rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Arch specific cpu topology information |
| 3 | * |
| 4 | * Copyright (C) 2016, ARM Ltd. |
| 5 | * Written by: Juri Lelli, ARM Ltd. |
| 6 | * |
| 7 | * This file is subject to the terms and conditions of the GNU General Public |
| 8 | * License. See the file "COPYING" in the main directory of this archive |
| 9 | * for more details. |
| 10 | * |
| 11 | * Released under the GPLv2 only. |
| 12 | * SPDX-License-Identifier: GPL-2.0 |
| 13 | */ |
| 14 | |
| 15 | #include <linux/acpi.h> |
| 16 | #include <linux/arch_topology.h> |
| 17 | #include <linux/cpu.h> |
| 18 | #include <linux/cpufreq.h> |
| 19 | #include <linux/device.h> |
| 20 | #include <linux/of.h> |
| 21 | #include <linux/slab.h> |
| 22 | #include <linux/string.h> |
| 23 | #include <linux/sched/topology.h> |
| 24 | #include <linux/sched/energy.h> |
| 25 | #include <linux/cpuset.h> |
| 26 | |
| 27 | DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE; |
| 28 | DEFINE_PER_CPU(unsigned long, max_cpu_freq); |
| 29 | DEFINE_PER_CPU(unsigned long, max_freq_scale) = SCHED_CAPACITY_SCALE; |
| 30 | |
| 31 | void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, |
| 32 | unsigned long max_freq) |
| 33 | { |
| 34 | unsigned long scale; |
| 35 | int i; |
| 36 | |
| 37 | scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; |
| 38 | |
| 39 | for_each_cpu(i, cpus) { |
| 40 | per_cpu(freq_scale, i) = scale; |
| 41 | per_cpu(max_cpu_freq, i) = max_freq; |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | void arch_set_max_freq_scale(struct cpumask *cpus, |
| 46 | unsigned long policy_max_freq) |
| 47 | { |
| 48 | unsigned long scale, max_freq; |
| 49 | int cpu = cpumask_first(cpus); |
| 50 | |
| 51 | if (cpu > nr_cpu_ids) |
| 52 | return; |
| 53 | |
| 54 | max_freq = per_cpu(max_cpu_freq, cpu); |
| 55 | if (!max_freq) |
| 56 | return; |
| 57 | |
| 58 | scale = (policy_max_freq << SCHED_CAPACITY_SHIFT) / max_freq; |
| 59 | |
| 60 | for_each_cpu(cpu, cpus) |
| 61 | per_cpu(max_freq_scale, cpu) = scale; |
| 62 | } |
| 63 | |
| 64 | static DEFINE_MUTEX(cpu_scale_mutex); |
| 65 | DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; |
| 66 | |
| 67 | void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) |
| 68 | { |
| 69 | per_cpu(cpu_scale, cpu) = capacity; |
| 70 | } |
| 71 | |
| 72 | static ssize_t cpu_capacity_show(struct device *dev, |
| 73 | struct device_attribute *attr, |
| 74 | char *buf) |
| 75 | { |
| 76 | struct cpu *cpu = container_of(dev, struct cpu, dev); |
| 77 | |
| 78 | return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id)); |
| 79 | } |
| 80 | |
| 81 | static void update_topology_flags_workfn(struct work_struct *work); |
| 82 | static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); |
| 83 | |
| 84 | static ssize_t cpu_capacity_store(struct device *dev, |
| 85 | struct device_attribute *attr, |
| 86 | const char *buf, |
| 87 | size_t count) |
| 88 | { |
| 89 | struct cpu *cpu = container_of(dev, struct cpu, dev); |
| 90 | int this_cpu = cpu->dev.id; |
| 91 | int i; |
| 92 | unsigned long new_capacity; |
