rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Kernel-based Virtual Machine driver for Linux |
| 3 | * |
| 4 | * This module enables machines with Intel VT-x extensions to run virtual |
| 5 | * machines without emulation or binary translation. |
| 6 | * |
| 7 | * Copyright (C) 2006 Qumranet, Inc. |
| 8 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| 9 | * |
| 10 | * Authors: |
| 11 | * Avi Kivity <avi@qumranet.com> |
| 12 | * Yaniv Kamay <yaniv@qumranet.com> |
| 13 | * |
| 14 | * This work is licensed under the terms of the GNU GPL, version 2. See |
| 15 | * the COPYING file in the top-level directory. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #include "irq.h" |
| 20 | #include "mmu.h" |
| 21 | #include "cpuid.h" |
| 22 | #include "lapic.h" |
| 23 | |
| 24 | #include <linux/kvm_host.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/kernel.h> |
| 27 | #include <linux/mm.h> |
| 28 | #include <linux/highmem.h> |
| 29 | #include <linux/sched.h> |
| 30 | #include <linux/sched/smt.h> |
| 31 | #include <linux/moduleparam.h> |
| 32 | #include <linux/mod_devicetable.h> |
| 33 | #include <linux/trace_events.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/tboot.h> |
| 36 | #include <linux/hrtimer.h> |
| 37 | #include <linux/frame.h> |
| 38 | #include <linux/nospec.h> |
| 39 | #include "kvm_cache_regs.h" |
| 40 | #include "x86.h" |
| 41 | |
| 42 | #include <asm/cpu.h> |
| 43 | #include <asm/io.h> |
| 44 | #include <asm/desc.h> |
| 45 | #include <asm/vmx.h> |
| 46 | #include <asm/virtext.h> |
| 47 | #include <asm/mce.h> |
| 48 | #include <asm/fpu/internal.h> |
| 49 | #include <asm/perf_event.h> |
| 50 | #include <asm/debugreg.h> |
| 51 | #include <asm/kexec.h> |
| 52 | #include <asm/apic.h> |
| 53 | #include <asm/irq_remapping.h> |
| 54 | #include <asm/mmu_context.h> |
| 55 | #include <asm/microcode.h> |
| 56 | #include <asm/spec-ctrl.h> |
| 57 | |
| 58 | #include "trace.h" |
| 59 | #include "pmu.h" |
| 60 | |
| 61 | #define __ex(x) __kvm_handle_fault_on_reboot(x) |
| 62 | #define __ex_clear(x, reg) \ |
| 63 | ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg) |
| 64 | |
| 65 | MODULE_AUTHOR("Qumranet"); |
| 66 | MODULE_LICENSE("GPL"); |
| 67 | |
| 68 | static const struct x86_cpu_id vmx_cpu_id[] = { |
| 69 | X86_FEATURE_MATCH(X86_FEATURE_VMX), |
| 70 | {} |
| 71 | }; |
| 72 | MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); |
| 73 | |
| 74 | static bool __read_mostly enable_vpid = 1; |
| 75 | module_param_named(vpid, enable_vpid, bool, 0444); |
| 76 | |
| 77 | static bool __read_mostly flexpriority_enabled = 1; |
| 78 | module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); |
| 79 | |
| 80 | static bool __read_mostly enable_ept = 1; |
| 81 | module_param_named(ept, enable_ept, bool, S_IRUGO); |
| 82 | |
| 83 | static bool __read_mostly enable_unrestricted_guest = 1; |
| 84 | module_param_named(unrestricted_guest, |
| 85 | enable_unrestricted_guest, bool, S_IRUGO); |
| 86 | |
| 87 | static bool __read_mostly enable_ept_ad_bits = 1; |
| 88 | module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); |
| 89 | |
| 90 | static bool __read_mostly emulate_invalid_guest_state = true; |
| 91 | module_param(emulate_invalid_guest_state, bool, S_IRUGO); |
| 92 | |
| 93 | static bool __read_mostly fasteoi = 1; |
| 94 | module_param(fasteoi, bool, S_IRUGO); |
| 95 | |
| 96 | static bool __read_mostly enable_apicv = 1; |
| 97 | module_param(enable_apicv, bool, S_IRUGO); |
| 98 | |
| 99 | static bool __read_mostly enable_shadow_vmcs = 1; |
| 100 | module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); |
| 101 | /* |
| 102 | * If nested=1, nested virtualization is supported, i.e., guests may use |
| 103 | * VMX and be a hypervisor for its own guests. If nested=0, guests may not |
| 104 | * use VMX instructions. |
| 105 | */ |
| 106 | static bool __read_mostly nested = 0; |
| 107 | module_param(nested, bool, S_IRUGO); |
| 108 | |
| 109 | static u64 __read_mostly host_xss; |
| 110 | |
| 111 | static bool __read_mostly enable_pml = 1; |
| 112 | module_param_named(pml, enable_pml, bool, S_IRUGO); |
| 113 | |
| 114 | #define MSR_TYPE_R 1 |
| 115 | #define MSR_TYPE_W 2 |
| 116 | #define MSR_TYPE_RW 3 |
| 117 | |
| 118 | #define MSR_BITMAP_MODE_X2APIC 1 |
| 119 | #define MSR_BITMAP_MODE_X2APIC_APICV 2 |
| 120 | #define MSR_BITMAP_MODE_LM 4 |
| 121 | |
| 122 | #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL |
| 123 | |
| 124 | /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ |
| 125 | static int __read_mostly cpu_preemption_timer_multi; |
| 126 | static bool __read_mostly enable_preemption_timer = 1; |
| 127 | #ifdef CONFIG_X86_64 |
| 128 | module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); |
| 129 | #endif |
| 130 | |
| 131 | #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD) |
| 132 | #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE) |
| 133 | #define KVM_VM_CR0_ALWAYS_ON \ |
| 134 | (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) |
| 135 | #define KVM_CR4_GUEST_OWNED_BITS \ |
| 136 | (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ |
| 137 | | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) |
| 138 | |
| 139 | #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) |
| 140 | #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) |
| 141 | |
| 142 | #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) |
| 143 | |
| 144 | #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 |
| 145 | |
| 146 | /* |
| 147 | * Hyper-V requires all of these, so mark them as supported even though |
| 148 | * they are just treated the same as all-context. |
| 149 | */ |
| 150 | #define VMX_VPID_EXTENT_SUPPORTED_MASK \ |
| 151 | (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \ |
| 152 | VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \ |
| 153 | VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \ |
| 154 | VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT) |
| 155 | |
| 156 | /* |
| 157 | * These 2 parameters are used to config the controls for Pause-Loop Exiting: |
| 158 | * ple_gap: upper bound on the amount of time between two successive |
| 159 | * executions of PAUSE in a loop. Also indicate if ple enabled. |
| 160 | * According to test, this time is usually smaller than 128 cycles. |
| 161 | * ple_window: upper bound on the amount of time a guest is allowed to execute |
| 162 | * in a PAUSE loop. Tests indicate that most spinlocks are held for |
| 163 | * less than 2^12 cycles |
| 164 | * Time is measured based on a counter that runs at the same rate as the TSC, |
| 165 | * refer SDM volume 3b section 21.6.13 & 22.1.3. |
| 166 | */ |
| 167 | #define KVM_VMX_DEFAULT_PLE_GAP 128 |
| 168 | #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 |
| 169 | #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2 |
| 170 | #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0 |
| 171 | #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \ |
| 172 | INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW |
| 173 | |
| 174 | static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP; |
| 175 | module_param(ple_gap, int, S_IRUGO); |
| 176 | |
| 177 | static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; |
| 178 | module_param(ple_window, int, S_IRUGO); |
| 179 | |
| 180 | /* Default doubles per-vcpu window every exit. */ |
| 181 | static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW; |
| 182 | module_param(ple_window_grow, int, S_IRUGO); |
| 183 | |
| 184 | /* Default resets per-vcpu window every exit to ple_window. */ |
| 185 | static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK; |
| 186 | module_param(ple_window_shrink, int, S_IRUGO); |
| 187 | |
| 188 | /* Default is to compute the maximum so we can never overflow. */ |
| 189 | static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; |
| 190 | static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; |
| 191 | module_param(ple_window_max, int, S_IRUGO); |
| 192 | |
| 193 | extern const ulong vmx_return; |
| 194 | |
| 195 | static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); |
| 196 | static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); |
| 197 | static DEFINE_MUTEX(vmx_l1d_flush_mutex); |
| 198 | |
| 199 | /* Storage for pre module init parameter parsing */ |
| 200 | static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; |
| 201 | |
| 202 | static const struct { |
| 203 | const char *option; |
| 204 | bool for_parse; |
| 205 | } vmentry_l1d_param[] = { |
| 206 | [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, |
| 207 | [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, |
| 208 | [VMENTER_L1D_FLUSH_COND] = {"cond", true}, |
| 209 | [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, |
| 210 | [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, |
| 211 | [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, |
| 212 | }; |
| 213 | |
| 214 | #define L1D_CACHE_ORDER 4 |
| 215 | static void *vmx_l1d_flush_pages; |
| 216 | |
| 217 | static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) |
| 218 | { |
| 219 | struct page *page; |
| 220 | unsigned int i; |
| 221 | |
| 222 | if (!enable_ept) { |
| 223 | l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; |
| 224 | return 0; |
| 225 | } |
| 226 | |
| 227 | if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { |
| 228 | u64 msr; |
| 229 | |
| 230 | rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); |
| 231 | if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { |
| 232 | l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; |
| 233 | return 0; |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | /* If set to auto use the default l1tf mitigation method */ |
| 238 | if (l1tf == VMENTER_L1D_FLUSH_AUTO) { |
| 239 | switch (l1tf_mitigation) { |
| 240 | case L1TF_MITIGATION_OFF: |
| 241 | l1tf = VMENTER_L1D_FLUSH_NEVER; |
| 242 | break; |
| 243 | case L1TF_MITIGATION_FLUSH_NOWARN: |
| 244 | case L1TF_MITIGATION_FLUSH: |
| 245 | case L1TF_MITIGATION_FLUSH_NOSMT: |
| 246 | l1tf = VMENTER_L1D_FLUSH_COND; |
| 247 | break; |
| 248 | case L1TF_MITIGATION_FULL: |
| 249 | case L1TF_MITIGATION_FULL_FORCE: |
| 250 | l1tf = VMENTER_L1D_FLUSH_ALWAYS; |
| 251 | break; |
| 252 | } |
| 253 | } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { |
| 254 | l1tf = VMENTER_L1D_FLUSH_ALWAYS; |
| 255 | } |
| 256 | |
| 257 | if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && |
| 258 | !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { |
| 259 | page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); |
| 260 | if (!page) |
| 261 | return -ENOMEM; |
| 262 | vmx_l1d_flush_pages = page_address(page); |
| 263 | |
| 264 | /* |
| 265 | * Initialize each page with a different pattern in |
| 266 | * order to protect against KSM in the nested |
| 267 | * virtualization case. |
| 268 | */ |
| 269 | for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { |
| 270 | memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, |
| 271 | PAGE_SIZE); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | l1tf_vmx_mitigation = l1tf; |
| 276 | |
| 277 | if (l1tf != VMENTER_L1D_FLUSH_NEVER) |
| 278 | static_branch_enable(&vmx_l1d_should_flush); |
| 279 | else |
| 280 | static_branch_disable(&vmx_l1d_should_flush); |
| 281 | |
| 282 | if (l1tf == VMENTER_L1D_FLUSH_COND) |
| 283 | static_branch_enable(&vmx_l1d_flush_cond); |
| 284 | else |
| 285 | static_branch_disable(&vmx_l1d_flush_cond); |
| 286 | return 0; |
| 287 | } |
| 288 | |
| 289 | static int vmentry_l1d_flush_parse(const char *s) |
| 290 | { |
| 291 | unsigned int i; |
| 292 | |
| 293 | if (s) { |
| 294 | for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { |
| 295 | if (vmentry_l1d_param[i].for_parse && |
| 296 | sysfs_streq(s, vmentry_l1d_param[i].option)) |
| 297 | return i; |
| 298 | } |
| 299 | } |
| 300 | return -EINVAL; |
| 301 | } |
| 302 | |
| 303 | static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) |
| 304 | { |
| 305 | int l1tf, ret; |
| 306 | |
| 307 | l1tf = vmentry_l1d_flush_parse(s); |
| 308 | if (l1tf < 0) |
| 309 | return l1tf; |
| 310 | |
| 311 | if (!boot_cpu_has(X86_BUG_L1TF)) |
| 312 | return 0; |
| 313 | |
| 314 | /* |
| 315 | * Has vmx_init() run already? If not then this is the pre init |
| 316 | * parameter parsing. In that case just store the value and let |
| 317 | * vmx_init() do the proper setup after enable_ept has been |
| 318 | * established. |
| 319 | */ |
| 320 | if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { |
| 321 | vmentry_l1d_flush_param = l1tf; |
| 322 | return 0; |
| 323 | } |
| 324 | |
| 325 | mutex_lock(&vmx_l1d_flush_mutex); |
| 326 | ret = vmx_setup_l1d_flush(l1tf); |
| 327 | mutex_unlock(&vmx_l1d_flush_mutex); |
| 328 | return ret; |
| 329 | } |
| 330 | |
| 331 | static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) |
| 332 | { |
| 333 | if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) |
| 334 | return sprintf(s, "???\n"); |
| 335 | |
| 336 | return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); |
| 337 | } |
| 338 | |
| 339 | static const struct kernel_param_ops vmentry_l1d_flush_ops = { |
| 340 | .set = vmentry_l1d_flush_set, |
| 341 | .get = vmentry_l1d_flush_get, |
| 342 | }; |
| 343 | module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); |
| 344 | |
| 345 | #define NR_AUTOLOAD_MSRS 8 |
| 346 | |
| 347 | struct vmcs { |
| 348 | u32 revision_id; |
| 349 | u32 abort; |
| 350 | char data[0]; |
| 351 | }; |
| 352 | |
| 353 | /* |
| 354 | * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also |
| 355 | * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs |
| 356 | * loaded on this CPU (so we can clear them if the CPU goes down). |
| 357 | */ |
| 358 | struct loaded_vmcs { |
| 359 | struct vmcs *vmcs; |
| 360 | struct vmcs *shadow_vmcs; |
| 361 | int cpu; |
| 362 | bool launched; |
| 363 | bool nmi_known_unmasked; |
| 364 | unsigned long vmcs_host_cr3; /* May not match real cr3 */ |
| 365 | unsigned long vmcs_host_cr4; /* May not match real cr4 */ |
| 366 | /* Support for vnmi-less CPUs */ |
| 367 | int soft_vnmi_blocked; |
| 368 | ktime_t entry_time; |
| 369 | s64 vnmi_blocked_time; |
| 370 | unsigned long *msr_bitmap; |
| 371 | struct list_head loaded_vmcss_on_cpu_link; |
| 372 | }; |
| 373 | |
| 374 | struct shared_msr_entry { |
| 375 | unsigned index; |
| 376 | u64 data; |
| 377 | u64 mask; |
| 378 | }; |
| 379 | |
| 380 | /* |
| 381 | * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a |
| 382 | * single nested guest (L2), hence the name vmcs12. Any VMX implementation has |
| 383 | * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is |
| 384 | * stored in guest memory specified by VMPTRLD, but is opaque to the guest, |
| 385 | * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. |
| 386 | * More than one of these structures may exist, if L1 runs multiple L2 guests. |
| 387 | * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the |
| 388 | * underlying hardware which will be used to run L2. |
| 389 | * This structure is packed to ensure that its layout is identical across |
| 390 | * machines (necessary for live migration). |
| 391 | * If there are changes in this struct, VMCS12_REVISION must be changed. |
| 392 | */ |
| 393 | typedef u64 natural_width; |
| 394 | struct __packed vmcs12 { |
| 395 | /* According to the Intel spec, a VMCS region must start with the |
| 396 | * following two fields. Then follow implementation-specific data. |
| 397 | */ |
| 398 | u32 revision_id; |
| 399 | u32 abort; |
| 400 | |
| 401 | u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ |
| 402 | u32 padding[7]; /* room for future expansion */ |
| 403 | |
| 404 | u64 io_bitmap_a; |
| 405 | u64 io_bitmap_b; |
| 406 | u64 msr_bitmap; |
| 407 | u64 vm_exit_msr_store_addr; |
| 408 | u64 vm_exit_msr_load_addr; |
| 409 | u64 vm_entry_msr_load_addr; |
| 410 | u64 tsc_offset; |
| 411 | u64 virtual_apic_page_addr; |
| 412 | u64 apic_access_addr; |
| 413 | u64 posted_intr_desc_addr; |
| 414 | u64 vm_function_control; |
| 415 | u64 ept_pointer; |
| 416 | u64 eoi_exit_bitmap0; |
| 417 | u64 eoi_exit_bitmap1; |
| 418 | u64 eoi_exit_bitmap2; |
| 419 | u64 eoi_exit_bitmap3; |
| 420 | u64 eptp_list_address; |
| 421 | u64 xss_exit_bitmap; |
| 422 | u64 guest_physical_address; |
| 423 | u64 vmcs_link_pointer; |
| 424 | u64 pml_address; |
| 425 | u64 guest_ia32_debugctl; |
| 426 | u64 guest_ia32_pat; |
| 427 | u64 guest_ia32_efer; |
| 428 | u64 guest_ia32_perf_global_ctrl; |
| 429 | u64 guest_pdptr0; |
| 430 | u64 guest_pdptr1; |
| 431 | u64 guest_pdptr2; |
| 432 | u64 guest_pdptr3; |
| 433 | u64 guest_bndcfgs; |
| 434 | u64 host_ia32_pat; |
| 435 | u64 host_ia32_efer; |
| 436 | u64 host_ia32_perf_global_ctrl; |
| 437 | u64 padding64[8]; /* room for future expansion */ |
| 438 | /* |
| 439 | * To allow migration of L1 (complete with its L2 guests) between |
| 440 | * machines of different natural widths (32 or 64 bit), we cannot have |
| 441 | * unsigned long fields with no explict size. We use u64 (aliased |
| 442 | * natural_width) instead. Luckily, x86 is little-endian. |
| 443 | */ |
| 444 | natural_width cr0_guest_host_mask; |
| 445 | natural_width cr4_guest_host_mask; |
| 446 | natural_width cr0_read_shadow; |
| 447 | natural_width cr4_read_shadow; |
| 448 | natural_width cr3_target_value0; |
| 449 | natural_width cr3_target_value1; |
| 450 | natural_width cr3_target_value2; |
| 451 | natural_width cr3_target_value3; |
| 452 | natural_width exit_qualification; |
| 453 | natural_width guest_linear_address; |
| 454 | natural_width guest_cr0; |
| 455 | natural_width guest_cr3; |
| 456 | natural_width guest_cr4; |
| 457 | natural_width guest_es_base; |
| 458 | natural_width guest_cs_base; |
| 459 | natural_width guest_ss_base; |
| 460 | natural_width guest_ds_base; |
| 461 | natural_width guest_fs_base; |
| 462 | natural_width guest_gs_base; |
| 463 | natural_width guest_ldtr_base; |
| 464 | natural_width guest_tr_base; |
| 465 | natural_width guest_gdtr_base; |
| 466 | natural_width guest_idtr_base; |
| 467 | natural_width guest_dr7; |
| 468 | natural_width guest_rsp; |
| 469 | natural_width guest_rip; |
| 470 | natural_width guest_rflags; |
| 471 | natural_width guest_pending_dbg_exceptions; |
| 472 | natural_width guest_sysenter_esp; |
| 473 | natural_width guest_sysenter_eip; |
| 474 | natural_width host_cr0; |
| 475 | natural_width host_cr3; |
| 476 | natural_width host_cr4; |
| 477 | natural_width host_fs_base; |
| 478 | natural_width host_gs_base; |
| 479 | natural_width host_tr_base; |
| 480 | natural_width host_gdtr_base; |
| 481 | natural_width host_idtr_base; |
| 482 | natural_width host_ia32_sysenter_esp; |
| 483 | natural_width host_ia32_sysenter_eip; |
| 484 | natural_width host_rsp; |
| 485 | natural_width host_rip; |
| 486 | natural_width paddingl[8]; /* room for future expansion */ |
| 487 | u32 pin_based_vm_exec_control; |
| 488 | u32 cpu_based_vm_exec_control; |
| 489 | u32 exception_bitmap; |
| 490 | u32 page_fault_error_code_mask; |
| 491 | u32 page_fault_error_code_match; |
| 492 | u32 cr3_target_count; |
| 493 | u32 vm_exit_controls; |
| 494 | u32 vm_exit_msr_store_count; |
| 495 | u32 vm_exit_msr_load_count; |
| 496 | u32 vm_entry_controls; |
| 497 | u32 vm_entry_msr_load_count; |
| 498 | u32 vm_entry_intr_info_field; |
| 499 | u32 vm_entry_exception_error_code; |
| 500 | u32 vm_entry_instruction_len; |
| 501 | u32 tpr_threshold; |
| 502 | u32 secondary_vm_exec_control; |
| 503 | u32 vm_instruction_error; |
| 504 | u32 vm_exit_reason; |
| 505 | u32 vm_exit_intr_info; |
| 506 | u32 vm_exit_intr_error_code; |
| 507 | u32 idt_vectoring_info_field; |
| 508 | u32 idt_vectoring_error_code; |
| 509 | u32 vm_exit_instruction_len; |
| 510 | u32 vmx_instruction_info; |
| 511 | u32 guest_es_limit; |
| 512 | u32 guest_cs_limit; |
| 513 | u32 guest_ss_limit; |
| 514 | u32 guest_ds_limit; |
| 515 | u32 guest_fs_limit; |
| 516 | u32 guest_gs_limit; |
| 517 | u32 guest_ldtr_limit; |
| 518 | u32 guest_tr_limit; |
| 519 | u32 guest_gdtr_limit; |
| 520 | u32 guest_idtr_limit; |
| 521 | u32 guest_es_ar_bytes; |
| 522 | u32 guest_cs_ar_bytes; |
| 523 | u32 guest_ss_ar_bytes; |
| 524 | u32 guest_ds_ar_bytes; |
| 525 | u32 guest_fs_ar_bytes; |
| 526 | u32 guest_gs_ar_bytes; |
| 527 | u32 guest_ldtr_ar_bytes; |
| 528 | u32 guest_tr_ar_bytes; |
| 529 | u32 guest_interruptibility_info; |
| 530 | u32 guest_activity_state; |
| 531 | u32 guest_sysenter_cs; |
| 532 | u32 host_ia32_sysenter_cs; |
| 533 | u32 vmx_preemption_timer_value; |
| 534 | u32 padding32[7]; /* room for future expansion */ |
| 535 | u16 virtual_processor_id; |
| 536 | u16 posted_intr_nv; |
| 537 | u16 guest_es_selector; |
| 538 | u16 guest_cs_selector; |
| 539 | u16 guest_ss_selector; |
| 540 | u16 guest_ds_selector; |
| 541 | u16 guest_fs_selector; |
| 542 | u16 guest_gs_selector; |
| 543 | u16 guest_ldtr_selector; |
| 544 | u16 guest_tr_selector; |
| 545 | u16 guest_intr_status; |
| 546 | u16 guest_pml_index; |
| 547 | u16 host_es_selector; |
| 548 | u16 host_cs_selector; |
| 549 | u16 host_ss_selector; |
| 550 | u16 host_ds_selector; |
| 551 | u16 host_fs_selector; |
| 552 | u16 host_gs_selector; |
| 553 | u16 host_tr_selector; |
| 554 | }; |
| 555 | |
| 556 | /* |
| 557 | * VMCS12_REVISION is an arbitrary id that should be changed if the content or |
| 558 | * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and |
| 559 | * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. |
| 560 | */ |
| 561 | #define VMCS12_REVISION 0x11e57ed0 |
| 562 | |
| 563 | /* |
| 564 | * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region |
| 565 | * and any VMCS region. Although only sizeof(struct vmcs12) are used by the |
| 566 | * current implementation, 4K are reserved to avoid future complications. |
| 567 | */ |
| 568 | #define VMCS12_SIZE 0x1000 |
| 569 | |
| 570 | /* |
| 571 | * The nested_vmx structure is part of vcpu_vmx, and holds information we need |
| 572 | * for correct emulation of VMX (i.e., nested VMX) on this vcpu. |
| 573 | */ |
| 574 | struct nested_vmx { |
| 575 | /* Has the level1 guest done vmxon? */ |
| 576 | bool vmxon; |
| 577 | gpa_t vmxon_ptr; |
| 578 | bool pml_full; |
| 579 | |
| 580 | /* The guest-physical address of the current VMCS L1 keeps for L2 */ |
| 581 | gpa_t current_vmptr; |
| 582 | /* |
| 583 | * Cache of the guest's VMCS, existing outside of guest memory. |
| 584 | * Loaded from guest memory during VMPTRLD. Flushed to guest |
| 585 | * memory during VMCLEAR and VMPTRLD. |
| 586 | */ |
| 587 | struct vmcs12 *cached_vmcs12; |
| 588 | /* |
| 589 | * Indicates if the shadow vmcs must be updated with the |
| 590 | * data hold by vmcs12 |
| 591 | */ |
| 592 | bool sync_shadow_vmcs; |
| 593 | |
| 594 | bool change_vmcs01_virtual_apic_mode; |
| 595 | |
| 596 | /* L2 must run next, and mustn't decide to exit to L1. */ |
| 597 | bool nested_run_pending; |
| 598 | |
| 599 | struct loaded_vmcs vmcs02; |
| 600 | |
| 601 | /* |
| 602 | * Guest pages referred to in the vmcs02 with host-physical |
| 603 | * pointers, so we must keep them pinned while L2 runs. |
| 604 | */ |
| 605 | struct page *apic_access_page; |
| 606 | struct page *virtual_apic_page; |
| 607 | struct page *pi_desc_page; |
| 608 | struct pi_desc *pi_desc; |
| 609 | bool pi_pending; |
| 610 | u16 posted_intr_nv; |
| 611 | |
| 612 | struct hrtimer preemption_timer; |
| 613 | bool preemption_timer_expired; |
| 614 | |
| 615 | /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ |
| 616 | u64 vmcs01_debugctl; |
| 617 | |
| 618 | u16 vpid02; |
| 619 | u16 last_vpid; |
| 620 | |
| 621 | /* |
| 622 | * We only store the "true" versions of the VMX capability MSRs. We |
| 623 | * generate the "non-true" versions by setting the must-be-1 bits |
| 624 | * according to the SDM. |
| 625 | */ |
| 626 | u32 nested_vmx_procbased_ctls_low; |
| 627 | u32 nested_vmx_procbased_ctls_high; |
| 628 | u32 nested_vmx_secondary_ctls_low; |
| 629 | u32 nested_vmx_secondary_ctls_high; |
| 630 | u32 nested_vmx_pinbased_ctls_low; |
| 631 | u32 nested_vmx_pinbased_ctls_high; |
| 632 | u32 nested_vmx_exit_ctls_low; |
| 633 | u32 nested_vmx_exit_ctls_high; |
| 634 | u32 nested_vmx_entry_ctls_low; |
| 635 | u32 nested_vmx_entry_ctls_high; |
| 636 | u32 nested_vmx_misc_low; |
| 637 | u32 nested_vmx_misc_high; |
| 638 | u32 nested_vmx_ept_caps; |
| 639 | u32 nested_vmx_vpid_caps; |
| 640 | u64 nested_vmx_basic; |
| 641 | u64 nested_vmx_cr0_fixed0; |
| 642 | u64 nested_vmx_cr0_fixed1; |
| 643 | u64 nested_vmx_cr4_fixed0; |
| 644 | u64 nested_vmx_cr4_fixed1; |
| 645 | u64 nested_vmx_vmcs_enum; |
| 646 | u64 nested_vmx_vmfunc_controls; |
| 647 | }; |
| 648 | |
| 649 | #define POSTED_INTR_ON 0 |
| 650 | #define POSTED_INTR_SN 1 |
| 651 | |
| 652 | /* Posted-Interrupt Descriptor */ |
| 653 | struct pi_desc { |
| 654 | u32 pir[8]; /* Posted interrupt requested */ |
| 655 | union { |
| 656 | struct { |
| 657 | /* bit 256 - Outstanding Notification */ |
| 658 | u16 on : 1, |
| 659 | /* bit 257 - Suppress Notification */ |
| 660 | sn : 1, |
| 661 | /* bit 271:258 - Reserved */ |
| 662 | rsvd_1 : 14; |
| 663 | /* bit 279:272 - Notification Vector */ |
| 664 | u8 nv; |
| 665 | /* bit 287:280 - Reserved */ |
| 666 | u8 rsvd_2; |
| 667 | /* bit 319:288 - Notification Destination */ |
| 668 | u32 ndst; |
| 669 | }; |
| 670 | u64 control; |
| 671 | }; |
| 672 | u32 rsvd[6]; |
| 673 | } __aligned(64); |
| 674 | |
| 675 | static bool pi_test_and_set_on(struct pi_desc *pi_desc) |
| 676 | { |
| 677 | return test_and_set_bit(POSTED_INTR_ON, |
| 678 | (unsigned long *)&pi_desc->control); |
| 679 | } |
| 680 | |
| 681 | static bool pi_test_and_clear_on(struct pi_desc *pi_desc) |
| 682 | { |
| 683 | return test_and_clear_bit(POSTED_INTR_ON, |
| 684 | (unsigned long *)&pi_desc->control); |
| 685 | } |
| 686 | |
| 687 | static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) |
| 688 | { |
| 689 | return test_and_set_bit(vector, (unsigned long *)pi_desc->pir); |
| 690 | } |
| 691 | |
| 692 | static inline void pi_clear_sn(struct pi_desc *pi_desc) |
| 693 | { |
| 694 | return clear_bit(POSTED_INTR_SN, |
| 695 | (unsigned long *)&pi_desc->control); |
| 696 | } |
| 697 | |
| 698 | static inline void pi_set_sn(struct pi_desc *pi_desc) |
| 699 | { |
| 700 | return set_bit(POSTED_INTR_SN, |
| 701 | (unsigned long *)&pi_desc->control); |
| 702 | } |
| 703 | |
| 704 | static inline void pi_clear_on(struct pi_desc *pi_desc) |
| 705 | { |
| 706 | clear_bit(POSTED_INTR_ON, |
| 707 | (unsigned long *)&pi_desc->control); |
| 708 | } |
| 709 | |
| 710 | static inline int pi_test_on(struct pi_desc *pi_desc) |
| 711 | { |
| 712 | return test_bit(POSTED_INTR_ON, |
| 713 | (unsigned long *)&pi_desc->control); |
| 714 | } |
| 715 | |
| 716 | static inline int pi_test_sn(struct pi_desc *pi_desc) |
| 717 | { |
| 718 | return test_bit(POSTED_INTR_SN, |
| 719 | (unsigned long *)&pi_desc->control); |
| 720 | } |
| 721 | |
| 722 | struct vmx_msrs { |
| 723 | unsigned int nr; |
| 724 | struct vmx_msr_entry val[NR_AUTOLOAD_MSRS]; |
| 725 | }; |
| 726 | |
| 727 | struct vcpu_vmx { |
| 728 | struct kvm_vcpu vcpu; |
| 729 | unsigned long host_rsp; |
| 730 | u8 fail; |
| 731 | u8 msr_bitmap_mode; |
| 732 | u32 exit_intr_info; |
| 733 | u32 idt_vectoring_info; |
| 734 | ulong rflags; |
| 735 | struct shared_msr_entry *guest_msrs; |
| 736 | int nmsrs; |
| 737 | int save_nmsrs; |
| 738 | unsigned long host_idt_base; |
| 739 | #ifdef CONFIG_X86_64 |
| 740 | u64 msr_host_kernel_gs_base; |
| 741 | u64 msr_guest_kernel_gs_base; |
| 742 | #endif |
| 743 | |
| 744 | u64 spec_ctrl; |
| 745 | |
| 746 | u32 vm_entry_controls_shadow; |
| 747 | u32 vm_exit_controls_shadow; |
| 748 | u32 secondary_exec_control; |
| 749 | |
| 750 | /* |
| 751 | * loaded_vmcs points to the VMCS currently used in this vcpu. For a |
| 752 | * non-nested (L1) guest, it always points to vmcs01. For a nested |
| 753 | * guest (L2), it points to a different VMCS. loaded_cpu_state points |
| 754 | * to the VMCS whose state is loaded into the CPU registers that only |
| 755 | * need to be switched when transitioning to/from the kernel; a NULL |
| 756 | * value indicates that host state is loaded. |
| 757 | */ |
| 758 | struct loaded_vmcs vmcs01; |
| 759 | struct loaded_vmcs *loaded_vmcs; |
| 760 | struct loaded_vmcs *loaded_cpu_state; |
| 761 | bool __launched; /* temporary, used in vmx_vcpu_run */ |
| 762 | struct msr_autoload { |
| 763 | struct vmx_msrs guest; |
| 764 | struct vmx_msrs host; |
| 765 | } msr_autoload; |
| 766 | |
| 767 | struct { |
| 768 | u16 fs_sel, gs_sel, ldt_sel; |
| 769 | #ifdef CONFIG_X86_64 |
| 770 | u16 ds_sel, es_sel; |
| 771 | #endif |
| 772 | int gs_ldt_reload_needed; |
| 773 | int fs_reload_needed; |
| 774 | u64 msr_host_bndcfgs; |
| 775 | } host_state; |
| 776 | struct { |
| 777 | int vm86_active; |
| 778 | ulong save_rflags; |
| 779 | struct kvm_segment segs[8]; |
| 780 | } rmode; |
| 781 | struct { |
| 782 | u32 bitmask; /* 4 bits per segment (1 bit per field) */ |
| 783 | struct kvm_save_segment { |
| 784 | u16 selector; |
| 785 | unsigned long base; |
| 786 | u32 limit; |
| 787 | u32 ar; |
| 788 | } seg[8]; |
| 789 | } segment_cache; |
| 790 | int vpid; |
| 791 | bool emulation_required; |
| 792 | |
| 793 | u32 exit_reason; |
| 794 | |
| 795 | /* Posted interrupt descriptor */ |
| 796 | struct pi_desc pi_desc; |
| 797 | |
| 798 | /* Support for a guest hypervisor (nested VMX) */ |
| 799 | struct nested_vmx nested; |
| 800 | |
| 801 | /* Dynamic PLE window. */ |
| 802 | int ple_window; |
| 803 | bool ple_window_dirty; |
| 804 | |
| 805 | /* Support for PML */ |
| 806 | #define PML_ENTITY_NUM 512 |
| 807 | struct page *pml_pg; |
| 808 | |
| 809 | /* apic deadline value in host tsc */ |
| 810 | u64 hv_deadline_tsc; |
| 811 | |
| 812 | u64 current_tsc_ratio; |
| 813 | |
| 814 | u32 host_pkru; |
| 815 | |
| 816 | /* |
| 817 | * Only bits masked by msr_ia32_feature_control_valid_bits can be set in |
| 818 | * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included |
| 819 | * in msr_ia32_feature_control_valid_bits. |
| 820 | */ |
| 821 | u64 msr_ia32_feature_control; |
| 822 | u64 msr_ia32_feature_control_valid_bits; |
| 823 | }; |
| 824 | |
| 825 | enum segment_cache_field { |
| 826 | SEG_FIELD_SEL = 0, |
| 827 | SEG_FIELD_BASE = 1, |
| 828 | SEG_FIELD_LIMIT = 2, |
| 829 | SEG_FIELD_AR = 3, |
| 830 | |
| 831 | SEG_FIELD_NR = 4 |
| 832 | }; |
| 833 | |
| 834 | static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) |
| 835 | { |
| 836 | return container_of(vcpu, struct vcpu_vmx, vcpu); |
| 837 | } |
| 838 | |
| 839 | static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) |
| 840 | { |
| 841 | return &(to_vmx(vcpu)->pi_desc); |
| 842 | } |
| 843 | |
| 844 | #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) |
| 845 | #define FIELD(number, name) [number] = VMCS12_OFFSET(name) |
| 846 | #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \ |
| 847 | [number##_HIGH] = VMCS12_OFFSET(name)+4 |
| 848 | |
| 849 | |
| 850 | static unsigned long shadow_read_only_fields[] = { |
| 851 | /* |
| 852 | * We do NOT shadow fields that are modified when L0 |
| 853 | * traps and emulates any vmx instruction (e.g. VMPTRLD, |
| 854 | * VMXON...) executed by L1. |
| 855 | * For example, VM_INSTRUCTION_ERROR is read |
| 856 | * by L1 if a vmx instruction fails (part of the error path). |
| 857 | * Note the code assumes this logic. If for some reason |
| 858 | * we start shadowing these fields then we need to |
| 859 | * force a shadow sync when L0 emulates vmx instructions |
| 860 | * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified |
| 861 | * by nested_vmx_failValid) |
| 862 | */ |
| 863 | VM_EXIT_REASON, |
| 864 | VM_EXIT_INTR_INFO, |
| 865 | VM_EXIT_INSTRUCTION_LEN, |
| 866 | IDT_VECTORING_INFO_FIELD, |
| 867 | IDT_VECTORING_ERROR_CODE, |
| 868 | VM_EXIT_INTR_ERROR_CODE, |
| 869 | EXIT_QUALIFICATION, |
| 870 | GUEST_LINEAR_ADDRESS, |
| 871 | GUEST_PHYSICAL_ADDRESS |
| 872 | }; |
| 873 | static int max_shadow_read_only_fields = |
| 874 | ARRAY_SIZE(shadow_read_only_fields); |
| 875 | |
| 876 | static unsigned long shadow_read_write_fields[] = { |
| 877 | TPR_THRESHOLD, |
| 878 | GUEST_RIP, |
| 879 | GUEST_RSP, |
| 880 | GUEST_CR0, |
| 881 | GUEST_CR3, |
| 882 | GUEST_CR4, |
| 883 | GUEST_INTERRUPTIBILITY_INFO, |
| 884 | GUEST_RFLAGS, |
| 885 | GUEST_CS_SELECTOR, |
| 886 | GUEST_CS_AR_BYTES, |
| 887 | GUEST_CS_LIMIT, |
| 888 | GUEST_CS_BASE, |
| 889 | GUEST_ES_BASE, |
| 890 | GUEST_BNDCFGS, |
| 891 | CR0_GUEST_HOST_MASK, |
| 892 | CR0_READ_SHADOW, |
| 893 | CR4_READ_SHADOW, |
| 894 | TSC_OFFSET, |
| 895 | EXCEPTION_BITMAP, |
| 896 | CPU_BASED_VM_EXEC_CONTROL, |
| 897 | VM_ENTRY_EXCEPTION_ERROR_CODE, |
| 898 | VM_ENTRY_INTR_INFO_FIELD, |
| 899 | VM_ENTRY_INSTRUCTION_LEN, |
| 900 | VM_ENTRY_EXCEPTION_ERROR_CODE, |
| 901 | HOST_FS_BASE, |
| 902 | HOST_GS_BASE, |
| 903 | HOST_FS_SELECTOR, |
| 904 | HOST_GS_SELECTOR |
| 905 | }; |
| 906 | static int max_shadow_read_write_fields = |
| 907 | ARRAY_SIZE(shadow_read_write_fields); |
| 908 | |
| 909 | static const unsigned short vmcs_field_to_offset_table[] = { |
| 910 | FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), |
| 911 | FIELD(POSTED_INTR_NV, posted_intr_nv), |
| 912 | FIELD(GUEST_ES_SELECTOR, guest_es_selector), |
| 913 | FIELD(GUEST_CS_SELECTOR, guest_cs_selector), |
| 914 | FIELD(GUEST_SS_SELECTOR, guest_ss_selector), |
| 915 | FIELD(GUEST_DS_SELECTOR, guest_ds_selector), |
| 916 | FIELD(GUEST_FS_SELECTOR, guest_fs_selector), |
| 917 | FIELD(GUEST_GS_SELECTOR, guest_gs_selector), |
| 918 | FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), |
| 919 | FIELD(GUEST_TR_SELECTOR, guest_tr_selector), |
| 920 | FIELD(GUEST_INTR_STATUS, guest_intr_status), |
| 921 | FIELD(GUEST_PML_INDEX, guest_pml_index), |
| 922 | FIELD(HOST_ES_SELECTOR, host_es_selector), |
| 923 | FIELD(HOST_CS_SELECTOR, host_cs_selector), |
| 924 | FIELD(HOST_SS_SELECTOR, host_ss_selector), |
| 925 | FIELD(HOST_DS_SELECTOR, host_ds_selector), |
| 926 | FIELD(HOST_FS_SELECTOR, host_fs_selector), |
| 927 | FIELD(HOST_GS_SELECTOR, host_gs_selector), |
| 928 | FIELD(HOST_TR_SELECTOR, host_tr_selector), |
| 929 | FIELD64(IO_BITMAP_A, io_bitmap_a), |
| 930 | FIELD64(IO_BITMAP_B, io_bitmap_b), |
| 931 | FIELD64(MSR_BITMAP, msr_bitmap), |
| 932 | FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), |
| 933 | FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), |
| 934 | FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), |
| 935 | FIELD64(TSC_OFFSET, tsc_offset), |
| 936 | FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), |
| 937 | FIELD64(APIC_ACCESS_ADDR, apic_access_addr), |
| 938 | FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr), |
| 939 | FIELD64(VM_FUNCTION_CONTROL, vm_function_control), |
| 940 | FIELD64(EPT_POINTER, ept_pointer), |
| 941 | FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0), |
| 942 | FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1), |
| 943 | FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2), |
| 944 | FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3), |
| 945 | FIELD64(EPTP_LIST_ADDRESS, eptp_list_address), |
| 946 | FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap), |
| 947 | FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), |
| 948 | FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), |
| 949 | FIELD64(PML_ADDRESS, pml_address), |
| 950 | FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), |
| 951 | FIELD64(GUEST_IA32_PAT, guest_ia32_pat), |
| 952 | FIELD64(GUEST_IA32_EFER, guest_ia32_efer), |
| 953 | FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), |
| 954 | FIELD64(GUEST_PDPTR0, guest_pdptr0), |
| 955 | FIELD64(GUEST_PDPTR1, guest_pdptr1), |
| 956 | FIELD64(GUEST_PDPTR2, guest_pdptr2), |
| 957 | FIELD64(GUEST_PDPTR3, guest_pdptr3), |
| 958 | FIELD64(GUEST_BNDCFGS, guest_bndcfgs), |
| 959 | FIELD64(HOST_IA32_PAT, host_ia32_pat), |
| 960 | FIELD64(HOST_IA32_EFER, host_ia32_efer), |
| 961 | FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), |
| 962 | FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), |
| 963 | FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), |
| 964 | FIELD(EXCEPTION_BITMAP, exception_bitmap), |
| 965 | FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), |
| 966 | FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), |
| 967 | FIELD(CR3_TARGET_COUNT, cr3_target_count), |
| 968 | FIELD(VM_EXIT_CONTROLS, vm_exit_controls), |
| 969 | FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), |
| 970 | FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), |
| 971 | FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), |
| 972 | FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), |
| 973 | FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), |
| 974 | FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), |
| 975 | FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), |
| 976 | FIELD(TPR_THRESHOLD, tpr_threshold), |
| 977 | FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), |
| 978 | FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), |
| 979 | FIELD(VM_EXIT_REASON, vm_exit_reason), |
| 980 | FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), |
| 981 | FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), |
| 982 | FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), |
| 983 | FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), |
| 984 | FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), |
| 985 | FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), |
| 986 | FIELD(GUEST_ES_LIMIT, guest_es_limit), |
| 987 | FIELD(GUEST_CS_LIMIT, guest_cs_limit), |
| 988 | FIELD(GUEST_SS_LIMIT, guest_ss_limit), |
| 989 | FIELD(GUEST_DS_LIMIT, guest_ds_limit), |
| 990 | FIELD(GUEST_FS_LIMIT, guest_fs_limit), |
| 991 | FIELD(GUEST_GS_LIMIT, guest_gs_limit), |
| 992 | FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), |
| 993 | FIELD(GUEST_TR_LIMIT, guest_tr_limit), |
| 994 | FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), |
| 995 | FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), |
| 996 | FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), |
| 997 | FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), |
| 998 | FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), |
| 999 | FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), |
| 1000 | FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), |
| 1001 | FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), |
| 1002 | FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), |
| 1003 | FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), |
| 1004 | FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), |
| 1005 | FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), |
| 1006 | FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), |
| 1007 | FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), |
| 1008 | FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value), |
| 1009 | FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), |
| 1010 | FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), |
| 1011 | FIELD(CR0_READ_SHADOW, cr0_read_shadow), |
| 1012 | FIELD(CR4_READ_SHADOW, cr4_read_shadow), |
| 1013 | FIELD(CR3_TARGET_VALUE0, cr3_target_value0), |
| 1014 | FIELD(CR3_TARGET_VALUE1, cr3_target_value1), |
| 1015 | FIELD(CR3_TARGET_VALUE2, cr3_target_value2), |
| 1016 | FIELD(CR3_TARGET_VALUE3, cr3_target_value3), |
| 1017 | FIELD(EXIT_QUALIFICATION, exit_qualification), |
| 1018 | FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), |
| 1019 | FIELD(GUEST_CR0, guest_cr0), |
| 1020 | FIELD(GUEST_CR3, guest_cr3), |
| 1021 | FIELD(GUEST_CR4, guest_cr4), |
| 1022 | FIELD(GUEST_ES_BASE, guest_es_base), |
| 1023 | FIELD(GUEST_CS_BASE, guest_cs_base), |
| 1024 | FIELD(GUEST_SS_BASE, guest_ss_base), |
| 1025 | FIELD(GUEST_DS_BASE, guest_ds_base), |
| 1026 | FIELD(GUEST_FS_BASE, guest_fs_base), |
| 1027 | FIELD(GUEST_GS_BASE, guest_gs_base), |
| 1028 | FIELD(GUEST_LDTR_BASE, guest_ldtr_base), |
| 1029 | FIELD(GUEST_TR_BASE, guest_tr_base), |
| 1030 | FIELD(GUEST_GDTR_BASE, guest_gdtr_base), |
| 1031 | FIELD(GUEST_IDTR_BASE, guest_idtr_base), |
| 1032 | FIELD(GUEST_DR7, guest_dr7), |
| 1033 | FIELD(GUEST_RSP, guest_rsp), |
| 1034 | FIELD(GUEST_RIP, guest_rip), |
| 1035 | FIELD(GUEST_RFLAGS, guest_rflags), |
| 1036 | FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), |
| 1037 | FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), |
| 1038 | FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), |
| 1039 | FIELD(HOST_CR0, host_cr0), |
| 1040 | FIELD(HOST_CR3, host_cr3), |
| 1041 | FIELD(HOST_CR4, host_cr4), |
| 1042 | FIELD(HOST_FS_BASE, host_fs_base), |
| 1043 | FIELD(HOST_GS_BASE, host_gs_base), |
| 1044 | FIELD(HOST_TR_BASE, host_tr_base), |
| 1045 | FIELD(HOST_GDTR_BASE, host_gdtr_base), |
| 1046 | FIELD(HOST_IDTR_BASE, host_idtr_base), |
| 1047 | FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), |
| 1048 | FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), |
| 1049 | FIELD(HOST_RSP, host_rsp), |
| 1050 | FIELD(HOST_RIP, host_rip), |
| 1051 | }; |
| 1052 | |
| 1053 | static inline short vmcs_field_to_offset(unsigned long field) |
| 1054 | { |
| 1055 | const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table); |
| 1056 | unsigned short offset; |
| 1057 | |
| 1058 | BUILD_BUG_ON(size > SHRT_MAX); |
| 1059 | if (field >= size) |
| 1060 | return -ENOENT; |
| 1061 | |
| 1062 | field = array_index_nospec(field, size); |
| 1063 | offset = vmcs_field_to_offset_table[field]; |
| 1064 | if (offset == 0) |
| 1065 | return -ENOENT; |
| 1066 | return offset; |
| 1067 | } |
| 1068 | |
| 1069 | static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) |
| 1070 | { |
| 1071 | return to_vmx(vcpu)->nested.cached_vmcs12; |
| 1072 | } |
| 1073 | |
| 1074 | static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu); |
| 1075 | static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu); |
| 1076 | static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa); |
| 1077 | static bool vmx_xsaves_supported(void); |
| 1078 | static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr); |
| 1079 | static void vmx_set_segment(struct kvm_vcpu *vcpu, |
| 1080 | struct kvm_segment *var, int seg); |
| 1081 | static void vmx_get_segment(struct kvm_vcpu *vcpu, |
| 1082 | struct kvm_segment *var, int seg); |
| 1083 | static bool guest_state_valid(struct kvm_vcpu *vcpu); |
| 1084 | static u32 vmx_segment_access_rights(struct kvm_segment *var); |
| 1085 | static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx); |
| 1086 | static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx); |
| 1087 | static int alloc_identity_pagetable(struct kvm *kvm); |
| 1088 | static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); |
| 1089 | static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); |
| 1090 | static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, |
| 1091 | u16 error_code); |
| 1092 | static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu); |
| 1093 | static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, |
| 1094 | u32 msr, int type); |
| 1095 | |
| 1096 | static DEFINE_PER_CPU(struct vmcs *, vmxarea); |
| 1097 | static DEFINE_PER_CPU(struct vmcs *, current_vmcs); |
| 1098 | /* |
| 1099 | * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed |
| 1100 | * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. |
| 1101 | */ |
| 1102 | static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); |
| 1103 | |
| 1104 | /* |
| 1105 | * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we |
| 1106 | * can find which vCPU should be waken up. |
| 1107 | */ |
| 1108 | static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); |
| 1109 | static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); |
| 1110 | |
| 1111 | enum { |
| 1112 | VMX_IO_BITMAP_A, |
| 1113 | VMX_IO_BITMAP_B, |
| 1114 | VMX_VMREAD_BITMAP, |
| 1115 | VMX_VMWRITE_BITMAP, |
| 1116 | VMX_BITMAP_NR |
| 1117 | }; |
| 1118 | |
| 1119 | static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; |
| 1120 | |
| 1121 | #define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A]) |
| 1122 | #define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B]) |
| 1123 | #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) |
| 1124 | #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) |
| 1125 | |
| 1126 | static bool cpu_has_load_ia32_efer; |
| 1127 | static bool cpu_has_load_perf_global_ctrl; |
| 1128 | |
| 1129 | static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); |
| 1130 | static DEFINE_SPINLOCK(vmx_vpid_lock); |
| 1131 | |
| 1132 | static struct vmcs_config { |
| 1133 | int size; |
| 1134 | int order; |
| 1135 | u32 basic_cap; |
| 1136 | u32 revision_id; |
| 1137 | u32 pin_based_exec_ctrl; |
| 1138 | u32 cpu_based_exec_ctrl; |
| 1139 | u32 cpu_based_2nd_exec_ctrl; |
| 1140 | u32 vmexit_ctrl; |
| 1141 | u32 vmentry_ctrl; |
| 1142 | } vmcs_config; |
| 1143 | |
| 1144 | static struct vmx_capability { |
| 1145 | u32 ept; |
| 1146 | u32 vpid; |
| 1147 | } vmx_capability; |
| 1148 | |
| 1149 | #define VMX_SEGMENT_FIELD(seg) \ |
| 1150 | [VCPU_SREG_##seg] = { \ |
| 1151 | .selector = GUEST_##seg##_SELECTOR, \ |
| 1152 | .base = GUEST_##seg##_BASE, \ |
| 1153 | .limit = GUEST_##seg##_LIMIT, \ |
| 1154 | .ar_bytes = GUEST_##seg##_AR_BYTES, \ |
| 1155 | } |
| 1156 | |
| 1157 | static const struct kvm_vmx_segment_field { |
| 1158 | unsigned selector; |
| 1159 | unsigned base; |
| 1160 | unsigned limit; |
| 1161 | unsigned ar_bytes; |
| 1162 | } kvm_vmx_segment_fields[] = { |
| 1163 | VMX_SEGMENT_FIELD(CS), |
| 1164 | VMX_SEGMENT_FIELD(DS), |
| 1165 | VMX_SEGMENT_FIELD(ES), |
| 1166 | VMX_SEGMENT_FIELD(FS), |
| 1167 | VMX_SEGMENT_FIELD(GS), |
| 1168 | VMX_SEGMENT_FIELD(SS), |
| 1169 | VMX_SEGMENT_FIELD(TR), |
| 1170 | VMX_SEGMENT_FIELD(LDTR), |
| 1171 | }; |
| 1172 | |
| 1173 | static u64 host_efer; |
| 1174 | |
| 1175 | static void ept_save_pdptrs(struct kvm_vcpu *vcpu); |
| 1176 | |
| 1177 | /* |
| 1178 | * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it |
| 1179 | * away by decrementing the array size. |
| 1180 | */ |
| 1181 | static const u32 vmx_msr_index[] = { |
| 1182 | #ifdef CONFIG_X86_64 |
| 1183 | MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, |
| 1184 | #endif |
| 1185 | MSR_EFER, MSR_TSC_AUX, MSR_STAR, |
| 1186 | }; |
| 1187 | |
| 1188 | static inline bool is_exception_n(u32 intr_info, u8 vector) |
| 1189 | { |
| 1190 | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| 1191 | INTR_INFO_VALID_MASK)) == |
| 1192 | (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK); |
| 1193 | } |
| 1194 | |
| 1195 | static inline bool is_debug(u32 intr_info) |
| 1196 | { |
| 1197 | return is_exception_n(intr_info, DB_VECTOR); |
| 1198 | } |
| 1199 | |
| 1200 | static inline bool is_breakpoint(u32 intr_info) |
| 1201 | { |
| 1202 | return is_exception_n(intr_info, BP_VECTOR); |
| 1203 | } |
| 1204 | |
| 1205 | static inline bool is_page_fault(u32 intr_info) |
| 1206 | { |
| 1207 | return is_exception_n(intr_info, PF_VECTOR); |
| 1208 | } |
| 1209 | |
| 1210 | static inline bool is_no_device(u32 intr_info) |
| 1211 | { |
| 1212 | return is_exception_n(intr_info, NM_VECTOR); |
| 1213 | } |
| 1214 | |
| 1215 | static inline bool is_invalid_opcode(u32 intr_info) |
| 1216 | { |
| 1217 | return is_exception_n(intr_info, UD_VECTOR); |
| 1218 | } |
| 1219 | |
| 1220 | static inline bool is_external_interrupt(u32 intr_info) |
| 1221 | { |
| 1222 | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) |
| 1223 | == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); |
| 1224 | } |
| 1225 | |
| 1226 | static inline bool is_machine_check(u32 intr_info) |
| 1227 | { |
| 1228 | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | |
| 1229 | INTR_INFO_VALID_MASK)) == |
| 1230 | (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); |
| 1231 | } |
| 1232 | |
| 1233 | /* Undocumented: icebp/int1 */ |
| 1234 | static inline bool is_icebp(u32 intr_info) |
| 1235 | { |
| 1236 | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) |
| 1237 | == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK); |
| 1238 | } |
| 1239 | |
| 1240 | static inline bool cpu_has_vmx_msr_bitmap(void) |
| 1241 | { |
| 1242 | return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; |
| 1243 | } |
| 1244 | |
| 1245 | static inline bool cpu_has_vmx_tpr_shadow(void) |
| 1246 | { |
| 1247 | return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; |
| 1248 | } |
| 1249 | |
| 1250 | static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu) |
| 1251 | { |
| 1252 | return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu); |
| 1253 | } |
| 1254 | |
| 1255 | static inline bool cpu_has_secondary_exec_ctrls(void) |
| 1256 | { |
| 1257 | return vmcs_config.cpu_based_exec_ctrl & |
| 1258 | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
| 1259 | } |
| 1260 | |
| 1261 | static inline bool cpu_has_vmx_virtualize_apic_accesses(void) |
| 1262 | { |
| 1263 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1264 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| 1265 | } |
| 1266 | |
| 1267 | static inline bool cpu_has_vmx_virtualize_x2apic_mode(void) |
| 1268 | { |
| 1269 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1270 | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; |
| 1271 | } |
| 1272 | |
| 1273 | static inline bool cpu_has_vmx_apic_register_virt(void) |
| 1274 | { |
| 1275 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1276 | SECONDARY_EXEC_APIC_REGISTER_VIRT; |
| 1277 | } |
| 1278 | |
| 1279 | static inline bool cpu_has_vmx_virtual_intr_delivery(void) |
| 1280 | { |
| 1281 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1282 | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; |
| 1283 | } |
| 1284 | |
| 1285 | /* |
| 1286 | * Comment's format: document - errata name - stepping - processor name. |
| 1287 | * Refer from |
| 1288 | * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp |
| 1289 | */ |
| 1290 | static u32 vmx_preemption_cpu_tfms[] = { |
| 1291 | /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ |
| 1292 | 0x000206E6, |
| 1293 | /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ |
| 1294 | /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ |
| 1295 | /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ |
| 1296 | 0x00020652, |
| 1297 | /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ |
| 1298 | 0x00020655, |
| 1299 | /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ |
| 1300 | /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ |
| 1301 | /* |
| 1302 | * 320767.pdf - AAP86 - B1 - |
| 1303 | * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile |
| 1304 | */ |
| 1305 | 0x000106E5, |
| 1306 | /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ |
| 1307 | 0x000106A0, |
| 1308 | /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ |
| 1309 | 0x000106A1, |
| 1310 | /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ |
| 1311 | 0x000106A4, |
| 1312 | /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ |
| 1313 | /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ |
| 1314 | /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ |
| 1315 | 0x000106A5, |
| 1316 | }; |
| 1317 | |
| 1318 | static inline bool cpu_has_broken_vmx_preemption_timer(void) |
| 1319 | { |
| 1320 | u32 eax = cpuid_eax(0x00000001), i; |
| 1321 | |
| 1322 | /* Clear the reserved bits */ |
| 1323 | eax &= ~(0x3U << 14 | 0xfU << 28); |
| 1324 | for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) |
| 1325 | if (eax == vmx_preemption_cpu_tfms[i]) |
| 1326 | return true; |
| 1327 | |
| 1328 | return false; |
| 1329 | } |
| 1330 | |
| 1331 | static inline bool cpu_has_vmx_preemption_timer(void) |
| 1332 | { |
| 1333 | return vmcs_config.pin_based_exec_ctrl & |
| 1334 | PIN_BASED_VMX_PREEMPTION_TIMER; |
| 1335 | } |
| 1336 | |
| 1337 | static inline bool cpu_has_vmx_posted_intr(void) |
| 1338 | { |
| 1339 | return IS_ENABLED(CONFIG_X86_LOCAL_APIC) && |
| 1340 | vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR; |
| 1341 | } |
| 1342 | |
| 1343 | static inline bool cpu_has_vmx_apicv(void) |
| 1344 | { |
| 1345 | return cpu_has_vmx_apic_register_virt() && |
| 1346 | cpu_has_vmx_virtual_intr_delivery() && |
| 1347 | cpu_has_vmx_posted_intr(); |
| 1348 | } |
| 1349 | |
| 1350 | static inline bool cpu_has_vmx_flexpriority(void) |
| 1351 | { |
| 1352 | return cpu_has_vmx_tpr_shadow() && |
| 1353 | cpu_has_vmx_virtualize_apic_accesses(); |
| 1354 | } |
| 1355 | |
| 1356 | static inline bool cpu_has_vmx_ept_execute_only(void) |
| 1357 | { |
| 1358 | return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; |
| 1359 | } |
| 1360 | |
| 1361 | static inline bool cpu_has_vmx_ept_2m_page(void) |
| 1362 | { |
| 1363 | return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; |
| 1364 | } |
| 1365 | |
| 1366 | static inline bool cpu_has_vmx_ept_1g_page(void) |
| 1367 | { |
| 1368 | return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; |
| 1369 | } |
| 1370 | |
| 1371 | static inline bool cpu_has_vmx_ept_4levels(void) |
| 1372 | { |
| 1373 | return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; |
| 1374 | } |
| 1375 | |
| 1376 | static inline bool cpu_has_vmx_ept_mt_wb(void) |
| 1377 | { |
| 1378 | return vmx_capability.ept & VMX_EPTP_WB_BIT; |
| 1379 | } |
| 1380 | |
| 1381 | static inline bool cpu_has_vmx_ept_5levels(void) |
| 1382 | { |
| 1383 | return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT; |
| 1384 | } |
| 1385 | |
| 1386 | static inline bool cpu_has_vmx_ept_ad_bits(void) |
| 1387 | { |
| 1388 | return vmx_capability.ept & VMX_EPT_AD_BIT; |
| 1389 | } |
| 1390 | |
| 1391 | static inline bool cpu_has_vmx_invept_context(void) |
| 1392 | { |
| 1393 | return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; |
| 1394 | } |
| 1395 | |
| 1396 | static inline bool cpu_has_vmx_invept_global(void) |
| 1397 | { |
| 1398 | return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; |
| 1399 | } |
| 1400 | |
| 1401 | static inline bool cpu_has_vmx_invvpid_single(void) |
| 1402 | { |
| 1403 | return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; |
| 1404 | } |
| 1405 | |
| 1406 | static inline bool cpu_has_vmx_invvpid_global(void) |
| 1407 | { |
| 1408 | return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; |
| 1409 | } |
| 1410 | |
| 1411 | static inline bool cpu_has_vmx_invvpid(void) |
| 1412 | { |
| 1413 | return vmx_capability.vpid & VMX_VPID_INVVPID_BIT; |
| 1414 | } |
| 1415 | |
| 1416 | static inline bool cpu_has_vmx_ept(void) |
| 1417 | { |
| 1418 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1419 | SECONDARY_EXEC_ENABLE_EPT; |
| 1420 | } |
| 1421 | |
| 1422 | static inline bool cpu_has_vmx_unrestricted_guest(void) |
| 1423 | { |
| 1424 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1425 | SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| 1426 | } |
| 1427 | |
| 1428 | static inline bool cpu_has_vmx_ple(void) |
| 1429 | { |
| 1430 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1431 | SECONDARY_EXEC_PAUSE_LOOP_EXITING; |
| 1432 | } |
| 1433 | |
| 1434 | static inline bool cpu_has_vmx_basic_inout(void) |
| 1435 | { |
| 1436 | return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT); |
| 1437 | } |
| 1438 | |
| 1439 | static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) |
| 1440 | { |
| 1441 | return flexpriority_enabled && lapic_in_kernel(vcpu); |
| 1442 | } |
| 1443 | |
| 1444 | static inline bool cpu_has_vmx_vpid(void) |
| 1445 | { |
| 1446 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1447 | SECONDARY_EXEC_ENABLE_VPID; |
| 1448 | } |
| 1449 | |
| 1450 | static inline bool cpu_has_vmx_rdtscp(void) |
| 1451 | { |
| 1452 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1453 | SECONDARY_EXEC_RDTSCP; |
| 1454 | } |
| 1455 | |
| 1456 | static inline bool cpu_has_vmx_invpcid(void) |
| 1457 | { |
| 1458 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1459 | SECONDARY_EXEC_ENABLE_INVPCID; |
| 1460 | } |
| 1461 | |
| 1462 | static inline bool cpu_has_virtual_nmis(void) |
| 1463 | { |
| 1464 | return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; |
| 1465 | } |
| 1466 | |
| 1467 | static inline bool cpu_has_vmx_wbinvd_exit(void) |
| 1468 | { |
| 1469 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1470 | SECONDARY_EXEC_WBINVD_EXITING; |
| 1471 | } |
| 1472 | |
| 1473 | static inline bool cpu_has_vmx_shadow_vmcs(void) |
| 1474 | { |
| 1475 | u64 vmx_msr; |
| 1476 | rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); |
| 1477 | /* check if the cpu supports writing r/o exit information fields */ |
| 1478 | if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) |
| 1479 | return false; |
| 1480 | |
| 1481 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1482 | SECONDARY_EXEC_SHADOW_VMCS; |
| 1483 | } |
| 1484 | |
| 1485 | static inline bool cpu_has_vmx_pml(void) |
| 1486 | { |
| 1487 | return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML; |
| 1488 | } |
| 1489 | |
| 1490 | static inline bool cpu_has_vmx_tsc_scaling(void) |
| 1491 | { |
| 1492 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1493 | SECONDARY_EXEC_TSC_SCALING; |
| 1494 | } |
| 1495 | |
| 1496 | static inline bool cpu_has_vmx_vmfunc(void) |
| 1497 | { |
| 1498 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 1499 | SECONDARY_EXEC_ENABLE_VMFUNC; |
| 1500 | } |
| 1501 | |
| 1502 | static inline bool report_flexpriority(void) |
| 1503 | { |
| 1504 | return flexpriority_enabled; |
| 1505 | } |
| 1506 | |
| 1507 | static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu) |
| 1508 | { |
| 1509 | return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low); |
| 1510 | } |
| 1511 | |
| 1512 | static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) |
| 1513 | { |
| 1514 | return vmcs12->cpu_based_vm_exec_control & bit; |
| 1515 | } |
| 1516 | |
| 1517 | static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) |
| 1518 | { |
| 1519 | return (vmcs12->cpu_based_vm_exec_control & |
| 1520 | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && |
| 1521 | (vmcs12->secondary_vm_exec_control & bit); |
| 1522 | } |
| 1523 | |
| 1524 | static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12) |
| 1525 | { |
| 1526 | return vmcs12->pin_based_vm_exec_control & |
| 1527 | PIN_BASED_VMX_PREEMPTION_TIMER; |
| 1528 | } |
| 1529 | |
| 1530 | static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12) |
| 1531 | { |
| 1532 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT); |
| 1533 | } |
| 1534 | |
| 1535 | static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12) |
| 1536 | { |
| 1537 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); |
| 1538 | } |
| 1539 | |
| 1540 | static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12) |
| 1541 | { |
| 1542 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML); |
| 1543 | } |
| 1544 | |
| 1545 | static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12) |
| 1546 | { |
| 1547 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); |
| 1548 | } |
| 1549 | |
| 1550 | static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12) |
| 1551 | { |
| 1552 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID); |
| 1553 | } |
| 1554 | |
| 1555 | static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12) |
| 1556 | { |
| 1557 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT); |
| 1558 | } |
| 1559 | |
| 1560 | static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12) |
| 1561 | { |
| 1562 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); |
| 1563 | } |
| 1564 | |
| 1565 | static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12) |
| 1566 | { |
| 1567 | return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR; |
| 1568 | } |
| 1569 | |
| 1570 | static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12) |
| 1571 | { |
| 1572 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC); |
| 1573 | } |
| 1574 | |
| 1575 | static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12) |
| 1576 | { |
| 1577 | return nested_cpu_has_vmfunc(vmcs12) && |
| 1578 | (vmcs12->vm_function_control & |
| 1579 | VMX_VMFUNC_EPTP_SWITCHING); |
| 1580 | } |
| 1581 | |
| 1582 | static inline bool is_nmi(u32 intr_info) |
| 1583 | { |
| 1584 | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) |
| 1585 | == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK); |
| 1586 | } |
| 1587 | |
| 1588 | static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, |
| 1589 | u32 exit_intr_info, |
| 1590 | unsigned long exit_qualification); |
| 1591 | static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, |
| 1592 | struct vmcs12 *vmcs12, |
| 1593 | u32 reason, unsigned long qualification); |
| 1594 | |
| 1595 | static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) |
| 1596 | { |
| 1597 | int i; |
| 1598 | |
| 1599 | for (i = 0; i < vmx->nmsrs; ++i) |
| 1600 | if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) |
| 1601 | return i; |
| 1602 | return -1; |
| 1603 | } |
| 1604 | |
| 1605 | static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva) |
| 1606 | { |
| 1607 | struct { |
| 1608 | u64 vpid : 16; |
| 1609 | u64 rsvd : 48; |
| 1610 | u64 gva; |
| 1611 | } operand = { vpid, 0, gva }; |
| 1612 | |
| 1613 | asm volatile (__ex(ASM_VMX_INVVPID) |
| 1614 | /* CF==1 or ZF==1 --> rc = -1 */ |
| 1615 | "; ja 1f ; ud2 ; 1:" |
| 1616 | : : "a"(&operand), "c"(ext) : "cc", "memory"); |
| 1617 | } |
| 1618 | |
| 1619 | static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa) |
| 1620 | { |
| 1621 | struct { |
| 1622 | u64 eptp, gpa; |
| 1623 | } operand = {eptp, gpa}; |
| 1624 | |
| 1625 | asm volatile (__ex(ASM_VMX_INVEPT) |
| 1626 | /* CF==1 or ZF==1 --> rc = -1 */ |
| 1627 | "; ja 1f ; ud2 ; 1:\n" |
| 1628 | : : "a" (&operand), "c" (ext) : "cc", "memory"); |
| 1629 | } |
| 1630 | |
| 1631 | static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) |
| 1632 | { |
| 1633 | int i; |
| 1634 | |
| 1635 | i = __find_msr_index(vmx, msr); |
| 1636 | if (i >= 0) |
| 1637 | return &vmx->guest_msrs[i]; |
| 1638 | return NULL; |
| 1639 | } |
| 1640 | |
