blob: 78287f029cf0791006121fdce9338c4c15677307 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Ram backed block device driver.
3 *
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
6 *
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
10
11#include <linux/init.h>
12#include <linux/initrd.h>
13#include <linux/module.h>
14#include <linux/moduleparam.h>
15#include <linux/major.h>
16#include <linux/blkdev.h>
17#include <linux/bio.h>
18#include <linux/highmem.h>
19#include <linux/mutex.h>
20#include <linux/radix-tree.h>
21#include <linux/fs.h>
22#include <linux/slab.h>
23#ifdef CONFIG_BLK_DEV_RAM_DAX
24#include <linux/pfn_t.h>
25#include <linux/dax.h>
26#include <linux/uio.h>
27#endif
28
29#include <linux/uaccess.h>
30
31#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
32#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
33
34/*
35 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
36 * the pages containing the block device's contents. A brd page's ->index is
37 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
38 * with, the kernel's pagecache or buffer cache (which sit above our block
39 * device).
40 */
41struct brd_device {
42 int brd_number;
43
44 struct request_queue *brd_queue;
45 struct gendisk *brd_disk;
46#ifdef CONFIG_BLK_DEV_RAM_DAX
47 struct dax_device *dax_dev;
48#endif
49 struct list_head brd_list;
50
51 /*
52 * Backing store of pages and lock to protect it. This is the contents
53 * of the block device.
54 */
55 spinlock_t brd_lock;
56 struct radix_tree_root brd_pages;
57};
58
59/*
60 * Look up and return a brd's page for a given sector.
61 */
62static DEFINE_MUTEX(brd_mutex);
63static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
64{
65 pgoff_t idx;
66 struct page *page;
67
68 /*
69 * The page lifetime is protected by the fact that we have opened the
70 * device node -- brd pages will never be deleted under us, so we
71 * don't need any further locking or refcounting.
72 *
73 * This is strictly true for the radix-tree nodes as well (ie. we
74 * don't actually need the rcu_read_lock()), however that is not a
75 * documented feature of the radix-tree API so it is better to be
76 * safe here (we don't have total exclusion from radix tree updates
77 * here, only deletes).
78 */
79 rcu_read_lock();
80 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
81 page = radix_tree_lookup(&brd->brd_pages, idx);
82 rcu_read_unlock();
83
84 BUG_ON(page && page->index != idx);
85
86 return page;
87}
88
89/*
90 * Look up and return a brd's page for a given sector.
91 * If one does not exist, allocate an empty page, and insert that. Then
92 * return it.
93 */
94static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
95{
96 pgoff_t idx;
97 struct page *page;
98 gfp_t gfp_flags;
99
100 page = brd_lookup_page(brd, sector);
101 if (page)
102 return page;
103
104 /*
105 * Must use NOIO because we don't want to recurse back into the
106 * block or filesystem layers from page reclaim.
107 *
108 * Cannot support DAX and highmem, because our ->direct_access
109 * routine for DAX must return memory that is always addressable.
110 * If DAX was reworked to use pfns and kmap throughout, this
111 * restriction might be able to be lifted.
112 */
113 gfp_flags = GFP_NOIO | __GFP_ZERO;
114#ifndef CONFIG_BLK_DEV_RAM_DAX
115 gfp_flags |= __GFP_HIGHMEM;
116#endif
117 page = alloc_page(gfp_flags);
118 if (!page)
119 return NULL;
120
121 if (radix_tree_preload(GFP_NOIO)) {
122 __free_page(page);
123 return NULL;
124 }
125
126 spin_lock(&brd->brd_lock);
127 idx = sector >> PAGE_SECTORS_SHIFT;
128 page->index = idx;
129 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
130 __free_page(page);
131 page = radix_tree_lookup(&brd->brd_pages, idx);
132 BUG_ON(!page);
133 BUG_ON(page->index != idx);
134 }
135 spin_unlock(&brd->brd_lock);
136
137 radix_tree_preload_end();
138
139 return page;
140}
141
142/*
143 * Free all backing store pages and radix tree. This must only be called when
144 * there are no other users of the device.
145 */
146#define FREE_BATCH 16
147static void brd_free_pages(struct brd_device *brd)
148{
149 unsigned long pos = 0;
150 struct page *pages[FREE_BATCH];
151 int nr_pages;
152
153 do {
154 int i;
155
156 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
157 (void **)pages, pos, FREE_BATCH);
158
159 for (i = 0; i < nr_pages; i++) {
160 void *ret;
161
162 BUG_ON(pages[i]->index < pos);
163 pos = pages[i]->index;
164 ret = radix_tree_delete(&brd->brd_pages, pos);
165 BUG_ON(!ret || ret != pages[i]);
166 __free_page(pages[i]);
167 }
168
169 pos++;
170
171 /*
172 * This assumes radix_tree_gang_lookup always returns as
173 * many pages as possible. If the radix-tree code changes,
174 * so will this have to.