| 93 | ssize_t ret; |
| 94 | cpumask_var_t mask; |
| 95 | |
| 96 | if (!count) |
| 97 | return 0; |
| 98 | |
| 99 | ret = kstrtoul(buf, 0, &new_capacity); |
| 100 | if (ret) |
| 101 | return ret; |
| 102 | if (new_capacity > SCHED_CAPACITY_SCALE) |
| 103 | return -EINVAL; |
| 104 | |
| 105 | mutex_lock(&cpu_scale_mutex); |
| 106 | |
| 107 | if (new_capacity < SCHED_CAPACITY_SCALE) { |
| 108 | int highest_score_cpu = 0; |
| 109 | |
| 110 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { |
| 111 | mutex_unlock(&cpu_scale_mutex); |
| 112 | return -ENOMEM; |
| 113 | } |
| 114 | |
| 115 | cpumask_andnot(mask, cpu_online_mask, |
| 116 | topology_core_cpumask(this_cpu)); |
| 117 | |
| 118 | for_each_cpu(i, mask) { |
| 119 | if (topology_get_cpu_scale(NULL, i) == |
| 120 | SCHED_CAPACITY_SCALE) { |
| 121 | highest_score_cpu = 1; |
| 122 | break; |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | free_cpumask_var(mask); |
| 127 | |
| 128 | if (!highest_score_cpu) { |
| 129 | mutex_unlock(&cpu_scale_mutex); |
| 130 | return -EINVAL; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | for_each_cpu(i, topology_core_cpumask(this_cpu)) |
| 135 | topology_set_cpu_scale(i, new_capacity); |
| 136 | mutex_unlock(&cpu_scale_mutex); |
| 137 | |
| 138 | if (topology_detect_flags()) |
| 139 | schedule_work(&update_topology_flags_work); |
| 140 | |
| 141 | return count; |
| 142 | } |
| 143 | |
| 144 | static DEVICE_ATTR_RW(cpu_capacity); |
| 145 | |
| 146 | static int register_cpu_capacity_sysctl(void) |
| 147 | { |
| 148 | int i; |
| 149 | struct device *cpu; |
| 150 | |
| 151 | for_each_possible_cpu(i) { |
| 152 | cpu = get_cpu_device(i); |
| 153 | if (!cpu) { |
| 154 | pr_err("%s: too early to get CPU%d device!\n", |
| 155 | __func__, i); |
| 156 | continue; |
| 157 | } |
| 158 | device_create_file(cpu, &dev_attr_cpu_capacity); |
| 159 | } |
| 160 | |
| 161 | return 0; |
| 162 | } |
| 163 | subsys_initcall(register_cpu_capacity_sysctl); |
| 164 | |
| 165 | enum asym_cpucap_type { no_asym, asym_thread, asym_core, asym_die }; |
| 166 | static enum asym_cpucap_type asym_cpucap = no_asym; |
| 167 | enum share_cap_type { no_share_cap, share_cap_thread, share_cap_core, share_cap_die}; |
| 168 | static enum share_cap_type share_cap = no_share_cap; |
| 169 | |
| 170 | #ifdef CONFIG_CPU_FREQ |
| 171 | int detect_share_cap_flag(void) |
| 172 | { |
| 173 | int cpu; |
| 174 | enum share_cap_type share_cap_level = no_share_cap; |
| 175 | struct cpufreq_policy *policy; |
| 176 | |
| 177 | for_each_possible_cpu(cpu) { |
| 178 | policy = cpufreq_cpu_get(cpu); |
| 179 | |
| 180 | if (!policy) |
| 181 | return 0; |
| 182 | |
| 183 | if (cpumask_equal(topology_sibling_cpumask(cpu), |
| 184 | policy->related_cpus)) { |
| 185 | share_cap_level = share_cap_thread; |
| 186 | continue; |
| 187 | } |
| 188 | |
| 189 | if (cpumask_equal(topology_core_cpumask(cpu), |
| 190 | policy->related_cpus)) { |
| 191 | share_cap_level = share_cap_core; |
| 192 | continue; |
| 193 | } |
| 194 | |
| 195 | if (cpumask_equal(cpu_cpu_mask(cpu), |
| 196 | policy->related_cpus)) { |