| 1641 | static void vmcs_clear(struct vmcs *vmcs) |
| 1642 | { |
| 1643 | u64 phys_addr = __pa(vmcs); |
| 1644 | u8 error; |
| 1645 | |
| 1646 | asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0" |
| 1647 | : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) |
| 1648 | : "cc", "memory"); |
| 1649 | if (error) |
| 1650 | printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", |
| 1651 | vmcs, phys_addr); |
| 1652 | } |
| 1653 | |
| 1654 | static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) |
| 1655 | { |
| 1656 | vmcs_clear(loaded_vmcs->vmcs); |
| 1657 | if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) |
| 1658 | vmcs_clear(loaded_vmcs->shadow_vmcs); |
| 1659 | loaded_vmcs->cpu = -1; |
| 1660 | loaded_vmcs->launched = 0; |
| 1661 | } |
| 1662 | |
| 1663 | static void vmcs_load(struct vmcs *vmcs) |
| 1664 | { |
| 1665 | u64 phys_addr = __pa(vmcs); |
| 1666 | u8 error; |
| 1667 | |
| 1668 | asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0" |
| 1669 | : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) |
| 1670 | : "cc", "memory"); |
| 1671 | if (error) |
| 1672 | printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", |
| 1673 | vmcs, phys_addr); |
| 1674 | } |
| 1675 | |
| 1676 | #ifdef CONFIG_KEXEC_CORE |
| 1677 | static void crash_vmclear_local_loaded_vmcss(void) |
| 1678 | { |
| 1679 | int cpu = raw_smp_processor_id(); |
| 1680 | struct loaded_vmcs *v; |
| 1681 | |
| 1682 | list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), |
| 1683 | loaded_vmcss_on_cpu_link) |
| 1684 | vmcs_clear(v->vmcs); |
| 1685 | } |
| 1686 | #endif /* CONFIG_KEXEC_CORE */ |
| 1687 | |
| 1688 | static void __loaded_vmcs_clear(void *arg) |
| 1689 | { |
| 1690 | struct loaded_vmcs *loaded_vmcs = arg; |
| 1691 | int cpu = raw_smp_processor_id(); |
| 1692 | |
| 1693 | if (loaded_vmcs->cpu != cpu) |
| 1694 | return; /* vcpu migration can race with cpu offline */ |
| 1695 | if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) |
| 1696 | per_cpu(current_vmcs, cpu) = NULL; |
| 1697 | |
| 1698 | vmcs_clear(loaded_vmcs->vmcs); |
| 1699 | if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) |
| 1700 | vmcs_clear(loaded_vmcs->shadow_vmcs); |
| 1701 | |
| 1702 | list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); |
| 1703 | |
| 1704 | /* |
| 1705 | * Ensure all writes to loaded_vmcs, including deleting it from its |
| 1706 | * current percpu list, complete before setting loaded_vmcs->vcpu to |
| 1707 | * -1, otherwise a different cpu can see vcpu == -1 first and add |
| 1708 | * loaded_vmcs to its percpu list before it's deleted from this cpu's |
| 1709 | * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). |
| 1710 | */ |
| 1711 | smp_wmb(); |
| 1712 | |
| 1713 | loaded_vmcs->cpu = -1; |
| 1714 | loaded_vmcs->launched = 0; |
| 1715 | } |
| 1716 | |
| 1717 | static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) |
| 1718 | { |
| 1719 | int cpu = loaded_vmcs->cpu; |
| 1720 | |
| 1721 | if (cpu != -1) |
| 1722 | smp_call_function_single(cpu, |
| 1723 | __loaded_vmcs_clear, loaded_vmcs, 1); |
| 1724 | } |
| 1725 | |
| 1726 | static inline void vpid_sync_vcpu_single(int vpid) |
| 1727 | { |
| 1728 | if (vpid == 0) |
| 1729 | return; |
| 1730 | |
| 1731 | if (cpu_has_vmx_invvpid_single()) |
| 1732 | __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0); |
| 1733 | } |
| 1734 | |
| 1735 | static inline void vpid_sync_vcpu_global(void) |
| 1736 | { |
| 1737 | if (cpu_has_vmx_invvpid_global()) |
| 1738 | __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); |
| 1739 | } |
| 1740 | |
| 1741 | static inline void vpid_sync_context(int vpid) |
| 1742 | { |
| 1743 | if (cpu_has_vmx_invvpid_single()) |
| 1744 | vpid_sync_vcpu_single(vpid); |
| 1745 | else |
| 1746 | vpid_sync_vcpu_global(); |
| 1747 | } |
| 1748 | |
| 1749 | static inline void ept_sync_global(void) |
| 1750 | { |
| 1751 | if (cpu_has_vmx_invept_global()) |
| 1752 | __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); |
| 1753 | } |
| 1754 | |
| 1755 | static inline void ept_sync_context(u64 eptp) |
| 1756 | { |
| 1757 | if (enable_ept) { |
| 1758 | if (cpu_has_vmx_invept_context()) |
| 1759 | __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); |
| 1760 | else |
| 1761 | ept_sync_global(); |
| 1762 | } |
| 1763 | } |
| 1764 | |
| 1765 | static __always_inline void vmcs_check16(unsigned long field) |
| 1766 | { |
| 1767 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, |
| 1768 | "16-bit accessor invalid for 64-bit field"); |
| 1769 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, |
| 1770 | "16-bit accessor invalid for 64-bit high field"); |
| 1771 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, |
| 1772 | "16-bit accessor invalid for 32-bit high field"); |
| 1773 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, |
| 1774 | "16-bit accessor invalid for natural width field"); |
| 1775 | } |
| 1776 | |
| 1777 | static __always_inline void vmcs_check32(unsigned long field) |
| 1778 | { |
| 1779 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, |
| 1780 | "32-bit accessor invalid for 16-bit field"); |
| 1781 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, |
| 1782 | "32-bit accessor invalid for natural width field"); |
| 1783 | } |
| 1784 | |
| 1785 | static __always_inline void vmcs_check64(unsigned long field) |
| 1786 | { |
| 1787 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, |
| 1788 | "64-bit accessor invalid for 16-bit field"); |
| 1789 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, |
| 1790 | "64-bit accessor invalid for 64-bit high field"); |
| 1791 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, |
| 1792 | "64-bit accessor invalid for 32-bit field"); |
| 1793 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, |
| 1794 | "64-bit accessor invalid for natural width field"); |
| 1795 | } |
| 1796 | |
| 1797 | static __always_inline void vmcs_checkl(unsigned long field) |
| 1798 | { |
| 1799 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, |
| 1800 | "Natural width accessor invalid for 16-bit field"); |
| 1801 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, |
| 1802 | "Natural width accessor invalid for 64-bit field"); |
| 1803 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, |
| 1804 | "Natural width accessor invalid for 64-bit high field"); |
| 1805 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, |
| 1806 | "Natural width accessor invalid for 32-bit field"); |
| 1807 | } |
| 1808 | |
| 1809 | static __always_inline unsigned long __vmcs_readl(unsigned long field) |
| 1810 | { |
| 1811 | unsigned long value; |
| 1812 | |
| 1813 | asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0") |
| 1814 | : "=a"(value) : "d"(field) : "cc"); |
| 1815 | return value; |
| 1816 | } |
| 1817 | |
| 1818 | static __always_inline u16 vmcs_read16(unsigned long field) |
| 1819 | { |
| 1820 | vmcs_check16(field); |
| 1821 | return __vmcs_readl(field); |
| 1822 | } |
| 1823 | |
| 1824 | static __always_inline u32 vmcs_read32(unsigned long field) |
| 1825 | { |
| 1826 | vmcs_check32(field); |
| 1827 | return __vmcs_readl(field); |
| 1828 | } |
| 1829 | |
| 1830 | static __always_inline u64 vmcs_read64(unsigned long field) |
| 1831 | { |
| 1832 | vmcs_check64(field); |
| 1833 | #ifdef CONFIG_X86_64 |
| 1834 | return __vmcs_readl(field); |
| 1835 | #else |
| 1836 | return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32); |
| 1837 | #endif |
| 1838 | } |
| 1839 | |
| 1840 | static __always_inline unsigned long vmcs_readl(unsigned long field) |
| 1841 | { |
| 1842 | vmcs_checkl(field); |
| 1843 | return __vmcs_readl(field); |
| 1844 | } |
| 1845 | |
| 1846 | static noinline void vmwrite_error(unsigned long field, unsigned long value) |
| 1847 | { |
| 1848 | printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", |
| 1849 | field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); |
| 1850 | dump_stack(); |
| 1851 | } |
| 1852 | |
| 1853 | static __always_inline void __vmcs_writel(unsigned long field, unsigned long value) |
| 1854 | { |
| 1855 | u8 error; |
| 1856 | |
| 1857 | asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0" |
| 1858 | : "=q"(error) : "a"(value), "d"(field) : "cc"); |
| 1859 | if (unlikely(error)) |
| 1860 | vmwrite_error(field, value); |
| 1861 | } |
| 1862 | |
| 1863 | static __always_inline void vmcs_write16(unsigned long field, u16 value) |
| 1864 | { |
| 1865 | vmcs_check16(field); |
| 1866 | __vmcs_writel(field, value); |
| 1867 | } |
| 1868 | |
| 1869 | static __always_inline void vmcs_write32(unsigned long field, u32 value) |
| 1870 | { |
| 1871 | vmcs_check32(field); |
| 1872 | __vmcs_writel(field, value); |
| 1873 | } |
| 1874 | |
| 1875 | static __always_inline void vmcs_write64(unsigned long field, u64 value) |
| 1876 | { |
| 1877 | vmcs_check64(field); |
| 1878 | __vmcs_writel(field, value); |
| 1879 | #ifndef CONFIG_X86_64 |
| 1880 | asm volatile (""); |
| 1881 | __vmcs_writel(field+1, value >> 32); |
| 1882 | #endif |
| 1883 | } |
| 1884 | |
| 1885 | static __always_inline void vmcs_writel(unsigned long field, unsigned long value) |
| 1886 | { |
| 1887 | vmcs_checkl(field); |
| 1888 | __vmcs_writel(field, value); |
| 1889 | } |
| 1890 | |
| 1891 | static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask) |
| 1892 | { |
| 1893 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, |
| 1894 | "vmcs_clear_bits does not support 64-bit fields"); |
| 1895 | __vmcs_writel(field, __vmcs_readl(field) & ~mask); |
| 1896 | } |
| 1897 | |
| 1898 | static __always_inline void vmcs_set_bits(unsigned long field, u32 mask) |
| 1899 | { |
| 1900 | BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, |
| 1901 | "vmcs_set_bits does not support 64-bit fields"); |
| 1902 | __vmcs_writel(field, __vmcs_readl(field) | mask); |
| 1903 | } |
| 1904 | |
| 1905 | static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx) |
| 1906 | { |
| 1907 | vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS); |
| 1908 | } |
| 1909 | |
| 1910 | static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val) |
| 1911 | { |
| 1912 | vmcs_write32(VM_ENTRY_CONTROLS, val); |
| 1913 | vmx->vm_entry_controls_shadow = val; |
| 1914 | } |
| 1915 | |
| 1916 | static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val) |
| 1917 | { |
| 1918 | if (vmx->vm_entry_controls_shadow != val) |
| 1919 | vm_entry_controls_init(vmx, val); |
| 1920 | } |
| 1921 | |
| 1922 | static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx) |
| 1923 | { |
| 1924 | return vmx->vm_entry_controls_shadow; |
| 1925 | } |
| 1926 | |
| 1927 | |
| 1928 | static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val) |
| 1929 | { |
| 1930 | vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val); |
| 1931 | } |
| 1932 | |
| 1933 | static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val) |
| 1934 | { |
| 1935 | vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val); |
| 1936 | } |
| 1937 | |
| 1938 | static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx) |
| 1939 | { |
| 1940 | vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS); |
| 1941 | } |
| 1942 | |
| 1943 | static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val) |
| 1944 | { |
| 1945 | vmcs_write32(VM_EXIT_CONTROLS, val); |
| 1946 | vmx->vm_exit_controls_shadow = val; |
| 1947 | } |
| 1948 | |
| 1949 | static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val) |
| 1950 | { |
| 1951 | if (vmx->vm_exit_controls_shadow != val) |
| 1952 | vm_exit_controls_init(vmx, val); |
| 1953 | } |
| 1954 | |
| 1955 | static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx) |
| 1956 | { |
| 1957 | return vmx->vm_exit_controls_shadow; |
| 1958 | } |
| 1959 | |
| 1960 | |
| 1961 | static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val) |
| 1962 | { |
| 1963 | vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val); |
| 1964 | } |
| 1965 | |
| 1966 | static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val) |
| 1967 | { |
| 1968 | vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val); |
| 1969 | } |
| 1970 | |
| 1971 | static void vmx_segment_cache_clear(struct vcpu_vmx *vmx) |
| 1972 | { |
| 1973 | vmx->segment_cache.bitmask = 0; |
| 1974 | } |
| 1975 | |
| 1976 | static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, |
| 1977 | unsigned field) |
| 1978 | { |
| 1979 | bool ret; |
| 1980 | u32 mask = 1 << (seg * SEG_FIELD_NR + field); |
| 1981 | |
| 1982 | if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { |
| 1983 | vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); |
| 1984 | vmx->segment_cache.bitmask = 0; |
| 1985 | } |
| 1986 | ret = vmx->segment_cache.bitmask & mask; |
| 1987 | vmx->segment_cache.bitmask |= mask; |
| 1988 | return ret; |
| 1989 | } |
| 1990 | |
| 1991 | static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) |
| 1992 | { |
| 1993 | u16 *p = &vmx->segment_cache.seg[seg].selector; |
| 1994 | |
| 1995 | if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) |
| 1996 | *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); |
| 1997 | return *p; |
| 1998 | } |
| 1999 | |
| 2000 | static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) |
| 2001 | { |
| 2002 | ulong *p = &vmx->segment_cache.seg[seg].base; |
| 2003 | |
| 2004 | if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) |
| 2005 | *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); |
| 2006 | return *p; |
| 2007 | } |
| 2008 | |
| 2009 | static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) |
| 2010 | { |
| 2011 | u32 *p = &vmx->segment_cache.seg[seg].limit; |
| 2012 | |
| 2013 | if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) |
| 2014 | *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); |
| 2015 | return *p; |
| 2016 | } |
| 2017 | |
| 2018 | static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) |
| 2019 | { |
| 2020 | u32 *p = &vmx->segment_cache.seg[seg].ar; |
| 2021 | |
| 2022 | if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) |
| 2023 | *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); |
| 2024 | return *p; |
| 2025 | } |
| 2026 | |
| 2027 | static void update_exception_bitmap(struct kvm_vcpu *vcpu) |
| 2028 | { |
| 2029 | u32 eb; |
| 2030 | |
| 2031 | eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | |
| 2032 | (1u << DB_VECTOR) | (1u << AC_VECTOR); |
| 2033 | if ((vcpu->guest_debug & |
| 2034 | (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == |
| 2035 | (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) |
| 2036 | eb |= 1u << BP_VECTOR; |
| 2037 | if (to_vmx(vcpu)->rmode.vm86_active) |
| 2038 | eb = ~0; |
| 2039 | if (enable_ept) |
| 2040 | eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ |
| 2041 | |
| 2042 | /* When we are running a nested L2 guest and L1 specified for it a |
| 2043 | * certain exception bitmap, we must trap the same exceptions and pass |
| 2044 | * them to L1. When running L2, we will only handle the exceptions |
| 2045 | * specified above if L1 did not want them. |
| 2046 | */ |
| 2047 | if (is_guest_mode(vcpu)) |
| 2048 | eb |= get_vmcs12(vcpu)->exception_bitmap; |
| 2049 | |
| 2050 | vmcs_write32(EXCEPTION_BITMAP, eb); |
| 2051 | } |
| 2052 | |
| 2053 | /* |
| 2054 | * Check if MSR is intercepted for currently loaded MSR bitmap. |
| 2055 | */ |
| 2056 | static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) |
| 2057 | { |
| 2058 | unsigned long *msr_bitmap; |
| 2059 | int f = sizeof(unsigned long); |
| 2060 | |
| 2061 | if (!cpu_has_vmx_msr_bitmap()) |
| 2062 | return true; |
| 2063 | |
| 2064 | msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; |
| 2065 | |
| 2066 | if (msr <= 0x1fff) { |
| 2067 | return !!test_bit(msr, msr_bitmap + 0x800 / f); |
| 2068 | } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { |
| 2069 | msr &= 0x1fff; |
| 2070 | return !!test_bit(msr, msr_bitmap + 0xc00 / f); |
| 2071 | } |
| 2072 | |
| 2073 | return true; |
| 2074 | } |
| 2075 | |
| 2076 | /* |
| 2077 | * Check if MSR is intercepted for L01 MSR bitmap. |
| 2078 | */ |
| 2079 | static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr) |
| 2080 | { |
| 2081 | unsigned long *msr_bitmap; |
| 2082 | int f = sizeof(unsigned long); |
| 2083 | |
| 2084 | if (!cpu_has_vmx_msr_bitmap()) |
| 2085 | return true; |
| 2086 | |
| 2087 | msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; |
| 2088 | |
| 2089 | if (msr <= 0x1fff) { |
| 2090 | return !!test_bit(msr, msr_bitmap + 0x800 / f); |
| 2091 | } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { |
| 2092 | msr &= 0x1fff; |
| 2093 | return !!test_bit(msr, msr_bitmap + 0xc00 / f); |
| 2094 | } |
| 2095 | |
| 2096 | return true; |
| 2097 | } |
| 2098 | |
| 2099 | static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, |
| 2100 | unsigned long entry, unsigned long exit) |
| 2101 | { |
| 2102 | vm_entry_controls_clearbit(vmx, entry); |
| 2103 | vm_exit_controls_clearbit(vmx, exit); |
| 2104 | } |
| 2105 | |
| 2106 | static int find_msr(struct vmx_msrs *m, unsigned int msr) |
| 2107 | { |
| 2108 | unsigned int i; |
| 2109 | |
| 2110 | for (i = 0; i < m->nr; ++i) { |
| 2111 | if (m->val[i].index == msr) |
| 2112 | return i; |
| 2113 | } |
| 2114 | return -ENOENT; |
| 2115 | } |
| 2116 | |
| 2117 | static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) |
| 2118 | { |
| 2119 | int i; |
| 2120 | struct msr_autoload *m = &vmx->msr_autoload; |
| 2121 | |
| 2122 | switch (msr) { |
| 2123 | case MSR_EFER: |
| 2124 | if (cpu_has_load_ia32_efer) { |
| 2125 | clear_atomic_switch_msr_special(vmx, |
| 2126 | VM_ENTRY_LOAD_IA32_EFER, |
| 2127 | VM_EXIT_LOAD_IA32_EFER); |
| 2128 | return; |
| 2129 | } |
| 2130 | break; |
| 2131 | case MSR_CORE_PERF_GLOBAL_CTRL: |
| 2132 | if (cpu_has_load_perf_global_ctrl) { |
| 2133 | clear_atomic_switch_msr_special(vmx, |
| 2134 | VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, |
| 2135 | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); |
| 2136 | return; |
| 2137 | } |
| 2138 | break; |
| 2139 | } |
| 2140 | i = find_msr(&m->guest, msr); |
| 2141 | if (i < 0) |
| 2142 | goto skip_guest; |
| 2143 | --m->guest.nr; |
| 2144 | m->guest.val[i] = m->guest.val[m->guest.nr]; |
| 2145 | vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); |
| 2146 | |
| 2147 | skip_guest: |
| 2148 | i = find_msr(&m->host, msr); |
| 2149 | if (i < 0) |
| 2150 | return; |
| 2151 | |
| 2152 | --m->host.nr; |
| 2153 | m->host.val[i] = m->host.val[m->host.nr]; |
| 2154 | vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); |
| 2155 | } |
| 2156 | |
| 2157 | static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, |
| 2158 | unsigned long entry, unsigned long exit, |
| 2159 | unsigned long guest_val_vmcs, unsigned long host_val_vmcs, |
| 2160 | u64 guest_val, u64 host_val) |
| 2161 | { |
| 2162 | vmcs_write64(guest_val_vmcs, guest_val); |
| 2163 | vmcs_write64(host_val_vmcs, host_val); |
| 2164 | vm_entry_controls_setbit(vmx, entry); |
| 2165 | vm_exit_controls_setbit(vmx, exit); |
| 2166 | } |
| 2167 | |
| 2168 | static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, |
| 2169 | u64 guest_val, u64 host_val, bool entry_only) |
| 2170 | { |
| 2171 | int i, j = 0; |
| 2172 | struct msr_autoload *m = &vmx->msr_autoload; |
| 2173 | |
| 2174 | switch (msr) { |
| 2175 | case MSR_EFER: |
| 2176 | if (cpu_has_load_ia32_efer) { |
| 2177 | add_atomic_switch_msr_special(vmx, |
| 2178 | VM_ENTRY_LOAD_IA32_EFER, |
| 2179 | VM_EXIT_LOAD_IA32_EFER, |
| 2180 | GUEST_IA32_EFER, |
| 2181 | HOST_IA32_EFER, |
| 2182 | guest_val, host_val); |
| 2183 | return; |
| 2184 | } |
| 2185 | break; |
| 2186 | case MSR_CORE_PERF_GLOBAL_CTRL: |
| 2187 | if (cpu_has_load_perf_global_ctrl) { |
| 2188 | add_atomic_switch_msr_special(vmx, |
| 2189 | VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, |
| 2190 | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, |
| 2191 | GUEST_IA32_PERF_GLOBAL_CTRL, |
| 2192 | HOST_IA32_PERF_GLOBAL_CTRL, |
| 2193 | guest_val, host_val); |
| 2194 | return; |
| 2195 | } |
| 2196 | break; |
| 2197 | case MSR_IA32_PEBS_ENABLE: |
| 2198 | /* PEBS needs a quiescent period after being disabled (to write |
| 2199 | * a record). Disabling PEBS through VMX MSR swapping doesn't |
| 2200 | * provide that period, so a CPU could write host's record into |
| 2201 | * guest's memory. |
| 2202 | */ |
| 2203 | wrmsrl(MSR_IA32_PEBS_ENABLE, 0); |
| 2204 | } |
| 2205 | |
| 2206 | i = find_msr(&m->guest, msr); |
| 2207 | if (!entry_only) |
| 2208 | j = find_msr(&m->host, msr); |
| 2209 | |
| 2210 | if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) || |
| 2211 | (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) { |
| 2212 | printk_once(KERN_WARNING "Not enough msr switch entries. " |
| 2213 | "Can't add msr %x\n", msr); |
| 2214 | return; |
| 2215 | } |
| 2216 | if (i < 0) { |
| 2217 | i = m->guest.nr++; |
| 2218 | vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); |
| 2219 | } |
| 2220 | m->guest.val[i].index = msr; |
| 2221 | m->guest.val[i].value = guest_val; |
| 2222 | |
| 2223 | if (entry_only) |
| 2224 | return; |
| 2225 | |
| 2226 | if (j < 0) { |
| 2227 | j = m->host.nr++; |
| 2228 | vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); |
| 2229 | } |
| 2230 | m->host.val[j].index = msr; |
| 2231 | m->host.val[j].value = host_val; |
| 2232 | } |
| 2233 | |
| 2234 | static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) |
| 2235 | { |
| 2236 | u64 guest_efer = vmx->vcpu.arch.efer; |
| 2237 | u64 ignore_bits = 0; |
| 2238 | |
| 2239 | /* Shadow paging assumes NX to be available. */ |
| 2240 | if (!enable_ept) |
| 2241 | guest_efer |= EFER_NX; |
| 2242 | |
| 2243 | /* |
| 2244 | * LMA and LME handled by hardware; SCE meaningless outside long mode. |
| 2245 | */ |
| 2246 | ignore_bits |= EFER_SCE; |
| 2247 | #ifdef CONFIG_X86_64 |
| 2248 | ignore_bits |= EFER_LMA | EFER_LME; |
| 2249 | /* SCE is meaningful only in long mode on Intel */ |
| 2250 | if (guest_efer & EFER_LMA) |
| 2251 | ignore_bits &= ~(u64)EFER_SCE; |
| 2252 | #endif |
| 2253 | |
| 2254 | clear_atomic_switch_msr(vmx, MSR_EFER); |
| 2255 | |
| 2256 | /* |
| 2257 | * On EPT, we can't emulate NX, so we must switch EFER atomically. |
| 2258 | * On CPUs that support "load IA32_EFER", always switch EFER |
| 2259 | * atomically, since it's faster than switching it manually. |
| 2260 | */ |
| 2261 | if (cpu_has_load_ia32_efer || |
| 2262 | (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { |
| 2263 | if (!(guest_efer & EFER_LMA)) |
| 2264 | guest_efer &= ~EFER_LME; |
| 2265 | if (guest_efer != host_efer) |
| 2266 | add_atomic_switch_msr(vmx, MSR_EFER, |
| 2267 | guest_efer, host_efer, false); |
| 2268 | return false; |
| 2269 | } else { |
| 2270 | guest_efer &= ~ignore_bits; |
| 2271 | guest_efer |= host_efer & ignore_bits; |
| 2272 | |
| 2273 | vmx->guest_msrs[efer_offset].data = guest_efer; |
| 2274 | vmx->guest_msrs[efer_offset].mask = ~ignore_bits; |
| 2275 | |
| 2276 | return true; |
| 2277 | } |
| 2278 | } |
| 2279 | |
| 2280 | #ifdef CONFIG_X86_32 |
| 2281 | /* |
| 2282 | * On 32-bit kernels, VM exits still load the FS and GS bases from the |
| 2283 | * VMCS rather than the segment table. KVM uses this helper to figure |
| 2284 | * out the current bases to poke them into the VMCS before entry. |
| 2285 | */ |
| 2286 | static unsigned long segment_base(u16 selector) |
| 2287 | { |
| 2288 | struct desc_struct *table; |
| 2289 | unsigned long v; |
| 2290 | |
| 2291 | if (!(selector & ~SEGMENT_RPL_MASK)) |
| 2292 | return 0; |
| 2293 | |
| 2294 | table = get_current_gdt_ro(); |
| 2295 | |
| 2296 | if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { |
| 2297 | u16 ldt_selector = kvm_read_ldt(); |
| 2298 | |
| 2299 | if (!(ldt_selector & ~SEGMENT_RPL_MASK)) |
| 2300 | return 0; |
| 2301 | |
| 2302 | table = (struct desc_struct *)segment_base(ldt_selector); |
| 2303 | } |
| 2304 | v = get_desc_base(&table[selector >> 3]); |
| 2305 | return v; |
| 2306 | } |
| 2307 | #endif |
| 2308 | |
| 2309 | static void vmx_save_host_state(struct kvm_vcpu *vcpu) |
| 2310 | { |
| 2311 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 2312 | int i; |
| 2313 | |
| 2314 | if (vmx->loaded_cpu_state) |
| 2315 | return; |
| 2316 | |
| 2317 | vmx->loaded_cpu_state = vmx->loaded_vmcs; |
| 2318 | |
| 2319 | /* |
| 2320 | * Set host fs and gs selectors. Unfortunately, 22.2.3 does not |
| 2321 | * allow segment selectors with cpl > 0 or ti == 1. |
| 2322 | */ |
| 2323 | vmx->host_state.ldt_sel = kvm_read_ldt(); |
| 2324 | vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel; |
| 2325 | savesegment(fs, vmx->host_state.fs_sel); |
| 2326 | if (!(vmx->host_state.fs_sel & 7)) { |
| 2327 | vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel); |
| 2328 | vmx->host_state.fs_reload_needed = 0; |
| 2329 | } else { |
| 2330 | vmcs_write16(HOST_FS_SELECTOR, 0); |
| 2331 | vmx->host_state.fs_reload_needed = 1; |
| 2332 | } |
| 2333 | savesegment(gs, vmx->host_state.gs_sel); |
| 2334 | if (!(vmx->host_state.gs_sel & 7)) |
| 2335 | vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel); |
| 2336 | else { |
| 2337 | vmcs_write16(HOST_GS_SELECTOR, 0); |
| 2338 | vmx->host_state.gs_ldt_reload_needed = 1; |
| 2339 | } |
| 2340 | |
| 2341 | #ifdef CONFIG_X86_64 |
| 2342 | savesegment(ds, vmx->host_state.ds_sel); |
| 2343 | savesegment(es, vmx->host_state.es_sel); |
| 2344 | #endif |
| 2345 | |
| 2346 | #ifdef CONFIG_X86_64 |
| 2347 | vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); |
| 2348 | vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); |
| 2349 | #else |
| 2350 | vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel)); |
| 2351 | vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel)); |
| 2352 | #endif |
| 2353 | |
| 2354 | #ifdef CONFIG_X86_64 |
| 2355 | rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); |
| 2356 | if (is_long_mode(&vmx->vcpu)) |
| 2357 | wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); |
| 2358 | #endif |
| 2359 | if (boot_cpu_has(X86_FEATURE_MPX)) |
| 2360 | rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs); |
| 2361 | for (i = 0; i < vmx->save_nmsrs; ++i) |
| 2362 | kvm_set_shared_msr(vmx->guest_msrs[i].index, |
| 2363 | vmx->guest_msrs[i].data, |
| 2364 | vmx->guest_msrs[i].mask); |
| 2365 | } |
| 2366 | |
| 2367 | static void __vmx_load_host_state(struct vcpu_vmx *vmx) |
| 2368 | { |
| 2369 | if (!vmx->loaded_cpu_state) |
| 2370 | return; |
| 2371 | |
| 2372 | WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs); |
| 2373 | |
| 2374 | ++vmx->vcpu.stat.host_state_reload; |
| 2375 | vmx->loaded_cpu_state = NULL; |
| 2376 | |
| 2377 | #ifdef CONFIG_X86_64 |
| 2378 | if (is_long_mode(&vmx->vcpu)) |
| 2379 | rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); |
| 2380 | #endif |
| 2381 | if (vmx->host_state.gs_ldt_reload_needed) { |
| 2382 | kvm_load_ldt(vmx->host_state.ldt_sel); |
| 2383 | #ifdef CONFIG_X86_64 |
| 2384 | load_gs_index(vmx->host_state.gs_sel); |
| 2385 | #else |
| 2386 | loadsegment(gs, vmx->host_state.gs_sel); |
| 2387 | #endif |
| 2388 | } |
| 2389 | if (vmx->host_state.fs_reload_needed) |
| 2390 | loadsegment(fs, vmx->host_state.fs_sel); |
| 2391 | #ifdef CONFIG_X86_64 |
| 2392 | if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) { |
| 2393 | loadsegment(ds, vmx->host_state.ds_sel); |
| 2394 | loadsegment(es, vmx->host_state.es_sel); |
| 2395 | } |
| 2396 | #endif |
| 2397 | invalidate_tss_limit(); |
| 2398 | #ifdef CONFIG_X86_64 |
| 2399 | wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); |
| 2400 | #endif |
| 2401 | if (vmx->host_state.msr_host_bndcfgs) |
| 2402 | wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs); |
| 2403 | load_fixmap_gdt(raw_smp_processor_id()); |
| 2404 | } |
| 2405 | |
| 2406 | static void vmx_load_host_state(struct vcpu_vmx *vmx) |
| 2407 | { |
| 2408 | preempt_disable(); |
| 2409 | __vmx_load_host_state(vmx); |
| 2410 | preempt_enable(); |
| 2411 | } |
| 2412 | |
| 2413 | static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) |
| 2414 | { |
| 2415 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 2416 | struct pi_desc old, new; |
| 2417 | unsigned int dest; |
| 2418 | |
| 2419 | /* |
| 2420 | * In case of hot-plug or hot-unplug, we may have to undo |
| 2421 | * vmx_vcpu_pi_put even if there is no assigned device. And we |
| 2422 | * always keep PI.NDST up to date for simplicity: it makes the |
| 2423 | * code easier, and CPU migration is not a fast path. |
| 2424 | */ |
| 2425 | if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) |
| 2426 | return; |
| 2427 | |
| 2428 | /* |
| 2429 | * First handle the simple case where no cmpxchg is necessary; just |
| 2430 | * allow posting non-urgent interrupts. |
| 2431 | * |
| 2432 | * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change |
| 2433 | * PI.NDST: pi_post_block will do it for us and the wakeup_handler |
| 2434 | * expects the VCPU to be on the blocked_vcpu_list that matches |
| 2435 | * PI.NDST. |
| 2436 | */ |
| 2437 | if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || |
| 2438 | vcpu->cpu == cpu) { |
| 2439 | pi_clear_sn(pi_desc); |
| 2440 | return; |
| 2441 | } |
| 2442 | |
| 2443 | /* The full case. */ |
| 2444 | do { |
| 2445 | old.control = new.control = pi_desc->control; |
| 2446 | |
| 2447 | dest = cpu_physical_id(cpu); |
| 2448 | |
| 2449 | if (x2apic_enabled()) |
| 2450 | new.ndst = dest; |
| 2451 | else |
| 2452 | new.ndst = (dest << 8) & 0xFF00; |
| 2453 | |
| 2454 | new.sn = 0; |
| 2455 | } while (cmpxchg64(&pi_desc->control, old.control, |
| 2456 | new.control) != old.control); |
| 2457 | } |
| 2458 | |
| 2459 | static void decache_tsc_multiplier(struct vcpu_vmx *vmx) |
| 2460 | { |
| 2461 | vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio; |
| 2462 | vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio); |
| 2463 | } |
| 2464 | |
| 2465 | /* |
| 2466 | * Switches to specified vcpu, until a matching vcpu_put(), but assumes |
| 2467 | * vcpu mutex is already taken. |
| 2468 | */ |
| 2469 | static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| 2470 | { |
| 2471 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 2472 | bool already_loaded = vmx->loaded_vmcs->cpu == cpu; |
| 2473 | |
| 2474 | if (!already_loaded) { |
| 2475 | loaded_vmcs_clear(vmx->loaded_vmcs); |
| 2476 | local_irq_disable(); |
| 2477 | |
| 2478 | /* |
| 2479 | * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to |
| 2480 | * this cpu's percpu list, otherwise it may not yet be deleted |
| 2481 | * from its previous cpu's percpu list. Pairs with the |
| 2482 | * smb_wmb() in __loaded_vmcs_clear(). |
| 2483 | */ |
| 2484 | smp_rmb(); |
| 2485 | |
| 2486 | list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, |
| 2487 | &per_cpu(loaded_vmcss_on_cpu, cpu)); |
| 2488 | local_irq_enable(); |
| 2489 | } |
| 2490 | |
| 2491 | if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { |
| 2492 | per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; |
| 2493 | vmcs_load(vmx->loaded_vmcs->vmcs); |
| 2494 | indirect_branch_prediction_barrier(); |
| 2495 | } |
| 2496 | |
| 2497 | if (!already_loaded) { |
| 2498 | void *gdt = get_current_gdt_ro(); |
| 2499 | unsigned long sysenter_esp; |
| 2500 | |
| 2501 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| 2502 | |
| 2503 | /* |
| 2504 | * Linux uses per-cpu TSS and GDT, so set these when switching |
| 2505 | * processors. See 22.2.4. |
| 2506 | */ |
| 2507 | vmcs_writel(HOST_TR_BASE, |
| 2508 | (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); |
| 2509 | vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ |
| 2510 | |
| 2511 | /* |
| 2512 | * VM exits change the host TR limit to 0x67 after a VM |
| 2513 | * exit. This is okay, since 0x67 covers everything except |
| 2514 | * the IO bitmap and have have code to handle the IO bitmap |
| 2515 | * being lost after a VM exit. |
| 2516 | */ |
| 2517 | BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); |
| 2518 | |
| 2519 | rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); |
| 2520 | vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ |
| 2521 | |
| 2522 | vmx->loaded_vmcs->cpu = cpu; |
| 2523 | } |
| 2524 | |
| 2525 | /* Setup TSC multiplier */ |
| 2526 | if (kvm_has_tsc_control && |
| 2527 | vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) |
| 2528 | decache_tsc_multiplier(vmx); |
| 2529 | |
| 2530 | vmx_vcpu_pi_load(vcpu, cpu); |
| 2531 | vmx->host_pkru = read_pkru(); |
| 2532 | } |
| 2533 | |
| 2534 | static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) |
| 2535 | { |
| 2536 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 2537 | |
| 2538 | if (!kvm_arch_has_assigned_device(vcpu->kvm) || |
| 2539 | !irq_remapping_cap(IRQ_POSTING_CAP) || |
| 2540 | !kvm_vcpu_apicv_active(vcpu)) |
| 2541 | return; |
| 2542 | |
| 2543 | /* Set SN when the vCPU is preempted */ |
| 2544 | if (vcpu->preempted) |
| 2545 | pi_set_sn(pi_desc); |
| 2546 | } |
| 2547 | |
| 2548 | static void vmx_vcpu_put(struct kvm_vcpu *vcpu) |
| 2549 | { |
| 2550 | vmx_vcpu_pi_put(vcpu); |
| 2551 | |
| 2552 | __vmx_load_host_state(to_vmx(vcpu)); |
| 2553 | } |
| 2554 | |
| 2555 | static bool emulation_required(struct kvm_vcpu *vcpu) |
| 2556 | { |
| 2557 | return emulate_invalid_guest_state && !guest_state_valid(vcpu); |
| 2558 | } |
| 2559 | |
| 2560 | static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); |
| 2561 | |
| 2562 | /* |
| 2563 | * Return the cr0 value that a nested guest would read. This is a combination |
| 2564 | * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by |
| 2565 | * its hypervisor (cr0_read_shadow). |
| 2566 | */ |
| 2567 | static inline unsigned long nested_read_cr0(struct vmcs12 *fields) |
| 2568 | { |
| 2569 | return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | |
| 2570 | (fields->cr0_read_shadow & fields->cr0_guest_host_mask); |
| 2571 | } |
| 2572 | static inline unsigned long nested_read_cr4(struct vmcs12 *fields) |
| 2573 | { |
| 2574 | return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | |
| 2575 | (fields->cr4_read_shadow & fields->cr4_guest_host_mask); |
| 2576 | } |
| 2577 | |
| 2578 | static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) |
| 2579 | { |
| 2580 | unsigned long rflags, save_rflags; |
| 2581 | |
| 2582 | if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { |
| 2583 | __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); |
| 2584 | rflags = vmcs_readl(GUEST_RFLAGS); |
| 2585 | if (to_vmx(vcpu)->rmode.vm86_active) { |
| 2586 | rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; |
| 2587 | save_rflags = to_vmx(vcpu)->rmode.save_rflags; |
| 2588 | rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; |
| 2589 | } |
| 2590 | to_vmx(vcpu)->rflags = rflags; |
| 2591 | } |
| 2592 | return to_vmx(vcpu)->rflags; |
| 2593 | } |
| 2594 | |
| 2595 | static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
| 2596 | { |
| 2597 | unsigned long old_rflags = vmx_get_rflags(vcpu); |
| 2598 | |
| 2599 | __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); |
| 2600 | to_vmx(vcpu)->rflags = rflags; |
| 2601 | if (to_vmx(vcpu)->rmode.vm86_active) { |
| 2602 | to_vmx(vcpu)->rmode.save_rflags = rflags; |
| 2603 | rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; |
| 2604 | } |
| 2605 | vmcs_writel(GUEST_RFLAGS, rflags); |
| 2606 | |
| 2607 | if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) |
| 2608 | to_vmx(vcpu)->emulation_required = emulation_required(vcpu); |
| 2609 | } |
| 2610 | |
| 2611 | static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) |
| 2612 | { |
| 2613 | u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| 2614 | int ret = 0; |
| 2615 | |
| 2616 | if (interruptibility & GUEST_INTR_STATE_STI) |
| 2617 | ret |= KVM_X86_SHADOW_INT_STI; |
| 2618 | if (interruptibility & GUEST_INTR_STATE_MOV_SS) |
| 2619 | ret |= KVM_X86_SHADOW_INT_MOV_SS; |
| 2620 | |
| 2621 | return ret; |
| 2622 | } |
| 2623 | |
| 2624 | static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) |
| 2625 | { |
| 2626 | u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| 2627 | u32 interruptibility = interruptibility_old; |
| 2628 | |
| 2629 | interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); |
| 2630 | |
| 2631 | if (mask & KVM_X86_SHADOW_INT_MOV_SS) |
| 2632 | interruptibility |= GUEST_INTR_STATE_MOV_SS; |
| 2633 | else if (mask & KVM_X86_SHADOW_INT_STI) |
| 2634 | interruptibility |= GUEST_INTR_STATE_STI; |
| 2635 | |
| 2636 | if ((interruptibility != interruptibility_old)) |
| 2637 | vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); |
| 2638 | } |
| 2639 | |
| 2640 | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) |
| 2641 | { |
| 2642 | unsigned long rip; |
| 2643 | |
| 2644 | rip = kvm_rip_read(vcpu); |
| 2645 | rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| 2646 | kvm_rip_write(vcpu, rip); |
| 2647 | |
| 2648 | /* skipping an emulated instruction also counts */ |
| 2649 | vmx_set_interrupt_shadow(vcpu, 0); |
| 2650 | } |
| 2651 | |
| 2652 | static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu, |
| 2653 | unsigned long exit_qual) |
| 2654 | { |
| 2655 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 2656 | unsigned int nr = vcpu->arch.exception.nr; |
| 2657 | u32 intr_info = nr | INTR_INFO_VALID_MASK; |
| 2658 | |
| 2659 | if (vcpu->arch.exception.has_error_code) { |
| 2660 | vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code; |
| 2661 | intr_info |= INTR_INFO_DELIVER_CODE_MASK; |
| 2662 | } |
| 2663 | |
| 2664 | if (kvm_exception_is_soft(nr)) |
| 2665 | intr_info |= INTR_TYPE_SOFT_EXCEPTION; |
| 2666 | else |
| 2667 | intr_info |= INTR_TYPE_HARD_EXCEPTION; |
| 2668 | |
| 2669 | if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) && |
| 2670 | vmx_get_nmi_mask(vcpu)) |
| 2671 | intr_info |= INTR_INFO_UNBLOCK_NMI; |
| 2672 | |
| 2673 | nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); |
| 2674 | } |
| 2675 | |
| 2676 | /* |
| 2677 | * KVM wants to inject page-faults which it got to the guest. This function |
| 2678 | * checks whether in a nested guest, we need to inject them to L1 or L2. |
| 2679 | */ |
| 2680 | static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual) |
| 2681 | { |
| 2682 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 2683 | unsigned int nr = vcpu->arch.exception.nr; |
| 2684 | |
| 2685 | if (nr == PF_VECTOR) { |
| 2686 | if (vcpu->arch.exception.nested_apf) { |
| 2687 | *exit_qual = vcpu->arch.apf.nested_apf_token; |
| 2688 | return 1; |
| 2689 | } |
| 2690 | /* |
| 2691 | * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception. |
| 2692 | * The fix is to add the ancillary datum (CR2 or DR6) to structs |
| 2693 | * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 |
| 2694 | * can be written only when inject_pending_event runs. This should be |
| 2695 | * conditional on a new capability---if the capability is disabled, |
| 2696 | * kvm_multiple_exception would write the ancillary information to |
| 2697 | * CR2 or DR6, for backwards ABI-compatibility. |
| 2698 | */ |
| 2699 | if (nested_vmx_is_page_fault_vmexit(vmcs12, |
| 2700 | vcpu->arch.exception.error_code)) { |
| 2701 | *exit_qual = vcpu->arch.cr2; |
| 2702 | return 1; |
| 2703 | } |
| 2704 | } else { |
| 2705 | if (vmcs12->exception_bitmap & (1u << nr)) { |
| 2706 | if (nr == DB_VECTOR) { |
| 2707 | *exit_qual = vcpu->arch.dr6; |
| 2708 | *exit_qual &= ~(DR6_FIXED_1 | DR6_BT); |
| 2709 | *exit_qual ^= DR6_RTM; |
| 2710 | } else { |
| 2711 | *exit_qual = 0; |
| 2712 | } |
| 2713 | return 1; |
| 2714 | } |
| 2715 | } |
| 2716 | |
| 2717 | return 0; |
| 2718 | } |
| 2719 | |
| 2720 | static void vmx_queue_exception(struct kvm_vcpu *vcpu) |
| 2721 | { |
| 2722 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 2723 | unsigned nr = vcpu->arch.exception.nr; |
| 2724 | bool has_error_code = vcpu->arch.exception.has_error_code; |
| 2725 | u32 error_code = vcpu->arch.exception.error_code; |
| 2726 | u32 intr_info = nr | INTR_INFO_VALID_MASK; |
| 2727 | |
| 2728 | if (has_error_code) { |
| 2729 | vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); |
| 2730 | intr_info |= INTR_INFO_DELIVER_CODE_MASK; |
| 2731 | } |
| 2732 | |
| 2733 | if (vmx->rmode.vm86_active) { |
| 2734 | int inc_eip = 0; |
| 2735 | if (kvm_exception_is_soft(nr)) |
| 2736 | inc_eip = vcpu->arch.event_exit_inst_len; |
| 2737 | if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) |
| 2738 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| 2739 | return; |
| 2740 | } |
| 2741 | |
| 2742 | WARN_ON_ONCE(vmx->emulation_required); |
| 2743 | |
| 2744 | if (kvm_exception_is_soft(nr)) { |
| 2745 | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| 2746 | vmx->vcpu.arch.event_exit_inst_len); |
| 2747 | intr_info |= INTR_TYPE_SOFT_EXCEPTION; |
| 2748 | } else |
| 2749 | intr_info |= INTR_TYPE_HARD_EXCEPTION; |
| 2750 | |
| 2751 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); |
| 2752 | } |
| 2753 | |
| 2754 | static bool vmx_rdtscp_supported(void) |
| 2755 | { |
| 2756 | return cpu_has_vmx_rdtscp(); |
| 2757 | } |
| 2758 | |
| 2759 | static bool vmx_invpcid_supported(void) |
| 2760 | { |
| 2761 | return cpu_has_vmx_invpcid() && enable_ept; |
| 2762 | } |
| 2763 | |
| 2764 | /* |
| 2765 | * Swap MSR entry in host/guest MSR entry array. |
| 2766 | */ |
| 2767 | static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) |
| 2768 | { |
| 2769 | struct shared_msr_entry tmp; |
| 2770 | |
| 2771 | tmp = vmx->guest_msrs[to]; |
| 2772 | vmx->guest_msrs[to] = vmx->guest_msrs[from]; |
| 2773 | vmx->guest_msrs[from] = tmp; |
| 2774 | } |
| 2775 | |
| 2776 | /* |
| 2777 | * Set up the vmcs to automatically save and restore system |
| 2778 | * msrs. Don't touch the 64-bit msrs if the guest is in legacy |
| 2779 | * mode, as fiddling with msrs is very expensive. |
| 2780 | */ |
| 2781 | static void setup_msrs(struct vcpu_vmx *vmx) |
| 2782 | { |
| 2783 | int save_nmsrs, index; |
| 2784 | |
| 2785 | save_nmsrs = 0; |
| 2786 | #ifdef CONFIG_X86_64 |
| 2787 | if (is_long_mode(&vmx->vcpu)) { |
| 2788 | index = __find_msr_index(vmx, MSR_SYSCALL_MASK); |
| 2789 | if (index >= 0) |
| 2790 | move_msr_up(vmx, index, save_nmsrs++); |
| 2791 | index = __find_msr_index(vmx, MSR_LSTAR); |
| 2792 | if (index >= 0) |
| 2793 | move_msr_up(vmx, index, save_nmsrs++); |
| 2794 | index = __find_msr_index(vmx, MSR_CSTAR); |
| 2795 | if (index >= 0) |
| 2796 | move_msr_up(vmx, index, save_nmsrs++); |
| 2797 | /* |
| 2798 | * MSR_STAR is only needed on long mode guests, and only |
| 2799 | * if efer.sce is enabled. |
| 2800 | */ |
| 2801 | index = __find_msr_index(vmx, MSR_STAR); |
| 2802 | if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE)) |
| 2803 | move_msr_up(vmx, index, save_nmsrs++); |
| 2804 | } |
| 2805 | #endif |
| 2806 | index = __find_msr_index(vmx, MSR_EFER); |
| 2807 | if (index >= 0 && update_transition_efer(vmx, index)) |
| 2808 | move_msr_up(vmx, index, save_nmsrs++); |
| 2809 | index = __find_msr_index(vmx, MSR_TSC_AUX); |
| 2810 | if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) |
| 2811 | move_msr_up(vmx, index, save_nmsrs++); |
| 2812 | |
| 2813 | vmx->save_nmsrs = save_nmsrs; |
| 2814 | |
| 2815 | if (cpu_has_vmx_msr_bitmap()) |
| 2816 | vmx_update_msr_bitmap(&vmx->vcpu); |
| 2817 | } |
| 2818 | |
| 2819 | /* |
| 2820 | * reads and returns guest's timestamp counter "register" |
| 2821 | * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset |
| 2822 | * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3 |
| 2823 | */ |
| 2824 | static u64 guest_read_tsc(struct kvm_vcpu *vcpu) |
| 2825 | { |
| 2826 | u64 host_tsc, tsc_offset; |
| 2827 | |
| 2828 | host_tsc = rdtsc(); |
| 2829 | tsc_offset = vmcs_read64(TSC_OFFSET); |
| 2830 | return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset; |
| 2831 | } |
| 2832 | |
| 2833 | /* |
| 2834 | * writes 'offset' into guest's timestamp counter offset register |
| 2835 | */ |
| 2836 | static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) |
| 2837 | { |
| 2838 | if (is_guest_mode(vcpu)) { |
| 2839 | /* |
| 2840 | * We're here if L1 chose not to trap WRMSR to TSC. According |
| 2841 | * to the spec, this should set L1's TSC; The offset that L1 |
| 2842 | * set for L2 remains unchanged, and still needs to be added |
| 2843 | * to the newly set TSC to get L2's TSC. |
| 2844 | */ |
| 2845 | struct vmcs12 *vmcs12; |
| 2846 | /* recalculate vmcs02.TSC_OFFSET: */ |
| 2847 | vmcs12 = get_vmcs12(vcpu); |
| 2848 | vmcs_write64(TSC_OFFSET, offset + |
| 2849 | (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ? |
| 2850 | vmcs12->tsc_offset : 0)); |
| 2851 | } else { |
| 2852 | trace_kvm_write_tsc_offset(vcpu->vcpu_id, |
| 2853 | vmcs_read64(TSC_OFFSET), offset); |
| 2854 | vmcs_write64(TSC_OFFSET, offset); |
| 2855 | } |
| 2856 | } |
| 2857 | |
| 2858 | /* |
| 2859 | * nested_vmx_allowed() checks whether a guest should be allowed to use VMX |
| 2860 | * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for |
| 2861 | * all guests if the "nested" module option is off, and can also be disabled |
| 2862 | * for a single guest by disabling its VMX cpuid bit. |
| 2863 | */ |
| 2864 | static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu) |
| 2865 | { |
| 2866 | return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); |
| 2867 | } |
| 2868 | |
| 2869 | /* |
| 2870 | * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be |
| 2871 | * returned for the various VMX controls MSRs when nested VMX is enabled. |
| 2872 | * The same values should also be used to verify that vmcs12 control fields are |
| 2873 | * valid during nested entry from L1 to L2. |
| 2874 | * Each of these control msrs has a low and high 32-bit half: A low bit is on |
| 2875 | * if the corresponding bit in the (32-bit) control field *must* be on, and a |
| 2876 | * bit in the high half is on if the corresponding bit in the control field |
| 2877 | * may be on. See also vmx_control_verify(). |
| 2878 | */ |
| 2879 | static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx) |
| 2880 | { |
| 2881 | /* |
| 2882 | * Note that as a general rule, the high half of the MSRs (bits in |
| 2883 | * the control fields which may be 1) should be initialized by the |
| 2884 | * intersection of the underlying hardware's MSR (i.e., features which |
| 2885 | * can be supported) and the list of features we want to expose - |
| 2886 | * because they are known to be properly supported in our code. |
| 2887 | * Also, usually, the low half of the MSRs (bits which must be 1) can |
| 2888 | * be set to 0, meaning that L1 may turn off any of these bits. The |
| 2889 | * reason is that if one of these bits is necessary, it will appear |
| 2890 | * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control |
| 2891 | * fields of vmcs01 and vmcs02, will turn these bits off - and |
| 2892 | * nested_vmx_exit_reflected() will not pass related exits to L1. |
| 2893 | * These rules have exceptions below. |
| 2894 | */ |
| 2895 | |
| 2896 | /* pin-based controls */ |
| 2897 | rdmsr(MSR_IA32_VMX_PINBASED_CTLS, |
| 2898 | vmx->nested.nested_vmx_pinbased_ctls_low, |
| 2899 | vmx->nested.nested_vmx_pinbased_ctls_high); |
| 2900 | vmx->nested.nested_vmx_pinbased_ctls_low |= |
| 2901 | PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| 2902 | vmx->nested.nested_vmx_pinbased_ctls_high &= |
| 2903 | PIN_BASED_EXT_INTR_MASK | |
| 2904 | PIN_BASED_NMI_EXITING | |
| 2905 | PIN_BASED_VIRTUAL_NMIS; |
| 2906 | vmx->nested.nested_vmx_pinbased_ctls_high |= |
| 2907 | PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | |
| 2908 | PIN_BASED_VMX_PREEMPTION_TIMER; |
| 2909 | if (kvm_vcpu_apicv_active(&vmx->vcpu)) |
| 2910 | vmx->nested.nested_vmx_pinbased_ctls_high |= |
| 2911 | PIN_BASED_POSTED_INTR; |
| 2912 | |
| 2913 | /* exit controls */ |
| 2914 | rdmsr(MSR_IA32_VMX_EXIT_CTLS, |
| 2915 | vmx->nested.nested_vmx_exit_ctls_low, |
| 2916 | vmx->nested.nested_vmx_exit_ctls_high); |
| 2917 | vmx->nested.nested_vmx_exit_ctls_low = |
| 2918 | VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; |
| 2919 | |
| 2920 | vmx->nested.nested_vmx_exit_ctls_high &= |
| 2921 | #ifdef CONFIG_X86_64 |
| 2922 | VM_EXIT_HOST_ADDR_SPACE_SIZE | |
| 2923 | #endif |
| 2924 | VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; |
| 2925 | vmx->nested.nested_vmx_exit_ctls_high |= |
| 2926 | VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | |
| 2927 | VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | |
| 2928 | VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; |
| 2929 | |
| 2930 | if (kvm_mpx_supported()) |
| 2931 | vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; |
| 2932 | |
| 2933 | /* We support free control of debug control saving. */ |
| 2934 | vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; |
| 2935 | |
| 2936 | /* entry controls */ |
| 2937 | rdmsr(MSR_IA32_VMX_ENTRY_CTLS, |
| 2938 | vmx->nested.nested_vmx_entry_ctls_low, |
| 2939 | vmx->nested.nested_vmx_entry_ctls_high); |
| 2940 | vmx->nested.nested_vmx_entry_ctls_low = |
| 2941 | VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; |
| 2942 | vmx->nested.nested_vmx_entry_ctls_high &= |
| 2943 | #ifdef CONFIG_X86_64 |
| 2944 | VM_ENTRY_IA32E_MODE | |
| 2945 | #endif |
| 2946 | VM_ENTRY_LOAD_IA32_PAT; |
| 2947 | vmx->nested.nested_vmx_entry_ctls_high |= |
| 2948 | (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); |
| 2949 | if (kvm_mpx_supported()) |
| 2950 | vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; |
| 2951 | |
| 2952 | /* We support free control of debug control loading. */ |
| 2953 | vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; |
| 2954 | |
| 2955 | /* cpu-based controls */ |
| 2956 | rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, |
| 2957 | vmx->nested.nested_vmx_procbased_ctls_low, |
| 2958 | vmx->nested.nested_vmx_procbased_ctls_high); |
| 2959 | vmx->nested.nested_vmx_procbased_ctls_low = |
| 2960 | CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| 2961 | vmx->nested.nested_vmx_procbased_ctls_high &= |
| 2962 | CPU_BASED_VIRTUAL_INTR_PENDING | |
| 2963 | CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING | |
| 2964 | CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | |
| 2965 | CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | |
| 2966 | CPU_BASED_CR3_STORE_EXITING | |
| 2967 | #ifdef CONFIG_X86_64 |
| 2968 | CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | |
| 2969 | #endif |
| 2970 | CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | |
| 2971 | CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | |
| 2972 | CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | |
| 2973 | CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | |
| 2974 | CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
| 2975 | /* |
| 2976 | * We can allow some features even when not supported by the |
| 2977 | * hardware. For example, L1 can specify an MSR bitmap - and we |
| 2978 | * can use it to avoid exits to L1 - even when L0 runs L2 |
| 2979 | * without MSR bitmaps. |
| 2980 | */ |
| 2981 | vmx->nested.nested_vmx_procbased_ctls_high |= |
| 2982 | CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | |
| 2983 | CPU_BASED_USE_MSR_BITMAPS; |
| 2984 | |
| 2985 | /* We support free control of CR3 access interception. */ |
| 2986 | vmx->nested.nested_vmx_procbased_ctls_low &= |
| 2987 | ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); |
| 2988 | |
| 2989 | /* |
| 2990 | * secondary cpu-based controls. Do not include those that |
| 2991 | * depend on CPUID bits, they are added later by vmx_cpuid_update. |
| 2992 | */ |
| 2993 | rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, |
| 2994 | vmx->nested.nested_vmx_secondary_ctls_low, |
| 2995 | vmx->nested.nested_vmx_secondary_ctls_high); |
| 2996 | vmx->nested.nested_vmx_secondary_ctls_low = 0; |
| 2997 | vmx->nested.nested_vmx_secondary_ctls_high &= |
| 2998 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
| 2999 | SECONDARY_EXEC_DESC | |
| 3000 | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | |
| 3001 | SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| 3002 | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | |
| 3003 | SECONDARY_EXEC_WBINVD_EXITING; |
| 3004 | |
| 3005 | if (enable_ept) { |
| 3006 | /* nested EPT: emulate EPT also to L1 */ |
| 3007 | vmx->nested.nested_vmx_secondary_ctls_high |= |
| 3008 | SECONDARY_EXEC_ENABLE_EPT; |
| 3009 | vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT | |
| 3010 | VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT; |
| 3011 | if (cpu_has_vmx_ept_execute_only()) |
| 3012 | vmx->nested.nested_vmx_ept_caps |= |
| 3013 | VMX_EPT_EXECUTE_ONLY_BIT; |
| 3014 | vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept; |
| 3015 | vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | |
| 3016 | VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | |
| 3017 | VMX_EPT_1GB_PAGE_BIT; |
| 3018 | if (enable_ept_ad_bits) { |
| 3019 | vmx->nested.nested_vmx_secondary_ctls_high |= |
| 3020 | SECONDARY_EXEC_ENABLE_PML; |
| 3021 | vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT; |
| 3022 | } |
| 3023 | } else |
| 3024 | vmx->nested.nested_vmx_ept_caps = 0; |
| 3025 | |
| 3026 | if (cpu_has_vmx_vmfunc()) { |
| 3027 | vmx->nested.nested_vmx_secondary_ctls_high |= |
| 3028 | SECONDARY_EXEC_ENABLE_VMFUNC; |
| 3029 | /* |
| 3030 | * Advertise EPTP switching unconditionally |
| 3031 | * since we emulate it |
| 3032 | */ |
| 3033 | if (enable_ept) |
| 3034 | vmx->nested.nested_vmx_vmfunc_controls = |
| 3035 | VMX_VMFUNC_EPTP_SWITCHING; |
| 3036 | } |
| 3037 | |
| 3038 | /* |
| 3039 | * Old versions of KVM use the single-context version without |
| 3040 | * checking for support, so declare that it is supported even |
| 3041 | * though it is treated as global context. The alternative is |
| 3042 | * not failing the single-context invvpid, and it is worse. |
| 3043 | */ |
| 3044 | if (enable_vpid) { |
| 3045 | vmx->nested.nested_vmx_secondary_ctls_high |= |
| 3046 | SECONDARY_EXEC_ENABLE_VPID; |
| 3047 | vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT | |
| 3048 | VMX_VPID_EXTENT_SUPPORTED_MASK; |
| 3049 | } else |
| 3050 | vmx->nested.nested_vmx_vpid_caps = 0; |
| 3051 | |
| 3052 | if (enable_unrestricted_guest) |
| 3053 | vmx->nested.nested_vmx_secondary_ctls_high |= |
| 3054 | SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| 3055 | |
| 3056 | /* miscellaneous data */ |
| 3057 | rdmsr(MSR_IA32_VMX_MISC, |
| 3058 | vmx->nested.nested_vmx_misc_low, |
| 3059 | vmx->nested.nested_vmx_misc_high); |
| 3060 | vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA; |
| 3061 | vmx->nested.nested_vmx_misc_low |= |
| 3062 | VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | |
| 3063 | VMX_MISC_ACTIVITY_HLT; |
| 3064 | vmx->nested.nested_vmx_misc_high = 0; |
| 3065 | |
| 3066 | /* |
| 3067 | * This MSR reports some information about VMX support. We |
| 3068 | * should return information about the VMX we emulate for the |
| 3069 | * guest, and the VMCS structure we give it - not about the |
| 3070 | * VMX support of the underlying hardware. |
| 3071 | */ |
| 3072 | vmx->nested.nested_vmx_basic = |
| 3073 | VMCS12_REVISION | |
| 3074 | VMX_BASIC_TRUE_CTLS | |
| 3075 | ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | |
| 3076 | (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); |
| 3077 | |
| 3078 | if (cpu_has_vmx_basic_inout()) |
| 3079 | vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT; |
| 3080 | |
| 3081 | /* |
| 3082 | * These MSRs specify bits which the guest must keep fixed on |
| 3083 | * while L1 is in VMXON mode (in L1's root mode, or running an L2). |
| 3084 | * We picked the standard core2 setting. |
| 3085 | */ |
| 3086 | #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) |
| 3087 | #define VMXON_CR4_ALWAYSON X86_CR4_VMXE |
| 3088 | vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON; |
| 3089 | vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON; |
| 3090 | |
| 3091 | /* These MSRs specify bits which the guest must keep fixed off. */ |
| 3092 | rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1); |
| 3093 | rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1); |
| 3094 | |
| 3095 | /* highest index: VMX_PREEMPTION_TIMER_VALUE */ |
| 3096 | vmx->nested.nested_vmx_vmcs_enum = 0x2e; |
| 3097 | } |
| 3098 | |
| 3099 | /* |
| 3100 | * if fixed0[i] == 1: val[i] must be 1 |
| 3101 | * if fixed1[i] == 0: val[i] must be 0 |
| 3102 | */ |
| 3103 | static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1) |
| 3104 | { |
| 3105 | return ((val & fixed1) | fixed0) == val; |
| 3106 | } |
| 3107 | |
| 3108 | static inline bool vmx_control_verify(u32 control, u32 low, u32 high) |
| 3109 | { |
| 3110 | return fixed_bits_valid(control, low, high); |
| 3111 | } |
| 3112 | |
| 3113 | static inline u64 vmx_control_msr(u32 low, u32 high) |
| 3114 | { |
| 3115 | return low | ((u64)high << 32); |
| 3116 | } |
| 3117 | |
| 3118 | static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) |
| 3119 | { |
| 3120 | superset &= mask; |
| 3121 | subset &= mask; |
| 3122 | |
| 3123 | return (superset | subset) == superset; |
| 3124 | } |
| 3125 | |
| 3126 | static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) |
| 3127 | { |
| 3128 | const u64 feature_and_reserved = |
| 3129 | /* feature (except bit 48; see below) */ |
| 3130 | BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) | |
| 3131 | /* reserved */ |
| 3132 | BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56); |
| 3133 | u64 vmx_basic = vmx->nested.nested_vmx_basic; |
| 3134 | |
| 3135 | if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved)) |
| 3136 | return -EINVAL; |
| 3137 | |
| 3138 | /* |
| 3139 | * KVM does not emulate a version of VMX that constrains physical |
| 3140 | * addresses of VMX structures (e.g. VMCS) to 32-bits. |
| 3141 | */ |
| 3142 | if (data & BIT_ULL(48)) |
| 3143 | return -EINVAL; |
| 3144 | |
| 3145 | if (vmx_basic_vmcs_revision_id(vmx_basic) != |
| 3146 | vmx_basic_vmcs_revision_id(data)) |
| 3147 | return -EINVAL; |
| 3148 | |
| 3149 | if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data)) |
| 3150 | return -EINVAL; |
| 3151 | |
| 3152 | vmx->nested.nested_vmx_basic = data; |
| 3153 | return 0; |
| 3154 | } |
| 3155 | |
| 3156 | static int |
| 3157 | vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) |
| 3158 | { |
| 3159 | u64 supported; |
| 3160 | u32 *lowp, *highp; |
| 3161 | |
| 3162 | switch (msr_index) { |
| 3163 | case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
| 3164 | lowp = &vmx->nested.nested_vmx_pinbased_ctls_low; |
| 3165 | highp = &vmx->nested.nested_vmx_pinbased_ctls_high; |
| 3166 | break; |
| 3167 | case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
| 3168 | lowp = &vmx->nested.nested_vmx_procbased_ctls_low; |
| 3169 | highp = &vmx->nested.nested_vmx_procbased_ctls_high; |
| 3170 | break; |
| 3171 | case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
| 3172 | lowp = &vmx->nested.nested_vmx_exit_ctls_low; |
| 3173 | highp = &vmx->nested.nested_vmx_exit_ctls_high; |
| 3174 | break; |
| 3175 | case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
| 3176 | lowp = &vmx->nested.nested_vmx_entry_ctls_low; |
| 3177 | highp = &vmx->nested.nested_vmx_entry_ctls_high; |
| 3178 | break; |
| 3179 | case MSR_IA32_VMX_PROCBASED_CTLS2: |
| 3180 | lowp = &vmx->nested.nested_vmx_secondary_ctls_low; |
| 3181 | highp = &vmx->nested.nested_vmx_secondary_ctls_high; |
| 3182 | break; |
| 3183 | default: |
| 3184 | BUG(); |
| 3185 | } |
| 3186 | |
| 3187 | supported = vmx_control_msr(*lowp, *highp); |
| 3188 | |
| 3189 | /* Check must-be-1 bits are still 1. */ |
| 3190 | if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0))) |
| 3191 | return -EINVAL; |
| 3192 | |
| 3193 | /* Check must-be-0 bits are still 0. */ |
| 3194 | if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) |
| 3195 | return -EINVAL; |
| 3196 | |
| 3197 | *lowp = data; |
| 3198 | *highp = data >> 32; |
| 3199 | return 0; |
| 3200 | } |
| 3201 | |
| 3202 | static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) |
| 3203 | { |
| 3204 | const u64 feature_and_reserved_bits = |
| 3205 | /* feature */ |
| 3206 | BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) | |
| 3207 | BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) | |
| 3208 | /* reserved */ |
| 3209 | GENMASK_ULL(13, 9) | BIT_ULL(31); |
| 3210 | u64 vmx_misc; |
| 3211 | |
| 3212 | vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low, |
| 3213 | vmx->nested.nested_vmx_misc_high); |
| 3214 | |
| 3215 | if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits)) |
| 3216 | return -EINVAL; |
| 3217 | |
| 3218 | if ((vmx->nested.nested_vmx_pinbased_ctls_high & |
| 3219 | PIN_BASED_VMX_PREEMPTION_TIMER) && |
| 3220 | vmx_misc_preemption_timer_rate(data) != |
| 3221 | vmx_misc_preemption_timer_rate(vmx_misc)) |
| 3222 | return -EINVAL; |
| 3223 | |
| 3224 | if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc)) |
| 3225 | return -EINVAL; |
| 3226 | |
| 3227 | if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc)) |
| 3228 | return -EINVAL; |
| 3229 | |
| 3230 | if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc)) |
| 3231 | return -EINVAL; |
| 3232 | |
| 3233 | vmx->nested.nested_vmx_misc_low = data; |
| 3234 | vmx->nested.nested_vmx_misc_high = data >> 32; |
| 3235 | return 0; |
| 3236 | } |
| 3237 | |
| 3238 | static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) |
| 3239 | { |
| 3240 | u64 vmx_ept_vpid_cap; |
| 3241 | |
| 3242 | vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps, |
| 3243 | vmx->nested.nested_vmx_vpid_caps); |
| 3244 | |
| 3245 | /* Every bit is either reserved or a feature bit. */ |
| 3246 | if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) |
| 3247 | return -EINVAL; |
| 3248 | |
| 3249 | vmx->nested.nested_vmx_ept_caps = data; |
| 3250 | vmx->nested.nested_vmx_vpid_caps = data >> 32; |
| 3251 | return 0; |
| 3252 | } |
| 3253 | |
| 3254 | static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) |
| 3255 | { |
| 3256 | u64 *msr; |
| 3257 | |
| 3258 | switch (msr_index) { |
| 3259 | case MSR_IA32_VMX_CR0_FIXED0: |
| 3260 | msr = &vmx->nested.nested_vmx_cr0_fixed0; |
| 3261 | break; |
| 3262 | case MSR_IA32_VMX_CR4_FIXED0: |
