rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2002 Andi Kleen, SuSE Labs. |
| 3 | * Thanks to Ben LaHaise for precious feedback. |
| 4 | */ |
| 5 | #include <linux/highmem.h> |
| 6 | #include <linux/bootmem.h> |
| 7 | #include <linux/sched.h> |
| 8 | #include <linux/mm.h> |
| 9 | #include <linux/interrupt.h> |
| 10 | #include <linux/seq_file.h> |
| 11 | #include <linux/debugfs.h> |
| 12 | #include <linux/pfn.h> |
| 13 | #include <linux/percpu.h> |
| 14 | #include <linux/gfp.h> |
| 15 | #include <linux/pci.h> |
| 16 | #include <linux/vmalloc.h> |
| 17 | |
| 18 | #include <asm/e820/api.h> |
| 19 | #include <asm/processor.h> |
| 20 | #include <asm/tlbflush.h> |
| 21 | #include <asm/sections.h> |
| 22 | #include <asm/setup.h> |
| 23 | #include <linux/uaccess.h> |
| 24 | #include <asm/pgalloc.h> |
| 25 | #include <asm/proto.h> |
| 26 | #include <asm/pat.h> |
| 27 | #include <asm/set_memory.h> |
| 28 | |
| 29 | /* |
| 30 | * The current flushing context - we pass it instead of 5 arguments: |
| 31 | */ |
| 32 | struct cpa_data { |
| 33 | unsigned long *vaddr; |
| 34 | pgd_t *pgd; |
| 35 | pgprot_t mask_set; |
| 36 | pgprot_t mask_clr; |
| 37 | unsigned long numpages; |
| 38 | int flags; |
| 39 | unsigned long pfn; |
| 40 | unsigned force_split : 1; |
| 41 | int curpage; |
| 42 | struct page **pages; |
| 43 | }; |
| 44 | |
| 45 | /* |
| 46 | * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings) |
| 47 | * using cpa_lock. So that we don't allow any other cpu, with stale large tlb |
| 48 | * entries change the page attribute in parallel to some other cpu |
| 49 | * splitting a large page entry along with changing the attribute. |
| 50 | */ |
| 51 | static DEFINE_SPINLOCK(cpa_lock); |
| 52 | |
| 53 | #define CPA_FLUSHTLB 1 |
| 54 | #define CPA_ARRAY 2 |
| 55 | #define CPA_PAGES_ARRAY 4 |
| 56 | |
| 57 | #ifdef CONFIG_PROC_FS |
| 58 | static unsigned long direct_pages_count[PG_LEVEL_NUM]; |
| 59 | |
| 60 | void update_page_count(int level, unsigned long pages) |
| 61 | { |
| 62 | /* Protect against CPA */ |
| 63 | spin_lock(&pgd_lock); |
| 64 | direct_pages_count[level] += pages; |
| 65 | spin_unlock(&pgd_lock); |
| 66 | } |
| 67 | |
| 68 | static void split_page_count(int level) |
| 69 | { |
| 70 | if (direct_pages_count[level] == 0) |
| 71 | return; |
| 72 | |
| 73 | direct_pages_count[level]--; |
| 74 | direct_pages_count[level - 1] += PTRS_PER_PTE; |
| 75 | } |
| 76 | |
| 77 | void arch_report_meminfo(struct seq_file *m) |
| 78 | { |
| 79 | seq_printf(m, "DirectMap4k: %8lu kB\n", |
| 80 | direct_pages_count[PG_LEVEL_4K] << 2); |
| 81 | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) |
| 82 | seq_printf(m, "DirectMap2M: %8lu kB\n", |
| 83 | direct_pages_count[PG_LEVEL_2M] << 11); |
| 84 | #else |
| 85 | seq_printf(m, "DirectMap4M: %8lu kB\n", |
| 86 | direct_pages_count[PG_LEVEL_2M] << 12); |
| 87 | #endif |
| 88 | if (direct_gbpages) |
| 89 | seq_printf(m, "DirectMap1G: %8lu kB\n", |
| 90 | direct_pages_count[PG_LEVEL_1G] << 20); |
| 91 | } |
| 92 | #else |
| 93 | static inline void split_page_count(int level) { } |
| 94 | #endif |
| 95 | |
| 96 | #ifdef CONFIG_X86_64 |
| 97 | |
| 98 | static inline unsigned long highmap_start_pfn(void) |
| 99 | { |
| 100 | return __pa_symbol(_text) >> PAGE_SHIFT; |
| 101 | } |
| 102 | |
| 103 | static inline unsigned long highmap_end_pfn(void) |
| 104 | { |
| 105 | /* Do not reference physical address outside the kernel. */ |
| 106 | return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT; |
| 107 | } |
| 108 | |
| 109 | #endif |
| 110 | |
| 111 | static inline int |
| 112 | within(unsigned long addr, unsigned long start, unsigned long end) |
| 113 | { |
| 114 | return addr >= start && addr < end; |
| 115 | } |
| 116 | |
| 117 | static inline int |
| 118 | within_inclusive(unsigned long addr, unsigned long start, unsigned long end) |
| 119 | { |
| 120 | return addr >= start && addr <= end; |
| 121 | } |
| 122 | |
| 123 | /* |
| 124 | * Flushing functions |
| 125 | */ |
| 126 | |
| 127 | /** |
| 128 | * clflush_cache_range - flush a cache range with clflush |
| 129 | * @vaddr: virtual start address |
| 130 | * @size: number of bytes to flush |
| 131 | * |
| 132 | * clflushopt is an unordered instruction which needs fencing with mfence or |
| 133 | * sfence to avoid ordering issues. |
| 134 | */ |
| 135 | void clflush_cache_range(void *vaddr, unsigned int size) |
| 136 | { |
| 137 | const unsigned long clflush_size = boot_cpu_data.x86_clflush_size; |
| 138 | void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1)); |
| 139 | void *vend = vaddr + size; |
| 140 | |
| 141 | if (p >= vend) |
| 142 | return; |
| 143 | |
| 144 | mb(); |
| 145 | |
| 146 | for (; p < vend; p += clflush_size) |
| 147 | clflushopt(p); |
| 148 | |
| 149 | mb(); |
| 150 | } |
| 151 | EXPORT_SYMBOL_GPL(clflush_cache_range); |
| 152 | |
| 153 | void arch_invalidate_pmem(void *addr, size_t size) |
| 154 | { |
| 155 | clflush_cache_range(addr, size); |
| 156 | } |
| 157 | EXPORT_SYMBOL_GPL(arch_invalidate_pmem); |
| 158 | |
| 159 | static void __cpa_flush_all(void *arg) |
| 160 | { |
| 161 | unsigned long cache = (unsigned long)arg; |
| 162 | |
| 163 | /* |
| 164 | * Flush all to work around Errata in early athlons regarding |
| 165 | * large page flushing. |
| 166 | */ |
| 167 | __flush_tlb_all(); |
| 168 | |
| 169 | if (cache && boot_cpu_data.x86 >= 4) |
| 170 | wbinvd(); |
| 171 | } |
| 172 | |
| 173 | static void cpa_flush_all(unsigned long cache) |
| 174 | { |
| 175 | BUG_ON(irqs_disabled()); |
| 176 | |
| 177 | on_each_cpu(__cpa_flush_all, (void *) cache, 1); |
| 178 | } |
| 179 | |
| 180 | static void __cpa_flush_range(void *arg) |
| 181 | { |
| 182 | /* |
| 183 | * We could optimize that further and do individual per page |
| 184 | * tlb invalidates for a low number of pages. Caveat: we must |
| 185 | * flush the high aliases on 64bit as well. |
| 186 | */ |
| 187 | __flush_tlb_all(); |
| 188 | } |
| 189 | |
| 190 | static void cpa_flush_range(unsigned long start, int numpages, int cache) |
| 191 | { |
| 192 | unsigned int i, level; |
| 193 | unsigned long addr; |
| 194 | |
| 195 | BUG_ON(irqs_disabled() && !early_boot_irqs_disabled); |
| 196 | WARN_ON(PAGE_ALIGN(start) != start); |
| 197 | |
| 198 | on_each_cpu(__cpa_flush_range, NULL, 1); |
| 199 | |
| 200 | if (!cache) |
| 201 | return; |
| 202 | |
| 203 | /* |
| 204 | * We only need to flush on one CPU, |
| 205 | * clflush is a MESI-coherent instruction that |
| 206 | * will cause all other CPUs to flush the same |
| 207 | * cachelines: |
| 208 | */ |
| 209 | for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) { |
| 210 | pte_t *pte = lookup_address(addr, &level); |
| 211 | |
| 212 | /* |
| 213 | * Only flush present addresses: |
| 214 | */ |
| 215 | if (pte && (pte_val(*pte) & _PAGE_PRESENT)) |
| 216 | clflush_cache_range((void *) addr, PAGE_SIZE); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | static void cpa_flush_array(unsigned long *start, int numpages, int cache, |
| 221 | int in_flags, struct page **pages) |
| 222 | { |
| 223 | unsigned int i, level; |
| 224 | #ifdef CONFIG_PREEMPT |
| 225 | /* |
| 226 | * Avoid wbinvd() because it causes latencies on all CPUs, |
| 227 | * regardless of any CPU isolation that may be in effect. |
| 228 | * |
| 229 | * This should be extended for CAT enabled systems independent of |
| 230 | * PREEMPT because wbinvd() does not respect the CAT partitions and |
| 231 | * this is exposed to unpriviledged users through the graphics |
| 232 | * subsystem. |
| 233 | */ |
| 234 | unsigned long do_wbinvd = 0; |
| 235 | #else |
| 236 | unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */ |
| 237 | #endif |
| 238 | |
| 239 | BUG_ON(irqs_disabled()); |
| 240 | |
| 241 | on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1); |
| 242 | |
| 243 | if (!cache || do_wbinvd) |
| 244 | return; |
| 245 | |
| 246 | /* |
| 247 | * We only need to flush on one CPU, |
| 248 | * clflush is a MESI-coherent instruction that |
| 249 | * will cause all other CPUs to flush the same |
| 250 | * cachelines: |
| 251 | */ |
| 252 | for (i = 0; i < numpages; i++) { |
| 253 | unsigned long addr; |
| 254 | pte_t *pte; |
| 255 | |
| 256 | if (in_flags & CPA_PAGES_ARRAY) |
| 257 | addr = (unsigned long)page_address(pages[i]); |
| 258 | else |
| 259 | addr = start[i]; |
| 260 | |
| 261 | pte = lookup_address(addr, &level); |
| 262 | |
| 263 | /* |
| 264 | * Only flush present addresses: |
| 265 | */ |
| 266 | if (pte && (pte_val(*pte) & _PAGE_PRESENT)) |
| 267 | clflush_cache_range((void *)addr, PAGE_SIZE); |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * Certain areas of memory on x86 require very specific protection flags, |
| 273 | * for example the BIOS area or kernel text. Callers don't always get this |