| 197 | share_cap_level = share_cap_die; |
| 198 | continue; |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | if (share_cap != share_cap_level) { |
| 203 | share_cap = share_cap_level; |
| 204 | return 1; |
| 205 | } |
| 206 | |
| 207 | return 0; |
| 208 | } |
| 209 | #else |
| 210 | int detect_share_cap_flag(void) { return 0; } |
| 211 | #endif |
| 212 | |
| 213 | /* |
| 214 | * Walk cpu topology to determine sched_domain flags. |
| 215 | * |
| 216 | * SD_ASYM_CPUCAPACITY: Indicates the lowest level that spans all cpu |
| 217 | * capacities found in the system for all cpus, i.e. the flag is set |
| 218 | * at the same level for all systems. The current algorithm implements |
| 219 | * this by looking for higher capacities, which doesn't work for all |
| 220 | * conceivable topology, but don't complicate things until it is |
| 221 | * necessary. |
| 222 | */ |
| 223 | int topology_detect_flags(void) |
| 224 | { |
| 225 | unsigned long max_capacity, capacity; |
| 226 | enum asym_cpucap_type asym_level = no_asym; |
| 227 | int cpu, die_cpu, core, thread, flags_changed = 0; |
| 228 | |
| 229 | for_each_possible_cpu(cpu) { |
| 230 | max_capacity = 0; |
| 231 | |
| 232 | if (asym_level >= asym_thread) |
| 233 | goto check_core; |
| 234 | |
| 235 | for_each_cpu(thread, topology_sibling_cpumask(cpu)) { |
| 236 | capacity = topology_get_cpu_scale(NULL, thread); |
| 237 | |
| 238 | if (capacity > max_capacity) { |
| 239 | if (max_capacity != 0) |
| 240 | asym_level = asym_thread; |
| 241 | |
| 242 | max_capacity = capacity; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | check_core: |
| 247 | if (asym_level >= asym_core) |
| 248 | goto check_die; |
| 249 | |
| 250 | for_each_cpu(core, topology_core_cpumask(cpu)) { |
| 251 | capacity = topology_get_cpu_scale(NULL, core); |
| 252 | |
| 253 | if (capacity > max_capacity) { |
| 254 | if (max_capacity != 0) |
| 255 | asym_level = asym_core; |
| 256 | |
| 257 | max_capacity = capacity; |
| 258 | } |
| 259 | } |
| 260 | check_die: |
| 261 | for_each_possible_cpu(die_cpu) { |
| 262 | capacity = topology_get_cpu_scale(NULL, die_cpu); |
| 263 | |
| 264 | if (capacity > max_capacity) { |
| 265 | if (max_capacity != 0) { |
| 266 | asym_level = asym_die; |
| 267 | goto done; |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | done: |
| 274 | if (asym_cpucap != asym_level) { |
| 275 | asym_cpucap = asym_level; |
| 276 | flags_changed = 1; |
| 277 | pr_debug("topology flag change detected\n"); |
| 278 | } |
| 279 | |
| 280 | if (detect_share_cap_flag()) |
| 281 | flags_changed = 1; |
| 282 | |
| 283 | return flags_changed; |
| 284 | } |
| 285 | |
| 286 | int topology_smt_flags(void) |
| 287 | { |
| 288 | int flags = 0; |
| 289 | |
| 290 | if (asym_cpucap == asym_thread) |
| 291 | flags |= SD_ASYM_CPUCAPACITY; |
| 292 | |
| 293 | if (share_cap == share_cap_thread) |
| 294 | flags |= SD_SHARE_CAP_STATES; |
| 295 | |
| 296 | return flags; |
| 297 | } |
| 298 | |
| 299 | int topology_core_flags(void) |
| 300 | { |
| 301 | int flags = 0; |
| 302 | |
| 303 | if (asym_cpucap == asym_core) |
| 304 | flags |= SD_ASYM_CPUCAPACITY; |