| 3263 | msr = &vmx->nested.nested_vmx_cr4_fixed0; |
| 3264 | break; |
| 3265 | default: |
| 3266 | BUG(); |
| 3267 | } |
| 3268 | |
| 3269 | /* |
| 3270 | * 1 bits (which indicates bits which "must-be-1" during VMX operation) |
| 3271 | * must be 1 in the restored value. |
| 3272 | */ |
| 3273 | if (!is_bitwise_subset(data, *msr, -1ULL)) |
| 3274 | return -EINVAL; |
| 3275 | |
| 3276 | *msr = data; |
| 3277 | return 0; |
| 3278 | } |
| 3279 | |
| 3280 | /* |
| 3281 | * Called when userspace is restoring VMX MSRs. |
| 3282 | * |
| 3283 | * Returns 0 on success, non-0 otherwise. |
| 3284 | */ |
| 3285 | static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| 3286 | { |
| 3287 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 3288 | |
| 3289 | switch (msr_index) { |
| 3290 | case MSR_IA32_VMX_BASIC: |
| 3291 | return vmx_restore_vmx_basic(vmx, data); |
| 3292 | case MSR_IA32_VMX_PINBASED_CTLS: |
| 3293 | case MSR_IA32_VMX_PROCBASED_CTLS: |
| 3294 | case MSR_IA32_VMX_EXIT_CTLS: |
| 3295 | case MSR_IA32_VMX_ENTRY_CTLS: |
| 3296 | /* |
| 3297 | * The "non-true" VMX capability MSRs are generated from the |
| 3298 | * "true" MSRs, so we do not support restoring them directly. |
| 3299 | * |
| 3300 | * If userspace wants to emulate VMX_BASIC[55]=0, userspace |
| 3301 | * should restore the "true" MSRs with the must-be-1 bits |
| 3302 | * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND |
| 3303 | * DEFAULT SETTINGS". |
| 3304 | */ |
| 3305 | return -EINVAL; |
| 3306 | case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
| 3307 | case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
| 3308 | case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
| 3309 | case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
| 3310 | case MSR_IA32_VMX_PROCBASED_CTLS2: |
| 3311 | return vmx_restore_control_msr(vmx, msr_index, data); |
| 3312 | case MSR_IA32_VMX_MISC: |
| 3313 | return vmx_restore_vmx_misc(vmx, data); |
| 3314 | case MSR_IA32_VMX_CR0_FIXED0: |
| 3315 | case MSR_IA32_VMX_CR4_FIXED0: |
| 3316 | return vmx_restore_fixed0_msr(vmx, msr_index, data); |
| 3317 | case MSR_IA32_VMX_CR0_FIXED1: |
| 3318 | case MSR_IA32_VMX_CR4_FIXED1: |
| 3319 | /* |
| 3320 | * These MSRs are generated based on the vCPU's CPUID, so we |
| 3321 | * do not support restoring them directly. |
| 3322 | */ |
| 3323 | return -EINVAL; |
| 3324 | case MSR_IA32_VMX_EPT_VPID_CAP: |
| 3325 | return vmx_restore_vmx_ept_vpid_cap(vmx, data); |
| 3326 | case MSR_IA32_VMX_VMCS_ENUM: |
| 3327 | vmx->nested.nested_vmx_vmcs_enum = data; |
| 3328 | return 0; |
| 3329 | default: |
| 3330 | /* |
| 3331 | * The rest of the VMX capability MSRs do not support restore. |
| 3332 | */ |
| 3333 | return -EINVAL; |
| 3334 | } |
| 3335 | } |
| 3336 | |
| 3337 | /* Returns 0 on success, non-0 otherwise. */ |
| 3338 | static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) |
| 3339 | { |
| 3340 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 3341 | |
| 3342 | switch (msr_index) { |
| 3343 | case MSR_IA32_VMX_BASIC: |
| 3344 | *pdata = vmx->nested.nested_vmx_basic; |
| 3345 | break; |
| 3346 | case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
| 3347 | case MSR_IA32_VMX_PINBASED_CTLS: |
| 3348 | *pdata = vmx_control_msr( |
| 3349 | vmx->nested.nested_vmx_pinbased_ctls_low, |
| 3350 | vmx->nested.nested_vmx_pinbased_ctls_high); |
| 3351 | if (msr_index == MSR_IA32_VMX_PINBASED_CTLS) |
| 3352 | *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| 3353 | break; |
| 3354 | case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
| 3355 | case MSR_IA32_VMX_PROCBASED_CTLS: |
| 3356 | *pdata = vmx_control_msr( |
| 3357 | vmx->nested.nested_vmx_procbased_ctls_low, |
| 3358 | vmx->nested.nested_vmx_procbased_ctls_high); |
| 3359 | if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS) |
| 3360 | *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| 3361 | break; |
| 3362 | case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
| 3363 | case MSR_IA32_VMX_EXIT_CTLS: |
| 3364 | *pdata = vmx_control_msr( |
| 3365 | vmx->nested.nested_vmx_exit_ctls_low, |
| 3366 | vmx->nested.nested_vmx_exit_ctls_high); |
| 3367 | if (msr_index == MSR_IA32_VMX_EXIT_CTLS) |
| 3368 | *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; |
| 3369 | break; |
| 3370 | case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
| 3371 | case MSR_IA32_VMX_ENTRY_CTLS: |
| 3372 | *pdata = vmx_control_msr( |
| 3373 | vmx->nested.nested_vmx_entry_ctls_low, |
| 3374 | vmx->nested.nested_vmx_entry_ctls_high); |
| 3375 | if (msr_index == MSR_IA32_VMX_ENTRY_CTLS) |
| 3376 | *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; |
| 3377 | break; |
| 3378 | case MSR_IA32_VMX_MISC: |
| 3379 | *pdata = vmx_control_msr( |
| 3380 | vmx->nested.nested_vmx_misc_low, |
| 3381 | vmx->nested.nested_vmx_misc_high); |
| 3382 | break; |
| 3383 | case MSR_IA32_VMX_CR0_FIXED0: |
| 3384 | *pdata = vmx->nested.nested_vmx_cr0_fixed0; |
| 3385 | break; |
| 3386 | case MSR_IA32_VMX_CR0_FIXED1: |
| 3387 | *pdata = vmx->nested.nested_vmx_cr0_fixed1; |
| 3388 | break; |
| 3389 | case MSR_IA32_VMX_CR4_FIXED0: |
| 3390 | *pdata = vmx->nested.nested_vmx_cr4_fixed0; |
| 3391 | break; |
| 3392 | case MSR_IA32_VMX_CR4_FIXED1: |
| 3393 | *pdata = vmx->nested.nested_vmx_cr4_fixed1; |
| 3394 | break; |
| 3395 | case MSR_IA32_VMX_VMCS_ENUM: |
| 3396 | *pdata = vmx->nested.nested_vmx_vmcs_enum; |
| 3397 | break; |
| 3398 | case MSR_IA32_VMX_PROCBASED_CTLS2: |
| 3399 | *pdata = vmx_control_msr( |
| 3400 | vmx->nested.nested_vmx_secondary_ctls_low, |
| 3401 | vmx->nested.nested_vmx_secondary_ctls_high); |
| 3402 | break; |
| 3403 | case MSR_IA32_VMX_EPT_VPID_CAP: |
| 3404 | *pdata = vmx->nested.nested_vmx_ept_caps | |
| 3405 | ((u64)vmx->nested.nested_vmx_vpid_caps << 32); |
| 3406 | break; |
| 3407 | case MSR_IA32_VMX_VMFUNC: |
| 3408 | *pdata = vmx->nested.nested_vmx_vmfunc_controls; |
| 3409 | break; |
| 3410 | default: |
| 3411 | return 1; |
| 3412 | } |
| 3413 | |
| 3414 | return 0; |
| 3415 | } |
| 3416 | |
| 3417 | static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, |
| 3418 | uint64_t val) |
| 3419 | { |
| 3420 | uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; |
| 3421 | |
| 3422 | return !(val & ~valid_bits); |
| 3423 | } |
| 3424 | |
| 3425 | static int vmx_get_msr_feature(struct kvm_msr_entry *msr) |
| 3426 | { |
| 3427 | return 1; |
| 3428 | } |
| 3429 | |
| 3430 | /* |
| 3431 | * Reads an msr value (of 'msr_index') into 'pdata'. |
| 3432 | * Returns 0 on success, non-0 otherwise. |
| 3433 | * Assumes vcpu_load() was already called. |
| 3434 | */ |
| 3435 | static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| 3436 | { |
| 3437 | struct shared_msr_entry *msr; |
| 3438 | |
| 3439 | switch (msr_info->index) { |
| 3440 | #ifdef CONFIG_X86_64 |
| 3441 | case MSR_FS_BASE: |
| 3442 | msr_info->data = vmcs_readl(GUEST_FS_BASE); |
| 3443 | break; |
| 3444 | case MSR_GS_BASE: |
| 3445 | msr_info->data = vmcs_readl(GUEST_GS_BASE); |
| 3446 | break; |
| 3447 | case MSR_KERNEL_GS_BASE: |
| 3448 | vmx_load_host_state(to_vmx(vcpu)); |
| 3449 | msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base; |
| 3450 | break; |
| 3451 | #endif |
| 3452 | case MSR_EFER: |
| 3453 | return kvm_get_msr_common(vcpu, msr_info); |
| 3454 | case MSR_IA32_TSC: |
| 3455 | msr_info->data = guest_read_tsc(vcpu); |
| 3456 | break; |
| 3457 | case MSR_IA32_SPEC_CTRL: |
| 3458 | if (!msr_info->host_initiated && |
| 3459 | !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) |
| 3460 | return 1; |
| 3461 | |
| 3462 | msr_info->data = to_vmx(vcpu)->spec_ctrl; |
| 3463 | break; |
| 3464 | case MSR_IA32_SYSENTER_CS: |
| 3465 | msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); |
| 3466 | break; |
| 3467 | case MSR_IA32_SYSENTER_EIP: |
| 3468 | msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); |
| 3469 | break; |
| 3470 | case MSR_IA32_SYSENTER_ESP: |
| 3471 | msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); |
| 3472 | break; |
| 3473 | case MSR_IA32_BNDCFGS: |
| 3474 | if (!kvm_mpx_supported() || |
| 3475 | (!msr_info->host_initiated && |
| 3476 | !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) |
| 3477 | return 1; |
| 3478 | msr_info->data = vmcs_read64(GUEST_BNDCFGS); |
| 3479 | break; |
| 3480 | case MSR_IA32_MCG_EXT_CTL: |
| 3481 | if (!msr_info->host_initiated && |
| 3482 | !(to_vmx(vcpu)->msr_ia32_feature_control & |
| 3483 | FEATURE_CONTROL_LMCE)) |
| 3484 | return 1; |
| 3485 | msr_info->data = vcpu->arch.mcg_ext_ctl; |
| 3486 | break; |
| 3487 | case MSR_IA32_FEATURE_CONTROL: |
| 3488 | msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control; |
| 3489 | break; |
| 3490 | case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: |
| 3491 | if (!nested_vmx_allowed(vcpu)) |
| 3492 | return 1; |
| 3493 | return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data); |
| 3494 | case MSR_IA32_XSS: |
| 3495 | if (!vmx_xsaves_supported()) |
| 3496 | return 1; |
| 3497 | msr_info->data = vcpu->arch.ia32_xss; |
| 3498 | break; |
| 3499 | case MSR_TSC_AUX: |
| 3500 | if (!msr_info->host_initiated && |
| 3501 | !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) |
| 3502 | return 1; |
| 3503 | /* Otherwise falls through */ |
| 3504 | default: |
| 3505 | msr = find_msr_entry(to_vmx(vcpu), msr_info->index); |
| 3506 | if (msr) { |
| 3507 | msr_info->data = msr->data; |
| 3508 | break; |
| 3509 | } |
| 3510 | return kvm_get_msr_common(vcpu, msr_info); |
| 3511 | } |
| 3512 | |
| 3513 | return 0; |
| 3514 | } |
| 3515 | |
| 3516 | static void vmx_leave_nested(struct kvm_vcpu *vcpu); |
| 3517 | |
| 3518 | /* |
| 3519 | * Writes msr value into into the appropriate "register". |
| 3520 | * Returns 0 on success, non-0 otherwise. |
| 3521 | * Assumes vcpu_load() was already called. |
| 3522 | */ |
| 3523 | static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| 3524 | { |
| 3525 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 3526 | struct shared_msr_entry *msr; |
| 3527 | int ret = 0; |
| 3528 | u32 msr_index = msr_info->index; |
| 3529 | u64 data = msr_info->data; |
| 3530 | |
| 3531 | switch (msr_index) { |
| 3532 | case MSR_EFER: |
| 3533 | ret = kvm_set_msr_common(vcpu, msr_info); |
| 3534 | break; |
| 3535 | #ifdef CONFIG_X86_64 |
| 3536 | case MSR_FS_BASE: |
| 3537 | vmx_segment_cache_clear(vmx); |
| 3538 | vmcs_writel(GUEST_FS_BASE, data); |
| 3539 | break; |
| 3540 | case MSR_GS_BASE: |
| 3541 | vmx_segment_cache_clear(vmx); |
| 3542 | vmcs_writel(GUEST_GS_BASE, data); |
| 3543 | break; |
| 3544 | case MSR_KERNEL_GS_BASE: |
| 3545 | vmx_load_host_state(vmx); |
| 3546 | vmx->msr_guest_kernel_gs_base = data; |
| 3547 | break; |
| 3548 | #endif |
| 3549 | case MSR_IA32_SYSENTER_CS: |
| 3550 | vmcs_write32(GUEST_SYSENTER_CS, data); |
| 3551 | break; |
| 3552 | case MSR_IA32_SYSENTER_EIP: |
| 3553 | vmcs_writel(GUEST_SYSENTER_EIP, data); |
| 3554 | break; |
| 3555 | case MSR_IA32_SYSENTER_ESP: |
| 3556 | vmcs_writel(GUEST_SYSENTER_ESP, data); |
| 3557 | break; |
| 3558 | case MSR_IA32_BNDCFGS: |
| 3559 | if (!kvm_mpx_supported() || |
| 3560 | (!msr_info->host_initiated && |
| 3561 | !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) |
| 3562 | return 1; |
| 3563 | if (is_noncanonical_address(data & PAGE_MASK, vcpu) || |
| 3564 | (data & MSR_IA32_BNDCFGS_RSVD)) |
| 3565 | return 1; |
| 3566 | vmcs_write64(GUEST_BNDCFGS, data); |
| 3567 | break; |
| 3568 | case MSR_IA32_TSC: |
| 3569 | kvm_write_tsc(vcpu, msr_info); |
| 3570 | break; |
| 3571 | case MSR_IA32_SPEC_CTRL: |
| 3572 | if (!msr_info->host_initiated && |
| 3573 | !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) |
| 3574 | return 1; |
| 3575 | |
| 3576 | /* The STIBP bit doesn't fault even if it's not advertised */ |
| 3577 | if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) |
| 3578 | return 1; |
| 3579 | |
| 3580 | vmx->spec_ctrl = data; |
| 3581 | |
| 3582 | if (!data) |
| 3583 | break; |
| 3584 | |
| 3585 | /* |
| 3586 | * For non-nested: |
| 3587 | * When it's written (to non-zero) for the first time, pass |
| 3588 | * it through. |
| 3589 | * |
| 3590 | * For nested: |
| 3591 | * The handling of the MSR bitmap for L2 guests is done in |
| 3592 | * nested_vmx_merge_msr_bitmap. We should not touch the |
| 3593 | * vmcs02.msr_bitmap here since it gets completely overwritten |
| 3594 | * in the merging. We update the vmcs01 here for L1 as well |
| 3595 | * since it will end up touching the MSR anyway now. |
| 3596 | */ |
| 3597 | vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, |
| 3598 | MSR_IA32_SPEC_CTRL, |
| 3599 | MSR_TYPE_RW); |
| 3600 | break; |
| 3601 | case MSR_IA32_PRED_CMD: |
| 3602 | if (!msr_info->host_initiated && |
| 3603 | !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) |
| 3604 | return 1; |
| 3605 | |
| 3606 | if (data & ~PRED_CMD_IBPB) |
| 3607 | return 1; |
| 3608 | |
| 3609 | if (!data) |
| 3610 | break; |
| 3611 | |
| 3612 | wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); |
| 3613 | |
| 3614 | /* |
| 3615 | * For non-nested: |
| 3616 | * When it's written (to non-zero) for the first time, pass |
| 3617 | * it through. |
| 3618 | * |
| 3619 | * For nested: |
| 3620 | * The handling of the MSR bitmap for L2 guests is done in |
| 3621 | * nested_vmx_merge_msr_bitmap. We should not touch the |
| 3622 | * vmcs02.msr_bitmap here since it gets completely overwritten |
| 3623 | * in the merging. |
| 3624 | */ |
| 3625 | vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, |
| 3626 | MSR_TYPE_W); |
| 3627 | break; |
| 3628 | case MSR_IA32_CR_PAT: |
| 3629 | if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { |
| 3630 | if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) |
| 3631 | return 1; |
| 3632 | vmcs_write64(GUEST_IA32_PAT, data); |
| 3633 | vcpu->arch.pat = data; |
| 3634 | break; |
| 3635 | } |
| 3636 | ret = kvm_set_msr_common(vcpu, msr_info); |
| 3637 | break; |
| 3638 | case MSR_IA32_TSC_ADJUST: |
| 3639 | ret = kvm_set_msr_common(vcpu, msr_info); |
| 3640 | break; |
| 3641 | case MSR_IA32_MCG_EXT_CTL: |
| 3642 | if ((!msr_info->host_initiated && |
| 3643 | !(to_vmx(vcpu)->msr_ia32_feature_control & |
| 3644 | FEATURE_CONTROL_LMCE)) || |
| 3645 | (data & ~MCG_EXT_CTL_LMCE_EN)) |
| 3646 | return 1; |
| 3647 | vcpu->arch.mcg_ext_ctl = data; |
| 3648 | break; |
| 3649 | case MSR_IA32_FEATURE_CONTROL: |
| 3650 | if (!vmx_feature_control_msr_valid(vcpu, data) || |
| 3651 | (to_vmx(vcpu)->msr_ia32_feature_control & |
| 3652 | FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) |
| 3653 | return 1; |
| 3654 | vmx->msr_ia32_feature_control = data; |
| 3655 | if (msr_info->host_initiated && data == 0) |
| 3656 | vmx_leave_nested(vcpu); |
| 3657 | break; |
| 3658 | case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: |
| 3659 | if (!msr_info->host_initiated) |
| 3660 | return 1; /* they are read-only */ |
| 3661 | if (!nested_vmx_allowed(vcpu)) |
| 3662 | return 1; |
| 3663 | return vmx_set_vmx_msr(vcpu, msr_index, data); |
| 3664 | case MSR_IA32_XSS: |
| 3665 | if (!vmx_xsaves_supported()) |
| 3666 | return 1; |
| 3667 | /* |
| 3668 | * The only supported bit as of Skylake is bit 8, but |
| 3669 | * it is not supported on KVM. |
| 3670 | */ |
| 3671 | if (data != 0) |
| 3672 | return 1; |
| 3673 | vcpu->arch.ia32_xss = data; |
| 3674 | if (vcpu->arch.ia32_xss != host_xss) |
| 3675 | add_atomic_switch_msr(vmx, MSR_IA32_XSS, |
| 3676 | vcpu->arch.ia32_xss, host_xss, false); |
| 3677 | else |
| 3678 | clear_atomic_switch_msr(vmx, MSR_IA32_XSS); |
| 3679 | break; |
| 3680 | case MSR_TSC_AUX: |
| 3681 | if (!msr_info->host_initiated && |
| 3682 | !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) |
| 3683 | return 1; |
| 3684 | /* Check reserved bit, higher 32 bits should be zero */ |
| 3685 | if ((data >> 32) != 0) |
| 3686 | return 1; |
| 3687 | /* Otherwise falls through */ |
| 3688 | default: |
| 3689 | msr = find_msr_entry(vmx, msr_index); |
| 3690 | if (msr) { |
| 3691 | u64 old_msr_data = msr->data; |
| 3692 | msr->data = data; |
| 3693 | if (msr - vmx->guest_msrs < vmx->save_nmsrs) { |
| 3694 | preempt_disable(); |
| 3695 | ret = kvm_set_shared_msr(msr->index, msr->data, |
| 3696 | msr->mask); |
| 3697 | preempt_enable(); |
| 3698 | if (ret) |
| 3699 | msr->data = old_msr_data; |
| 3700 | } |
| 3701 | break; |
| 3702 | } |
| 3703 | ret = kvm_set_msr_common(vcpu, msr_info); |
| 3704 | } |
| 3705 | |
| 3706 | return ret; |
| 3707 | } |
| 3708 | |
| 3709 | static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) |
| 3710 | { |
| 3711 | __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); |
| 3712 | switch (reg) { |
| 3713 | case VCPU_REGS_RSP: |
| 3714 | vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); |
| 3715 | break; |
| 3716 | case VCPU_REGS_RIP: |
| 3717 | vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); |
| 3718 | break; |
| 3719 | case VCPU_EXREG_PDPTR: |
| 3720 | if (enable_ept) |
| 3721 | ept_save_pdptrs(vcpu); |
| 3722 | break; |
| 3723 | default: |
| 3724 | break; |
| 3725 | } |
| 3726 | } |
| 3727 | |
| 3728 | static __init int cpu_has_kvm_support(void) |
| 3729 | { |
| 3730 | return cpu_has_vmx(); |
| 3731 | } |
| 3732 | |
| 3733 | static __init int vmx_disabled_by_bios(void) |
| 3734 | { |
| 3735 | u64 msr; |
| 3736 | |
| 3737 | rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); |
| 3738 | if (msr & FEATURE_CONTROL_LOCKED) { |
| 3739 | /* launched w/ TXT and VMX disabled */ |
| 3740 | if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) |
| 3741 | && tboot_enabled()) |
| 3742 | return 1; |
| 3743 | /* launched w/o TXT and VMX only enabled w/ TXT */ |
| 3744 | if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) |
| 3745 | && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) |
| 3746 | && !tboot_enabled()) { |
| 3747 | printk(KERN_WARNING "kvm: disable TXT in the BIOS or " |
| 3748 | "activate TXT before enabling KVM\n"); |
| 3749 | return 1; |
| 3750 | } |
| 3751 | /* launched w/o TXT and VMX disabled */ |
| 3752 | if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) |
| 3753 | && !tboot_enabled()) |
| 3754 | return 1; |
| 3755 | } |
| 3756 | |
| 3757 | return 0; |
| 3758 | } |
| 3759 | |
| 3760 | static void kvm_cpu_vmxon(u64 addr) |
| 3761 | { |
| 3762 | cr4_set_bits(X86_CR4_VMXE); |
| 3763 | intel_pt_handle_vmx(1); |
| 3764 | |
| 3765 | asm volatile (ASM_VMX_VMXON_RAX |
| 3766 | : : "a"(&addr), "m"(addr) |
| 3767 | : "memory", "cc"); |
| 3768 | } |
| 3769 | |
| 3770 | static int hardware_enable(void) |
| 3771 | { |
| 3772 | int cpu = raw_smp_processor_id(); |
| 3773 | u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); |
| 3774 | u64 old, test_bits; |
| 3775 | |
| 3776 | if (cr4_read_shadow() & X86_CR4_VMXE) |
| 3777 | return -EBUSY; |
| 3778 | |
| 3779 | rdmsrl(MSR_IA32_FEATURE_CONTROL, old); |
| 3780 | |
| 3781 | test_bits = FEATURE_CONTROL_LOCKED; |
| 3782 | test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; |
| 3783 | if (tboot_enabled()) |
| 3784 | test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; |
| 3785 | |
| 3786 | if ((old & test_bits) != test_bits) { |
| 3787 | /* enable and lock */ |
| 3788 | wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); |
| 3789 | } |
| 3790 | kvm_cpu_vmxon(phys_addr); |
| 3791 | ept_sync_global(); |
| 3792 | |
| 3793 | return 0; |
| 3794 | } |
| 3795 | |
| 3796 | static void vmclear_local_loaded_vmcss(void) |
| 3797 | { |
| 3798 | int cpu = raw_smp_processor_id(); |
| 3799 | struct loaded_vmcs *v, *n; |
| 3800 | |
| 3801 | list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), |
| 3802 | loaded_vmcss_on_cpu_link) |
| 3803 | __loaded_vmcs_clear(v); |
| 3804 | } |
| 3805 | |
| 3806 | |
| 3807 | /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() |
| 3808 | * tricks. |
| 3809 | */ |
| 3810 | static void kvm_cpu_vmxoff(void) |
| 3811 | { |
| 3812 | asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc"); |
| 3813 | |
| 3814 | intel_pt_handle_vmx(0); |
| 3815 | cr4_clear_bits(X86_CR4_VMXE); |
| 3816 | } |
| 3817 | |
| 3818 | static void hardware_disable(void) |
| 3819 | { |
| 3820 | vmclear_local_loaded_vmcss(); |
| 3821 | kvm_cpu_vmxoff(); |
| 3822 | } |
| 3823 | |
| 3824 | static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, |
| 3825 | u32 msr, u32 *result) |
| 3826 | { |
| 3827 | u32 vmx_msr_low, vmx_msr_high; |
| 3828 | u32 ctl = ctl_min | ctl_opt; |
| 3829 | |
| 3830 | rdmsr(msr, vmx_msr_low, vmx_msr_high); |
| 3831 | |
| 3832 | ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ |
| 3833 | ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ |
| 3834 | |
| 3835 | /* Ensure minimum (required) set of control bits are supported. */ |
| 3836 | if (ctl_min & ~ctl) |
| 3837 | return -EIO; |
| 3838 | |
| 3839 | *result = ctl; |
| 3840 | return 0; |
| 3841 | } |
| 3842 | |
| 3843 | static __init bool allow_1_setting(u32 msr, u32 ctl) |
| 3844 | { |
| 3845 | u32 vmx_msr_low, vmx_msr_high; |
| 3846 | |
| 3847 | rdmsr(msr, vmx_msr_low, vmx_msr_high); |
| 3848 | return vmx_msr_high & ctl; |
| 3849 | } |
| 3850 | |
| 3851 | static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) |
| 3852 | { |
| 3853 | u32 vmx_msr_low, vmx_msr_high; |
| 3854 | u32 min, opt, min2, opt2; |
| 3855 | u32 _pin_based_exec_control = 0; |
| 3856 | u32 _cpu_based_exec_control = 0; |
| 3857 | u32 _cpu_based_2nd_exec_control = 0; |
| 3858 | u32 _vmexit_control = 0; |
| 3859 | u32 _vmentry_control = 0; |
| 3860 | |
| 3861 | min = CPU_BASED_HLT_EXITING | |
| 3862 | #ifdef CONFIG_X86_64 |
| 3863 | CPU_BASED_CR8_LOAD_EXITING | |
| 3864 | CPU_BASED_CR8_STORE_EXITING | |
| 3865 | #endif |
| 3866 | CPU_BASED_CR3_LOAD_EXITING | |
| 3867 | CPU_BASED_CR3_STORE_EXITING | |
| 3868 | CPU_BASED_USE_IO_BITMAPS | |
| 3869 | CPU_BASED_MOV_DR_EXITING | |
| 3870 | CPU_BASED_USE_TSC_OFFSETING | |
| 3871 | CPU_BASED_INVLPG_EXITING | |
| 3872 | CPU_BASED_RDPMC_EXITING; |
| 3873 | |
| 3874 | if (!kvm_mwait_in_guest()) |
| 3875 | min |= CPU_BASED_MWAIT_EXITING | |
| 3876 | CPU_BASED_MONITOR_EXITING; |
| 3877 | |
| 3878 | opt = CPU_BASED_TPR_SHADOW | |
| 3879 | CPU_BASED_USE_MSR_BITMAPS | |
| 3880 | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
| 3881 | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, |
| 3882 | &_cpu_based_exec_control) < 0) |
| 3883 | return -EIO; |
| 3884 | #ifdef CONFIG_X86_64 |
| 3885 | if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) |
| 3886 | _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & |
| 3887 | ~CPU_BASED_CR8_STORE_EXITING; |
| 3888 | #endif |
| 3889 | if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { |
| 3890 | min2 = 0; |
| 3891 | opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
| 3892 | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | |
| 3893 | SECONDARY_EXEC_WBINVD_EXITING | |
| 3894 | SECONDARY_EXEC_ENABLE_VPID | |
| 3895 | SECONDARY_EXEC_ENABLE_EPT | |
| 3896 | SECONDARY_EXEC_UNRESTRICTED_GUEST | |
| 3897 | SECONDARY_EXEC_PAUSE_LOOP_EXITING | |
| 3898 | SECONDARY_EXEC_RDTSCP | |
| 3899 | SECONDARY_EXEC_ENABLE_INVPCID | |
| 3900 | SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| 3901 | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | |
| 3902 | SECONDARY_EXEC_SHADOW_VMCS | |
| 3903 | SECONDARY_EXEC_XSAVES | |
| 3904 | SECONDARY_EXEC_RDSEED | |
| 3905 | SECONDARY_EXEC_RDRAND | |
| 3906 | SECONDARY_EXEC_ENABLE_PML | |
| 3907 | SECONDARY_EXEC_TSC_SCALING | |
| 3908 | SECONDARY_EXEC_ENABLE_VMFUNC; |
| 3909 | if (adjust_vmx_controls(min2, opt2, |
| 3910 | MSR_IA32_VMX_PROCBASED_CTLS2, |
| 3911 | &_cpu_based_2nd_exec_control) < 0) |
| 3912 | return -EIO; |
| 3913 | } |
| 3914 | #ifndef CONFIG_X86_64 |
| 3915 | if (!(_cpu_based_2nd_exec_control & |
| 3916 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) |
| 3917 | _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; |
| 3918 | #endif |
| 3919 | |
| 3920 | if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) |
| 3921 | _cpu_based_2nd_exec_control &= ~( |
| 3922 | SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| 3923 | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | |
| 3924 | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); |
| 3925 | |
| 3926 | if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { |
| 3927 | /* CR3 accesses and invlpg don't need to cause VM Exits when EPT |
| 3928 | enabled */ |
| 3929 | _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | |
| 3930 | CPU_BASED_CR3_STORE_EXITING | |
| 3931 | CPU_BASED_INVLPG_EXITING); |
| 3932 | rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, |
| 3933 | vmx_capability.ept, vmx_capability.vpid); |
| 3934 | } |
| 3935 | |
| 3936 | min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; |
| 3937 | #ifdef CONFIG_X86_64 |
| 3938 | min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; |
| 3939 | #endif |
| 3940 | opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT | |
| 3941 | VM_EXIT_CLEAR_BNDCFGS; |
| 3942 | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, |
| 3943 | &_vmexit_control) < 0) |
| 3944 | return -EIO; |
| 3945 | |
| 3946 | min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; |
| 3947 | opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | |
| 3948 | PIN_BASED_VMX_PREEMPTION_TIMER; |
| 3949 | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, |
| 3950 | &_pin_based_exec_control) < 0) |
| 3951 | return -EIO; |
| 3952 | |
| 3953 | if (cpu_has_broken_vmx_preemption_timer()) |
| 3954 | _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; |
| 3955 | if (!(_cpu_based_2nd_exec_control & |
| 3956 | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) |
| 3957 | _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; |
| 3958 | |
| 3959 | min = VM_ENTRY_LOAD_DEBUG_CONTROLS; |
| 3960 | opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS; |
| 3961 | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, |
| 3962 | &_vmentry_control) < 0) |
| 3963 | return -EIO; |
| 3964 | |
| 3965 | rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); |
| 3966 | |
| 3967 | /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ |
| 3968 | if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) |
| 3969 | return -EIO; |
| 3970 | |
| 3971 | #ifdef CONFIG_X86_64 |
| 3972 | /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ |
| 3973 | if (vmx_msr_high & (1u<<16)) |
| 3974 | return -EIO; |
| 3975 | #endif |
| 3976 | |
| 3977 | /* Require Write-Back (WB) memory type for VMCS accesses. */ |
| 3978 | if (((vmx_msr_high >> 18) & 15) != 6) |
| 3979 | return -EIO; |
| 3980 | |
| 3981 | vmcs_conf->size = vmx_msr_high & 0x1fff; |
| 3982 | vmcs_conf->order = get_order(vmcs_conf->size); |
| 3983 | vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; |
| 3984 | vmcs_conf->revision_id = vmx_msr_low; |
| 3985 | |
| 3986 | vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; |
| 3987 | vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; |
| 3988 | vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; |
| 3989 | vmcs_conf->vmexit_ctrl = _vmexit_control; |
| 3990 | vmcs_conf->vmentry_ctrl = _vmentry_control; |
| 3991 | |
| 3992 | cpu_has_load_ia32_efer = |
| 3993 | allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, |
| 3994 | VM_ENTRY_LOAD_IA32_EFER) |
| 3995 | && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, |
| 3996 | VM_EXIT_LOAD_IA32_EFER); |
| 3997 | |
| 3998 | cpu_has_load_perf_global_ctrl = |
| 3999 | allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, |
| 4000 | VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) |
| 4001 | && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, |
| 4002 | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); |
| 4003 | |
| 4004 | /* |
| 4005 | * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL |
| 4006 | * but due to errata below it can't be used. Workaround is to use |
| 4007 | * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL. |
| 4008 | * |
| 4009 | * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32] |
| 4010 | * |
| 4011 | * AAK155 (model 26) |
| 4012 | * AAP115 (model 30) |
| 4013 | * AAT100 (model 37) |
| 4014 | * BC86,AAY89,BD102 (model 44) |
| 4015 | * BA97 (model 46) |
| 4016 | * |
| 4017 | */ |
| 4018 | if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) { |
| 4019 | switch (boot_cpu_data.x86_model) { |
| 4020 | case 26: |
| 4021 | case 30: |
| 4022 | case 37: |
| 4023 | case 44: |
| 4024 | case 46: |
| 4025 | cpu_has_load_perf_global_ctrl = false; |
| 4026 | printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " |
| 4027 | "does not work properly. Using workaround\n"); |
| 4028 | break; |
| 4029 | default: |
| 4030 | break; |
| 4031 | } |
| 4032 | } |
| 4033 | |
| 4034 | if (boot_cpu_has(X86_FEATURE_XSAVES)) |
| 4035 | rdmsrl(MSR_IA32_XSS, host_xss); |
| 4036 | |
| 4037 | return 0; |
| 4038 | } |
| 4039 | |
| 4040 | static struct vmcs *alloc_vmcs_cpu(int cpu) |
| 4041 | { |
| 4042 | int node = cpu_to_node(cpu); |
| 4043 | struct page *pages; |
| 4044 | struct vmcs *vmcs; |
| 4045 | |
| 4046 | pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order); |
| 4047 | if (!pages) |
| 4048 | return NULL; |
| 4049 | vmcs = page_address(pages); |
| 4050 | memset(vmcs, 0, vmcs_config.size); |
| 4051 | vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */ |
| 4052 | return vmcs; |
| 4053 | } |
| 4054 | |
| 4055 | static void free_vmcs(struct vmcs *vmcs) |
| 4056 | { |
| 4057 | free_pages((unsigned long)vmcs, vmcs_config.order); |
| 4058 | } |
| 4059 | |
| 4060 | /* |
| 4061 | * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded |
| 4062 | */ |
| 4063 | static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) |
| 4064 | { |
| 4065 | if (!loaded_vmcs->vmcs) |
| 4066 | return; |
| 4067 | loaded_vmcs_clear(loaded_vmcs); |
| 4068 | free_vmcs(loaded_vmcs->vmcs); |
| 4069 | loaded_vmcs->vmcs = NULL; |
| 4070 | if (loaded_vmcs->msr_bitmap) |
| 4071 | free_page((unsigned long)loaded_vmcs->msr_bitmap); |
| 4072 | WARN_ON(loaded_vmcs->shadow_vmcs != NULL); |
| 4073 | } |
| 4074 | |
| 4075 | static struct vmcs *alloc_vmcs(void) |
| 4076 | { |
| 4077 | return alloc_vmcs_cpu(raw_smp_processor_id()); |
| 4078 | } |
| 4079 | |
| 4080 | static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) |
| 4081 | { |
| 4082 | loaded_vmcs->vmcs = alloc_vmcs(); |
| 4083 | if (!loaded_vmcs->vmcs) |
| 4084 | return -ENOMEM; |
| 4085 | |
| 4086 | loaded_vmcs->shadow_vmcs = NULL; |
| 4087 | loaded_vmcs_init(loaded_vmcs); |
| 4088 | |
| 4089 | if (cpu_has_vmx_msr_bitmap()) { |
| 4090 | loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); |
| 4091 | if (!loaded_vmcs->msr_bitmap) |
| 4092 | goto out_vmcs; |
| 4093 | memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); |
| 4094 | } |
| 4095 | return 0; |
| 4096 | |
| 4097 | out_vmcs: |
| 4098 | free_loaded_vmcs(loaded_vmcs); |
| 4099 | return -ENOMEM; |
| 4100 | } |
| 4101 | |
| 4102 | static void free_kvm_area(void) |
| 4103 | { |
| 4104 | int cpu; |
| 4105 | |
| 4106 | for_each_possible_cpu(cpu) { |
| 4107 | free_vmcs(per_cpu(vmxarea, cpu)); |
| 4108 | per_cpu(vmxarea, cpu) = NULL; |
| 4109 | } |
| 4110 | } |
| 4111 | |
| 4112 | enum vmcs_field_type { |
| 4113 | VMCS_FIELD_TYPE_U16 = 0, |
| 4114 | VMCS_FIELD_TYPE_U64 = 1, |
| 4115 | VMCS_FIELD_TYPE_U32 = 2, |
| 4116 | VMCS_FIELD_TYPE_NATURAL_WIDTH = 3 |
| 4117 | }; |
| 4118 | |
| 4119 | static inline int vmcs_field_type(unsigned long field) |
| 4120 | { |
| 4121 | if (0x1 & field) /* the *_HIGH fields are all 32 bit */ |
| 4122 | return VMCS_FIELD_TYPE_U32; |
| 4123 | return (field >> 13) & 0x3 ; |
| 4124 | } |
| 4125 | |
| 4126 | static inline int vmcs_field_readonly(unsigned long field) |
| 4127 | { |
| 4128 | return (((field >> 10) & 0x3) == 1); |
| 4129 | } |
| 4130 | |
| 4131 | static void init_vmcs_shadow_fields(void) |
| 4132 | { |
| 4133 | int i, j; |
| 4134 | |
| 4135 | /* No checks for read only fields yet */ |
| 4136 | |
| 4137 | for (i = j = 0; i < max_shadow_read_write_fields; i++) { |
| 4138 | switch (shadow_read_write_fields[i]) { |
| 4139 | case GUEST_BNDCFGS: |
| 4140 | if (!kvm_mpx_supported()) |
| 4141 | continue; |
| 4142 | break; |
| 4143 | default: |
| 4144 | break; |
| 4145 | } |
| 4146 | |
| 4147 | if (j < i) |
| 4148 | shadow_read_write_fields[j] = |
| 4149 | shadow_read_write_fields[i]; |
| 4150 | j++; |
| 4151 | } |
| 4152 | max_shadow_read_write_fields = j; |
| 4153 | |
| 4154 | /* shadowed fields guest access without vmexit */ |
| 4155 | for (i = 0; i < max_shadow_read_write_fields; i++) { |
| 4156 | unsigned long field = shadow_read_write_fields[i]; |
| 4157 | |
| 4158 | clear_bit(field, vmx_vmwrite_bitmap); |
| 4159 | clear_bit(field, vmx_vmread_bitmap); |
| 4160 | if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) { |
| 4161 | clear_bit(field + 1, vmx_vmwrite_bitmap); |
| 4162 | clear_bit(field + 1, vmx_vmread_bitmap); |
| 4163 | } |
| 4164 | } |
| 4165 | for (i = 0; i < max_shadow_read_only_fields; i++) { |
| 4166 | unsigned long field = shadow_read_only_fields[i]; |
| 4167 | |
| 4168 | clear_bit(field, vmx_vmread_bitmap); |
| 4169 | if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) |
| 4170 | clear_bit(field + 1, vmx_vmread_bitmap); |
| 4171 | } |
| 4172 | } |
| 4173 | |
| 4174 | static __init int alloc_kvm_area(void) |
| 4175 | { |
| 4176 | int cpu; |
| 4177 | |
| 4178 | for_each_possible_cpu(cpu) { |
| 4179 | struct vmcs *vmcs; |
| 4180 | |
| 4181 | vmcs = alloc_vmcs_cpu(cpu); |
| 4182 | if (!vmcs) { |
| 4183 | free_kvm_area(); |
| 4184 | return -ENOMEM; |
| 4185 | } |
| 4186 | |
| 4187 | per_cpu(vmxarea, cpu) = vmcs; |
| 4188 | } |
| 4189 | return 0; |
| 4190 | } |
| 4191 | |
| 4192 | static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, |
| 4193 | struct kvm_segment *save) |
| 4194 | { |
| 4195 | if (!emulate_invalid_guest_state) { |
| 4196 | /* |
| 4197 | * CS and SS RPL should be equal during guest entry according |
| 4198 | * to VMX spec, but in reality it is not always so. Since vcpu |
| 4199 | * is in the middle of the transition from real mode to |
| 4200 | * protected mode it is safe to assume that RPL 0 is a good |
| 4201 | * default value. |
| 4202 | */ |
| 4203 | if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) |
| 4204 | save->selector &= ~SEGMENT_RPL_MASK; |
| 4205 | save->dpl = save->selector & SEGMENT_RPL_MASK; |
| 4206 | save->s = 1; |
| 4207 | } |
| 4208 | vmx_set_segment(vcpu, save, seg); |
| 4209 | } |
| 4210 | |
| 4211 | static void enter_pmode(struct kvm_vcpu *vcpu) |
| 4212 | { |
| 4213 | unsigned long flags; |
| 4214 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 4215 | |
| 4216 | /* |
| 4217 | * Update real mode segment cache. It may be not up-to-date if sement |
| 4218 | * register was written while vcpu was in a guest mode. |
| 4219 | */ |
| 4220 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); |
| 4221 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); |
| 4222 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); |
| 4223 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); |
| 4224 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); |
| 4225 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); |
| 4226 | |
| 4227 | vmx->rmode.vm86_active = 0; |
| 4228 | |
| 4229 | vmx_segment_cache_clear(vmx); |
| 4230 | |
| 4231 | vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); |
| 4232 | |
| 4233 | flags = vmcs_readl(GUEST_RFLAGS); |
| 4234 | flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; |
| 4235 | flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; |
| 4236 | vmcs_writel(GUEST_RFLAGS, flags); |
| 4237 | |
| 4238 | vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | |
| 4239 | (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); |
| 4240 | |
| 4241 | update_exception_bitmap(vcpu); |
| 4242 | |
| 4243 | fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); |
| 4244 | fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); |
| 4245 | fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); |
| 4246 | fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); |
| 4247 | fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); |
| 4248 | fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); |
| 4249 | } |
| 4250 | |
| 4251 | static void fix_rmode_seg(int seg, struct kvm_segment *save) |
| 4252 | { |
| 4253 | const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| 4254 | struct kvm_segment var = *save; |
| 4255 | |
| 4256 | var.dpl = 0x3; |
| 4257 | if (seg == VCPU_SREG_CS) |
| 4258 | var.type = 0x3; |
| 4259 | |
| 4260 | if (!emulate_invalid_guest_state) { |
| 4261 | var.selector = var.base >> 4; |
| 4262 | var.base = var.base & 0xffff0; |
| 4263 | var.limit = 0xffff; |
| 4264 | var.g = 0; |
| 4265 | var.db = 0; |
| 4266 | var.present = 1; |
| 4267 | var.s = 1; |
| 4268 | var.l = 0; |
| 4269 | var.unusable = 0; |
| 4270 | var.type = 0x3; |
| 4271 | var.avl = 0; |
| 4272 | if (save->base & 0xf) |
| 4273 | printk_once(KERN_WARNING "kvm: segment base is not " |
| 4274 | "paragraph aligned when entering " |
| 4275 | "protected mode (seg=%d)", seg); |
| 4276 | } |
| 4277 | |
| 4278 | vmcs_write16(sf->selector, var.selector); |
| 4279 | vmcs_writel(sf->base, var.base); |
| 4280 | vmcs_write32(sf->limit, var.limit); |
| 4281 | vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); |
| 4282 | } |
| 4283 | |
| 4284 | static void enter_rmode(struct kvm_vcpu *vcpu) |
| 4285 | { |
| 4286 | unsigned long flags; |
| 4287 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 4288 | |
| 4289 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); |
| 4290 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); |
| 4291 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); |
| 4292 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); |
| 4293 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); |
| 4294 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); |
| 4295 | vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); |
| 4296 | |
| 4297 | vmx->rmode.vm86_active = 1; |
| 4298 | |
| 4299 | /* |
| 4300 | * Very old userspace does not call KVM_SET_TSS_ADDR before entering |
| 4301 | * vcpu. Warn the user that an update is overdue. |
| 4302 | */ |
| 4303 | if (!vcpu->kvm->arch.tss_addr) |
| 4304 | printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " |
| 4305 | "called before entering vcpu\n"); |
| 4306 | |
| 4307 | vmx_segment_cache_clear(vmx); |
| 4308 | |
| 4309 | vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr); |
| 4310 | vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); |
| 4311 | vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); |
| 4312 | |
| 4313 | flags = vmcs_readl(GUEST_RFLAGS); |
| 4314 | vmx->rmode.save_rflags = flags; |
| 4315 | |
| 4316 | flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; |
| 4317 | |
| 4318 | vmcs_writel(GUEST_RFLAGS, flags); |
| 4319 | vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); |
| 4320 | update_exception_bitmap(vcpu); |
| 4321 | |
| 4322 | fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); |
| 4323 | fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); |
| 4324 | fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); |
| 4325 | fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); |
| 4326 | fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); |
| 4327 | fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); |
| 4328 | |
| 4329 | kvm_mmu_reset_context(vcpu); |
| 4330 | } |
| 4331 | |
| 4332 | static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) |
| 4333 | { |
| 4334 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 4335 | struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); |
| 4336 | |
| 4337 | if (!msr) |
| 4338 | return; |
| 4339 | |
| 4340 | /* |
| 4341 | * Force kernel_gs_base reloading before EFER changes, as control |
| 4342 | * of this msr depends on is_long_mode(). |
| 4343 | */ |
| 4344 | vmx_load_host_state(to_vmx(vcpu)); |
| 4345 | vcpu->arch.efer = efer; |
| 4346 | if (efer & EFER_LMA) { |
| 4347 | vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); |
| 4348 | msr->data = efer; |
| 4349 | } else { |
| 4350 | vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); |
| 4351 | |
| 4352 | msr->data = efer & ~EFER_LME; |
| 4353 | } |
| 4354 | setup_msrs(vmx); |
| 4355 | } |
| 4356 | |
| 4357 | #ifdef CONFIG_X86_64 |
| 4358 | |
| 4359 | static void enter_lmode(struct kvm_vcpu *vcpu) |
| 4360 | { |
| 4361 | u32 guest_tr_ar; |
| 4362 | |
| 4363 | vmx_segment_cache_clear(to_vmx(vcpu)); |
| 4364 | |
| 4365 | guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); |
| 4366 | if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { |
| 4367 | pr_debug_ratelimited("%s: tss fixup for long mode. \n", |
| 4368 | __func__); |
| 4369 | vmcs_write32(GUEST_TR_AR_BYTES, |
| 4370 | (guest_tr_ar & ~VMX_AR_TYPE_MASK) |
| 4371 | | VMX_AR_TYPE_BUSY_64_TSS); |
| 4372 | } |
| 4373 | vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); |
| 4374 | } |
| 4375 | |
| 4376 | static void exit_lmode(struct kvm_vcpu *vcpu) |
| 4377 | { |
| 4378 | vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); |
| 4379 | vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); |
| 4380 | } |
| 4381 | |
| 4382 | #endif |
| 4383 | |
| 4384 | static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid, |
| 4385 | bool invalidate_gpa) |
| 4386 | { |
| 4387 | if (enable_ept && (invalidate_gpa || !enable_vpid)) { |
| 4388 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| 4389 | return; |
| 4390 | ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa)); |
| 4391 | } else { |
| 4392 | vpid_sync_context(vpid); |
| 4393 | } |
| 4394 | } |
| 4395 | |
| 4396 | static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) |
| 4397 | { |
| 4398 | __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa); |
| 4399 | } |
| 4400 | |
| 4401 | static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) |
| 4402 | { |
| 4403 | ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; |
| 4404 | |
| 4405 | vcpu->arch.cr0 &= ~cr0_guest_owned_bits; |
| 4406 | vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; |
| 4407 | } |
| 4408 | |
| 4409 | static void vmx_decache_cr3(struct kvm_vcpu *vcpu) |
| 4410 | { |
| 4411 | if (enable_ept && is_paging(vcpu)) |
| 4412 | vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); |
| 4413 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
| 4414 | } |
| 4415 | |
| 4416 | static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) |
| 4417 | { |
| 4418 | ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; |
| 4419 | |
| 4420 | vcpu->arch.cr4 &= ~cr4_guest_owned_bits; |
| 4421 | vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; |
| 4422 | } |
| 4423 | |
| 4424 | static void ept_load_pdptrs(struct kvm_vcpu *vcpu) |
| 4425 | { |
| 4426 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| 4427 | |
| 4428 | if (!test_bit(VCPU_EXREG_PDPTR, |
| 4429 | (unsigned long *)&vcpu->arch.regs_dirty)) |
| 4430 | return; |
| 4431 | |
| 4432 | if (is_pae_paging(vcpu)) { |
| 4433 | vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); |
| 4434 | vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); |
| 4435 | vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); |
| 4436 | vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); |
| 4437 | } |
| 4438 | } |
| 4439 | |
| 4440 | static void ept_save_pdptrs(struct kvm_vcpu *vcpu) |
| 4441 | { |
| 4442 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| 4443 | |
| 4444 | if (is_pae_paging(vcpu)) { |
| 4445 | mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); |
| 4446 | mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); |
| 4447 | mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); |
| 4448 | mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); |
| 4449 | } |
| 4450 | |
| 4451 | __set_bit(VCPU_EXREG_PDPTR, |
| 4452 | (unsigned long *)&vcpu->arch.regs_avail); |
| 4453 | __set_bit(VCPU_EXREG_PDPTR, |
| 4454 | (unsigned long *)&vcpu->arch.regs_dirty); |
| 4455 | } |
| 4456 | |
| 4457 | static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) |
| 4458 | { |
| 4459 | u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0; |
| 4460 | u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1; |
| 4461 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 4462 | |
| 4463 | if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high & |
| 4464 | SECONDARY_EXEC_UNRESTRICTED_GUEST && |
| 4465 | nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) |
| 4466 | fixed0 &= ~(X86_CR0_PE | X86_CR0_PG); |
| 4467 | |
| 4468 | return fixed_bits_valid(val, fixed0, fixed1); |
| 4469 | } |
| 4470 | |
| 4471 | static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) |
| 4472 | { |
| 4473 | u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0; |
| 4474 | u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1; |
| 4475 | |
| 4476 | return fixed_bits_valid(val, fixed0, fixed1); |
| 4477 | } |
| 4478 | |
| 4479 | static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val) |
| 4480 | { |
| 4481 | u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0; |
| 4482 | u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1; |
| 4483 | |
| 4484 | return fixed_bits_valid(val, fixed0, fixed1); |
| 4485 | } |
| 4486 | |
| 4487 | /* No difference in the restrictions on guest and host CR4 in VMX operation. */ |
| 4488 | #define nested_guest_cr4_valid nested_cr4_valid |
| 4489 | #define nested_host_cr4_valid nested_cr4_valid |
| 4490 | |
| 4491 | static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); |
| 4492 | |
| 4493 | static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, |
| 4494 | unsigned long cr0, |
| 4495 | struct kvm_vcpu *vcpu) |
| 4496 | { |
| 4497 | if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) |
| 4498 | vmx_decache_cr3(vcpu); |
| 4499 | if (!(cr0 & X86_CR0_PG)) { |
| 4500 | /* From paging/starting to nonpaging */ |
| 4501 | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, |
| 4502 | vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | |
| 4503 | (CPU_BASED_CR3_LOAD_EXITING | |
| 4504 | CPU_BASED_CR3_STORE_EXITING)); |
| 4505 | vcpu->arch.cr0 = cr0; |
| 4506 | vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); |
| 4507 | } else if (!is_paging(vcpu)) { |
| 4508 | /* From nonpaging to paging */ |
| 4509 | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, |
| 4510 | vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & |
| 4511 | ~(CPU_BASED_CR3_LOAD_EXITING | |
| 4512 | CPU_BASED_CR3_STORE_EXITING)); |
| 4513 | vcpu->arch.cr0 = cr0; |
| 4514 | vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); |
| 4515 | } |
| 4516 | |
| 4517 | if (!(cr0 & X86_CR0_WP)) |
| 4518 | *hw_cr0 &= ~X86_CR0_WP; |
| 4519 | } |
| 4520 | |
| 4521 | static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
| 4522 | { |
| 4523 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 4524 | unsigned long hw_cr0; |
| 4525 | |
| 4526 | hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK); |
| 4527 | if (enable_unrestricted_guest) |
| 4528 | hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; |
| 4529 | else { |
| 4530 | hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; |
| 4531 | |
| 4532 | if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) |
| 4533 | enter_pmode(vcpu); |
| 4534 | |
| 4535 | if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) |
| 4536 | enter_rmode(vcpu); |
| 4537 | } |
| 4538 | |
| 4539 | #ifdef CONFIG_X86_64 |
| 4540 | if (vcpu->arch.efer & EFER_LME) { |
| 4541 | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) |
| 4542 | enter_lmode(vcpu); |
| 4543 | if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) |
| 4544 | exit_lmode(vcpu); |
| 4545 | } |
| 4546 | #endif |
| 4547 | |
| 4548 | if (enable_ept) |
| 4549 | ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); |
| 4550 | |
| 4551 | vmcs_writel(CR0_READ_SHADOW, cr0); |
| 4552 | vmcs_writel(GUEST_CR0, hw_cr0); |
| 4553 | vcpu->arch.cr0 = cr0; |
| 4554 | |
| 4555 | /* depends on vcpu->arch.cr0 to be set to a new value */ |
| 4556 | vmx->emulation_required = emulation_required(vcpu); |
| 4557 | } |
| 4558 | |
| 4559 | static int get_ept_level(struct kvm_vcpu *vcpu) |
| 4560 | { |
| 4561 | /* Nested EPT currently only supports 4-level walks. */ |
| 4562 | if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu))) |
| 4563 | return 4; |
| 4564 | if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) |
| 4565 | return 5; |
| 4566 | return 4; |
| 4567 | } |
| 4568 | |
| 4569 | static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) |
| 4570 | { |
| 4571 | u64 eptp = VMX_EPTP_MT_WB; |
| 4572 | |
| 4573 | eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; |
| 4574 | |
| 4575 | if (enable_ept_ad_bits && |
| 4576 | (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) |
| 4577 | eptp |= VMX_EPTP_AD_ENABLE_BIT; |
| 4578 | eptp |= (root_hpa & PAGE_MASK); |
| 4579 | |
| 4580 | return eptp; |
| 4581 | } |
| 4582 | |
| 4583 | static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
| 4584 | { |
| 4585 | unsigned long guest_cr3; |
| 4586 | u64 eptp; |
| 4587 | |
| 4588 | guest_cr3 = cr3; |
| 4589 | if (enable_ept) { |
| 4590 | eptp = construct_eptp(vcpu, cr3); |
| 4591 | vmcs_write64(EPT_POINTER, eptp); |
| 4592 | if (is_paging(vcpu) || is_guest_mode(vcpu)) |
| 4593 | guest_cr3 = kvm_read_cr3(vcpu); |
| 4594 | else |
| 4595 | guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr; |
| 4596 | ept_load_pdptrs(vcpu); |
| 4597 | } |
| 4598 | |
| 4599 | vmx_flush_tlb(vcpu, true); |
| 4600 | vmcs_writel(GUEST_CR3, guest_cr3); |
| 4601 | } |
| 4602 | |
| 4603 | static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
| 4604 | { |
| 4605 | /* |
| 4606 | * Pass through host's Machine Check Enable value to hw_cr4, which |
| 4607 | * is in force while we are in guest mode. Do not let guests control |
| 4608 | * this bit, even if host CR4.MCE == 0. |
| 4609 | */ |
| 4610 | unsigned long hw_cr4 = |
| 4611 | (cr4_read_shadow() & X86_CR4_MCE) | |
| 4612 | (cr4 & ~X86_CR4_MCE) | |
| 4613 | (to_vmx(vcpu)->rmode.vm86_active ? |
| 4614 | KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON); |
| 4615 | |
| 4616 | if (cr4 & X86_CR4_VMXE) { |
| 4617 | /* |
| 4618 | * To use VMXON (and later other VMX instructions), a guest |
| 4619 | * must first be able to turn on cr4.VMXE (see handle_vmon()). |
| 4620 | * So basically the check on whether to allow nested VMX |
| 4621 | * is here. |
| 4622 | */ |
| 4623 | if (!nested_vmx_allowed(vcpu)) |
| 4624 | return 1; |
| 4625 | } |
| 4626 | |
| 4627 | if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) |
| 4628 | return 1; |
| 4629 | |
| 4630 | vcpu->arch.cr4 = cr4; |
| 4631 | if (enable_ept) { |
| 4632 | if (!is_paging(vcpu)) { |
| 4633 | hw_cr4 &= ~X86_CR4_PAE; |
| 4634 | hw_cr4 |= X86_CR4_PSE; |
| 4635 | } else if (!(cr4 & X86_CR4_PAE)) { |
| 4636 | hw_cr4 &= ~X86_CR4_PAE; |
| 4637 | } |
| 4638 | } |
| 4639 | |
| 4640 | if (!enable_unrestricted_guest && !is_paging(vcpu)) |
| 4641 | /* |
| 4642 | * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in |
| 4643 | * hardware. To emulate this behavior, SMEP/SMAP/PKU needs |
| 4644 | * to be manually disabled when guest switches to non-paging |
| 4645 | * mode. |
| 4646 | * |
| 4647 | * If !enable_unrestricted_guest, the CPU is always running |
| 4648 | * with CR0.PG=1 and CR4 needs to be modified. |
| 4649 | * If enable_unrestricted_guest, the CPU automatically |
| 4650 | * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. |
| 4651 | */ |
| 4652 | hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); |
| 4653 | |
| 4654 | vmcs_writel(CR4_READ_SHADOW, cr4); |
| 4655 | vmcs_writel(GUEST_CR4, hw_cr4); |
| 4656 | return 0; |
| 4657 | } |
| 4658 | |
| 4659 | static void vmx_get_segment(struct kvm_vcpu *vcpu, |
| 4660 | struct kvm_segment *var, int seg) |
| 4661 | { |
| 4662 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 4663 | u32 ar; |
| 4664 | |
| 4665 | if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { |
| 4666 | *var = vmx->rmode.segs[seg]; |
| 4667 | if (seg == VCPU_SREG_TR |
| 4668 | || var->selector == vmx_read_guest_seg_selector(vmx, seg)) |
| 4669 | return; |
| 4670 | var->base = vmx_read_guest_seg_base(vmx, seg); |
| 4671 | var->selector = vmx_read_guest_seg_selector(vmx, seg); |
| 4672 | return; |
| 4673 | } |
| 4674 | var->base = vmx_read_guest_seg_base(vmx, seg); |
| 4675 | var->limit = vmx_read_guest_seg_limit(vmx, seg); |
| 4676 | var->selector = vmx_read_guest_seg_selector(vmx, seg); |
| 4677 | ar = vmx_read_guest_seg_ar(vmx, seg); |
| 4678 | var->unusable = (ar >> 16) & 1; |
| 4679 | var->type = ar & 15; |
| 4680 | var->s = (ar >> 4) & 1; |
| 4681 | var->dpl = (ar >> 5) & 3; |
| 4682 | /* |
| 4683 | * Some userspaces do not preserve unusable property. Since usable |
| 4684 | * segment has to be present according to VMX spec we can use present |
| 4685 | * property to amend userspace bug by making unusable segment always |
| 4686 | * nonpresent. vmx_segment_access_rights() already marks nonpresent |
| 4687 | * segment as unusable. |
| 4688 | */ |
| 4689 | var->present = !var->unusable; |
| 4690 | var->avl = (ar >> 12) & 1; |
| 4691 | var->l = (ar >> 13) & 1; |
| 4692 | var->db = (ar >> 14) & 1; |
| 4693 | var->g = (ar >> 15) & 1; |
| 4694 | } |
| 4695 | |
| 4696 | static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) |
| 4697 | { |
| 4698 | struct kvm_segment s; |
| 4699 | |
| 4700 | if (to_vmx(vcpu)->rmode.vm86_active) { |
| 4701 | vmx_get_segment(vcpu, &s, seg); |
| 4702 | return s.base; |
| 4703 | } |
| 4704 | return vmx_read_guest_seg_base(to_vmx(vcpu), seg); |
| 4705 | } |
| 4706 | |
| 4707 | static int vmx_get_cpl(struct kvm_vcpu *vcpu) |
| 4708 | { |
| 4709 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 4710 | |
| 4711 | if (unlikely(vmx->rmode.vm86_active)) |
| 4712 | return 0; |
| 4713 | else { |
| 4714 | int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); |
| 4715 | return VMX_AR_DPL(ar); |
| 4716 | } |
| 4717 | } |
| 4718 | |
| 4719 | static u32 vmx_segment_access_rights(struct kvm_segment *var) |
| 4720 | { |
| 4721 | u32 ar; |
| 4722 | |
| 4723 | if (var->unusable || !var->present) |
| 4724 | ar = 1 << 16; |
| 4725 | else { |
| 4726 | ar = var->type & 15; |
| 4727 | ar |= (var->s & 1) << 4; |
| 4728 | ar |= (var->dpl & 3) << 5; |
| 4729 | ar |= (var->present & 1) << 7; |
| 4730 | ar |= (var->avl & 1) << 12; |
| 4731 | ar |= (var->l & 1) << 13; |
| 4732 | ar |= (var->db & 1) << 14; |
| 4733 | ar |= (var->g & 1) << 15; |
| 4734 | } |
| 4735 | |
| 4736 | return ar; |
| 4737 | } |
| 4738 | |
| 4739 | static void vmx_set_segment(struct kvm_vcpu *vcpu, |
| 4740 | struct kvm_segment *var, int seg) |
| 4741 | { |
| 4742 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 4743 | const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| 4744 | |
| 4745 | vmx_segment_cache_clear(vmx); |
| 4746 | |
| 4747 | if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { |
| 4748 | vmx->rmode.segs[seg] = *var; |
| 4749 | if (seg == VCPU_SREG_TR) |
| 4750 | vmcs_write16(sf->selector, var->selector); |
| 4751 | else if (var->s) |
| 4752 | fix_rmode_seg(seg, &vmx->rmode.segs[seg]); |
| 4753 | goto out; |
| 4754 | } |
| 4755 | |
| 4756 | vmcs_writel(sf->base, var->base); |
| 4757 | vmcs_write32(sf->limit, var->limit); |
| 4758 | vmcs_write16(sf->selector, var->selector); |
| 4759 | |
| 4760 | /* |
| 4761 | * Fix the "Accessed" bit in AR field of segment registers for older |
| 4762 | * qemu binaries. |
| 4763 | * IA32 arch specifies that at the time of processor reset the |
| 4764 | * "Accessed" bit in the AR field of segment registers is 1. And qemu |
| 4765 | * is setting it to 0 in the userland code. This causes invalid guest |
| 4766 | * state vmexit when "unrestricted guest" mode is turned on. |
| 4767 | * Fix for this setup issue in cpu_reset is being pushed in the qemu |
| 4768 | * tree. Newer qemu binaries with that qemu fix would not need this |
| 4769 | * kvm hack. |
| 4770 | */ |
| 4771 | if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) |
| 4772 | var->type |= 0x1; /* Accessed */ |
| 4773 | |
| 4774 | vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); |
| 4775 | |
| 4776 | out: |
| 4777 | vmx->emulation_required = emulation_required(vcpu); |
| 4778 | } |
| 4779 | |
| 4780 | static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) |
| 4781 | { |
| 4782 | u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); |
| 4783 | |
| 4784 | *db = (ar >> 14) & 1; |
| 4785 | *l = (ar >> 13) & 1; |
| 4786 | } |
| 4787 | |
| 4788 | static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 4789 | { |
| 4790 | dt->size = vmcs_read32(GUEST_IDTR_LIMIT); |
| 4791 | dt->address = vmcs_readl(GUEST_IDTR_BASE); |
| 4792 | } |
| 4793 | |
| 4794 | static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 4795 | { |
| 4796 | vmcs_write32(GUEST_IDTR_LIMIT, dt->size); |
| 4797 | vmcs_writel(GUEST_IDTR_BASE, dt->address); |
| 4798 | } |
| 4799 | |
| 4800 | static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 4801 | { |
| 4802 | dt->size = vmcs_read32(GUEST_GDTR_LIMIT); |
| 4803 | dt->address = vmcs_readl(GUEST_GDTR_BASE); |
| 4804 | } |
| 4805 | |
| 4806 | static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) |
| 4807 | { |
| 4808 | vmcs_write32(GUEST_GDTR_LIMIT, dt->size); |
| 4809 | vmcs_writel(GUEST_GDTR_BASE, dt->address); |
| 4810 | } |
| 4811 | |
| 4812 | static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) |
| 4813 | { |
| 4814 | struct kvm_segment var; |
| 4815 | u32 ar; |
| 4816 | |
| 4817 | vmx_get_segment(vcpu, &var, seg); |
| 4818 | var.dpl = 0x3; |
| 4819 | if (seg == VCPU_SREG_CS) |
| 4820 | var.type = 0x3; |
| 4821 | ar = vmx_segment_access_rights(&var); |
| 4822 | |
| 4823 | if (var.base != (var.selector << 4)) |
| 4824 | return false; |
| 4825 | if (var.limit != 0xffff) |
| 4826 | return false; |
| 4827 | if (ar != 0xf3) |
| 4828 | return false; |
| 4829 | |
| 4830 | return true; |
| 4831 | } |
| 4832 | |
| 4833 | static bool code_segment_valid(struct kvm_vcpu *vcpu) |
| 4834 | { |
| 4835 | struct kvm_segment cs; |
| 4836 | unsigned int cs_rpl; |
| 4837 | |
| 4838 | vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| 4839 | cs_rpl = cs.selector & SEGMENT_RPL_MASK; |
| 4840 | |
| 4841 | if (cs.unusable) |
| 4842 | return false; |
| 4843 | if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) |
| 4844 | return false; |
| 4845 | if (!cs.s) |
| 4846 | return false; |
| 4847 | if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { |
| 4848 | if (cs.dpl > cs_rpl) |
| 4849 | return false; |
| 4850 | } else { |
| 4851 | if (cs.dpl != cs_rpl) |
| 4852 | return false; |
| 4853 | } |
| 4854 | if (!cs.present) |
| 4855 | return false; |
| 4856 | |
| 4857 | /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ |
| 4858 | return true; |
| 4859 | } |
| 4860 | |
| 4861 | static bool stack_segment_valid(struct kvm_vcpu *vcpu) |
| 4862 | { |
| 4863 | struct kvm_segment ss; |
| 4864 | unsigned int ss_rpl; |
| 4865 | |
| 4866 | vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); |
| 4867 | ss_rpl = ss.selector & SEGMENT_RPL_MASK; |
| 4868 | |
| 4869 | if (ss.unusable) |
| 4870 | return true; |
| 4871 | if (ss.type != 3 && ss.type != 7) |
| 4872 | return false; |
| 4873 | if (!ss.s) |
| 4874 | return false; |
| 4875 | if (ss.dpl != ss_rpl) /* DPL != RPL */ |
| 4876 | return false; |
| 4877 | if (!ss.present) |
| 4878 | return false; |
| 4879 | |
| 4880 | return true; |
| 4881 | } |
| 4882 | |
| 4883 | static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) |
| 4884 | { |
| 4885 | struct kvm_segment var; |
| 4886 | unsigned int rpl; |
| 4887 | |
| 4888 | vmx_get_segment(vcpu, &var, seg); |
| 4889 | rpl = var.selector & SEGMENT_RPL_MASK; |
| 4890 | |
| 4891 | if (var.unusable) |
| 4892 | return true; |
| 4893 | if (!var.s) |
| 4894 | return false; |
| 4895 | if (!var.present) |
| 4896 | return false; |
| 4897 | if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { |
| 4898 | if (var.dpl < rpl) /* DPL < RPL */ |
| 4899 | return false; |
| 4900 | } |
| 4901 | |
| 4902 | /* TODO: Add other members to kvm_segment_field to allow checking for other access |
| 4903 | * rights flags |
| 4904 | */ |
| 4905 | return true; |
| 4906 | } |
| 4907 | |
| 4908 | static bool tr_valid(struct kvm_vcpu *vcpu) |
| 4909 | { |
| 4910 | struct kvm_segment tr; |
| 4911 | |
| 4912 | vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); |
| 4913 | |
| 4914 | if (tr.unusable) |
| 4915 | return false; |
| 4916 | if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ |
| 4917 | return false; |
| 4918 | if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ |
| 4919 | return false; |
| 4920 | if (!tr.present) |
| 4921 | return false; |
| 4922 | |
| 4923 | return true; |
| 4924 | } |
| 4925 | |
| 4926 | static bool ldtr_valid(struct kvm_vcpu *vcpu) |
| 4927 | { |
| 4928 | struct kvm_segment ldtr; |
| 4929 | |
| 4930 | vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); |
| 4931 | |
| 4932 | if (ldtr.unusable) |
| 4933 | return true; |
| 4934 | if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ |
| 4935 | return false; |
| 4936 | if (ldtr.type != 2) |
| 4937 | return false; |
| 4938 | if (!ldtr.present) |
| 4939 | return false; |
| 4940 | |
| 4941 | return true; |
| 4942 | } |
| 4943 | |
| 4944 | static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) |
| 4945 | { |
| 4946 | struct kvm_segment cs, ss; |
| 4947 | |
| 4948 | vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); |
| 4949 | vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); |
| 4950 | |
| 4951 | return ((cs.selector & SEGMENT_RPL_MASK) == |
| 4952 | (ss.selector & SEGMENT_RPL_MASK)); |
| 4953 | } |
| 4954 | |
| 4955 | static bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, |
| 4956 | unsigned int port, int size); |
| 4957 | static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, |
| 4958 | struct vmcs12 *vmcs12) |
| 4959 | { |
| 4960 | unsigned long exit_qualification; |
| 4961 | unsigned short port; |
| 4962 | int size; |
| 4963 | |
| 4964 | if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) |
| 4965 | return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); |
| 4966 | |
| 4967 | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 4968 | |