| 274 | * right (again, ioremap() on BIOS memory is not uncommon) so this function |
| 275 | * checks and fixes these known static required protection bits. |
| 276 | */ |
| 277 | static inline pgprot_t static_protections(pgprot_t prot, unsigned long address, |
| 278 | unsigned long pfn) |
| 279 | { |
| 280 | pgprot_t forbidden = __pgprot(0); |
| 281 | |
| 282 | /* |
| 283 | * The BIOS area between 640k and 1Mb needs to be executable for |
| 284 | * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support. |
| 285 | */ |
| 286 | #ifdef CONFIG_PCI_BIOS |
| 287 | if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT)) |
| 288 | pgprot_val(forbidden) |= _PAGE_NX; |
| 289 | #endif |
| 290 | |
| 291 | /* |
| 292 | * The kernel text needs to be executable for obvious reasons |
| 293 | * Does not cover __inittext since that is gone later on. On |
| 294 | * 64bit we do not enforce !NX on the low mapping |
| 295 | */ |
| 296 | if (within(address, (unsigned long)_text, (unsigned long)_etext)) |
| 297 | pgprot_val(forbidden) |= _PAGE_NX; |
| 298 | |
| 299 | /* |
| 300 | * The .rodata section needs to be read-only. Using the pfn |
| 301 | * catches all aliases. This also includes __ro_after_init, |
| 302 | * so do not enforce until kernel_set_to_readonly is true. |
| 303 | */ |
| 304 | if (kernel_set_to_readonly && |
| 305 | within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT, |
| 306 | __pa_symbol(__end_rodata) >> PAGE_SHIFT)) |
| 307 | pgprot_val(forbidden) |= _PAGE_RW; |
| 308 | |
| 309 | #if defined(CONFIG_X86_64) |
| 310 | /* |
| 311 | * Once the kernel maps the text as RO (kernel_set_to_readonly is set), |
| 312 | * kernel text mappings for the large page aligned text, rodata sections |
| 313 | * will be always read-only. For the kernel identity mappings covering |
| 314 | * the holes caused by this alignment can be anything that user asks. |
| 315 | * |
| 316 | * This will preserve the large page mappings for kernel text/data |
| 317 | * at no extra cost. |
| 318 | */ |
| 319 | if (kernel_set_to_readonly && |
| 320 | within(address, (unsigned long)_text, |
| 321 | (unsigned long)__end_rodata_hpage_align)) { |
| 322 | unsigned int level; |
| 323 | |
| 324 | /* |
| 325 | * Don't enforce the !RW mapping for the kernel text mapping, |
| 326 | * if the current mapping is already using small page mapping. |
| 327 | * No need to work hard to preserve large page mappings in this |
| 328 | * case. |
| 329 | * |
| 330 | * This also fixes the Linux Xen paravirt guest boot failure |
| 331 | * (because of unexpected read-only mappings for kernel identity |
| 332 | * mappings). In this paravirt guest case, the kernel text |
| 333 | * mapping and the kernel identity mapping share the same |
| 334 | * page-table pages. Thus we can't really use different |
| 335 | * protections for the kernel text and identity mappings. Also, |
| 336 | * these shared mappings are made of small page mappings. |
| 337 | * Thus this don't enforce !RW mapping for small page kernel |
| 338 | * text mapping logic will help Linux Xen parvirt guest boot |
| 339 | * as well. |
| 340 | */ |
| 341 | if (lookup_address(address, &level) && (level != PG_LEVEL_4K)) |
| 342 | pgprot_val(forbidden) |= _PAGE_RW; |
| 343 | } |
| 344 | #endif |
| 345 | |
| 346 | prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden)); |
| 347 | |
| 348 | return prot; |
| 349 | } |
| 350 | |
| 351 | /* |
| 352 | * Lookup the page table entry for a virtual address in a specific pgd. |
| 353 | * Return a pointer to the entry and the level of the mapping. |
| 354 | */ |
| 355 | pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address, |
| 356 | unsigned int *level) |
| 357 | { |
| 358 | p4d_t *p4d; |
| 359 | pud_t *pud; |
| 360 | pmd_t *pmd; |
| 361 | |
| 362 | *level = PG_LEVEL_NONE; |
| 363 | |
| 364 | if (pgd_none(*pgd)) |
| 365 | return NULL; |
| 366 | |
| 367 | p4d = p4d_offset(pgd, address); |
| 368 | if (p4d_none(*p4d)) |
| 369 | return NULL; |
| 370 | |
| 371 | *level = PG_LEVEL_512G; |
| 372 | if (p4d_large(*p4d) || !p4d_present(*p4d)) |
| 373 | return (pte_t *)p4d; |
| 374 | |
| 375 | pud = pud_offset(p4d, address); |
| 376 | if (pud_none(*pud)) |
| 377 | return NULL; |
| 378 | |
| 379 | *level = PG_LEVEL_1G; |
| 380 | if (pud_large(*pud) || !pud_present(*pud)) |
| 381 | return (pte_t *)pud; |
| 382 | |
| 383 | pmd = pmd_offset(pud, address); |
| 384 | if (pmd_none(*pmd)) |
| 385 | return NULL; |
| 386 | |
| 387 | *level = PG_LEVEL_2M; |
| 388 | if (pmd_large(*pmd) || !pmd_present(*pmd)) |
| 389 | return (pte_t *)pmd; |
| 390 | |
| 391 | *level = PG_LEVEL_4K; |
| 392 | |
| 393 | return pte_offset_kernel(pmd, address); |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | * Lookup the page table entry for a virtual address. Return a pointer |
| 398 | * to the entry and the level of the mapping. |
| 399 | * |
| 400 | * Note: We return pud and pmd either when the entry is marked large |
| 401 | * or when the present bit is not set. Otherwise we would return a |
| 402 | * pointer to a nonexisting mapping. |
| 403 | */ |
| 404 | pte_t *lookup_address(unsigned long address, unsigned int *level) |
| 405 | { |
| 406 | return lookup_address_in_pgd(pgd_offset_k(address), address, level); |
| 407 | } |
| 408 | EXPORT_SYMBOL_GPL(lookup_address); |
| 409 | |
| 410 | static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address, |
| 411 | unsigned int *level) |
| 412 | { |
| 413 | if (cpa->pgd) |
| 414 | return lookup_address_in_pgd(cpa->pgd + pgd_index(address), |
| 415 | address, level); |
| 416 | |
| 417 | return lookup_address(address, level); |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * Lookup the PMD entry for a virtual address. Return a pointer to the entry |
| 422 | * or NULL if not present. |
| 423 | */ |
| 424 | pmd_t *lookup_pmd_address(unsigned long address) |
| 425 | { |
| 426 | pgd_t *pgd; |
| 427 | p4d_t *p4d; |
| 428 | pud_t *pud; |
| 429 | |
| 430 | pgd = pgd_offset_k(address); |
| 431 | if (pgd_none(*pgd)) |
| 432 | return NULL; |
| 433 | |
| 434 | p4d = p4d_offset(pgd, address); |
| 435 | if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d)) |
| 436 | return NULL; |
| 437 | |
| 438 | pud = pud_offset(p4d, address); |
| 439 | if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud)) |
| 440 | return NULL; |
| 441 | |
| 442 | return pmd_offset(pud, address); |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * This is necessary because __pa() does not work on some |
| 447 | * kinds of memory, like vmalloc() or the alloc_remap() |
| 448 | * areas on 32-bit NUMA systems. The percpu areas can |
| 449 | * end up in this kind of memory, for instance. |
| 450 | * |
| 451 | * This could be optimized, but it is only intended to be |
| 452 | * used at inititalization time, and keeping it |
| 453 | * unoptimized should increase the testing coverage for |
| 454 | * the more obscure platforms. |
| 455 | */ |
| 456 | phys_addr_t slow_virt_to_phys(void *__virt_addr) |
| 457 | { |
| 458 | unsigned long virt_addr = (unsigned long)__virt_addr; |
| 459 | phys_addr_t phys_addr; |
| 460 | unsigned long offset; |
| 461 | enum pg_level level; |
| 462 | pte_t *pte; |
| 463 | |
| 464 | pte = lookup_address(virt_addr, &level); |
| 465 | BUG_ON(!pte); |
| 466 | |
| 467 | /* |
| 468 | * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t |
| 469 | * before being left-shifted PAGE_SHIFT bits -- this trick is to |
| 470 | * make 32-PAE kernel work correctly. |
| 471 | */ |
| 472 | switch (level) { |
| 473 | case PG_LEVEL_1G: |
| 474 | phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT; |
| 475 | offset = virt_addr & ~PUD_PAGE_MASK; |
| 476 | break; |
| 477 | case PG_LEVEL_2M: |
| 478 | phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT; |
| 479 | offset = virt_addr & ~PMD_PAGE_MASK; |
| 480 | break; |
| 481 | default: |
| 482 | phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; |
| 483 | offset = virt_addr & ~PAGE_MASK; |
| 484 | } |
| 485 | |
| 486 | return (phys_addr_t)(phys_addr | offset); |
| 487 | } |
| 488 | EXPORT_SYMBOL_GPL(slow_virt_to_phys); |
| 489 | |
| 490 | /* |
| 491 | * Set the new pmd in all the pgds we know about: |
| 492 | */ |
| 493 | static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) |
| 494 | { |
| 495 | /* change init_mm */ |
| 496 | set_pte_atomic(kpte, pte); |
| 497 | #ifdef CONFIG_X86_32 |
| 498 | if (!SHARED_KERNEL_PMD) { |
| 499 | struct page *page; |
| 500 | |
| 501 | list_for_each_entry(page, &pgd_list, lru) { |
| 502 | pgd_t *pgd; |
| 503 | p4d_t *p4d; |
| 504 | pud_t *pud; |
| 505 | pmd_t *pmd; |
| 506 | |
| 507 | pgd = (pgd_t *)page_address(page) + pgd_index(address); |
| 508 | p4d = p4d_offset(pgd, address); |
| 509 | pud = pud_offset(p4d, address); |
| 510 | pmd = pmd_offset(pud, address); |
| 511 | set_pte_atomic((pte_t *)pmd, pte); |
| 512 | } |
| 513 | } |