| 305 | |
| 306 | if (share_cap == share_cap_core) |
| 307 | flags |= SD_SHARE_CAP_STATES; |
| 308 | |
| 309 | return flags; |
| 310 | } |
| 311 | |
| 312 | int topology_cpu_flags(void) |
| 313 | { |
| 314 | int flags = 0; |
| 315 | |
| 316 | if (asym_cpucap == asym_die) |
| 317 | flags |= SD_ASYM_CPUCAPACITY; |
| 318 | |
| 319 | if (share_cap == share_cap_die) |
| 320 | flags |= SD_SHARE_CAP_STATES; |
| 321 | |
| 322 | return flags; |
| 323 | } |
| 324 | |
| 325 | static int update_topology = 0; |
| 326 | |
| 327 | int topology_update_cpu_topology(void) |
| 328 | { |
| 329 | return update_topology; |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * Updating the sched_domains can't be done directly from cpufreq callbacks |
| 334 | * due to locking, so queue the work for later. |
| 335 | */ |
| 336 | static void update_topology_flags_workfn(struct work_struct *work) |
| 337 | { |
| 338 | update_topology = 1; |
| 339 | rebuild_sched_domains(); |
| 340 | pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); |
| 341 | update_topology = 0; |
| 342 | } |
| 343 | |
| 344 | static u32 capacity_scale; |
| 345 | static u32 *raw_capacity; |
| 346 | |
| 347 | static int free_raw_capacity(void) |
| 348 | { |
| 349 | kfree(raw_capacity); |
| 350 | raw_capacity = NULL; |
| 351 | |
| 352 | return 0; |
| 353 | } |
| 354 | |
| 355 | void topology_normalize_cpu_scale(void) |
| 356 | { |
| 357 | u64 capacity; |
| 358 | int cpu; |
| 359 | |
| 360 | if (!raw_capacity) |
| 361 | return; |
| 362 | |
| 363 | pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale); |
| 364 | mutex_lock(&cpu_scale_mutex); |
| 365 | for_each_possible_cpu(cpu) { |
| 366 | capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT) |
| 367 | / capacity_scale; |
| 368 | topology_set_cpu_scale(cpu, capacity); |
| 369 | pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu raw_capacity=%u\n", |
| 370 | cpu, topology_get_cpu_scale(NULL, cpu), |
| 371 | raw_capacity[cpu]); |
| 372 | } |
| 373 | mutex_unlock(&cpu_scale_mutex); |
| 374 | } |
| 375 | |
| 376 | bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) |
| 377 | { |
| 378 | static bool cap_parsing_failed; |
| 379 | int ret; |
| 380 | u32 cpu_capacity; |
| 381 | |
| 382 | if (cap_parsing_failed) |
| 383 | return false; |
| 384 | |
| 385 | ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", |
| 386 | &cpu_capacity); |
| 387 | if (!ret) { |
| 388 | if (!raw_capacity) { |
| 389 | raw_capacity = kcalloc(num_possible_cpus(), |
| 390 | sizeof(*raw_capacity), |
| 391 | GFP_KERNEL); |
| 392 | if (!raw_capacity) { |
| 393 | pr_err("cpu_capacity: failed to allocate memory for raw capacities\n"); |
| 394 | cap_parsing_failed = true; |
| 395 | return false; |
| 396 | } |
| 397 | } |
| 398 | capacity_scale = max(cpu_capacity, capacity_scale); |
| 399 | raw_capacity[cpu] = cpu_capacity; |
| 400 | pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", |
| 401 | cpu_node, raw_capacity[cpu]); |
| 402 | } else { |
| 403 | if (raw_capacity) { |
| 404 | pr_err("cpu_capacity: missing %pOF raw capacity\n", |
| 405 | cpu_node); |
