blob: 5f9c680076c4f95943b28a0b4f34fecacfd6f99b [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*******************************************************************************
2 *
3 * Module Name: utmath - Integer math support routines
4 *
5 ******************************************************************************/
6
7/*
8 * Copyright (C) 2000 - 2017, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */
43
44#include <acpi/acpi.h>
45#include "accommon.h"
46
47#define _COMPONENT ACPI_UTILITIES
48ACPI_MODULE_NAME("utmath")
49
50/* Structures used only for 64-bit divide */
51typedef struct uint64_struct {
52 u32 lo;
53 u32 hi;
54
55} uint64_struct;
56
57typedef union uint64_overlay {
58 u64 full;
59 struct uint64_struct part;
60
61} uint64_overlay;
62
63/*
64 * Optional support for 64-bit double-precision integer multiply and shift.
65 * This code is configurable and is implemented in order to support 32-bit
66 * kernel environments where a 64-bit double-precision math library is not
67 * available.
68 */
69#ifndef ACPI_USE_NATIVE_MATH64
70
71/*******************************************************************************
72 *
73 * FUNCTION: acpi_ut_short_multiply
74 *
75 * PARAMETERS: multiplicand - 64-bit multiplicand
76 * multiplier - 32-bit multiplier
77 * out_product - Pointer to where the product is returned
78 *
79 * DESCRIPTION: Perform a short multiply.
80 *
81 ******************************************************************************/
82
83acpi_status
84acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product)
85{
86 union uint64_overlay multiplicand_ovl;
87 union uint64_overlay product;
88 u32 carry32;
89
90 ACPI_FUNCTION_TRACE(ut_short_multiply);
91
92 multiplicand_ovl.full = multiplicand;
93
94 /*
95 * The Product is 64 bits, the carry is always 32 bits,
96 * and is generated by the second multiply.
97 */
98 ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.hi, multiplier,
99 product.part.hi, carry32);
100
101 ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.lo, multiplier,
102 product.part.lo, carry32);
103
104 product.part.hi += carry32;
105
106 /* Return only what was requested */
107
108 if (out_product) {
109 *out_product = product.full;
110 }
111
112 return_ACPI_STATUS(AE_OK);
113}
114
115/*******************************************************************************
116 *
117 * FUNCTION: acpi_ut_short_shift_left
118 *
119 * PARAMETERS: operand - 64-bit shift operand
120 * count - 32-bit shift count
121 * out_result - Pointer to where the result is returned
122 *
123 * DESCRIPTION: Perform a short left shift.
124 *
125 ******************************************************************************/
126
127acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result)
128{
129 union uint64_overlay operand_ovl;
130
131 ACPI_FUNCTION_TRACE(ut_short_shift_left);
132
133 operand_ovl.full = operand;
134
135 if ((count & 63) >= 32) {
136 operand_ovl.part.hi = operand_ovl.part.lo;
137 operand_ovl.part.lo ^= operand_ovl.part.lo;
138 count = (count & 63) - 32;
139 }
140 ACPI_SHIFT_LEFT_64_BY_32(operand_ovl.part.hi,
141 operand_ovl.part.lo, count);
142
143 /* Return only what was requested */
144
145 if (out_result) {
146 *out_result = operand_ovl.full;
147 }
148
149 return_ACPI_STATUS(AE_OK);
150}
151
152/*******************************************************************************
153 *
154 * FUNCTION: acpi_ut_short_shift_right
155 *
156 * PARAMETERS: operand - 64-bit shift operand
157 * count - 32-bit shift count
158 * out_result - Pointer to where the result is returned
159 *
160 * DESCRIPTION: Perform a short right shift.
161 *
162 ******************************************************************************/
163
164acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result)
165{
166 union uint64_overlay operand_ovl;
167
168 ACPI_FUNCTION_TRACE(ut_short_shift_right);
169
170 operand_ovl.full = operand;
171
172 if ((count & 63) >= 32) {
173 operand_ovl.part.lo = operand_ovl.part.hi;
174 operand_ovl.part.hi ^= operand_ovl.part.hi;
175 count = (count & 63) - 32;
176 }
177 ACPI_SHIFT_RIGHT_64_BY_32(operand_ovl.part.hi,
178 operand_ovl.part.lo, count);
179
180 /* Return only what was requested */
181
182 if (out_result) {
183 *out_result = operand_ovl.full;
184 }
185
186 return_ACPI_STATUS(AE_OK);
187}
188#else
189
190/*******************************************************************************
191 *
192 * FUNCTION: acpi_ut_short_multiply
193 *
194 * PARAMETERS: See function headers above
195 *
196 * DESCRIPTION: Native version of the ut_short_multiply function.