| 514 | #endif |
| 515 | } |
| 516 | |
| 517 | static int |
| 518 | try_preserve_large_page(pte_t *kpte, unsigned long address, |
| 519 | struct cpa_data *cpa) |
| 520 | { |
| 521 | unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn; |
| 522 | pte_t new_pte, old_pte, *tmp; |
| 523 | pgprot_t old_prot, new_prot, req_prot; |
| 524 | int i, do_split = 1; |
| 525 | enum pg_level level; |
| 526 | |
| 527 | if (cpa->force_split) |
| 528 | return 1; |
| 529 | |
| 530 | spin_lock(&pgd_lock); |
| 531 | /* |
| 532 | * Check for races, another CPU might have split this page |
| 533 | * up already: |
| 534 | */ |
| 535 | tmp = _lookup_address_cpa(cpa, address, &level); |
| 536 | if (tmp != kpte) |
| 537 | goto out_unlock; |
| 538 | |
| 539 | switch (level) { |
| 540 | case PG_LEVEL_2M: |
| 541 | old_prot = pmd_pgprot(*(pmd_t *)kpte); |
| 542 | old_pfn = pmd_pfn(*(pmd_t *)kpte); |
| 543 | break; |
| 544 | case PG_LEVEL_1G: |
| 545 | old_prot = pud_pgprot(*(pud_t *)kpte); |
| 546 | old_pfn = pud_pfn(*(pud_t *)kpte); |
| 547 | break; |
| 548 | default: |
| 549 | do_split = -EINVAL; |
| 550 | goto out_unlock; |
| 551 | } |
| 552 | |
| 553 | psize = page_level_size(level); |
| 554 | pmask = page_level_mask(level); |
| 555 | |
| 556 | /* |
| 557 | * Calculate the number of pages, which fit into this large |
| 558 | * page starting at address: |
| 559 | */ |
| 560 | nextpage_addr = (address + psize) & pmask; |
| 561 | numpages = (nextpage_addr - address) >> PAGE_SHIFT; |
| 562 | if (numpages < cpa->numpages) |
| 563 | cpa->numpages = numpages; |
| 564 | |
| 565 | /* |
| 566 | * We are safe now. Check whether the new pgprot is the same: |
| 567 | * Convert protection attributes to 4k-format, as cpa->mask* are set |
| 568 | * up accordingly. |
| 569 | */ |
| 570 | old_pte = *kpte; |
| 571 | req_prot = pgprot_large_2_4k(old_prot); |
| 572 | |
| 573 | pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr); |
| 574 | pgprot_val(req_prot) |= pgprot_val(cpa->mask_set); |
| 575 | |
| 576 | /* |
| 577 | * req_prot is in format of 4k pages. It must be converted to large |
| 578 | * page format: the caching mode includes the PAT bit located at |
| 579 | * different bit positions in the two formats. |
| 580 | */ |
| 581 | req_prot = pgprot_4k_2_large(req_prot); |
| 582 | |
| 583 | /* |
| 584 | * Set the PSE and GLOBAL flags only if the PRESENT flag is |
| 585 | * set otherwise pmd_present/pmd_huge will return true even on |
| 586 | * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL |
| 587 | * for the ancient hardware that doesn't support it. |
| 588 | */ |
| 589 | if (pgprot_val(req_prot) & _PAGE_PRESENT) |
| 590 | pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL; |
| 591 | else |
| 592 | pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL); |
| 593 | |
| 594 | req_prot = canon_pgprot(req_prot); |
| 595 | |
| 596 | /* |
| 597 | * old_pfn points to the large page base pfn. So we need |
| 598 | * to add the offset of the virtual address: |
| 599 | */ |
| 600 | pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT); |
| 601 | cpa->pfn = pfn; |
| 602 | |
| 603 | new_prot = static_protections(req_prot, address, pfn); |
| 604 | |
| 605 | /* |
| 606 | * We need to check the full range, whether |
| 607 | * static_protection() requires a different pgprot for one of |
| 608 | * the pages in the range we try to preserve: |
| 609 | */ |
| 610 | addr = address & pmask; |
| 611 | pfn = old_pfn; |
| 612 | for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) { |
| 613 | pgprot_t chk_prot = static_protections(req_prot, addr, pfn); |
| 614 | |
| 615 | if (pgprot_val(chk_prot) != pgprot_val(new_prot)) |
| 616 | goto out_unlock; |
| 617 | } |
| 618 | |
| 619 | /* |
| 620 | * If there are no changes, return. maxpages has been updated |
| 621 | * above: |
| 622 | */ |
| 623 | if (pgprot_val(new_prot) == pgprot_val(old_prot)) { |
| 624 | do_split = 0; |
| 625 | goto out_unlock; |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * We need to change the attributes. Check, whether we can |
| 630 | * change the large page in one go. We request a split, when |
| 631 | * the address is not aligned and the number of pages is |
| 632 | * smaller than the number of pages in the large page. Note |
| 633 | * that we limited the number of possible pages already to |
| 634 | * the number of pages in the large page. |
| 635 | */ |
| 636 | if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) { |
| 637 | /* |
| 638 | * The address is aligned and the number of pages |
| 639 | * covers the full page. |
| 640 | */ |
| 641 | new_pte = pfn_pte(old_pfn, new_prot); |
| 642 | __set_pmd_pte(kpte, address, new_pte); |
| 643 | cpa->flags |= CPA_FLUSHTLB; |
| 644 | do_split = 0; |
| 645 | } |
| 646 | |
| 647 | out_unlock: |
| 648 | spin_unlock(&pgd_lock); |
| 649 | |
| 650 | return do_split; |
| 651 | } |
| 652 | |
| 653 | static int |
| 654 | __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address, |
| 655 | struct page *base) |
| 656 | { |
| 657 | pte_t *pbase = (pte_t *)page_address(base); |
| 658 | unsigned long ref_pfn, pfn, pfninc = 1; |
| 659 | unsigned int i, level; |
| 660 | pte_t *tmp; |
| 661 | pgprot_t ref_prot; |
| 662 | |
| 663 | spin_lock(&pgd_lock); |
| 664 | /* |
| 665 | * Check for races, another CPU might have split this page |
| 666 | * up for us already: |
| 667 | */ |
| 668 | tmp = _lookup_address_cpa(cpa, address, &level); |
| 669 | if (tmp != kpte) { |
| 670 | spin_unlock(&pgd_lock); |
| 671 | return 1; |
| 672 | } |
| 673 | |
| 674 | paravirt_alloc_pte(&init_mm, page_to_pfn(base)); |
| 675 | |
| 676 | switch (level) { |
| 677 | case PG_LEVEL_2M: |
| 678 | ref_prot = pmd_pgprot(*(pmd_t *)kpte); |
| 679 | /* clear PSE and promote PAT bit to correct position */ |
| 680 | ref_prot = pgprot_large_2_4k(ref_prot); |
| 681 | ref_pfn = pmd_pfn(*(pmd_t *)kpte); |
| 682 | break; |
| 683 | |
| 684 | case PG_LEVEL_1G: |
| 685 | ref_prot = pud_pgprot(*(pud_t *)kpte); |
| 686 | ref_pfn = pud_pfn(*(pud_t *)kpte); |
| 687 | pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT; |
| 688 | |
| 689 | /* |
| 690 | * Clear the PSE flags if the PRESENT flag is not set |
| 691 | * otherwise pmd_present/pmd_huge will return true |
| 692 | * even on a non present pmd. |
| 693 | */ |
| 694 | if (!(pgprot_val(ref_prot) & _PAGE_PRESENT)) |
| 695 | pgprot_val(ref_prot) &= ~_PAGE_PSE; |
| 696 | break; |
| 697 | |
| 698 | default: |
| 699 | spin_unlock(&pgd_lock); |
| 700 | return 1; |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * Set the GLOBAL flags only if the PRESENT flag is set |
| 705 | * otherwise pmd/pte_present will return true even on a non |
| 706 | * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL |
| 707 | * for the ancient hardware that doesn't support it. |
| 708 | */ |
| 709 | if (pgprot_val(ref_prot) & _PAGE_PRESENT) |
| 710 | pgprot_val(ref_prot) |= _PAGE_GLOBAL; |
| 711 | else |
| 712 | pgprot_val(ref_prot) &= ~_PAGE_GLOBAL; |
| 713 | |
| 714 | /* |
| 715 | * Get the target pfn from the original entry: |
| 716 | */ |
| 717 | pfn = ref_pfn; |
| 718 | for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc) |
| 719 | set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot))); |
| 720 | |
| 721 | if (virt_addr_valid(address)) { |
| 722 | unsigned long pfn = PFN_DOWN(__pa(address)); |
| 723 | |
| 724 | if (pfn_range_is_mapped(pfn, pfn + 1)) |
| 725 | split_page_count(level); |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * Install the new, split up pagetable. |
| 730 | * |
| 731 | * We use the standard kernel pagetable protections for the new |
| 732 | * pagetable protections, the actual ptes set above control the |
| 733 | * primary protection behavior: |
| 734 | */ |
| 735 | __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE))); |
| 736 | |
| 737 | /* |
| 738 | * Intel Atom errata AAH41 workaround. |
| 739 | * |
| 740 | * The real fix should be in hw or in a microcode update, but |
| 741 | * we also probabilistically try to reduce the window of having |
| 742 | * a large TLB mixed with 4K TLBs while instruction fetches are |
| 743 | * going on. |
| 744 | */ |
| 745 | __flush_tlb_all(); |
| 746 | spin_unlock(&pgd_lock); |
| 747 | |
| 748 | return 0; |
| 749 | } |
| 750 | |
| 751 | static int split_large_page(struct cpa_data *cpa, pte_t *kpte, |
| 752 | unsigned long address) |
| 753 | { |
| 754 | struct page *base; |
| 755 | |
| 756 | if (!debug_pagealloc_enabled()) |
| 757 | spin_unlock(&cpa_lock); |
| 758 | base = alloc_pages(GFP_KERNEL, 0); |
| 759 | if (!debug_pagealloc_enabled()) |
| 760 | spin_lock(&cpa_lock); |
| 761 | if (!base) |
| 762 | return -ENOMEM; |
| 763 | |
| 764 | if (__split_large_page(cpa, kpte, address, base)) |
| 765 | __free_page(base); |
| 766 | |
| 767 | return 0; |
| 768 | } |
| 769 | |
| 770 | static bool try_to_free_pte_page(pte_t *pte) |