| 4969 | port = exit_qualification >> 16; |
| 4970 | size = (exit_qualification & 7) + 1; |
| 4971 | |
| 4972 | return nested_vmx_check_io_bitmaps(vcpu, port, size); |
| 4973 | } |
| 4974 | |
| 4975 | /* |
| 4976 | * Check if guest state is valid. Returns true if valid, false if |
| 4977 | * not. |
| 4978 | * We assume that registers are always usable |
| 4979 | */ |
| 4980 | static bool guest_state_valid(struct kvm_vcpu *vcpu) |
| 4981 | { |
| 4982 | if (enable_unrestricted_guest) |
| 4983 | return true; |
| 4984 | |
| 4985 | /* real mode guest state checks */ |
| 4986 | if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { |
| 4987 | if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) |
| 4988 | return false; |
| 4989 | if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) |
| 4990 | return false; |
| 4991 | if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) |
| 4992 | return false; |
| 4993 | if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) |
| 4994 | return false; |
| 4995 | if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) |
| 4996 | return false; |
| 4997 | if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) |
| 4998 | return false; |
| 4999 | } else { |
| 5000 | /* protected mode guest state checks */ |
| 5001 | if (!cs_ss_rpl_check(vcpu)) |
| 5002 | return false; |
| 5003 | if (!code_segment_valid(vcpu)) |
| 5004 | return false; |
| 5005 | if (!stack_segment_valid(vcpu)) |
| 5006 | return false; |
| 5007 | if (!data_segment_valid(vcpu, VCPU_SREG_DS)) |
| 5008 | return false; |
| 5009 | if (!data_segment_valid(vcpu, VCPU_SREG_ES)) |
| 5010 | return false; |
| 5011 | if (!data_segment_valid(vcpu, VCPU_SREG_FS)) |
| 5012 | return false; |
| 5013 | if (!data_segment_valid(vcpu, VCPU_SREG_GS)) |
| 5014 | return false; |
| 5015 | if (!tr_valid(vcpu)) |
| 5016 | return false; |
| 5017 | if (!ldtr_valid(vcpu)) |
| 5018 | return false; |
| 5019 | } |
| 5020 | /* TODO: |
| 5021 | * - Add checks on RIP |
| 5022 | * - Add checks on RFLAGS |
| 5023 | */ |
| 5024 | |
| 5025 | return true; |
| 5026 | } |
| 5027 | |
| 5028 | static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) |
| 5029 | { |
| 5030 | return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); |
| 5031 | } |
| 5032 | |
| 5033 | static int init_rmode_tss(struct kvm *kvm) |
| 5034 | { |
| 5035 | gfn_t fn; |
| 5036 | u16 data = 0; |
| 5037 | int idx, r; |
| 5038 | |
| 5039 | idx = srcu_read_lock(&kvm->srcu); |
| 5040 | fn = kvm->arch.tss_addr >> PAGE_SHIFT; |
| 5041 | r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); |
| 5042 | if (r < 0) |
| 5043 | goto out; |
| 5044 | data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; |
| 5045 | r = kvm_write_guest_page(kvm, fn++, &data, |
| 5046 | TSS_IOPB_BASE_OFFSET, sizeof(u16)); |
| 5047 | if (r < 0) |
| 5048 | goto out; |
| 5049 | r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); |
| 5050 | if (r < 0) |
| 5051 | goto out; |
| 5052 | r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); |
| 5053 | if (r < 0) |
| 5054 | goto out; |
| 5055 | data = ~0; |
| 5056 | r = kvm_write_guest_page(kvm, fn, &data, |
| 5057 | RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, |
| 5058 | sizeof(u8)); |
| 5059 | out: |
| 5060 | srcu_read_unlock(&kvm->srcu, idx); |
| 5061 | return r; |
| 5062 | } |
| 5063 | |
| 5064 | static int init_rmode_identity_map(struct kvm *kvm) |
| 5065 | { |
| 5066 | int i, idx, r = 0; |
| 5067 | kvm_pfn_t identity_map_pfn; |
| 5068 | u32 tmp; |
| 5069 | |
| 5070 | if (!enable_ept) |
| 5071 | return 0; |
| 5072 | |
| 5073 | /* Protect kvm->arch.ept_identity_pagetable_done. */ |
| 5074 | mutex_lock(&kvm->slots_lock); |
| 5075 | |
| 5076 | if (likely(kvm->arch.ept_identity_pagetable_done)) |
| 5077 | goto out2; |
| 5078 | |
| 5079 | identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT; |
| 5080 | |
| 5081 | r = alloc_identity_pagetable(kvm); |
| 5082 | if (r < 0) |
| 5083 | goto out2; |
| 5084 | |
| 5085 | idx = srcu_read_lock(&kvm->srcu); |
| 5086 | r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); |
| 5087 | if (r < 0) |
| 5088 | goto out; |
| 5089 | /* Set up identity-mapping pagetable for EPT in real mode */ |
| 5090 | for (i = 0; i < PT32_ENT_PER_PAGE; i++) { |
| 5091 | tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | |
| 5092 | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); |
| 5093 | r = kvm_write_guest_page(kvm, identity_map_pfn, |
| 5094 | &tmp, i * sizeof(tmp), sizeof(tmp)); |
| 5095 | if (r < 0) |
| 5096 | goto out; |
| 5097 | } |
| 5098 | kvm->arch.ept_identity_pagetable_done = true; |
| 5099 | |
| 5100 | out: |
| 5101 | srcu_read_unlock(&kvm->srcu, idx); |
| 5102 | |
| 5103 | out2: |
| 5104 | mutex_unlock(&kvm->slots_lock); |
| 5105 | return r; |
| 5106 | } |
| 5107 | |
| 5108 | static void seg_setup(int seg) |
| 5109 | { |
| 5110 | const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; |
| 5111 | unsigned int ar; |
| 5112 | |
| 5113 | vmcs_write16(sf->selector, 0); |
| 5114 | vmcs_writel(sf->base, 0); |
| 5115 | vmcs_write32(sf->limit, 0xffff); |
| 5116 | ar = 0x93; |
| 5117 | if (seg == VCPU_SREG_CS) |
| 5118 | ar |= 0x08; /* code segment */ |
| 5119 | |
| 5120 | vmcs_write32(sf->ar_bytes, ar); |
| 5121 | } |
| 5122 | |
| 5123 | static int alloc_apic_access_page(struct kvm *kvm) |
| 5124 | { |
| 5125 | struct page *page; |
| 5126 | int r = 0; |
| 5127 | |
| 5128 | mutex_lock(&kvm->slots_lock); |
| 5129 | if (kvm->arch.apic_access_page_done) |
| 5130 | goto out; |
| 5131 | r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, |
| 5132 | APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); |
| 5133 | if (r) |
| 5134 | goto out; |
| 5135 | |
| 5136 | page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); |
| 5137 | if (is_error_page(page)) { |
| 5138 | r = -EFAULT; |
| 5139 | goto out; |
| 5140 | } |
| 5141 | |
| 5142 | /* |
| 5143 | * Do not pin the page in memory, so that memory hot-unplug |
| 5144 | * is able to migrate it. |
| 5145 | */ |
| 5146 | put_page(page); |
| 5147 | kvm->arch.apic_access_page_done = true; |
| 5148 | out: |
| 5149 | mutex_unlock(&kvm->slots_lock); |
| 5150 | return r; |
| 5151 | } |
| 5152 | |
| 5153 | static int alloc_identity_pagetable(struct kvm *kvm) |
| 5154 | { |
| 5155 | /* Called with kvm->slots_lock held. */ |
| 5156 | |
| 5157 | int r = 0; |
| 5158 | |
| 5159 | BUG_ON(kvm->arch.ept_identity_pagetable_done); |
| 5160 | |
| 5161 | r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, |
| 5162 | kvm->arch.ept_identity_map_addr, PAGE_SIZE); |
| 5163 | |
| 5164 | return r; |
| 5165 | } |
| 5166 | |
| 5167 | static int allocate_vpid(void) |
| 5168 | { |
| 5169 | int vpid; |
| 5170 | |
| 5171 | if (!enable_vpid) |
| 5172 | return 0; |
| 5173 | spin_lock(&vmx_vpid_lock); |
| 5174 | vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); |
| 5175 | if (vpid < VMX_NR_VPIDS) |
| 5176 | __set_bit(vpid, vmx_vpid_bitmap); |
| 5177 | else |
| 5178 | vpid = 0; |
| 5179 | spin_unlock(&vmx_vpid_lock); |
| 5180 | return vpid; |
| 5181 | } |
| 5182 | |
| 5183 | static void free_vpid(int vpid) |
| 5184 | { |
| 5185 | if (!enable_vpid || vpid == 0) |
| 5186 | return; |
| 5187 | spin_lock(&vmx_vpid_lock); |
| 5188 | __clear_bit(vpid, vmx_vpid_bitmap); |
| 5189 | spin_unlock(&vmx_vpid_lock); |
| 5190 | } |
| 5191 | |
| 5192 | static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, |
| 5193 | u32 msr, int type) |
| 5194 | { |
| 5195 | int f = sizeof(unsigned long); |
| 5196 | |
| 5197 | if (!cpu_has_vmx_msr_bitmap()) |
| 5198 | return; |
| 5199 | |
| 5200 | /* |
| 5201 | * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals |
| 5202 | * have the write-low and read-high bitmap offsets the wrong way round. |
| 5203 | * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. |
| 5204 | */ |
| 5205 | if (msr <= 0x1fff) { |
| 5206 | if (type & MSR_TYPE_R) |
| 5207 | /* read-low */ |
| 5208 | __clear_bit(msr, msr_bitmap + 0x000 / f); |
| 5209 | |
| 5210 | if (type & MSR_TYPE_W) |
| 5211 | /* write-low */ |
| 5212 | __clear_bit(msr, msr_bitmap + 0x800 / f); |
| 5213 | |
| 5214 | } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { |
| 5215 | msr &= 0x1fff; |
| 5216 | if (type & MSR_TYPE_R) |
| 5217 | /* read-high */ |
| 5218 | __clear_bit(msr, msr_bitmap + 0x400 / f); |
| 5219 | |
| 5220 | if (type & MSR_TYPE_W) |
| 5221 | /* write-high */ |
| 5222 | __clear_bit(msr, msr_bitmap + 0xc00 / f); |
| 5223 | |
| 5224 | } |
| 5225 | } |
| 5226 | |
| 5227 | static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, |
| 5228 | u32 msr, int type) |
| 5229 | { |
| 5230 | int f = sizeof(unsigned long); |
| 5231 | |
| 5232 | if (!cpu_has_vmx_msr_bitmap()) |
| 5233 | return; |
| 5234 | |
| 5235 | /* |
| 5236 | * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals |
| 5237 | * have the write-low and read-high bitmap offsets the wrong way round. |
| 5238 | * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. |
| 5239 | */ |
| 5240 | if (msr <= 0x1fff) { |
| 5241 | if (type & MSR_TYPE_R) |
| 5242 | /* read-low */ |
| 5243 | __set_bit(msr, msr_bitmap + 0x000 / f); |
| 5244 | |
| 5245 | if (type & MSR_TYPE_W) |
| 5246 | /* write-low */ |
| 5247 | __set_bit(msr, msr_bitmap + 0x800 / f); |
| 5248 | |
| 5249 | } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { |
| 5250 | msr &= 0x1fff; |
| 5251 | if (type & MSR_TYPE_R) |
| 5252 | /* read-high */ |
| 5253 | __set_bit(msr, msr_bitmap + 0x400 / f); |
| 5254 | |
| 5255 | if (type & MSR_TYPE_W) |
| 5256 | /* write-high */ |
| 5257 | __set_bit(msr, msr_bitmap + 0xc00 / f); |
| 5258 | |
| 5259 | } |
| 5260 | } |
| 5261 | |
| 5262 | static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, |
| 5263 | u32 msr, int type, bool value) |
| 5264 | { |
| 5265 | if (value) |
| 5266 | vmx_enable_intercept_for_msr(msr_bitmap, msr, type); |
| 5267 | else |
| 5268 | vmx_disable_intercept_for_msr(msr_bitmap, msr, type); |
| 5269 | } |
| 5270 | |
| 5271 | /* |
| 5272 | * If a msr is allowed by L0, we should check whether it is allowed by L1. |
| 5273 | * The corresponding bit will be cleared unless both of L0 and L1 allow it. |
| 5274 | */ |
| 5275 | static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, |
| 5276 | unsigned long *msr_bitmap_nested, |
| 5277 | u32 msr, int type) |
| 5278 | { |
| 5279 | int f = sizeof(unsigned long); |
| 5280 | |
| 5281 | if (!cpu_has_vmx_msr_bitmap()) { |
| 5282 | WARN_ON(1); |
| 5283 | return; |
| 5284 | } |
| 5285 | |
| 5286 | /* |
| 5287 | * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals |
| 5288 | * have the write-low and read-high bitmap offsets the wrong way round. |
| 5289 | * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. |
| 5290 | */ |
| 5291 | if (msr <= 0x1fff) { |
| 5292 | if (type & MSR_TYPE_R && |
| 5293 | !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) |
| 5294 | /* read-low */ |
| 5295 | __clear_bit(msr, msr_bitmap_nested + 0x000 / f); |
| 5296 | |
| 5297 | if (type & MSR_TYPE_W && |
| 5298 | !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) |
| 5299 | /* write-low */ |
| 5300 | __clear_bit(msr, msr_bitmap_nested + 0x800 / f); |
| 5301 | |
| 5302 | } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { |
| 5303 | msr &= 0x1fff; |
| 5304 | if (type & MSR_TYPE_R && |
| 5305 | !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) |
| 5306 | /* read-high */ |
| 5307 | __clear_bit(msr, msr_bitmap_nested + 0x400 / f); |
| 5308 | |
| 5309 | if (type & MSR_TYPE_W && |
| 5310 | !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) |
| 5311 | /* write-high */ |
| 5312 | __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); |
| 5313 | |
| 5314 | } |
| 5315 | } |
| 5316 | |
| 5317 | static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) |
| 5318 | { |
| 5319 | u8 mode = 0; |
| 5320 | |
| 5321 | if (cpu_has_secondary_exec_ctrls() && |
| 5322 | (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) & |
| 5323 | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { |
| 5324 | mode |= MSR_BITMAP_MODE_X2APIC; |
| 5325 | if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) |
| 5326 | mode |= MSR_BITMAP_MODE_X2APIC_APICV; |
| 5327 | } |
| 5328 | |
| 5329 | if (is_long_mode(vcpu)) |
| 5330 | mode |= MSR_BITMAP_MODE_LM; |
| 5331 | |
| 5332 | return mode; |
| 5333 | } |
| 5334 | |
| 5335 | #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) |
| 5336 | |
| 5337 | static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, |
| 5338 | u8 mode) |
| 5339 | { |
| 5340 | int msr; |
| 5341 | |
| 5342 | for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { |
| 5343 | unsigned word = msr / BITS_PER_LONG; |
| 5344 | msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; |
| 5345 | msr_bitmap[word + (0x800 / sizeof(long))] = ~0; |
| 5346 | } |
| 5347 | |
| 5348 | if (mode & MSR_BITMAP_MODE_X2APIC) { |
| 5349 | /* |
| 5350 | * TPR reads and writes can be virtualized even if virtual interrupt |
| 5351 | * delivery is not in use. |
| 5352 | */ |
| 5353 | vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); |
| 5354 | if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { |
| 5355 | vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); |
| 5356 | vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); |
| 5357 | vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); |
| 5358 | } |
| 5359 | } |
| 5360 | } |
| 5361 | |
| 5362 | static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) |
| 5363 | { |
| 5364 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 5365 | unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; |
| 5366 | u8 mode = vmx_msr_bitmap_mode(vcpu); |
| 5367 | u8 changed = mode ^ vmx->msr_bitmap_mode; |
| 5368 | |
| 5369 | if (!changed) |
| 5370 | return; |
| 5371 | |
| 5372 | vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW, |
| 5373 | !(mode & MSR_BITMAP_MODE_LM)); |
| 5374 | |
| 5375 | if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) |
| 5376 | vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); |
| 5377 | |
| 5378 | vmx->msr_bitmap_mode = mode; |
| 5379 | } |
| 5380 | |
| 5381 | static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) |
| 5382 | { |
| 5383 | return enable_apicv; |
| 5384 | } |
| 5385 | |
| 5386 | static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) |
| 5387 | { |
| 5388 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 5389 | gfn_t gfn; |
| 5390 | |
| 5391 | /* |
| 5392 | * Don't need to mark the APIC access page dirty; it is never |
| 5393 | * written to by the CPU during APIC virtualization. |
| 5394 | */ |
| 5395 | |
| 5396 | if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { |
| 5397 | gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT; |
| 5398 | kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| 5399 | } |
| 5400 | |
| 5401 | if (nested_cpu_has_posted_intr(vmcs12)) { |
| 5402 | gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT; |
| 5403 | kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| 5404 | } |
| 5405 | } |
| 5406 | |
| 5407 | |
| 5408 | static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) |
| 5409 | { |
| 5410 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 5411 | int max_irr; |
| 5412 | void *vapic_page; |
| 5413 | u16 status; |
| 5414 | |
| 5415 | if (!vmx->nested.pi_desc || !vmx->nested.pi_pending) |
| 5416 | return; |
| 5417 | |
| 5418 | vmx->nested.pi_pending = false; |
| 5419 | if (!pi_test_and_clear_on(vmx->nested.pi_desc)) |
| 5420 | return; |
| 5421 | |
| 5422 | max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256); |
| 5423 | if (max_irr != 256) { |
| 5424 | vapic_page = kmap(vmx->nested.virtual_apic_page); |
| 5425 | __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page); |
| 5426 | kunmap(vmx->nested.virtual_apic_page); |
| 5427 | |
| 5428 | status = vmcs_read16(GUEST_INTR_STATUS); |
| 5429 | if ((u8)max_irr > ((u8)status & 0xff)) { |
| 5430 | status &= ~0xff; |
| 5431 | status |= (u8)max_irr; |
| 5432 | vmcs_write16(GUEST_INTR_STATUS, status); |
| 5433 | } |
| 5434 | } |
| 5435 | |
| 5436 | nested_mark_vmcs12_pages_dirty(vcpu); |
| 5437 | } |
| 5438 | |
| 5439 | static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, |
| 5440 | bool nested) |
| 5441 | { |
| 5442 | #ifdef CONFIG_SMP |
| 5443 | int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; |
| 5444 | |
| 5445 | if (vcpu->mode == IN_GUEST_MODE) { |
| 5446 | /* |
| 5447 | * The vector of interrupt to be delivered to vcpu had |
| 5448 | * been set in PIR before this function. |
| 5449 | * |
| 5450 | * Following cases will be reached in this block, and |
| 5451 | * we always send a notification event in all cases as |
| 5452 | * explained below. |
| 5453 | * |
| 5454 | * Case 1: vcpu keeps in non-root mode. Sending a |
| 5455 | * notification event posts the interrupt to vcpu. |
| 5456 | * |
| 5457 | * Case 2: vcpu exits to root mode and is still |
| 5458 | * runnable. PIR will be synced to vIRR before the |
| 5459 | * next vcpu entry. Sending a notification event in |
| 5460 | * this case has no effect, as vcpu is not in root |
| 5461 | * mode. |
| 5462 | * |
| 5463 | * Case 3: vcpu exits to root mode and is blocked. |
| 5464 | * vcpu_block() has already synced PIR to vIRR and |
| 5465 | * never blocks vcpu if vIRR is not cleared. Therefore, |
| 5466 | * a blocked vcpu here does not wait for any requested |
| 5467 | * interrupts in PIR, and sending a notification event |
| 5468 | * which has no effect is safe here. |
| 5469 | */ |
| 5470 | |
| 5471 | apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); |
| 5472 | return true; |
| 5473 | } |
| 5474 | #endif |
| 5475 | return false; |
| 5476 | } |
| 5477 | |
| 5478 | static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, |
| 5479 | int vector) |
| 5480 | { |
| 5481 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 5482 | |
| 5483 | if (is_guest_mode(vcpu) && |
| 5484 | vector == vmx->nested.posted_intr_nv) { |
| 5485 | /* |
| 5486 | * If a posted intr is not recognized by hardware, |
| 5487 | * we will accomplish it in the next vmentry. |
| 5488 | */ |
| 5489 | vmx->nested.pi_pending = true; |
| 5490 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
| 5491 | /* the PIR and ON have been set by L1. */ |
| 5492 | if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) |
| 5493 | kvm_vcpu_kick(vcpu); |
| 5494 | return 0; |
| 5495 | } |
| 5496 | return -1; |
| 5497 | } |
| 5498 | /* |
| 5499 | * Send interrupt to vcpu via posted interrupt way. |
| 5500 | * 1. If target vcpu is running(non-root mode), send posted interrupt |
| 5501 | * notification to vcpu and hardware will sync PIR to vIRR atomically. |
| 5502 | * 2. If target vcpu isn't running(root mode), kick it to pick up the |
| 5503 | * interrupt from PIR in next vmentry. |
| 5504 | */ |
| 5505 | static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) |
| 5506 | { |
| 5507 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 5508 | int r; |
| 5509 | |
| 5510 | r = vmx_deliver_nested_posted_interrupt(vcpu, vector); |
| 5511 | if (!r) |
| 5512 | return 0; |
| 5513 | |
| 5514 | if (!vcpu->arch.apicv_active) |
| 5515 | return -1; |
| 5516 | |
| 5517 | if (pi_test_and_set_pir(vector, &vmx->pi_desc)) |
| 5518 | return 0; |
| 5519 | |
| 5520 | /* If a previous notification has sent the IPI, nothing to do. */ |
| 5521 | if (pi_test_and_set_on(&vmx->pi_desc)) |
| 5522 | return 0; |
| 5523 | |
| 5524 | if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) |
| 5525 | kvm_vcpu_kick(vcpu); |
| 5526 | |
| 5527 | return 0; |
| 5528 | } |
| 5529 | |
| 5530 | /* |
| 5531 | * Set up the vmcs's constant host-state fields, i.e., host-state fields that |
| 5532 | * will not change in the lifetime of the guest. |
| 5533 | * Note that host-state that does change is set elsewhere. E.g., host-state |
| 5534 | * that is set differently for each CPU is set in vmx_vcpu_load(), not here. |
| 5535 | */ |
| 5536 | static void vmx_set_constant_host_state(struct vcpu_vmx *vmx) |
| 5537 | { |
| 5538 | u32 low32, high32; |
| 5539 | unsigned long tmpl; |
| 5540 | struct desc_ptr dt; |
| 5541 | unsigned long cr0, cr3, cr4; |
| 5542 | |
| 5543 | cr0 = read_cr0(); |
| 5544 | WARN_ON(cr0 & X86_CR0_TS); |
| 5545 | vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ |
| 5546 | |
| 5547 | /* |
| 5548 | * Save the most likely value for this task's CR3 in the VMCS. |
| 5549 | * We can't use __get_current_cr3_fast() because we're not atomic. |
| 5550 | */ |
| 5551 | cr3 = __read_cr3(); |
| 5552 | vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ |
| 5553 | vmx->loaded_vmcs->vmcs_host_cr3 = cr3; |
| 5554 | |
| 5555 | /* Save the most likely value for this task's CR4 in the VMCS. */ |
| 5556 | cr4 = cr4_read_shadow(); |
| 5557 | vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ |
| 5558 | vmx->loaded_vmcs->vmcs_host_cr4 = cr4; |
| 5559 | |
| 5560 | vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ |
| 5561 | #ifdef CONFIG_X86_64 |
| 5562 | /* |
| 5563 | * Load null selectors, so we can avoid reloading them in |
| 5564 | * __vmx_load_host_state(), in case userspace uses the null selectors |
| 5565 | * too (the expected case). |
| 5566 | */ |
| 5567 | vmcs_write16(HOST_DS_SELECTOR, 0); |
| 5568 | vmcs_write16(HOST_ES_SELECTOR, 0); |
| 5569 | #else |
| 5570 | vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| 5571 | vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| 5572 | #endif |
| 5573 | vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ |
| 5574 | vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ |
| 5575 | |
| 5576 | store_idt(&dt); |
| 5577 | vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ |
| 5578 | vmx->host_idt_base = dt.address; |
| 5579 | |
| 5580 | vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */ |
| 5581 | |
| 5582 | rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); |
| 5583 | vmcs_write32(HOST_IA32_SYSENTER_CS, low32); |
| 5584 | rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); |
| 5585 | vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ |
| 5586 | |
| 5587 | if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { |
| 5588 | rdmsr(MSR_IA32_CR_PAT, low32, high32); |
| 5589 | vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); |
| 5590 | } |
| 5591 | } |
| 5592 | |
| 5593 | static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) |
| 5594 | { |
| 5595 | BUILD_BUG_ON(KVM_CR4_GUEST_OWNED_BITS & ~KVM_POSSIBLE_CR4_GUEST_BITS); |
| 5596 | |
| 5597 | vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; |
| 5598 | if (enable_ept) |
| 5599 | vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; |
| 5600 | if (is_guest_mode(&vmx->vcpu)) |
| 5601 | vmx->vcpu.arch.cr4_guest_owned_bits &= |
| 5602 | ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; |
| 5603 | vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); |
| 5604 | } |
| 5605 | |
| 5606 | static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) |
| 5607 | { |
| 5608 | u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; |
| 5609 | |
| 5610 | if (!kvm_vcpu_apicv_active(&vmx->vcpu)) |
| 5611 | pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; |
| 5612 | /* Enable the preemption timer dynamically */ |
| 5613 | pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; |
| 5614 | return pin_based_exec_ctrl; |
| 5615 | } |
| 5616 | |
| 5617 | static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) |
| 5618 | { |
| 5619 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 5620 | |
| 5621 | vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); |
| 5622 | if (cpu_has_secondary_exec_ctrls()) { |
| 5623 | if (kvm_vcpu_apicv_active(vcpu)) |
| 5624 | vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, |
| 5625 | SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| 5626 | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); |
| 5627 | else |
| 5628 | vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, |
| 5629 | SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| 5630 | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); |
| 5631 | } |
| 5632 | |
| 5633 | if (cpu_has_vmx_msr_bitmap()) |
| 5634 | vmx_update_msr_bitmap(vcpu); |
| 5635 | } |
| 5636 | |
| 5637 | static u32 vmx_exec_control(struct vcpu_vmx *vmx) |
| 5638 | { |
| 5639 | u32 exec_control = vmcs_config.cpu_based_exec_ctrl; |
| 5640 | |
| 5641 | if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) |
| 5642 | exec_control &= ~CPU_BASED_MOV_DR_EXITING; |
| 5643 | |
| 5644 | if (!cpu_need_tpr_shadow(&vmx->vcpu)) { |
| 5645 | exec_control &= ~CPU_BASED_TPR_SHADOW; |
| 5646 | #ifdef CONFIG_X86_64 |
| 5647 | exec_control |= CPU_BASED_CR8_STORE_EXITING | |
| 5648 | CPU_BASED_CR8_LOAD_EXITING; |
| 5649 | #endif |
| 5650 | } |
| 5651 | if (!enable_ept) |
| 5652 | exec_control |= CPU_BASED_CR3_STORE_EXITING | |
| 5653 | CPU_BASED_CR3_LOAD_EXITING | |
| 5654 | CPU_BASED_INVLPG_EXITING; |
| 5655 | return exec_control; |
| 5656 | } |
| 5657 | |
| 5658 | static bool vmx_rdrand_supported(void) |
| 5659 | { |
| 5660 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 5661 | SECONDARY_EXEC_RDRAND; |
| 5662 | } |
| 5663 | |
| 5664 | static bool vmx_rdseed_supported(void) |
| 5665 | { |
| 5666 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 5667 | SECONDARY_EXEC_RDSEED; |
| 5668 | } |
| 5669 | |
| 5670 | static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) |
| 5671 | { |
| 5672 | struct kvm_vcpu *vcpu = &vmx->vcpu; |
| 5673 | |
| 5674 | u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; |
| 5675 | if (!cpu_need_virtualize_apic_accesses(vcpu)) |
| 5676 | exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| 5677 | if (vmx->vpid == 0) |
| 5678 | exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; |
| 5679 | if (!enable_ept) { |
| 5680 | exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; |
| 5681 | enable_unrestricted_guest = 0; |
| 5682 | /* Enable INVPCID for non-ept guests may cause performance regression. */ |
| 5683 | exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; |
| 5684 | } |
| 5685 | if (!enable_unrestricted_guest) |
| 5686 | exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| 5687 | if (!ple_gap) |
| 5688 | exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; |
| 5689 | if (!kvm_vcpu_apicv_active(vcpu)) |
| 5690 | exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| 5691 | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); |
| 5692 | exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; |
| 5693 | /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD |
| 5694 | (handle_vmptrld). |
| 5695 | We can NOT enable shadow_vmcs here because we don't have yet |
| 5696 | a current VMCS12 |
| 5697 | */ |
| 5698 | exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; |
| 5699 | |
| 5700 | if (!enable_pml) |
| 5701 | exec_control &= ~SECONDARY_EXEC_ENABLE_PML; |
| 5702 | |
| 5703 | if (vmx_xsaves_supported()) { |
| 5704 | /* Exposing XSAVES only when XSAVE is exposed */ |
| 5705 | bool xsaves_enabled = |
| 5706 | guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && |
| 5707 | guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); |
| 5708 | |
| 5709 | if (!xsaves_enabled) |
| 5710 | exec_control &= ~SECONDARY_EXEC_XSAVES; |
| 5711 | |
| 5712 | if (nested) { |
| 5713 | if (xsaves_enabled) |
| 5714 | vmx->nested.nested_vmx_secondary_ctls_high |= |
| 5715 | SECONDARY_EXEC_XSAVES; |
| 5716 | else |
| 5717 | vmx->nested.nested_vmx_secondary_ctls_high &= |
| 5718 | ~SECONDARY_EXEC_XSAVES; |
| 5719 | } |
| 5720 | } |
| 5721 | |
| 5722 | if (vmx_rdtscp_supported()) { |
| 5723 | bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); |
| 5724 | if (!rdtscp_enabled) |
| 5725 | exec_control &= ~SECONDARY_EXEC_RDTSCP; |
| 5726 | |
| 5727 | if (nested) { |
| 5728 | if (rdtscp_enabled) |
| 5729 | vmx->nested.nested_vmx_secondary_ctls_high |= |
| 5730 | SECONDARY_EXEC_RDTSCP; |
| 5731 | else |
| 5732 | vmx->nested.nested_vmx_secondary_ctls_high &= |
| 5733 | ~SECONDARY_EXEC_RDTSCP; |
| 5734 | } |
| 5735 | } |
| 5736 | |
| 5737 | if (vmx_invpcid_supported()) { |
| 5738 | /* Exposing INVPCID only when PCID is exposed */ |
| 5739 | bool invpcid_enabled = |
| 5740 | guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && |
| 5741 | guest_cpuid_has(vcpu, X86_FEATURE_PCID); |
| 5742 | |
| 5743 | if (!invpcid_enabled) { |
| 5744 | exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; |
| 5745 | guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); |
| 5746 | } |
| 5747 | |
| 5748 | if (nested) { |
| 5749 | if (invpcid_enabled) |
| 5750 | vmx->nested.nested_vmx_secondary_ctls_high |= |
| 5751 | SECONDARY_EXEC_ENABLE_INVPCID; |
| 5752 | else |
| 5753 | vmx->nested.nested_vmx_secondary_ctls_high &= |
| 5754 | ~SECONDARY_EXEC_ENABLE_INVPCID; |
| 5755 | } |
| 5756 | } |
| 5757 | |
| 5758 | if (vmx_rdrand_supported()) { |
| 5759 | bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); |
| 5760 | if (rdrand_enabled) |
| 5761 | exec_control &= ~SECONDARY_EXEC_RDRAND; |
| 5762 | |
| 5763 | if (nested) { |
| 5764 | if (rdrand_enabled) |
| 5765 | vmx->nested.nested_vmx_secondary_ctls_high |= |
| 5766 | SECONDARY_EXEC_RDRAND; |
| 5767 | else |
| 5768 | vmx->nested.nested_vmx_secondary_ctls_high &= |
| 5769 | ~SECONDARY_EXEC_RDRAND; |
| 5770 | } |
| 5771 | } |
| 5772 | |
| 5773 | if (vmx_rdseed_supported()) { |
| 5774 | bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); |
| 5775 | if (rdseed_enabled) |
| 5776 | exec_control &= ~SECONDARY_EXEC_RDSEED; |
| 5777 | |
| 5778 | if (nested) { |
| 5779 | if (rdseed_enabled) |
| 5780 | vmx->nested.nested_vmx_secondary_ctls_high |= |
| 5781 | SECONDARY_EXEC_RDSEED; |
| 5782 | else |
| 5783 | vmx->nested.nested_vmx_secondary_ctls_high &= |
| 5784 | ~SECONDARY_EXEC_RDSEED; |
| 5785 | } |
| 5786 | } |
| 5787 | |
| 5788 | vmx->secondary_exec_control = exec_control; |
| 5789 | } |
| 5790 | |
| 5791 | static void ept_set_mmio_spte_mask(void) |
| 5792 | { |
| 5793 | /* |
| 5794 | * EPT Misconfigurations can be generated if the value of bits 2:0 |
| 5795 | * of an EPT paging-structure entry is 110b (write/execute). |
| 5796 | */ |
| 5797 | kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, |
| 5798 | VMX_EPT_MISCONFIG_WX_VALUE); |
| 5799 | } |
| 5800 | |
| 5801 | #define VMX_XSS_EXIT_BITMAP 0 |
| 5802 | /* |
| 5803 | * Sets up the vmcs for emulated real mode. |
| 5804 | */ |
| 5805 | static int vmx_vcpu_setup(struct vcpu_vmx *vmx) |
| 5806 | { |
| 5807 | #ifdef CONFIG_X86_64 |
| 5808 | unsigned long a; |
| 5809 | #endif |
| 5810 | int i; |
| 5811 | |
| 5812 | /* I/O */ |
| 5813 | vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a)); |
| 5814 | vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b)); |
| 5815 | |
| 5816 | if (enable_shadow_vmcs) { |
| 5817 | vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); |
| 5818 | vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); |
| 5819 | } |
| 5820 | if (cpu_has_vmx_msr_bitmap()) |
| 5821 | vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); |
| 5822 | |
| 5823 | vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ |
| 5824 | |
| 5825 | /* Control */ |
| 5826 | vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); |
| 5827 | vmx->hv_deadline_tsc = -1; |
| 5828 | |
| 5829 | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); |
| 5830 | |
| 5831 | if (cpu_has_secondary_exec_ctrls()) { |
| 5832 | vmx_compute_secondary_exec_control(vmx); |
| 5833 | vmcs_write32(SECONDARY_VM_EXEC_CONTROL, |
| 5834 | vmx->secondary_exec_control); |
| 5835 | } |
| 5836 | |
| 5837 | if (kvm_vcpu_apicv_active(&vmx->vcpu)) { |
| 5838 | vmcs_write64(EOI_EXIT_BITMAP0, 0); |
| 5839 | vmcs_write64(EOI_EXIT_BITMAP1, 0); |
| 5840 | vmcs_write64(EOI_EXIT_BITMAP2, 0); |
| 5841 | vmcs_write64(EOI_EXIT_BITMAP3, 0); |
| 5842 | |
| 5843 | vmcs_write16(GUEST_INTR_STATUS, 0); |
| 5844 | |
| 5845 | vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); |
| 5846 | vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); |
| 5847 | } |
| 5848 | |
| 5849 | if (ple_gap) { |
| 5850 | vmcs_write32(PLE_GAP, ple_gap); |
| 5851 | vmx->ple_window = ple_window; |
| 5852 | vmx->ple_window_dirty = true; |
| 5853 | } |
| 5854 | |
| 5855 | vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); |
| 5856 | vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); |
| 5857 | vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ |
| 5858 | |
| 5859 | vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ |
| 5860 | vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ |
| 5861 | vmx_set_constant_host_state(vmx); |
| 5862 | #ifdef CONFIG_X86_64 |
| 5863 | rdmsrl(MSR_FS_BASE, a); |
| 5864 | vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ |
| 5865 | rdmsrl(MSR_GS_BASE, a); |
| 5866 | vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ |
| 5867 | #else |
| 5868 | vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ |
| 5869 | vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ |
| 5870 | #endif |
| 5871 | |
| 5872 | if (cpu_has_vmx_vmfunc()) |
| 5873 | vmcs_write64(VM_FUNCTION_CONTROL, 0); |
| 5874 | |
| 5875 | vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); |
| 5876 | vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); |
| 5877 | vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); |
| 5878 | vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); |
| 5879 | vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); |
| 5880 | |
| 5881 | if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) |
| 5882 | vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); |
| 5883 | |
| 5884 | for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { |
| 5885 | u32 index = vmx_msr_index[i]; |
| 5886 | u32 data_low, data_high; |
| 5887 | int j = vmx->nmsrs; |
| 5888 | |
| 5889 | if (rdmsr_safe(index, &data_low, &data_high) < 0) |
| 5890 | continue; |
| 5891 | if (wrmsr_safe(index, data_low, data_high) < 0) |
| 5892 | continue; |
| 5893 | vmx->guest_msrs[j].index = i; |
| 5894 | vmx->guest_msrs[j].data = 0; |
| 5895 | vmx->guest_msrs[j].mask = -1ull; |
| 5896 | ++vmx->nmsrs; |
| 5897 | } |
| 5898 | |
| 5899 | vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl); |
| 5900 | |
| 5901 | /* 22.2.1, 20.8.1 */ |
| 5902 | vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl); |
| 5903 | |
| 5904 | vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; |
| 5905 | vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); |
| 5906 | |
| 5907 | set_cr4_guest_host_mask(vmx); |
| 5908 | |
| 5909 | if (vmx_xsaves_supported()) |
| 5910 | vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); |
| 5911 | |
| 5912 | if (enable_pml) { |
| 5913 | ASSERT(vmx->pml_pg); |
| 5914 | vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); |
| 5915 | vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); |
| 5916 | } |
| 5917 | |
| 5918 | return 0; |
| 5919 | } |
| 5920 | |
| 5921 | static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
| 5922 | { |
| 5923 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 5924 | struct msr_data apic_base_msr; |
| 5925 | u64 cr0; |
| 5926 | |
| 5927 | vmx->rmode.vm86_active = 0; |
| 5928 | vmx->spec_ctrl = 0; |
| 5929 | |
| 5930 | vcpu->arch.microcode_version = 0x100000000ULL; |
| 5931 | vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); |
| 5932 | kvm_set_cr8(vcpu, 0); |
| 5933 | |
| 5934 | if (!init_event) { |
| 5935 | apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | |
| 5936 | MSR_IA32_APICBASE_ENABLE; |
| 5937 | if (kvm_vcpu_is_reset_bsp(vcpu)) |
| 5938 | apic_base_msr.data |= MSR_IA32_APICBASE_BSP; |
| 5939 | apic_base_msr.host_initiated = true; |
| 5940 | kvm_set_apic_base(vcpu, &apic_base_msr); |
| 5941 | } |
| 5942 | |
| 5943 | vmx_segment_cache_clear(vmx); |
| 5944 | |
| 5945 | seg_setup(VCPU_SREG_CS); |
| 5946 | vmcs_write16(GUEST_CS_SELECTOR, 0xf000); |
| 5947 | vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); |
| 5948 | |
| 5949 | seg_setup(VCPU_SREG_DS); |
| 5950 | seg_setup(VCPU_SREG_ES); |
| 5951 | seg_setup(VCPU_SREG_FS); |
| 5952 | seg_setup(VCPU_SREG_GS); |
| 5953 | seg_setup(VCPU_SREG_SS); |
| 5954 | |
| 5955 | vmcs_write16(GUEST_TR_SELECTOR, 0); |
| 5956 | vmcs_writel(GUEST_TR_BASE, 0); |
| 5957 | vmcs_write32(GUEST_TR_LIMIT, 0xffff); |
| 5958 | vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); |
| 5959 | |
| 5960 | vmcs_write16(GUEST_LDTR_SELECTOR, 0); |
| 5961 | vmcs_writel(GUEST_LDTR_BASE, 0); |
| 5962 | vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); |
| 5963 | vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); |
| 5964 | |
| 5965 | if (!init_event) { |
| 5966 | vmcs_write32(GUEST_SYSENTER_CS, 0); |
| 5967 | vmcs_writel(GUEST_SYSENTER_ESP, 0); |
| 5968 | vmcs_writel(GUEST_SYSENTER_EIP, 0); |
| 5969 | vmcs_write64(GUEST_IA32_DEBUGCTL, 0); |
| 5970 | } |
| 5971 | |
| 5972 | kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); |
| 5973 | kvm_rip_write(vcpu, 0xfff0); |
| 5974 | |
| 5975 | vmcs_writel(GUEST_GDTR_BASE, 0); |
| 5976 | vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); |
| 5977 | |
| 5978 | vmcs_writel(GUEST_IDTR_BASE, 0); |
| 5979 | vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); |
| 5980 | |
| 5981 | vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); |
| 5982 | vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); |
| 5983 | vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); |
| 5984 | |
| 5985 | setup_msrs(vmx); |
| 5986 | |
| 5987 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ |
| 5988 | |
| 5989 | if (cpu_has_vmx_tpr_shadow() && !init_event) { |
| 5990 | vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); |
| 5991 | if (cpu_need_tpr_shadow(vcpu)) |
| 5992 | vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, |
| 5993 | __pa(vcpu->arch.apic->regs)); |
| 5994 | vmcs_write32(TPR_THRESHOLD, 0); |
| 5995 | } |
| 5996 | |
| 5997 | kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); |
| 5998 | |
| 5999 | if (vmx->vpid != 0) |
| 6000 | vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); |
| 6001 | |
| 6002 | cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; |
| 6003 | vmx->vcpu.arch.cr0 = cr0; |
| 6004 | vmx_set_cr0(vcpu, cr0); /* enter rmode */ |
| 6005 | vmx_set_cr4(vcpu, 0); |
| 6006 | vmx_set_efer(vcpu, 0); |
| 6007 | |
| 6008 | update_exception_bitmap(vcpu); |
| 6009 | |
| 6010 | vpid_sync_context(vmx->vpid); |
| 6011 | } |
| 6012 | |
| 6013 | /* |
| 6014 | * In nested virtualization, check if L1 asked to exit on external interrupts. |
| 6015 | * For most existing hypervisors, this will always return true. |
| 6016 | */ |
| 6017 | static bool nested_exit_on_intr(struct kvm_vcpu *vcpu) |
| 6018 | { |
| 6019 | return get_vmcs12(vcpu)->pin_based_vm_exec_control & |
| 6020 | PIN_BASED_EXT_INTR_MASK; |
| 6021 | } |
| 6022 | |
| 6023 | /* |
| 6024 | * In nested virtualization, check if L1 has set |
| 6025 | * VM_EXIT_ACK_INTR_ON_EXIT |
| 6026 | */ |
| 6027 | static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) |
| 6028 | { |
| 6029 | return get_vmcs12(vcpu)->vm_exit_controls & |
| 6030 | VM_EXIT_ACK_INTR_ON_EXIT; |
| 6031 | } |
| 6032 | |
| 6033 | static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) |
| 6034 | { |
| 6035 | return get_vmcs12(vcpu)->pin_based_vm_exec_control & |
| 6036 | PIN_BASED_NMI_EXITING; |
| 6037 | } |
| 6038 | |
| 6039 | static void enable_irq_window(struct kvm_vcpu *vcpu) |
| 6040 | { |
| 6041 | vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, |
| 6042 | CPU_BASED_VIRTUAL_INTR_PENDING); |
| 6043 | } |
| 6044 | |
| 6045 | static void enable_nmi_window(struct kvm_vcpu *vcpu) |
| 6046 | { |
| 6047 | if (!cpu_has_virtual_nmis() || |
| 6048 | vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { |
| 6049 | enable_irq_window(vcpu); |
| 6050 | return; |
| 6051 | } |
| 6052 | |
| 6053 | vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, |
| 6054 | CPU_BASED_VIRTUAL_NMI_PENDING); |
| 6055 | } |
| 6056 | |
| 6057 | static void vmx_inject_irq(struct kvm_vcpu *vcpu) |
| 6058 | { |
| 6059 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 6060 | uint32_t intr; |
| 6061 | int irq = vcpu->arch.interrupt.nr; |
| 6062 | |
| 6063 | trace_kvm_inj_virq(irq); |
| 6064 | |
| 6065 | ++vcpu->stat.irq_injections; |
| 6066 | if (vmx->rmode.vm86_active) { |
| 6067 | int inc_eip = 0; |
| 6068 | if (vcpu->arch.interrupt.soft) |
| 6069 | inc_eip = vcpu->arch.event_exit_inst_len; |
| 6070 | if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) |
| 6071 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| 6072 | return; |
| 6073 | } |
| 6074 | intr = irq | INTR_INFO_VALID_MASK; |
| 6075 | if (vcpu->arch.interrupt.soft) { |
| 6076 | intr |= INTR_TYPE_SOFT_INTR; |
| 6077 | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| 6078 | vmx->vcpu.arch.event_exit_inst_len); |
| 6079 | } else |
| 6080 | intr |= INTR_TYPE_EXT_INTR; |
| 6081 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); |
| 6082 | } |
| 6083 | |
| 6084 | static void vmx_inject_nmi(struct kvm_vcpu *vcpu) |
| 6085 | { |
| 6086 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 6087 | |
| 6088 | if (!cpu_has_virtual_nmis()) { |
| 6089 | /* |
| 6090 | * Tracking the NMI-blocked state in software is built upon |
| 6091 | * finding the next open IRQ window. This, in turn, depends on |
| 6092 | * well-behaving guests: They have to keep IRQs disabled at |
| 6093 | * least as long as the NMI handler runs. Otherwise we may |
| 6094 | * cause NMI nesting, maybe breaking the guest. But as this is |
| 6095 | * highly unlikely, we can live with the residual risk. |
| 6096 | */ |
| 6097 | vmx->loaded_vmcs->soft_vnmi_blocked = 1; |
| 6098 | vmx->loaded_vmcs->vnmi_blocked_time = 0; |
| 6099 | } |
| 6100 | |
| 6101 | ++vcpu->stat.nmi_injections; |
| 6102 | vmx->loaded_vmcs->nmi_known_unmasked = false; |
| 6103 | |
| 6104 | if (vmx->rmode.vm86_active) { |
| 6105 | if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) |
| 6106 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| 6107 | return; |
| 6108 | } |
| 6109 | |
| 6110 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| 6111 | INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); |
| 6112 | } |
| 6113 | |
| 6114 | static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) |
| 6115 | { |
| 6116 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 6117 | bool masked; |
| 6118 | |
| 6119 | if (!cpu_has_virtual_nmis()) |
| 6120 | return vmx->loaded_vmcs->soft_vnmi_blocked; |
| 6121 | if (vmx->loaded_vmcs->nmi_known_unmasked) |
| 6122 | return false; |
| 6123 | masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; |
| 6124 | vmx->loaded_vmcs->nmi_known_unmasked = !masked; |
| 6125 | return masked; |
| 6126 | } |
| 6127 | |
| 6128 | static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) |
| 6129 | { |
| 6130 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 6131 | |
| 6132 | if (!cpu_has_virtual_nmis()) { |
| 6133 | if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { |
| 6134 | vmx->loaded_vmcs->soft_vnmi_blocked = masked; |
| 6135 | vmx->loaded_vmcs->vnmi_blocked_time = 0; |
| 6136 | } |
| 6137 | } else { |
| 6138 | vmx->loaded_vmcs->nmi_known_unmasked = !masked; |
| 6139 | if (masked) |
| 6140 | vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| 6141 | GUEST_INTR_STATE_NMI); |
| 6142 | else |
| 6143 | vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, |
| 6144 | GUEST_INTR_STATE_NMI); |
| 6145 | } |
| 6146 | } |
| 6147 | |
| 6148 | static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) |
| 6149 | { |
| 6150 | if (to_vmx(vcpu)->nested.nested_run_pending) |
| 6151 | return 0; |
| 6152 | |
| 6153 | if (!cpu_has_virtual_nmis() && |
| 6154 | to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) |
| 6155 | return 0; |
| 6156 | |
| 6157 | return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & |
| 6158 | (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
| 6159 | | GUEST_INTR_STATE_NMI)); |
| 6160 | } |
| 6161 | |
| 6162 | static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) |
| 6163 | { |
| 6164 | if (to_vmx(vcpu)->nested.nested_run_pending) |
| 6165 | return false; |
| 6166 | |
| 6167 | if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) |
| 6168 | return true; |
| 6169 | |
| 6170 | return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && |
| 6171 | !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & |
| 6172 | (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); |
| 6173 | } |
| 6174 | |
| 6175 | static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) |
| 6176 | { |
| 6177 | int ret; |
| 6178 | |
| 6179 | ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, |
| 6180 | PAGE_SIZE * 3); |
| 6181 | if (ret) |
| 6182 | return ret; |
| 6183 | kvm->arch.tss_addr = addr; |
| 6184 | return init_rmode_tss(kvm); |
| 6185 | } |
| 6186 | |
| 6187 | static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) |
| 6188 | { |
| 6189 | switch (vec) { |
| 6190 | case BP_VECTOR: |
| 6191 | /* |
| 6192 | * Update instruction length as we may reinject the exception |
| 6193 | * from user space while in guest debugging mode. |
| 6194 | */ |
| 6195 | to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = |
| 6196 | vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| 6197 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| 6198 | return false; |
| 6199 | /* fall through */ |
| 6200 | case DB_VECTOR: |
| 6201 | if (vcpu->guest_debug & |
| 6202 | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) |
| 6203 | return false; |
| 6204 | /* fall through */ |
| 6205 | case DE_VECTOR: |
| 6206 | case OF_VECTOR: |
| 6207 | case BR_VECTOR: |
| 6208 | case UD_VECTOR: |
| 6209 | case DF_VECTOR: |
| 6210 | case SS_VECTOR: |
| 6211 | case GP_VECTOR: |
| 6212 | case MF_VECTOR: |
| 6213 | return true; |
| 6214 | break; |
| 6215 | } |
| 6216 | return false; |
| 6217 | } |
| 6218 | |
| 6219 | static int handle_rmode_exception(struct kvm_vcpu *vcpu, |
| 6220 | int vec, u32 err_code) |
| 6221 | { |
| 6222 | /* |
| 6223 | * Instruction with address size override prefix opcode 0x67 |
| 6224 | * Cause the #SS fault with 0 error code in VM86 mode. |
| 6225 | */ |
| 6226 | if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { |
| 6227 | if (emulate_instruction(vcpu, 0) == EMULATE_DONE) { |
| 6228 | if (vcpu->arch.halt_request) { |
| 6229 | vcpu->arch.halt_request = 0; |
| 6230 | return kvm_vcpu_halt(vcpu); |
| 6231 | } |
| 6232 | return 1; |
| 6233 | } |
| 6234 | return 0; |
| 6235 | } |
| 6236 | |
| 6237 | /* |
| 6238 | * Forward all other exceptions that are valid in real mode. |
| 6239 | * FIXME: Breaks guest debugging in real mode, needs to be fixed with |
| 6240 | * the required debugging infrastructure rework. |
| 6241 | */ |
| 6242 | kvm_queue_exception(vcpu, vec); |
| 6243 | return 1; |
| 6244 | } |
| 6245 | |
| 6246 | /* |
| 6247 | * Trigger machine check on the host. We assume all the MSRs are already set up |
| 6248 | * by the CPU and that we still run on the same CPU as the MCE occurred on. |
| 6249 | * We pass a fake environment to the machine check handler because we want |
| 6250 | * the guest to be always treated like user space, no matter what context |
| 6251 | * it used internally. |
| 6252 | */ |
| 6253 | static void kvm_machine_check(void) |
| 6254 | { |
| 6255 | #if defined(CONFIG_X86_MCE) |
| 6256 | struct pt_regs regs = { |
| 6257 | .cs = 3, /* Fake ring 3 no matter what the guest ran on */ |
| 6258 | .flags = X86_EFLAGS_IF, |
| 6259 | }; |
| 6260 | |
| 6261 | do_machine_check(®s, 0); |
| 6262 | #endif |
| 6263 | } |
| 6264 | |
| 6265 | static int handle_machine_check(struct kvm_vcpu *vcpu) |
| 6266 | { |
| 6267 | /* already handled by vcpu_run */ |
| 6268 | return 1; |
| 6269 | } |
| 6270 | |
| 6271 | static int handle_exception(struct kvm_vcpu *vcpu) |
| 6272 | { |
| 6273 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 6274 | struct kvm_run *kvm_run = vcpu->run; |
| 6275 | u32 intr_info, ex_no, error_code; |
| 6276 | unsigned long cr2, rip, dr6; |
| 6277 | u32 vect_info; |
| 6278 | enum emulation_result er; |
| 6279 | |
| 6280 | vect_info = vmx->idt_vectoring_info; |
| 6281 | intr_info = vmx->exit_intr_info; |
| 6282 | |
| 6283 | if (is_machine_check(intr_info)) |
| 6284 | return handle_machine_check(vcpu); |
| 6285 | |
| 6286 | if (is_nmi(intr_info)) |
| 6287 | return 1; /* already handled by vmx_vcpu_run() */ |
| 6288 | |
| 6289 | if (is_invalid_opcode(intr_info)) { |
| 6290 | er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD); |
| 6291 | if (er == EMULATE_USER_EXIT) |
| 6292 | return 0; |
| 6293 | if (er != EMULATE_DONE) |
| 6294 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 6295 | return 1; |
| 6296 | } |
| 6297 | |
| 6298 | error_code = 0; |
| 6299 | if (intr_info & INTR_INFO_DELIVER_CODE_MASK) |
| 6300 | error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); |
| 6301 | |
| 6302 | /* |
| 6303 | * The #PF with PFEC.RSVD = 1 indicates the guest is accessing |
| 6304 | * MMIO, it is better to report an internal error. |
| 6305 | * See the comments in vmx_handle_exit. |
| 6306 | */ |
| 6307 | if ((vect_info & VECTORING_INFO_VALID_MASK) && |
| 6308 | !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { |
| 6309 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 6310 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; |
| 6311 | vcpu->run->internal.ndata = 3; |
| 6312 | vcpu->run->internal.data[0] = vect_info; |
| 6313 | vcpu->run->internal.data[1] = intr_info; |
| 6314 | vcpu->run->internal.data[2] = error_code; |
| 6315 | return 0; |
| 6316 | } |
| 6317 | |
| 6318 | if (is_page_fault(intr_info)) { |
| 6319 | cr2 = vmcs_readl(EXIT_QUALIFICATION); |
| 6320 | /* EPT won't cause page fault directly */ |
| 6321 | WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); |
| 6322 | return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0, |
| 6323 | true); |
| 6324 | } |
| 6325 | |
| 6326 | ex_no = intr_info & INTR_INFO_VECTOR_MASK; |
| 6327 | |
| 6328 | if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) |
| 6329 | return handle_rmode_exception(vcpu, ex_no, error_code); |
| 6330 | |
| 6331 | switch (ex_no) { |
| 6332 | case AC_VECTOR: |
| 6333 | kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); |
| 6334 | return 1; |
| 6335 | case DB_VECTOR: |
| 6336 | dr6 = vmcs_readl(EXIT_QUALIFICATION); |
| 6337 | if (!(vcpu->guest_debug & |
| 6338 | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { |
| 6339 | vcpu->arch.dr6 &= ~15; |
| 6340 | vcpu->arch.dr6 |= dr6 | DR6_RTM; |
| 6341 | if (is_icebp(intr_info)) |
| 6342 | skip_emulated_instruction(vcpu); |
| 6343 | |
| 6344 | kvm_queue_exception(vcpu, DB_VECTOR); |
| 6345 | return 1; |
| 6346 | } |
| 6347 | kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; |
| 6348 | kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); |
| 6349 | /* fall through */ |
| 6350 | case BP_VECTOR: |
| 6351 | /* |
| 6352 | * Update instruction length as we may reinject #BP from |
| 6353 | * user space while in guest debugging mode. Reading it for |
| 6354 | * #DB as well causes no harm, it is not used in that case. |
| 6355 | */ |
| 6356 | vmx->vcpu.arch.event_exit_inst_len = |
| 6357 | vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| 6358 | kvm_run->exit_reason = KVM_EXIT_DEBUG; |
| 6359 | rip = kvm_rip_read(vcpu); |
| 6360 | kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; |
| 6361 | kvm_run->debug.arch.exception = ex_no; |
| 6362 | break; |
| 6363 | default: |
| 6364 | kvm_run->exit_reason = KVM_EXIT_EXCEPTION; |
| 6365 | kvm_run->ex.exception = ex_no; |
| 6366 | kvm_run->ex.error_code = error_code; |
| 6367 | break; |
| 6368 | } |
| 6369 | return 0; |
| 6370 | } |
| 6371 | |
| 6372 | static int handle_external_interrupt(struct kvm_vcpu *vcpu) |
| 6373 | { |
| 6374 | ++vcpu->stat.irq_exits; |
| 6375 | return 1; |
| 6376 | } |
| 6377 | |
| 6378 | static int handle_triple_fault(struct kvm_vcpu *vcpu) |
| 6379 | { |
| 6380 | vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
| 6381 | vcpu->mmio_needed = 0; |
| 6382 | return 0; |
| 6383 | } |
| 6384 | |
| 6385 | static int handle_io(struct kvm_vcpu *vcpu) |
| 6386 | { |
| 6387 | unsigned long exit_qualification; |
| 6388 | int size, in, string, ret; |
| 6389 | unsigned port; |
| 6390 | |
| 6391 | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 6392 | string = (exit_qualification & 16) != 0; |
| 6393 | in = (exit_qualification & 8) != 0; |
| 6394 | |
| 6395 | ++vcpu->stat.io_exits; |
| 6396 | |
| 6397 | if (string || in) |
| 6398 | return emulate_instruction(vcpu, 0) == EMULATE_DONE; |
| 6399 | |
| 6400 | port = exit_qualification >> 16; |
| 6401 | size = (exit_qualification & 7) + 1; |
| 6402 | |
| 6403 | ret = kvm_skip_emulated_instruction(vcpu); |
| 6404 | |
| 6405 | /* |
| 6406 | * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered |
| 6407 | * KVM_EXIT_DEBUG here. |
| 6408 | */ |
| 6409 | return kvm_fast_pio_out(vcpu, size, port) && ret; |
| 6410 | } |
| 6411 | |
| 6412 | static void |
| 6413 | vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) |
| 6414 | { |
| 6415 | /* |
| 6416 | * Patch in the VMCALL instruction: |
| 6417 | */ |
| 6418 | hypercall[0] = 0x0f; |
| 6419 | hypercall[1] = 0x01; |
| 6420 | hypercall[2] = 0xc1; |
| 6421 | } |
| 6422 | |
| 6423 | /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ |
| 6424 | static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) |
| 6425 | { |
| 6426 | if (is_guest_mode(vcpu)) { |
| 6427 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 6428 | unsigned long orig_val = val; |
| 6429 | |
| 6430 | /* |
| 6431 | * We get here when L2 changed cr0 in a way that did not change |
| 6432 | * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), |
| 6433 | * but did change L0 shadowed bits. So we first calculate the |
| 6434 | * effective cr0 value that L1 would like to write into the |
| 6435 | * hardware. It consists of the L2-owned bits from the new |
| 6436 | * value combined with the L1-owned bits from L1's guest_cr0. |
| 6437 | */ |
| 6438 | val = (val & ~vmcs12->cr0_guest_host_mask) | |
| 6439 | (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); |
| 6440 | |
| 6441 | if (!nested_guest_cr0_valid(vcpu, val)) |
| 6442 | return 1; |
| 6443 | |
| 6444 | if (kvm_set_cr0(vcpu, val)) |
| 6445 | return 1; |
| 6446 | vmcs_writel(CR0_READ_SHADOW, orig_val); |
| 6447 | return 0; |
| 6448 | } else { |
| 6449 | if (to_vmx(vcpu)->nested.vmxon && |
| 6450 | !nested_host_cr0_valid(vcpu, val)) |
| 6451 | return 1; |
| 6452 | |
| 6453 | return kvm_set_cr0(vcpu, val); |
| 6454 | } |
| 6455 | } |
| 6456 | |
| 6457 | static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) |
| 6458 | { |
| 6459 | if (is_guest_mode(vcpu)) { |
| 6460 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 6461 | unsigned long orig_val = val; |
| 6462 | |
| 6463 | /* analogously to handle_set_cr0 */ |
| 6464 | val = (val & ~vmcs12->cr4_guest_host_mask) | |
| 6465 | (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); |
| 6466 | if (kvm_set_cr4(vcpu, val)) |
| 6467 | return 1; |
| 6468 | vmcs_writel(CR4_READ_SHADOW, orig_val); |
| 6469 | return 0; |
| 6470 | } else |
| 6471 | return kvm_set_cr4(vcpu, val); |
| 6472 | } |
| 6473 | |
| 6474 | static int handle_cr(struct kvm_vcpu *vcpu) |
| 6475 | { |
| 6476 | unsigned long exit_qualification, val; |
| 6477 | int cr; |
| 6478 | int reg; |
| 6479 | int err; |
| 6480 | int ret; |
| 6481 | |
| 6482 | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 6483 | cr = exit_qualification & 15; |
| 6484 | reg = (exit_qualification >> 8) & 15; |
| 6485 | switch ((exit_qualification >> 4) & 3) { |
| 6486 | case 0: /* mov to cr */ |
| 6487 | val = kvm_register_readl(vcpu, reg); |
| 6488 | trace_kvm_cr_write(cr, val); |
| 6489 | switch (cr) { |
| 6490 | case 0: |
| 6491 | err = handle_set_cr0(vcpu, val); |
| 6492 | return kvm_complete_insn_gp(vcpu, err); |
| 6493 | case 3: |
| 6494 | err = kvm_set_cr3(vcpu, val); |
| 6495 | return kvm_complete_insn_gp(vcpu, err); |
| 6496 | case 4: |
| 6497 | err = handle_set_cr4(vcpu, val); |
| 6498 | return kvm_complete_insn_gp(vcpu, err); |
| 6499 | case 8: { |
| 6500 | u8 cr8_prev = kvm_get_cr8(vcpu); |
| 6501 | u8 cr8 = (u8)val; |
| 6502 | err = kvm_set_cr8(vcpu, cr8); |
| 6503 | ret = kvm_complete_insn_gp(vcpu, err); |
| 6504 | if (lapic_in_kernel(vcpu)) |
| 6505 | return ret; |
| 6506 | if (cr8_prev <= cr8) |
| 6507 | return ret; |
| 6508 | /* |
| 6509 | * TODO: we might be squashing a |
| 6510 | * KVM_GUESTDBG_SINGLESTEP-triggered |
| 6511 | * KVM_EXIT_DEBUG here. |
| 6512 | */ |
| 6513 | vcpu->run->exit_reason = KVM_EXIT_SET_TPR; |
| 6514 | return 0; |
| 6515 | } |
| 6516 | } |
| 6517 | break; |
| 6518 | case 2: /* clts */ |
| 6519 | WARN_ONCE(1, "Guest should always own CR0.TS"); |
| 6520 | vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); |
| 6521 | trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); |
| 6522 | return kvm_skip_emulated_instruction(vcpu); |
| 6523 | case 1: /*mov from cr*/ |
| 6524 | switch (cr) { |
| 6525 | case 3: |
| 6526 | val = kvm_read_cr3(vcpu); |
| 6527 | kvm_register_write(vcpu, reg, val); |
| 6528 | trace_kvm_cr_read(cr, val); |
| 6529 | return kvm_skip_emulated_instruction(vcpu); |
| 6530 | case 8: |
| 6531 | val = kvm_get_cr8(vcpu); |
| 6532 | kvm_register_write(vcpu, reg, val); |
| 6533 | trace_kvm_cr_read(cr, val); |
| 6534 | return kvm_skip_emulated_instruction(vcpu); |
| 6535 | } |
| 6536 | break; |
| 6537 | case 3: /* lmsw */ |
| 6538 | val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; |
| 6539 | trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); |
| 6540 | kvm_lmsw(vcpu, val); |
| 6541 | |
| 6542 | return kvm_skip_emulated_instruction(vcpu); |
| 6543 | default: |
| 6544 | break; |
| 6545 | } |
| 6546 | vcpu->run->exit_reason = 0; |
| 6547 | vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", |
| 6548 | (int)(exit_qualification >> 4) & 3, cr); |
| 6549 | return 0; |
| 6550 | } |
| 6551 | |
| 6552 | static int handle_dr(struct kvm_vcpu *vcpu) |
| 6553 | { |
| 6554 | unsigned long exit_qualification; |
| 6555 | int dr, dr7, reg; |
| 6556 | |
| 6557 | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 6558 | dr = exit_qualification & DEBUG_REG_ACCESS_NUM; |
| 6559 | |
| 6560 | /* First, if DR does not exist, trigger UD */ |
| 6561 | if (!kvm_require_dr(vcpu, dr)) |
| 6562 | return 1; |
| 6563 | |
| 6564 | /* Do not handle if the CPL > 0, will trigger GP on re-entry */ |
| 6565 | if (!kvm_require_cpl(vcpu, 0)) |
| 6566 | return 1; |
| 6567 | dr7 = vmcs_readl(GUEST_DR7); |
| 6568 | if (dr7 & DR7_GD) { |
| 6569 | /* |
| 6570 | * As the vm-exit takes precedence over the debug trap, we |
| 6571 | * need to emulate the latter, either for the host or the |
| 6572 | * guest debugging itself. |
| 6573 | */ |
| 6574 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { |
| 6575 | vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; |
| 6576 | vcpu->run->debug.arch.dr7 = dr7; |
| 6577 | vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); |
| 6578 | vcpu->run->debug.arch.exception = DB_VECTOR; |
| 6579 | vcpu->run->exit_reason = KVM_EXIT_DEBUG; |
| 6580 | return 0; |
| 6581 | } else { |
| 6582 | vcpu->arch.dr6 &= ~15; |
| 6583 | vcpu->arch.dr6 |= DR6_BD | DR6_RTM; |
| 6584 | kvm_queue_exception(vcpu, DB_VECTOR); |
| 6585 | return 1; |
| 6586 | } |
| 6587 | } |
| 6588 | |
| 6589 | if (vcpu->guest_debug == 0) { |
| 6590 | vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, |
| 6591 | CPU_BASED_MOV_DR_EXITING); |
| 6592 | |
| 6593 | /* |
| 6594 | * No more DR vmexits; force a reload of the debug registers |
| 6595 | * and reenter on this instruction. The next vmexit will |
| 6596 | * retrieve the full state of the debug registers. |
| 6597 | */ |
| 6598 | vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; |
| 6599 | return 1; |
| 6600 | } |
| 6601 | |
| 6602 | reg = DEBUG_REG_ACCESS_REG(exit_qualification); |
| 6603 | if (exit_qualification & TYPE_MOV_FROM_DR) { |
| 6604 | unsigned long val; |
| 6605 | |
| 6606 | if (kvm_get_dr(vcpu, dr, &val)) |
| 6607 | return 1; |
| 6608 | kvm_register_write(vcpu, reg, val); |
| 6609 | } else |
| 6610 | if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) |
| 6611 | return 1; |
| 6612 | |
| 6613 | return kvm_skip_emulated_instruction(vcpu); |
| 6614 | } |
| 6615 | |
| 6616 | static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) |
| 6617 | { |
| 6618 | return vcpu->arch.dr6; |
| 6619 | } |
| 6620 | |
| 6621 | static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) |
| 6622 | { |
| 6623 | } |
| 6624 | |
| 6625 | static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) |
| 6626 | { |
| 6627 | get_debugreg(vcpu->arch.db[0], 0); |
| 6628 | get_debugreg(vcpu->arch.db[1], 1); |
| 6629 | get_debugreg(vcpu->arch.db[2], 2); |
| 6630 | get_debugreg(vcpu->arch.db[3], 3); |
| 6631 | get_debugreg(vcpu->arch.dr6, 6); |
| 6632 | vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); |
| 6633 | |
| 6634 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; |
| 6635 | vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); |
| 6636 | } |
| 6637 | |
| 6638 | static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) |
| 6639 | { |
| 6640 | vmcs_writel(GUEST_DR7, val); |
| 6641 | } |
| 6642 | |
| 6643 | static int handle_cpuid(struct kvm_vcpu *vcpu) |
| 6644 | { |
| 6645 | return kvm_emulate_cpuid(vcpu); |
| 6646 | } |
| 6647 | |
| 6648 | static int handle_rdmsr(struct kvm_vcpu *vcpu) |
| 6649 | { |
| 6650 | u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; |
| 6651 | struct msr_data msr_info; |
| 6652 | |
| 6653 | msr_info.index = ecx; |
| 6654 | msr_info.host_initiated = false; |
| 6655 | if (vmx_get_msr(vcpu, &msr_info)) { |
| 6656 | trace_kvm_msr_read_ex(ecx); |
| 6657 | kvm_inject_gp(vcpu, 0); |
| 6658 | return 1; |
| 6659 | } |
| 6660 | |
| 6661 | trace_kvm_msr_read(ecx, msr_info.data); |
| 6662 | |
| 6663 | /* FIXME: handling of bits 32:63 of rax, rdx */ |
| 6664 | vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u; |
| 6665 | vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u; |
| 6666 | return kvm_skip_emulated_instruction(vcpu); |
| 6667 | } |
| 6668 | |
| 6669 | static int handle_wrmsr(struct kvm_vcpu *vcpu) |
| 6670 | { |
| 6671 | struct msr_data msr; |
| 6672 | u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; |
