
5271#endif
5272
5273 /*
5274 * We do not use IBRS in the kernel. If this vCPU has used the
5275 * SPEC_CTRL MSR it may have left it on; save the value and
5276 * turn it off. This is much more efficient than blindly adding
5277 * it to the atomic save/restore list. Especially as the former
5278 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5279 *
5280 * For non-nested case:
5281 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5282 * save it.
5283 *
5284 * For nested case:
5285 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5286 * save it.
5287 */
5288 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5289 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5290
5291 reload_tss(vcpu);
5292
5293 local_irq_disable();
5294
5295 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5296
5297 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5298 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5299 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5300 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5301
5302 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5303 kvm_before_handle_nmi(&svm->vcpu);
5304
5305 stgi();
5306
5307 /* Any pending NMI will happen here */
5308
5309 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5310 kvm_after_handle_nmi(&svm->vcpu);
5311
5312 sync_cr8_to_lapic(vcpu);
5313
5314 svm->next_rip = 0;
5315
5316 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5317
5318 /* if exit due to PF check for async PF */
5319 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5320 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5321
5322 if (npt_enabled) {
5323 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5324 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5325 }
5326
5327 /*
5328 * We need to handle MC intercepts here before the vcpu has a chance to
5329 * change the physical cpu
5330 */
5331 if (unlikely(svm->vmcb->control.exit_code ==
5332 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5333 svm_handle_mce(svm);
5334
5335 mark_all_clean(svm->vmcb);
5336}
5337STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5338
5339static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5340{
5341 struct vcpu_svm *svm = to_svm(vcpu);
5342
5343 svm->vmcb->save.cr3 = __sme_set(root);
5344 mark_dirty(svm->vmcb, VMCB_CR);
5345 svm_flush_tlb(vcpu, true);
5346}
5347
5348static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5349{
5350 struct vcpu_svm *svm = to_svm(vcpu);
5351
5352 svm->vmcb->control.nested_cr3 = __sme_set(root);
5353 mark_dirty(svm->vmcb, VMCB_NPT);
5354
5355 /* Also sync guest cr3 here in case we live migrate */
5356 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5357 mark_dirty(svm->vmcb, VMCB_CR);
5358
5359 svm_flush_tlb(vcpu, true);
5360}
5361
5362static int is_disabled(void)
5363{
5364 u64 vm_cr;
5365
5366 rdmsrl(MSR_VM_CR, vm_cr);
5367 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5368 return 1;
5369
5370 return 0;
5371}
5372
5373static void
5374svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5375{
5376 /*
5377 * Patch in the VMMCALL instruction:
5378 */
5379 hypercall[0] = 0x0f;
5380 hypercall[1] = 0x01;
5381 hypercall[2] = 0xd9;
5382}
5383
5384static void svm_check_processor_compat(void *rtn)
5385{
5386 *(int *)rtn = 0;
5387}
5388
5389static bool svm_cpu_has_accelerated_tpr(void)
5390{
5391 return false;
5392}
5393
5394static bool svm_has_emulated_msr(int index)
5395{
5396 switch (index) {
5397 case MSR_IA32_MCG_EXT_CTL:
5398 return false;
5399 default:
5400 break;
5401 }
5402
5403 return true;
5404}
5405
5406static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5407{
5408 return 0;
5409}
5410
5411static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5412{
5413 struct vcpu_svm *svm = to_svm(vcpu);
5414
5415 /* Update nrips enabled cache */
5416 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5417
5418 if (!kvm_vcpu_apicv_active(vcpu))
5419 return;
5420
5421 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5422}
5423
5424static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5425{
5426 switch (func) {
5427 case 0x1:
5428 if (avic)
5429 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5430 break;