| 771 | { |
| 772 | int i; |
| 773 | |
| 774 | for (i = 0; i < PTRS_PER_PTE; i++) |
| 775 | if (!pte_none(pte[i])) |
| 776 | return false; |
| 777 | |
| 778 | free_page((unsigned long)pte); |
| 779 | return true; |
| 780 | } |
| 781 | |
| 782 | static bool try_to_free_pmd_page(pmd_t *pmd) |
| 783 | { |
| 784 | int i; |
| 785 | |
| 786 | for (i = 0; i < PTRS_PER_PMD; i++) |
| 787 | if (!pmd_none(pmd[i])) |
| 788 | return false; |
| 789 | |
| 790 | free_page((unsigned long)pmd); |
| 791 | return true; |
| 792 | } |
| 793 | |
| 794 | static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end) |
| 795 | { |
| 796 | pte_t *pte = pte_offset_kernel(pmd, start); |
| 797 | |
| 798 | while (start < end) { |
| 799 | set_pte(pte, __pte(0)); |
| 800 | |
| 801 | start += PAGE_SIZE; |
| 802 | pte++; |
| 803 | } |
| 804 | |
| 805 | if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) { |
| 806 | pmd_clear(pmd); |
| 807 | return true; |
| 808 | } |
| 809 | return false; |
| 810 | } |
| 811 | |
| 812 | static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd, |
| 813 | unsigned long start, unsigned long end) |
| 814 | { |
| 815 | if (unmap_pte_range(pmd, start, end)) |
| 816 | if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) |
| 817 | pud_clear(pud); |
| 818 | } |
| 819 | |
| 820 | static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end) |
| 821 | { |
| 822 | pmd_t *pmd = pmd_offset(pud, start); |
| 823 | |
| 824 | /* |
| 825 | * Not on a 2MB page boundary? |
| 826 | */ |
| 827 | if (start & (PMD_SIZE - 1)) { |
| 828 | unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; |
| 829 | unsigned long pre_end = min_t(unsigned long, end, next_page); |
| 830 | |
| 831 | __unmap_pmd_range(pud, pmd, start, pre_end); |
| 832 | |
| 833 | start = pre_end; |
| 834 | pmd++; |
| 835 | } |
| 836 | |
| 837 | /* |
| 838 | * Try to unmap in 2M chunks. |
| 839 | */ |
| 840 | while (end - start >= PMD_SIZE) { |
| 841 | if (pmd_large(*pmd)) |
| 842 | pmd_clear(pmd); |
| 843 | else |
| 844 | __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE); |
| 845 | |
| 846 | start += PMD_SIZE; |
| 847 | pmd++; |
| 848 | } |
| 849 | |
| 850 | /* |
| 851 | * 4K leftovers? |
| 852 | */ |
| 853 | if (start < end) |
| 854 | return __unmap_pmd_range(pud, pmd, start, end); |
| 855 | |
| 856 | /* |
| 857 | * Try again to free the PMD page if haven't succeeded above. |
| 858 | */ |
| 859 | if (!pud_none(*pud)) |
| 860 | if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud))) |
| 861 | pud_clear(pud); |
| 862 | } |
| 863 | |
| 864 | static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end) |
| 865 | { |
| 866 | pud_t *pud = pud_offset(p4d, start); |
| 867 | |
| 868 | /* |
| 869 | * Not on a GB page boundary? |
| 870 | */ |
| 871 | if (start & (PUD_SIZE - 1)) { |
| 872 | unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; |
| 873 | unsigned long pre_end = min_t(unsigned long, end, next_page); |
| 874 | |
| 875 | unmap_pmd_range(pud, start, pre_end); |
| 876 | |
| 877 | start = pre_end; |
| 878 | pud++; |
| 879 | } |
| 880 | |
| 881 | /* |
| 882 | * Try to unmap in 1G chunks? |
| 883 | */ |
| 884 | while (end - start >= PUD_SIZE) { |
| 885 | |
| 886 | if (pud_large(*pud)) |
| 887 | pud_clear(pud); |
| 888 | else |
| 889 | unmap_pmd_range(pud, start, start + PUD_SIZE); |
| 890 | |
| 891 | start += PUD_SIZE; |
| 892 | pud++; |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * 2M leftovers? |
| 897 | */ |
| 898 | if (start < end) |
| 899 | unmap_pmd_range(pud, start, end); |
| 900 | |
| 901 | /* |
| 902 | * No need to try to free the PUD page because we'll free it in |
| 903 | * populate_pgd's error path |
| 904 | */ |
| 905 | } |
| 906 | |
| 907 | static int alloc_pte_page(pmd_t *pmd) |
| 908 | { |
| 909 | pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL); |
| 910 | if (!pte) |
| 911 | return -1; |
| 912 | |
| 913 | set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); |
| 914 | return 0; |
| 915 | } |
| 916 | |
| 917 | static int alloc_pmd_page(pud_t *pud) |
| 918 | { |
| 919 | pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); |
| 920 | if (!pmd) |
| 921 | return -1; |
| 922 | |
| 923 | set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); |
| 924 | return 0; |
| 925 | } |
| 926 | |
| 927 | static void populate_pte(struct cpa_data *cpa, |
| 928 | unsigned long start, unsigned long end, |
| 929 | unsigned num_pages, pmd_t *pmd, pgprot_t pgprot) |
| 930 | { |
| 931 | pte_t *pte; |
| 932 | |
| 933 | pte = pte_offset_kernel(pmd, start); |
| 934 | |
| 935 | /* |
| 936 | * Set the GLOBAL flags only if the PRESENT flag is |
| 937 | * set otherwise pte_present will return true even on |
| 938 | * a non present pte. The canon_pgprot will clear |
| 939 | * _PAGE_GLOBAL for the ancient hardware that doesn't |
| 940 | * support it. |
| 941 | */ |
| 942 | if (pgprot_val(pgprot) & _PAGE_PRESENT) |
| 943 | pgprot_val(pgprot) |= _PAGE_GLOBAL; |
| 944 | else |
| 945 | pgprot_val(pgprot) &= ~_PAGE_GLOBAL; |
| 946 | |
| 947 | pgprot = canon_pgprot(pgprot); |
| 948 | |
| 949 | while (num_pages-- && start < end) { |
| 950 | set_pte(pte, pfn_pte(cpa->pfn, pgprot)); |
| 951 | |
| 952 | start += PAGE_SIZE; |
| 953 | cpa->pfn++; |
| 954 | pte++; |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | static long populate_pmd(struct cpa_data *cpa, |
| 959 | unsigned long start, unsigned long end, |
| 960 | unsigned num_pages, pud_t *pud, pgprot_t pgprot) |
| 961 | { |
| 962 | long cur_pages = 0; |
| 963 | pmd_t *pmd; |
| 964 | pgprot_t pmd_pgprot; |
| 965 | |
| 966 | /* |
| 967 | * Not on a 2M boundary? |
| 968 | */ |
| 969 | if (start & (PMD_SIZE - 1)) { |
| 970 | unsigned long pre_end = start + (num_pages << PAGE_SHIFT); |
| 971 | unsigned long next_page = (start + PMD_SIZE) & PMD_MASK; |
| 972 | |
| 973 | pre_end = min_t(unsigned long, pre_end, next_page); |
| 974 | cur_pages = (pre_end - start) >> PAGE_SHIFT; |
| 975 | cur_pages = min_t(unsigned int, num_pages, cur_pages); |
| 976 | |
| 977 | /* |
| 978 | * Need a PTE page? |
| 979 | */ |
| 980 | pmd = pmd_offset(pud, start); |
| 981 | if (pmd_none(*pmd)) |
| 982 | if (alloc_pte_page(pmd)) |
| 983 | return -1; |
| 984 | |
| 985 | populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot); |
| 986 | |
| 987 | start = pre_end; |
| 988 | } |
| 989 | |
| 990 | /* |
| 991 | * We mapped them all? |
| 992 | */ |
| 993 | if (num_pages == cur_pages) |
| 994 | return cur_pages; |
| 995 | |
| 996 | pmd_pgprot = pgprot_4k_2_large(pgprot); |
| 997 | |
| 998 | while (end - start >= PMD_SIZE) { |
| 999 | |
| 1000 | /* |
| 1001 | * We cannot use a 1G page so allocate a PMD page if needed. |
| 1002 | */ |
| 1003 | if (pud_none(*pud)) |
| 1004 | if (alloc_pmd_page(pud)) |
| 1005 | return -1; |
| 1006 | |
| 1007 | pmd = pmd_offset(pud, start); |
| 1008 | |
| 1009 | set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn, |
| 1010 | canon_pgprot(pmd_pgprot)))); |
| 1011 | |
| 1012 | start += PMD_SIZE; |
| 1013 | cpa->pfn += PMD_SIZE >> PAGE_SHIFT; |
| 1014 | cur_pages += PMD_SIZE >> PAGE_SHIFT; |
| 1015 | } |
| 1016 | |
| 1017 | /* |
| 1018 | * Map trailing 4K pages. |
| 1019 | */ |
| 1020 | if (start < end) { |
| 1021 | pmd = pmd_offset(pud, start); |
| 1022 | if (pmd_none(*pmd)) |
| 1023 | if (alloc_pte_page(pmd)) |
| 1024 | return -1; |
| 1025 | |
| 1026 | populate_pte(cpa, start, end, num_pages - cur_pages, |
| 1027 | pmd, pgprot); |
| 1028 | } |
| 1029 | return num_pages; |
| 1030 | } |
| 1031 | |
| 1032 | static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d, |
| 1033 | pgprot_t pgprot) |
| 1034 | { |
| 1035 | pud_t *pud; |
| 1036 | unsigned long end; |
| 1037 | long cur_pages = 0; |
| 1038 | pgprot_t pud_pgprot; |
| 1039 | |
| 1040 | end = start + (cpa->numpages << PAGE_SHIFT); |
| 1041 | |
| 1042 | /* |
| 1043 | * Not on a Gb page boundary? => map everything up to it with |
| 1044 | * smaller pages. |
| 1045 | */ |
| 1046 | if (start & (PUD_SIZE - 1)) { |
| 1047 | unsigned long pre_end; |
| 1048 | unsigned long next_page = (start + PUD_SIZE) & PUD_MASK; |
| 1049 | |
| 1050 | pre_end = min_t(unsigned long, end, next_page); |
| 1051 | cur_pages = (pre_end - start) >> PAGE_SHIFT; |
| 1052 | cur_pages = min_t(int, (int)cpa->numpages, cur_pages); |
| 1053 | |
| 1054 | pud = pud_offset(p4d, start); |
| 1055 | |
| 1056 | /* |
| 1057 | * Need a PMD page? |
| 1058 | */ |
| 1059 | if (pud_none(*pud)) |
| 1060 | if (alloc_pmd_page(pud)) |
| 1061 | return -1; |
| 1062 | |
| 1063 | cur_pages = populate_pmd(cpa, start, pre_end, cur_pages, |
| 1064 | pud, pgprot); |
| 1065 | if (cur_pages < 0) |
| 1066 | return cur_pages; |
| 1067 | |
| 1068 | start = pre_end; |
| 1069 | } |
| 1070 | |
| 1071 | /* We mapped them all? */ |
| 1072 | if (cpa->numpages == cur_pages) |
| 1073 | return cur_pages; |
| 1074 | |