| 6673 | u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) |
| 6674 | | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); |
| 6675 | |
| 6676 | msr.data = data; |
| 6677 | msr.index = ecx; |
| 6678 | msr.host_initiated = false; |
| 6679 | if (kvm_set_msr(vcpu, &msr) != 0) { |
| 6680 | trace_kvm_msr_write_ex(ecx, data); |
| 6681 | kvm_inject_gp(vcpu, 0); |
| 6682 | return 1; |
| 6683 | } |
| 6684 | |
| 6685 | trace_kvm_msr_write(ecx, data); |
| 6686 | return kvm_skip_emulated_instruction(vcpu); |
| 6687 | } |
| 6688 | |
| 6689 | static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) |
| 6690 | { |
| 6691 | kvm_apic_update_ppr(vcpu); |
| 6692 | return 1; |
| 6693 | } |
| 6694 | |
| 6695 | static int handle_interrupt_window(struct kvm_vcpu *vcpu) |
| 6696 | { |
| 6697 | vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, |
| 6698 | CPU_BASED_VIRTUAL_INTR_PENDING); |
| 6699 | |
| 6700 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
| 6701 | |
| 6702 | ++vcpu->stat.irq_window_exits; |
| 6703 | return 1; |
| 6704 | } |
| 6705 | |
| 6706 | static int handle_halt(struct kvm_vcpu *vcpu) |
| 6707 | { |
| 6708 | return kvm_emulate_halt(vcpu); |
| 6709 | } |
| 6710 | |
| 6711 | static int handle_vmcall(struct kvm_vcpu *vcpu) |
| 6712 | { |
| 6713 | return kvm_emulate_hypercall(vcpu); |
| 6714 | } |
| 6715 | |
| 6716 | static int handle_invd(struct kvm_vcpu *vcpu) |
| 6717 | { |
| 6718 | return emulate_instruction(vcpu, 0) == EMULATE_DONE; |
| 6719 | } |
| 6720 | |
| 6721 | static int handle_invlpg(struct kvm_vcpu *vcpu) |
| 6722 | { |
| 6723 | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 6724 | |
| 6725 | kvm_mmu_invlpg(vcpu, exit_qualification); |
| 6726 | return kvm_skip_emulated_instruction(vcpu); |
| 6727 | } |
| 6728 | |
| 6729 | static int handle_rdpmc(struct kvm_vcpu *vcpu) |
| 6730 | { |
| 6731 | int err; |
| 6732 | |
| 6733 | err = kvm_rdpmc(vcpu); |
| 6734 | return kvm_complete_insn_gp(vcpu, err); |
| 6735 | } |
| 6736 | |
| 6737 | static int handle_wbinvd(struct kvm_vcpu *vcpu) |
| 6738 | { |
| 6739 | return kvm_emulate_wbinvd(vcpu); |
| 6740 | } |
| 6741 | |
| 6742 | static int handle_xsetbv(struct kvm_vcpu *vcpu) |
| 6743 | { |
| 6744 | u64 new_bv = kvm_read_edx_eax(vcpu); |
| 6745 | u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); |
| 6746 | |
| 6747 | if (kvm_set_xcr(vcpu, index, new_bv) == 0) |
| 6748 | return kvm_skip_emulated_instruction(vcpu); |
| 6749 | return 1; |
| 6750 | } |
| 6751 | |
| 6752 | static int handle_xsaves(struct kvm_vcpu *vcpu) |
| 6753 | { |
| 6754 | kvm_skip_emulated_instruction(vcpu); |
| 6755 | WARN(1, "this should never happen\n"); |
| 6756 | return 1; |
| 6757 | } |
| 6758 | |
| 6759 | static int handle_xrstors(struct kvm_vcpu *vcpu) |
| 6760 | { |
| 6761 | kvm_skip_emulated_instruction(vcpu); |
| 6762 | WARN(1, "this should never happen\n"); |
| 6763 | return 1; |
| 6764 | } |
| 6765 | |
| 6766 | static int handle_apic_access(struct kvm_vcpu *vcpu) |
| 6767 | { |
| 6768 | if (likely(fasteoi)) { |
| 6769 | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 6770 | int access_type, offset; |
| 6771 | |
| 6772 | access_type = exit_qualification & APIC_ACCESS_TYPE; |
| 6773 | offset = exit_qualification & APIC_ACCESS_OFFSET; |
| 6774 | /* |
| 6775 | * Sane guest uses MOV to write EOI, with written value |
| 6776 | * not cared. So make a short-circuit here by avoiding |
| 6777 | * heavy instruction emulation. |
| 6778 | */ |
| 6779 | if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && |
| 6780 | (offset == APIC_EOI)) { |
| 6781 | kvm_lapic_set_eoi(vcpu); |
| 6782 | return kvm_skip_emulated_instruction(vcpu); |
| 6783 | } |
| 6784 | } |
| 6785 | return emulate_instruction(vcpu, 0) == EMULATE_DONE; |
| 6786 | } |
| 6787 | |
| 6788 | static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) |
| 6789 | { |
| 6790 | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 6791 | int vector = exit_qualification & 0xff; |
| 6792 | |
| 6793 | /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ |
| 6794 | kvm_apic_set_eoi_accelerated(vcpu, vector); |
| 6795 | return 1; |
| 6796 | } |
| 6797 | |
| 6798 | static int handle_apic_write(struct kvm_vcpu *vcpu) |
| 6799 | { |
| 6800 | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 6801 | u32 offset = exit_qualification & 0xfff; |
| 6802 | |
| 6803 | /* APIC-write VM exit is trap-like and thus no need to adjust IP */ |
| 6804 | kvm_apic_write_nodecode(vcpu, offset); |
| 6805 | return 1; |
| 6806 | } |
| 6807 | |
| 6808 | static int handle_task_switch(struct kvm_vcpu *vcpu) |
| 6809 | { |
| 6810 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 6811 | unsigned long exit_qualification; |
| 6812 | bool has_error_code = false; |
| 6813 | u32 error_code = 0; |
| 6814 | u16 tss_selector; |
| 6815 | int reason, type, idt_v, idt_index; |
| 6816 | |
| 6817 | idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); |
| 6818 | idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); |
| 6819 | type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); |
| 6820 | |
| 6821 | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 6822 | |
| 6823 | reason = (u32)exit_qualification >> 30; |
| 6824 | if (reason == TASK_SWITCH_GATE && idt_v) { |
| 6825 | switch (type) { |
| 6826 | case INTR_TYPE_NMI_INTR: |
| 6827 | vcpu->arch.nmi_injected = false; |
| 6828 | vmx_set_nmi_mask(vcpu, true); |
| 6829 | break; |
| 6830 | case INTR_TYPE_EXT_INTR: |
| 6831 | case INTR_TYPE_SOFT_INTR: |
| 6832 | kvm_clear_interrupt_queue(vcpu); |
| 6833 | break; |
| 6834 | case INTR_TYPE_HARD_EXCEPTION: |
| 6835 | if (vmx->idt_vectoring_info & |
| 6836 | VECTORING_INFO_DELIVER_CODE_MASK) { |
| 6837 | has_error_code = true; |
| 6838 | error_code = |
| 6839 | vmcs_read32(IDT_VECTORING_ERROR_CODE); |
| 6840 | } |
| 6841 | /* fall through */ |
| 6842 | case INTR_TYPE_SOFT_EXCEPTION: |
| 6843 | kvm_clear_exception_queue(vcpu); |
| 6844 | break; |
| 6845 | default: |
| 6846 | break; |
| 6847 | } |
| 6848 | } |
| 6849 | tss_selector = exit_qualification; |
| 6850 | |
| 6851 | if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && |
| 6852 | type != INTR_TYPE_EXT_INTR && |
| 6853 | type != INTR_TYPE_NMI_INTR)) |
| 6854 | skip_emulated_instruction(vcpu); |
| 6855 | |
| 6856 | if (kvm_task_switch(vcpu, tss_selector, |
| 6857 | type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, |
| 6858 | has_error_code, error_code) == EMULATE_FAIL) { |
| 6859 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 6860 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; |
| 6861 | vcpu->run->internal.ndata = 0; |
| 6862 | return 0; |
| 6863 | } |
| 6864 | |
| 6865 | /* |
| 6866 | * TODO: What about debug traps on tss switch? |
| 6867 | * Are we supposed to inject them and update dr6? |
| 6868 | */ |
| 6869 | |
| 6870 | return 1; |
| 6871 | } |
| 6872 | |
| 6873 | static int handle_ept_violation(struct kvm_vcpu *vcpu) |
| 6874 | { |
| 6875 | unsigned long exit_qualification; |
| 6876 | gpa_t gpa; |
| 6877 | u64 error_code; |
| 6878 | |
| 6879 | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 6880 | |
| 6881 | /* |
| 6882 | * EPT violation happened while executing iret from NMI, |
| 6883 | * "blocked by NMI" bit has to be set before next VM entry. |
| 6884 | * There are errata that may cause this bit to not be set: |
| 6885 | * AAK134, BY25. |
| 6886 | */ |
| 6887 | if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && |
| 6888 | cpu_has_virtual_nmis() && |
| 6889 | (exit_qualification & INTR_INFO_UNBLOCK_NMI)) |
| 6890 | vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); |
| 6891 | |
| 6892 | gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); |
| 6893 | trace_kvm_page_fault(gpa, exit_qualification); |
| 6894 | |
| 6895 | /* Is it a read fault? */ |
| 6896 | error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) |
| 6897 | ? PFERR_USER_MASK : 0; |
| 6898 | /* Is it a write fault? */ |
| 6899 | error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) |
| 6900 | ? PFERR_WRITE_MASK : 0; |
| 6901 | /* Is it a fetch fault? */ |
| 6902 | error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) |
| 6903 | ? PFERR_FETCH_MASK : 0; |
| 6904 | /* ept page table entry is present? */ |
| 6905 | error_code |= (exit_qualification & |
| 6906 | (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | |
| 6907 | EPT_VIOLATION_EXECUTABLE)) |
| 6908 | ? PFERR_PRESENT_MASK : 0; |
| 6909 | |
| 6910 | error_code |= (exit_qualification & 0x100) != 0 ? |
| 6911 | PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; |
| 6912 | |
| 6913 | vcpu->arch.exit_qualification = exit_qualification; |
| 6914 | return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); |
| 6915 | } |
| 6916 | |
| 6917 | static int handle_ept_misconfig(struct kvm_vcpu *vcpu) |
| 6918 | { |
| 6919 | int ret; |
| 6920 | gpa_t gpa; |
| 6921 | |
| 6922 | /* |
| 6923 | * A nested guest cannot optimize MMIO vmexits, because we have an |
| 6924 | * nGPA here instead of the required GPA. |
| 6925 | */ |
| 6926 | gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); |
| 6927 | if (!is_guest_mode(vcpu) && |
| 6928 | !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { |
| 6929 | trace_kvm_fast_mmio(gpa); |
| 6930 | /* |
| 6931 | * Doing kvm_skip_emulated_instruction() depends on undefined |
| 6932 | * behavior: Intel's manual doesn't mandate |
| 6933 | * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG |
| 6934 | * occurs and while on real hardware it was observed to be set, |
| 6935 | * other hypervisors (namely Hyper-V) don't set it, we end up |
| 6936 | * advancing IP with some random value. Disable fast mmio when |
| 6937 | * running nested and keep it for real hardware in hope that |
| 6938 | * VM_EXIT_INSTRUCTION_LEN will always be set correctly. |
| 6939 | */ |
| 6940 | if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) |
| 6941 | return kvm_skip_emulated_instruction(vcpu); |
| 6942 | else |
| 6943 | return emulate_instruction(vcpu, EMULTYPE_SKIP) == |
| 6944 | EMULATE_DONE; |
| 6945 | } |
| 6946 | |
| 6947 | ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); |
| 6948 | if (ret >= 0) |
| 6949 | return ret; |
| 6950 | |
| 6951 | /* It is the real ept misconfig */ |
| 6952 | WARN_ON(1); |
| 6953 | |
| 6954 | vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; |
| 6955 | vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG; |
| 6956 | |
| 6957 | return 0; |
| 6958 | } |
| 6959 | |
| 6960 | static int handle_nmi_window(struct kvm_vcpu *vcpu) |
| 6961 | { |
| 6962 | vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, |
| 6963 | CPU_BASED_VIRTUAL_NMI_PENDING); |
| 6964 | ++vcpu->stat.nmi_window_exits; |
| 6965 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
| 6966 | |
| 6967 | return 1; |
| 6968 | } |
| 6969 | |
| 6970 | static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) |
| 6971 | { |
| 6972 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 6973 | enum emulation_result err = EMULATE_DONE; |
| 6974 | int ret = 1; |
| 6975 | u32 cpu_exec_ctrl; |
| 6976 | bool intr_window_requested; |
| 6977 | unsigned count = 130; |
| 6978 | |
| 6979 | cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| 6980 | intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; |
| 6981 | |
| 6982 | while (vmx->emulation_required && count-- != 0) { |
| 6983 | if (intr_window_requested && vmx_interrupt_allowed(vcpu)) |
| 6984 | return handle_interrupt_window(&vmx->vcpu); |
| 6985 | |
| 6986 | if (kvm_test_request(KVM_REQ_EVENT, vcpu)) |
| 6987 | return 1; |
| 6988 | |
| 6989 | err = emulate_instruction(vcpu, 0); |
| 6990 | |
| 6991 | if (err == EMULATE_USER_EXIT) { |
| 6992 | ++vcpu->stat.mmio_exits; |
| 6993 | ret = 0; |
| 6994 | goto out; |
| 6995 | } |
| 6996 | |
| 6997 | if (err != EMULATE_DONE) |
| 6998 | goto emulation_error; |
| 6999 | |
| 7000 | if (vmx->emulation_required && !vmx->rmode.vm86_active && |
| 7001 | vcpu->arch.exception.pending) |
| 7002 | goto emulation_error; |
| 7003 | |
| 7004 | if (vcpu->arch.halt_request) { |
| 7005 | vcpu->arch.halt_request = 0; |
| 7006 | ret = kvm_vcpu_halt(vcpu); |
| 7007 | goto out; |
| 7008 | } |
| 7009 | |
| 7010 | if (signal_pending(current)) |
| 7011 | goto out; |
| 7012 | if (need_resched()) |
| 7013 | schedule(); |
| 7014 | } |
| 7015 | |
| 7016 | out: |
| 7017 | return ret; |
| 7018 | |
| 7019 | emulation_error: |
| 7020 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 7021 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; |
| 7022 | vcpu->run->internal.ndata = 0; |
| 7023 | return 0; |
| 7024 | } |
| 7025 | |
| 7026 | static int __grow_ple_window(int val) |
| 7027 | { |
| 7028 | if (ple_window_grow < 1) |
| 7029 | return ple_window; |
| 7030 | |
| 7031 | val = min(val, ple_window_actual_max); |
| 7032 | |
| 7033 | if (ple_window_grow < ple_window) |
| 7034 | val *= ple_window_grow; |
| 7035 | else |
| 7036 | val += ple_window_grow; |
| 7037 | |
| 7038 | return val; |
| 7039 | } |
| 7040 | |
| 7041 | static int __shrink_ple_window(int val, int modifier, int minimum) |
| 7042 | { |
| 7043 | if (modifier < 1) |
| 7044 | return ple_window; |
| 7045 | |
| 7046 | if (modifier < ple_window) |
| 7047 | val /= modifier; |
| 7048 | else |
| 7049 | val -= modifier; |
| 7050 | |
| 7051 | return max(val, minimum); |
| 7052 | } |
| 7053 | |
| 7054 | static void grow_ple_window(struct kvm_vcpu *vcpu) |
| 7055 | { |
| 7056 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 7057 | int old = vmx->ple_window; |
| 7058 | |
| 7059 | vmx->ple_window = __grow_ple_window(old); |
| 7060 | |
| 7061 | if (vmx->ple_window != old) |
| 7062 | vmx->ple_window_dirty = true; |
| 7063 | |
| 7064 | trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); |
| 7065 | } |
| 7066 | |
| 7067 | static void shrink_ple_window(struct kvm_vcpu *vcpu) |
| 7068 | { |
| 7069 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 7070 | int old = vmx->ple_window; |
| 7071 | |
| 7072 | vmx->ple_window = __shrink_ple_window(old, |
| 7073 | ple_window_shrink, ple_window); |
| 7074 | |
| 7075 | if (vmx->ple_window != old) |
| 7076 | vmx->ple_window_dirty = true; |
| 7077 | |
| 7078 | trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); |
| 7079 | } |
| 7080 | |
| 7081 | /* |
| 7082 | * ple_window_actual_max is computed to be one grow_ple_window() below |
| 7083 | * ple_window_max. (See __grow_ple_window for the reason.) |
| 7084 | * This prevents overflows, because ple_window_max is int. |
| 7085 | * ple_window_max effectively rounded down to a multiple of ple_window_grow in |
| 7086 | * this process. |
| 7087 | * ple_window_max is also prevented from setting vmx->ple_window < ple_window. |
| 7088 | */ |
| 7089 | static void update_ple_window_actual_max(void) |
| 7090 | { |
| 7091 | ple_window_actual_max = |
| 7092 | __shrink_ple_window(max(ple_window_max, ple_window), |
| 7093 | ple_window_grow, INT_MIN); |
| 7094 | } |
| 7095 | |
| 7096 | /* |
| 7097 | * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. |
| 7098 | */ |
| 7099 | static void wakeup_handler(void) |
| 7100 | { |
| 7101 | struct kvm_vcpu *vcpu; |
| 7102 | int cpu = smp_processor_id(); |
| 7103 | |
| 7104 | spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); |
| 7105 | list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), |
| 7106 | blocked_vcpu_list) { |
| 7107 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 7108 | |
| 7109 | if (pi_test_on(pi_desc) == 1) |
| 7110 | kvm_vcpu_kick(vcpu); |
| 7111 | } |
| 7112 | spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); |
| 7113 | } |
| 7114 | |
| 7115 | void vmx_enable_tdp(void) |
| 7116 | { |
| 7117 | kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, |
| 7118 | enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, |
| 7119 | enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, |
| 7120 | 0ull, VMX_EPT_EXECUTABLE_MASK, |
| 7121 | cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, |
| 7122 | VMX_EPT_RWX_MASK, 0ull); |
| 7123 | |
| 7124 | ept_set_mmio_spte_mask(); |
| 7125 | kvm_enable_tdp(); |
| 7126 | } |
| 7127 | |
| 7128 | static __init int hardware_setup(void) |
| 7129 | { |
| 7130 | int r = -ENOMEM, i; |
| 7131 | |
| 7132 | rdmsrl_safe(MSR_EFER, &host_efer); |
| 7133 | |
| 7134 | for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) |
| 7135 | kvm_define_shared_msr(i, vmx_msr_index[i]); |
| 7136 | |
| 7137 | for (i = 0; i < VMX_BITMAP_NR; i++) { |
| 7138 | vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL); |
| 7139 | if (!vmx_bitmap[i]) |
| 7140 | goto out; |
| 7141 | } |
| 7142 | |
| 7143 | memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); |
| 7144 | memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); |
| 7145 | |
| 7146 | memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE); |
| 7147 | |
| 7148 | memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE); |
| 7149 | |
| 7150 | if (setup_vmcs_config(&vmcs_config) < 0) { |
| 7151 | r = -EIO; |
| 7152 | goto out; |
| 7153 | } |
| 7154 | |
| 7155 | if (boot_cpu_has(X86_FEATURE_NX)) |
| 7156 | kvm_enable_efer_bits(EFER_NX); |
| 7157 | |
| 7158 | if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || |
| 7159 | !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) |
| 7160 | enable_vpid = 0; |
| 7161 | |
| 7162 | if (!cpu_has_vmx_shadow_vmcs()) |
| 7163 | enable_shadow_vmcs = 0; |
| 7164 | if (enable_shadow_vmcs) |
| 7165 | init_vmcs_shadow_fields(); |
| 7166 | |
| 7167 | if (!cpu_has_vmx_ept() || |
| 7168 | !cpu_has_vmx_ept_4levels() || |
| 7169 | !cpu_has_vmx_ept_mt_wb()) { |
| 7170 | enable_ept = 0; |
| 7171 | enable_unrestricted_guest = 0; |
| 7172 | enable_ept_ad_bits = 0; |
| 7173 | } |
| 7174 | |
| 7175 | if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) |
| 7176 | enable_ept_ad_bits = 0; |
| 7177 | |
| 7178 | if (!cpu_has_vmx_unrestricted_guest()) |
| 7179 | enable_unrestricted_guest = 0; |
| 7180 | |
| 7181 | if (!cpu_has_vmx_flexpriority()) |
| 7182 | flexpriority_enabled = 0; |
| 7183 | |
| 7184 | /* |
| 7185 | * set_apic_access_page_addr() is used to reload apic access |
| 7186 | * page upon invalidation. No need to do anything if not |
| 7187 | * using the APIC_ACCESS_ADDR VMCS field. |
| 7188 | */ |
| 7189 | if (!flexpriority_enabled) |
| 7190 | kvm_x86_ops->set_apic_access_page_addr = NULL; |
| 7191 | |
| 7192 | if (!cpu_has_vmx_tpr_shadow()) |
| 7193 | kvm_x86_ops->update_cr8_intercept = NULL; |
| 7194 | |
| 7195 | if (enable_ept && !cpu_has_vmx_ept_2m_page()) |
| 7196 | kvm_disable_largepages(); |
| 7197 | |
| 7198 | if (!cpu_has_vmx_ple()) |
| 7199 | ple_gap = 0; |
| 7200 | |
| 7201 | if (!cpu_has_vmx_apicv()) { |
| 7202 | enable_apicv = 0; |
| 7203 | kvm_x86_ops->sync_pir_to_irr = NULL; |
| 7204 | } |
| 7205 | |
| 7206 | if (cpu_has_vmx_tsc_scaling()) { |
| 7207 | kvm_has_tsc_control = true; |
| 7208 | kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; |
| 7209 | kvm_tsc_scaling_ratio_frac_bits = 48; |
| 7210 | } |
| 7211 | |
| 7212 | set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ |
| 7213 | |
| 7214 | if (enable_ept) |
| 7215 | vmx_enable_tdp(); |
| 7216 | else |
| 7217 | kvm_disable_tdp(); |
| 7218 | |
| 7219 | update_ple_window_actual_max(); |
| 7220 | |
| 7221 | /* |
| 7222 | * Only enable PML when hardware supports PML feature, and both EPT |
| 7223 | * and EPT A/D bit features are enabled -- PML depends on them to work. |
| 7224 | */ |
| 7225 | if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) |
| 7226 | enable_pml = 0; |
| 7227 | |
| 7228 | if (!enable_pml) { |
| 7229 | kvm_x86_ops->slot_enable_log_dirty = NULL; |
| 7230 | kvm_x86_ops->slot_disable_log_dirty = NULL; |
| 7231 | kvm_x86_ops->flush_log_dirty = NULL; |
| 7232 | kvm_x86_ops->enable_log_dirty_pt_masked = NULL; |
| 7233 | } |
| 7234 | |
| 7235 | if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) { |
| 7236 | u64 vmx_msr; |
| 7237 | |
| 7238 | rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); |
| 7239 | cpu_preemption_timer_multi = |
| 7240 | vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; |
| 7241 | } else { |
| 7242 | kvm_x86_ops->set_hv_timer = NULL; |
| 7243 | kvm_x86_ops->cancel_hv_timer = NULL; |
| 7244 | } |
| 7245 | |
| 7246 | kvm_set_posted_intr_wakeup_handler(wakeup_handler); |
| 7247 | |
| 7248 | kvm_mce_cap_supported |= MCG_LMCE_P; |
| 7249 | |
| 7250 | r = alloc_kvm_area(); |
| 7251 | if (r) |
| 7252 | goto out; |
| 7253 | return 0; |
| 7254 | |
| 7255 | out: |
| 7256 | for (i = 0; i < VMX_BITMAP_NR; i++) |
| 7257 | free_page((unsigned long)vmx_bitmap[i]); |
| 7258 | |
| 7259 | return r; |
| 7260 | } |
| 7261 | |
| 7262 | static __exit void hardware_unsetup(void) |
| 7263 | { |
| 7264 | int i; |
| 7265 | |
| 7266 | for (i = 0; i < VMX_BITMAP_NR; i++) |
| 7267 | free_page((unsigned long)vmx_bitmap[i]); |
| 7268 | |
| 7269 | free_kvm_area(); |
| 7270 | } |
| 7271 | |
| 7272 | /* |
| 7273 | * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE |
| 7274 | * exiting, so only get here on cpu with PAUSE-Loop-Exiting. |
| 7275 | */ |
| 7276 | static int handle_pause(struct kvm_vcpu *vcpu) |
| 7277 | { |
| 7278 | if (ple_gap) |
| 7279 | grow_ple_window(vcpu); |
| 7280 | |
| 7281 | /* |
| 7282 | * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" |
| 7283 | * VM-execution control is ignored if CPL > 0. OTOH, KVM |
| 7284 | * never set PAUSE_EXITING and just set PLE if supported, |
| 7285 | * so the vcpu must be CPL=0 if it gets a PAUSE exit. |
| 7286 | */ |
| 7287 | kvm_vcpu_on_spin(vcpu, true); |
| 7288 | return kvm_skip_emulated_instruction(vcpu); |
| 7289 | } |
| 7290 | |
| 7291 | static int handle_nop(struct kvm_vcpu *vcpu) |
| 7292 | { |
| 7293 | return kvm_skip_emulated_instruction(vcpu); |
| 7294 | } |
| 7295 | |
| 7296 | static int handle_mwait(struct kvm_vcpu *vcpu) |
| 7297 | { |
| 7298 | printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); |
| 7299 | return handle_nop(vcpu); |
| 7300 | } |
| 7301 | |
| 7302 | static int handle_invalid_op(struct kvm_vcpu *vcpu) |
| 7303 | { |
| 7304 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 7305 | return 1; |
| 7306 | } |
| 7307 | |
| 7308 | static int handle_monitor_trap(struct kvm_vcpu *vcpu) |
| 7309 | { |
| 7310 | return 1; |
| 7311 | } |
| 7312 | |
| 7313 | static int handle_monitor(struct kvm_vcpu *vcpu) |
| 7314 | { |
| 7315 | printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); |
| 7316 | return handle_nop(vcpu); |
| 7317 | } |
| 7318 | |
| 7319 | /* |
| 7320 | * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), |
| 7321 | * set the success or error code of an emulated VMX instruction, as specified |
| 7322 | * by Vol 2B, VMX Instruction Reference, "Conventions". |
| 7323 | */ |
| 7324 | static void nested_vmx_succeed(struct kvm_vcpu *vcpu) |
| 7325 | { |
| 7326 | vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) |
| 7327 | & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | |
| 7328 | X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); |
| 7329 | } |
| 7330 | |
| 7331 | static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu) |
| 7332 | { |
| 7333 | vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) |
| 7334 | & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | |
| 7335 | X86_EFLAGS_SF | X86_EFLAGS_OF)) |
| 7336 | | X86_EFLAGS_CF); |
| 7337 | } |
| 7338 | |
| 7339 | static void nested_vmx_failValid(struct kvm_vcpu *vcpu, |
| 7340 | u32 vm_instruction_error) |
| 7341 | { |
| 7342 | if (to_vmx(vcpu)->nested.current_vmptr == -1ull) { |
| 7343 | /* |
| 7344 | * failValid writes the error number to the current VMCS, which |
| 7345 | * can't be done there isn't a current VMCS. |
| 7346 | */ |
| 7347 | nested_vmx_failInvalid(vcpu); |
| 7348 | return; |
| 7349 | } |
| 7350 | vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) |
| 7351 | & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | |
| 7352 | X86_EFLAGS_SF | X86_EFLAGS_OF)) |
| 7353 | | X86_EFLAGS_ZF); |
| 7354 | get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; |
| 7355 | /* |
| 7356 | * We don't need to force a shadow sync because |
| 7357 | * VM_INSTRUCTION_ERROR is not shadowed |
| 7358 | */ |
| 7359 | } |
| 7360 | |
| 7361 | static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) |
| 7362 | { |
| 7363 | /* TODO: not to reset guest simply here. */ |
| 7364 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| 7365 | pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator); |
| 7366 | } |
| 7367 | |
| 7368 | static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) |
| 7369 | { |
| 7370 | struct vcpu_vmx *vmx = |
| 7371 | container_of(timer, struct vcpu_vmx, nested.preemption_timer); |
| 7372 | |
| 7373 | vmx->nested.preemption_timer_expired = true; |
| 7374 | kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); |
| 7375 | kvm_vcpu_kick(&vmx->vcpu); |
| 7376 | |
| 7377 | return HRTIMER_NORESTART; |
| 7378 | } |
| 7379 | |
| 7380 | /* |
| 7381 | * Decode the memory-address operand of a vmx instruction, as recorded on an |
| 7382 | * exit caused by such an instruction (run by a guest hypervisor). |
| 7383 | * On success, returns 0. When the operand is invalid, returns 1 and throws |
| 7384 | * #UD or #GP. |
| 7385 | */ |
| 7386 | static int get_vmx_mem_address(struct kvm_vcpu *vcpu, |
| 7387 | unsigned long exit_qualification, |
| 7388 | u32 vmx_instruction_info, bool wr, gva_t *ret) |
| 7389 | { |
| 7390 | gva_t off; |
| 7391 | bool exn; |
| 7392 | struct kvm_segment s; |
| 7393 | |
| 7394 | /* |
| 7395 | * According to Vol. 3B, "Information for VM Exits Due to Instruction |
| 7396 | * Execution", on an exit, vmx_instruction_info holds most of the |
| 7397 | * addressing components of the operand. Only the displacement part |
| 7398 | * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). |
| 7399 | * For how an actual address is calculated from all these components, |
| 7400 | * refer to Vol. 1, "Operand Addressing". |
| 7401 | */ |
| 7402 | int scaling = vmx_instruction_info & 3; |
| 7403 | int addr_size = (vmx_instruction_info >> 7) & 7; |
| 7404 | bool is_reg = vmx_instruction_info & (1u << 10); |
| 7405 | int seg_reg = (vmx_instruction_info >> 15) & 7; |
| 7406 | int index_reg = (vmx_instruction_info >> 18) & 0xf; |
| 7407 | bool index_is_valid = !(vmx_instruction_info & (1u << 22)); |
| 7408 | int base_reg = (vmx_instruction_info >> 23) & 0xf; |
| 7409 | bool base_is_valid = !(vmx_instruction_info & (1u << 27)); |
| 7410 | |
| 7411 | if (is_reg) { |
| 7412 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 7413 | return 1; |
| 7414 | } |
| 7415 | |
| 7416 | /* Addr = segment_base + offset */ |
| 7417 | /* offset = base + [index * scale] + displacement */ |
| 7418 | off = exit_qualification; /* holds the displacement */ |
| 7419 | if (addr_size == 1) |
| 7420 | off = (gva_t)sign_extend64(off, 31); |
| 7421 | else if (addr_size == 0) |
| 7422 | off = (gva_t)sign_extend64(off, 15); |
| 7423 | if (base_is_valid) |
| 7424 | off += kvm_register_read(vcpu, base_reg); |
| 7425 | if (index_is_valid) |
| 7426 | off += kvm_register_read(vcpu, index_reg)<<scaling; |
| 7427 | vmx_get_segment(vcpu, &s, seg_reg); |
| 7428 | |
| 7429 | /* |
| 7430 | * The effective address, i.e. @off, of a memory operand is truncated |
| 7431 | * based on the address size of the instruction. Note that this is |
| 7432 | * the *effective address*, i.e. the address prior to accounting for |
| 7433 | * the segment's base. |
| 7434 | */ |
| 7435 | if (addr_size == 1) /* 32 bit */ |
| 7436 | off &= 0xffffffff; |
| 7437 | else if (addr_size == 0) /* 16 bit */ |
| 7438 | off &= 0xffff; |
| 7439 | |
| 7440 | /* Checks for #GP/#SS exceptions. */ |
| 7441 | exn = false; |
| 7442 | if (is_long_mode(vcpu)) { |
| 7443 | /* |
| 7444 | * The virtual/linear address is never truncated in 64-bit |
| 7445 | * mode, e.g. a 32-bit address size can yield a 64-bit virtual |
| 7446 | * address when using FS/GS with a non-zero base. |
| 7447 | */ |
| 7448 | *ret = s.base + off; |
| 7449 | |
| 7450 | /* Long mode: #GP(0)/#SS(0) if the memory address is in a |
| 7451 | * non-canonical form. This is the only check on the memory |
| 7452 | * destination for long mode! |
| 7453 | */ |
| 7454 | exn = is_noncanonical_address(*ret, vcpu); |
| 7455 | } else if (is_protmode(vcpu)) { |
| 7456 | /* |
| 7457 | * When not in long mode, the virtual/linear address is |
| 7458 | * unconditionally truncated to 32 bits regardless of the |
| 7459 | * address size. |
| 7460 | */ |
| 7461 | *ret = (s.base + off) & 0xffffffff; |
| 7462 | |
| 7463 | /* Protected mode: apply checks for segment validity in the |
| 7464 | * following order: |
| 7465 | * - segment type check (#GP(0) may be thrown) |
| 7466 | * - usability check (#GP(0)/#SS(0)) |
| 7467 | * - limit check (#GP(0)/#SS(0)) |
| 7468 | */ |
| 7469 | if (wr) |
| 7470 | /* #GP(0) if the destination operand is located in a |
| 7471 | * read-only data segment or any code segment. |
| 7472 | */ |
| 7473 | exn = ((s.type & 0xa) == 0 || (s.type & 8)); |
| 7474 | else |
| 7475 | /* #GP(0) if the source operand is located in an |
| 7476 | * execute-only code segment |
| 7477 | */ |
| 7478 | exn = ((s.type & 0xa) == 8); |
| 7479 | if (exn) { |
| 7480 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| 7481 | return 1; |
| 7482 | } |
| 7483 | /* Protected mode: #GP(0)/#SS(0) if the segment is unusable. |
| 7484 | */ |
| 7485 | exn = (s.unusable != 0); |
| 7486 | |
| 7487 | /* |
| 7488 | * Protected mode: #GP(0)/#SS(0) if the memory operand is |
| 7489 | * outside the segment limit. All CPUs that support VMX ignore |
| 7490 | * limit checks for flat segments, i.e. segments with base==0, |
| 7491 | * limit==0xffffffff and of type expand-up data or code. |
| 7492 | */ |
| 7493 | if (!(s.base == 0 && s.limit == 0xffffffff && |
| 7494 | ((s.type & 8) || !(s.type & 4)))) |
| 7495 | exn = exn || (off + sizeof(u64) > s.limit); |
| 7496 | } |
| 7497 | if (exn) { |
| 7498 | kvm_queue_exception_e(vcpu, |
| 7499 | seg_reg == VCPU_SREG_SS ? |
| 7500 | SS_VECTOR : GP_VECTOR, |
| 7501 | 0); |
| 7502 | return 1; |
| 7503 | } |
| 7504 | |
| 7505 | return 0; |
| 7506 | } |
| 7507 | |
| 7508 | static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer) |
| 7509 | { |
| 7510 | gva_t gva; |
| 7511 | struct x86_exception e; |
| 7512 | |
| 7513 | if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), |
| 7514 | vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva)) |
| 7515 | return 1; |
| 7516 | |
| 7517 | if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) { |
| 7518 | kvm_inject_page_fault(vcpu, &e); |
| 7519 | return 1; |
| 7520 | } |
| 7521 | |
| 7522 | return 0; |
| 7523 | } |
| 7524 | |
| 7525 | static int enter_vmx_operation(struct kvm_vcpu *vcpu) |
| 7526 | { |
| 7527 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 7528 | struct vmcs *shadow_vmcs; |
| 7529 | int r; |
| 7530 | |
| 7531 | r = alloc_loaded_vmcs(&vmx->nested.vmcs02); |
| 7532 | if (r < 0) |
| 7533 | goto out_vmcs02; |
| 7534 | |
| 7535 | vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL); |
| 7536 | if (!vmx->nested.cached_vmcs12) |
| 7537 | goto out_cached_vmcs12; |
| 7538 | |
| 7539 | if (enable_shadow_vmcs) { |
| 7540 | shadow_vmcs = alloc_vmcs(); |
| 7541 | if (!shadow_vmcs) |
| 7542 | goto out_shadow_vmcs; |
| 7543 | /* mark vmcs as shadow */ |
| 7544 | shadow_vmcs->revision_id |= (1u << 31); |
| 7545 | /* init shadow vmcs */ |
| 7546 | vmcs_clear(shadow_vmcs); |
| 7547 | vmx->vmcs01.shadow_vmcs = shadow_vmcs; |
| 7548 | } |
| 7549 | |
| 7550 | hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, |
| 7551 | HRTIMER_MODE_REL_PINNED); |
| 7552 | vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; |
| 7553 | |
| 7554 | vmx->nested.vpid02 = allocate_vpid(); |
| 7555 | |
| 7556 | vmx->nested.vmxon = true; |
| 7557 | return 0; |
| 7558 | |
| 7559 | out_shadow_vmcs: |
| 7560 | kfree(vmx->nested.cached_vmcs12); |
| 7561 | |
| 7562 | out_cached_vmcs12: |
| 7563 | free_loaded_vmcs(&vmx->nested.vmcs02); |
| 7564 | |
| 7565 | out_vmcs02: |
| 7566 | return -ENOMEM; |
| 7567 | } |
| 7568 | |
| 7569 | /* |
| 7570 | * Emulate the VMXON instruction. |
| 7571 | * Currently, we just remember that VMX is active, and do not save or even |
| 7572 | * inspect the argument to VMXON (the so-called "VMXON pointer") because we |
| 7573 | * do not currently need to store anything in that guest-allocated memory |
| 7574 | * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their |
| 7575 | * argument is different from the VMXON pointer (which the spec says they do). |
| 7576 | */ |
| 7577 | static int handle_vmon(struct kvm_vcpu *vcpu) |
| 7578 | { |
| 7579 | int ret; |
| 7580 | gpa_t vmptr; |
| 7581 | struct page *page; |
| 7582 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 7583 | const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED |
| 7584 | | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; |
| 7585 | |
| 7586 | /* |
| 7587 | * The Intel VMX Instruction Reference lists a bunch of bits that are |
| 7588 | * prerequisite to running VMXON, most notably cr4.VMXE must be set to |
| 7589 | * 1 (see vmx_set_cr4() for when we allow the guest to set this). |
| 7590 | * Otherwise, we should fail with #UD. But most faulting conditions |
| 7591 | * have already been checked by hardware, prior to the VM-exit for |
| 7592 | * VMXON. We do test guest cr4.VMXE because processor CR4 always has |
| 7593 | * that bit set to 1 in non-root mode. |
| 7594 | */ |
| 7595 | if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) { |
| 7596 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 7597 | return 1; |
| 7598 | } |
| 7599 | |
| 7600 | /* CPL=0 must be checked manually. */ |
| 7601 | if (vmx_get_cpl(vcpu)) { |
| 7602 | kvm_inject_gp(vcpu, 0); |
| 7603 | return 1; |
| 7604 | } |
| 7605 | |
| 7606 | if (vmx->nested.vmxon) { |
| 7607 | nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION); |
| 7608 | return kvm_skip_emulated_instruction(vcpu); |
| 7609 | } |
| 7610 | |
| 7611 | if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) |
| 7612 | != VMXON_NEEDED_FEATURES) { |
| 7613 | kvm_inject_gp(vcpu, 0); |
| 7614 | return 1; |
| 7615 | } |
| 7616 | |
| 7617 | if (nested_vmx_get_vmptr(vcpu, &vmptr)) |
| 7618 | return 1; |
| 7619 | |
| 7620 | /* |
| 7621 | * SDM 3: 24.11.5 |
| 7622 | * The first 4 bytes of VMXON region contain the supported |
| 7623 | * VMCS revision identifier |
| 7624 | * |
| 7625 | * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; |
| 7626 | * which replaces physical address width with 32 |
| 7627 | */ |
| 7628 | if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) { |
| 7629 | nested_vmx_failInvalid(vcpu); |
| 7630 | return kvm_skip_emulated_instruction(vcpu); |
| 7631 | } |
| 7632 | |
| 7633 | page = kvm_vcpu_gpa_to_page(vcpu, vmptr); |
| 7634 | if (is_error_page(page)) { |
| 7635 | nested_vmx_failInvalid(vcpu); |
| 7636 | return kvm_skip_emulated_instruction(vcpu); |
| 7637 | } |
| 7638 | if (*(u32 *)kmap(page) != VMCS12_REVISION) { |
| 7639 | kunmap(page); |
| 7640 | kvm_release_page_clean(page); |
| 7641 | nested_vmx_failInvalid(vcpu); |
| 7642 | return kvm_skip_emulated_instruction(vcpu); |
| 7643 | } |
| 7644 | kunmap(page); |
| 7645 | kvm_release_page_clean(page); |
| 7646 | |
| 7647 | vmx->nested.vmxon_ptr = vmptr; |
| 7648 | ret = enter_vmx_operation(vcpu); |
| 7649 | if (ret) |
| 7650 | return ret; |
| 7651 | |
| 7652 | nested_vmx_succeed(vcpu); |
| 7653 | return kvm_skip_emulated_instruction(vcpu); |
| 7654 | } |
| 7655 | |
| 7656 | /* |
| 7657 | * Intel's VMX Instruction Reference specifies a common set of prerequisites |
| 7658 | * for running VMX instructions (except VMXON, whose prerequisites are |
| 7659 | * slightly different). It also specifies what exception to inject otherwise. |
| 7660 | * Note that many of these exceptions have priority over VM exits, so they |
| 7661 | * don't have to be checked again here. |
| 7662 | */ |
| 7663 | static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) |
| 7664 | { |
| 7665 | if (vmx_get_cpl(vcpu)) { |
| 7666 | kvm_inject_gp(vcpu, 0); |
| 7667 | return 0; |
| 7668 | } |
| 7669 | |
| 7670 | if (!to_vmx(vcpu)->nested.vmxon) { |
| 7671 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 7672 | return 0; |
| 7673 | } |
| 7674 | return 1; |
| 7675 | } |
| 7676 | |
| 7677 | static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) |
| 7678 | { |
| 7679 | vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); |
| 7680 | vmcs_write64(VMCS_LINK_POINTER, -1ull); |
| 7681 | vmx->nested.sync_shadow_vmcs = false; |
| 7682 | } |
| 7683 | |
| 7684 | static inline void nested_release_vmcs12(struct vcpu_vmx *vmx) |
| 7685 | { |
| 7686 | if (vmx->nested.current_vmptr == -1ull) |
| 7687 | return; |
| 7688 | |
| 7689 | if (enable_shadow_vmcs) { |
| 7690 | /* copy to memory all shadowed fields in case |
| 7691 | they were modified */ |
| 7692 | copy_shadow_to_vmcs12(vmx); |
| 7693 | vmx_disable_shadow_vmcs(vmx); |
| 7694 | } |
| 7695 | vmx->nested.posted_intr_nv = -1; |
| 7696 | |
| 7697 | /* Flush VMCS12 to guest memory */ |
| 7698 | kvm_vcpu_write_guest_page(&vmx->vcpu, |
| 7699 | vmx->nested.current_vmptr >> PAGE_SHIFT, |
| 7700 | vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); |
| 7701 | |
| 7702 | vmx->nested.current_vmptr = -1ull; |
| 7703 | } |
| 7704 | |
| 7705 | /* |
| 7706 | * Free whatever needs to be freed from vmx->nested when L1 goes down, or |
| 7707 | * just stops using VMX. |
| 7708 | */ |
| 7709 | static void free_nested(struct vcpu_vmx *vmx) |
| 7710 | { |
| 7711 | if (!vmx->nested.vmxon) |
| 7712 | return; |
| 7713 | |
| 7714 | hrtimer_cancel(&vmx->nested.preemption_timer); |
| 7715 | vmx->nested.vmxon = false; |
| 7716 | free_vpid(vmx->nested.vpid02); |
| 7717 | vmx->nested.posted_intr_nv = -1; |
| 7718 | vmx->nested.current_vmptr = -1ull; |
| 7719 | if (enable_shadow_vmcs) { |
| 7720 | vmx_disable_shadow_vmcs(vmx); |
| 7721 | vmcs_clear(vmx->vmcs01.shadow_vmcs); |
| 7722 | free_vmcs(vmx->vmcs01.shadow_vmcs); |
| 7723 | vmx->vmcs01.shadow_vmcs = NULL; |
| 7724 | } |
| 7725 | kfree(vmx->nested.cached_vmcs12); |
| 7726 | /* Unpin physical memory we referred to in the vmcs02 */ |
| 7727 | if (vmx->nested.apic_access_page) { |
| 7728 | kvm_release_page_dirty(vmx->nested.apic_access_page); |
| 7729 | vmx->nested.apic_access_page = NULL; |
| 7730 | } |
| 7731 | if (vmx->nested.virtual_apic_page) { |
| 7732 | kvm_release_page_dirty(vmx->nested.virtual_apic_page); |
| 7733 | vmx->nested.virtual_apic_page = NULL; |
| 7734 | } |
| 7735 | if (vmx->nested.pi_desc_page) { |
| 7736 | kunmap(vmx->nested.pi_desc_page); |
| 7737 | kvm_release_page_dirty(vmx->nested.pi_desc_page); |
| 7738 | vmx->nested.pi_desc_page = NULL; |
| 7739 | vmx->nested.pi_desc = NULL; |
| 7740 | } |
| 7741 | |
| 7742 | free_loaded_vmcs(&vmx->nested.vmcs02); |
| 7743 | } |
| 7744 | |
| 7745 | /* Emulate the VMXOFF instruction */ |
| 7746 | static int handle_vmoff(struct kvm_vcpu *vcpu) |
| 7747 | { |
| 7748 | if (!nested_vmx_check_permission(vcpu)) |
| 7749 | return 1; |
| 7750 | free_nested(to_vmx(vcpu)); |
| 7751 | nested_vmx_succeed(vcpu); |
| 7752 | return kvm_skip_emulated_instruction(vcpu); |
| 7753 | } |
| 7754 | |
| 7755 | /* Emulate the VMCLEAR instruction */ |
| 7756 | static int handle_vmclear(struct kvm_vcpu *vcpu) |
| 7757 | { |
| 7758 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 7759 | u32 zero = 0; |
| 7760 | gpa_t vmptr; |
| 7761 | |
| 7762 | if (!nested_vmx_check_permission(vcpu)) |
| 7763 | return 1; |
| 7764 | |
| 7765 | if (nested_vmx_get_vmptr(vcpu, &vmptr)) |
| 7766 | return 1; |
| 7767 | |
| 7768 | if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) { |
| 7769 | nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS); |
| 7770 | return kvm_skip_emulated_instruction(vcpu); |
| 7771 | } |
| 7772 | |
| 7773 | if (vmptr == vmx->nested.vmxon_ptr) { |
| 7774 | nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER); |
| 7775 | return kvm_skip_emulated_instruction(vcpu); |
| 7776 | } |
| 7777 | |
| 7778 | if (vmptr == vmx->nested.current_vmptr) |
| 7779 | nested_release_vmcs12(vmx); |
| 7780 | |
| 7781 | kvm_vcpu_write_guest(vcpu, |
| 7782 | vmptr + offsetof(struct vmcs12, launch_state), |
| 7783 | &zero, sizeof(zero)); |
| 7784 | |
| 7785 | nested_vmx_succeed(vcpu); |
| 7786 | return kvm_skip_emulated_instruction(vcpu); |
| 7787 | } |
| 7788 | |
| 7789 | static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); |
| 7790 | |
| 7791 | /* Emulate the VMLAUNCH instruction */ |
| 7792 | static int handle_vmlaunch(struct kvm_vcpu *vcpu) |
| 7793 | { |
| 7794 | return nested_vmx_run(vcpu, true); |
| 7795 | } |
| 7796 | |
| 7797 | /* Emulate the VMRESUME instruction */ |
| 7798 | static int handle_vmresume(struct kvm_vcpu *vcpu) |
| 7799 | { |
| 7800 | |
| 7801 | return nested_vmx_run(vcpu, false); |
| 7802 | } |
| 7803 | |
| 7804 | /* |
| 7805 | * Read a vmcs12 field. Since these can have varying lengths and we return |
| 7806 | * one type, we chose the biggest type (u64) and zero-extend the return value |
| 7807 | * to that size. Note that the caller, handle_vmread, might need to use only |
| 7808 | * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of |
| 7809 | * 64-bit fields are to be returned). |
| 7810 | */ |
| 7811 | static inline int vmcs12_read_any(struct kvm_vcpu *vcpu, |
| 7812 | unsigned long field, u64 *ret) |
| 7813 | { |
| 7814 | short offset = vmcs_field_to_offset(field); |
| 7815 | char *p; |
| 7816 | |
| 7817 | if (offset < 0) |
| 7818 | return offset; |
| 7819 | |
| 7820 | p = ((char *)(get_vmcs12(vcpu))) + offset; |
| 7821 | |
| 7822 | switch (vmcs_field_type(field)) { |
| 7823 | case VMCS_FIELD_TYPE_NATURAL_WIDTH: |
| 7824 | *ret = *((natural_width *)p); |
| 7825 | return 0; |
| 7826 | case VMCS_FIELD_TYPE_U16: |
| 7827 | *ret = *((u16 *)p); |
| 7828 | return 0; |
| 7829 | case VMCS_FIELD_TYPE_U32: |
| 7830 | *ret = *((u32 *)p); |
| 7831 | return 0; |
| 7832 | case VMCS_FIELD_TYPE_U64: |
| 7833 | *ret = *((u64 *)p); |
| 7834 | return 0; |
| 7835 | default: |
| 7836 | WARN_ON(1); |
| 7837 | return -ENOENT; |
| 7838 | } |
| 7839 | } |
| 7840 | |
| 7841 | |
| 7842 | static inline int vmcs12_write_any(struct kvm_vcpu *vcpu, |
| 7843 | unsigned long field, u64 field_value){ |
| 7844 | short offset = vmcs_field_to_offset(field); |
| 7845 | char *p = ((char *) get_vmcs12(vcpu)) + offset; |
| 7846 | if (offset < 0) |
| 7847 | return offset; |
| 7848 | |
| 7849 | switch (vmcs_field_type(field)) { |
| 7850 | case VMCS_FIELD_TYPE_U16: |
| 7851 | *(u16 *)p = field_value; |
| 7852 | return 0; |
| 7853 | case VMCS_FIELD_TYPE_U32: |
| 7854 | *(u32 *)p = field_value; |
| 7855 | return 0; |
| 7856 | case VMCS_FIELD_TYPE_U64: |
| 7857 | *(u64 *)p = field_value; |
| 7858 | return 0; |
| 7859 | case VMCS_FIELD_TYPE_NATURAL_WIDTH: |
| 7860 | *(natural_width *)p = field_value; |
| 7861 | return 0; |
| 7862 | default: |
| 7863 | WARN_ON(1); |
| 7864 | return -ENOENT; |
| 7865 | } |
| 7866 | |
| 7867 | } |
| 7868 | |
| 7869 | static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) |
| 7870 | { |
| 7871 | int i; |
| 7872 | unsigned long field; |
| 7873 | u64 field_value; |
| 7874 | struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; |
| 7875 | const unsigned long *fields = shadow_read_write_fields; |
| 7876 | const int num_fields = max_shadow_read_write_fields; |
| 7877 | |
| 7878 | if (WARN_ON(!shadow_vmcs)) |
| 7879 | return; |
| 7880 | |
| 7881 | preempt_disable(); |
| 7882 | |
| 7883 | vmcs_load(shadow_vmcs); |
| 7884 | |
| 7885 | for (i = 0; i < num_fields; i++) { |
| 7886 | field = fields[i]; |
| 7887 | switch (vmcs_field_type(field)) { |
| 7888 | case VMCS_FIELD_TYPE_U16: |
| 7889 | field_value = vmcs_read16(field); |
| 7890 | break; |
| 7891 | case VMCS_FIELD_TYPE_U32: |
| 7892 | field_value = vmcs_read32(field); |
| 7893 | break; |
| 7894 | case VMCS_FIELD_TYPE_U64: |
| 7895 | field_value = vmcs_read64(field); |
| 7896 | break; |
| 7897 | case VMCS_FIELD_TYPE_NATURAL_WIDTH: |
| 7898 | field_value = vmcs_readl(field); |
| 7899 | break; |
| 7900 | default: |
| 7901 | WARN_ON(1); |
| 7902 | continue; |
| 7903 | } |
| 7904 | vmcs12_write_any(&vmx->vcpu, field, field_value); |
| 7905 | } |
| 7906 | |
| 7907 | vmcs_clear(shadow_vmcs); |
| 7908 | vmcs_load(vmx->loaded_vmcs->vmcs); |
| 7909 | |
| 7910 | preempt_enable(); |
| 7911 | } |
| 7912 | |
| 7913 | static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) |
| 7914 | { |
| 7915 | const unsigned long *fields[] = { |
| 7916 | shadow_read_write_fields, |
| 7917 | shadow_read_only_fields |
| 7918 | }; |
| 7919 | const int max_fields[] = { |
| 7920 | max_shadow_read_write_fields, |
| 7921 | max_shadow_read_only_fields |
| 7922 | }; |
| 7923 | int i, q; |
| 7924 | unsigned long field; |
| 7925 | u64 field_value = 0; |
| 7926 | struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; |
| 7927 | |
| 7928 | if (WARN_ON(!shadow_vmcs)) |
| 7929 | return; |
| 7930 | |
| 7931 | vmcs_load(shadow_vmcs); |
| 7932 | |
| 7933 | for (q = 0; q < ARRAY_SIZE(fields); q++) { |
| 7934 | for (i = 0; i < max_fields[q]; i++) { |
| 7935 | field = fields[q][i]; |
| 7936 | vmcs12_read_any(&vmx->vcpu, field, &field_value); |
| 7937 | |
| 7938 | switch (vmcs_field_type(field)) { |
| 7939 | case VMCS_FIELD_TYPE_U16: |
| 7940 | vmcs_write16(field, (u16)field_value); |
| 7941 | break; |
| 7942 | case VMCS_FIELD_TYPE_U32: |
| 7943 | vmcs_write32(field, (u32)field_value); |
| 7944 | break; |
| 7945 | case VMCS_FIELD_TYPE_U64: |
| 7946 | vmcs_write64(field, (u64)field_value); |
| 7947 | break; |
| 7948 | case VMCS_FIELD_TYPE_NATURAL_WIDTH: |
| 7949 | vmcs_writel(field, (long)field_value); |
| 7950 | break; |
| 7951 | default: |
| 7952 | WARN_ON(1); |
| 7953 | break; |
| 7954 | } |
| 7955 | } |
| 7956 | } |
| 7957 | |
| 7958 | vmcs_clear(shadow_vmcs); |
| 7959 | vmcs_load(vmx->loaded_vmcs->vmcs); |
| 7960 | } |
| 7961 | |
| 7962 | /* |
| 7963 | * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was |
| 7964 | * used before) all generate the same failure when it is missing. |
| 7965 | */ |
| 7966 | static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu) |
| 7967 | { |
| 7968 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 7969 | if (vmx->nested.current_vmptr == -1ull) { |
| 7970 | nested_vmx_failInvalid(vcpu); |
| 7971 | return 0; |
| 7972 | } |
| 7973 | return 1; |
| 7974 | } |
| 7975 | |
| 7976 | static int handle_vmread(struct kvm_vcpu *vcpu) |
| 7977 | { |
| 7978 | unsigned long field; |
| 7979 | u64 field_value; |
| 7980 | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 7981 | u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| 7982 | gva_t gva = 0; |
| 7983 | struct x86_exception e; |
| 7984 | |
| 7985 | if (!nested_vmx_check_permission(vcpu)) |
| 7986 | return 1; |
| 7987 | |
| 7988 | if (!nested_vmx_check_vmcs12(vcpu)) |
| 7989 | return kvm_skip_emulated_instruction(vcpu); |
| 7990 | |
| 7991 | /* Decode instruction info and find the field to read */ |
| 7992 | field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); |
| 7993 | /* Read the field, zero-extended to a u64 field_value */ |
| 7994 | if (vmcs12_read_any(vcpu, field, &field_value) < 0) { |
| 7995 | nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| 7996 | return kvm_skip_emulated_instruction(vcpu); |
| 7997 | } |
| 7998 | /* |
| 7999 | * Now copy part of this value to register or memory, as requested. |
| 8000 | * Note that the number of bits actually copied is 32 or 64 depending |
| 8001 | * on the guest's mode (32 or 64 bit), not on the given field's length. |
| 8002 | */ |
| 8003 | if (vmx_instruction_info & (1u << 10)) { |
| 8004 | kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf), |
| 8005 | field_value); |
| 8006 | } else { |
| 8007 | if (get_vmx_mem_address(vcpu, exit_qualification, |
| 8008 | vmx_instruction_info, true, &gva)) |
| 8009 | return 1; |
| 8010 | /* _system ok, nested_vmx_check_permission has verified cpl=0 */ |
| 8011 | if (kvm_write_guest_virt_system(vcpu, gva, &field_value, |
| 8012 | (is_long_mode(vcpu) ? 8 : 4), |
| 8013 | &e)) { |
| 8014 | kvm_inject_page_fault(vcpu, &e); |
| 8015 | return 1; |
| 8016 | } |
| 8017 | } |
| 8018 | |
| 8019 | nested_vmx_succeed(vcpu); |
| 8020 | return kvm_skip_emulated_instruction(vcpu); |
| 8021 | } |
| 8022 | |
| 8023 | |
| 8024 | static int handle_vmwrite(struct kvm_vcpu *vcpu) |
| 8025 | { |
| 8026 | unsigned long field; |
| 8027 | gva_t gva; |
| 8028 | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 8029 | u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| 8030 | /* The value to write might be 32 or 64 bits, depending on L1's long |
| 8031 | * mode, and eventually we need to write that into a field of several |
| 8032 | * possible lengths. The code below first zero-extends the value to 64 |
| 8033 | * bit (field_value), and then copies only the appropriate number of |
| 8034 | * bits into the vmcs12 field. |
| 8035 | */ |
| 8036 | u64 field_value = 0; |
| 8037 | struct x86_exception e; |
| 8038 | |
| 8039 | if (!nested_vmx_check_permission(vcpu)) |
| 8040 | return 1; |
| 8041 | |
| 8042 | if (!nested_vmx_check_vmcs12(vcpu)) |
| 8043 | return kvm_skip_emulated_instruction(vcpu); |
| 8044 | |
| 8045 | if (vmx_instruction_info & (1u << 10)) |
| 8046 | field_value = kvm_register_readl(vcpu, |
| 8047 | (((vmx_instruction_info) >> 3) & 0xf)); |
| 8048 | else { |
| 8049 | if (get_vmx_mem_address(vcpu, exit_qualification, |
| 8050 | vmx_instruction_info, false, &gva)) |
| 8051 | return 1; |
| 8052 | if (kvm_read_guest_virt(vcpu, gva, &field_value, |
| 8053 | (is_64_bit_mode(vcpu) ? 8 : 4), &e)) { |
| 8054 | kvm_inject_page_fault(vcpu, &e); |
| 8055 | return 1; |
| 8056 | } |
| 8057 | } |
| 8058 | |
| 8059 | |
| 8060 | field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); |
| 8061 | if (vmcs_field_readonly(field)) { |
| 8062 | nested_vmx_failValid(vcpu, |
| 8063 | VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); |
| 8064 | return kvm_skip_emulated_instruction(vcpu); |
| 8065 | } |
| 8066 | |
| 8067 | if (vmcs12_write_any(vcpu, field, field_value) < 0) { |
| 8068 | nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| 8069 | return kvm_skip_emulated_instruction(vcpu); |
| 8070 | } |
| 8071 | |
| 8072 | nested_vmx_succeed(vcpu); |
| 8073 | return kvm_skip_emulated_instruction(vcpu); |
| 8074 | } |
| 8075 | |
| 8076 | static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) |
| 8077 | { |
| 8078 | vmx->nested.current_vmptr = vmptr; |
| 8079 | if (enable_shadow_vmcs) { |
| 8080 | vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, |
| 8081 | SECONDARY_EXEC_SHADOW_VMCS); |
| 8082 | vmcs_write64(VMCS_LINK_POINTER, |
| 8083 | __pa(vmx->vmcs01.shadow_vmcs)); |
| 8084 | vmx->nested.sync_shadow_vmcs = true; |
| 8085 | } |
| 8086 | } |
| 8087 | |
| 8088 | /* Emulate the VMPTRLD instruction */ |
| 8089 | static int handle_vmptrld(struct kvm_vcpu *vcpu) |
| 8090 | { |
| 8091 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 8092 | gpa_t vmptr; |
| 8093 | |
| 8094 | if (!nested_vmx_check_permission(vcpu)) |
| 8095 | return 1; |
| 8096 | |
| 8097 | if (nested_vmx_get_vmptr(vcpu, &vmptr)) |
| 8098 | return 1; |
| 8099 | |
| 8100 | if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) { |
| 8101 | nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS); |
| 8102 | return kvm_skip_emulated_instruction(vcpu); |
| 8103 | } |
| 8104 | |
| 8105 | if (vmptr == vmx->nested.vmxon_ptr) { |
| 8106 | nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER); |
| 8107 | return kvm_skip_emulated_instruction(vcpu); |
| 8108 | } |
| 8109 | |
| 8110 | if (vmx->nested.current_vmptr != vmptr) { |
| 8111 | struct vmcs12 *new_vmcs12; |
| 8112 | struct page *page; |
| 8113 | page = kvm_vcpu_gpa_to_page(vcpu, vmptr); |
| 8114 | if (is_error_page(page)) { |
| 8115 | nested_vmx_failInvalid(vcpu); |
| 8116 | return kvm_skip_emulated_instruction(vcpu); |
| 8117 | } |
| 8118 | new_vmcs12 = kmap(page); |
| 8119 | if (new_vmcs12->revision_id != VMCS12_REVISION) { |
| 8120 | kunmap(page); |
| 8121 | kvm_release_page_clean(page); |
| 8122 | nested_vmx_failValid(vcpu, |
| 8123 | VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); |
| 8124 | return kvm_skip_emulated_instruction(vcpu); |
| 8125 | } |
| 8126 | |
| 8127 | nested_release_vmcs12(vmx); |
| 8128 | /* |
| 8129 | * Load VMCS12 from guest memory since it is not already |
| 8130 | * cached. |
| 8131 | */ |
| 8132 | memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE); |
| 8133 | kunmap(page); |
| 8134 | kvm_release_page_clean(page); |
| 8135 | |
| 8136 | set_current_vmptr(vmx, vmptr); |
| 8137 | } |
| 8138 | |
| 8139 | nested_vmx_succeed(vcpu); |
| 8140 | return kvm_skip_emulated_instruction(vcpu); |
| 8141 | } |
| 8142 | |
| 8143 | /* Emulate the VMPTRST instruction */ |
| 8144 | static int handle_vmptrst(struct kvm_vcpu *vcpu) |
| 8145 | { |
| 8146 | unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION); |
| 8147 | u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| 8148 | gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; |
| 8149 | struct x86_exception e; |
| 8150 | gva_t gva; |
| 8151 | |
| 8152 | if (!nested_vmx_check_permission(vcpu)) |
| 8153 | return 1; |
| 8154 | |
| 8155 | if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva)) |
| 8156 | return 1; |
| 8157 | /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ |
| 8158 | if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, |
| 8159 | sizeof(gpa_t), &e)) { |
| 8160 | kvm_inject_page_fault(vcpu, &e); |
| 8161 | return 1; |
| 8162 | } |
| 8163 | nested_vmx_succeed(vcpu); |
| 8164 | return kvm_skip_emulated_instruction(vcpu); |
| 8165 | } |
| 8166 | |
| 8167 | /* Emulate the INVEPT instruction */ |
| 8168 | static int handle_invept(struct kvm_vcpu *vcpu) |
| 8169 | { |
| 8170 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 8171 | u32 vmx_instruction_info, types; |
| 8172 | unsigned long type; |
| 8173 | gva_t gva; |
| 8174 | struct x86_exception e; |
| 8175 | struct { |
| 8176 | u64 eptp, gpa; |
| 8177 | } operand; |
| 8178 | |
| 8179 | if (!(vmx->nested.nested_vmx_secondary_ctls_high & |
| 8180 | SECONDARY_EXEC_ENABLE_EPT) || |
| 8181 | !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) { |
| 8182 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 8183 | return 1; |
| 8184 | } |
| 8185 | |
| 8186 | if (!nested_vmx_check_permission(vcpu)) |
| 8187 | return 1; |
| 8188 | |
| 8189 | vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| 8190 | type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); |
| 8191 | |
| 8192 | types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; |
| 8193 | |
| 8194 | if (type >= 32 || !(types & (1 << type))) { |
| 8195 | nested_vmx_failValid(vcpu, |
| 8196 | VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| 8197 | return kvm_skip_emulated_instruction(vcpu); |
| 8198 | } |
| 8199 | |
| 8200 | /* According to the Intel VMX instruction reference, the memory |
| 8201 | * operand is read even if it isn't needed (e.g., for type==global) |
| 8202 | */ |
| 8203 | if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), |
| 8204 | vmx_instruction_info, false, &gva)) |
| 8205 | return 1; |
| 8206 | if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { |
| 8207 | kvm_inject_page_fault(vcpu, &e); |
| 8208 | return 1; |
| 8209 | } |
| 8210 | |
| 8211 | switch (type) { |
| 8212 | case VMX_EPT_EXTENT_GLOBAL: |
| 8213 | /* |
| 8214 | * TODO: track mappings and invalidate |
| 8215 | * single context requests appropriately |
| 8216 | */ |
| 8217 | case VMX_EPT_EXTENT_CONTEXT: |
| 8218 | kvm_mmu_sync_roots(vcpu); |
| 8219 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| 8220 | nested_vmx_succeed(vcpu); |
| 8221 | break; |
| 8222 | default: |
| 8223 | BUG_ON(1); |
| 8224 | break; |
| 8225 | } |
| 8226 | |
| 8227 | return kvm_skip_emulated_instruction(vcpu); |
| 8228 | } |
| 8229 | |
| 8230 | static int handle_invvpid(struct kvm_vcpu *vcpu) |
| 8231 | { |
| 8232 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 8233 | u32 vmx_instruction_info; |
| 8234 | unsigned long type, types; |
| 8235 | gva_t gva; |
| 8236 | struct x86_exception e; |
| 8237 | struct { |
| 8238 | u64 vpid; |
| 8239 | u64 gla; |
| 8240 | } operand; |
| 8241 | |
| 8242 | if (!(vmx->nested.nested_vmx_secondary_ctls_high & |
| 8243 | SECONDARY_EXEC_ENABLE_VPID) || |
| 8244 | !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) { |
| 8245 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 8246 | return 1; |
| 8247 | } |
| 8248 | |
| 8249 | if (!nested_vmx_check_permission(vcpu)) |
| 8250 | return 1; |
| 8251 | |
| 8252 | vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| 8253 | type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); |
| 8254 | |
| 8255 | types = (vmx->nested.nested_vmx_vpid_caps & |
| 8256 | VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; |
| 8257 | |
| 8258 | if (type >= 32 || !(types & (1 << type))) { |
| 8259 | nested_vmx_failValid(vcpu, |
| 8260 | VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| 8261 | return kvm_skip_emulated_instruction(vcpu); |
| 8262 | } |
| 8263 | |
| 8264 | /* according to the intel vmx instruction reference, the memory |
| 8265 | * operand is read even if it isn't needed (e.g., for type==global) |
| 8266 | */ |
| 8267 | if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), |
| 8268 | vmx_instruction_info, false, &gva)) |
| 8269 | return 1; |
| 8270 | if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { |
| 8271 | kvm_inject_page_fault(vcpu, &e); |
| 8272 | return 1; |
| 8273 | } |
| 8274 | if (operand.vpid >> 16) { |
| 8275 | nested_vmx_failValid(vcpu, |
| 8276 | VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| 8277 | return kvm_skip_emulated_instruction(vcpu); |
| 8278 | } |
| 8279 | |
| 8280 | switch (type) { |
| 8281 | case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: |
| 8282 | if (is_noncanonical_address(operand.gla, vcpu)) { |
| 8283 | nested_vmx_failValid(vcpu, |
| 8284 | VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| 8285 | return kvm_skip_emulated_instruction(vcpu); |
| 8286 | } |
| 8287 | /* fall through */ |
| 8288 | case VMX_VPID_EXTENT_SINGLE_CONTEXT: |
| 8289 | case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: |
| 8290 | if (!operand.vpid) { |
| 8291 | nested_vmx_failValid(vcpu, |
| 8292 | VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| 8293 | return kvm_skip_emulated_instruction(vcpu); |
| 8294 | } |
| 8295 | break; |
| 8296 | case VMX_VPID_EXTENT_ALL_CONTEXT: |
| 8297 | break; |
| 8298 | default: |
| 8299 | WARN_ON_ONCE(1); |
| 8300 | return kvm_skip_emulated_instruction(vcpu); |
| 8301 | } |
| 8302 | |
| 8303 | __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true); |
| 8304 | nested_vmx_succeed(vcpu); |
| 8305 | |
| 8306 | return kvm_skip_emulated_instruction(vcpu); |
| 8307 | } |
| 8308 | |
| 8309 | static int handle_pml_full(struct kvm_vcpu *vcpu) |
| 8310 | { |
| 8311 | unsigned long exit_qualification; |
| 8312 | |
| 8313 | trace_kvm_pml_full(vcpu->vcpu_id); |
| 8314 | |
| 8315 | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 8316 | |
| 8317 | /* |
| 8318 | * PML buffer FULL happened while executing iret from NMI, |
| 8319 | * "blocked by NMI" bit has to be set before next VM entry. |
| 8320 | */ |
| 8321 | if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && |
| 8322 | cpu_has_virtual_nmis() && |
| 8323 | (exit_qualification & INTR_INFO_UNBLOCK_NMI)) |
| 8324 | vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| 8325 | GUEST_INTR_STATE_NMI); |
| 8326 | |
| 8327 | /* |
| 8328 | * PML buffer already flushed at beginning of VMEXIT. Nothing to do |
| 8329 | * here.., and there's no userspace involvement needed for PML. |
| 8330 | */ |
| 8331 | return 1; |
| 8332 | } |
| 8333 | |
| 8334 | static int handle_preemption_timer(struct kvm_vcpu *vcpu) |
| 8335 | { |
| 8336 | kvm_lapic_expired_hv_timer(vcpu); |
| 8337 | return 1; |
| 8338 | } |
| 8339 | |
| 8340 | static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address) |
| 8341 | { |
| 8342 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 8343 | int maxphyaddr = cpuid_maxphyaddr(vcpu); |
| 8344 | |
| 8345 | /* Check for memory type validity */ |
| 8346 | switch (address & VMX_EPTP_MT_MASK) { |
| 8347 | case VMX_EPTP_MT_UC: |
| 8348 | if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT)) |
| 8349 | return false; |
| 8350 | break; |
| 8351 | case VMX_EPTP_MT_WB: |
| 8352 | if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT)) |
| 8353 | return false; |
| 8354 | break; |
| 8355 | default: |
| 8356 | return false; |
| 8357 | } |
| 8358 | |
| 8359 | /* only 4 levels page-walk length are valid */ |
| 8360 | if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4) |
| 8361 | return false; |
| 8362 | |
| 8363 | /* Reserved bits should not be set */ |
| 8364 | if (address >> maxphyaddr || ((address >> 7) & 0x1f)) |
| 8365 | return false; |
| 8366 | |
| 8367 | /* AD, if set, should be supported */ |
| 8368 | if (address & VMX_EPTP_AD_ENABLE_BIT) { |
| 8369 | if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT)) |
| 8370 | return false; |
| 8371 | } |
| 8372 | |
| 8373 | return true; |
| 8374 | } |
| 8375 | |
| 8376 | static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, |
| 8377 | struct vmcs12 *vmcs12) |
| 8378 | { |
| 8379 | u32 index = vcpu->arch.regs[VCPU_REGS_RCX]; |
| 8380 | u64 address; |
| 8381 | bool accessed_dirty; |
| 8382 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| 8383 | |
| 8384 | if (!nested_cpu_has_eptp_switching(vmcs12) || |
| 8385 | !nested_cpu_has_ept(vmcs12)) |
| 8386 | return 1; |
| 8387 | |
| 8388 | if (index >= VMFUNC_EPTP_ENTRIES) |
| 8389 | return 1; |
| 8390 | |
| 8391 | |
| 8392 | if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, |
| 8393 | &address, index * 8, 8)) |
| 8394 | return 1; |
| 8395 | |
| 8396 | accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT); |
| 8397 | |
| 8398 | /* |
| 8399 | * If the (L2) guest does a vmfunc to the currently |
| 8400 | * active ept pointer, we don't have to do anything else |
| 8401 | */ |
| 8402 | if (vmcs12->ept_pointer != address) { |
| 8403 | if (!valid_ept_address(vcpu, address)) |
| 8404 | return 1; |
| 8405 | |
| 8406 | kvm_mmu_unload(vcpu); |
| 8407 | mmu->ept_ad = accessed_dirty; |