175 */
176 } while (nr_pages == FREE_BATCH);
177}
178
179/*
180 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
181 */
182static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
183{
184 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
185 size_t copy;
186
187 copy = min_t(size_t, n, PAGE_SIZE - offset);
188 if (!brd_insert_page(brd, sector))
189 return -ENOSPC;
190 if (copy < n) {
191 sector += copy >> SECTOR_SHIFT;
192 if (!brd_insert_page(brd, sector))
193 return -ENOSPC;
194 }
195 return 0;
196}
197
198/*
199 * Copy n bytes from src to the brd starting at sector. Does not sleep.
200 */
201static void copy_to_brd(struct brd_device *brd, const void *src,
202 sector_t sector, size_t n)
203{
204 struct page *page;
205 void *dst;
206 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
207 size_t copy;
208
209 copy = min_t(size_t, n, PAGE_SIZE - offset);
210 page = brd_lookup_page(brd, sector);
211 BUG_ON(!page);
212
213 dst = kmap_atomic(page);
214 memcpy(dst + offset, src, copy);
215 kunmap_atomic(dst);
216
217 if (copy < n) {
218 src += copy;
219 sector += copy >> SECTOR_SHIFT;
220 copy = n - copy;
221 page = brd_lookup_page(brd, sector);
222 BUG_ON(!page);
223
224 dst = kmap_atomic(page);
225 memcpy(dst, src, copy);
226 kunmap_atomic(dst);
227 }
228}
229
230/*
231 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
232 */
233static void copy_from_brd(void *dst, struct brd_device *brd,
234 sector_t sector, size_t n)
235{
236 struct page *page;
237 void *src;
238 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239 size_t copy;
240
241 copy = min_t(size_t, n, PAGE_SIZE - offset);
242 page = brd_lookup_page(brd, sector);
243 if (page) {
244 src = kmap_atomic(page);
245 memcpy(dst, src + offset, copy);
246 kunmap_atomic(src);
247 } else
248 memset(dst, 0, copy);
249
250 if (copy < n) {
251 dst += copy;
252 sector += copy >> SECTOR_SHIFT;
253 copy = n - copy;
254 page = brd_lookup_page(brd, sector);
255 if (page) {
256 src = kmap_atomic(page);
257 memcpy(dst, src, copy);
258 kunmap_atomic(src);
259 } else
260 memset(dst, 0, copy);
261 }
262}
263
264/*
265 * Process a single bvec of a bio.
266 */
267static int brd_do_bvec(struct brd_device *brd, struct page *page,
268 unsigned int len, unsigned int off, bool is_write,
269 sector_t sector)
270{
271 void *mem;
272 int err = 0;
273
274 if (is_write) {
275 err = copy_to_brd_setup(brd, sector, len);
276 if (err)
277 goto out;
278 }
279
280 mem = kmap_atomic(page);
281 if (!is_write) {
282 copy_from_brd(mem + off, brd, sector, len);
283 flush_dcache_page(page);
284 } else {
285 flush_dcache_page(page);
286 copy_to_brd(brd, mem + off, sector, len);
287 }
288 kunmap_atomic(mem);
289
290out:
291 return err;
292}
293
294static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
295{
296 struct brd_device *brd = bio->bi_disk->private_data;
297 struct bio_vec bvec;
298 sector_t sector;
299 struct bvec_iter iter;
300
301 sector = bio->bi_iter.bi_sector;
302 if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
303 goto io_error;
304
305 bio_for_each_segment(bvec, bio, iter) {
306 unsigned int len = bvec.bv_len;
307 int err;
308
309 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
310 op_is_write(bio_op(bio)), sector);
311 if (err)
312 goto io_error;
313 sector += len >> SECTOR_SHIFT;
314 }
315
316 bio_endio(bio);
317 return BLK_QC_T_NONE;
318io_error:
319 bio_io_error(bio);
320 return BLK_QC_T_NONE;
321}
322
323static int brd_rw_page(struct block_device *bdev, sector_t sector,
324 struct page *page, bool is_write)
325{
326 struct brd_device *brd = bdev->bd_disk->private_data;
327 int err;
328
329 if (PageTransHuge(page))
330 return -ENOTSUPP;
331 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
332 page_endio(page, is_write, err);
333 return err;
334}
335
336#ifdef CONFIG_BLK_DEV_RAM_DAX
337static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
338 long nr_pages, void **kaddr, pfn_t *pfn)
339{
340 struct page *page;
341
342 if (!brd)
343 return -ENODEV;
344 page = brd_insert_page(brd, (sector_t)pgoff << PAGE_SECTORS_SHIFT);
345 if (!page)
346 return -ENOSPC;
347 *kaddr = page_address(page);
348 *pfn = page_to_pfn_t(page);
349
350 return 1;
351}
352
353static long brd_dax_direct_access(struct dax_device *dax_dev,
354 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
355{
356 struct brd_device *brd = dax_get_private(dax_dev);
357
358 return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn);
359}
360
361static size_t brd_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
362 void *addr, size_t bytes, struct iov_iter *i)
363{
364 return copy_from_iter(addr, bytes, i);
365}
366
367static const struct dax_operations brd_dax_ops = {
368 .direct_access = brd_dax_direct_access,
369 .copy_from_iter = brd_dax_copy_from_iter,
370};
371#endif
372
373static const struct block_device_operations brd_fops = {
374 .owner = THIS_MODULE,
375 .rw_page = brd_rw_page,
376};
377
378/*
379 * And now the modules code and kernel interface.
