blob: 732549ee1fe3dc0f2f81fa94c2619bef66390c65 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3 *
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
17 *
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
20 * operation involves:
21 *
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
23 *
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
26 *
27 * - Platform conveys its decision back to OS
28 *
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
33 *
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
36 */
37
38#define pr_fmt(fmt) "ACPI CPPC: " fmt
39
40#include <linux/cpufreq.h>
41#include <linux/delay.h>
42#include <linux/ktime.h>
43#include <linux/rwsem.h>
44#include <linux/wait.h>
45
46#include <acpi/cppc_acpi.h>
47
48struct cppc_pcc_data {
49 struct mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
51 int pcc_subspace_idx;
52 bool pcc_channel_acquired;
53 ktime_t deadline;
54 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
57 bool platform_owns_pcc; /* Ownership of PCC subspace */
58 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
59
60 /*
61 * Lock to provide controlled access to the PCC channel.
62 *
63 * For performance critical usecases(currently cppc_set_perf)
64 * We need to take read_lock and check if channel belongs to OSPM
65 * before reading or writing to PCC subspace
66 * We need to take write_lock before transferring the channel
67 * ownership to the platform via a Doorbell
68 * This allows us to batch a number of CPPC requests if they happen
69 * to originate in about the same time
70 *
71 * For non-performance critical usecases(init)
72 * Take write_lock for all purposes which gives exclusive access
73 */
74 struct rw_semaphore pcc_lock;
75
76 /* Wait queue for CPUs whose requests were batched */
77 wait_queue_head_t pcc_write_wait_q;
78};
79
80/* Structure to represent the single PCC channel */
81static struct cppc_pcc_data pcc_data = {
82 .pcc_subspace_idx = -1,
83 .platform_owns_pcc = true,
84};
85
86/*
87 * The cpc_desc structure contains the ACPI register details
88 * as described in the per CPU _CPC tables. The details
89 * include the type of register (e.g. PCC, System IO, FFH etc.)
90 * and destination addresses which lets us READ/WRITE CPU performance
91 * information using the appropriate I/O methods.
92 */
93static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94
95/* pcc mapped address + header size + offset within PCC subspace */
96#define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97
98/* Check if a CPC register is in PCC */
99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103/* Evalutes to True if reg is a NULL register descriptor */
104#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
109
110/* Evalutes to True if an optional cpc field is supported */
111#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114/*
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
118 */
119#define NUM_RETRIES 500
120
121struct cppc_attr {
122 struct attribute attr;
123 ssize_t (*show)(struct kobject *kobj,
124 struct attribute *attr, char *buf);
125 ssize_t (*store)(struct kobject *kobj,
126 struct attribute *attr, const char *c, ssize_t count);
127};
128
129#define define_one_cppc_ro(_name) \
130static struct cppc_attr _name = \
131__ATTR(_name, 0444, show_##_name, NULL)
132
133#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135#define show_cppc_data(access_fn, struct_name, member_name) \
136 static ssize_t show_##member_name(struct kobject *kobj, \
137 struct attribute *attr, char *buf) \
138 { \
139 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
140 struct struct_name st_name = {0}; \
141 int ret; \
142 \
143 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
144 if (ret) \
145 return ret; \
146 \
147 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
148 (u64)st_name.member_name); \
149 } \
150 define_one_cppc_ro(member_name)
151
152show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
153show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
154show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
155show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
156show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
157show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
158
159static ssize_t show_feedback_ctrs(struct kobject *kobj,
160 struct attribute *attr, char *buf)
161{
162 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
163 struct cppc_perf_fb_ctrs fb_ctrs = {0};
164 int ret;
165
166 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
167 if (ret)
168 return ret;
169
170 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
171 fb_ctrs.reference, fb_ctrs.delivered);
172}
173define_one_cppc_ro(feedback_ctrs);
174
175static struct attribute *cppc_attrs[] = {
176 &feedback_ctrs.attr,
177 &reference_perf.attr,
178 &wraparound_time.attr,
179 &highest_perf.attr,
180 &lowest_perf.attr,
181 &lowest_nonlinear_perf.attr,
182 &nominal_perf.attr,
183 NULL
184};
185
186static struct kobj_type cppc_ktype = {
187 .sysfs_ops = &kobj_sysfs_ops,
188 .default_attrs = cppc_attrs,
189};
190
191static int check_pcc_chan(bool chk_err_bit)
192{
193 int ret = -EIO, status = 0;
194 struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
195 ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
196
197 if (!pcc_data.platform_owns_pcc)
198 return 0;
199
200 /* Retry in case the remote processor was too slow to catch up. */
201 while (!ktime_after(ktime_get(), next_deadline)) {
202 /*
203 * Per spec, prior to boot the PCC space wil be initialized by
204 * platform and should have set the command completion bit when
205 * PCC can be used by OSPM
206 */
207 status = readw_relaxed(&generic_comm_base->status);
208 if (status & PCC_CMD_COMPLETE_MASK) {
209 ret = 0;
210 if (chk_err_bit && (status & PCC_ERROR_MASK))
211 ret = -EIO;
212 break;
213 }
214 /*
215 * Reducing the bus traffic in case this loop takes longer than
216 * a few retries.