| 8408 | mmu->base_role.ad_disabled = !accessed_dirty; |
| 8409 | vmcs12->ept_pointer = address; |
| 8410 | /* |
| 8411 | * TODO: Check what's the correct approach in case |
| 8412 | * mmu reload fails. Currently, we just let the next |
| 8413 | * reload potentially fail |
| 8414 | */ |
| 8415 | kvm_mmu_reload(vcpu); |
| 8416 | } |
| 8417 | |
| 8418 | return 0; |
| 8419 | } |
| 8420 | |
| 8421 | static int handle_vmfunc(struct kvm_vcpu *vcpu) |
| 8422 | { |
| 8423 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 8424 | struct vmcs12 *vmcs12; |
| 8425 | u32 function = vcpu->arch.regs[VCPU_REGS_RAX]; |
| 8426 | |
| 8427 | /* |
| 8428 | * VMFUNC is only supported for nested guests, but we always enable the |
| 8429 | * secondary control for simplicity; for non-nested mode, fake that we |
| 8430 | * didn't by injecting #UD. |
| 8431 | */ |
| 8432 | if (!is_guest_mode(vcpu)) { |
| 8433 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 8434 | return 1; |
| 8435 | } |
| 8436 | |
| 8437 | vmcs12 = get_vmcs12(vcpu); |
| 8438 | if ((vmcs12->vm_function_control & (1 << function)) == 0) |
| 8439 | goto fail; |
| 8440 | |
| 8441 | switch (function) { |
| 8442 | case 0: |
| 8443 | if (nested_vmx_eptp_switching(vcpu, vmcs12)) |
| 8444 | goto fail; |
| 8445 | break; |
| 8446 | default: |
| 8447 | goto fail; |
| 8448 | } |
| 8449 | return kvm_skip_emulated_instruction(vcpu); |
| 8450 | |
| 8451 | fail: |
| 8452 | nested_vmx_vmexit(vcpu, vmx->exit_reason, |
| 8453 | vmcs_read32(VM_EXIT_INTR_INFO), |
| 8454 | vmcs_readl(EXIT_QUALIFICATION)); |
| 8455 | return 1; |
| 8456 | } |
| 8457 | |
| 8458 | /* |
| 8459 | * The exit handlers return 1 if the exit was handled fully and guest execution |
| 8460 | * may resume. Otherwise they set the kvm_run parameter to indicate what needs |
| 8461 | * to be done to userspace and return 0. |
| 8462 | */ |
| 8463 | static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { |
| 8464 | [EXIT_REASON_EXCEPTION_NMI] = handle_exception, |
| 8465 | [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, |
| 8466 | [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, |
| 8467 | [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, |
| 8468 | [EXIT_REASON_IO_INSTRUCTION] = handle_io, |
| 8469 | [EXIT_REASON_CR_ACCESS] = handle_cr, |
| 8470 | [EXIT_REASON_DR_ACCESS] = handle_dr, |
| 8471 | [EXIT_REASON_CPUID] = handle_cpuid, |
| 8472 | [EXIT_REASON_MSR_READ] = handle_rdmsr, |
| 8473 | [EXIT_REASON_MSR_WRITE] = handle_wrmsr, |
| 8474 | [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, |
| 8475 | [EXIT_REASON_HLT] = handle_halt, |
| 8476 | [EXIT_REASON_INVD] = handle_invd, |
| 8477 | [EXIT_REASON_INVLPG] = handle_invlpg, |
| 8478 | [EXIT_REASON_RDPMC] = handle_rdpmc, |
| 8479 | [EXIT_REASON_VMCALL] = handle_vmcall, |
| 8480 | [EXIT_REASON_VMCLEAR] = handle_vmclear, |
| 8481 | [EXIT_REASON_VMLAUNCH] = handle_vmlaunch, |
| 8482 | [EXIT_REASON_VMPTRLD] = handle_vmptrld, |
| 8483 | [EXIT_REASON_VMPTRST] = handle_vmptrst, |
| 8484 | [EXIT_REASON_VMREAD] = handle_vmread, |
| 8485 | [EXIT_REASON_VMRESUME] = handle_vmresume, |
| 8486 | [EXIT_REASON_VMWRITE] = handle_vmwrite, |
| 8487 | [EXIT_REASON_VMOFF] = handle_vmoff, |
| 8488 | [EXIT_REASON_VMON] = handle_vmon, |
| 8489 | [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, |
| 8490 | [EXIT_REASON_APIC_ACCESS] = handle_apic_access, |
| 8491 | [EXIT_REASON_APIC_WRITE] = handle_apic_write, |
| 8492 | [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, |
| 8493 | [EXIT_REASON_WBINVD] = handle_wbinvd, |
| 8494 | [EXIT_REASON_XSETBV] = handle_xsetbv, |
| 8495 | [EXIT_REASON_TASK_SWITCH] = handle_task_switch, |
| 8496 | [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, |
| 8497 | [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, |
| 8498 | [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, |
| 8499 | [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, |
| 8500 | [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, |
| 8501 | [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, |
| 8502 | [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, |
| 8503 | [EXIT_REASON_INVEPT] = handle_invept, |
| 8504 | [EXIT_REASON_INVVPID] = handle_invvpid, |
| 8505 | [EXIT_REASON_RDRAND] = handle_invalid_op, |
| 8506 | [EXIT_REASON_RDSEED] = handle_invalid_op, |
| 8507 | [EXIT_REASON_XSAVES] = handle_xsaves, |
| 8508 | [EXIT_REASON_XRSTORS] = handle_xrstors, |
| 8509 | [EXIT_REASON_PML_FULL] = handle_pml_full, |
| 8510 | [EXIT_REASON_VMFUNC] = handle_vmfunc, |
| 8511 | [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, |
| 8512 | }; |
| 8513 | |
| 8514 | static const int kvm_vmx_max_exit_handlers = |
| 8515 | ARRAY_SIZE(kvm_vmx_exit_handlers); |
| 8516 | |
| 8517 | /* |
| 8518 | * Return true if an IO instruction with the specified port and size should cause |
| 8519 | * a VM-exit into L1. |
| 8520 | */ |
| 8521 | bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port, |
| 8522 | int size) |
| 8523 | { |
| 8524 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 8525 | gpa_t bitmap, last_bitmap; |
| 8526 | u8 b; |
| 8527 | |
| 8528 | last_bitmap = (gpa_t)-1; |
| 8529 | b = -1; |
| 8530 | |
| 8531 | while (size > 0) { |
| 8532 | if (port < 0x8000) |
| 8533 | bitmap = vmcs12->io_bitmap_a; |
| 8534 | else if (port < 0x10000) |
| 8535 | bitmap = vmcs12->io_bitmap_b; |
| 8536 | else |
| 8537 | return true; |
| 8538 | bitmap += (port & 0x7fff) / 8; |
| 8539 | |
| 8540 | if (last_bitmap != bitmap) |
| 8541 | if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) |
| 8542 | return true; |
| 8543 | if (b & (1 << (port & 7))) |
| 8544 | return true; |
| 8545 | |
| 8546 | port++; |
| 8547 | size--; |
| 8548 | last_bitmap = bitmap; |
| 8549 | } |
| 8550 | |
| 8551 | return false; |
| 8552 | } |
| 8553 | |
| 8554 | /* |
| 8555 | * Return 1 if we should exit from L2 to L1 to handle an MSR access access, |
| 8556 | * rather than handle it ourselves in L0. I.e., check whether L1 expressed |
| 8557 | * disinterest in the current event (read or write a specific MSR) by using an |
| 8558 | * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. |
| 8559 | */ |
| 8560 | static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, |
| 8561 | struct vmcs12 *vmcs12, u32 exit_reason) |
| 8562 | { |
| 8563 | u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; |
| 8564 | gpa_t bitmap; |
| 8565 | |
| 8566 | if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) |
| 8567 | return true; |
| 8568 | |
| 8569 | /* |
| 8570 | * The MSR_BITMAP page is divided into four 1024-byte bitmaps, |
| 8571 | * for the four combinations of read/write and low/high MSR numbers. |
| 8572 | * First we need to figure out which of the four to use: |
| 8573 | */ |
| 8574 | bitmap = vmcs12->msr_bitmap; |
| 8575 | if (exit_reason == EXIT_REASON_MSR_WRITE) |
| 8576 | bitmap += 2048; |
| 8577 | if (msr_index >= 0xc0000000) { |
| 8578 | msr_index -= 0xc0000000; |
| 8579 | bitmap += 1024; |
| 8580 | } |
| 8581 | |
| 8582 | /* Then read the msr_index'th bit from this bitmap: */ |
| 8583 | if (msr_index < 1024*8) { |
| 8584 | unsigned char b; |
| 8585 | if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) |
| 8586 | return true; |
| 8587 | return 1 & (b >> (msr_index & 7)); |
| 8588 | } else |
| 8589 | return true; /* let L1 handle the wrong parameter */ |
| 8590 | } |
| 8591 | |
| 8592 | /* |
| 8593 | * Return 1 if we should exit from L2 to L1 to handle a CR access exit, |
| 8594 | * rather than handle it ourselves in L0. I.e., check if L1 wanted to |
| 8595 | * intercept (via guest_host_mask etc.) the current event. |
| 8596 | */ |
| 8597 | static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, |
| 8598 | struct vmcs12 *vmcs12) |
| 8599 | { |
| 8600 | unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| 8601 | int cr = exit_qualification & 15; |
| 8602 | int reg; |
| 8603 | unsigned long val; |
| 8604 | |
| 8605 | switch ((exit_qualification >> 4) & 3) { |
| 8606 | case 0: /* mov to cr */ |
| 8607 | reg = (exit_qualification >> 8) & 15; |
| 8608 | val = kvm_register_readl(vcpu, reg); |
| 8609 | switch (cr) { |
| 8610 | case 0: |
| 8611 | if (vmcs12->cr0_guest_host_mask & |
| 8612 | (val ^ vmcs12->cr0_read_shadow)) |
| 8613 | return true; |
| 8614 | break; |
| 8615 | case 3: |
| 8616 | if ((vmcs12->cr3_target_count >= 1 && |
| 8617 | vmcs12->cr3_target_value0 == val) || |
| 8618 | (vmcs12->cr3_target_count >= 2 && |
| 8619 | vmcs12->cr3_target_value1 == val) || |
| 8620 | (vmcs12->cr3_target_count >= 3 && |
| 8621 | vmcs12->cr3_target_value2 == val) || |
| 8622 | (vmcs12->cr3_target_count >= 4 && |
| 8623 | vmcs12->cr3_target_value3 == val)) |
| 8624 | return false; |
| 8625 | if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) |
| 8626 | return true; |
| 8627 | break; |
| 8628 | case 4: |
| 8629 | if (vmcs12->cr4_guest_host_mask & |
| 8630 | (vmcs12->cr4_read_shadow ^ val)) |
| 8631 | return true; |
| 8632 | break; |
| 8633 | case 8: |
| 8634 | if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) |
| 8635 | return true; |
| 8636 | break; |
| 8637 | } |
| 8638 | break; |
| 8639 | case 2: /* clts */ |
| 8640 | if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && |
| 8641 | (vmcs12->cr0_read_shadow & X86_CR0_TS)) |
| 8642 | return true; |
| 8643 | break; |
| 8644 | case 1: /* mov from cr */ |
| 8645 | switch (cr) { |
| 8646 | case 3: |
| 8647 | if (vmcs12->cpu_based_vm_exec_control & |
| 8648 | CPU_BASED_CR3_STORE_EXITING) |
| 8649 | return true; |
| 8650 | break; |
| 8651 | case 8: |
| 8652 | if (vmcs12->cpu_based_vm_exec_control & |
| 8653 | CPU_BASED_CR8_STORE_EXITING) |
| 8654 | return true; |
| 8655 | break; |
| 8656 | } |
| 8657 | break; |
| 8658 | case 3: /* lmsw */ |
| 8659 | /* |
| 8660 | * lmsw can change bits 1..3 of cr0, and only set bit 0 of |
| 8661 | * cr0. Other attempted changes are ignored, with no exit. |
| 8662 | */ |
| 8663 | val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; |
| 8664 | if (vmcs12->cr0_guest_host_mask & 0xe & |
| 8665 | (val ^ vmcs12->cr0_read_shadow)) |
| 8666 | return true; |
| 8667 | if ((vmcs12->cr0_guest_host_mask & 0x1) && |
| 8668 | !(vmcs12->cr0_read_shadow & 0x1) && |
| 8669 | (val & 0x1)) |
| 8670 | return true; |
| 8671 | break; |
| 8672 | } |
| 8673 | return false; |
| 8674 | } |
| 8675 | |
| 8676 | /* |
| 8677 | * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we |
| 8678 | * should handle it ourselves in L0 (and then continue L2). Only call this |
| 8679 | * when in is_guest_mode (L2). |
| 8680 | */ |
| 8681 | static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) |
| 8682 | { |
| 8683 | u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| 8684 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 8685 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 8686 | |
| 8687 | if (vmx->nested.nested_run_pending) |
| 8688 | return false; |
| 8689 | |
| 8690 | if (unlikely(vmx->fail)) { |
| 8691 | pr_info_ratelimited("%s failed vm entry %x\n", __func__, |
| 8692 | vmcs_read32(VM_INSTRUCTION_ERROR)); |
| 8693 | return true; |
| 8694 | } |
| 8695 | |
| 8696 | /* |
| 8697 | * The host physical addresses of some pages of guest memory |
| 8698 | * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC |
| 8699 | * Page). The CPU may write to these pages via their host |
| 8700 | * physical address while L2 is running, bypassing any |
| 8701 | * address-translation-based dirty tracking (e.g. EPT write |
| 8702 | * protection). |
| 8703 | * |
| 8704 | * Mark them dirty on every exit from L2 to prevent them from |
| 8705 | * getting out of sync with dirty tracking. |
| 8706 | */ |
| 8707 | nested_mark_vmcs12_pages_dirty(vcpu); |
| 8708 | |
| 8709 | trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, |
| 8710 | vmcs_readl(EXIT_QUALIFICATION), |
| 8711 | vmx->idt_vectoring_info, |
| 8712 | intr_info, |
| 8713 | vmcs_read32(VM_EXIT_INTR_ERROR_CODE), |
| 8714 | KVM_ISA_VMX); |
| 8715 | |
| 8716 | switch ((u16)exit_reason) { |
| 8717 | case EXIT_REASON_EXCEPTION_NMI: |
| 8718 | if (is_nmi(intr_info)) |
| 8719 | return false; |
| 8720 | else if (is_page_fault(intr_info)) |
| 8721 | return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept; |
| 8722 | else if (is_no_device(intr_info) && |
| 8723 | !(vmcs12->guest_cr0 & X86_CR0_TS)) |
| 8724 | return false; |
| 8725 | else if (is_debug(intr_info) && |
| 8726 | vcpu->guest_debug & |
| 8727 | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) |
| 8728 | return false; |
| 8729 | else if (is_breakpoint(intr_info) && |
| 8730 | vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| 8731 | return false; |
| 8732 | return vmcs12->exception_bitmap & |
| 8733 | (1u << (intr_info & INTR_INFO_VECTOR_MASK)); |
| 8734 | case EXIT_REASON_EXTERNAL_INTERRUPT: |
| 8735 | return false; |
| 8736 | case EXIT_REASON_TRIPLE_FAULT: |
| 8737 | return true; |
| 8738 | case EXIT_REASON_PENDING_INTERRUPT: |
| 8739 | return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); |
| 8740 | case EXIT_REASON_NMI_WINDOW: |
| 8741 | return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); |
| 8742 | case EXIT_REASON_TASK_SWITCH: |
| 8743 | return true; |
| 8744 | case EXIT_REASON_CPUID: |
| 8745 | return true; |
| 8746 | case EXIT_REASON_HLT: |
| 8747 | return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); |
| 8748 | case EXIT_REASON_INVD: |
| 8749 | return true; |
| 8750 | case EXIT_REASON_INVLPG: |
| 8751 | return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); |
| 8752 | case EXIT_REASON_RDPMC: |
| 8753 | return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); |
| 8754 | case EXIT_REASON_RDRAND: |
| 8755 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND); |
| 8756 | case EXIT_REASON_RDSEED: |
| 8757 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED); |
| 8758 | case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: |
| 8759 | return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); |
| 8760 | case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: |
| 8761 | case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: |
| 8762 | case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD: |
| 8763 | case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE: |
| 8764 | case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: |
| 8765 | case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: |
| 8766 | /* |
| 8767 | * VMX instructions trap unconditionally. This allows L1 to |
| 8768 | * emulate them for its L2 guest, i.e., allows 3-level nesting! |
| 8769 | */ |
| 8770 | return true; |
| 8771 | case EXIT_REASON_CR_ACCESS: |
| 8772 | return nested_vmx_exit_handled_cr(vcpu, vmcs12); |
| 8773 | case EXIT_REASON_DR_ACCESS: |
| 8774 | return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); |
| 8775 | case EXIT_REASON_IO_INSTRUCTION: |
| 8776 | return nested_vmx_exit_handled_io(vcpu, vmcs12); |
| 8777 | case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR: |
| 8778 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); |
| 8779 | case EXIT_REASON_MSR_READ: |
| 8780 | case EXIT_REASON_MSR_WRITE: |
| 8781 | return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); |
| 8782 | case EXIT_REASON_INVALID_STATE: |
| 8783 | return true; |
| 8784 | case EXIT_REASON_MWAIT_INSTRUCTION: |
| 8785 | return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); |
| 8786 | case EXIT_REASON_MONITOR_TRAP_FLAG: |
| 8787 | return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG); |
| 8788 | case EXIT_REASON_MONITOR_INSTRUCTION: |
| 8789 | return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); |
| 8790 | case EXIT_REASON_PAUSE_INSTRUCTION: |
| 8791 | return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || |
| 8792 | nested_cpu_has2(vmcs12, |
| 8793 | SECONDARY_EXEC_PAUSE_LOOP_EXITING); |
| 8794 | case EXIT_REASON_MCE_DURING_VMENTRY: |
| 8795 | return false; |
| 8796 | case EXIT_REASON_TPR_BELOW_THRESHOLD: |
| 8797 | return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); |
| 8798 | case EXIT_REASON_APIC_ACCESS: |
| 8799 | return nested_cpu_has2(vmcs12, |
| 8800 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); |
| 8801 | case EXIT_REASON_APIC_WRITE: |
| 8802 | case EXIT_REASON_EOI_INDUCED: |
| 8803 | /* apic_write and eoi_induced should exit unconditionally. */ |
| 8804 | return true; |
| 8805 | case EXIT_REASON_EPT_VIOLATION: |
| 8806 | /* |
| 8807 | * L0 always deals with the EPT violation. If nested EPT is |
| 8808 | * used, and the nested mmu code discovers that the address is |
| 8809 | * missing in the guest EPT table (EPT12), the EPT violation |
| 8810 | * will be injected with nested_ept_inject_page_fault() |
| 8811 | */ |
| 8812 | return false; |
| 8813 | case EXIT_REASON_EPT_MISCONFIG: |
| 8814 | /* |
| 8815 | * L2 never uses directly L1's EPT, but rather L0's own EPT |
| 8816 | * table (shadow on EPT) or a merged EPT table that L0 built |
| 8817 | * (EPT on EPT). So any problems with the structure of the |
| 8818 | * table is L0's fault. |
| 8819 | */ |
| 8820 | return false; |
| 8821 | case EXIT_REASON_INVPCID: |
| 8822 | return |
| 8823 | nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && |
| 8824 | nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); |
| 8825 | case EXIT_REASON_WBINVD: |
| 8826 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); |
| 8827 | case EXIT_REASON_XSETBV: |
| 8828 | return true; |
| 8829 | case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: |
| 8830 | /* |
| 8831 | * This should never happen, since it is not possible to |
| 8832 | * set XSS to a non-zero value---neither in L1 nor in L2. |
| 8833 | * If if it were, XSS would have to be checked against |
| 8834 | * the XSS exit bitmap in vmcs12. |
| 8835 | */ |
| 8836 | return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); |
| 8837 | case EXIT_REASON_PREEMPTION_TIMER: |
| 8838 | return false; |
| 8839 | case EXIT_REASON_PML_FULL: |
| 8840 | /* We emulate PML support to L1. */ |
| 8841 | return false; |
| 8842 | case EXIT_REASON_VMFUNC: |
| 8843 | /* VM functions are emulated through L2->L0 vmexits. */ |
| 8844 | return false; |
| 8845 | default: |
| 8846 | return true; |
| 8847 | } |
| 8848 | } |
| 8849 | |
| 8850 | static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason) |
| 8851 | { |
| 8852 | u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| 8853 | |
| 8854 | /* |
| 8855 | * At this point, the exit interruption info in exit_intr_info |
| 8856 | * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT |
| 8857 | * we need to query the in-kernel LAPIC. |
| 8858 | */ |
| 8859 | WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT); |
| 8860 | if ((exit_intr_info & |
| 8861 | (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) == |
| 8862 | (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) { |
| 8863 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 8864 | vmcs12->vm_exit_intr_error_code = |
| 8865 | vmcs_read32(VM_EXIT_INTR_ERROR_CODE); |
| 8866 | } |
| 8867 | |
| 8868 | nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, |
| 8869 | vmcs_readl(EXIT_QUALIFICATION)); |
| 8870 | return 1; |
| 8871 | } |
| 8872 | |
| 8873 | static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) |
| 8874 | { |
| 8875 | *info1 = vmcs_readl(EXIT_QUALIFICATION); |
| 8876 | *info2 = vmcs_read32(VM_EXIT_INTR_INFO); |
| 8877 | } |
| 8878 | |
| 8879 | static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) |
| 8880 | { |
| 8881 | if (vmx->pml_pg) { |
| 8882 | __free_page(vmx->pml_pg); |
| 8883 | vmx->pml_pg = NULL; |
| 8884 | } |
| 8885 | } |
| 8886 | |
| 8887 | static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) |
| 8888 | { |
| 8889 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 8890 | u64 *pml_buf; |
| 8891 | u16 pml_idx; |
| 8892 | |
| 8893 | pml_idx = vmcs_read16(GUEST_PML_INDEX); |
| 8894 | |
| 8895 | /* Do nothing if PML buffer is empty */ |
| 8896 | if (pml_idx == (PML_ENTITY_NUM - 1)) |
| 8897 | return; |
| 8898 | |
| 8899 | /* PML index always points to next available PML buffer entity */ |
| 8900 | if (pml_idx >= PML_ENTITY_NUM) |
| 8901 | pml_idx = 0; |
| 8902 | else |
| 8903 | pml_idx++; |
| 8904 | |
| 8905 | pml_buf = page_address(vmx->pml_pg); |
| 8906 | for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { |
| 8907 | u64 gpa; |
| 8908 | |
| 8909 | gpa = pml_buf[pml_idx]; |
| 8910 | WARN_ON(gpa & (PAGE_SIZE - 1)); |
| 8911 | kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); |
| 8912 | } |
| 8913 | |
| 8914 | /* reset PML index */ |
| 8915 | vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); |
| 8916 | } |
| 8917 | |
| 8918 | /* |
| 8919 | * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. |
| 8920 | * Called before reporting dirty_bitmap to userspace. |
| 8921 | */ |
| 8922 | static void kvm_flush_pml_buffers(struct kvm *kvm) |
| 8923 | { |
| 8924 | int i; |
| 8925 | struct kvm_vcpu *vcpu; |
| 8926 | /* |
| 8927 | * We only need to kick vcpu out of guest mode here, as PML buffer |
| 8928 | * is flushed at beginning of all VMEXITs, and it's obvious that only |
| 8929 | * vcpus running in guest are possible to have unflushed GPAs in PML |
| 8930 | * buffer. |
| 8931 | */ |
| 8932 | kvm_for_each_vcpu(i, vcpu, kvm) |
| 8933 | kvm_vcpu_kick(vcpu); |
| 8934 | } |
| 8935 | |
| 8936 | static void vmx_dump_sel(char *name, uint32_t sel) |
| 8937 | { |
| 8938 | pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", |
| 8939 | name, vmcs_read16(sel), |
| 8940 | vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), |
| 8941 | vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), |
| 8942 | vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); |
| 8943 | } |
| 8944 | |
| 8945 | static void vmx_dump_dtsel(char *name, uint32_t limit) |
| 8946 | { |
| 8947 | pr_err("%s limit=0x%08x, base=0x%016lx\n", |
| 8948 | name, vmcs_read32(limit), |
| 8949 | vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); |
| 8950 | } |
| 8951 | |
| 8952 | static void dump_vmcs(void) |
| 8953 | { |
| 8954 | u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); |
| 8955 | u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); |
| 8956 | u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); |
| 8957 | u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); |
| 8958 | u32 secondary_exec_control = 0; |
| 8959 | unsigned long cr4 = vmcs_readl(GUEST_CR4); |
| 8960 | u64 efer = vmcs_read64(GUEST_IA32_EFER); |
| 8961 | int i, n; |
| 8962 | |
| 8963 | if (cpu_has_secondary_exec_ctrls()) |
| 8964 | secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); |
| 8965 | |
| 8966 | pr_err("*** Guest State ***\n"); |
| 8967 | pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", |
| 8968 | vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), |
| 8969 | vmcs_readl(CR0_GUEST_HOST_MASK)); |
| 8970 | pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", |
| 8971 | cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); |
| 8972 | pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); |
| 8973 | if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && |
| 8974 | (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) |
| 8975 | { |
| 8976 | pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", |
| 8977 | vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); |
| 8978 | pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", |
| 8979 | vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); |
| 8980 | } |
| 8981 | pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", |
| 8982 | vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); |
| 8983 | pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", |
| 8984 | vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); |
| 8985 | pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", |
| 8986 | vmcs_readl(GUEST_SYSENTER_ESP), |
| 8987 | vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); |
| 8988 | vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); |
| 8989 | vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); |
| 8990 | vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); |
| 8991 | vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); |
| 8992 | vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); |
| 8993 | vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); |
| 8994 | vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); |
| 8995 | vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); |
| 8996 | vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); |
| 8997 | vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); |
| 8998 | if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || |
| 8999 | (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) |
| 9000 | pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", |
| 9001 | efer, vmcs_read64(GUEST_IA32_PAT)); |
| 9002 | pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", |
| 9003 | vmcs_read64(GUEST_IA32_DEBUGCTL), |
| 9004 | vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); |
| 9005 | if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) |
| 9006 | pr_err("PerfGlobCtl = 0x%016llx\n", |
| 9007 | vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); |
| 9008 | if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) |
| 9009 | pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); |
| 9010 | pr_err("Interruptibility = %08x ActivityState = %08x\n", |
| 9011 | vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), |
| 9012 | vmcs_read32(GUEST_ACTIVITY_STATE)); |
| 9013 | if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) |
| 9014 | pr_err("InterruptStatus = %04x\n", |
| 9015 | vmcs_read16(GUEST_INTR_STATUS)); |
| 9016 | |
| 9017 | pr_err("*** Host State ***\n"); |
| 9018 | pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", |
| 9019 | vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); |
| 9020 | pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", |
| 9021 | vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), |
| 9022 | vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), |
| 9023 | vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), |
| 9024 | vmcs_read16(HOST_TR_SELECTOR)); |
| 9025 | pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", |
| 9026 | vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), |
| 9027 | vmcs_readl(HOST_TR_BASE)); |
| 9028 | pr_err("GDTBase=%016lx IDTBase=%016lx\n", |
| 9029 | vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); |
| 9030 | pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", |
| 9031 | vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), |
| 9032 | vmcs_readl(HOST_CR4)); |
| 9033 | pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", |
| 9034 | vmcs_readl(HOST_IA32_SYSENTER_ESP), |
| 9035 | vmcs_read32(HOST_IA32_SYSENTER_CS), |
| 9036 | vmcs_readl(HOST_IA32_SYSENTER_EIP)); |
| 9037 | if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) |
| 9038 | pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", |
| 9039 | vmcs_read64(HOST_IA32_EFER), |
| 9040 | vmcs_read64(HOST_IA32_PAT)); |
| 9041 | if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) |
| 9042 | pr_err("PerfGlobCtl = 0x%016llx\n", |
| 9043 | vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); |
| 9044 | |
| 9045 | pr_err("*** Control State ***\n"); |
| 9046 | pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", |
| 9047 | pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); |
| 9048 | pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); |
| 9049 | pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", |
| 9050 | vmcs_read32(EXCEPTION_BITMAP), |
| 9051 | vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), |
| 9052 | vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); |
| 9053 | pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", |
| 9054 | vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), |
| 9055 | vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), |
| 9056 | vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); |
| 9057 | pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", |
| 9058 | vmcs_read32(VM_EXIT_INTR_INFO), |
| 9059 | vmcs_read32(VM_EXIT_INTR_ERROR_CODE), |
| 9060 | vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); |
| 9061 | pr_err(" reason=%08x qualification=%016lx\n", |
| 9062 | vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); |
| 9063 | pr_err("IDTVectoring: info=%08x errcode=%08x\n", |
| 9064 | vmcs_read32(IDT_VECTORING_INFO_FIELD), |
| 9065 | vmcs_read32(IDT_VECTORING_ERROR_CODE)); |
| 9066 | pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); |
| 9067 | if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) |
| 9068 | pr_err("TSC Multiplier = 0x%016llx\n", |
| 9069 | vmcs_read64(TSC_MULTIPLIER)); |
| 9070 | if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) |
| 9071 | pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); |
| 9072 | if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) |
| 9073 | pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); |
| 9074 | if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) |
| 9075 | pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); |
| 9076 | n = vmcs_read32(CR3_TARGET_COUNT); |
| 9077 | for (i = 0; i + 1 < n; i += 4) |
| 9078 | pr_err("CR3 target%u=%016lx target%u=%016lx\n", |
| 9079 | i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), |
| 9080 | i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); |
| 9081 | if (i < n) |
| 9082 | pr_err("CR3 target%u=%016lx\n", |
| 9083 | i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); |
| 9084 | if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) |
| 9085 | pr_err("PLE Gap=%08x Window=%08x\n", |
| 9086 | vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); |
| 9087 | if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) |
| 9088 | pr_err("Virtual processor ID = 0x%04x\n", |
| 9089 | vmcs_read16(VIRTUAL_PROCESSOR_ID)); |
| 9090 | } |
| 9091 | |
| 9092 | /* |
| 9093 | * The guest has exited. See if we can fix it or if we need userspace |
| 9094 | * assistance. |
| 9095 | */ |
| 9096 | static int vmx_handle_exit(struct kvm_vcpu *vcpu) |
| 9097 | { |
| 9098 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 9099 | u32 exit_reason = vmx->exit_reason; |
| 9100 | u32 vectoring_info = vmx->idt_vectoring_info; |
| 9101 | |
| 9102 | trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); |
| 9103 | |
| 9104 | /* |
| 9105 | * Flush logged GPAs PML buffer, this will make dirty_bitmap more |
| 9106 | * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before |
| 9107 | * querying dirty_bitmap, we only need to kick all vcpus out of guest |
| 9108 | * mode as if vcpus is in root mode, the PML buffer must has been |
| 9109 | * flushed already. |
| 9110 | */ |
| 9111 | if (enable_pml) |
| 9112 | vmx_flush_pml_buffer(vcpu); |
| 9113 | |
| 9114 | /* If guest state is invalid, start emulating */ |
| 9115 | if (vmx->emulation_required) |
| 9116 | return handle_invalid_guest_state(vcpu); |
| 9117 | |
| 9118 | if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) |
| 9119 | return nested_vmx_reflect_vmexit(vcpu, exit_reason); |
| 9120 | |
| 9121 | if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { |
| 9122 | dump_vmcs(); |
| 9123 | vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| 9124 | vcpu->run->fail_entry.hardware_entry_failure_reason |
| 9125 | = exit_reason; |
| 9126 | return 0; |
| 9127 | } |
| 9128 | |
| 9129 | if (unlikely(vmx->fail)) { |
| 9130 | vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; |
| 9131 | vcpu->run->fail_entry.hardware_entry_failure_reason |
| 9132 | = vmcs_read32(VM_INSTRUCTION_ERROR); |
| 9133 | return 0; |
| 9134 | } |
| 9135 | |
| 9136 | /* |
| 9137 | * Note: |
| 9138 | * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by |
| 9139 | * delivery event since it indicates guest is accessing MMIO. |
| 9140 | * The vm-exit can be triggered again after return to guest that |
| 9141 | * will cause infinite loop. |
| 9142 | */ |
| 9143 | if ((vectoring_info & VECTORING_INFO_VALID_MASK) && |
| 9144 | (exit_reason != EXIT_REASON_EXCEPTION_NMI && |
| 9145 | exit_reason != EXIT_REASON_EPT_VIOLATION && |
| 9146 | exit_reason != EXIT_REASON_PML_FULL && |
| 9147 | exit_reason != EXIT_REASON_APIC_ACCESS && |
| 9148 | exit_reason != EXIT_REASON_TASK_SWITCH)) { |
| 9149 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 9150 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; |
| 9151 | vcpu->run->internal.ndata = 3; |
| 9152 | vcpu->run->internal.data[0] = vectoring_info; |
| 9153 | vcpu->run->internal.data[1] = exit_reason; |
| 9154 | vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; |
| 9155 | if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { |
| 9156 | vcpu->run->internal.ndata++; |
| 9157 | vcpu->run->internal.data[3] = |
| 9158 | vmcs_read64(GUEST_PHYSICAL_ADDRESS); |
| 9159 | } |
| 9160 | return 0; |
| 9161 | } |
| 9162 | |
| 9163 | if (unlikely(!cpu_has_virtual_nmis() && |
| 9164 | vmx->loaded_vmcs->soft_vnmi_blocked)) { |
| 9165 | if (vmx_interrupt_allowed(vcpu)) { |
| 9166 | vmx->loaded_vmcs->soft_vnmi_blocked = 0; |
| 9167 | } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && |
| 9168 | vcpu->arch.nmi_pending) { |
| 9169 | /* |
| 9170 | * This CPU don't support us in finding the end of an |
| 9171 | * NMI-blocked window if the guest runs with IRQs |
| 9172 | * disabled. So we pull the trigger after 1 s of |
| 9173 | * futile waiting, but inform the user about this. |
| 9174 | */ |
| 9175 | printk(KERN_WARNING "%s: Breaking out of NMI-blocked " |
| 9176 | "state on VCPU %d after 1 s timeout\n", |
| 9177 | __func__, vcpu->vcpu_id); |
| 9178 | vmx->loaded_vmcs->soft_vnmi_blocked = 0; |
| 9179 | } |
| 9180 | } |
| 9181 | |
| 9182 | if (exit_reason < kvm_vmx_max_exit_handlers |
| 9183 | && kvm_vmx_exit_handlers[exit_reason]) |
| 9184 | return kvm_vmx_exit_handlers[exit_reason](vcpu); |
| 9185 | else { |
| 9186 | vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", |
| 9187 | exit_reason); |
| 9188 | kvm_queue_exception(vcpu, UD_VECTOR); |
| 9189 | return 1; |
| 9190 | } |
| 9191 | } |
| 9192 | |
| 9193 | /* |
| 9194 | * Software based L1D cache flush which is used when microcode providing |
| 9195 | * the cache control MSR is not loaded. |
| 9196 | * |
| 9197 | * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to |
| 9198 | * flush it is required to read in 64 KiB because the replacement algorithm |
| 9199 | * is not exactly LRU. This could be sized at runtime via topology |
| 9200 | * information but as all relevant affected CPUs have 32KiB L1D cache size |
| 9201 | * there is no point in doing so. |
| 9202 | */ |
| 9203 | static void vmx_l1d_flush(struct kvm_vcpu *vcpu) |
| 9204 | { |
| 9205 | int size = PAGE_SIZE << L1D_CACHE_ORDER; |
| 9206 | |
| 9207 | /* |
| 9208 | * This code is only executed when the the flush mode is 'cond' or |
| 9209 | * 'always' |
| 9210 | */ |
| 9211 | if (static_branch_likely(&vmx_l1d_flush_cond)) { |
| 9212 | bool flush_l1d; |
| 9213 | |
| 9214 | /* |
| 9215 | * Clear the per-vcpu flush bit, it gets set again |
| 9216 | * either from vcpu_run() or from one of the unsafe |
| 9217 | * VMEXIT handlers. |
| 9218 | */ |
| 9219 | flush_l1d = vcpu->arch.l1tf_flush_l1d; |
| 9220 | vcpu->arch.l1tf_flush_l1d = false; |
| 9221 | |
| 9222 | /* |
| 9223 | * Clear the per-cpu flush bit, it gets set again from |
| 9224 | * the interrupt handlers. |
| 9225 | */ |
| 9226 | flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); |
| 9227 | kvm_clear_cpu_l1tf_flush_l1d(); |
| 9228 | |
| 9229 | if (!flush_l1d) |
| 9230 | return; |
| 9231 | } |
| 9232 | |
| 9233 | vcpu->stat.l1d_flush++; |
| 9234 | |
| 9235 | if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { |
| 9236 | wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); |
| 9237 | return; |
| 9238 | } |
| 9239 | |
| 9240 | asm volatile( |
| 9241 | /* First ensure the pages are in the TLB */ |
| 9242 | "xorl %%eax, %%eax\n" |
| 9243 | ".Lpopulate_tlb:\n\t" |
| 9244 | "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" |
| 9245 | "addl $4096, %%eax\n\t" |
| 9246 | "cmpl %%eax, %[size]\n\t" |
| 9247 | "jne .Lpopulate_tlb\n\t" |
| 9248 | "xorl %%eax, %%eax\n\t" |
| 9249 | "cpuid\n\t" |
| 9250 | /* Now fill the cache */ |
| 9251 | "xorl %%eax, %%eax\n" |
| 9252 | ".Lfill_cache:\n" |
| 9253 | "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" |
| 9254 | "addl $64, %%eax\n\t" |
| 9255 | "cmpl %%eax, %[size]\n\t" |
| 9256 | "jne .Lfill_cache\n\t" |
| 9257 | "lfence\n" |
| 9258 | :: [flush_pages] "r" (vmx_l1d_flush_pages), |
| 9259 | [size] "r" (size) |
| 9260 | : "eax", "ebx", "ecx", "edx"); |
| 9261 | } |
| 9262 | |
| 9263 | static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) |
| 9264 | { |
| 9265 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 9266 | |
| 9267 | if (is_guest_mode(vcpu) && |
| 9268 | nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) |
| 9269 | return; |
| 9270 | |
| 9271 | if (irr == -1 || tpr < irr) { |
| 9272 | vmcs_write32(TPR_THRESHOLD, 0); |
| 9273 | return; |
| 9274 | } |
| 9275 | |
| 9276 | vmcs_write32(TPR_THRESHOLD, irr); |
| 9277 | } |
| 9278 | |
| 9279 | static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) |
| 9280 | { |
| 9281 | u32 sec_exec_control; |
| 9282 | |
| 9283 | if (!lapic_in_kernel(vcpu)) |
| 9284 | return; |
| 9285 | |
| 9286 | if (!flexpriority_enabled && |
| 9287 | !cpu_has_vmx_virtualize_x2apic_mode()) |
| 9288 | return; |
| 9289 | |
| 9290 | /* Postpone execution until vmcs01 is the current VMCS. */ |
| 9291 | if (is_guest_mode(vcpu)) { |
| 9292 | to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true; |
| 9293 | return; |
| 9294 | } |
| 9295 | |
| 9296 | sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); |
| 9297 | sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
| 9298 | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); |
| 9299 | |
| 9300 | switch (kvm_get_apic_mode(vcpu)) { |
| 9301 | case LAPIC_MODE_INVALID: |
| 9302 | WARN_ONCE(true, "Invalid local APIC state"); |
| 9303 | case LAPIC_MODE_DISABLED: |
| 9304 | break; |
| 9305 | case LAPIC_MODE_XAPIC: |
| 9306 | if (flexpriority_enabled) { |
| 9307 | sec_exec_control |= |
| 9308 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| 9309 | vmx_flush_tlb(vcpu, true); |
| 9310 | } |
| 9311 | break; |
| 9312 | case LAPIC_MODE_X2APIC: |
| 9313 | if (cpu_has_vmx_virtualize_x2apic_mode()) |
| 9314 | sec_exec_control |= |
| 9315 | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; |
| 9316 | break; |
| 9317 | } |
| 9318 | vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); |
| 9319 | |
| 9320 | vmx_update_msr_bitmap(vcpu); |
| 9321 | } |
| 9322 | |
| 9323 | static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) |
| 9324 | { |
| 9325 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 9326 | |
| 9327 | /* |
| 9328 | * Currently we do not handle the nested case where L2 has an |
| 9329 | * APIC access page of its own; that page is still pinned. |
| 9330 | * Hence, we skip the case where the VCPU is in guest mode _and_ |
| 9331 | * L1 prepared an APIC access page for L2. |
| 9332 | * |
| 9333 | * For the case where L1 and L2 share the same APIC access page |
| 9334 | * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear |
| 9335 | * in the vmcs12), this function will only update either the vmcs01 |
| 9336 | * or the vmcs02. If the former, the vmcs02 will be updated by |
| 9337 | * prepare_vmcs02. If the latter, the vmcs01 will be updated in |
| 9338 | * the next L2->L1 exit. |
| 9339 | */ |
| 9340 | if (!is_guest_mode(vcpu) || |
| 9341 | !nested_cpu_has2(get_vmcs12(&vmx->vcpu), |
| 9342 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { |
| 9343 | vmcs_write64(APIC_ACCESS_ADDR, hpa); |
| 9344 | vmx_flush_tlb(vcpu, true); |
| 9345 | } |
| 9346 | } |
| 9347 | |
| 9348 | static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) |
| 9349 | { |
| 9350 | u16 status; |
| 9351 | u8 old; |
| 9352 | |
| 9353 | if (max_isr == -1) |
| 9354 | max_isr = 0; |
| 9355 | |
| 9356 | status = vmcs_read16(GUEST_INTR_STATUS); |
| 9357 | old = status >> 8; |
| 9358 | if (max_isr != old) { |
| 9359 | status &= 0xff; |
| 9360 | status |= max_isr << 8; |
| 9361 | vmcs_write16(GUEST_INTR_STATUS, status); |
| 9362 | } |
| 9363 | } |
| 9364 | |
| 9365 | static void vmx_set_rvi(int vector) |
| 9366 | { |
| 9367 | u16 status; |
| 9368 | u8 old; |
| 9369 | |
| 9370 | if (vector == -1) |
| 9371 | vector = 0; |
| 9372 | |
| 9373 | status = vmcs_read16(GUEST_INTR_STATUS); |
| 9374 | old = (u8)status & 0xff; |
| 9375 | if ((u8)vector != old) { |
| 9376 | status &= ~0xff; |
| 9377 | status |= (u8)vector; |
| 9378 | vmcs_write16(GUEST_INTR_STATUS, status); |
| 9379 | } |
| 9380 | } |
| 9381 | |
| 9382 | static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) |
| 9383 | { |
| 9384 | if (!is_guest_mode(vcpu)) { |
| 9385 | vmx_set_rvi(max_irr); |
| 9386 | return; |
| 9387 | } |
| 9388 | |
| 9389 | if (max_irr == -1) |
| 9390 | return; |
| 9391 | |
| 9392 | /* |
| 9393 | * In guest mode. If a vmexit is needed, vmx_check_nested_events |
| 9394 | * handles it. |
| 9395 | */ |
| 9396 | if (nested_exit_on_intr(vcpu)) |
| 9397 | return; |
| 9398 | |
| 9399 | /* |
| 9400 | * Else, fall back to pre-APICv interrupt injection since L2 |
| 9401 | * is run without virtual interrupt delivery. |
| 9402 | */ |
| 9403 | if (!kvm_event_needs_reinjection(vcpu) && |
| 9404 | vmx_interrupt_allowed(vcpu)) { |
| 9405 | kvm_queue_interrupt(vcpu, max_irr, false); |
| 9406 | vmx_inject_irq(vcpu); |
| 9407 | } |
| 9408 | } |
| 9409 | |
| 9410 | static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) |
| 9411 | { |
| 9412 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 9413 | int max_irr; |
| 9414 | |
| 9415 | WARN_ON(!vcpu->arch.apicv_active); |
| 9416 | if (pi_test_on(&vmx->pi_desc)) { |
| 9417 | pi_clear_on(&vmx->pi_desc); |
| 9418 | /* |
| 9419 | * IOMMU can write to PIR.ON, so the barrier matters even on UP. |
| 9420 | * But on x86 this is just a compiler barrier anyway. |
| 9421 | */ |
| 9422 | smp_mb__after_atomic(); |
| 9423 | max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir); |
| 9424 | } else { |
| 9425 | max_irr = kvm_lapic_find_highest_irr(vcpu); |
| 9426 | } |
| 9427 | vmx_hwapic_irr_update(vcpu, max_irr); |
| 9428 | return max_irr; |
| 9429 | } |
| 9430 | |
| 9431 | static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu) |
| 9432 | { |
| 9433 | return pi_test_on(vcpu_to_pi_desc(vcpu)); |
| 9434 | } |
| 9435 | |
| 9436 | static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) |
| 9437 | { |
| 9438 | if (!kvm_vcpu_apicv_active(vcpu)) |
| 9439 | return; |
| 9440 | |
| 9441 | vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); |
| 9442 | vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); |
| 9443 | vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); |
| 9444 | vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); |
| 9445 | } |
| 9446 | |
| 9447 | static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) |
| 9448 | { |
| 9449 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 9450 | |
| 9451 | pi_clear_on(&vmx->pi_desc); |
| 9452 | memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); |
| 9453 | } |
| 9454 | |
| 9455 | static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) |
| 9456 | { |
| 9457 | u32 exit_intr_info = 0; |
| 9458 | u16 basic_exit_reason = (u16)vmx->exit_reason; |
| 9459 | |
| 9460 | if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY |
| 9461 | || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI)) |
| 9462 | return; |
| 9463 | |
| 9464 | if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) |
| 9465 | exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| 9466 | vmx->exit_intr_info = exit_intr_info; |
| 9467 | |
| 9468 | /* if exit due to PF check for async PF */ |
| 9469 | if (is_page_fault(exit_intr_info)) |
| 9470 | vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); |
| 9471 | |
| 9472 | /* Handle machine checks before interrupts are enabled */ |
| 9473 | if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY || |
| 9474 | is_machine_check(exit_intr_info)) |
| 9475 | kvm_machine_check(); |
| 9476 | |
| 9477 | /* We need to handle NMIs before interrupts are enabled */ |
| 9478 | if (is_nmi(exit_intr_info)) { |
| 9479 | kvm_before_handle_nmi(&vmx->vcpu); |
| 9480 | asm("int $2"); |
| 9481 | kvm_after_handle_nmi(&vmx->vcpu); |
| 9482 | } |
| 9483 | } |
| 9484 | |
| 9485 | static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) |
| 9486 | { |
| 9487 | u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| 9488 | |
| 9489 | if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) |
| 9490 | == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { |
| 9491 | unsigned int vector; |
| 9492 | unsigned long entry; |
| 9493 | gate_desc *desc; |
| 9494 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 9495 | #ifdef CONFIG_X86_64 |
| 9496 | unsigned long tmp; |
| 9497 | #endif |
| 9498 | |
| 9499 | vector = exit_intr_info & INTR_INFO_VECTOR_MASK; |
| 9500 | desc = (gate_desc *)vmx->host_idt_base + vector; |
| 9501 | entry = gate_offset(desc); |
| 9502 | asm volatile( |
| 9503 | #ifdef CONFIG_X86_64 |
| 9504 | "mov %%" _ASM_SP ", %[sp]\n\t" |
| 9505 | "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" |
| 9506 | "push $%c[ss]\n\t" |
| 9507 | "push %[sp]\n\t" |
| 9508 | #endif |
| 9509 | "pushf\n\t" |
| 9510 | __ASM_SIZE(push) " $%c[cs]\n\t" |
| 9511 | CALL_NOSPEC |
| 9512 | : |
| 9513 | #ifdef CONFIG_X86_64 |
| 9514 | [sp]"=&r"(tmp), |
| 9515 | #endif |
| 9516 | ASM_CALL_CONSTRAINT |
| 9517 | : |
| 9518 | THUNK_TARGET(entry), |
| 9519 | [ss]"i"(__KERNEL_DS), |
| 9520 | [cs]"i"(__KERNEL_CS) |
| 9521 | ); |
| 9522 | } |
| 9523 | } |
| 9524 | STACK_FRAME_NON_STANDARD(vmx_handle_external_intr); |
| 9525 | |
| 9526 | static bool vmx_has_emulated_msr(int index) |
| 9527 | { |
| 9528 | switch (index) { |
| 9529 | case MSR_IA32_SMBASE: |
| 9530 | /* |
| 9531 | * We cannot do SMM unless we can run the guest in big |
| 9532 | * real mode. |
| 9533 | */ |
| 9534 | return enable_unrestricted_guest || emulate_invalid_guest_state; |
| 9535 | case MSR_AMD64_VIRT_SPEC_CTRL: |
| 9536 | /* This is AMD only. */ |
| 9537 | return false; |
| 9538 | default: |
| 9539 | return true; |
| 9540 | } |
| 9541 | } |
| 9542 | |
| 9543 | static bool vmx_mpx_supported(void) |
| 9544 | { |
| 9545 | return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) && |
| 9546 | (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS); |
| 9547 | } |
| 9548 | |
| 9549 | static bool vmx_xsaves_supported(void) |
| 9550 | { |
| 9551 | return vmcs_config.cpu_based_2nd_exec_ctrl & |
| 9552 | SECONDARY_EXEC_XSAVES; |
| 9553 | } |
| 9554 | |
| 9555 | static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) |
| 9556 | { |
| 9557 | u32 exit_intr_info; |
| 9558 | bool unblock_nmi; |
| 9559 | u8 vector; |
| 9560 | bool idtv_info_valid; |
| 9561 | |
| 9562 | idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; |
| 9563 | |
| 9564 | if (cpu_has_virtual_nmis()) { |
| 9565 | if (vmx->loaded_vmcs->nmi_known_unmasked) |
| 9566 | return; |
| 9567 | /* |
| 9568 | * Can't use vmx->exit_intr_info since we're not sure what |
| 9569 | * the exit reason is. |
| 9570 | */ |
| 9571 | exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| 9572 | unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; |
| 9573 | vector = exit_intr_info & INTR_INFO_VECTOR_MASK; |
| 9574 | /* |
| 9575 | * SDM 3: 27.7.1.2 (September 2008) |
| 9576 | * Re-set bit "block by NMI" before VM entry if vmexit caused by |
| 9577 | * a guest IRET fault. |
| 9578 | * SDM 3: 23.2.2 (September 2008) |
| 9579 | * Bit 12 is undefined in any of the following cases: |
| 9580 | * If the VM exit sets the valid bit in the IDT-vectoring |
| 9581 | * information field. |
| 9582 | * If the VM exit is due to a double fault. |
| 9583 | */ |
| 9584 | if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && |
| 9585 | vector != DF_VECTOR && !idtv_info_valid) |
| 9586 | vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, |
| 9587 | GUEST_INTR_STATE_NMI); |
| 9588 | else |
| 9589 | vmx->loaded_vmcs->nmi_known_unmasked = |
| 9590 | !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) |
| 9591 | & GUEST_INTR_STATE_NMI); |
| 9592 | } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) |
| 9593 | vmx->loaded_vmcs->vnmi_blocked_time += |
| 9594 | ktime_to_ns(ktime_sub(ktime_get(), |
| 9595 | vmx->loaded_vmcs->entry_time)); |
| 9596 | } |
| 9597 | |
| 9598 | static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, |
| 9599 | u32 idt_vectoring_info, |
| 9600 | int instr_len_field, |
| 9601 | int error_code_field) |
| 9602 | { |
| 9603 | u8 vector; |
| 9604 | int type; |
| 9605 | bool idtv_info_valid; |
| 9606 | |
| 9607 | idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; |
| 9608 | |
| 9609 | vcpu->arch.nmi_injected = false; |
| 9610 | kvm_clear_exception_queue(vcpu); |
| 9611 | kvm_clear_interrupt_queue(vcpu); |
| 9612 | |
| 9613 | if (!idtv_info_valid) |
| 9614 | return; |
| 9615 | |
| 9616 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
| 9617 | |
| 9618 | vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; |
| 9619 | type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; |
| 9620 | |
| 9621 | switch (type) { |
| 9622 | case INTR_TYPE_NMI_INTR: |
| 9623 | vcpu->arch.nmi_injected = true; |
| 9624 | /* |
| 9625 | * SDM 3: 27.7.1.2 (September 2008) |
| 9626 | * Clear bit "block by NMI" before VM entry if a NMI |
| 9627 | * delivery faulted. |
| 9628 | */ |
| 9629 | vmx_set_nmi_mask(vcpu, false); |
| 9630 | break; |
| 9631 | case INTR_TYPE_SOFT_EXCEPTION: |
| 9632 | vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); |
| 9633 | /* fall through */ |
| 9634 | case INTR_TYPE_HARD_EXCEPTION: |
| 9635 | if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { |
| 9636 | u32 err = vmcs_read32(error_code_field); |
| 9637 | kvm_requeue_exception_e(vcpu, vector, err); |
| 9638 | } else |
| 9639 | kvm_requeue_exception(vcpu, vector); |
| 9640 | break; |
| 9641 | case INTR_TYPE_SOFT_INTR: |
| 9642 | vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); |
| 9643 | /* fall through */ |
| 9644 | case INTR_TYPE_EXT_INTR: |
| 9645 | kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); |
| 9646 | break; |
| 9647 | default: |
| 9648 | break; |
| 9649 | } |
| 9650 | } |
| 9651 | |
| 9652 | static void vmx_complete_interrupts(struct vcpu_vmx *vmx) |
| 9653 | { |
| 9654 | __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, |
| 9655 | VM_EXIT_INSTRUCTION_LEN, |
| 9656 | IDT_VECTORING_ERROR_CODE); |
| 9657 | } |
| 9658 | |
| 9659 | static void vmx_cancel_injection(struct kvm_vcpu *vcpu) |
| 9660 | { |
| 9661 | __vmx_complete_interrupts(vcpu, |
| 9662 | vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), |
| 9663 | VM_ENTRY_INSTRUCTION_LEN, |
| 9664 | VM_ENTRY_EXCEPTION_ERROR_CODE); |
| 9665 | |
| 9666 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); |
| 9667 | } |
| 9668 | |
| 9669 | static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) |
| 9670 | { |
| 9671 | int i, nr_msrs; |
| 9672 | struct perf_guest_switch_msr *msrs; |
| 9673 | |
| 9674 | msrs = perf_guest_get_msrs(&nr_msrs); |
| 9675 | |
| 9676 | if (!msrs) |
| 9677 | return; |
| 9678 | |
| 9679 | for (i = 0; i < nr_msrs; i++) |
| 9680 | if (msrs[i].host == msrs[i].guest) |
| 9681 | clear_atomic_switch_msr(vmx, msrs[i].msr); |
| 9682 | else |
| 9683 | add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, |
| 9684 | msrs[i].host, false); |
| 9685 | } |
| 9686 | |
| 9687 | static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu) |
| 9688 | { |
| 9689 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 9690 | u64 tscl; |
| 9691 | u32 delta_tsc; |
| 9692 | |
| 9693 | if (vmx->hv_deadline_tsc == -1) |
| 9694 | return; |
| 9695 | |
| 9696 | tscl = rdtsc(); |
| 9697 | if (vmx->hv_deadline_tsc > tscl) |
| 9698 | /* sure to be 32 bit only because checked on set_hv_timer */ |
| 9699 | delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> |
| 9700 | cpu_preemption_timer_multi); |
| 9701 | else |
| 9702 | delta_tsc = 0; |
| 9703 | |
| 9704 | vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); |
| 9705 | } |
| 9706 | |
| 9707 | static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) |
| 9708 | { |
| 9709 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 9710 | unsigned long debugctlmsr, cr3, cr4; |
| 9711 | |
| 9712 | /* Record the guest's net vcpu time for enforced NMI injections. */ |
| 9713 | if (unlikely(!cpu_has_virtual_nmis() && |
| 9714 | vmx->loaded_vmcs->soft_vnmi_blocked)) |
| 9715 | vmx->loaded_vmcs->entry_time = ktime_get(); |
| 9716 | |
| 9717 | /* Don't enter VMX if guest state is invalid, let the exit handler |
| 9718 | start emulation until we arrive back to a valid state */ |
| 9719 | if (vmx->emulation_required) |
| 9720 | return; |
| 9721 | |
| 9722 | if (vmx->ple_window_dirty) { |
| 9723 | vmx->ple_window_dirty = false; |
| 9724 | vmcs_write32(PLE_WINDOW, vmx->ple_window); |
| 9725 | } |
| 9726 | |
| 9727 | if (vmx->nested.sync_shadow_vmcs) { |
| 9728 | copy_vmcs12_to_shadow(vmx); |
| 9729 | vmx->nested.sync_shadow_vmcs = false; |
| 9730 | } |
| 9731 | |
| 9732 | if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) |
| 9733 | vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); |
| 9734 | if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) |
| 9735 | vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); |
| 9736 | |
| 9737 | cr3 = __get_current_cr3_fast(); |
| 9738 | if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) { |
| 9739 | vmcs_writel(HOST_CR3, cr3); |
| 9740 | vmx->loaded_vmcs->vmcs_host_cr3 = cr3; |
| 9741 | } |
| 9742 | |
| 9743 | cr4 = cr4_read_shadow(); |
| 9744 | if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) { |
| 9745 | vmcs_writel(HOST_CR4, cr4); |
| 9746 | vmx->loaded_vmcs->vmcs_host_cr4 = cr4; |
| 9747 | } |
| 9748 | |
| 9749 | /* When single-stepping over STI and MOV SS, we must clear the |
| 9750 | * corresponding interruptibility bits in the guest state. Otherwise |
| 9751 | * vmentry fails as it then expects bit 14 (BS) in pending debug |
| 9752 | * exceptions being set, but that's not correct for the guest debugging |
| 9753 | * case. */ |
| 9754 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
| 9755 | vmx_set_interrupt_shadow(vcpu, 0); |
| 9756 | |
| 9757 | if (static_cpu_has(X86_FEATURE_PKU) && |
| 9758 | kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && |
| 9759 | vcpu->arch.pkru != vmx->host_pkru) |
| 9760 | __write_pkru(vcpu->arch.pkru); |
| 9761 | |
| 9762 | atomic_switch_perf_msrs(vmx); |
| 9763 | debugctlmsr = get_debugctlmsr(); |
| 9764 | |
| 9765 | vmx_arm_hv_timer(vcpu); |
| 9766 | |
| 9767 | /* |
| 9768 | * If this vCPU has touched SPEC_CTRL, restore the guest's value if |
| 9769 | * it's non-zero. Since vmentry is serialising on affected CPUs, there |
| 9770 | * is no need to worry about the conditional branch over the wrmsr |
| 9771 | * being speculatively taken. |
| 9772 | */ |
| 9773 | x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); |
| 9774 | |
| 9775 | vmx->__launched = vmx->loaded_vmcs->launched; |
| 9776 | |
| 9777 | /* L1D Flush includes CPU buffer clear to mitigate MDS */ |
| 9778 | if (static_branch_unlikely(&vmx_l1d_should_flush)) |
| 9779 | vmx_l1d_flush(vcpu); |
| 9780 | else if (static_branch_unlikely(&mds_user_clear)) |
| 9781 | mds_clear_cpu_buffers(); |
| 9782 | |
| 9783 | asm( |
| 9784 | /* Store host registers */ |
| 9785 | "push %%" _ASM_DX "; push %%" _ASM_BP ";" |
| 9786 | "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */ |
| 9787 | "push %%" _ASM_CX " \n\t" |
| 9788 | "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t" |
| 9789 | "je 1f \n\t" |
| 9790 | "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t" |
| 9791 | __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t" |
| 9792 | "1: \n\t" |
| 9793 | /* Reload cr2 if changed */ |
| 9794 | "mov %c[cr2](%0), %%" _ASM_AX " \n\t" |
| 9795 | "mov %%cr2, %%" _ASM_DX " \n\t" |
| 9796 | "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t" |
| 9797 | "je 2f \n\t" |
| 9798 | "mov %%" _ASM_AX", %%cr2 \n\t" |
| 9799 | "2: \n\t" |
| 9800 | /* Check if vmlaunch of vmresume is needed */ |
| 9801 | "cmpl $0, %c[launched](%0) \n\t" |
| 9802 | /* Load guest registers. Don't clobber flags. */ |
| 9803 | "mov %c[rax](%0), %%" _ASM_AX " \n\t" |
| 9804 | "mov %c[rbx](%0), %%" _ASM_BX " \n\t" |
| 9805 | "mov %c[rdx](%0), %%" _ASM_DX " \n\t" |
| 9806 | "mov %c[rsi](%0), %%" _ASM_SI " \n\t" |
| 9807 | "mov %c[rdi](%0), %%" _ASM_DI " \n\t" |
| 9808 | "mov %c[rbp](%0), %%" _ASM_BP " \n\t" |
| 9809 | #ifdef CONFIG_X86_64 |
| 9810 | "mov %c[r8](%0), %%r8 \n\t" |
| 9811 | "mov %c[r9](%0), %%r9 \n\t" |
| 9812 | "mov %c[r10](%0), %%r10 \n\t" |
| 9813 | "mov %c[r11](%0), %%r11 \n\t" |
| 9814 | "mov %c[r12](%0), %%r12 \n\t" |
| 9815 | "mov %c[r13](%0), %%r13 \n\t" |
| 9816 | "mov %c[r14](%0), %%r14 \n\t" |
| 9817 | "mov %c[r15](%0), %%r15 \n\t" |
| 9818 | #endif |
| 9819 | "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */ |
| 9820 | |
| 9821 | /* Enter guest mode */ |
| 9822 | "jne 1f \n\t" |
| 9823 | __ex(ASM_VMX_VMLAUNCH) "\n\t" |
| 9824 | "jmp 2f \n\t" |
| 9825 | "1: " __ex(ASM_VMX_VMRESUME) "\n\t" |
| 9826 | "2: " |
| 9827 | /* Save guest registers, load host registers, keep flags */ |
| 9828 | "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t" |
| 9829 | "pop %0 \n\t" |
| 9830 | "setbe %c[fail](%0)\n\t" |
| 9831 | "mov %%" _ASM_AX ", %c[rax](%0) \n\t" |
| 9832 | "mov %%" _ASM_BX ", %c[rbx](%0) \n\t" |
| 9833 | __ASM_SIZE(pop) " %c[rcx](%0) \n\t" |
| 9834 | "mov %%" _ASM_DX ", %c[rdx](%0) \n\t" |
| 9835 | "mov %%" _ASM_SI ", %c[rsi](%0) \n\t" |
| 9836 | "mov %%" _ASM_DI ", %c[rdi](%0) \n\t" |
| 9837 | "mov %%" _ASM_BP ", %c[rbp](%0) \n\t" |
| 9838 | #ifdef CONFIG_X86_64 |
| 9839 | "mov %%r8, %c[r8](%0) \n\t" |
| 9840 | "mov %%r9, %c[r9](%0) \n\t" |
| 9841 | "mov %%r10, %c[r10](%0) \n\t" |
| 9842 | "mov %%r11, %c[r11](%0) \n\t" |
| 9843 | "mov %%r12, %c[r12](%0) \n\t" |
| 9844 | "mov %%r13, %c[r13](%0) \n\t" |
| 9845 | "mov %%r14, %c[r14](%0) \n\t" |
| 9846 | "mov %%r15, %c[r15](%0) \n\t" |
| 9847 | "xor %%r8d, %%r8d \n\t" |
| 9848 | "xor %%r9d, %%r9d \n\t" |
| 9849 | "xor %%r10d, %%r10d \n\t" |
| 9850 | "xor %%r11d, %%r11d \n\t" |
| 9851 | "xor %%r12d, %%r12d \n\t" |
| 9852 | "xor %%r13d, %%r13d \n\t" |
| 9853 | "xor %%r14d, %%r14d \n\t" |
| 9854 | "xor %%r15d, %%r15d \n\t" |
| 9855 | #endif |
| 9856 | "mov %%cr2, %%" _ASM_AX " \n\t" |
| 9857 | "mov %%" _ASM_AX ", %c[cr2](%0) \n\t" |
| 9858 | |
| 9859 | "xor %%eax, %%eax \n\t" |
| 9860 | "xor %%ebx, %%ebx \n\t" |
| 9861 | "xor %%esi, %%esi \n\t" |
| 9862 | "xor %%edi, %%edi \n\t" |
| 9863 | "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t" |
| 9864 | ".pushsection .rodata \n\t" |
| 9865 | ".global vmx_return \n\t" |
| 9866 | "vmx_return: " _ASM_PTR " 2b \n\t" |
| 9867 | ".popsection" |
| 9868 | : : "c"(vmx), "d"((unsigned long)HOST_RSP), |
| 9869 | [launched]"i"(offsetof(struct vcpu_vmx, __launched)), |
| 9870 | [fail]"i"(offsetof(struct vcpu_vmx, fail)), |
| 9871 | [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), |
| 9872 | [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), |
| 9873 | [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), |
| 9874 | [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), |
| 9875 | [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), |
| 9876 | [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), |
| 9877 | [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), |
| 9878 | [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), |
| 9879 | #ifdef CONFIG_X86_64 |
| 9880 | [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), |
| 9881 | [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), |
| 9882 | [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), |
| 9883 | [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), |
| 9884 | [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), |
| 9885 | [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), |
| 9886 | [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), |
| 9887 | [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), |
| 9888 | #endif |
| 9889 | [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), |
| 9890 | [wordsize]"i"(sizeof(ulong)) |
| 9891 | : "cc", "memory" |
| 9892 | #ifdef CONFIG_X86_64 |
| 9893 | , "rax", "rbx", "rdi", "rsi" |
| 9894 | , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" |
| 9895 | #else |
| 9896 | , "eax", "ebx", "edi", "esi" |
| 9897 | #endif |
| 9898 | ); |
| 9899 | |
| 9900 | /* |
| 9901 | * We do not use IBRS in the kernel. If this vCPU has used the |
| 9902 | * SPEC_CTRL MSR it may have left it on; save the value and |
| 9903 | * turn it off. This is much more efficient than blindly adding |
| 9904 | * it to the atomic save/restore list. Especially as the former |
| 9905 | * (Saving guest MSRs on vmexit) doesn't even exist in KVM. |
| 9906 | * |
| 9907 | * For non-nested case: |
| 9908 | * If the L01 MSR bitmap does not intercept the MSR, then we need to |
| 9909 | * save it. |
| 9910 | * |
| 9911 | * For nested case: |
| 9912 | * If the L02 MSR bitmap does not intercept the MSR, then we need to |
| 9913 | * save it. |
| 9914 | */ |
| 9915 | if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) |
| 9916 | vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); |
| 9917 | |
| 9918 | x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); |
| 9919 | |
| 9920 | /* Eliminate branch target predictions from guest mode */ |
| 9921 | vmexit_fill_RSB(); |
| 9922 | |
| 9923 | /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ |
| 9924 | if (debugctlmsr) |
| 9925 | update_debugctlmsr(debugctlmsr); |
| 9926 | |
| 9927 | #ifndef CONFIG_X86_64 |
| 9928 | /* |
| 9929 | * The sysexit path does not restore ds/es, so we must set them to |
| 9930 | * a reasonable value ourselves. |
| 9931 | * |
| 9932 | * We can't defer this to vmx_load_host_state() since that function |
| 9933 | * may be executed in interrupt context, which saves and restore segments |