| 1075 | pud = pud_offset(p4d, start); |
| 1076 | pud_pgprot = pgprot_4k_2_large(pgprot); |
| 1077 | |
| 1078 | /* |
| 1079 | * Map everything starting from the Gb boundary, possibly with 1G pages |
| 1080 | */ |
| 1081 | while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) { |
| 1082 | set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn, |
| 1083 | canon_pgprot(pud_pgprot)))); |
| 1084 | |
| 1085 | start += PUD_SIZE; |
| 1086 | cpa->pfn += PUD_SIZE >> PAGE_SHIFT; |
| 1087 | cur_pages += PUD_SIZE >> PAGE_SHIFT; |
| 1088 | pud++; |
| 1089 | } |
| 1090 | |
| 1091 | /* Map trailing leftover */ |
| 1092 | if (start < end) { |
| 1093 | long tmp; |
| 1094 | |
| 1095 | pud = pud_offset(p4d, start); |
| 1096 | if (pud_none(*pud)) |
| 1097 | if (alloc_pmd_page(pud)) |
| 1098 | return -1; |
| 1099 | |
| 1100 | tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages, |
| 1101 | pud, pgprot); |
| 1102 | if (tmp < 0) |
| 1103 | return cur_pages; |
| 1104 | |
| 1105 | cur_pages += tmp; |
| 1106 | } |
| 1107 | return cur_pages; |
| 1108 | } |
| 1109 | |
| 1110 | /* |
| 1111 | * Restrictions for kernel page table do not necessarily apply when mapping in |
| 1112 | * an alternate PGD. |
| 1113 | */ |
| 1114 | static int populate_pgd(struct cpa_data *cpa, unsigned long addr) |
| 1115 | { |
| 1116 | pgprot_t pgprot = __pgprot(_KERNPG_TABLE); |
| 1117 | pud_t *pud = NULL; /* shut up gcc */ |
| 1118 | p4d_t *p4d; |
| 1119 | pgd_t *pgd_entry; |
| 1120 | long ret; |
| 1121 | |
| 1122 | pgd_entry = cpa->pgd + pgd_index(addr); |
| 1123 | |
| 1124 | if (pgd_none(*pgd_entry)) { |
| 1125 | p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); |
| 1126 | if (!p4d) |
| 1127 | return -1; |
| 1128 | |
| 1129 | set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE)); |
| 1130 | } |
| 1131 | |
| 1132 | /* |
| 1133 | * Allocate a PUD page and hand it down for mapping. |
| 1134 | */ |
| 1135 | p4d = p4d_offset(pgd_entry, addr); |
| 1136 | if (p4d_none(*p4d)) { |
| 1137 | pud = (pud_t *)get_zeroed_page(GFP_KERNEL); |
| 1138 | if (!pud) |
| 1139 | return -1; |
| 1140 | |
| 1141 | set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); |
| 1142 | } |
| 1143 | |
| 1144 | pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr); |
| 1145 | pgprot_val(pgprot) |= pgprot_val(cpa->mask_set); |
| 1146 | |
| 1147 | ret = populate_pud(cpa, addr, p4d, pgprot); |
| 1148 | if (ret < 0) { |
| 1149 | /* |
| 1150 | * Leave the PUD page in place in case some other CPU or thread |
| 1151 | * already found it, but remove any useless entries we just |
| 1152 | * added to it. |
| 1153 | */ |
| 1154 | unmap_pud_range(p4d, addr, |
| 1155 | addr + (cpa->numpages << PAGE_SHIFT)); |
| 1156 | return ret; |
| 1157 | } |
| 1158 | |
| 1159 | cpa->numpages = ret; |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr, |
| 1164 | int primary) |
| 1165 | { |
| 1166 | if (cpa->pgd) { |
| 1167 | /* |
| 1168 | * Right now, we only execute this code path when mapping |
| 1169 | * the EFI virtual memory map regions, no other users |
| 1170 | * provide a ->pgd value. This may change in the future. |
| 1171 | */ |
| 1172 | return populate_pgd(cpa, vaddr); |
| 1173 | } |
| 1174 | |
| 1175 | /* |
| 1176 | * Ignore all non primary paths. |
| 1177 | */ |
| 1178 | if (!primary) { |
| 1179 | cpa->numpages = 1; |
| 1180 | return 0; |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * Ignore the NULL PTE for kernel identity mapping, as it is expected |
| 1185 | * to have holes. |
| 1186 | * Also set numpages to '1' indicating that we processed cpa req for |
| 1187 | * one virtual address page and its pfn. TBD: numpages can be set based |
| 1188 | * on the initial value and the level returned by lookup_address(). |
| 1189 | */ |
| 1190 | if (within(vaddr, PAGE_OFFSET, |
| 1191 | PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) { |
| 1192 | cpa->numpages = 1; |
| 1193 | cpa->pfn = __pa(vaddr) >> PAGE_SHIFT; |
| 1194 | return 0; |
| 1195 | } else { |
| 1196 | WARN(1, KERN_WARNING "CPA: called for zero pte. " |
| 1197 | "vaddr = %lx cpa->vaddr = %lx\n", vaddr, |
| 1198 | *cpa->vaddr); |
| 1199 | |
| 1200 | return -EFAULT; |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | static int __change_page_attr(struct cpa_data *cpa, int primary) |
| 1205 | { |
| 1206 | unsigned long address; |
| 1207 | int do_split, err; |
| 1208 | unsigned int level; |
| 1209 | pte_t *kpte, old_pte; |
| 1210 | |
| 1211 | if (cpa->flags & CPA_PAGES_ARRAY) { |
| 1212 | struct page *page = cpa->pages[cpa->curpage]; |
| 1213 | if (unlikely(PageHighMem(page))) |
| 1214 | return 0; |
| 1215 | address = (unsigned long)page_address(page); |
| 1216 | } else if (cpa->flags & CPA_ARRAY) |
| 1217 | address = cpa->vaddr[cpa->curpage]; |
| 1218 | else |
| 1219 | address = *cpa->vaddr; |
| 1220 | repeat: |
| 1221 | kpte = _lookup_address_cpa(cpa, address, &level); |
| 1222 | if (!kpte) |
| 1223 | return __cpa_process_fault(cpa, address, primary); |
| 1224 | |
| 1225 | old_pte = *kpte; |
| 1226 | if (pte_none(old_pte)) |
| 1227 | return __cpa_process_fault(cpa, address, primary); |
| 1228 | |
| 1229 | if (level == PG_LEVEL_4K) { |
| 1230 | pte_t new_pte; |
| 1231 | pgprot_t new_prot = pte_pgprot(old_pte); |
| 1232 | unsigned long pfn = pte_pfn(old_pte); |
| 1233 | |
| 1234 | pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr); |
| 1235 | pgprot_val(new_prot) |= pgprot_val(cpa->mask_set); |
| 1236 | |
| 1237 | new_prot = static_protections(new_prot, address, pfn); |
| 1238 | |
| 1239 | /* |
| 1240 | * Set the GLOBAL flags only if the PRESENT flag is |
| 1241 | * set otherwise pte_present will return true even on |
| 1242 | * a non present pte. The canon_pgprot will clear |
| 1243 | * _PAGE_GLOBAL for the ancient hardware that doesn't |
| 1244 | * support it. |
| 1245 | */ |
| 1246 | if (pgprot_val(new_prot) & _PAGE_PRESENT) |
| 1247 | pgprot_val(new_prot) |= _PAGE_GLOBAL; |
| 1248 | else |
| 1249 | pgprot_val(new_prot) &= ~_PAGE_GLOBAL; |
| 1250 | |
| 1251 | /* |
| 1252 | * We need to keep the pfn from the existing PTE, |
| 1253 | * after all we're only going to change it's attributes |
| 1254 | * not the memory it points to |
| 1255 | */ |
| 1256 | new_pte = pfn_pte(pfn, canon_pgprot(new_prot)); |
| 1257 | cpa->pfn = pfn; |
| 1258 | /* |
| 1259 | * Do we really change anything ? |
| 1260 | */ |
| 1261 | if (pte_val(old_pte) != pte_val(new_pte)) { |
| 1262 | set_pte_atomic(kpte, new_pte); |
| 1263 | cpa->flags |= CPA_FLUSHTLB; |
| 1264 | } |
| 1265 | cpa->numpages = 1; |
| 1266 | return 0; |
| 1267 | } |
| 1268 | |
| 1269 | /* |
| 1270 | * Check, whether we can keep the large page intact |
| 1271 | * and just change the pte: |
| 1272 | */ |
| 1273 | do_split = try_preserve_large_page(kpte, address, cpa); |
| 1274 | /* |
| 1275 | * When the range fits into the existing large page, |
| 1276 | * return. cp->numpages and cpa->tlbflush have been updated in |
| 1277 | * try_large_page: |
| 1278 | */ |
| 1279 | if (do_split <= 0) |
| 1280 | return do_split; |
| 1281 | |
| 1282 | /* |
| 1283 | * We have to split the large page: |
| 1284 | */ |
| 1285 | err = split_large_page(cpa, kpte, address); |
| 1286 | if (!err) { |
| 1287 | /* |
| 1288 | * Do a global flush tlb after splitting the large page |
| 1289 | * and before we do the actual change page attribute in the PTE. |
| 1290 | * |
| 1291 | * With out this, we violate the TLB application note, that says |
| 1292 | * "The TLBs may contain both ordinary and large-page |
| 1293 | * translations for a 4-KByte range of linear addresses. This |
| 1294 | * may occur if software modifies the paging structures so that |
| 1295 | * the page size used for the address range changes. If the two |
| 1296 | * translations differ with respect to page frame or attributes |
| 1297 | * (e.g., permissions), processor behavior is undefined and may |
| 1298 | * be implementation-specific." |
| 1299 | * |
| 1300 | * We do this global tlb flush inside the cpa_lock, so that we |
| 1301 | * don't allow any other cpu, with stale tlb entries change the |
| 1302 | * page attribute in parallel, that also falls into the |
| 1303 | * just split large page entry. |
| 1304 | */ |
| 1305 | flush_tlb_all(); |
| 1306 | goto repeat; |
| 1307 | } |
| 1308 | |
| 1309 | return err; |
| 1310 | } |
| 1311 | |
| 1312 | static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias); |
| 1313 | |
| 1314 | static int cpa_process_alias(struct cpa_data *cpa) |
| 1315 | { |
| 1316 | struct cpa_data alias_cpa; |
| 1317 | unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT); |
| 1318 | unsigned long vaddr; |
| 1319 | int ret; |
| 1320 | |
| 1321 | if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1)) |
| 1322 | return 0; |
| 1323 | |
| 1324 | /* |
| 1325 | * No need to redo, when the primary call touched the direct |
| 1326 | * mapping already: |