217 */
218 udelay(3);
219 }
220
221 if (likely(!ret))
222 pcc_data.platform_owns_pcc = false;
223 else
224 pr_err("PCC check channel failed. Status=%x\n", status);
225
226 return ret;
227}
228
229/*
230 * This function transfers the ownership of the PCC to the platform
231 * So it must be called while holding write_lock(pcc_lock)
232 */
233static int send_pcc_cmd(u16 cmd)
234{
235 int ret = -EIO, i;
236 struct acpi_pcct_shared_memory *generic_comm_base =
237 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
238 static ktime_t last_cmd_cmpl_time, last_mpar_reset;
239 static int mpar_count;
240 unsigned int time_delta;
241
242 /*
243 * For CMD_WRITE we know for a fact the caller should have checked
244 * the channel before writing to PCC space
245 */
246 if (cmd == CMD_READ) {
247 /*
248 * If there are pending cpc_writes, then we stole the channel
249 * before write completion, so first send a WRITE command to
250 * platform
251 */
252 if (pcc_data.pending_pcc_write_cmd)
253 send_pcc_cmd(CMD_WRITE);
254
255 ret = check_pcc_chan(false);
256 if (ret)
257 goto end;
258 } else /* CMD_WRITE */
259 pcc_data.pending_pcc_write_cmd = FALSE;
260
261 /*
262 * Handle the Minimum Request Turnaround Time(MRTT)
263 * "The minimum amount of time that OSPM must wait after the completion
264 * of a command before issuing the next command, in microseconds"
265 */
266 if (pcc_data.pcc_mrtt) {
267 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
268 if (pcc_data.pcc_mrtt > time_delta)
269 udelay(pcc_data.pcc_mrtt - time_delta);
270 }
271
272 /*
273 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
274 * "The maximum number of periodic requests that the subspace channel can
275 * support, reported in commands per minute. 0 indicates no limitation."
276 *
277 * This parameter should be ideally zero or large enough so that it can
278 * handle maximum number of requests that all the cores in the system can
279 * collectively generate. If it is not, we will follow the spec and just
280 * not send the request to the platform after hitting the MPAR limit in
281 * any 60s window
282 */
283 if (pcc_data.pcc_mpar) {
284 if (mpar_count == 0) {
285 time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
286 if (time_delta < 60 * MSEC_PER_SEC) {
287 pr_debug("PCC cmd not sent due to MPAR limit");
288 ret = -EIO;
289 goto end;
290 }
291 last_mpar_reset = ktime_get();
292 mpar_count = pcc_data.pcc_mpar;
293 }
294 mpar_count--;
295 }
296
297 /* Write to the shared comm region. */
298 writew_relaxed(cmd, &generic_comm_base->command);
299
300 /* Flip CMD COMPLETE bit */
301 writew_relaxed(0, &generic_comm_base->status);
302
303 pcc_data.platform_owns_pcc = true;
304
305 /* Ring doorbell */
306 ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
307 if (ret < 0) {
308 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
309 cmd, ret);
310 goto end;
311 }
312
313 /* wait for completion and check for PCC errro bit */
314 ret = check_pcc_chan(true);
315
316 if (pcc_data.pcc_mrtt)
317 last_cmd_cmpl_time = ktime_get();
318
319 if (pcc_data.pcc_channel->mbox->txdone_irq)
320 mbox_chan_txdone(pcc_data.pcc_channel, ret);
321 else
322 mbox_client_txdone(pcc_data.pcc_channel, ret);
323
324end:
325 if (cmd == CMD_WRITE) {
326 if (unlikely(ret)) {
327 for_each_possible_cpu(i) {
328 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
329 if (!desc)
330 continue;
331
332 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
333 desc->write_cmd_status = ret;
334 }
335 }
336 pcc_data.pcc_write_cnt++;
337 wake_up_all(&pcc_data.pcc_write_wait_q);
338 }
339
340 return ret;
341}
342
343static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
344{
345 if (ret < 0)
346 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
347 *(u16 *)msg, ret);
348 else
349 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
350 *(u16 *)msg, ret);
351}
352
353struct mbox_client cppc_mbox_cl = {
354 .tx_done = cppc_chan_tx_done,
355 .knows_txdone = true,
356};
357