5431 case 0x80000001:
5432 if (nested)
5433 entry->ecx |= (1 << 2); /* Set SVM bit */
5434 break;
5435 case 0x8000000A:
5436 entry->eax = 1; /* SVM revision 1 */
5437 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5438 ASID emulation to nested SVM */
5439 entry->ecx = 0; /* Reserved */
5440 entry->edx = 0; /* Per default do not support any
5441 additional features */
5442
5443 /* Support next_rip if host supports it */
5444 if (boot_cpu_has(X86_FEATURE_NRIPS))
5445 entry->edx |= SVM_FEATURE_NRIP;
5446
5447 /* Support NPT for the guest if enabled */
5448 if (npt_enabled)
5449 entry->edx |= SVM_FEATURE_NPT;
5450
5451 break;
5452 }
5453}
5454
5455static int svm_get_lpage_level(void)
5456{
5457 return PT_PDPE_LEVEL;
5458}
5459
5460static bool svm_rdtscp_supported(void)
5461{
5462 return boot_cpu_has(X86_FEATURE_RDTSCP);
5463}
5464
5465static bool svm_invpcid_supported(void)
5466{
5467 return false;
5468}
5469
5470static bool svm_mpx_supported(void)
5471{
5472 return false;
5473}
5474
5475static bool svm_xsaves_supported(void)
5476{
5477 return false;
5478}
5479
5480static bool svm_has_wbinvd_exit(void)
5481{
5482 return true;
5483}
5484
5485#define PRE_EX(exit) { .exit_code = (exit), \
5486 .stage = X86_ICPT_PRE_EXCEPT, }
5487#define POST_EX(exit) { .exit_code = (exit), \
5488 .stage = X86_ICPT_POST_EXCEPT, }
5489#define POST_MEM(exit) { .exit_code = (exit), \
5490 .stage = X86_ICPT_POST_MEMACCESS, }
5491
5492static const struct __x86_intercept {
5493 u32 exit_code;
5494 enum x86_intercept_stage stage;
5495} x86_intercept_map[] = {
5496 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5497 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5498 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5499 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5500 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5501 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5502 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5503 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5504 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5505 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5506 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5507 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5508 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5509 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5510 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5511 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5512 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5513 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5514 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5515 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5516 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5517 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5518 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5519 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5520 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5521 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5522 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5523 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5524 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5525 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5526 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5527 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5528 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5529 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5530 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5531 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5532 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5533 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5534 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5535 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5536 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5537 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5538 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5539 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5540 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5541 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5542};