| 1327 | */ |
| 1328 | if (cpa->flags & CPA_PAGES_ARRAY) { |
| 1329 | struct page *page = cpa->pages[cpa->curpage]; |
| 1330 | if (unlikely(PageHighMem(page))) |
| 1331 | return 0; |
| 1332 | vaddr = (unsigned long)page_address(page); |
| 1333 | } else if (cpa->flags & CPA_ARRAY) |
| 1334 | vaddr = cpa->vaddr[cpa->curpage]; |
| 1335 | else |
| 1336 | vaddr = *cpa->vaddr; |
| 1337 | |
| 1338 | if (!(within(vaddr, PAGE_OFFSET, |
| 1339 | PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) { |
| 1340 | |
| 1341 | alias_cpa = *cpa; |
| 1342 | alias_cpa.vaddr = &laddr; |
| 1343 | alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); |
| 1344 | |
| 1345 | ret = __change_page_attr_set_clr(&alias_cpa, 0); |
| 1346 | if (ret) |
| 1347 | return ret; |
| 1348 | } |
| 1349 | |
| 1350 | #ifdef CONFIG_X86_64 |
| 1351 | /* |
| 1352 | * If the primary call didn't touch the high mapping already |
| 1353 | * and the physical address is inside the kernel map, we need |
| 1354 | * to touch the high mapped kernel as well: |
| 1355 | */ |
| 1356 | if (!within(vaddr, (unsigned long)_text, _brk_end) && |
| 1357 | within_inclusive(cpa->pfn, highmap_start_pfn(), |
| 1358 | highmap_end_pfn())) { |
| 1359 | unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + |
| 1360 | __START_KERNEL_map - phys_base; |
| 1361 | alias_cpa = *cpa; |
| 1362 | alias_cpa.vaddr = &temp_cpa_vaddr; |
| 1363 | alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY); |
| 1364 | |
| 1365 | /* |
| 1366 | * The high mapping range is imprecise, so ignore the |
| 1367 | * return value. |
| 1368 | */ |
| 1369 | __change_page_attr_set_clr(&alias_cpa, 0); |
| 1370 | } |
| 1371 | #endif |
| 1372 | |
| 1373 | return 0; |
| 1374 | } |
| 1375 | |
| 1376 | static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias) |
| 1377 | { |
| 1378 | unsigned long numpages = cpa->numpages; |
| 1379 | int ret; |
| 1380 | |
| 1381 | while (numpages) { |
| 1382 | /* |
| 1383 | * Store the remaining nr of pages for the large page |
| 1384 | * preservation check. |
| 1385 | */ |
| 1386 | cpa->numpages = numpages; |
| 1387 | /* for array changes, we can't use large page */ |
| 1388 | if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY)) |
| 1389 | cpa->numpages = 1; |
| 1390 | |
| 1391 | if (!debug_pagealloc_enabled()) |
| 1392 | spin_lock(&cpa_lock); |
| 1393 | ret = __change_page_attr(cpa, checkalias); |
| 1394 | if (!debug_pagealloc_enabled()) |
| 1395 | spin_unlock(&cpa_lock); |
| 1396 | if (ret) |
| 1397 | return ret; |
| 1398 | |
| 1399 | if (checkalias) { |
| 1400 | ret = cpa_process_alias(cpa); |
| 1401 | if (ret) |
| 1402 | return ret; |
| 1403 | } |
| 1404 | |
| 1405 | /* |
| 1406 | * Adjust the number of pages with the result of the |
| 1407 | * CPA operation. Either a large page has been |
| 1408 | * preserved or a single page update happened. |
| 1409 | */ |
| 1410 | BUG_ON(cpa->numpages > numpages || !cpa->numpages); |
| 1411 | numpages -= cpa->numpages; |
| 1412 | if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) |
| 1413 | cpa->curpage++; |
| 1414 | else |
| 1415 | *cpa->vaddr += cpa->numpages * PAGE_SIZE; |
| 1416 | |
| 1417 | } |
| 1418 | return 0; |
| 1419 | } |
| 1420 | |
| 1421 | static int change_page_attr_set_clr(unsigned long *addr, int numpages, |
| 1422 | pgprot_t mask_set, pgprot_t mask_clr, |
| 1423 | int force_split, int in_flag, |
| 1424 | struct page **pages) |
| 1425 | { |
| 1426 | struct cpa_data cpa; |
| 1427 | int ret, cache, checkalias; |
| 1428 | unsigned long baddr = 0; |
| 1429 | |
| 1430 | memset(&cpa, 0, sizeof(cpa)); |
| 1431 | |
| 1432 | /* |
| 1433 | * Check, if we are requested to change a not supported |
| 1434 | * feature: |
| 1435 | */ |
| 1436 | mask_set = canon_pgprot(mask_set); |
| 1437 | mask_clr = canon_pgprot(mask_clr); |
| 1438 | if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split) |
| 1439 | return 0; |
| 1440 | |
| 1441 | /* Ensure we are PAGE_SIZE aligned */ |
| 1442 | if (in_flag & CPA_ARRAY) { |
| 1443 | int i; |
| 1444 | for (i = 0; i < numpages; i++) { |
| 1445 | if (addr[i] & ~PAGE_MASK) { |
| 1446 | addr[i] &= PAGE_MASK; |
| 1447 | WARN_ON_ONCE(1); |
| 1448 | } |
| 1449 | } |
| 1450 | } else if (!(in_flag & CPA_PAGES_ARRAY)) { |
| 1451 | /* |
| 1452 | * in_flag of CPA_PAGES_ARRAY implies it is aligned. |
| 1453 | * No need to cehck in that case |
| 1454 | */ |
| 1455 | if (*addr & ~PAGE_MASK) { |
| 1456 | *addr &= PAGE_MASK; |
| 1457 | /* |
| 1458 | * People should not be passing in unaligned addresses: |
| 1459 | */ |
| 1460 | WARN_ON_ONCE(1); |
| 1461 | } |
| 1462 | /* |
| 1463 | * Save address for cache flush. *addr is modified in the call |
| 1464 | * to __change_page_attr_set_clr() below. |
| 1465 | */ |
| 1466 | baddr = *addr; |
| 1467 | } |
| 1468 | |
| 1469 | /* Must avoid aliasing mappings in the highmem code */ |
| 1470 | kmap_flush_unused(); |
| 1471 | |
| 1472 | vm_unmap_aliases(); |
| 1473 | |
| 1474 | cpa.vaddr = addr; |
| 1475 | cpa.pages = pages; |
| 1476 | cpa.numpages = numpages; |
| 1477 | cpa.mask_set = mask_set; |
| 1478 | cpa.mask_clr = mask_clr; |
| 1479 | cpa.flags = 0; |
| 1480 | cpa.curpage = 0; |
| 1481 | cpa.force_split = force_split; |
| 1482 | |
| 1483 | if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY)) |
| 1484 | cpa.flags |= in_flag; |
| 1485 | |
| 1486 | /* No alias checking for _NX bit modifications */ |
| 1487 | checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX; |
| 1488 | |
| 1489 | ret = __change_page_attr_set_clr(&cpa, checkalias); |
| 1490 | |
| 1491 | /* |
| 1492 | * Check whether we really changed something: |
| 1493 | */ |
| 1494 | if (!(cpa.flags & CPA_FLUSHTLB)) |
| 1495 | goto out; |
| 1496 | |
| 1497 | /* |
| 1498 | * No need to flush, when we did not set any of the caching |
| 1499 | * attributes: |
| 1500 | */ |
| 1501 | cache = !!pgprot2cachemode(mask_set); |
| 1502 | |
| 1503 | /* |
| 1504 | * On success we use CLFLUSH, when the CPU supports it to |
| 1505 | * avoid the WBINVD. If the CPU does not support it and in the |
| 1506 | * error case we fall back to cpa_flush_all (which uses |
| 1507 | * WBINVD): |
| 1508 | */ |
| 1509 | if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) { |
| 1510 | if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) { |
| 1511 | cpa_flush_array(addr, numpages, cache, |
| 1512 | cpa.flags, pages); |
| 1513 | } else |
| 1514 | cpa_flush_range(baddr, numpages, cache); |
| 1515 | } else |
| 1516 | cpa_flush_all(cache); |
| 1517 | |
| 1518 | out: |
| 1519 | return ret; |
| 1520 | } |
| 1521 | |
| 1522 | static inline int change_page_attr_set(unsigned long *addr, int numpages, |
| 1523 | pgprot_t mask, int array) |
| 1524 | { |
| 1525 | return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0, |
| 1526 | (array ? CPA_ARRAY : 0), NULL); |
| 1527 | } |
| 1528 | |
| 1529 | static inline int change_page_attr_clear(unsigned long *addr, int numpages, |
| 1530 | pgprot_t mask, int array) |
| 1531 | { |
| 1532 | return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0, |
| 1533 | (array ? CPA_ARRAY : 0), NULL); |
| 1534 | } |
| 1535 | |
| 1536 | static inline int cpa_set_pages_array(struct page **pages, int numpages, |
| 1537 | pgprot_t mask) |
| 1538 | { |
| 1539 | return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0, |
| 1540 | CPA_PAGES_ARRAY, pages); |
| 1541 | } |
| 1542 | |
| 1543 | static inline int cpa_clear_pages_array(struct page **pages, int numpages, |
| 1544 | pgprot_t mask) |
| 1545 | { |
| 1546 | return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0, |
| 1547 | CPA_PAGES_ARRAY, pages); |
| 1548 | } |
| 1549 | |
| 1550 | int _set_memory_uc(unsigned long addr, int numpages) |
| 1551 | { |
| 1552 | /* |
| 1553 | * for now UC MINUS. see comments in ioremap_nocache() |
| 1554 | * If you really need strong UC use ioremap_uc(), but note |
| 1555 | * that you cannot override IO areas with set_memory_*() as |
| 1556 | * these helpers cannot work with IO memory. |
| 1557 | */ |
| 1558 | return change_page_attr_set(&addr, numpages, |
| 1559 | cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), |
| 1560 | 0); |
| 1561 | } |
| 1562 | |
| 1563 | int set_memory_uc(unsigned long addr, int numpages) |
| 1564 | { |
| 1565 | int ret; |
| 1566 | |
| 1567 | /* |
| 1568 | * for now UC MINUS. see comments in ioremap_nocache() |
| 1569 | */ |
| 1570 | ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, |
| 1571 | _PAGE_CACHE_MODE_UC_MINUS, NULL); |
| 1572 | if (ret) |
| 1573 | goto out_err; |
| 1574 | |
| 1575 | ret = _set_memory_uc(addr, numpages); |
| 1576 | if (ret) |
| 1577 | goto out_free; |
| 1578 | |
| 1579 | return 0; |
| 1580 | |
| 1581 | out_free: |
| 1582 | free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); |
| 1583 | out_err: |
| 1584 | return ret; |
| 1585 | } |
| 1586 | EXPORT_SYMBOL(set_memory_uc); |