358static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
359{
360 int result = -EFAULT;
361 acpi_status status = AE_OK;
362 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
363 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
364 struct acpi_buffer state = {0, NULL};
365 union acpi_object *psd = NULL;
366 struct acpi_psd_package *pdomain;
367
368 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
369 &buffer, ACPI_TYPE_PACKAGE);
370 if (status == AE_NOT_FOUND) /* _PSD is optional */
371 return 0;
372 if (ACPI_FAILURE(status))
373 return -ENODEV;
374
375 psd = buffer.pointer;
376 if (!psd || psd->package.count != 1) {
377 pr_debug("Invalid _PSD data\n");
378 goto end;
379 }
380
381 pdomain = &(cpc_ptr->domain_info);
382
383 state.length = sizeof(struct acpi_psd_package);
384 state.pointer = pdomain;
385
386 status = acpi_extract_package(&(psd->package.elements[0]),
387 &format, &state);
388 if (ACPI_FAILURE(status)) {
389 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
390 goto end;
391 }
392
393 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
394 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
395 goto end;
396 }
397
398 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
399 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
400 goto end;
401 }
402
403 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
404 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
405 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
406 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
407 goto end;
408 }
409
410 result = 0;
411end:
412 kfree(buffer.pointer);
413 return result;
414}
415
416/**
417 * acpi_get_psd_map - Map the CPUs in a common freq domain.
418 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
419 *
420 * Return: 0 for success or negative value for err.
421 */
422int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
423{
424 int count_target;
425 int retval = 0;
426 unsigned int i, j;
427 cpumask_var_t covered_cpus;
428 struct cppc_cpudata *pr, *match_pr;
429 struct acpi_psd_package *pdomain;
430 struct acpi_psd_package *match_pdomain;
431 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
432
433 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
434 return -ENOMEM;
435
436 /*
437 * Now that we have _PSD data from all CPUs, lets setup P-state
438 * domain info.
439 */
440 for_each_possible_cpu(i) {
441 pr = all_cpu_data[i];
442 if (!pr)
443 continue;
444
445 if (cpumask_test_cpu(i, covered_cpus))
446 continue;
447
448 cpc_ptr = per_cpu(cpc_desc_ptr, i);
449 if (!cpc_ptr) {
450 retval = -EFAULT;
451 goto err_ret;
452 }
453
454 pdomain = &(cpc_ptr->domain_info);
455 cpumask_set_cpu(i, pr->shared_cpu_map);
456 cpumask_set_cpu(i, covered_cpus);
457 if (pdomain->num_processors <= 1)
458 continue;
459
460 /* Validate the Domain info */
461 count_target = pdomain->num_processors;
462 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
463 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
464 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
465 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
466 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
467 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
468
469 for_each_possible_cpu(j) {
470 if (i == j)
471 continue;
472
473 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
474 if (!match_cpc_ptr) {
475 retval = -EFAULT;
476 goto err_ret;
477 }
478
479 match_pdomain = &(match_cpc_ptr->domain_info);
480 if (match_pdomain->domain != pdomain->domain)
481 continue;
482
483 /* Here i and j are in the same domain */
484 if (match_pdomain->num_processors != count_target) {
485 retval = -EFAULT;
486 goto err_ret;
487 }
488
489 if (pdomain->coord_type != match_pdomain->coord_type) {
490 retval = -EFAULT;
491 goto err_ret;
492 }
493
494 cpumask_set_cpu(j, covered_cpus);
495 cpumask_set_cpu(j, pr->shared_cpu_map);
496 }
497
498 for_each_possible_cpu(j) {
499 if (i == j)
500 continue;
501
502 match_pr = all_cpu_data[j];
503 if (!match_pr)
504 continue;