5543
5544#undef PRE_EX
5545#undef POST_EX
5546#undef POST_MEM
5547
5548static int svm_check_intercept(struct kvm_vcpu *vcpu,
5549 struct x86_instruction_info *info,
5550 enum x86_intercept_stage stage)
5551{
5552 struct vcpu_svm *svm = to_svm(vcpu);
5553 int vmexit, ret = X86EMUL_CONTINUE;
5554 struct __x86_intercept icpt_info;
5555 struct vmcb *vmcb = svm->vmcb;
5556
5557 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5558 goto out;
5559
5560 icpt_info = x86_intercept_map[info->intercept];
5561
5562 if (stage != icpt_info.stage)
5563 goto out;
5564
5565 switch (icpt_info.exit_code) {
5566 case SVM_EXIT_READ_CR0:
5567 if (info->intercept == x86_intercept_cr_read)
5568 icpt_info.exit_code += info->modrm_reg;
5569 break;
5570 case SVM_EXIT_WRITE_CR0: {
5571 unsigned long cr0, val;
5572 u64 intercept;
5573
5574 if (info->intercept == x86_intercept_cr_write)
5575 icpt_info.exit_code += info->modrm_reg;
5576
5577 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5578 info->intercept == x86_intercept_clts)
5579 break;
5580
5581 intercept = svm->nested.intercept;
5582
5583 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5584 break;
5585
5586 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5587 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5588
5589 if (info->intercept == x86_intercept_lmsw) {
5590 cr0 &= 0xfUL;
5591 val &= 0xfUL;
5592 /* lmsw can't clear PE - catch this here */
5593 if (cr0 & X86_CR0_PE)
5594 val |= X86_CR0_PE;
5595 }
5596
5597 if (cr0 ^ val)
5598 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5599
5600 break;
5601 }
5602 case SVM_EXIT_READ_DR0:
5603 case SVM_EXIT_WRITE_DR0:
5604 icpt_info.exit_code += info->modrm_reg;
5605 break;
5606 case SVM_EXIT_MSR:
5607 if (info->intercept == x86_intercept_wrmsr)
5608 vmcb->control.exit_info_1 = 1;
5609 else
5610 vmcb->control.exit_info_1 = 0;
5611 break;
5612 case SVM_EXIT_PAUSE:
5613 /*
5614 * We get this for NOP only, but pause
5615 * is rep not, check this here
5616 */
5617 if (info->rep_prefix != REPE_PREFIX)
5618 goto out;
5619 break;
5620 case SVM_EXIT_IOIO: {
5621 u64 exit_info;
5622 u32 bytes;
5623
5624 if (info->intercept == x86_intercept_in ||
5625 info->intercept == x86_intercept_ins) {
5626 exit_info = ((info->src_val & 0xffff) << 16) |
5627 SVM_IOIO_TYPE_MASK;
5628 bytes = info->dst_bytes;
5629 } else {
5630 exit_info = (info->dst_val & 0xffff) << 16;
5631 bytes = info->src_bytes;
5632 }
5633
5634 if (info->intercept == x86_intercept_outs ||
5635 info->intercept == x86_intercept_ins)
5636 exit_info |= SVM_IOIO_STR_MASK;
5637
5638 if (info->rep_prefix)
5639 exit_info |= SVM_IOIO_REP_MASK;
5640
5641 bytes = min(bytes, 4u);
5642
5643 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5644
5645 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5646
5647 vmcb->control.exit_info_1 = exit_info;
5648 vmcb->control.exit_info_2 = info->next_rip;
5649
5650 break;
5651 }
5652 default:
5653 break;
5654 }
5655
5656 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5657 if (static_cpu_has(X86_FEATURE_NRIPS))
5658 vmcb->control.next_rip = info->next_rip;
5659 vmcb->control.exit_code = icpt_info.exit_code;
5660 vmexit = nested_svm_exit_handled(svm);
5661
5662 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5663 : X86EMUL_CONTINUE;
5664
5665out:
5666 return ret;
5667}
5668
5669static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5670{
5671 local_irq_enable();
5672 /*
5673 * We must have an instruction with interrupts enabled, so
5674 * the timer interrupt isn't delayed by the interrupt shadow.
5675 */
5676 asm("nop");
5677 local_irq_disable();
5678}
5679
5680static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5681{
5682}
5683
5684static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5685{
5686 if (avic_handle_apic_id_update(vcpu) != 0)
5687 return;
5688 if (avic_handle_dfr_update(vcpu) != 0)
5689 return;
5690 avic_handle_ldr_update(vcpu);
5691}
5692
5693static void svm_setup_mce(struct kvm_vcpu *vcpu)
5694{
5695 /* [63:9] are reserved. */
5696 vcpu->arch.mcg_cap &= 0x1ff;
5697}
5698
5699static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5700 .cpu_has_kvm_support = has_svm,
5701 .disabled_by_bios = is_disabled,