| 9934 | * around it, nullifying its effect. |
| 9935 | */ |
| 9936 | loadsegment(ds, __USER_DS); |
| 9937 | loadsegment(es, __USER_DS); |
| 9938 | #endif |
| 9939 | |
| 9940 | vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) |
| 9941 | | (1 << VCPU_EXREG_RFLAGS) |
| 9942 | | (1 << VCPU_EXREG_PDPTR) |
| 9943 | | (1 << VCPU_EXREG_SEGMENTS) |
| 9944 | | (1 << VCPU_EXREG_CR3)); |
| 9945 | vcpu->arch.regs_dirty = 0; |
| 9946 | |
| 9947 | /* |
| 9948 | * eager fpu is enabled if PKEY is supported and CR4 is switched |
| 9949 | * back on host, so it is safe to read guest PKRU from current |
| 9950 | * XSAVE. |
| 9951 | */ |
| 9952 | if (static_cpu_has(X86_FEATURE_PKU) && |
| 9953 | kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { |
| 9954 | vcpu->arch.pkru = __read_pkru(); |
| 9955 | if (vcpu->arch.pkru != vmx->host_pkru) |
| 9956 | __write_pkru(vmx->host_pkru); |
| 9957 | } |
| 9958 | |
| 9959 | /* |
| 9960 | * the KVM_REQ_EVENT optimization bit is only on for one entry, and if |
| 9961 | * we did not inject a still-pending event to L1 now because of |
| 9962 | * nested_run_pending, we need to re-enable this bit. |
| 9963 | */ |
| 9964 | if (vmx->nested.nested_run_pending) |
| 9965 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
| 9966 | |
| 9967 | vmx->nested.nested_run_pending = 0; |
| 9968 | vmx->idt_vectoring_info = 0; |
| 9969 | |
| 9970 | vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); |
| 9971 | if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) |
| 9972 | return; |
| 9973 | |
| 9974 | vmx->loaded_vmcs->launched = 1; |
| 9975 | vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| 9976 | |
| 9977 | vmx_complete_atomic_exit(vmx); |
| 9978 | vmx_recover_nmi_blocking(vmx); |
| 9979 | vmx_complete_interrupts(vmx); |
| 9980 | } |
| 9981 | STACK_FRAME_NON_STANDARD(vmx_vcpu_run); |
| 9982 | |
| 9983 | static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) |
| 9984 | { |
| 9985 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 9986 | int cpu; |
| 9987 | |
| 9988 | if (vmx->loaded_vmcs == vmcs) |
| 9989 | return; |
| 9990 | |
| 9991 | cpu = get_cpu(); |
| 9992 | vmx_vcpu_put(vcpu); |
| 9993 | vmx->loaded_vmcs = vmcs; |
| 9994 | vmx_vcpu_load(vcpu, cpu); |
| 9995 | vcpu->cpu = cpu; |
| 9996 | put_cpu(); |
| 9997 | } |
| 9998 | |
| 9999 | /* |
| 10000 | * Ensure that the current vmcs of the logical processor is the |
| 10001 | * vmcs01 of the vcpu before calling free_nested(). |
| 10002 | */ |
| 10003 | static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu) |
| 10004 | { |
| 10005 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 10006 | int r; |
| 10007 | |
| 10008 | r = vcpu_load(vcpu); |
| 10009 | BUG_ON(r); |
| 10010 | vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| 10011 | free_nested(vmx); |
| 10012 | vcpu_put(vcpu); |
| 10013 | } |
| 10014 | |
| 10015 | static void vmx_free_vcpu(struct kvm_vcpu *vcpu) |
| 10016 | { |
| 10017 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 10018 | |
| 10019 | if (enable_pml) |
| 10020 | vmx_destroy_pml_buffer(vmx); |
| 10021 | free_vpid(vmx->vpid); |
| 10022 | leave_guest_mode(vcpu); |
| 10023 | vmx_free_vcpu_nested(vcpu); |
| 10024 | free_loaded_vmcs(vmx->loaded_vmcs); |
| 10025 | kfree(vmx->guest_msrs); |
| 10026 | kvm_vcpu_uninit(vcpu); |
| 10027 | kmem_cache_free(kvm_vcpu_cache, vmx); |
| 10028 | } |
| 10029 | |
| 10030 | static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) |
| 10031 | { |
| 10032 | int err; |
| 10033 | struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| 10034 | unsigned long *msr_bitmap; |
| 10035 | int cpu; |
| 10036 | |
| 10037 | if (!vmx) |
| 10038 | return ERR_PTR(-ENOMEM); |
| 10039 | |
| 10040 | vmx->vpid = allocate_vpid(); |
| 10041 | |
| 10042 | err = kvm_vcpu_init(&vmx->vcpu, kvm, id); |
| 10043 | if (err) |
| 10044 | goto free_vcpu; |
| 10045 | |
| 10046 | err = -ENOMEM; |
| 10047 | |
| 10048 | /* |
| 10049 | * If PML is turned on, failure on enabling PML just results in failure |
| 10050 | * of creating the vcpu, therefore we can simplify PML logic (by |
| 10051 | * avoiding dealing with cases, such as enabling PML partially on vcpus |
| 10052 | * for the guest, etc. |
| 10053 | */ |
| 10054 | if (enable_pml) { |
| 10055 | vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| 10056 | if (!vmx->pml_pg) |
| 10057 | goto uninit_vcpu; |
| 10058 | } |
| 10059 | |
| 10060 | vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| 10061 | BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) |
| 10062 | > PAGE_SIZE); |
| 10063 | |
| 10064 | if (!vmx->guest_msrs) |
| 10065 | goto free_pml; |
| 10066 | |
| 10067 | err = alloc_loaded_vmcs(&vmx->vmcs01); |
| 10068 | if (err < 0) |
| 10069 | goto free_msrs; |
| 10070 | |
| 10071 | msr_bitmap = vmx->vmcs01.msr_bitmap; |
| 10072 | vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); |
| 10073 | vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); |
| 10074 | vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); |
| 10075 | vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); |
| 10076 | vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); |
| 10077 | vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); |
| 10078 | vmx->msr_bitmap_mode = 0; |
| 10079 | |
| 10080 | vmx->loaded_vmcs = &vmx->vmcs01; |
| 10081 | cpu = get_cpu(); |
| 10082 | vmx_vcpu_load(&vmx->vcpu, cpu); |
| 10083 | vmx->vcpu.cpu = cpu; |
| 10084 | err = vmx_vcpu_setup(vmx); |
| 10085 | vmx_vcpu_put(&vmx->vcpu); |
| 10086 | put_cpu(); |
| 10087 | if (err) |
| 10088 | goto free_vmcs; |
| 10089 | if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { |
| 10090 | err = alloc_apic_access_page(kvm); |
| 10091 | if (err) |
| 10092 | goto free_vmcs; |
| 10093 | } |
| 10094 | |
| 10095 | if (enable_ept) { |
| 10096 | if (!kvm->arch.ept_identity_map_addr) |
| 10097 | kvm->arch.ept_identity_map_addr = |
| 10098 | VMX_EPT_IDENTITY_PAGETABLE_ADDR; |
| 10099 | err = init_rmode_identity_map(kvm); |
| 10100 | if (err) |
| 10101 | goto free_vmcs; |
| 10102 | } |
| 10103 | |
| 10104 | if (nested) |
| 10105 | nested_vmx_setup_ctls_msrs(vmx); |
| 10106 | |
| 10107 | vmx->nested.posted_intr_nv = -1; |
| 10108 | vmx->nested.current_vmptr = -1ull; |
| 10109 | |
| 10110 | vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; |
| 10111 | |
| 10112 | /* |
| 10113 | * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR |
| 10114 | * or POSTED_INTR_WAKEUP_VECTOR. |
| 10115 | */ |
| 10116 | vmx->pi_desc.nv = POSTED_INTR_VECTOR; |
| 10117 | vmx->pi_desc.sn = 1; |
| 10118 | |
| 10119 | return &vmx->vcpu; |
| 10120 | |
| 10121 | free_vmcs: |
| 10122 | free_loaded_vmcs(vmx->loaded_vmcs); |
| 10123 | free_msrs: |
| 10124 | kfree(vmx->guest_msrs); |
| 10125 | free_pml: |
| 10126 | vmx_destroy_pml_buffer(vmx); |
| 10127 | uninit_vcpu: |
| 10128 | kvm_vcpu_uninit(&vmx->vcpu); |
| 10129 | free_vcpu: |
| 10130 | free_vpid(vmx->vpid); |
| 10131 | kmem_cache_free(kvm_vcpu_cache, vmx); |
| 10132 | return ERR_PTR(err); |
| 10133 | } |
| 10134 | |
| 10135 | #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" |
| 10136 | #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" |
| 10137 | |
| 10138 | static int vmx_vm_init(struct kvm *kvm) |
| 10139 | { |
| 10140 | if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { |
| 10141 | switch (l1tf_mitigation) { |
| 10142 | case L1TF_MITIGATION_OFF: |
| 10143 | case L1TF_MITIGATION_FLUSH_NOWARN: |
| 10144 | /* 'I explicitly don't care' is set */ |
| 10145 | break; |
| 10146 | case L1TF_MITIGATION_FLUSH: |
| 10147 | case L1TF_MITIGATION_FLUSH_NOSMT: |
| 10148 | case L1TF_MITIGATION_FULL: |
| 10149 | /* |
| 10150 | * Warn upon starting the first VM in a potentially |
| 10151 | * insecure environment. |
| 10152 | */ |
| 10153 | if (sched_smt_active()) |
| 10154 | pr_warn_once(L1TF_MSG_SMT); |
| 10155 | if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) |
| 10156 | pr_warn_once(L1TF_MSG_L1D); |
| 10157 | break; |
| 10158 | case L1TF_MITIGATION_FULL_FORCE: |
| 10159 | /* Flush is enforced */ |
| 10160 | break; |
| 10161 | } |
| 10162 | } |
| 10163 | return 0; |
| 10164 | } |
| 10165 | |
| 10166 | static void __init vmx_check_processor_compat(void *rtn) |
| 10167 | { |
| 10168 | struct vmcs_config vmcs_conf; |
| 10169 | |
| 10170 | *(int *)rtn = 0; |
| 10171 | if (setup_vmcs_config(&vmcs_conf) < 0) |
| 10172 | *(int *)rtn = -EIO; |
| 10173 | if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { |
| 10174 | printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", |
| 10175 | smp_processor_id()); |
| 10176 | *(int *)rtn = -EIO; |
| 10177 | } |
| 10178 | } |
| 10179 | |
| 10180 | static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) |
| 10181 | { |
| 10182 | u8 cache; |
| 10183 | u64 ipat = 0; |
| 10184 | |
| 10185 | /* For VT-d and EPT combination |
| 10186 | * 1. MMIO: always map as UC |
| 10187 | * 2. EPT with VT-d: |
| 10188 | * a. VT-d without snooping control feature: can't guarantee the |
| 10189 | * result, try to trust guest. |
| 10190 | * b. VT-d with snooping control feature: snooping control feature of |
| 10191 | * VT-d engine can guarantee the cache correctness. Just set it |
| 10192 | * to WB to keep consistent with host. So the same as item 3. |
| 10193 | * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep |
| 10194 | * consistent with host MTRR |
| 10195 | */ |
| 10196 | if (is_mmio) { |
| 10197 | cache = MTRR_TYPE_UNCACHABLE; |
| 10198 | goto exit; |
| 10199 | } |
| 10200 | |
| 10201 | if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { |
| 10202 | ipat = VMX_EPT_IPAT_BIT; |
| 10203 | cache = MTRR_TYPE_WRBACK; |
| 10204 | goto exit; |
| 10205 | } |
| 10206 | |
| 10207 | if (kvm_read_cr0(vcpu) & X86_CR0_CD) { |
| 10208 | ipat = VMX_EPT_IPAT_BIT; |
| 10209 | if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) |
| 10210 | cache = MTRR_TYPE_WRBACK; |
| 10211 | else |
| 10212 | cache = MTRR_TYPE_UNCACHABLE; |
| 10213 | goto exit; |
| 10214 | } |
| 10215 | |
| 10216 | cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); |
| 10217 | |
| 10218 | exit: |
| 10219 | return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; |
| 10220 | } |
| 10221 | |
| 10222 | static int vmx_get_lpage_level(void) |
| 10223 | { |
| 10224 | if (enable_ept && !cpu_has_vmx_ept_1g_page()) |
| 10225 | return PT_DIRECTORY_LEVEL; |
| 10226 | else |
| 10227 | /* For shadow and EPT supported 1GB page */ |
| 10228 | return PT_PDPE_LEVEL; |
| 10229 | } |
| 10230 | |
| 10231 | static void vmcs_set_secondary_exec_control(u32 new_ctl) |
| 10232 | { |
| 10233 | /* |
| 10234 | * These bits in the secondary execution controls field |
| 10235 | * are dynamic, the others are mostly based on the hypervisor |
| 10236 | * architecture and the guest's CPUID. Do not touch the |
| 10237 | * dynamic bits. |
| 10238 | */ |
| 10239 | u32 mask = |
| 10240 | SECONDARY_EXEC_SHADOW_VMCS | |
| 10241 | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | |
| 10242 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| 10243 | |
| 10244 | u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); |
| 10245 | |
| 10246 | vmcs_write32(SECONDARY_VM_EXEC_CONTROL, |
| 10247 | (new_ctl & ~mask) | (cur_ctl & mask)); |
| 10248 | } |
| 10249 | |
| 10250 | /* |
| 10251 | * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits |
| 10252 | * (indicating "allowed-1") if they are supported in the guest's CPUID. |
| 10253 | */ |
| 10254 | static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) |
| 10255 | { |
| 10256 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 10257 | struct kvm_cpuid_entry2 *entry; |
| 10258 | |
| 10259 | vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff; |
| 10260 | vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE; |
| 10261 | |
| 10262 | #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ |
| 10263 | if (entry && (entry->_reg & (_cpuid_mask))) \ |
| 10264 | vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \ |
| 10265 | } while (0) |
| 10266 | |
| 10267 | entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); |
| 10268 | cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); |
| 10269 | cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); |
| 10270 | cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); |
| 10271 | cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); |
| 10272 | cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); |
| 10273 | cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); |
| 10274 | cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); |
| 10275 | cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); |
| 10276 | cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); |
| 10277 | cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); |
| 10278 | cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); |
| 10279 | cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); |
| 10280 | cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); |
| 10281 | cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); |
| 10282 | |
| 10283 | entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); |
| 10284 | cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); |
| 10285 | cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); |
| 10286 | cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); |
| 10287 | cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); |
| 10288 | /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */ |
| 10289 | cr4_fixed1_update(bit(11), ecx, bit(2)); |
| 10290 | |
| 10291 | #undef cr4_fixed1_update |
| 10292 | } |
| 10293 | |
| 10294 | static void vmx_cpuid_update(struct kvm_vcpu *vcpu) |
| 10295 | { |
| 10296 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 10297 | |
| 10298 | if (cpu_has_secondary_exec_ctrls()) { |
| 10299 | vmx_compute_secondary_exec_control(vmx); |
| 10300 | vmcs_set_secondary_exec_control(vmx->secondary_exec_control); |
| 10301 | } |
| 10302 | |
| 10303 | if (nested_vmx_allowed(vcpu)) |
| 10304 | to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= |
| 10305 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; |
| 10306 | else |
| 10307 | to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= |
| 10308 | ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; |
| 10309 | |
| 10310 | if (nested_vmx_allowed(vcpu)) |
| 10311 | nested_vmx_cr_fixed1_bits_update(vcpu); |
| 10312 | } |
| 10313 | |
| 10314 | static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) |
| 10315 | { |
| 10316 | if (func == 1 && nested) |
| 10317 | entry->ecx |= bit(X86_FEATURE_VMX); |
| 10318 | } |
| 10319 | |
| 10320 | static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, |
| 10321 | struct x86_exception *fault) |
| 10322 | { |
| 10323 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 10324 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 10325 | u32 exit_reason; |
| 10326 | unsigned long exit_qualification = vcpu->arch.exit_qualification; |
| 10327 | |
| 10328 | if (vmx->nested.pml_full) { |
| 10329 | exit_reason = EXIT_REASON_PML_FULL; |
| 10330 | vmx->nested.pml_full = false; |
| 10331 | exit_qualification &= INTR_INFO_UNBLOCK_NMI; |
| 10332 | } else if (fault->error_code & PFERR_RSVD_MASK) |
| 10333 | exit_reason = EXIT_REASON_EPT_MISCONFIG; |
| 10334 | else |
| 10335 | exit_reason = EXIT_REASON_EPT_VIOLATION; |
| 10336 | |
| 10337 | nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification); |
| 10338 | vmcs12->guest_physical_address = fault->address; |
| 10339 | } |
| 10340 | |
| 10341 | static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu) |
| 10342 | { |
| 10343 | return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT; |
| 10344 | } |
| 10345 | |
| 10346 | /* Callbacks for nested_ept_init_mmu_context: */ |
| 10347 | |
| 10348 | static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu) |
| 10349 | { |
| 10350 | /* return the page table to be shadowed - in our case, EPT12 */ |
| 10351 | return get_vmcs12(vcpu)->ept_pointer; |
| 10352 | } |
| 10353 | |
| 10354 | static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) |
| 10355 | { |
| 10356 | WARN_ON(mmu_is_nested(vcpu)); |
| 10357 | if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu))) |
| 10358 | return 1; |
| 10359 | |
| 10360 | kvm_mmu_unload(vcpu); |
| 10361 | kvm_init_shadow_ept_mmu(vcpu, |
| 10362 | to_vmx(vcpu)->nested.nested_vmx_ept_caps & |
| 10363 | VMX_EPT_EXECUTE_ONLY_BIT, |
| 10364 | nested_ept_ad_enabled(vcpu)); |
| 10365 | vcpu->arch.mmu.set_cr3 = vmx_set_cr3; |
| 10366 | vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3; |
| 10367 | vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault; |
| 10368 | |
| 10369 | vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; |
| 10370 | return 0; |
| 10371 | } |
| 10372 | |
| 10373 | static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) |
| 10374 | { |
| 10375 | vcpu->arch.walk_mmu = &vcpu->arch.mmu; |
| 10376 | } |
| 10377 | |
| 10378 | static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, |
| 10379 | u16 error_code) |
| 10380 | { |
| 10381 | bool inequality, bit; |
| 10382 | |
| 10383 | bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; |
| 10384 | inequality = |
| 10385 | (error_code & vmcs12->page_fault_error_code_mask) != |
| 10386 | vmcs12->page_fault_error_code_match; |
| 10387 | return inequality ^ bit; |
| 10388 | } |
| 10389 | |
| 10390 | static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, |
| 10391 | struct x86_exception *fault) |
| 10392 | { |
| 10393 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 10394 | |
| 10395 | WARN_ON(!is_guest_mode(vcpu)); |
| 10396 | |
| 10397 | if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) && |
| 10398 | !to_vmx(vcpu)->nested.nested_run_pending) { |
| 10399 | vmcs12->vm_exit_intr_error_code = fault->error_code; |
| 10400 | nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, |
| 10401 | PF_VECTOR | INTR_TYPE_HARD_EXCEPTION | |
| 10402 | INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK, |
| 10403 | fault->address); |
| 10404 | } else { |
| 10405 | kvm_inject_page_fault(vcpu, fault); |
| 10406 | } |
| 10407 | } |
| 10408 | |
| 10409 | static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu, |
| 10410 | struct vmcs12 *vmcs12); |
| 10411 | |
| 10412 | static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu, |
| 10413 | struct vmcs12 *vmcs12) |
| 10414 | { |
| 10415 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 10416 | struct page *page; |
| 10417 | u64 hpa; |
| 10418 | |
| 10419 | if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { |
| 10420 | /* |
| 10421 | * Translate L1 physical address to host physical |
| 10422 | * address for vmcs02. Keep the page pinned, so this |
| 10423 | * physical address remains valid. We keep a reference |
| 10424 | * to it so we can release it later. |
| 10425 | */ |
| 10426 | if (vmx->nested.apic_access_page) { /* shouldn't happen */ |
| 10427 | kvm_release_page_dirty(vmx->nested.apic_access_page); |
| 10428 | vmx->nested.apic_access_page = NULL; |
| 10429 | } |
| 10430 | page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr); |
| 10431 | /* |
| 10432 | * If translation failed, no matter: This feature asks |
| 10433 | * to exit when accessing the given address, and if it |
| 10434 | * can never be accessed, this feature won't do |
| 10435 | * anything anyway. |
| 10436 | */ |
| 10437 | if (!is_error_page(page)) { |
| 10438 | vmx->nested.apic_access_page = page; |
| 10439 | hpa = page_to_phys(vmx->nested.apic_access_page); |
| 10440 | vmcs_write64(APIC_ACCESS_ADDR, hpa); |
| 10441 | } else { |
| 10442 | vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, |
| 10443 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); |
| 10444 | } |
| 10445 | } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) && |
| 10446 | cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { |
| 10447 | vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, |
| 10448 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); |
| 10449 | kvm_vcpu_reload_apic_access_page(vcpu); |
| 10450 | } |
| 10451 | |
| 10452 | if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { |
| 10453 | if (vmx->nested.virtual_apic_page) { /* shouldn't happen */ |
| 10454 | kvm_release_page_dirty(vmx->nested.virtual_apic_page); |
| 10455 | vmx->nested.virtual_apic_page = NULL; |
| 10456 | } |
| 10457 | page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr); |
| 10458 | |
| 10459 | /* |
| 10460 | * If translation failed, VM entry will fail because |
| 10461 | * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull. |
| 10462 | * Failing the vm entry is _not_ what the processor |
| 10463 | * does but it's basically the only possibility we |
| 10464 | * have. We could still enter the guest if CR8 load |
| 10465 | * exits are enabled, CR8 store exits are enabled, and |
| 10466 | * virtualize APIC access is disabled; in this case |
| 10467 | * the processor would never use the TPR shadow and we |
| 10468 | * could simply clear the bit from the execution |
| 10469 | * control. But such a configuration is useless, so |
| 10470 | * let's keep the code simple. |
| 10471 | */ |
| 10472 | if (!is_error_page(page)) { |
| 10473 | vmx->nested.virtual_apic_page = page; |
| 10474 | hpa = page_to_phys(vmx->nested.virtual_apic_page); |
| 10475 | vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa); |
| 10476 | } |
| 10477 | } |
| 10478 | |
| 10479 | if (nested_cpu_has_posted_intr(vmcs12)) { |
| 10480 | if (vmx->nested.pi_desc_page) { /* shouldn't happen */ |
| 10481 | kunmap(vmx->nested.pi_desc_page); |
| 10482 | kvm_release_page_dirty(vmx->nested.pi_desc_page); |
| 10483 | vmx->nested.pi_desc_page = NULL; |
| 10484 | vmx->nested.pi_desc = NULL; |
| 10485 | vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull); |
| 10486 | } |
| 10487 | page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr); |
| 10488 | if (is_error_page(page)) |
| 10489 | return; |
| 10490 | vmx->nested.pi_desc_page = page; |
| 10491 | vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page); |
| 10492 | vmx->nested.pi_desc = |
| 10493 | (struct pi_desc *)((void *)vmx->nested.pi_desc + |
| 10494 | (unsigned long)(vmcs12->posted_intr_desc_addr & |
| 10495 | (PAGE_SIZE - 1))); |
| 10496 | vmcs_write64(POSTED_INTR_DESC_ADDR, |
| 10497 | page_to_phys(vmx->nested.pi_desc_page) + |
| 10498 | (unsigned long)(vmcs12->posted_intr_desc_addr & |
| 10499 | (PAGE_SIZE - 1))); |
| 10500 | } |
| 10501 | if (cpu_has_vmx_msr_bitmap() && |
| 10502 | nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) && |
| 10503 | nested_vmx_merge_msr_bitmap(vcpu, vmcs12)) |
| 10504 | vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, |
| 10505 | CPU_BASED_USE_MSR_BITMAPS); |
| 10506 | else |
| 10507 | vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, |
| 10508 | CPU_BASED_USE_MSR_BITMAPS); |
| 10509 | } |
| 10510 | |
| 10511 | static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) |
| 10512 | { |
| 10513 | u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; |
| 10514 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 10515 | |
| 10516 | if (vcpu->arch.virtual_tsc_khz == 0) |
| 10517 | return; |
| 10518 | |
| 10519 | /* Make sure short timeouts reliably trigger an immediate vmexit. |
| 10520 | * hrtimer_start does not guarantee this. */ |
| 10521 | if (preemption_timeout <= 1) { |
| 10522 | vmx_preemption_timer_fn(&vmx->nested.preemption_timer); |
| 10523 | return; |
| 10524 | } |
| 10525 | |
| 10526 | preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; |
| 10527 | preemption_timeout *= 1000000; |
| 10528 | do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); |
| 10529 | hrtimer_start(&vmx->nested.preemption_timer, |
| 10530 | ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); |
| 10531 | } |
| 10532 | |
| 10533 | static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, |
| 10534 | struct vmcs12 *vmcs12) |
| 10535 | { |
| 10536 | if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) |
| 10537 | return 0; |
| 10538 | |
| 10539 | if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) || |
| 10540 | !page_address_valid(vcpu, vmcs12->io_bitmap_b)) |
| 10541 | return -EINVAL; |
| 10542 | |
| 10543 | return 0; |
| 10544 | } |
| 10545 | |
| 10546 | static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, |
| 10547 | struct vmcs12 *vmcs12) |
| 10548 | { |
| 10549 | if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) |
| 10550 | return 0; |
| 10551 | |
| 10552 | if (!page_address_valid(vcpu, vmcs12->msr_bitmap)) |
| 10553 | return -EINVAL; |
| 10554 | |
| 10555 | return 0; |
| 10556 | } |
| 10557 | |
| 10558 | static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, |
| 10559 | struct vmcs12 *vmcs12) |
| 10560 | { |
| 10561 | if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) |
| 10562 | return 0; |
| 10563 | |
| 10564 | if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)) |
| 10565 | return -EINVAL; |
| 10566 | |
| 10567 | return 0; |
| 10568 | } |
| 10569 | |
| 10570 | /* |
| 10571 | * Merge L0's and L1's MSR bitmap, return false to indicate that |
| 10572 | * we do not use the hardware. |
| 10573 | */ |
| 10574 | static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu, |
| 10575 | struct vmcs12 *vmcs12) |
| 10576 | { |
| 10577 | int msr; |
| 10578 | struct page *page; |
| 10579 | unsigned long *msr_bitmap_l1; |
| 10580 | unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap; |
| 10581 | /* |
| 10582 | * pred_cmd & spec_ctrl are trying to verify two things: |
| 10583 | * |
| 10584 | * 1. L0 gave a permission to L1 to actually passthrough the MSR. This |
| 10585 | * ensures that we do not accidentally generate an L02 MSR bitmap |
| 10586 | * from the L12 MSR bitmap that is too permissive. |
| 10587 | * 2. That L1 or L2s have actually used the MSR. This avoids |
| 10588 | * unnecessarily merging of the bitmap if the MSR is unused. This |
| 10589 | * works properly because we only update the L01 MSR bitmap lazily. |
| 10590 | * So even if L0 should pass L1 these MSRs, the L01 bitmap is only |
| 10591 | * updated to reflect this when L1 (or its L2s) actually write to |
| 10592 | * the MSR. |
| 10593 | */ |
| 10594 | bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD); |
| 10595 | bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL); |
| 10596 | |
| 10597 | if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && |
| 10598 | !pred_cmd && !spec_ctrl) |
| 10599 | return false; |
| 10600 | |
| 10601 | page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap); |
| 10602 | if (is_error_page(page)) |
| 10603 | return false; |
| 10604 | msr_bitmap_l1 = (unsigned long *)kmap(page); |
| 10605 | |
| 10606 | memset(msr_bitmap_l0, 0xff, PAGE_SIZE); |
| 10607 | |
| 10608 | if (nested_cpu_has_virt_x2apic_mode(vmcs12)) { |
| 10609 | if (nested_cpu_has_apic_reg_virt(vmcs12)) |
| 10610 | for (msr = 0x800; msr <= 0x8ff; msr++) |
| 10611 | nested_vmx_disable_intercept_for_msr( |
| 10612 | msr_bitmap_l1, msr_bitmap_l0, |
| 10613 | msr, MSR_TYPE_R); |
| 10614 | |
| 10615 | nested_vmx_disable_intercept_for_msr( |
| 10616 | msr_bitmap_l1, msr_bitmap_l0, |
| 10617 | APIC_BASE_MSR + (APIC_TASKPRI >> 4), |
| 10618 | MSR_TYPE_R | MSR_TYPE_W); |
| 10619 | |
| 10620 | if (nested_cpu_has_vid(vmcs12)) { |
| 10621 | nested_vmx_disable_intercept_for_msr( |
| 10622 | msr_bitmap_l1, msr_bitmap_l0, |
| 10623 | APIC_BASE_MSR + (APIC_EOI >> 4), |
| 10624 | MSR_TYPE_W); |
| 10625 | nested_vmx_disable_intercept_for_msr( |
| 10626 | msr_bitmap_l1, msr_bitmap_l0, |
| 10627 | APIC_BASE_MSR + (APIC_SELF_IPI >> 4), |
| 10628 | MSR_TYPE_W); |
| 10629 | } |
| 10630 | } |
| 10631 | |
| 10632 | if (spec_ctrl) |
| 10633 | nested_vmx_disable_intercept_for_msr( |
| 10634 | msr_bitmap_l1, msr_bitmap_l0, |
| 10635 | MSR_IA32_SPEC_CTRL, |
| 10636 | MSR_TYPE_R | MSR_TYPE_W); |
| 10637 | |
| 10638 | if (pred_cmd) |
| 10639 | nested_vmx_disable_intercept_for_msr( |
| 10640 | msr_bitmap_l1, msr_bitmap_l0, |
| 10641 | MSR_IA32_PRED_CMD, |
| 10642 | MSR_TYPE_W); |
| 10643 | |
| 10644 | kunmap(page); |
| 10645 | kvm_release_page_clean(page); |
| 10646 | |
| 10647 | return true; |
| 10648 | } |
| 10649 | |
| 10650 | static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, |
| 10651 | struct vmcs12 *vmcs12) |
| 10652 | { |
| 10653 | if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && |
| 10654 | !page_address_valid(vcpu, vmcs12->apic_access_addr)) |
| 10655 | return -EINVAL; |
| 10656 | else |
| 10657 | return 0; |
| 10658 | } |
| 10659 | |
| 10660 | static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, |
| 10661 | struct vmcs12 *vmcs12) |
| 10662 | { |
| 10663 | if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && |
| 10664 | !nested_cpu_has_apic_reg_virt(vmcs12) && |
| 10665 | !nested_cpu_has_vid(vmcs12) && |
| 10666 | !nested_cpu_has_posted_intr(vmcs12)) |
| 10667 | return 0; |
| 10668 | |
| 10669 | /* |
| 10670 | * If virtualize x2apic mode is enabled, |
| 10671 | * virtualize apic access must be disabled. |
| 10672 | */ |
| 10673 | if (nested_cpu_has_virt_x2apic_mode(vmcs12) && |
| 10674 | nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) |
| 10675 | return -EINVAL; |
| 10676 | |
| 10677 | /* |
| 10678 | * If virtual interrupt delivery is enabled, |
| 10679 | * we must exit on external interrupts. |
| 10680 | */ |
| 10681 | if (nested_cpu_has_vid(vmcs12) && |
| 10682 | !nested_exit_on_intr(vcpu)) |
| 10683 | return -EINVAL; |
| 10684 | |
| 10685 | /* |
| 10686 | * bits 15:8 should be zero in posted_intr_nv, |
| 10687 | * the descriptor address has been already checked |
| 10688 | * in nested_get_vmcs12_pages. |
| 10689 | */ |
| 10690 | if (nested_cpu_has_posted_intr(vmcs12) && |
| 10691 | (!nested_cpu_has_vid(vmcs12) || |
| 10692 | !nested_exit_intr_ack_set(vcpu) || |
| 10693 | vmcs12->posted_intr_nv & 0xff00)) |
| 10694 | return -EINVAL; |
| 10695 | |
| 10696 | /* tpr shadow is needed by all apicv features. */ |
| 10697 | if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) |
| 10698 | return -EINVAL; |
| 10699 | |
| 10700 | return 0; |
| 10701 | } |
| 10702 | |
| 10703 | static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, |
| 10704 | unsigned long count_field, |
| 10705 | unsigned long addr_field) |
| 10706 | { |
| 10707 | int maxphyaddr; |
| 10708 | u64 count, addr; |
| 10709 | |
| 10710 | if (vmcs12_read_any(vcpu, count_field, &count) || |
| 10711 | vmcs12_read_any(vcpu, addr_field, &addr)) { |
| 10712 | WARN_ON(1); |
| 10713 | return -EINVAL; |
| 10714 | } |
| 10715 | if (count == 0) |
| 10716 | return 0; |
| 10717 | maxphyaddr = cpuid_maxphyaddr(vcpu); |
| 10718 | if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || |
| 10719 | (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) { |
| 10720 | pr_debug_ratelimited( |
| 10721 | "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)", |
| 10722 | addr_field, maxphyaddr, count, addr); |
| 10723 | return -EINVAL; |
| 10724 | } |
| 10725 | return 0; |
| 10726 | } |
| 10727 | |
| 10728 | static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu, |
| 10729 | struct vmcs12 *vmcs12) |
| 10730 | { |
| 10731 | if (vmcs12->vm_exit_msr_load_count == 0 && |
| 10732 | vmcs12->vm_exit_msr_store_count == 0 && |
| 10733 | vmcs12->vm_entry_msr_load_count == 0) |
| 10734 | return 0; /* Fast path */ |
| 10735 | if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT, |
| 10736 | VM_EXIT_MSR_LOAD_ADDR) || |
| 10737 | nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT, |
| 10738 | VM_EXIT_MSR_STORE_ADDR) || |
| 10739 | nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT, |
| 10740 | VM_ENTRY_MSR_LOAD_ADDR)) |
| 10741 | return -EINVAL; |
| 10742 | return 0; |
| 10743 | } |
| 10744 | |
| 10745 | static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, |
| 10746 | struct vmcs12 *vmcs12) |
| 10747 | { |
| 10748 | u64 address = vmcs12->pml_address; |
| 10749 | int maxphyaddr = cpuid_maxphyaddr(vcpu); |
| 10750 | |
| 10751 | if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) { |
| 10752 | if (!nested_cpu_has_ept(vmcs12) || |
| 10753 | !IS_ALIGNED(address, 4096) || |
| 10754 | address >> maxphyaddr) |
| 10755 | return -EINVAL; |
| 10756 | } |
| 10757 | |
| 10758 | return 0; |
| 10759 | } |
| 10760 | |
| 10761 | static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, |
| 10762 | struct vmx_msr_entry *e) |
| 10763 | { |
| 10764 | /* x2APIC MSR accesses are not allowed */ |
| 10765 | if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8) |
| 10766 | return -EINVAL; |
| 10767 | if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */ |
| 10768 | e->index == MSR_IA32_UCODE_REV) |
| 10769 | return -EINVAL; |
| 10770 | if (e->reserved != 0) |
| 10771 | return -EINVAL; |
| 10772 | return 0; |
| 10773 | } |
| 10774 | |
| 10775 | static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, |
| 10776 | struct vmx_msr_entry *e) |
| 10777 | { |
| 10778 | if (e->index == MSR_FS_BASE || |
| 10779 | e->index == MSR_GS_BASE || |
| 10780 | e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */ |
| 10781 | nested_vmx_msr_check_common(vcpu, e)) |
| 10782 | return -EINVAL; |
| 10783 | return 0; |
| 10784 | } |
| 10785 | |
| 10786 | static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, |
| 10787 | struct vmx_msr_entry *e) |
| 10788 | { |
| 10789 | if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */ |
| 10790 | nested_vmx_msr_check_common(vcpu, e)) |
| 10791 | return -EINVAL; |
| 10792 | return 0; |
| 10793 | } |
| 10794 | |
| 10795 | /* |
| 10796 | * Load guest's/host's msr at nested entry/exit. |
| 10797 | * return 0 for success, entry index for failure. |
| 10798 | */ |
| 10799 | static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) |
| 10800 | { |
| 10801 | u32 i; |
| 10802 | struct vmx_msr_entry e; |
| 10803 | struct msr_data msr; |
| 10804 | |
| 10805 | msr.host_initiated = false; |
| 10806 | for (i = 0; i < count; i++) { |
| 10807 | if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), |
| 10808 | &e, sizeof(e))) { |
| 10809 | pr_debug_ratelimited( |
| 10810 | "%s cannot read MSR entry (%u, 0x%08llx)\n", |
| 10811 | __func__, i, gpa + i * sizeof(e)); |
| 10812 | goto fail; |
| 10813 | } |
| 10814 | if (nested_vmx_load_msr_check(vcpu, &e)) { |
| 10815 | pr_debug_ratelimited( |
| 10816 | "%s check failed (%u, 0x%x, 0x%x)\n", |
| 10817 | __func__, i, e.index, e.reserved); |
| 10818 | goto fail; |
| 10819 | } |
| 10820 | msr.index = e.index; |
| 10821 | msr.data = e.value; |
| 10822 | if (kvm_set_msr(vcpu, &msr)) { |
| 10823 | pr_debug_ratelimited( |
| 10824 | "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", |
| 10825 | __func__, i, e.index, e.value); |
| 10826 | goto fail; |
| 10827 | } |
| 10828 | } |
| 10829 | return 0; |
| 10830 | fail: |
| 10831 | return i + 1; |
| 10832 | } |
| 10833 | |
| 10834 | static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) |
| 10835 | { |
| 10836 | u32 i; |
| 10837 | struct vmx_msr_entry e; |
| 10838 | |
| 10839 | for (i = 0; i < count; i++) { |
| 10840 | struct msr_data msr_info; |
| 10841 | if (kvm_vcpu_read_guest(vcpu, |
| 10842 | gpa + i * sizeof(e), |
| 10843 | &e, 2 * sizeof(u32))) { |
| 10844 | pr_debug_ratelimited( |
| 10845 | "%s cannot read MSR entry (%u, 0x%08llx)\n", |
| 10846 | __func__, i, gpa + i * sizeof(e)); |
| 10847 | return -EINVAL; |
| 10848 | } |
| 10849 | if (nested_vmx_store_msr_check(vcpu, &e)) { |
| 10850 | pr_debug_ratelimited( |
| 10851 | "%s check failed (%u, 0x%x, 0x%x)\n", |
| 10852 | __func__, i, e.index, e.reserved); |
| 10853 | return -EINVAL; |
| 10854 | } |
| 10855 | msr_info.host_initiated = false; |
| 10856 | msr_info.index = e.index; |
| 10857 | if (kvm_get_msr(vcpu, &msr_info)) { |
| 10858 | pr_debug_ratelimited( |
| 10859 | "%s cannot read MSR (%u, 0x%x)\n", |
| 10860 | __func__, i, e.index); |
| 10861 | return -EINVAL; |
| 10862 | } |
| 10863 | if (kvm_vcpu_write_guest(vcpu, |
| 10864 | gpa + i * sizeof(e) + |
| 10865 | offsetof(struct vmx_msr_entry, value), |
| 10866 | &msr_info.data, sizeof(msr_info.data))) { |
| 10867 | pr_debug_ratelimited( |
| 10868 | "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", |
| 10869 | __func__, i, e.index, msr_info.data); |
| 10870 | return -EINVAL; |
| 10871 | } |
| 10872 | } |
| 10873 | return 0; |
| 10874 | } |
| 10875 | |
| 10876 | static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val) |
| 10877 | { |
| 10878 | unsigned long invalid_mask; |
| 10879 | |
| 10880 | invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu); |
| 10881 | return (val & invalid_mask) == 0; |
| 10882 | } |
| 10883 | |
| 10884 | /* |
| 10885 | * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are |
| 10886 | * emulating VM entry into a guest with EPT enabled. |
| 10887 | * Returns 0 on success, 1 on failure. Invalid state exit qualification code |
| 10888 | * is assigned to entry_failure_code on failure. |
| 10889 | */ |
| 10890 | static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept, |
| 10891 | u32 *entry_failure_code) |
| 10892 | { |
| 10893 | if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) { |
| 10894 | if (!nested_cr3_valid(vcpu, cr3)) { |
| 10895 | *entry_failure_code = ENTRY_FAIL_DEFAULT; |
| 10896 | return 1; |
| 10897 | } |
| 10898 | |
| 10899 | /* |
| 10900 | * If PAE paging and EPT are both on, CR3 is not used by the CPU and |
| 10901 | * must not be dereferenced. |
| 10902 | */ |
| 10903 | if (is_pae_paging(vcpu) && !nested_ept) { |
| 10904 | if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) { |
| 10905 | *entry_failure_code = ENTRY_FAIL_PDPTE; |
| 10906 | return 1; |
| 10907 | } |
| 10908 | } |
| 10909 | |
| 10910 | vcpu->arch.cr3 = cr3; |
| 10911 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
| 10912 | } |
| 10913 | |
| 10914 | kvm_mmu_reset_context(vcpu); |
| 10915 | return 0; |
| 10916 | } |
| 10917 | |
| 10918 | /* |
| 10919 | * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested |
| 10920 | * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it |
| 10921 | * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 |
| 10922 | * guest in a way that will both be appropriate to L1's requests, and our |
| 10923 | * needs. In addition to modifying the active vmcs (which is vmcs02), this |
| 10924 | * function also has additional necessary side-effects, like setting various |
| 10925 | * vcpu->arch fields. |
| 10926 | * Returns 0 on success, 1 on failure. Invalid state exit qualification code |
| 10927 | * is assigned to entry_failure_code on failure. |
| 10928 | */ |
| 10929 | static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, |
| 10930 | bool from_vmentry, u32 *entry_failure_code) |
| 10931 | { |
| 10932 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 10933 | u32 exec_control, vmcs12_exec_ctrl; |
| 10934 | |
| 10935 | vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); |
| 10936 | vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); |
| 10937 | vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); |
| 10938 | vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); |
| 10939 | vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); |
| 10940 | vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); |
| 10941 | vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); |
| 10942 | vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); |
| 10943 | vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); |
| 10944 | vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); |
| 10945 | vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); |
| 10946 | vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); |
| 10947 | vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); |
| 10948 | vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); |
| 10949 | vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); |
| 10950 | vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); |
| 10951 | vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); |
| 10952 | vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); |
| 10953 | vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); |
| 10954 | vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); |
| 10955 | vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); |
| 10956 | vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); |
| 10957 | vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); |
| 10958 | vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); |
| 10959 | vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); |
| 10960 | vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); |
| 10961 | vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); |
| 10962 | vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); |
| 10963 | vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); |
| 10964 | vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); |
| 10965 | vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); |
| 10966 | vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); |
| 10967 | vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); |
| 10968 | vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); |
| 10969 | vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); |
| 10970 | vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); |
| 10971 | |
| 10972 | if (from_vmentry && |
| 10973 | (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { |
| 10974 | kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); |
| 10975 | vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); |
| 10976 | } else { |
| 10977 | kvm_set_dr(vcpu, 7, vcpu->arch.dr7); |
| 10978 | vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); |
| 10979 | } |
| 10980 | if (from_vmentry) { |
| 10981 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| 10982 | vmcs12->vm_entry_intr_info_field); |
| 10983 | vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, |
| 10984 | vmcs12->vm_entry_exception_error_code); |
| 10985 | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| 10986 | vmcs12->vm_entry_instruction_len); |
| 10987 | vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, |
| 10988 | vmcs12->guest_interruptibility_info); |
| 10989 | vmx->loaded_vmcs->nmi_known_unmasked = |
| 10990 | !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI); |
| 10991 | } else { |
| 10992 | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); |
| 10993 | } |
| 10994 | vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); |
| 10995 | vmx_set_rflags(vcpu, vmcs12->guest_rflags); |
| 10996 | vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, |
| 10997 | vmcs12->guest_pending_dbg_exceptions); |
| 10998 | vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); |
| 10999 | vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); |
| 11000 | |
| 11001 | if (nested_cpu_has_xsaves(vmcs12)) |
| 11002 | vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); |
| 11003 | vmcs_write64(VMCS_LINK_POINTER, -1ull); |
| 11004 | |
| 11005 | exec_control = vmcs12->pin_based_vm_exec_control; |
| 11006 | |
| 11007 | /* Preemption timer setting is only taken from vmcs01. */ |
| 11008 | exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; |
| 11009 | exec_control |= vmcs_config.pin_based_exec_ctrl; |
| 11010 | if (vmx->hv_deadline_tsc == -1) |
| 11011 | exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; |
| 11012 | |
| 11013 | /* Posted interrupts setting is only taken from vmcs12. */ |
| 11014 | if (nested_cpu_has_posted_intr(vmcs12)) { |
| 11015 | vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; |
| 11016 | vmx->nested.pi_pending = false; |
| 11017 | vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR); |
| 11018 | } else { |
| 11019 | exec_control &= ~PIN_BASED_POSTED_INTR; |
| 11020 | } |
| 11021 | |
| 11022 | vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); |
| 11023 | |
| 11024 | vmx->nested.preemption_timer_expired = false; |
| 11025 | if (nested_cpu_has_preemption_timer(vmcs12)) |
| 11026 | vmx_start_preemption_timer(vcpu); |
| 11027 | |
| 11028 | /* |
| 11029 | * Whether page-faults are trapped is determined by a combination of |
| 11030 | * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. |
| 11031 | * If enable_ept, L0 doesn't care about page faults and we should |
| 11032 | * set all of these to L1's desires. However, if !enable_ept, L0 does |
| 11033 | * care about (at least some) page faults, and because it is not easy |
| 11034 | * (if at all possible?) to merge L0 and L1's desires, we simply ask |
| 11035 | * to exit on each and every L2 page fault. This is done by setting |
| 11036 | * MASK=MATCH=0 and (see below) EB.PF=1. |
| 11037 | * Note that below we don't need special code to set EB.PF beyond the |
| 11038 | * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, |
| 11039 | * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when |
| 11040 | * !enable_ept, EB.PF is 1, so the "or" will always be 1. |
| 11041 | */ |
| 11042 | vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, |
| 11043 | enable_ept ? vmcs12->page_fault_error_code_mask : 0); |
| 11044 | vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, |
| 11045 | enable_ept ? vmcs12->page_fault_error_code_match : 0); |
| 11046 | |
| 11047 | if (cpu_has_secondary_exec_ctrls()) { |
| 11048 | exec_control = vmx->secondary_exec_control; |
| 11049 | |
| 11050 | /* Take the following fields only from vmcs12 */ |
| 11051 | exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
| 11052 | SECONDARY_EXEC_ENABLE_INVPCID | |
| 11053 | SECONDARY_EXEC_RDTSCP | |
| 11054 | SECONDARY_EXEC_XSAVES | |
| 11055 | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | |
| 11056 | SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| 11057 | SECONDARY_EXEC_ENABLE_VMFUNC); |
| 11058 | if (nested_cpu_has(vmcs12, |
| 11059 | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) { |
| 11060 | vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control & |
| 11061 | ~SECONDARY_EXEC_ENABLE_PML; |
| 11062 | exec_control |= vmcs12_exec_ctrl; |
| 11063 | } |
| 11064 | |
| 11065 | /* All VMFUNCs are currently emulated through L0 vmexits. */ |
| 11066 | if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC) |
| 11067 | vmcs_write64(VM_FUNCTION_CONTROL, 0); |
| 11068 | |
| 11069 | if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { |
| 11070 | vmcs_write64(EOI_EXIT_BITMAP0, |
| 11071 | vmcs12->eoi_exit_bitmap0); |
| 11072 | vmcs_write64(EOI_EXIT_BITMAP1, |
| 11073 | vmcs12->eoi_exit_bitmap1); |
| 11074 | vmcs_write64(EOI_EXIT_BITMAP2, |
| 11075 | vmcs12->eoi_exit_bitmap2); |
| 11076 | vmcs_write64(EOI_EXIT_BITMAP3, |
| 11077 | vmcs12->eoi_exit_bitmap3); |
| 11078 | vmcs_write16(GUEST_INTR_STATUS, |
| 11079 | vmcs12->guest_intr_status); |
| 11080 | } |
| 11081 | |
| 11082 | /* |
| 11083 | * Write an illegal value to APIC_ACCESS_ADDR. Later, |
| 11084 | * nested_get_vmcs12_pages will either fix it up or |
| 11085 | * remove the VM execution control. |
| 11086 | */ |
| 11087 | if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) |
| 11088 | vmcs_write64(APIC_ACCESS_ADDR, -1ull); |
| 11089 | |
| 11090 | vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); |
| 11091 | } |
| 11092 | |
| 11093 | |
| 11094 | /* |
| 11095 | * Set host-state according to L0's settings (vmcs12 is irrelevant here) |
| 11096 | * Some constant fields are set here by vmx_set_constant_host_state(). |
| 11097 | * Other fields are different per CPU, and will be set later when |
| 11098 | * vmx_vcpu_load() is called, and when vmx_save_host_state() is called. |
| 11099 | */ |
| 11100 | vmx_set_constant_host_state(vmx); |
| 11101 | |
| 11102 | /* |
| 11103 | * Set the MSR load/store lists to match L0's settings. |
| 11104 | */ |
| 11105 | vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); |
| 11106 | vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); |
| 11107 | vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); |
| 11108 | vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); |
| 11109 | vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); |
| 11110 | |
| 11111 | /* |
| 11112 | * HOST_RSP is normally set correctly in vmx_vcpu_run() just before |
| 11113 | * entry, but only if the current (host) sp changed from the value |
| 11114 | * we wrote last (vmx->host_rsp). This cache is no longer relevant |
| 11115 | * if we switch vmcs, and rather than hold a separate cache per vmcs, |
| 11116 | * here we just force the write to happen on entry. |
| 11117 | */ |
| 11118 | vmx->host_rsp = 0; |
| 11119 | |
| 11120 | exec_control = vmx_exec_control(vmx); /* L0's desires */ |
| 11121 | exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; |
| 11122 | exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; |
| 11123 | exec_control &= ~CPU_BASED_TPR_SHADOW; |
| 11124 | exec_control |= vmcs12->cpu_based_vm_exec_control; |
| 11125 | |
| 11126 | /* |
| 11127 | * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if |
| 11128 | * nested_get_vmcs12_pages can't fix it up, the illegal value |
| 11129 | * will result in a VM entry failure. |
| 11130 | */ |
| 11131 | if (exec_control & CPU_BASED_TPR_SHADOW) { |
| 11132 | vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull); |
| 11133 | vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); |
| 11134 | } else { |
| 11135 | #ifdef CONFIG_X86_64 |
| 11136 | exec_control |= CPU_BASED_CR8_LOAD_EXITING | |
| 11137 | CPU_BASED_CR8_STORE_EXITING; |
| 11138 | #endif |
| 11139 | } |
| 11140 | |
| 11141 | /* |
| 11142 | * Merging of IO bitmap not currently supported. |
| 11143 | * Rather, exit every time. |
| 11144 | */ |
| 11145 | exec_control &= ~CPU_BASED_USE_IO_BITMAPS; |
| 11146 | exec_control |= CPU_BASED_UNCOND_IO_EXITING; |
| 11147 | |
| 11148 | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); |
| 11149 | |
| 11150 | /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the |
| 11151 | * bitwise-or of what L1 wants to trap for L2, and what we want to |
| 11152 | * trap. Note that CR0.TS also needs updating - we do this later. |
| 11153 | */ |
| 11154 | update_exception_bitmap(vcpu); |
| 11155 | vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; |
| 11156 | vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); |
| 11157 | |
| 11158 | /* L2->L1 exit controls are emulated - the hardware exit is to L0 so |
| 11159 | * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER |
| 11160 | * bits are further modified by vmx_set_efer() below. |
| 11161 | */ |
| 11162 | vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl); |
| 11163 | |
| 11164 | /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are |
| 11165 | * emulated by vmx_set_efer(), below. |
| 11166 | */ |
| 11167 | vm_entry_controls_init(vmx, |
| 11168 | (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER & |
| 11169 | ~VM_ENTRY_IA32E_MODE) | |
| 11170 | (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE)); |
| 11171 | |
| 11172 | if (from_vmentry && |
| 11173 | (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { |
| 11174 | vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); |
| 11175 | vcpu->arch.pat = vmcs12->guest_ia32_pat; |
| 11176 | } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { |
| 11177 | vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); |
| 11178 | } |
| 11179 | |
| 11180 | set_cr4_guest_host_mask(vmx); |
| 11181 | |
| 11182 | if (from_vmentry && |
| 11183 | vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) |
| 11184 | vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); |
| 11185 | |
| 11186 | if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) |
| 11187 | vmcs_write64(TSC_OFFSET, |
| 11188 | vcpu->arch.tsc_offset + vmcs12->tsc_offset); |
| 11189 | else |
| 11190 | vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); |
| 11191 | if (kvm_has_tsc_control) |
| 11192 | decache_tsc_multiplier(vmx); |
| 11193 | |
| 11194 | if (cpu_has_vmx_msr_bitmap()) |
| 11195 | vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); |
| 11196 | |
| 11197 | if (enable_vpid) { |
| 11198 | /* |
| 11199 | * There is no direct mapping between vpid02 and vpid12, the |
| 11200 | * vpid02 is per-vCPU for L0 and reused while the value of |
| 11201 | * vpid12 is changed w/ one invvpid during nested vmentry. |
| 11202 | * The vpid12 is allocated by L1 for L2, so it will not |
| 11203 | * influence global bitmap(for vpid01 and vpid02 allocation) |
| 11204 | * even if spawn a lot of nested vCPUs. |
| 11205 | */ |
| 11206 | if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) { |
| 11207 | vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); |
| 11208 | if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { |
| 11209 | vmx->nested.last_vpid = vmcs12->virtual_processor_id; |
| 11210 | __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02, true); |
| 11211 | } |
| 11212 | } else { |
| 11213 | vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); |
| 11214 | vmx_flush_tlb(vcpu, true); |
| 11215 | } |
| 11216 | |
| 11217 | } |
| 11218 | |
| 11219 | if (enable_pml) { |
| 11220 | /* |
| 11221 | * Conceptually we want to copy the PML address and index from |
| 11222 | * vmcs01 here, and then back to vmcs01 on nested vmexit. But, |
| 11223 | * since we always flush the log on each vmexit, this happens |
| 11224 | * to be equivalent to simply resetting the fields in vmcs02. |
| 11225 | */ |
| 11226 | ASSERT(vmx->pml_pg); |
| 11227 | vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); |
| 11228 | vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); |
| 11229 | } |
| 11230 | |
| 11231 | if (nested_cpu_has_ept(vmcs12)) { |
| 11232 | if (nested_ept_init_mmu_context(vcpu)) { |
| 11233 | *entry_failure_code = ENTRY_FAIL_DEFAULT; |
| 11234 | return 1; |
| 11235 | } |
| 11236 | } else if (nested_cpu_has2(vmcs12, |
| 11237 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { |
| 11238 | vmx_flush_tlb(vcpu, true); |
| 11239 | } |
| 11240 | |
| 11241 | /* |
| 11242 | * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those |
| 11243 | * bits which we consider mandatory enabled. |
| 11244 | * The CR0_READ_SHADOW is what L2 should have expected to read given |
| 11245 | * the specifications by L1; It's not enough to take |
| 11246 | * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we |
| 11247 | * have more bits than L1 expected. |
| 11248 | */ |
| 11249 | vmx_set_cr0(vcpu, vmcs12->guest_cr0); |
| 11250 | vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); |
| 11251 | |
| 11252 | vmx_set_cr4(vcpu, vmcs12->guest_cr4); |
| 11253 | vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); |
| 11254 | |
| 11255 | if (from_vmentry && |
| 11256 | (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) |
| 11257 | vcpu->arch.efer = vmcs12->guest_ia32_efer; |
| 11258 | else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) |
| 11259 | vcpu->arch.efer |= (EFER_LMA | EFER_LME); |
| 11260 | else |
| 11261 | vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); |
| 11262 | /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ |
| 11263 | vmx_set_efer(vcpu, vcpu->arch.efer); |
| 11264 | |
| 11265 | /* Shadow page tables on either EPT or shadow page tables. */ |
| 11266 | if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), |
| 11267 | entry_failure_code)) |
| 11268 | return 1; |
| 11269 | |
| 11270 | if (!enable_ept) |
| 11271 | vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; |
| 11272 | |
| 11273 | /* |
| 11274 | * L1 may access the L2's PDPTR, so save them to construct vmcs12 |
| 11275 | */ |
| 11276 | if (enable_ept) { |
| 11277 | vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); |
| 11278 | vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); |
| 11279 | vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); |
| 11280 | vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); |
| 11281 | } |
| 11282 | |
| 11283 | kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); |
| 11284 | kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); |
| 11285 | return 0; |
| 11286 | } |
| 11287 | |
| 11288 | static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| 11289 | { |
| 11290 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 11291 | |
| 11292 | if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && |
| 11293 | vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) |
| 11294 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11295 | |
| 11296 | if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12)) |
| 11297 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11298 | |
| 11299 | if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) |
| 11300 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11301 | |
| 11302 | if (nested_vmx_check_apic_access_controls(vcpu, vmcs12)) |
| 11303 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11304 | |
| 11305 | if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12)) |
| 11306 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11307 | |
| 11308 | if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) |
| 11309 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11310 | |
| 11311 | if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) |
| 11312 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11313 | |
| 11314 | if (nested_vmx_check_pml_controls(vcpu, vmcs12)) |
| 11315 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11316 | |
| 11317 | if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, |
| 11318 | vmx->nested.nested_vmx_procbased_ctls_low, |
| 11319 | vmx->nested.nested_vmx_procbased_ctls_high) || |
| 11320 | (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && |
| 11321 | !vmx_control_verify(vmcs12->secondary_vm_exec_control, |
| 11322 | vmx->nested.nested_vmx_secondary_ctls_low, |
| 11323 | vmx->nested.nested_vmx_secondary_ctls_high)) || |
| 11324 | !vmx_control_verify(vmcs12->pin_based_vm_exec_control, |
| 11325 | vmx->nested.nested_vmx_pinbased_ctls_low, |
| 11326 | vmx->nested.nested_vmx_pinbased_ctls_high) || |
| 11327 | !vmx_control_verify(vmcs12->vm_exit_controls, |
| 11328 | vmx->nested.nested_vmx_exit_ctls_low, |
| 11329 | vmx->nested.nested_vmx_exit_ctls_high) || |
| 11330 | !vmx_control_verify(vmcs12->vm_entry_controls, |
| 11331 | vmx->nested.nested_vmx_entry_ctls_low, |
| 11332 | vmx->nested.nested_vmx_entry_ctls_high)) |
| 11333 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11334 | |
| 11335 | if (nested_cpu_has_vmfunc(vmcs12)) { |
| 11336 | if (vmcs12->vm_function_control & |
| 11337 | ~vmx->nested.nested_vmx_vmfunc_controls) |
| 11338 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11339 | |
| 11340 | if (nested_cpu_has_eptp_switching(vmcs12)) { |
| 11341 | if (!nested_cpu_has_ept(vmcs12) || |
| 11342 | !page_address_valid(vcpu, vmcs12->eptp_list_address)) |
| 11343 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11344 | } |
| 11345 | } |
| 11346 | |
| 11347 | if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) |
| 11348 | return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| 11349 | |
| 11350 | if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) || |
| 11351 | !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) || |
| 11352 | !nested_cr3_valid(vcpu, vmcs12->host_cr3)) |
| 11353 | return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; |
| 11354 | |
| 11355 | return 0; |
| 11356 | } |
| 11357 | |
| 11358 | static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, |
| 11359 | u32 *exit_qual) |
| 11360 | { |
| 11361 | bool ia32e; |
| 11362 | |
| 11363 | *exit_qual = ENTRY_FAIL_DEFAULT; |
| 11364 | |
| 11365 | if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) || |
| 11366 | !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) |
| 11367 | return 1; |
| 11368 | |
| 11369 | if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) && |
| 11370 | vmcs12->vmcs_link_pointer != -1ull) { |
| 11371 | *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR; |
| 11372 | return 1; |
| 11373 | } |
| 11374 | |
| 11375 | /* |
| 11376 | * If the load IA32_EFER VM-entry control is 1, the following checks |
| 11377 | * are performed on the field for the IA32_EFER MSR: |
| 11378 | * - Bits reserved in the IA32_EFER MSR must be 0. |
| 11379 | * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of |
| 11380 | * the IA-32e mode guest VM-exit control. It must also be identical |
| 11381 | * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to |
| 11382 | * CR0.PG) is 1. |
| 11383 | */ |
| 11384 | if (to_vmx(vcpu)->nested.nested_run_pending && |
| 11385 | (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { |
| 11386 | ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; |
| 11387 | if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || |
| 11388 | ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || |
| 11389 | ((vmcs12->guest_cr0 & X86_CR0_PG) && |
| 11390 | ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) |
| 11391 | return 1; |
| 11392 | } |
| 11393 | |
| 11394 | /* |
| 11395 | * If the load IA32_EFER VM-exit control is 1, bits reserved in the |
| 11396 | * IA32_EFER MSR must be 0 in the field for that register. In addition, |
| 11397 | * the values of the LMA and LME bits in the field must each be that of |
| 11398 | * the host address-space size VM-exit control. |
| 11399 | */ |
| 11400 | if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { |
| 11401 | ia32e = (vmcs12->vm_exit_controls & |
| 11402 | VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; |
| 11403 | if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || |
| 11404 | ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || |
| 11405 | ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) |
| 11406 | return 1; |
| 11407 | } |
| 11408 | |
| 11409 | return 0; |
| 11410 | } |
| 11411 | |
| 11412 | static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry) |
| 11413 | { |
| 11414 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 11415 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 11416 | u32 msr_entry_idx; |
| 11417 | u32 exit_qual; |
| 11418 | |
| 11419 | enter_guest_mode(vcpu); |
| 11420 | |
| 11421 | if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) |
| 11422 | vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); |
| 11423 | |