505
506 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
507 if (!match_cpc_ptr) {
508 retval = -EFAULT;
509 goto err_ret;
510 }
511
512 match_pdomain = &(match_cpc_ptr->domain_info);
513 if (match_pdomain->domain != pdomain->domain)
514 continue;
515
516 match_pr->shared_type = pr->shared_type;
517 cpumask_copy(match_pr->shared_cpu_map,
518 pr->shared_cpu_map);
519 }
520 }
521
522err_ret:
523 for_each_possible_cpu(i) {
524 pr = all_cpu_data[i];
525 if (!pr)
526 continue;
527
528 /* Assume no coordination on any error parsing domain info */
529 if (retval) {
530 cpumask_clear(pr->shared_cpu_map);
531 cpumask_set_cpu(i, pr->shared_cpu_map);
532 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
533 }
534 }
535
536 free_cpumask_var(covered_cpus);
537 return retval;
538}
539EXPORT_SYMBOL_GPL(acpi_get_psd_map);
540
541static int register_pcc_channel(int pcc_subspace_idx)
542{
543 struct acpi_pcct_hw_reduced *cppc_ss;
544 u64 usecs_lat;
545
546 if (pcc_subspace_idx >= 0) {
547 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
548 pcc_subspace_idx);
549
550 if (IS_ERR(pcc_data.pcc_channel)) {
551 pr_err("Failed to find PCC communication channel\n");
552 return -ENODEV;
553 }
554
555 /*
556 * The PCC mailbox controller driver should
557 * have parsed the PCCT (global table of all
558 * PCC channels) and stored pointers to the
559 * subspace communication region in con_priv.
560 */
561 cppc_ss = (pcc_data.pcc_channel)->con_priv;
562
563 if (!cppc_ss) {
564 pr_err("No PCC subspace found for CPPC\n");
565 return -ENODEV;
566 }
567
568 /*
569 * cppc_ss->latency is just a Nominal value. In reality
570 * the remote processor could be much slower to reply.
571 * So add an arbitrary amount of wait on top of Nominal.
572 */
573 usecs_lat = NUM_RETRIES * cppc_ss->latency;
574 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
575 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
576 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
577 pcc_data.pcc_nominal = cppc_ss->latency;
578
579 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
580 if (!pcc_data.pcc_comm_addr) {
581 pr_err("Failed to ioremap PCC comm region mem\n");
582 return -ENOMEM;
583 }
584
585 /* Set flag so that we dont come here for each CPU. */
586 pcc_data.pcc_channel_acquired = true;
587 }
588
589 return 0;
590}
591
592/**
593 * cpc_ffh_supported() - check if FFH reading supported
594 *
595 * Check if the architecture has support for functional fixed hardware
596 * read/write capability.
597 *
598 * Return: true for supported, false for not supported
599 */
600bool __weak cpc_ffh_supported(void)
601{
602 return false;
603}
604
605/*
606 * An example CPC table looks like the following.
607 *
608 * Name(_CPC, Package()
609 * {
610 * 17,
611 * NumEntries
612 * 1,
613 * // Revision
614 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
615 * // Highest Performance
616 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
617 * // Nominal Performance
618 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
619 * // Lowest Nonlinear Performance
620 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
621 * // Lowest Performance
622 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
623 * // Guaranteed Performance Register
624 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
625 * // Desired Performance Register
626 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
627 * ..
628 * ..
629 * ..
630 *
631 * }
632 * Each Register() encodes how to access that specific register.
633 * e.g. a sample PCC entry has the following encoding:
634 *
635 * Register (
636 * PCC,
637 * AddressSpaceKeyword
638 * 8,
639 * //RegisterBitWidth
640 * 8,
641 * //RegisterBitOffset
642 * 0x30,
643 * //RegisterAddress
644 * 9
645 * //AccessSize (subspace ID)
646 * 0
647 * )
648 * }
649 */
650
651/**
652 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
653 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
654 *
655 * Return: 0 for success or negative value for err.