197 *
198 ******************************************************************************/
199
200acpi_status
201acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product)
202{
203
204 ACPI_FUNCTION_TRACE(ut_short_multiply);
205
206 /* Return only what was requested */
207
208 if (out_product) {
209 *out_product = multiplicand * multiplier;
210 }
211
212 return_ACPI_STATUS(AE_OK);
213}
214
215/*******************************************************************************
216 *
217 * FUNCTION: acpi_ut_short_shift_left
218 *
219 * PARAMETERS: See function headers above
220 *
221 * DESCRIPTION: Native version of the ut_short_shift_left function.
222 *
223 ******************************************************************************/
224
225acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result)
226{
227
228 ACPI_FUNCTION_TRACE(ut_short_shift_left);
229
230 /* Return only what was requested */
231
232 if (out_result) {
233 *out_result = operand << count;
234 }
235
236 return_ACPI_STATUS(AE_OK);
237}
238
239/*******************************************************************************
240 *
241 * FUNCTION: acpi_ut_short_shift_right
242 *
243 * PARAMETERS: See function headers above
244 *
245 * DESCRIPTION: Native version of the ut_short_shift_right function.
246 *
247 ******************************************************************************/
248
249acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result)
250{
251
252 ACPI_FUNCTION_TRACE(ut_short_shift_right);
253
254 /* Return only what was requested */
255
256 if (out_result) {
257 *out_result = operand >> count;
258 }
259
260 return_ACPI_STATUS(AE_OK);
261}
262#endif
263
264/*
265 * Optional support for 64-bit double-precision integer divide. This code
266 * is configurable and is implemented in order to support 32-bit kernel
267 * environments where a 64-bit double-precision math library is not available.
268 *
269 * Support for a more normal 64-bit divide/modulo (with check for a divide-
270 * by-zero) appears after this optional section of code.
271 */
272#ifndef ACPI_USE_NATIVE_DIVIDE
273
274/*******************************************************************************
275 *
276 * FUNCTION: acpi_ut_short_divide
277 *
278 * PARAMETERS: dividend - 64-bit dividend
279 * divisor - 32-bit divisor
280 * out_quotient - Pointer to where the quotient is returned
281 * out_remainder - Pointer to where the remainder is returned
282 *
283 * RETURN: Status (Checks for divide-by-zero)
284 *
285 * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
286 * divide and modulo. The result is a 64-bit quotient and a
287 * 32-bit remainder.
288 *
289 ******************************************************************************/
290
291acpi_status
292acpi_ut_short_divide(u64 dividend,
293 u32 divisor, u64 *out_quotient, u32 *out_remainder)
294{
295 union uint64_overlay dividend_ovl;
296 union uint64_overlay quotient;
297 u32 remainder32;
298
299 ACPI_FUNCTION_TRACE(ut_short_divide);
300
301 /* Always check for a zero divisor */
302
303 if (divisor == 0) {
304 ACPI_ERROR((AE_INFO, "Divide by zero"));
305 return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
306 }
307
308 dividend_ovl.full = dividend;
309
310 /*
311 * The quotient is 64 bits, the remainder is always 32 bits,
312 * and is generated by the second divide.
313 */
314 ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor,
315 quotient.part.hi, remainder32);
316
317 ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor,
318 quotient.part.lo, remainder32);
319
320 /* Return only what was requested */
321
322 if (out_quotient) {
323 *out_quotient = quotient.full;
324 }
325 if (out_remainder) {
326 *out_remainder = remainder32;
327 }
328
329 return_ACPI_STATUS(AE_OK);
330}
331
332/*******************************************************************************
333 *
334 * FUNCTION: acpi_ut_divide
335 *
336 * PARAMETERS: in_dividend - Dividend
337 * in_divisor - Divisor
338 * out_quotient - Pointer to where the quotient is returned
339 * out_remainder - Pointer to where the remainder is returned
340 *
341 * RETURN: Status (Checks for divide-by-zero)
342 *
343 * DESCRIPTION: Perform a divide and modulo.
344 *
345 ******************************************************************************/
346
347acpi_status
348acpi_ut_divide(u64 in_dividend,
349 u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
350{
351 union uint64_overlay dividend;
352 union uint64_overlay divisor;
353 union uint64_overlay quotient;
354 union uint64_overlay remainder;
355 union uint64_overlay normalized_dividend;
356 union uint64_overlay normalized_divisor;
357 u32 partial1;
358 union uint64_overlay partial2;
359 union uint64_overlay partial3;
360
361 ACPI_FUNCTION_TRACE(ut_divide);
362
363 /* Always check for a zero divisor */
364
365 if (in_divisor == 0) {
366 ACPI_ERROR((AE_INFO, "Divide by zero"));
367 return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
368 }
369
370 divisor.full = in_divisor;
371 dividend.full = in_dividend;
372 if (divisor.part.hi == 0) {
373 /*
374 * 1) Simplest case is where the divisor is 32 bits, we can
375 * just do two divides
376 */
377 remainder.part.hi = 0;
378
379 /*
380 * The quotient is 64 bits, the remainder is always 32 bits,
381 * and is generated by the second divide.