| 11424 | vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); |
| 11425 | vmx_segment_cache_clear(vmx); |
| 11426 | |
| 11427 | if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) { |
| 11428 | leave_guest_mode(vcpu); |
| 11429 | vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| 11430 | nested_vmx_entry_failure(vcpu, vmcs12, |
| 11431 | EXIT_REASON_INVALID_STATE, exit_qual); |
| 11432 | return 1; |
| 11433 | } |
| 11434 | |
| 11435 | nested_get_vmcs12_pages(vcpu, vmcs12); |
| 11436 | |
| 11437 | msr_entry_idx = nested_vmx_load_msr(vcpu, |
| 11438 | vmcs12->vm_entry_msr_load_addr, |
| 11439 | vmcs12->vm_entry_msr_load_count); |
| 11440 | if (msr_entry_idx) { |
| 11441 | leave_guest_mode(vcpu); |
| 11442 | vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| 11443 | nested_vmx_entry_failure(vcpu, vmcs12, |
| 11444 | EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx); |
| 11445 | return 1; |
| 11446 | } |
| 11447 | |
| 11448 | /* |
| 11449 | * Note no nested_vmx_succeed or nested_vmx_fail here. At this point |
| 11450 | * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet |
| 11451 | * returned as far as L1 is concerned. It will only return (and set |
| 11452 | * the success flag) when L2 exits (see nested_vmx_vmexit()). |
| 11453 | */ |
| 11454 | return 0; |
| 11455 | } |
| 11456 | |
| 11457 | /* |
| 11458 | * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 |
| 11459 | * for running an L2 nested guest. |
| 11460 | */ |
| 11461 | static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) |
| 11462 | { |
| 11463 | struct vmcs12 *vmcs12; |
| 11464 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 11465 | u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); |
| 11466 | u32 exit_qual; |
| 11467 | int ret; |
| 11468 | |
| 11469 | if (!nested_vmx_check_permission(vcpu)) |
| 11470 | return 1; |
| 11471 | |
| 11472 | if (!nested_vmx_check_vmcs12(vcpu)) |
| 11473 | goto out; |
| 11474 | |
| 11475 | vmcs12 = get_vmcs12(vcpu); |
| 11476 | |
| 11477 | if (enable_shadow_vmcs) |
| 11478 | copy_shadow_to_vmcs12(vmx); |
| 11479 | |
| 11480 | /* |
| 11481 | * The nested entry process starts with enforcing various prerequisites |
| 11482 | * on vmcs12 as required by the Intel SDM, and act appropriately when |
| 11483 | * they fail: As the SDM explains, some conditions should cause the |
| 11484 | * instruction to fail, while others will cause the instruction to seem |
| 11485 | * to succeed, but return an EXIT_REASON_INVALID_STATE. |
| 11486 | * To speed up the normal (success) code path, we should avoid checking |
| 11487 | * for misconfigurations which will anyway be caught by the processor |
| 11488 | * when using the merged vmcs02. |
| 11489 | */ |
| 11490 | if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) { |
| 11491 | nested_vmx_failValid(vcpu, |
| 11492 | VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); |
| 11493 | goto out; |
| 11494 | } |
| 11495 | |
| 11496 | if (vmcs12->launch_state == launch) { |
| 11497 | nested_vmx_failValid(vcpu, |
| 11498 | launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS |
| 11499 | : VMXERR_VMRESUME_NONLAUNCHED_VMCS); |
| 11500 | goto out; |
| 11501 | } |
| 11502 | |
| 11503 | ret = check_vmentry_prereqs(vcpu, vmcs12); |
| 11504 | if (ret) { |
| 11505 | nested_vmx_failValid(vcpu, ret); |
| 11506 | goto out; |
| 11507 | } |
| 11508 | |
| 11509 | /* |
| 11510 | * After this point, the trap flag no longer triggers a singlestep trap |
| 11511 | * on the vm entry instructions; don't call kvm_skip_emulated_instruction. |
| 11512 | * This is not 100% correct; for performance reasons, we delegate most |
| 11513 | * of the checks on host state to the processor. If those fail, |
| 11514 | * the singlestep trap is missed. |
| 11515 | */ |
| 11516 | skip_emulated_instruction(vcpu); |
| 11517 | |
| 11518 | ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual); |
| 11519 | if (ret) { |
| 11520 | nested_vmx_entry_failure(vcpu, vmcs12, |
| 11521 | EXIT_REASON_INVALID_STATE, exit_qual); |
| 11522 | return 1; |
| 11523 | } |
| 11524 | |
| 11525 | /* |
| 11526 | * We're finally done with prerequisite checking, and can start with |
| 11527 | * the nested entry. |
| 11528 | */ |
| 11529 | |
| 11530 | ret = enter_vmx_non_root_mode(vcpu, true); |
| 11531 | if (ret) |
| 11532 | return ret; |
| 11533 | |
| 11534 | /* Hide L1D cache contents from the nested guest. */ |
| 11535 | vmx->vcpu.arch.l1tf_flush_l1d = true; |
| 11536 | |
| 11537 | /* |
| 11538 | * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken |
| 11539 | * by event injection, halt vcpu. |
| 11540 | */ |
| 11541 | if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) && |
| 11542 | !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK)) |
| 11543 | return kvm_vcpu_halt(vcpu); |
| 11544 | |
| 11545 | vmx->nested.nested_run_pending = 1; |
| 11546 | |
| 11547 | return 1; |
| 11548 | |
| 11549 | out: |
| 11550 | return kvm_skip_emulated_instruction(vcpu); |
| 11551 | } |
| 11552 | |
| 11553 | /* |
| 11554 | * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date |
| 11555 | * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). |
| 11556 | * This function returns the new value we should put in vmcs12.guest_cr0. |
| 11557 | * It's not enough to just return the vmcs02 GUEST_CR0. Rather, |
| 11558 | * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now |
| 11559 | * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 |
| 11560 | * didn't trap the bit, because if L1 did, so would L0). |
| 11561 | * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have |
| 11562 | * been modified by L2, and L1 knows it. So just leave the old value of |
| 11563 | * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 |
| 11564 | * isn't relevant, because if L0 traps this bit it can set it to anything. |
| 11565 | * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have |
| 11566 | * changed these bits, and therefore they need to be updated, but L0 |
| 11567 | * didn't necessarily allow them to be changed in GUEST_CR0 - and rather |
| 11568 | * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. |
| 11569 | */ |
| 11570 | static inline unsigned long |
| 11571 | vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| 11572 | { |
| 11573 | return |
| 11574 | /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | |
| 11575 | /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | |
| 11576 | /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | |
| 11577 | vcpu->arch.cr0_guest_owned_bits)); |
| 11578 | } |
| 11579 | |
| 11580 | static inline unsigned long |
| 11581 | vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| 11582 | { |
| 11583 | return |
| 11584 | /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | |
| 11585 | /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | |
| 11586 | /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | |
| 11587 | vcpu->arch.cr4_guest_owned_bits)); |
| 11588 | } |
| 11589 | |
| 11590 | static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, |
| 11591 | struct vmcs12 *vmcs12) |
| 11592 | { |
| 11593 | u32 idt_vectoring; |
| 11594 | unsigned int nr; |
| 11595 | |
| 11596 | if (vcpu->arch.exception.injected) { |
| 11597 | nr = vcpu->arch.exception.nr; |
| 11598 | idt_vectoring = nr | VECTORING_INFO_VALID_MASK; |
| 11599 | |
| 11600 | if (kvm_exception_is_soft(nr)) { |
| 11601 | vmcs12->vm_exit_instruction_len = |
| 11602 | vcpu->arch.event_exit_inst_len; |
| 11603 | idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; |
| 11604 | } else |
| 11605 | idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; |
| 11606 | |
| 11607 | if (vcpu->arch.exception.has_error_code) { |
| 11608 | idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; |
| 11609 | vmcs12->idt_vectoring_error_code = |
| 11610 | vcpu->arch.exception.error_code; |
| 11611 | } |
| 11612 | |
| 11613 | vmcs12->idt_vectoring_info_field = idt_vectoring; |
| 11614 | } else if (vcpu->arch.nmi_injected) { |
| 11615 | vmcs12->idt_vectoring_info_field = |
| 11616 | INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; |
| 11617 | } else if (vcpu->arch.interrupt.pending) { |
| 11618 | nr = vcpu->arch.interrupt.nr; |
| 11619 | idt_vectoring = nr | VECTORING_INFO_VALID_MASK; |
| 11620 | |
| 11621 | if (vcpu->arch.interrupt.soft) { |
| 11622 | idt_vectoring |= INTR_TYPE_SOFT_INTR; |
| 11623 | vmcs12->vm_entry_instruction_len = |
| 11624 | vcpu->arch.event_exit_inst_len; |
| 11625 | } else |
| 11626 | idt_vectoring |= INTR_TYPE_EXT_INTR; |
| 11627 | |
| 11628 | vmcs12->idt_vectoring_info_field = idt_vectoring; |
| 11629 | } |
| 11630 | } |
| 11631 | |
| 11632 | static int vmx_check_nested_events(struct kvm_vcpu *vcpu) |
| 11633 | { |
| 11634 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 11635 | unsigned long exit_qual; |
| 11636 | bool block_nested_events = |
| 11637 | vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu); |
| 11638 | |
| 11639 | if (vcpu->arch.exception.pending && |
| 11640 | nested_vmx_check_exception(vcpu, &exit_qual)) { |
| 11641 | if (block_nested_events) |
| 11642 | return -EBUSY; |
| 11643 | nested_vmx_inject_exception_vmexit(vcpu, exit_qual); |
| 11644 | return 0; |
| 11645 | } |
| 11646 | |
| 11647 | if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && |
| 11648 | vmx->nested.preemption_timer_expired) { |
| 11649 | if (block_nested_events) |
| 11650 | return -EBUSY; |
| 11651 | nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); |
| 11652 | return 0; |
| 11653 | } |
| 11654 | |
| 11655 | if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { |
| 11656 | if (block_nested_events) |
| 11657 | return -EBUSY; |
| 11658 | nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, |
| 11659 | NMI_VECTOR | INTR_TYPE_NMI_INTR | |
| 11660 | INTR_INFO_VALID_MASK, 0); |
| 11661 | /* |
| 11662 | * The NMI-triggered VM exit counts as injection: |
| 11663 | * clear this one and block further NMIs. |
| 11664 | */ |
| 11665 | vcpu->arch.nmi_pending = 0; |
| 11666 | vmx_set_nmi_mask(vcpu, true); |
| 11667 | return 0; |
| 11668 | } |
| 11669 | |
| 11670 | if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(vcpu)) { |
| 11671 | if (block_nested_events) |
| 11672 | return -EBUSY; |
| 11673 | nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); |
| 11674 | return 0; |
| 11675 | } |
| 11676 | |
| 11677 | vmx_complete_nested_posted_interrupt(vcpu); |
| 11678 | return 0; |
| 11679 | } |
| 11680 | |
| 11681 | static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) |
| 11682 | { |
| 11683 | ktime_t remaining = |
| 11684 | hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); |
| 11685 | u64 value; |
| 11686 | |
| 11687 | if (ktime_to_ns(remaining) <= 0) |
| 11688 | return 0; |
| 11689 | |
| 11690 | value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; |
| 11691 | do_div(value, 1000000); |
| 11692 | return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; |
| 11693 | } |
| 11694 | |
| 11695 | /* |
| 11696 | * Update the guest state fields of vmcs12 to reflect changes that |
| 11697 | * occurred while L2 was running. (The "IA-32e mode guest" bit of the |
| 11698 | * VM-entry controls is also updated, since this is really a guest |
| 11699 | * state bit.) |
| 11700 | */ |
| 11701 | static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| 11702 | { |
| 11703 | vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); |
| 11704 | vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); |
| 11705 | |
| 11706 | vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); |
| 11707 | vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); |
| 11708 | vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); |
| 11709 | |
| 11710 | vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); |
| 11711 | vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); |
| 11712 | vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); |
| 11713 | vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); |
| 11714 | vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); |
| 11715 | vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); |
| 11716 | vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); |
| 11717 | vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); |
| 11718 | vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); |
| 11719 | vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); |
| 11720 | vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); |
| 11721 | vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); |
| 11722 | vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); |
| 11723 | vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); |
| 11724 | vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); |
| 11725 | vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); |
| 11726 | vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); |
| 11727 | vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); |
| 11728 | vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); |
| 11729 | vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); |
| 11730 | vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); |
| 11731 | vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); |
| 11732 | vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); |
| 11733 | vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); |
| 11734 | vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); |
| 11735 | vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); |
| 11736 | vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); |
| 11737 | vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); |
| 11738 | vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); |
| 11739 | vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); |
| 11740 | vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); |
| 11741 | vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); |
| 11742 | vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); |
| 11743 | vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); |
| 11744 | vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); |
| 11745 | vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); |
| 11746 | |
| 11747 | vmcs12->guest_interruptibility_info = |
| 11748 | vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| 11749 | vmcs12->guest_pending_dbg_exceptions = |
| 11750 | vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); |
| 11751 | if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) |
| 11752 | vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; |
| 11753 | else |
| 11754 | vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; |
| 11755 | |
| 11756 | if (nested_cpu_has_preemption_timer(vmcs12)) { |
| 11757 | if (vmcs12->vm_exit_controls & |
| 11758 | VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) |
| 11759 | vmcs12->vmx_preemption_timer_value = |
| 11760 | vmx_get_preemption_timer_value(vcpu); |
| 11761 | hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); |
| 11762 | } |
| 11763 | |
| 11764 | /* |
| 11765 | * In some cases (usually, nested EPT), L2 is allowed to change its |
| 11766 | * own CR3 without exiting. If it has changed it, we must keep it. |
| 11767 | * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined |
| 11768 | * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. |
| 11769 | * |
| 11770 | * Additionally, restore L2's PDPTR to vmcs12. |
| 11771 | */ |
| 11772 | if (enable_ept) { |
| 11773 | vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); |
| 11774 | vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); |
| 11775 | vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); |
| 11776 | vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); |
| 11777 | vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); |
| 11778 | } |
| 11779 | |
| 11780 | vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); |
| 11781 | |
| 11782 | if (nested_cpu_has_vid(vmcs12)) |
| 11783 | vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); |
| 11784 | |
| 11785 | vmcs12->vm_entry_controls = |
| 11786 | (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | |
| 11787 | (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); |
| 11788 | |
| 11789 | if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) { |
| 11790 | kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); |
| 11791 | vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); |
| 11792 | } |
| 11793 | |
| 11794 | /* TODO: These cannot have changed unless we have MSR bitmaps and |
| 11795 | * the relevant bit asks not to trap the change */ |
| 11796 | if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) |
| 11797 | vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); |
| 11798 | if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) |
| 11799 | vmcs12->guest_ia32_efer = vcpu->arch.efer; |
| 11800 | vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); |
| 11801 | vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); |
| 11802 | vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); |
| 11803 | if (kvm_mpx_supported()) |
| 11804 | vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); |
| 11805 | } |
| 11806 | |
| 11807 | /* |
| 11808 | * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits |
| 11809 | * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), |
| 11810 | * and this function updates it to reflect the changes to the guest state while |
| 11811 | * L2 was running (and perhaps made some exits which were handled directly by L0 |
| 11812 | * without going back to L1), and to reflect the exit reason. |
| 11813 | * Note that we do not have to copy here all VMCS fields, just those that |
| 11814 | * could have changed by the L2 guest or the exit - i.e., the guest-state and |
| 11815 | * exit-information fields only. Other fields are modified by L1 with VMWRITE, |
| 11816 | * which already writes to vmcs12 directly. |
| 11817 | */ |
| 11818 | static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, |
| 11819 | u32 exit_reason, u32 exit_intr_info, |
| 11820 | unsigned long exit_qualification) |
| 11821 | { |
| 11822 | /* update guest state fields: */ |
| 11823 | sync_vmcs12(vcpu, vmcs12); |
| 11824 | |
| 11825 | /* update exit information fields: */ |
| 11826 | |
| 11827 | vmcs12->vm_exit_reason = exit_reason; |
| 11828 | vmcs12->exit_qualification = exit_qualification; |
| 11829 | vmcs12->vm_exit_intr_info = exit_intr_info; |
| 11830 | |
| 11831 | vmcs12->idt_vectoring_info_field = 0; |
| 11832 | vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| 11833 | vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| 11834 | |
| 11835 | if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { |
| 11836 | vmcs12->launch_state = 1; |
| 11837 | |
| 11838 | /* vm_entry_intr_info_field is cleared on exit. Emulate this |
| 11839 | * instead of reading the real value. */ |
| 11840 | vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; |
| 11841 | |
| 11842 | /* |
| 11843 | * Transfer the event that L0 or L1 may wanted to inject into |
| 11844 | * L2 to IDT_VECTORING_INFO_FIELD. |
| 11845 | */ |
| 11846 | vmcs12_save_pending_event(vcpu, vmcs12); |
| 11847 | } |
| 11848 | |
| 11849 | /* |
| 11850 | * Drop what we picked up for L2 via vmx_complete_interrupts. It is |
| 11851 | * preserved above and would only end up incorrectly in L1. |
| 11852 | */ |
| 11853 | vcpu->arch.nmi_injected = false; |
| 11854 | kvm_clear_exception_queue(vcpu); |
| 11855 | kvm_clear_interrupt_queue(vcpu); |
| 11856 | } |
| 11857 | |
| 11858 | /* |
| 11859 | * A part of what we need to when the nested L2 guest exits and we want to |
| 11860 | * run its L1 parent, is to reset L1's guest state to the host state specified |
| 11861 | * in vmcs12. |
| 11862 | * This function is to be called not only on normal nested exit, but also on |
| 11863 | * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry |
| 11864 | * Failures During or After Loading Guest State"). |
| 11865 | * This function should be called when the active VMCS is L1's (vmcs01). |
| 11866 | */ |
| 11867 | static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, |
| 11868 | struct vmcs12 *vmcs12) |
| 11869 | { |
| 11870 | struct kvm_segment seg; |
| 11871 | u32 entry_failure_code; |
| 11872 | |
| 11873 | if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) |
| 11874 | vcpu->arch.efer = vmcs12->host_ia32_efer; |
| 11875 | else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) |
| 11876 | vcpu->arch.efer |= (EFER_LMA | EFER_LME); |
| 11877 | else |
| 11878 | vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); |
| 11879 | vmx_set_efer(vcpu, vcpu->arch.efer); |
| 11880 | |
| 11881 | kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); |
| 11882 | kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); |
| 11883 | vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); |
| 11884 | /* |
| 11885 | * Note that calling vmx_set_cr0 is important, even if cr0 hasn't |
| 11886 | * actually changed, because vmx_set_cr0 refers to efer set above. |
| 11887 | * |
| 11888 | * CR0_GUEST_HOST_MASK is already set in the original vmcs01 |
| 11889 | * (KVM doesn't change it); |
| 11890 | */ |
| 11891 | vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; |
| 11892 | vmx_set_cr0(vcpu, vmcs12->host_cr0); |
| 11893 | |
| 11894 | /* Same as above - no reason to call set_cr4_guest_host_mask(). */ |
| 11895 | vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); |
| 11896 | vmx_set_cr4(vcpu, vmcs12->host_cr4); |
| 11897 | |
| 11898 | nested_ept_uninit_mmu_context(vcpu); |
| 11899 | |
| 11900 | /* |
| 11901 | * Only PDPTE load can fail as the value of cr3 was checked on entry and |
| 11902 | * couldn't have changed. |
| 11903 | */ |
| 11904 | if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code)) |
| 11905 | nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); |
| 11906 | |
| 11907 | if (!enable_ept) |
| 11908 | vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; |
| 11909 | |
| 11910 | if (enable_vpid) { |
| 11911 | /* |
| 11912 | * Trivially support vpid by letting L2s share their parent |
| 11913 | * L1's vpid. TODO: move to a more elaborate solution, giving |
| 11914 | * each L2 its own vpid and exposing the vpid feature to L1. |
| 11915 | */ |
| 11916 | vmx_flush_tlb(vcpu, true); |
| 11917 | } |
| 11918 | /* Restore posted intr vector. */ |
| 11919 | if (nested_cpu_has_posted_intr(vmcs12)) |
| 11920 | vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); |
| 11921 | |
| 11922 | vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); |
| 11923 | vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); |
| 11924 | vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); |
| 11925 | vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); |
| 11926 | vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); |
| 11927 | vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF); |
| 11928 | vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF); |
| 11929 | |
| 11930 | /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ |
| 11931 | if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) |
| 11932 | vmcs_write64(GUEST_BNDCFGS, 0); |
| 11933 | |
| 11934 | if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { |
| 11935 | vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); |
| 11936 | vcpu->arch.pat = vmcs12->host_ia32_pat; |
| 11937 | } |
| 11938 | if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) |
| 11939 | vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, |
| 11940 | vmcs12->host_ia32_perf_global_ctrl); |
| 11941 | |
| 11942 | /* Set L1 segment info according to Intel SDM |
| 11943 | 27.5.2 Loading Host Segment and Descriptor-Table Registers */ |
| 11944 | seg = (struct kvm_segment) { |
| 11945 | .base = 0, |
| 11946 | .limit = 0xFFFFFFFF, |
| 11947 | .selector = vmcs12->host_cs_selector, |
| 11948 | .type = 11, |
| 11949 | .present = 1, |
| 11950 | .s = 1, |
| 11951 | .g = 1 |
| 11952 | }; |
| 11953 | if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) |
| 11954 | seg.l = 1; |
| 11955 | else |
| 11956 | seg.db = 1; |
| 11957 | vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); |
| 11958 | seg = (struct kvm_segment) { |
| 11959 | .base = 0, |
| 11960 | .limit = 0xFFFFFFFF, |
| 11961 | .type = 3, |
| 11962 | .present = 1, |
| 11963 | .s = 1, |
| 11964 | .db = 1, |
| 11965 | .g = 1 |
| 11966 | }; |
| 11967 | seg.selector = vmcs12->host_ds_selector; |
| 11968 | vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); |
| 11969 | seg.selector = vmcs12->host_es_selector; |
| 11970 | vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); |
| 11971 | seg.selector = vmcs12->host_ss_selector; |
| 11972 | vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); |
| 11973 | seg.selector = vmcs12->host_fs_selector; |
| 11974 | seg.base = vmcs12->host_fs_base; |
| 11975 | vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); |
| 11976 | seg.selector = vmcs12->host_gs_selector; |
| 11977 | seg.base = vmcs12->host_gs_base; |
| 11978 | vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); |
| 11979 | seg = (struct kvm_segment) { |
| 11980 | .base = vmcs12->host_tr_base, |
| 11981 | .limit = 0x67, |
| 11982 | .selector = vmcs12->host_tr_selector, |
| 11983 | .type = 11, |
| 11984 | .present = 1 |
| 11985 | }; |
| 11986 | vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); |
| 11987 | |
| 11988 | kvm_set_dr(vcpu, 7, 0x400); |
| 11989 | vmcs_write64(GUEST_IA32_DEBUGCTL, 0); |
| 11990 | |
| 11991 | if (cpu_has_vmx_msr_bitmap()) |
| 11992 | vmx_update_msr_bitmap(vcpu); |
| 11993 | |
| 11994 | if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, |
| 11995 | vmcs12->vm_exit_msr_load_count)) |
| 11996 | nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); |
| 11997 | } |
| 11998 | |
| 11999 | static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) |
| 12000 | { |
| 12001 | struct shared_msr_entry *efer_msr; |
| 12002 | unsigned int i; |
| 12003 | |
| 12004 | if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) |
| 12005 | return vmcs_read64(GUEST_IA32_EFER); |
| 12006 | |
| 12007 | if (cpu_has_load_ia32_efer) |
| 12008 | return host_efer; |
| 12009 | |
| 12010 | for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { |
| 12011 | if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) |
| 12012 | return vmx->msr_autoload.guest.val[i].value; |
| 12013 | } |
| 12014 | |
| 12015 | efer_msr = find_msr_entry(vmx, MSR_EFER); |
| 12016 | if (efer_msr) |
| 12017 | return efer_msr->data; |
| 12018 | |
| 12019 | return host_efer; |
| 12020 | } |
| 12021 | |
| 12022 | static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) |
| 12023 | { |
| 12024 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 12025 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 12026 | struct vmx_msr_entry g, h; |
| 12027 | struct msr_data msr; |
| 12028 | gpa_t gpa; |
| 12029 | u32 i, j; |
| 12030 | |
| 12031 | vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT); |
| 12032 | |
| 12033 | if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { |
| 12034 | /* |
| 12035 | * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set |
| 12036 | * as vmcs01.GUEST_DR7 contains a userspace defined value |
| 12037 | * and vcpu->arch.dr7 is not squirreled away before the |
| 12038 | * nested VMENTER (not worth adding a variable in nested_vmx). |
| 12039 | */ |
| 12040 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| 12041 | kvm_set_dr(vcpu, 7, DR7_FIXED_1); |
| 12042 | else |
| 12043 | WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); |
| 12044 | } |
| 12045 | |
| 12046 | /* |
| 12047 | * Note that calling vmx_set_{efer,cr0,cr4} is important as they |
| 12048 | * handle a variety of side effects to KVM's software model. |
| 12049 | */ |
| 12050 | vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); |
| 12051 | |
| 12052 | vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; |
| 12053 | vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); |
| 12054 | |
| 12055 | vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); |
| 12056 | vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW)); |
| 12057 | |
| 12058 | nested_ept_uninit_mmu_context(vcpu); |
| 12059 | vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); |
| 12060 | __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
| 12061 | |
| 12062 | /* |
| 12063 | * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs |
| 12064 | * from vmcs01 (if necessary). The PDPTRs are not loaded on |
| 12065 | * VMFail, like everything else we just need to ensure our |
| 12066 | * software model is up-to-date. |
| 12067 | */ |
| 12068 | ept_save_pdptrs(vcpu); |
| 12069 | |
| 12070 | kvm_mmu_reset_context(vcpu); |
| 12071 | |
| 12072 | if (cpu_has_vmx_msr_bitmap()) |
| 12073 | vmx_update_msr_bitmap(vcpu); |
| 12074 | |
| 12075 | /* |
| 12076 | * This nasty bit of open coding is a compromise between blindly |
| 12077 | * loading L1's MSRs using the exit load lists (incorrect emulation |
| 12078 | * of VMFail), leaving the nested VM's MSRs in the software model |
| 12079 | * (incorrect behavior) and snapshotting the modified MSRs (too |
| 12080 | * expensive since the lists are unbound by hardware). For each |
| 12081 | * MSR that was (prematurely) loaded from the nested VMEntry load |
| 12082 | * list, reload it from the exit load list if it exists and differs |
| 12083 | * from the guest value. The intent is to stuff host state as |
| 12084 | * silently as possible, not to fully process the exit load list. |
| 12085 | */ |
| 12086 | msr.host_initiated = false; |
| 12087 | for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { |
| 12088 | gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); |
| 12089 | if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { |
| 12090 | pr_debug_ratelimited( |
| 12091 | "%s read MSR index failed (%u, 0x%08llx)\n", |
| 12092 | __func__, i, gpa); |
| 12093 | goto vmabort; |
| 12094 | } |
| 12095 | |
| 12096 | for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) { |
| 12097 | gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h)); |
| 12098 | if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) { |
| 12099 | pr_debug_ratelimited( |
| 12100 | "%s read MSR failed (%u, 0x%08llx)\n", |
| 12101 | __func__, j, gpa); |
| 12102 | goto vmabort; |
| 12103 | } |
| 12104 | if (h.index != g.index) |
| 12105 | continue; |
| 12106 | if (h.value == g.value) |
| 12107 | break; |
| 12108 | |
| 12109 | if (nested_vmx_load_msr_check(vcpu, &h)) { |
| 12110 | pr_debug_ratelimited( |
| 12111 | "%s check failed (%u, 0x%x, 0x%x)\n", |
| 12112 | __func__, j, h.index, h.reserved); |
| 12113 | goto vmabort; |
| 12114 | } |
| 12115 | |
| 12116 | msr.index = h.index; |
| 12117 | msr.data = h.value; |
| 12118 | if (kvm_set_msr(vcpu, &msr)) { |
| 12119 | pr_debug_ratelimited( |
| 12120 | "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", |
| 12121 | __func__, j, h.index, h.value); |
| 12122 | goto vmabort; |
| 12123 | } |
| 12124 | } |
| 12125 | } |
| 12126 | |
| 12127 | return; |
| 12128 | |
| 12129 | vmabort: |
| 12130 | nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); |
| 12131 | } |
| 12132 | |
| 12133 | /* |
| 12134 | * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 |
| 12135 | * and modify vmcs12 to make it see what it would expect to see there if |
| 12136 | * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) |
| 12137 | */ |
| 12138 | static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, |
| 12139 | u32 exit_intr_info, |
| 12140 | unsigned long exit_qualification) |
| 12141 | { |
| 12142 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 12143 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 12144 | |
| 12145 | /* trying to cancel vmlaunch/vmresume is a bug */ |
| 12146 | WARN_ON_ONCE(vmx->nested.nested_run_pending); |
| 12147 | |
| 12148 | /* |
| 12149 | * The only expected VM-instruction error is "VM entry with |
| 12150 | * invalid control field(s)." Anything else indicates a |
| 12151 | * problem with L0. |
| 12152 | */ |
| 12153 | WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) != |
| 12154 | VMXERR_ENTRY_INVALID_CONTROL_FIELD)); |
| 12155 | |
| 12156 | leave_guest_mode(vcpu); |
| 12157 | |
| 12158 | if (likely(!vmx->fail)) { |
| 12159 | prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, |
| 12160 | exit_qualification); |
| 12161 | |
| 12162 | if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr, |
| 12163 | vmcs12->vm_exit_msr_store_count)) |
| 12164 | nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL); |
| 12165 | } |
| 12166 | |
| 12167 | vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| 12168 | vm_entry_controls_reset_shadow(vmx); |
| 12169 | vm_exit_controls_reset_shadow(vmx); |
| 12170 | vmx_segment_cache_clear(vmx); |
| 12171 | |
| 12172 | /* Update any VMCS fields that might have changed while L2 ran */ |
| 12173 | vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); |
| 12174 | vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); |
| 12175 | vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); |
| 12176 | if (vmx->hv_deadline_tsc == -1) |
| 12177 | vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, |
| 12178 | PIN_BASED_VMX_PREEMPTION_TIMER); |
| 12179 | else |
| 12180 | vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, |
| 12181 | PIN_BASED_VMX_PREEMPTION_TIMER); |
| 12182 | if (kvm_has_tsc_control) |
| 12183 | decache_tsc_multiplier(vmx); |
| 12184 | |
| 12185 | if (vmx->nested.change_vmcs01_virtual_apic_mode) { |
| 12186 | vmx->nested.change_vmcs01_virtual_apic_mode = false; |
| 12187 | vmx_set_virtual_apic_mode(vcpu); |
| 12188 | } else if (!nested_cpu_has_ept(vmcs12) && |
| 12189 | nested_cpu_has2(vmcs12, |
| 12190 | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { |
| 12191 | vmx_flush_tlb(vcpu, true); |
| 12192 | } |
| 12193 | |
| 12194 | /* This is needed for same reason as it was needed in prepare_vmcs02 */ |
| 12195 | vmx->host_rsp = 0; |
| 12196 | |
| 12197 | /* Unpin physical memory we referred to in vmcs02 */ |
| 12198 | if (vmx->nested.apic_access_page) { |
| 12199 | kvm_release_page_dirty(vmx->nested.apic_access_page); |
| 12200 | vmx->nested.apic_access_page = NULL; |
| 12201 | } |
| 12202 | if (vmx->nested.virtual_apic_page) { |
| 12203 | kvm_release_page_dirty(vmx->nested.virtual_apic_page); |
| 12204 | vmx->nested.virtual_apic_page = NULL; |
| 12205 | } |
| 12206 | if (vmx->nested.pi_desc_page) { |
| 12207 | kunmap(vmx->nested.pi_desc_page); |
| 12208 | kvm_release_page_dirty(vmx->nested.pi_desc_page); |
| 12209 | vmx->nested.pi_desc_page = NULL; |
| 12210 | vmx->nested.pi_desc = NULL; |
| 12211 | } |
| 12212 | |
| 12213 | /* |
| 12214 | * We are now running in L2, mmu_notifier will force to reload the |
| 12215 | * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. |
| 12216 | */ |
| 12217 | kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); |
| 12218 | |
| 12219 | if (enable_shadow_vmcs) |
| 12220 | vmx->nested.sync_shadow_vmcs = true; |
| 12221 | |
| 12222 | /* in case we halted in L2 */ |
| 12223 | vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| 12224 | |
| 12225 | if (likely(!vmx->fail)) { |
| 12226 | if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT && |
| 12227 | nested_exit_intr_ack_set(vcpu)) { |
| 12228 | int irq = kvm_cpu_get_interrupt(vcpu); |
| 12229 | WARN_ON(irq < 0); |
| 12230 | vmcs12->vm_exit_intr_info = irq | |
| 12231 | INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; |
| 12232 | } |
| 12233 | |
| 12234 | trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, |
| 12235 | vmcs12->exit_qualification, |
| 12236 | vmcs12->idt_vectoring_info_field, |
| 12237 | vmcs12->vm_exit_intr_info, |
| 12238 | vmcs12->vm_exit_intr_error_code, |
| 12239 | KVM_ISA_VMX); |
| 12240 | |
| 12241 | load_vmcs12_host_state(vcpu, vmcs12); |
| 12242 | |
| 12243 | return; |
| 12244 | } |
| 12245 | |
| 12246 | /* |
| 12247 | * After an early L2 VM-entry failure, we're now back |
| 12248 | * in L1 which thinks it just finished a VMLAUNCH or |
| 12249 | * VMRESUME instruction, so we need to set the failure |
| 12250 | * flag and the VM-instruction error field of the VMCS |
| 12251 | * accordingly. |
| 12252 | */ |
| 12253 | nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| 12254 | |
| 12255 | /* |
| 12256 | * Restore L1's host state to KVM's software model. We're here |
| 12257 | * because a consistency check was caught by hardware, which |
| 12258 | * means some amount of guest state has been propagated to KVM's |
| 12259 | * model and needs to be unwound to the host's state. |
| 12260 | */ |
| 12261 | nested_vmx_restore_host_state(vcpu); |
| 12262 | |
| 12263 | /* |
| 12264 | * The emulated instruction was already skipped in |
| 12265 | * nested_vmx_run, but the updated RIP was never |
| 12266 | * written back to the vmcs01. |
| 12267 | */ |
| 12268 | skip_emulated_instruction(vcpu); |
| 12269 | vmx->fail = 0; |
| 12270 | } |
| 12271 | |
| 12272 | /* |
| 12273 | * Forcibly leave nested mode in order to be able to reset the VCPU later on. |
| 12274 | */ |
| 12275 | static void vmx_leave_nested(struct kvm_vcpu *vcpu) |
| 12276 | { |
| 12277 | if (is_guest_mode(vcpu)) { |
| 12278 | to_vmx(vcpu)->nested.nested_run_pending = 0; |
| 12279 | nested_vmx_vmexit(vcpu, -1, 0, 0); |
| 12280 | } |
| 12281 | free_nested(to_vmx(vcpu)); |
| 12282 | } |
| 12283 | |
| 12284 | /* |
| 12285 | * L1's failure to enter L2 is a subset of a normal exit, as explained in |
| 12286 | * 23.7 "VM-entry failures during or after loading guest state" (this also |
| 12287 | * lists the acceptable exit-reason and exit-qualification parameters). |
| 12288 | * It should only be called before L2 actually succeeded to run, and when |
| 12289 | * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss). |
| 12290 | */ |
| 12291 | static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, |
| 12292 | struct vmcs12 *vmcs12, |
| 12293 | u32 reason, unsigned long qualification) |
| 12294 | { |
| 12295 | load_vmcs12_host_state(vcpu, vmcs12); |
| 12296 | vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY; |
| 12297 | vmcs12->exit_qualification = qualification; |
| 12298 | nested_vmx_succeed(vcpu); |
| 12299 | if (enable_shadow_vmcs) |
| 12300 | to_vmx(vcpu)->nested.sync_shadow_vmcs = true; |
| 12301 | } |
| 12302 | |
| 12303 | static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, |
| 12304 | struct x86_instruction_info *info) |
| 12305 | { |
| 12306 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 12307 | unsigned short port; |
| 12308 | bool intercept; |
| 12309 | int size; |
| 12310 | |
| 12311 | if (info->intercept == x86_intercept_in || |
| 12312 | info->intercept == x86_intercept_ins) { |
| 12313 | port = info->src_val; |
| 12314 | size = info->dst_bytes; |
| 12315 | } else { |
| 12316 | port = info->dst_val; |
| 12317 | size = info->src_bytes; |
| 12318 | } |
| 12319 | |
| 12320 | /* |
| 12321 | * If the 'use IO bitmaps' VM-execution control is 0, IO instruction |
| 12322 | * VM-exits depend on the 'unconditional IO exiting' VM-execution |
| 12323 | * control. |
| 12324 | * |
| 12325 | * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. |
| 12326 | */ |
| 12327 | if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) |
| 12328 | intercept = nested_cpu_has(vmcs12, |
| 12329 | CPU_BASED_UNCOND_IO_EXITING); |
| 12330 | else |
| 12331 | intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); |
| 12332 | |
| 12333 | /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ |
| 12334 | return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; |
| 12335 | } |
| 12336 | |
| 12337 | static int vmx_check_intercept(struct kvm_vcpu *vcpu, |
| 12338 | struct x86_instruction_info *info, |
| 12339 | enum x86_intercept_stage stage) |
| 12340 | { |
| 12341 | struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| 12342 | struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; |
| 12343 | |
| 12344 | switch (info->intercept) { |
| 12345 | /* |
| 12346 | * RDPID causes #UD if disabled through secondary execution controls. |
| 12347 | * Because it is marked as EmulateOnUD, we need to intercept it here. |
| 12348 | */ |
| 12349 | case x86_intercept_rdtscp: |
| 12350 | if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { |
| 12351 | ctxt->exception.vector = UD_VECTOR; |
| 12352 | ctxt->exception.error_code_valid = false; |
| 12353 | return X86EMUL_PROPAGATE_FAULT; |
| 12354 | } |
| 12355 | break; |
| 12356 | |
| 12357 | case x86_intercept_in: |
| 12358 | case x86_intercept_ins: |
| 12359 | case x86_intercept_out: |
| 12360 | case x86_intercept_outs: |
| 12361 | return vmx_check_intercept_io(vcpu, info); |
| 12362 | |
| 12363 | case x86_intercept_lgdt: |
| 12364 | case x86_intercept_lidt: |
| 12365 | case x86_intercept_lldt: |
| 12366 | case x86_intercept_ltr: |
| 12367 | case x86_intercept_sgdt: |
| 12368 | case x86_intercept_sidt: |
| 12369 | case x86_intercept_sldt: |
| 12370 | case x86_intercept_str: |
| 12371 | if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) |
| 12372 | return X86EMUL_CONTINUE; |
| 12373 | |
| 12374 | /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ |
| 12375 | break; |
| 12376 | |
| 12377 | /* TODO: check more intercepts... */ |
| 12378 | default: |
| 12379 | break; |
| 12380 | } |
| 12381 | |
| 12382 | return X86EMUL_UNHANDLEABLE; |
| 12383 | } |
| 12384 | |
| 12385 | #ifdef CONFIG_X86_64 |
| 12386 | /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ |
| 12387 | static inline int u64_shl_div_u64(u64 a, unsigned int shift, |
| 12388 | u64 divisor, u64 *result) |
| 12389 | { |
| 12390 | u64 low = a << shift, high = a >> (64 - shift); |
| 12391 | |
| 12392 | /* To avoid the overflow on divq */ |
| 12393 | if (high >= divisor) |
| 12394 | return 1; |
| 12395 | |
| 12396 | /* Low hold the result, high hold rem which is discarded */ |
| 12397 | asm("divq %2\n\t" : "=a" (low), "=d" (high) : |
| 12398 | "rm" (divisor), "0" (low), "1" (high)); |
| 12399 | *result = low; |
| 12400 | |
| 12401 | return 0; |
| 12402 | } |
| 12403 | |
| 12404 | static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc) |
| 12405 | { |
| 12406 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 12407 | u64 tscl = rdtsc(); |
| 12408 | u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); |
| 12409 | u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; |
| 12410 | |
| 12411 | /* Convert to host delta tsc if tsc scaling is enabled */ |
| 12412 | if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && |
| 12413 | u64_shl_div_u64(delta_tsc, |
| 12414 | kvm_tsc_scaling_ratio_frac_bits, |
| 12415 | vcpu->arch.tsc_scaling_ratio, |
| 12416 | &delta_tsc)) |
| 12417 | return -ERANGE; |
| 12418 | |
| 12419 | /* |
| 12420 | * If the delta tsc can't fit in the 32 bit after the multi shift, |
| 12421 | * we can't use the preemption timer. |
| 12422 | * It's possible that it fits on later vmentries, but checking |
| 12423 | * on every vmentry is costly so we just use an hrtimer. |
| 12424 | */ |
| 12425 | if (delta_tsc >> (cpu_preemption_timer_multi + 32)) |
| 12426 | return -ERANGE; |
| 12427 | |
| 12428 | vmx->hv_deadline_tsc = tscl + delta_tsc; |
| 12429 | vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, |
| 12430 | PIN_BASED_VMX_PREEMPTION_TIMER); |
| 12431 | |
| 12432 | return delta_tsc == 0; |
| 12433 | } |
| 12434 | |
| 12435 | static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) |
| 12436 | { |
| 12437 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 12438 | vmx->hv_deadline_tsc = -1; |
| 12439 | vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, |
| 12440 | PIN_BASED_VMX_PREEMPTION_TIMER); |
| 12441 | } |
| 12442 | #endif |
| 12443 | |
| 12444 | static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) |
| 12445 | { |
| 12446 | if (ple_gap) |
| 12447 | shrink_ple_window(vcpu); |
| 12448 | } |
| 12449 | |
| 12450 | static void vmx_slot_enable_log_dirty(struct kvm *kvm, |
| 12451 | struct kvm_memory_slot *slot) |
| 12452 | { |
| 12453 | kvm_mmu_slot_leaf_clear_dirty(kvm, slot); |
| 12454 | kvm_mmu_slot_largepage_remove_write_access(kvm, slot); |
| 12455 | } |
| 12456 | |
| 12457 | static void vmx_slot_disable_log_dirty(struct kvm *kvm, |
| 12458 | struct kvm_memory_slot *slot) |
| 12459 | { |
| 12460 | kvm_mmu_slot_set_dirty(kvm, slot); |
| 12461 | } |
| 12462 | |
| 12463 | static void vmx_flush_log_dirty(struct kvm *kvm) |
| 12464 | { |
| 12465 | kvm_flush_pml_buffers(kvm); |
| 12466 | } |
| 12467 | |
| 12468 | static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa) |
| 12469 | { |
| 12470 | struct vmcs12 *vmcs12; |
| 12471 | struct vcpu_vmx *vmx = to_vmx(vcpu); |
| 12472 | struct page *page = NULL; |
| 12473 | u64 *pml_address; |
| 12474 | |
| 12475 | if (is_guest_mode(vcpu)) { |
| 12476 | WARN_ON_ONCE(vmx->nested.pml_full); |
| 12477 | |
| 12478 | /* |
| 12479 | * Check if PML is enabled for the nested guest. |
| 12480 | * Whether eptp bit 6 is set is already checked |
| 12481 | * as part of A/D emulation. |
| 12482 | */ |
| 12483 | vmcs12 = get_vmcs12(vcpu); |
| 12484 | if (!nested_cpu_has_pml(vmcs12)) |
| 12485 | return 0; |
| 12486 | |
| 12487 | if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { |
| 12488 | vmx->nested.pml_full = true; |
| 12489 | return 1; |
| 12490 | } |
| 12491 | |
| 12492 | gpa &= ~0xFFFull; |
| 12493 | |
| 12494 | page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address); |
| 12495 | if (is_error_page(page)) |
| 12496 | return 0; |
| 12497 | |
| 12498 | pml_address = kmap(page); |
| 12499 | pml_address[vmcs12->guest_pml_index--] = gpa; |
| 12500 | kunmap(page); |
| 12501 | kvm_release_page_clean(page); |
| 12502 | } |
| 12503 | |
| 12504 | return 0; |
| 12505 | } |
| 12506 | |
| 12507 | static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, |
| 12508 | struct kvm_memory_slot *memslot, |
| 12509 | gfn_t offset, unsigned long mask) |
| 12510 | { |
| 12511 | kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); |
| 12512 | } |
| 12513 | |
| 12514 | static void __pi_post_block(struct kvm_vcpu *vcpu) |
| 12515 | { |
| 12516 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 12517 | struct pi_desc old, new; |
| 12518 | unsigned int dest; |
| 12519 | |
| 12520 | do { |
| 12521 | old.control = new.control = pi_desc->control; |
| 12522 | WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, |
| 12523 | "Wakeup handler not enabled while the VCPU is blocked\n"); |
| 12524 | |
| 12525 | dest = cpu_physical_id(vcpu->cpu); |
| 12526 | |
| 12527 | if (x2apic_enabled()) |
| 12528 | new.ndst = dest; |
| 12529 | else |
| 12530 | new.ndst = (dest << 8) & 0xFF00; |
| 12531 | |
| 12532 | /* set 'NV' to 'notification vector' */ |
| 12533 | new.nv = POSTED_INTR_VECTOR; |
| 12534 | } while (cmpxchg64(&pi_desc->control, old.control, |
| 12535 | new.control) != old.control); |
| 12536 | |
| 12537 | if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { |
| 12538 | spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); |
| 12539 | list_del(&vcpu->blocked_vcpu_list); |
| 12540 | spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); |
| 12541 | vcpu->pre_pcpu = -1; |
| 12542 | } |
| 12543 | } |
| 12544 | |
| 12545 | /* |
| 12546 | * This routine does the following things for vCPU which is going |
| 12547 | * to be blocked if VT-d PI is enabled. |
| 12548 | * - Store the vCPU to the wakeup list, so when interrupts happen |
| 12549 | * we can find the right vCPU to wake up. |
| 12550 | * - Change the Posted-interrupt descriptor as below: |
| 12551 | * 'NDST' <-- vcpu->pre_pcpu |
| 12552 | * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR |
| 12553 | * - If 'ON' is set during this process, which means at least one |
| 12554 | * interrupt is posted for this vCPU, we cannot block it, in |
| 12555 | * this case, return 1, otherwise, return 0. |
| 12556 | * |
| 12557 | */ |
| 12558 | static int pi_pre_block(struct kvm_vcpu *vcpu) |
| 12559 | { |
| 12560 | unsigned int dest; |
| 12561 | struct pi_desc old, new; |
| 12562 | struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); |
| 12563 | |
| 12564 | if (!kvm_arch_has_assigned_device(vcpu->kvm) || |
| 12565 | !irq_remapping_cap(IRQ_POSTING_CAP) || |
| 12566 | !kvm_vcpu_apicv_active(vcpu)) |
| 12567 | return 0; |
| 12568 | |
| 12569 | WARN_ON(irqs_disabled()); |
| 12570 | local_irq_disable(); |
| 12571 | if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { |
| 12572 | vcpu->pre_pcpu = vcpu->cpu; |
| 12573 | spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); |
| 12574 | list_add_tail(&vcpu->blocked_vcpu_list, |
| 12575 | &per_cpu(blocked_vcpu_on_cpu, |
| 12576 | vcpu->pre_pcpu)); |
| 12577 | spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); |
| 12578 | } |
| 12579 | |
| 12580 | do { |
| 12581 | old.control = new.control = pi_desc->control; |
| 12582 | |
| 12583 | WARN((pi_desc->sn == 1), |
| 12584 | "Warning: SN field of posted-interrupts " |
| 12585 | "is set before blocking\n"); |
| 12586 | |
| 12587 | /* |
| 12588 | * Since vCPU can be preempted during this process, |
| 12589 | * vcpu->cpu could be different with pre_pcpu, we |
| 12590 | * need to set pre_pcpu as the destination of wakeup |
| 12591 | * notification event, then we can find the right vCPU |
| 12592 | * to wakeup in wakeup handler if interrupts happen |
| 12593 | * when the vCPU is in blocked state. |
| 12594 | */ |
| 12595 | dest = cpu_physical_id(vcpu->pre_pcpu); |
| 12596 | |
| 12597 | if (x2apic_enabled()) |
| 12598 | new.ndst = dest; |
| 12599 | else |
| 12600 | new.ndst = (dest << 8) & 0xFF00; |
| 12601 | |
| 12602 | /* set 'NV' to 'wakeup vector' */ |
| 12603 | new.nv = POSTED_INTR_WAKEUP_VECTOR; |
| 12604 | } while (cmpxchg64(&pi_desc->control, old.control, |
| 12605 | new.control) != old.control); |
| 12606 | |
| 12607 | /* We should not block the vCPU if an interrupt is posted for it. */ |
| 12608 | if (pi_test_on(pi_desc) == 1) |
| 12609 | __pi_post_block(vcpu); |
| 12610 | |
| 12611 | local_irq_enable(); |
| 12612 | return (vcpu->pre_pcpu == -1); |
| 12613 | } |
| 12614 | |
| 12615 | static int vmx_pre_block(struct kvm_vcpu *vcpu) |
| 12616 | { |
| 12617 | if (pi_pre_block(vcpu)) |
| 12618 | return 1; |
| 12619 | |
| 12620 | if (kvm_lapic_hv_timer_in_use(vcpu)) |
| 12621 | kvm_lapic_switch_to_sw_timer(vcpu); |
| 12622 | |
| 12623 | return 0; |
| 12624 | } |
| 12625 | |
| 12626 | static void pi_post_block(struct kvm_vcpu *vcpu) |
| 12627 | { |
| 12628 | if (vcpu->pre_pcpu == -1) |
| 12629 | return; |
| 12630 | |
| 12631 | WARN_ON(irqs_disabled()); |
| 12632 | local_irq_disable(); |
| 12633 | __pi_post_block(vcpu); |
| 12634 | local_irq_enable(); |
| 12635 | } |
| 12636 | |
| 12637 | static void vmx_post_block(struct kvm_vcpu *vcpu) |
| 12638 | { |
| 12639 | if (kvm_x86_ops->set_hv_timer) |
| 12640 | kvm_lapic_switch_to_hv_timer(vcpu); |
| 12641 | |
| 12642 | pi_post_block(vcpu); |
| 12643 | } |
| 12644 | |
| 12645 | /* |
| 12646 | * vmx_update_pi_irte - set IRTE for Posted-Interrupts |
| 12647 | * |
| 12648 | * @kvm: kvm |
| 12649 | * @host_irq: host irq of the interrupt |
| 12650 | * @guest_irq: gsi of the interrupt |
| 12651 | * @set: set or unset PI |
| 12652 | * returns 0 on success, < 0 on failure |
| 12653 | */ |
| 12654 | static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, |
| 12655 | uint32_t guest_irq, bool set) |
| 12656 | { |
| 12657 | struct kvm_kernel_irq_routing_entry *e; |
| 12658 | struct kvm_irq_routing_table *irq_rt; |
| 12659 | struct kvm_lapic_irq irq; |
| 12660 | struct kvm_vcpu *vcpu; |
| 12661 | struct vcpu_data vcpu_info; |
| 12662 | int idx, ret = 0; |
| 12663 | |
| 12664 | if (!kvm_arch_has_assigned_device(kvm) || |
| 12665 | !irq_remapping_cap(IRQ_POSTING_CAP) || |
| 12666 | !kvm_vcpu_apicv_active(kvm->vcpus[0])) |
| 12667 | return 0; |
| 12668 | |
| 12669 | idx = srcu_read_lock(&kvm->irq_srcu); |
| 12670 | irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); |
| 12671 | if (guest_irq >= irq_rt->nr_rt_entries || |
| 12672 | hlist_empty(&irq_rt->map[guest_irq])) { |
| 12673 | pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", |
| 12674 | guest_irq, irq_rt->nr_rt_entries); |
| 12675 | goto out; |
| 12676 | } |
| 12677 | |
| 12678 | hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { |
| 12679 | if (e->type != KVM_IRQ_ROUTING_MSI) |
| 12680 | continue; |
| 12681 | /* |
| 12682 | * VT-d PI cannot support posting multicast/broadcast |
| 12683 | * interrupts to a vCPU, we still use interrupt remapping |
| 12684 | * for these kind of interrupts. |
| 12685 | * |
| 12686 | * For lowest-priority interrupts, we only support |
| 12687 | * those with single CPU as the destination, e.g. user |
| 12688 | * configures the interrupts via /proc/irq or uses |
| 12689 | * irqbalance to make the interrupts single-CPU. |
| 12690 | * |
| 12691 | * We will support full lowest-priority interrupt later. |
| 12692 | */ |
| 12693 | |
| 12694 | kvm_set_msi_irq(kvm, e, &irq); |
| 12695 | if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { |
| 12696 | /* |
| 12697 | * Make sure the IRTE is in remapped mode if |
| 12698 | * we don't handle it in posted mode. |
| 12699 | */ |
| 12700 | ret = irq_set_vcpu_affinity(host_irq, NULL); |
| 12701 | if (ret < 0) { |
| 12702 | printk(KERN_INFO |
| 12703 | "failed to back to remapped mode, irq: %u\n", |
| 12704 | host_irq); |
| 12705 | goto out; |
| 12706 | } |
| 12707 | |
| 12708 | continue; |
| 12709 | } |
| 12710 | |
| 12711 | vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); |
| 12712 | vcpu_info.vector = irq.vector; |
| 12713 | |
| 12714 | trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, |
| 12715 | vcpu_info.vector, vcpu_info.pi_desc_addr, set); |
| 12716 | |
| 12717 | if (set) |
| 12718 | ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); |
| 12719 | else |
| 12720 | ret = irq_set_vcpu_affinity(host_irq, NULL); |
| 12721 | |
| 12722 | if (ret < 0) { |
| 12723 | printk(KERN_INFO "%s: failed to update PI IRTE\n", |
| 12724 | __func__); |
| 12725 | goto out; |
| 12726 | } |
| 12727 | } |
| 12728 | |
| 12729 | ret = 0; |
| 12730 | out: |
| 12731 | srcu_read_unlock(&kvm->irq_srcu, idx); |
| 12732 | return ret; |
| 12733 | } |
| 12734 | |
| 12735 | static void vmx_setup_mce(struct kvm_vcpu *vcpu) |
| 12736 | { |
| 12737 | if (vcpu->arch.mcg_cap & MCG_LMCE_P) |
| 12738 | to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= |
| 12739 | FEATURE_CONTROL_LMCE; |
| 12740 | else |
| 12741 | to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= |
| 12742 | ~FEATURE_CONTROL_LMCE; |
| 12743 | } |
| 12744 | |
| 12745 | static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { |
| 12746 | .cpu_has_kvm_support = cpu_has_kvm_support, |
| 12747 | .disabled_by_bios = vmx_disabled_by_bios, |
| 12748 | .hardware_setup = hardware_setup, |
| 12749 | .hardware_unsetup = hardware_unsetup, |
| 12750 | .check_processor_compatibility = vmx_check_processor_compat, |
| 12751 | .hardware_enable = hardware_enable, |
| 12752 | .hardware_disable = hardware_disable, |
| 12753 | .cpu_has_accelerated_tpr = report_flexpriority, |
| 12754 | .has_emulated_msr = vmx_has_emulated_msr, |
| 12755 | |
| 12756 | .vm_init = vmx_vm_init, |
| 12757 | |
| 12758 | .vcpu_create = vmx_create_vcpu, |
| 12759 | .vcpu_free = vmx_free_vcpu, |
| 12760 | .vcpu_reset = vmx_vcpu_reset, |
| 12761 | |
| 12762 | .prepare_guest_switch = vmx_save_host_state, |
| 12763 | .vcpu_load = vmx_vcpu_load, |
| 12764 | .vcpu_put = vmx_vcpu_put, |
| 12765 | |
| 12766 | .update_bp_intercept = update_exception_bitmap, |
| 12767 | .get_msr_feature = vmx_get_msr_feature, |
| 12768 | .get_msr = vmx_get_msr, |
| 12769 | .set_msr = vmx_set_msr, |
| 12770 | .get_segment_base = vmx_get_segment_base, |
| 12771 | .get_segment = vmx_get_segment, |
| 12772 | .set_segment = vmx_set_segment, |
| 12773 | .get_cpl = vmx_get_cpl, |
| 12774 | .get_cs_db_l_bits = vmx_get_cs_db_l_bits, |
| 12775 | .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, |
| 12776 | .decache_cr3 = vmx_decache_cr3, |
| 12777 | .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, |
| 12778 | .set_cr0 = vmx_set_cr0, |
| 12779 | .set_cr3 = vmx_set_cr3, |
| 12780 | .set_cr4 = vmx_set_cr4, |
| 12781 | .set_efer = vmx_set_efer, |
| 12782 | .get_idt = vmx_get_idt, |
| 12783 | .set_idt = vmx_set_idt, |
| 12784 | .get_gdt = vmx_get_gdt, |
| 12785 | .set_gdt = vmx_set_gdt, |
| 12786 | .get_dr6 = vmx_get_dr6, |
| 12787 | .set_dr6 = vmx_set_dr6, |
| 12788 | .set_dr7 = vmx_set_dr7, |
| 12789 | .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, |
| 12790 | .cache_reg = vmx_cache_reg, |
| 12791 | .get_rflags = vmx_get_rflags, |
| 12792 | .set_rflags = vmx_set_rflags, |
| 12793 | |
| 12794 | .tlb_flush = vmx_flush_tlb, |
| 12795 | |
| 12796 | .run = vmx_vcpu_run, |
| 12797 | .handle_exit = vmx_handle_exit, |
| 12798 | .skip_emulated_instruction = skip_emulated_instruction, |
| 12799 | .set_interrupt_shadow = vmx_set_interrupt_shadow, |
| 12800 | .get_interrupt_shadow = vmx_get_interrupt_shadow, |
| 12801 | .patch_hypercall = vmx_patch_hypercall, |
| 12802 | .set_irq = vmx_inject_irq, |
| 12803 | .set_nmi = vmx_inject_nmi, |
| 12804 | .queue_exception = vmx_queue_exception, |
| 12805 | .cancel_injection = vmx_cancel_injection, |
| 12806 | .interrupt_allowed = vmx_interrupt_allowed, |
| 12807 | .nmi_allowed = vmx_nmi_allowed, |
| 12808 | .get_nmi_mask = vmx_get_nmi_mask, |
| 12809 | .set_nmi_mask = vmx_set_nmi_mask, |
| 12810 | .enable_nmi_window = enable_nmi_window, |
| 12811 | .enable_irq_window = enable_irq_window, |
| 12812 | .update_cr8_intercept = update_cr8_intercept, |
| 12813 | .set_virtual_apic_mode = vmx_set_virtual_apic_mode, |
| 12814 | .set_apic_access_page_addr = vmx_set_apic_access_page_addr, |
| 12815 | .get_enable_apicv = vmx_get_enable_apicv, |
| 12816 | .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, |
| 12817 | .load_eoi_exitmap = vmx_load_eoi_exitmap, |
| 12818 | .apicv_post_state_restore = vmx_apicv_post_state_restore, |
| 12819 | .hwapic_irr_update = vmx_hwapic_irr_update, |
| 12820 | .hwapic_isr_update = vmx_hwapic_isr_update, |
| 12821 | .sync_pir_to_irr = vmx_sync_pir_to_irr, |
| 12822 | .deliver_posted_interrupt = vmx_deliver_posted_interrupt, |
| 12823 | .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt, |
| 12824 | |
| 12825 | .set_tss_addr = vmx_set_tss_addr, |
| 12826 | .get_tdp_level = get_ept_level, |
| 12827 | .get_mt_mask = vmx_get_mt_mask, |
| 12828 | |
| 12829 | .get_exit_info = vmx_get_exit_info, |
| 12830 | |
| 12831 | .get_lpage_level = vmx_get_lpage_level, |
| 12832 | |
| 12833 | .cpuid_update = vmx_cpuid_update, |
| 12834 | |
| 12835 | .rdtscp_supported = vmx_rdtscp_supported, |
| 12836 | .invpcid_supported = vmx_invpcid_supported, |
| 12837 | |
| 12838 | .set_supported_cpuid = vmx_set_supported_cpuid, |
| 12839 | |
| 12840 | .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, |
| 12841 | |
| 12842 | .write_tsc_offset = vmx_write_tsc_offset, |
| 12843 | |
| 12844 | .set_tdp_cr3 = vmx_set_cr3, |
| 12845 | |
| 12846 | .check_intercept = vmx_check_intercept, |
| 12847 | .handle_external_intr = vmx_handle_external_intr, |
| 12848 | .mpx_supported = vmx_mpx_supported, |
| 12849 | .xsaves_supported = vmx_xsaves_supported, |
| 12850 | |
| 12851 | .check_nested_events = vmx_check_nested_events, |
| 12852 | |
| 12853 | .sched_in = vmx_sched_in, |
| 12854 | |
| 12855 | .slot_enable_log_dirty = vmx_slot_enable_log_dirty, |
| 12856 | .slot_disable_log_dirty = vmx_slot_disable_log_dirty, |
| 12857 | .flush_log_dirty = vmx_flush_log_dirty, |
| 12858 | .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, |
| 12859 | .write_log_dirty = vmx_write_pml_buffer, |
| 12860 | |
| 12861 | .pre_block = vmx_pre_block, |
| 12862 | .post_block = vmx_post_block, |
| 12863 | |
| 12864 | .pmu_ops = &intel_pmu_ops, |
| 12865 | |
| 12866 | .update_pi_irte = vmx_update_pi_irte, |
| 12867 | |
| 12868 | #ifdef CONFIG_X86_64 |
| 12869 | .set_hv_timer = vmx_set_hv_timer, |
| 12870 | .cancel_hv_timer = vmx_cancel_hv_timer, |
| 12871 | #endif |
| 12872 | |
| 12873 | .setup_mce = vmx_setup_mce, |
| 12874 | }; |
| 12875 | |
| 12876 | static void vmx_cleanup_l1d_flush(void) |
| 12877 | { |
| 12878 | if (vmx_l1d_flush_pages) { |
| 12879 | free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); |
| 12880 | vmx_l1d_flush_pages = NULL; |
| 12881 | } |
| 12882 | /* Restore state so sysfs ignores VMX */ |
| 12883 | l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; |
| 12884 | } |
| 12885 | |
| 12886 | |
| 12887 | static void vmx_exit(void) |
| 12888 | { |
| 12889 | #ifdef CONFIG_KEXEC_CORE |
| 12890 | RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); |
| 12891 | synchronize_rcu(); |
| 12892 | #endif |
| 12893 | |
| 12894 | kvm_exit(); |
| 12895 | |
| 12896 | vmx_cleanup_l1d_flush(); |
| 12897 | } |
| 12898 | module_exit(vmx_exit) |
| 12899 | |
| 12900 | static int __init vmx_init(void) |
| 12901 | { |
| 12902 | int r, cpu; |
| 12903 | |
| 12904 | r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), |
| 12905 | __alignof__(struct vcpu_vmx), THIS_MODULE); |
| 12906 | if (r) |
| 12907 | return r; |
| 12908 | |
| 12909 | /* |
| 12910 | * Must be called after kvm_init() so enable_ept is properly set |
| 12911 | * up. Hand the parameter mitigation value in which was stored in |
| 12912 | * the pre module init parser. If no parameter was given, it will |
| 12913 | * contain 'auto' which will be turned into the default 'cond' |
| 12914 | * mitigation mode. |
| 12915 | */ |
| 12916 | if (boot_cpu_has(X86_BUG_L1TF)) { |
| 12917 | r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); |
| 12918 | if (r) { |
| 12919 | vmx_exit(); |
| 12920 | return r; |
| 12921 | } |
| 12922 | } |
| 12923 | |
| 12924 | for_each_possible_cpu(cpu) { |
| 12925 | INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); |
| 12926 | INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); |
| 12927 | spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); |
| 12928 | } |
| 12929 | |
| 12930 | #ifdef CONFIG_KEXEC_CORE |
| 12931 | rcu_assign_pointer(crash_vmclear_loaded_vmcss, |
| 12932 | crash_vmclear_local_loaded_vmcss); |
| 12933 | #endif |
| 12934 | |
| 12935 | return 0; |
| 12936 | } |
| 12937 | module_init(vmx_init) |