656 */
657int acpi_cppc_processor_probe(struct acpi_processor *pr)
658{
659 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
660 union acpi_object *out_obj, *cpc_obj;
661 struct cpc_desc *cpc_ptr;
662 struct cpc_reg *gas_t;
663 struct device *cpu_dev;
664 acpi_handle handle = pr->handle;
665 unsigned int num_ent, i, cpc_rev;
666 acpi_status status;
667 int ret = -EFAULT;
668
669 /* Parse the ACPI _CPC table for this cpu. */
670 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
671 ACPI_TYPE_PACKAGE);
672 if (ACPI_FAILURE(status)) {
673 ret = -ENODEV;
674 goto out_buf_free;
675 }
676
677 out_obj = (union acpi_object *) output.pointer;
678
679 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
680 if (!cpc_ptr) {
681 ret = -ENOMEM;
682 goto out_buf_free;
683 }
684
685 /* First entry is NumEntries. */
686 cpc_obj = &out_obj->package.elements[0];
687 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
688 num_ent = cpc_obj->integer.value;
689 } else {
690 pr_debug("Unexpected entry type(%d) for NumEntries\n",
691 cpc_obj->type);
692 goto out_free;
693 }
694
695 /* Only support CPPCv2. Bail otherwise. */
696 if (num_ent != CPPC_NUM_ENT) {
697 pr_debug("Firmware exports %d entries. Expected: %d\n",
698 num_ent, CPPC_NUM_ENT);
699 goto out_free;
700 }
701
702 cpc_ptr->num_entries = num_ent;
703
704 /* Second entry should be revision. */
705 cpc_obj = &out_obj->package.elements[1];
706 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
707 cpc_rev = cpc_obj->integer.value;
708 } else {
709 pr_debug("Unexpected entry type(%d) for Revision\n",
710 cpc_obj->type);
711 goto out_free;
712 }
713
714 if (cpc_rev != CPPC_REV) {
715 pr_debug("Firmware exports revision:%d. Expected:%d\n",
716 cpc_rev, CPPC_REV);
717 goto out_free;
718 }
719
720 /* Iterate through remaining entries in _CPC */
721 for (i = 2; i < num_ent; i++) {
722 cpc_obj = &out_obj->package.elements[i];
723
724 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
725 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
726 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
727 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
728 gas_t = (struct cpc_reg *)
729 cpc_obj->buffer.pointer;
730
731 /*
732 * The PCC Subspace index is encoded inside
733 * the CPC table entries. The same PCC index
734 * will be used for all the PCC entries,
735 * so extract it only once.
736 */
737 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
738 if (pcc_data.pcc_subspace_idx < 0)
739 pcc_data.pcc_subspace_idx = gas_t->access_width;
740 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
741 pr_debug("Mismatched PCC ids.\n");
742 goto out_free;
743 }
744 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
745 if (gas_t->address) {
746 void __iomem *addr;
747
748 addr = ioremap(gas_t->address, gas_t->bit_width/8);
749 if (!addr)
750 goto out_free;
751 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
752 }
753 } else {
754 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
755 /* Support only PCC ,SYS MEM and FFH type regs */
756 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
757 goto out_free;
758 }
759 }
760
761 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
762 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
763 } else {
764 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
765 goto out_free;
766 }
767 }
768 /* Store CPU Logical ID */
769 cpc_ptr->cpu_id = pr->id;
770
771 /* Parse PSD data for this CPU */
772 ret = acpi_get_psd(cpc_ptr, handle);
773 if (ret)
774 goto out_free;
775
776 /* Register PCC channel once for all CPUs. */
777 if (!pcc_data.pcc_channel_acquired) {
778 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
779 if (ret)
780 goto out_free;
781
782 init_rwsem(&pcc_data.pcc_lock);
783 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
784 }
785
786 /* Everything looks okay */
787 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
788
789 /* Add per logical CPU nodes for reading its feedback counters. */
790 cpu_dev = get_cpu_device(pr->id);
791 if (!cpu_dev) {
792 ret = -EINVAL;
793 goto out_free;
794 }
795
796 /* Plug PSD data into this CPUs CPC descriptor. */
797 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
798
799 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
800 "acpi_cppc");
801 if (ret) {
802 per_cpu(cpc_desc_ptr, pr->id) = NULL;
803 kobject_put(&cpc_ptr->kobj);
804 goto out_free;
805 }
806
807 kfree(output.pointer);
808 return 0;
809
810out_free:
811 /* Free all the mapped sys mem areas for this CPU */
812 for (i = 2; i < cpc_ptr->num_entries; i++) {
813 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
814
815 if (addr)
816 iounmap(addr);
817 }
818 kfree(cpc_ptr);
819
820out_buf_free:
821 kfree(output.pointer);
822 return ret;
823}
824EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
825
826/**
827 * acpi_cppc_processor_exit - Cleanup CPC structs.