382 */
383 ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo,
384 quotient.part.hi, partial1);
385
386 ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo,
387 quotient.part.lo, remainder.part.lo);
388 }
389
390 else {
391 /*
392 * 2) The general case where the divisor is a full 64 bits
393 * is more difficult
394 */
395 quotient.part.hi = 0;
396 normalized_dividend = dividend;
397 normalized_divisor = divisor;
398
399 /* Normalize the operands (shift until the divisor is < 32 bits) */
400
401 do {
402 ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi,
403 normalized_divisor.part.lo);
404 ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi,
405 normalized_dividend.part.lo);
406
407 } while (normalized_divisor.part.hi != 0);
408
409 /* Partial divide */
410
411 ACPI_DIV_64_BY_32(normalized_dividend.part.hi,
412 normalized_dividend.part.lo,
413 normalized_divisor.part.lo, quotient.part.lo,
414 partial1);
415
416 /*
417 * The quotient is always 32 bits, and simply requires
418 * adjustment. The 64-bit remainder must be generated.
419 */
420 partial1 = quotient.part.lo * divisor.part.hi;
421 partial2.full = (u64) quotient.part.lo * divisor.part.lo;
422 partial3.full = (u64) partial2.part.hi + partial1;
423
424 remainder.part.hi = partial3.part.lo;
425 remainder.part.lo = partial2.part.lo;
426
427 if (partial3.part.hi == 0) {
428 if (partial3.part.lo >= dividend.part.hi) {
429 if (partial3.part.lo == dividend.part.hi) {
430 if (partial2.part.lo > dividend.part.lo) {
431 quotient.part.lo--;
432 remainder.full -= divisor.full;
433 }
434 } else {
435 quotient.part.lo--;
436 remainder.full -= divisor.full;
437 }
438 }
439
440 remainder.full = remainder.full - dividend.full;
441 remainder.part.hi = (u32)-((s32)remainder.part.hi);
442 remainder.part.lo = (u32)-((s32)remainder.part.lo);
443
444 if (remainder.part.lo) {
445 remainder.part.hi--;
446 }
447 }
448 }
449
450 /* Return only what was requested */
451
452 if (out_quotient) {
453 *out_quotient = quotient.full;
454 }
455 if (out_remainder) {
456 *out_remainder = remainder.full;
457 }
458
459 return_ACPI_STATUS(AE_OK);
460}
461
462#else
463
464/*******************************************************************************
465 *
466 * FUNCTION: acpi_ut_short_divide, acpi_ut_divide
467 *
468 * PARAMETERS: See function headers above
469 *
470 * DESCRIPTION: Native versions of the ut_divide functions. Use these if either
471 * 1) The target is a 64-bit platform and therefore 64-bit
472 * integer math is supported directly by the machine.
473 * 2) The target is a 32-bit or 16-bit platform, and the
474 * double-precision integer math library is available to
475 * perform the divide.
476 *
477 ******************************************************************************/
478
479acpi_status
480acpi_ut_short_divide(u64 in_dividend,
481 u32 divisor, u64 *out_quotient, u32 *out_remainder)
482{
483
484 ACPI_FUNCTION_TRACE(ut_short_divide);
485
486 /* Always check for a zero divisor */
487
488 if (divisor == 0) {
489 ACPI_ERROR((AE_INFO, "Divide by zero"));
490 return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
491 }
492
493 /* Return only what was requested */
494
495 if (out_quotient) {
496 *out_quotient = in_dividend / divisor;
497 }
498 if (out_remainder) {
499 *out_remainder = (u32) (in_dividend % divisor);
500 }
501
502 return_ACPI_STATUS(AE_OK);
503}
504
505acpi_status
506acpi_ut_divide(u64 in_dividend,
507 u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
508{
509 ACPI_FUNCTION_TRACE(ut_divide);
510
511 /* Always check for a zero divisor */
512
513 if (in_divisor == 0) {
514 ACPI_ERROR((AE_INFO, "Divide by zero"));
515 return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
516 }
517
518 /* Return only what was requested */
519
520 if (out_quotient) {
521 *out_quotient = in_dividend / in_divisor;
522 }
523 if (out_remainder) {
524 *out_remainder = in_dividend % in_divisor;
525 }
526
527 return_ACPI_STATUS(AE_OK);
528}
529
530#endif