| 406 | pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); |
| 407 | } |
| 408 | cap_parsing_failed = true; |
| 409 | free_raw_capacity(); |
| 410 | } |
| 411 | |
| 412 | return !ret; |
| 413 | } |
| 414 | |
| 415 | #ifdef CONFIG_CPU_FREQ |
| 416 | static cpumask_var_t cpus_to_visit; |
| 417 | static void parsing_done_workfn(struct work_struct *work); |
| 418 | static DECLARE_WORK(parsing_done_work, parsing_done_workfn); |
| 419 | |
| 420 | static int |
| 421 | init_cpu_capacity_callback(struct notifier_block *nb, |
| 422 | unsigned long val, |
| 423 | void *data) |
| 424 | { |
| 425 | struct cpufreq_policy *policy = data; |
| 426 | int cpu; |
| 427 | |
| 428 | if (!raw_capacity) |
| 429 | return 0; |
| 430 | |
| 431 | if (val != CPUFREQ_NOTIFY) |
| 432 | return 0; |
| 433 | |
| 434 | pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", |
| 435 | cpumask_pr_args(policy->related_cpus), |
| 436 | cpumask_pr_args(cpus_to_visit)); |
| 437 | |
| 438 | cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); |
| 439 | |
| 440 | for_each_cpu(cpu, policy->related_cpus) { |
| 441 | raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) * |
| 442 | policy->cpuinfo.max_freq / 1000UL; |
| 443 | capacity_scale = max(raw_capacity[cpu], capacity_scale); |
| 444 | } |
| 445 | |
| 446 | if (cpumask_empty(cpus_to_visit)) { |
| 447 | topology_normalize_cpu_scale(); |
| 448 | init_sched_energy_costs(); |
| 449 | if (topology_detect_flags()) |
| 450 | schedule_work(&update_topology_flags_work); |
| 451 | free_raw_capacity(); |
| 452 | pr_debug("cpu_capacity: parsing done\n"); |
| 453 | schedule_work(&parsing_done_work); |
| 454 | } |
| 455 | |
| 456 | return 0; |
| 457 | } |
| 458 | |
| 459 | static struct notifier_block init_cpu_capacity_notifier = { |
| 460 | .notifier_call = init_cpu_capacity_callback, |
| 461 | }; |
| 462 | |
| 463 | static int __init register_cpufreq_notifier(void) |
| 464 | { |
| 465 | int ret; |
| 466 | |
| 467 | /* |
| 468 | * on ACPI-based systems we need to use the default cpu capacity |
| 469 | * until we have the necessary code to parse the cpu capacity, so |
| 470 | * skip registering cpufreq notifier. |
| 471 | */ |
| 472 | if (!acpi_disabled || !raw_capacity) |
| 473 | return -EINVAL; |
| 474 | |
| 475 | if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) { |
| 476 | pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n"); |
| 477 | return -ENOMEM; |
| 478 | } |
| 479 | |
| 480 | cpumask_copy(cpus_to_visit, cpu_possible_mask); |
| 481 | |
| 482 | ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, |
| 483 | CPUFREQ_POLICY_NOTIFIER); |
| 484 | |
| 485 | if (ret) |
| 486 | free_cpumask_var(cpus_to_visit); |
| 487 | |
| 488 | return ret; |
| 489 | } |
| 490 | core_initcall(register_cpufreq_notifier); |
| 491 | |
| 492 | static void parsing_done_workfn(struct work_struct *work) |
| 493 | { |
| 494 | cpufreq_unregister_notifier(&init_cpu_capacity_notifier, |
| 495 | CPUFREQ_POLICY_NOTIFIER); |
| 496 | free_cpumask_var(cpus_to_visit); |
| 497 | } |
| 498 | |
| 499 | #else |
| 500 | core_initcall(free_raw_capacity); |
| 501 | #endif |