828 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
829 *
830 * Return: Void
831 */
832void acpi_cppc_processor_exit(struct acpi_processor *pr)
833{
834 struct cpc_desc *cpc_ptr;
835 unsigned int i;
836 void __iomem *addr;
837
838 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
839 if (!cpc_ptr)
840 return;
841
842 /* Free all the mapped sys mem areas for this CPU */
843 for (i = 2; i < cpc_ptr->num_entries; i++) {
844 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
845 if (addr)
846 iounmap(addr);
847 }
848
849 kobject_put(&cpc_ptr->kobj);
850 kfree(cpc_ptr);
851}
852EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
853
854/**
855 * cpc_read_ffh() - Read FFH register
856 * @cpunum: cpu number to read
857 * @reg: cppc register information
858 * @val: place holder for return value
859 *
860 * Read bit_width bits from a specified address and bit_offset
861 *
862 * Return: 0 for success and error code
863 */
864int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
865{
866 return -ENOTSUPP;
867}
868
869/**
870 * cpc_write_ffh() - Write FFH register
871 * @cpunum: cpu number to write
872 * @reg: cppc register information
873 * @val: value to write
874 *
875 * Write value of bit_width bits to a specified address and bit_offset
876 *
877 * Return: 0 for success and error code
878 */
879int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
880{
881 return -ENOTSUPP;
882}
883
884/*
885 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
886 * as fast as possible. We have already mapped the PCC subspace during init, so
887 * we can directly write to it.
888 */
889
890static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
891{
892 int ret_val = 0;
893 void __iomem *vaddr = 0;
894 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
895
896 if (reg_res->type == ACPI_TYPE_INTEGER) {
897 *val = reg_res->cpc_entry.int_value;
898 return ret_val;
899 }
900
901 *val = 0;
902 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
903 vaddr = GET_PCC_VADDR(reg->address);
904 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
905 vaddr = reg_res->sys_mem_vaddr;
906 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
907 return cpc_read_ffh(cpu, reg, val);
908 else
909 return acpi_os_read_memory((acpi_physical_address)reg->address,
910 val, reg->bit_width);
911
912 switch (reg->bit_width) {
913 case 8:
914 *val = readb_relaxed(vaddr);
915 break;
916 case 16:
917 *val = readw_relaxed(vaddr);
918 break;
919 case 32:
920 *val = readl_relaxed(vaddr);
921 break;
922 case 64:
923 *val = readq_relaxed(vaddr);
924 break;
925 default:
926 pr_debug("Error: Cannot read %u bit width from PCC\n",
927 reg->bit_width);
928 ret_val = -EFAULT;
929 }
930
931 return ret_val;
932}
933
934static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
935{
936 int ret_val = 0;
937 void __iomem *vaddr = 0;
938 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
939
940 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
941 vaddr = GET_PCC_VADDR(reg->address);
942 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
943 vaddr = reg_res->sys_mem_vaddr;
944 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
945 return cpc_write_ffh(cpu, reg, val);
946 else
947 return acpi_os_write_memory((acpi_physical_address)reg->address,
948 val, reg->bit_width);
949
950 switch (reg->bit_width) {
951 case 8:
952 writeb_relaxed(val, vaddr);
953 break;
954 case 16:
955 writew_relaxed(val, vaddr);
956 break;
957 case 32:
958 writel_relaxed(val, vaddr);
959 break;
960 case 64:
961 writeq_relaxed(val, vaddr);
962 break;
963 default:
964 pr_debug("Error: Cannot write %u bit width to PCC\n",
965 reg->bit_width);
966 ret_val = -EFAULT;
967 break;
968 }
969
970 return ret_val;
971}
972
973/**
974 * cppc_get_perf_caps - Get a CPUs performance capabilities.
975 * @cpunum: CPU from which to get capabilities info.
976 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
977 *
978 * Return: 0 for success with perf_caps populated else -ERRNO.