5702 .hardware_setup = svm_hardware_setup,
5703 .hardware_unsetup = svm_hardware_unsetup,
5704 .check_processor_compatibility = svm_check_processor_compat,
5705 .hardware_enable = svm_hardware_enable,
5706 .hardware_disable = svm_hardware_disable,
5707 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5708 .has_emulated_msr = svm_has_emulated_msr,
5709
5710 .vcpu_create = svm_create_vcpu,
5711 .vcpu_free = svm_free_vcpu,
5712 .vcpu_reset = svm_vcpu_reset,
5713
5714 .vm_init = avic_vm_init,
5715 .vm_destroy = avic_vm_destroy,
5716
5717 .prepare_guest_switch = svm_prepare_guest_switch,
5718 .vcpu_load = svm_vcpu_load,
5719 .vcpu_put = svm_vcpu_put,
5720 .vcpu_blocking = svm_vcpu_blocking,
5721 .vcpu_unblocking = svm_vcpu_unblocking,
5722
5723 .update_bp_intercept = update_bp_intercept,
5724 .get_msr_feature = svm_get_msr_feature,
5725 .get_msr = svm_get_msr,
5726 .set_msr = svm_set_msr,
5727 .get_segment_base = svm_get_segment_base,
5728 .get_segment = svm_get_segment,
5729 .set_segment = svm_set_segment,
5730 .get_cpl = svm_get_cpl,
5731 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5732 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5733 .decache_cr3 = svm_decache_cr3,
5734 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5735 .set_cr0 = svm_set_cr0,
5736 .set_cr3 = svm_set_cr3,
5737 .set_cr4 = svm_set_cr4,
5738 .set_efer = svm_set_efer,
5739 .get_idt = svm_get_idt,
5740 .set_idt = svm_set_idt,
5741 .get_gdt = svm_get_gdt,
5742 .set_gdt = svm_set_gdt,
5743 .get_dr6 = svm_get_dr6,
5744 .set_dr6 = svm_set_dr6,
5745 .set_dr7 = svm_set_dr7,
5746 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5747 .cache_reg = svm_cache_reg,
5748 .get_rflags = svm_get_rflags,
5749 .set_rflags = svm_set_rflags,
5750
5751 .tlb_flush = svm_flush_tlb,
5752
5753 .run = svm_vcpu_run,
5754 .handle_exit = handle_exit,
5755 .skip_emulated_instruction = skip_emulated_instruction,
5756 .set_interrupt_shadow = svm_set_interrupt_shadow,
5757 .get_interrupt_shadow = svm_get_interrupt_shadow,
5758 .patch_hypercall = svm_patch_hypercall,
5759 .set_irq = svm_set_irq,
5760 .set_nmi = svm_inject_nmi,
5761 .queue_exception = svm_queue_exception,
5762 .cancel_injection = svm_cancel_injection,
5763 .interrupt_allowed = svm_interrupt_allowed,
5764 .nmi_allowed = svm_nmi_allowed,
5765 .get_nmi_mask = svm_get_nmi_mask,
5766 .set_nmi_mask = svm_set_nmi_mask,
5767 .enable_nmi_window = enable_nmi_window,
5768 .enable_irq_window = enable_irq_window,
5769 .update_cr8_intercept = update_cr8_intercept,
5770 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
5771 .get_enable_apicv = svm_get_enable_apicv,
5772 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5773 .load_eoi_exitmap = svm_load_eoi_exitmap,
5774 .hwapic_irr_update = svm_hwapic_irr_update,
5775 .hwapic_isr_update = svm_hwapic_isr_update,
5776 .apicv_post_state_restore = avic_post_state_restore,
5777
5778 .set_tss_addr = svm_set_tss_addr,
5779 .get_tdp_level = get_npt_level,
5780 .get_mt_mask = svm_get_mt_mask,
5781
5782 .get_exit_info = svm_get_exit_info,
5783
5784 .get_lpage_level = svm_get_lpage_level,
5785
5786 .cpuid_update = svm_cpuid_update,
5787
5788 .rdtscp_supported = svm_rdtscp_supported,
5789 .invpcid_supported = svm_invpcid_supported,
5790 .mpx_supported = svm_mpx_supported,
5791 .xsaves_supported = svm_xsaves_supported,
5792
5793 .set_supported_cpuid = svm_set_supported_cpuid,
5794
5795 .has_wbinvd_exit = svm_has_wbinvd_exit,
5796
5797 .write_tsc_offset = svm_write_tsc_offset,
5798
5799 .set_tdp_cr3 = set_tdp_cr3,
5800
5801 .check_intercept = svm_check_intercept,
5802 .handle_external_intr = svm_handle_external_intr,
5803
5804 .sched_in = svm_sched_in,
5805
5806 .pmu_ops = &amd_pmu_ops,
5807 .deliver_posted_interrupt = svm_deliver_avic_intr,
5808 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
5809 .update_pi_irte = svm_update_pi_irte,
5810 .setup_mce = svm_setup_mce,
5811};
5812
5813static int __init svm_init(void)
5814{
5815 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5816 __alignof__(struct vcpu_svm), THIS_MODULE);
5817}
5818
5819static void __exit svm_exit(void)
5820{
5821 kvm_exit();
5822}
5823
5824module_init(svm_init)
5825module_exit(svm_exit)