| 1587 | |
| 1588 | static int _set_memory_array(unsigned long *addr, int addrinarray, |
| 1589 | enum page_cache_mode new_type) |
| 1590 | { |
| 1591 | enum page_cache_mode set_type; |
| 1592 | int i, j; |
| 1593 | int ret; |
| 1594 | |
| 1595 | for (i = 0; i < addrinarray; i++) { |
| 1596 | ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE, |
| 1597 | new_type, NULL); |
| 1598 | if (ret) |
| 1599 | goto out_free; |
| 1600 | } |
| 1601 | |
| 1602 | /* If WC, set to UC- first and then WC */ |
| 1603 | set_type = (new_type == _PAGE_CACHE_MODE_WC) ? |
| 1604 | _PAGE_CACHE_MODE_UC_MINUS : new_type; |
| 1605 | |
| 1606 | ret = change_page_attr_set(addr, addrinarray, |
| 1607 | cachemode2pgprot(set_type), 1); |
| 1608 | |
| 1609 | if (!ret && new_type == _PAGE_CACHE_MODE_WC) |
| 1610 | ret = change_page_attr_set_clr(addr, addrinarray, |
| 1611 | cachemode2pgprot( |
| 1612 | _PAGE_CACHE_MODE_WC), |
| 1613 | __pgprot(_PAGE_CACHE_MASK), |
| 1614 | 0, CPA_ARRAY, NULL); |
| 1615 | if (ret) |
| 1616 | goto out_free; |
| 1617 | |
| 1618 | return 0; |
| 1619 | |
| 1620 | out_free: |
| 1621 | for (j = 0; j < i; j++) |
| 1622 | free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE); |
| 1623 | |
| 1624 | return ret; |
| 1625 | } |
| 1626 | |
| 1627 | int set_memory_array_uc(unsigned long *addr, int addrinarray) |
| 1628 | { |
| 1629 | return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS); |
| 1630 | } |
| 1631 | EXPORT_SYMBOL(set_memory_array_uc); |
| 1632 | |
| 1633 | int set_memory_array_wc(unsigned long *addr, int addrinarray) |
| 1634 | { |
| 1635 | return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC); |
| 1636 | } |
| 1637 | EXPORT_SYMBOL(set_memory_array_wc); |
| 1638 | |
| 1639 | int set_memory_array_wt(unsigned long *addr, int addrinarray) |
| 1640 | { |
| 1641 | return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT); |
| 1642 | } |
| 1643 | EXPORT_SYMBOL_GPL(set_memory_array_wt); |
| 1644 | |
| 1645 | int _set_memory_wc(unsigned long addr, int numpages) |
| 1646 | { |
| 1647 | int ret; |
| 1648 | unsigned long addr_copy = addr; |
| 1649 | |
| 1650 | ret = change_page_attr_set(&addr, numpages, |
| 1651 | cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS), |
| 1652 | 0); |
| 1653 | if (!ret) { |
| 1654 | ret = change_page_attr_set_clr(&addr_copy, numpages, |
| 1655 | cachemode2pgprot( |
| 1656 | _PAGE_CACHE_MODE_WC), |
| 1657 | __pgprot(_PAGE_CACHE_MASK), |
| 1658 | 0, 0, NULL); |
| 1659 | } |
| 1660 | return ret; |
| 1661 | } |
| 1662 | |
| 1663 | int set_memory_wc(unsigned long addr, int numpages) |
| 1664 | { |
| 1665 | int ret; |
| 1666 | |
| 1667 | ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, |
| 1668 | _PAGE_CACHE_MODE_WC, NULL); |
| 1669 | if (ret) |
| 1670 | return ret; |
| 1671 | |
| 1672 | ret = _set_memory_wc(addr, numpages); |
| 1673 | if (ret) |
| 1674 | free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); |
| 1675 | |
| 1676 | return ret; |
| 1677 | } |
| 1678 | EXPORT_SYMBOL(set_memory_wc); |
| 1679 | |
| 1680 | int _set_memory_wt(unsigned long addr, int numpages) |
| 1681 | { |
| 1682 | return change_page_attr_set(&addr, numpages, |
| 1683 | cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0); |
| 1684 | } |
| 1685 | |
| 1686 | int set_memory_wt(unsigned long addr, int numpages) |
| 1687 | { |
| 1688 | int ret; |
| 1689 | |
| 1690 | ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE, |
| 1691 | _PAGE_CACHE_MODE_WT, NULL); |
| 1692 | if (ret) |
| 1693 | return ret; |
| 1694 | |
| 1695 | ret = _set_memory_wt(addr, numpages); |
| 1696 | if (ret) |
| 1697 | free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); |
| 1698 | |
| 1699 | return ret; |
| 1700 | } |
| 1701 | EXPORT_SYMBOL_GPL(set_memory_wt); |
| 1702 | |
| 1703 | int _set_memory_wb(unsigned long addr, int numpages) |
| 1704 | { |
| 1705 | /* WB cache mode is hard wired to all cache attribute bits being 0 */ |
| 1706 | return change_page_attr_clear(&addr, numpages, |
| 1707 | __pgprot(_PAGE_CACHE_MASK), 0); |
| 1708 | } |
| 1709 | |
| 1710 | int set_memory_wb(unsigned long addr, int numpages) |
| 1711 | { |
| 1712 | int ret; |
| 1713 | |
| 1714 | ret = _set_memory_wb(addr, numpages); |
| 1715 | if (ret) |
| 1716 | return ret; |
| 1717 | |
| 1718 | free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE); |
| 1719 | return 0; |
| 1720 | } |
| 1721 | EXPORT_SYMBOL(set_memory_wb); |
| 1722 | |
| 1723 | int set_memory_array_wb(unsigned long *addr, int addrinarray) |
| 1724 | { |
| 1725 | int i; |
| 1726 | int ret; |
| 1727 | |
| 1728 | /* WB cache mode is hard wired to all cache attribute bits being 0 */ |
| 1729 | ret = change_page_attr_clear(addr, addrinarray, |
| 1730 | __pgprot(_PAGE_CACHE_MASK), 1); |
| 1731 | if (ret) |
| 1732 | return ret; |
| 1733 | |
| 1734 | for (i = 0; i < addrinarray; i++) |
| 1735 | free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE); |
| 1736 | |
| 1737 | return 0; |
| 1738 | } |
| 1739 | EXPORT_SYMBOL(set_memory_array_wb); |
| 1740 | |
| 1741 | int set_memory_x(unsigned long addr, int numpages) |
| 1742 | { |
| 1743 | if (!(__supported_pte_mask & _PAGE_NX)) |
| 1744 | return 0; |
| 1745 | |
| 1746 | return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0); |
| 1747 | } |
| 1748 | EXPORT_SYMBOL(set_memory_x); |
| 1749 | |
| 1750 | int set_memory_nx(unsigned long addr, int numpages) |
| 1751 | { |
| 1752 | if (!(__supported_pte_mask & _PAGE_NX)) |
| 1753 | return 0; |
| 1754 | |
| 1755 | return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0); |
| 1756 | } |
| 1757 | EXPORT_SYMBOL(set_memory_nx); |
| 1758 | |
| 1759 | int set_memory_ro(unsigned long addr, int numpages) |
| 1760 | { |
| 1761 | return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0); |
| 1762 | } |
| 1763 | |
| 1764 | int set_memory_rw(unsigned long addr, int numpages) |
| 1765 | { |
| 1766 | return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0); |
| 1767 | } |
| 1768 | |
| 1769 | int set_memory_np(unsigned long addr, int numpages) |
| 1770 | { |
| 1771 | return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0); |
| 1772 | } |
| 1773 | |
| 1774 | int set_memory_4k(unsigned long addr, int numpages) |
| 1775 | { |
| 1776 | return change_page_attr_set_clr(&addr, numpages, __pgprot(0), |
| 1777 | __pgprot(0), 1, 0, NULL); |
| 1778 | } |
| 1779 | |
| 1780 | static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc) |
| 1781 | { |
| 1782 | struct cpa_data cpa; |
| 1783 | unsigned long start; |
| 1784 | int ret; |
| 1785 | |
| 1786 | /* Nothing to do if the SME is not active */ |
| 1787 | if (!sme_active()) |
| 1788 | return 0; |
| 1789 | |
| 1790 | /* Should not be working on unaligned addresses */ |
| 1791 | if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr)) |
| 1792 | addr &= PAGE_MASK; |
| 1793 | |
| 1794 | start = addr; |
| 1795 | |
| 1796 | memset(&cpa, 0, sizeof(cpa)); |
| 1797 | cpa.vaddr = &addr; |
| 1798 | cpa.numpages = numpages; |
| 1799 | cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0); |
| 1800 | cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC); |
| 1801 | cpa.pgd = init_mm.pgd; |
| 1802 | |
| 1803 | /* Must avoid aliasing mappings in the highmem code */ |
| 1804 | kmap_flush_unused(); |
| 1805 | vm_unmap_aliases(); |
| 1806 | |
| 1807 | /* |
| 1808 | * Before changing the encryption attribute, we need to flush caches. |
| 1809 | */ |
| 1810 | if (static_cpu_has(X86_FEATURE_CLFLUSH)) |
| 1811 | cpa_flush_range(start, numpages, 1); |
| 1812 | else |
| 1813 | cpa_flush_all(1); |
| 1814 | |
| 1815 | ret = __change_page_attr_set_clr(&cpa, 1); |
| 1816 | |
| 1817 | /* |
| 1818 | * After changing the encryption attribute, we need to flush TLBs |
| 1819 | * again in case any speculative TLB caching occurred (but no need |
| 1820 | * to flush caches again). We could just use cpa_flush_all(), but |
| 1821 | * in case TLB flushing gets optimized in the cpa_flush_range() |
| 1822 | * path use the same logic as above. |
| 1823 | */ |
| 1824 | if (static_cpu_has(X86_FEATURE_CLFLUSH)) |
| 1825 | cpa_flush_range(start, numpages, 0); |
| 1826 | else |
| 1827 | cpa_flush_all(0); |
| 1828 | |
| 1829 | return ret; |
| 1830 | } |
| 1831 | |
| 1832 | int set_memory_encrypted(unsigned long addr, int numpages) |
| 1833 | { |
| 1834 | return __set_memory_enc_dec(addr, numpages, true); |
| 1835 | } |
| 1836 | EXPORT_SYMBOL_GPL(set_memory_encrypted); |
| 1837 | |
| 1838 | int set_memory_decrypted(unsigned long addr, int numpages) |
| 1839 | { |
| 1840 | return __set_memory_enc_dec(addr, numpages, false); |
| 1841 | } |
| 1842 | EXPORT_SYMBOL_GPL(set_memory_decrypted); |
| 1843 | |
| 1844 | int set_pages_uc(struct page *page, int numpages) |
| 1845 | { |
| 1846 | unsigned long addr = (unsigned long)page_address(page); |
| 1847 | |
| 1848 | return set_memory_uc(addr, numpages); |