979 */
980int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
981{
982 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
983 struct cpc_register_resource *highest_reg, *lowest_reg,
984 *lowest_non_linear_reg, *nominal_reg;
985 u64 high, low, nom, min_nonlinear;
986 int ret = 0, regs_in_pcc = 0;
987
988 if (!cpc_desc) {
989 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
990 return -ENODEV;
991 }
992
993 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
994 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
995 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
996 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
997
998 /* Are any of the regs PCC ?*/
999 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1000 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
1001 regs_in_pcc = 1;
1002 down_write(&pcc_data.pcc_lock);
1003 /* Ring doorbell once to update PCC subspace */
1004 if (send_pcc_cmd(CMD_READ) < 0) {
1005 ret = -EIO;
1006 goto out_err;
1007 }
1008 }
1009
1010 cpc_read(cpunum, highest_reg, &high);
1011 perf_caps->highest_perf = high;
1012
1013 cpc_read(cpunum, lowest_reg, &low);
1014 perf_caps->lowest_perf = low;
1015
1016 cpc_read(cpunum, nominal_reg, &nom);
1017 perf_caps->nominal_perf = nom;
1018
1019 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1020 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1021
1022 if (!high || !low || !nom || !min_nonlinear)
1023 ret = -EFAULT;
1024
1025out_err:
1026 if (regs_in_pcc)
1027 up_write(&pcc_data.pcc_lock);
1028 return ret;
1029}
1030EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1031
1032/**
1033 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1034 * @cpunum: CPU from which to read counters.
1035 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1036 *
1037 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1038 */
1039int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1040{
1041 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1042 struct cpc_register_resource *delivered_reg, *reference_reg,
1043 *ref_perf_reg, *ctr_wrap_reg;
1044 u64 delivered, reference, ref_perf, ctr_wrap_time;
1045 int ret = 0, regs_in_pcc = 0;
1046
1047 if (!cpc_desc) {
1048 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1049 return -ENODEV;
1050 }
1051
1052 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1053 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1054 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1055 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1056
1057 /*
1058 * If refernce perf register is not supported then we should
1059 * use the nominal perf value
1060 */
1061 if (!CPC_SUPPORTED(ref_perf_reg))
1062 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1063
1064 /* Are any of the regs PCC ?*/
1065 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1066 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1067 down_write(&pcc_data.pcc_lock);
1068 regs_in_pcc = 1;
1069 /* Ring doorbell once to update PCC subspace */
1070 if (send_pcc_cmd(CMD_READ) < 0) {
1071 ret = -EIO;
1072 goto out_err;
1073 }
1074 }
1075
1076 cpc_read(cpunum, delivered_reg, &delivered);
1077 cpc_read(cpunum, reference_reg, &reference);
1078 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1079
1080 /*
1081 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1082 * performance counters are assumed to never wrap during the lifetime of
1083 * platform
1084 */
1085 ctr_wrap_time = (u64)(~((u64)0));
1086 if (CPC_SUPPORTED(ctr_wrap_reg))
1087 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1088
1089 if (!delivered || !reference || !ref_perf) {
1090 ret = -EFAULT;
1091 goto out_err;
1092 }
1093
1094 perf_fb_ctrs->delivered = delivered;
1095 perf_fb_ctrs->reference = reference;
1096 perf_fb_ctrs->reference_perf = ref_perf;
1097 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1098out_err:
1099 if (regs_in_pcc)
1100 up_write(&pcc_data.pcc_lock);
1101 return ret;
1102}
1103EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1104
1105/**
1106 * cppc_set_perf - Set a CPUs performance controls.
1107 * @cpu: CPU for which to set performance controls.
1108 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1109 *
1110 * Return: 0 for success, -ERRNO otherwise.
1111 */
1112int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1113{
1114 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1115 struct cpc_register_resource *desired_reg;
1116 int ret = 0;
1117
1118 if (!cpc_desc) {
1119 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1120 return -ENODEV;
1121 }
1122
1123 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1124
1125 /*
1126 * This is Phase-I where we want to write to CPC registers
1127 * -> We want all CPUs to be able to execute this phase in parallel
1128 *
1129 * Since read_lock can be acquired by multiple CPUs simultaneously we
1130 * achieve that goal here
1131 */
1132 if (CPC_IN_PCC(desired_reg)) {
1133 down_read(&pcc_data.pcc_lock); /* BEGIN Phase-I */
1134 if (pcc_data.platform_owns_pcc) {
1135 ret = check_pcc_chan(false);
1136 if (ret) {
1137 up_read(&pcc_data.pcc_lock);
1138 return ret;
1139 }
1140 }
1141 /*
1142 * Update the pending_write to make sure a PCC CMD_READ will not
1143 * arrive and steal the channel during the switch to write lock
1144 */
1145 pcc_data.pending_pcc_write_cmd = true;
1146 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1147 cpc_desc->write_cmd_status = 0;
1148 }
1149
1150 /*
1151 * Skip writing MIN/MAX until Linux knows how to come up with
1152 * useful values.
1153 */
1154 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1155
1156 if (CPC_IN_PCC(desired_reg))
1157 up_read(&pcc_data.pcc_lock); /* END Phase-I */
1158 /*
1159 * This is Phase-II where we transfer the ownership of PCC to Platform
1160 *
1161 * Short Summary: Basically if we think of a group of cppc_set_perf
1162 * requests that happened in short overlapping interval. The last CPU to
1163 * come out of Phase-I will enter Phase-II and ring the doorbell.
1164 *
1165 * We have the following requirements for Phase-II:
1166 * 1. We want to execute Phase-II only when there are no CPUs
1167 * currently executing in Phase-I
1168 * 2. Once we start Phase-II we want to avoid all other CPUs from
1169 * entering Phase-I.
1170 * 3. We want only one CPU among all those who went through Phase-I
1171 * to run phase-II
1172 *
1173 * If write_trylock fails to get the lock and doesn't transfer the
1174 * PCC ownership to the platform, then one of the following will be TRUE
1175 * 1. There is at-least one CPU in Phase-I which will later execute
1176 * write_trylock, so the CPUs in Phase-I will be responsible for
1177 * executing the Phase-II.
1178 * 2. Some other CPU has beaten this CPU to successfully execute the
1179 * write_trylock and has already acquired the write_lock. We know for a
1180 * fact it(other CPU acquiring the write_lock) couldn't have happened
1181 * before this CPU's Phase-I as we held the read_lock.
1182 * 3. Some other CPU executing pcc CMD_READ has stolen the
1183 * down_write, in which case, send_pcc_cmd will check for pending
1184 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1185 * So this CPU can be certain that its request will be delivered
1186 * So in all cases, this CPU knows that its request will be delivered
1187 * by another CPU and can return
1188 *
1189 * After getting the down_write we still need to check for
1190 * pending_pcc_write_cmd to take care of the following scenario
1191 * The thread running this code could be scheduled out between
1192 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1193 * could have delivered the request to Platform by triggering the
1194 * doorbell and transferred the ownership of PCC to platform. So this
1195 * avoids triggering an unnecessary doorbell and more importantly before
1196 * triggering the doorbell it makes sure that the PCC channel ownership
1197 * is still with OSPM.
1198 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1199 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1200 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1201 * case during a CMD_READ and if there are pending writes it delivers
1202 * the write command before servicing the read command
1203 */
1204 if (CPC_IN_PCC(desired_reg)) {
1205 if (down_write_trylock(&pcc_data.pcc_lock)) { /* BEGIN Phase-II */
1206 /* Update only if there are pending write commands */
1207 if (pcc_data.pending_pcc_write_cmd)
1208 send_pcc_cmd(CMD_WRITE);
1209 up_write(&pcc_data.pcc_lock); /* END Phase-II */
1210 } else
1211 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1212 wait_event(pcc_data.pcc_write_wait_q,
1213 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1214
1215 /* send_pcc_cmd updates the status in case of failure */
1216 ret = cpc_desc->write_cmd_status;
1217 }
1218 return ret;
1219}
1220EXPORT_SYMBOL_GPL(cppc_set_perf);
1221
1222/**
1223 * cppc_get_transition_latency - returns frequency transition latency in ns
1224 *
1225 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1226 * transition latency for perfromance change requests. The closest we have
1227 * is the timing information from the PCCT tables which provides the info
1228 * on the number and frequency of PCC commands the platform can handle.
1229 */
1230unsigned int cppc_get_transition_latency(int cpu_num)
1231{
1232 /*
1233 * Expected transition latency is based on the PCCT timing values
1234 * Below are definition from ACPI spec:
1235 * pcc_nominal- Expected latency to process a command, in microseconds
1236 * pcc_mpar - The maximum number of periodic requests that the subspace
1237 * channel can support, reported in commands per minute. 0
1238 * indicates no limitation.
1239 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1240 * completion of a command before issuing the next command,
1241 * in microseconds.
1242 */
1243 unsigned int latency_ns = 0;
1244 struct cpc_desc *cpc_desc;
1245 struct cpc_register_resource *desired_reg;
1246
1247 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1248 if (!cpc_desc)
1249 return CPUFREQ_ETERNAL;
1250
1251 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1252 if (!CPC_IN_PCC(desired_reg))
1253 return CPUFREQ_ETERNAL;
1254
1255 if (pcc_data.pcc_mpar)
1256 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1257
1258 latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1259 latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1260
1261 return latency_ns;
1262}
1263EXPORT_SYMBOL_GPL(cppc_get_transition_latency);