| 1849 | } |
| 1850 | EXPORT_SYMBOL(set_pages_uc); |
| 1851 | |
| 1852 | static int _set_pages_array(struct page **pages, int addrinarray, |
| 1853 | enum page_cache_mode new_type) |
| 1854 | { |
| 1855 | unsigned long start; |
| 1856 | unsigned long end; |
| 1857 | enum page_cache_mode set_type; |
| 1858 | int i; |
| 1859 | int free_idx; |
| 1860 | int ret; |
| 1861 | |
| 1862 | for (i = 0; i < addrinarray; i++) { |
| 1863 | if (PageHighMem(pages[i])) |
| 1864 | continue; |
| 1865 | start = page_to_pfn(pages[i]) << PAGE_SHIFT; |
| 1866 | end = start + PAGE_SIZE; |
| 1867 | if (reserve_memtype(start, end, new_type, NULL)) |
| 1868 | goto err_out; |
| 1869 | } |
| 1870 | |
| 1871 | /* If WC, set to UC- first and then WC */ |
| 1872 | set_type = (new_type == _PAGE_CACHE_MODE_WC) ? |
| 1873 | _PAGE_CACHE_MODE_UC_MINUS : new_type; |
| 1874 | |
| 1875 | ret = cpa_set_pages_array(pages, addrinarray, |
| 1876 | cachemode2pgprot(set_type)); |
| 1877 | if (!ret && new_type == _PAGE_CACHE_MODE_WC) |
| 1878 | ret = change_page_attr_set_clr(NULL, addrinarray, |
| 1879 | cachemode2pgprot( |
| 1880 | _PAGE_CACHE_MODE_WC), |
| 1881 | __pgprot(_PAGE_CACHE_MASK), |
| 1882 | 0, CPA_PAGES_ARRAY, pages); |
| 1883 | if (ret) |
| 1884 | goto err_out; |
| 1885 | return 0; /* Success */ |
| 1886 | err_out: |
| 1887 | free_idx = i; |
| 1888 | for (i = 0; i < free_idx; i++) { |
| 1889 | if (PageHighMem(pages[i])) |
| 1890 | continue; |
| 1891 | start = page_to_pfn(pages[i]) << PAGE_SHIFT; |
| 1892 | end = start + PAGE_SIZE; |
| 1893 | free_memtype(start, end); |
| 1894 | } |
| 1895 | return -EINVAL; |
| 1896 | } |
| 1897 | |
| 1898 | int set_pages_array_uc(struct page **pages, int addrinarray) |
| 1899 | { |
| 1900 | return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS); |
| 1901 | } |
| 1902 | EXPORT_SYMBOL(set_pages_array_uc); |
| 1903 | |
| 1904 | int set_pages_array_wc(struct page **pages, int addrinarray) |
| 1905 | { |
| 1906 | return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC); |
| 1907 | } |
| 1908 | EXPORT_SYMBOL(set_pages_array_wc); |
| 1909 | |
| 1910 | int set_pages_array_wt(struct page **pages, int addrinarray) |
| 1911 | { |
| 1912 | return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT); |
| 1913 | } |
| 1914 | EXPORT_SYMBOL_GPL(set_pages_array_wt); |
| 1915 | |
| 1916 | int set_pages_wb(struct page *page, int numpages) |
| 1917 | { |
| 1918 | unsigned long addr = (unsigned long)page_address(page); |
| 1919 | |
| 1920 | return set_memory_wb(addr, numpages); |
| 1921 | } |
| 1922 | EXPORT_SYMBOL(set_pages_wb); |
| 1923 | |
| 1924 | int set_pages_array_wb(struct page **pages, int addrinarray) |
| 1925 | { |
| 1926 | int retval; |
| 1927 | unsigned long start; |
| 1928 | unsigned long end; |
| 1929 | int i; |
| 1930 | |
| 1931 | /* WB cache mode is hard wired to all cache attribute bits being 0 */ |
| 1932 | retval = cpa_clear_pages_array(pages, addrinarray, |
| 1933 | __pgprot(_PAGE_CACHE_MASK)); |
| 1934 | if (retval) |
| 1935 | return retval; |
| 1936 | |
| 1937 | for (i = 0; i < addrinarray; i++) { |
| 1938 | if (PageHighMem(pages[i])) |
| 1939 | continue; |
| 1940 | start = page_to_pfn(pages[i]) << PAGE_SHIFT; |
| 1941 | end = start + PAGE_SIZE; |
| 1942 | free_memtype(start, end); |
| 1943 | } |
| 1944 | |
| 1945 | return 0; |
| 1946 | } |
| 1947 | EXPORT_SYMBOL(set_pages_array_wb); |
| 1948 | |
| 1949 | int set_pages_x(struct page *page, int numpages) |
| 1950 | { |
| 1951 | unsigned long addr = (unsigned long)page_address(page); |
| 1952 | |
| 1953 | return set_memory_x(addr, numpages); |
| 1954 | } |
| 1955 | EXPORT_SYMBOL(set_pages_x); |
| 1956 | |
| 1957 | int set_pages_nx(struct page *page, int numpages) |
| 1958 | { |
| 1959 | unsigned long addr = (unsigned long)page_address(page); |
| 1960 | |
| 1961 | return set_memory_nx(addr, numpages); |
| 1962 | } |
| 1963 | EXPORT_SYMBOL(set_pages_nx); |
| 1964 | |
| 1965 | int set_pages_ro(struct page *page, int numpages) |
| 1966 | { |
| 1967 | unsigned long addr = (unsigned long)page_address(page); |
| 1968 | |
| 1969 | return set_memory_ro(addr, numpages); |
| 1970 | } |
| 1971 | |
| 1972 | int set_pages_rw(struct page *page, int numpages) |
| 1973 | { |
| 1974 | unsigned long addr = (unsigned long)page_address(page); |
| 1975 | |
| 1976 | return set_memory_rw(addr, numpages); |
| 1977 | } |
| 1978 | |
| 1979 | #ifdef CONFIG_DEBUG_PAGEALLOC |
| 1980 | |
| 1981 | static int __set_pages_p(struct page *page, int numpages) |
| 1982 | { |
| 1983 | unsigned long tempaddr = (unsigned long) page_address(page); |
| 1984 | struct cpa_data cpa = { .vaddr = &tempaddr, |
| 1985 | .pgd = NULL, |
| 1986 | .numpages = numpages, |
| 1987 | .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW), |
| 1988 | .mask_clr = __pgprot(0), |
| 1989 | .flags = 0}; |
| 1990 | |
| 1991 | /* |
| 1992 | * No alias checking needed for setting present flag. otherwise, |
| 1993 | * we may need to break large pages for 64-bit kernel text |
| 1994 | * mappings (this adds to complexity if we want to do this from |
| 1995 | * atomic context especially). Let's keep it simple! |
| 1996 | */ |
| 1997 | return __change_page_attr_set_clr(&cpa, 0); |
| 1998 | } |
| 1999 | |
| 2000 | static int __set_pages_np(struct page *page, int numpages) |
| 2001 | { |
| 2002 | unsigned long tempaddr = (unsigned long) page_address(page); |
| 2003 | struct cpa_data cpa = { .vaddr = &tempaddr, |
| 2004 | .pgd = NULL, |
| 2005 | .numpages = numpages, |
| 2006 | .mask_set = __pgprot(0), |
| 2007 | .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW), |
| 2008 | .flags = 0}; |
| 2009 | |
| 2010 | /* |
| 2011 | * No alias checking needed for setting not present flag. otherwise, |
| 2012 | * we may need to break large pages for 64-bit kernel text |
| 2013 | * mappings (this adds to complexity if we want to do this from |
| 2014 | * atomic context especially). Let's keep it simple! |
| 2015 | */ |
| 2016 | return __change_page_attr_set_clr(&cpa, 0); |
| 2017 | } |
| 2018 | |
| 2019 | void __kernel_map_pages(struct page *page, int numpages, int enable) |
| 2020 | { |
| 2021 | if (PageHighMem(page)) |
| 2022 | return; |
| 2023 | if (!enable) { |
| 2024 | debug_check_no_locks_freed(page_address(page), |
| 2025 | numpages * PAGE_SIZE); |
| 2026 | } |
| 2027 | |
| 2028 | /* |
| 2029 | * The return value is ignored as the calls cannot fail. |
| 2030 | * Large pages for identity mappings are not used at boot time |
| 2031 | * and hence no memory allocations during large page split. |
| 2032 | */ |
| 2033 | if (enable) |
| 2034 | __set_pages_p(page, numpages); |
| 2035 | else |
| 2036 | __set_pages_np(page, numpages); |
| 2037 | |
| 2038 | /* |
| 2039 | * We should perform an IPI and flush all tlbs, |
| 2040 | * but that can deadlock->flush only current cpu. |
| 2041 | * Preemption needs to be disabled around __flush_tlb_all() due to |
| 2042 | * CR3 reload in __native_flush_tlb(). |
| 2043 | */ |
| 2044 | preempt_disable(); |
| 2045 | __flush_tlb_all(); |
| 2046 | preempt_enable(); |
| 2047 | |
| 2048 | arch_flush_lazy_mmu_mode(); |
| 2049 | } |
| 2050 | |
| 2051 | #ifdef CONFIG_HIBERNATION |
| 2052 | |
| 2053 | bool kernel_page_present(struct page *page) |
| 2054 | { |
| 2055 | unsigned int level; |
| 2056 | pte_t *pte; |
| 2057 | |
| 2058 | if (PageHighMem(page)) |
| 2059 | return false; |
| 2060 | |
| 2061 | pte = lookup_address((unsigned long)page_address(page), &level); |
| 2062 | return (pte_val(*pte) & _PAGE_PRESENT); |
| 2063 | } |
| 2064 | |
| 2065 | #endif /* CONFIG_HIBERNATION */ |
| 2066 | |
| 2067 | #endif /* CONFIG_DEBUG_PAGEALLOC */ |
| 2068 | |
| 2069 | int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address, |
| 2070 | unsigned numpages, unsigned long page_flags) |
| 2071 | { |
| 2072 | int retval = -EINVAL; |
| 2073 | |
| 2074 | struct cpa_data cpa = { |
| 2075 | .vaddr = &address, |
| 2076 | .pfn = pfn, |
| 2077 | .pgd = pgd, |
| 2078 | .numpages = numpages, |
| 2079 | .mask_set = __pgprot(0), |
| 2080 | .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)), |
| 2081 | .flags = 0, |
| 2082 | }; |
| 2083 | |
| 2084 | if (!(__supported_pte_mask & _PAGE_NX)) |
| 2085 | goto out; |
| 2086 | |
| 2087 | if (!(page_flags & _PAGE_ENC)) |
| 2088 | cpa.mask_clr = pgprot_encrypted(cpa.mask_clr); |
| 2089 | |
| 2090 | cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags); |
| 2091 | |
| 2092 | retval = __change_page_attr_set_clr(&cpa, 0); |
| 2093 | __flush_tlb_all(); |
| 2094 | |
| 2095 | out: |
| 2096 | return retval; |
| 2097 | } |
| 2098 | |
| 2099 | /* |
| 2100 | * The testcases use internal knowledge of the implementation that shouldn't |
| 2101 | * be exposed to the rest of the kernel. Include these directly here. |
| 2102 | */ |
| 2103 | #ifdef CONFIG_CPA_DEBUG |
| 2104 | #include "pageattr-test.c" |
| 2105 | #endif |