380 */
381static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
382module_param(rd_nr, int, S_IRUGO);
383MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
384
385unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
386module_param(rd_size, ulong, S_IRUGO);
387MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
388
389static int max_part = 1;
390module_param(max_part, int, S_IRUGO);
391MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
392
393MODULE_LICENSE("GPL");
394MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
395MODULE_ALIAS("rd");
396
397#ifndef MODULE
398/* Legacy boot options - nonmodular */
399static int __init ramdisk_size(char *str)
400{
401 rd_size = simple_strtol(str, NULL, 0);
402 return 1;
403}
404__setup("ramdisk_size=", ramdisk_size);
405#endif
406
407/*
408 * The device scheme is derived from loop.c. Keep them in synch where possible
409 * (should share code eventually).
410 */
411static LIST_HEAD(brd_devices);
412static DEFINE_MUTEX(brd_devices_mutex);
413
414static struct brd_device *brd_alloc(int i)
415{
416 struct brd_device *brd;
417 struct gendisk *disk;
418
419 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
420 if (!brd)
421 goto out;
422 brd->brd_number = i;
423 spin_lock_init(&brd->brd_lock);
424 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
425
426 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
427 if (!brd->brd_queue)
428 goto out_free_dev;
429
430 blk_queue_make_request(brd->brd_queue, brd_make_request);
431 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
432
433 /* This is so fdisk will align partitions on 4k, because of
434 * direct_access API needing 4k alignment, returning a PFN
435 * (This is only a problem on very small devices <= 4M,
436 * otherwise fdisk will align on 1M. Regardless this call
437 * is harmless)
438 */
439 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
440 disk = brd->brd_disk = alloc_disk(max_part);
441 if (!disk)
442 goto out_free_queue;
443 disk->major = RAMDISK_MAJOR;
444 disk->first_minor = i * max_part;
445 disk->fops = &brd_fops;
446 disk->private_data = brd;
447 disk->queue = brd->brd_queue;
448 disk->flags = GENHD_FL_EXT_DEVT;
449 sprintf(disk->disk_name, "ram%d", i);
450 set_capacity(disk, rd_size * 2);
451
452#ifdef CONFIG_BLK_DEV_RAM_DAX
453 queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
454 brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops);
455 if (!brd->dax_dev)
456 goto out_free_inode;
457#endif
458
459
460 return brd;
461
462#ifdef CONFIG_BLK_DEV_RAM_DAX
463out_free_inode:
464 kill_dax(brd->dax_dev);
465 put_dax(brd->dax_dev);
466#endif
467out_free_queue:
468 blk_cleanup_queue(brd->brd_queue);
469out_free_dev:
470 kfree(brd);
471out:
472 return NULL;
473}
474
475static void brd_free(struct brd_device *brd)
476{
477 put_disk(brd->brd_disk);
478 blk_cleanup_queue(brd->brd_queue);
479 brd_free_pages(brd);
480 kfree(brd);
481}
482
483static struct brd_device *brd_init_one(int i, bool *new)
484{
485 struct brd_device *brd;
486
487 *new = false;
488 list_for_each_entry(brd, &brd_devices, brd_list) {
489 if (brd->brd_number == i)
490 goto out;
491 }
492
493 brd = brd_alloc(i);
494 if (brd) {
495 add_disk(brd->brd_disk);
496 list_add_tail(&brd->brd_list, &brd_devices);
497 }
498 *new = true;
499out:
500 return brd;
501}
502
503static void brd_del_one(struct brd_device *brd)
504{
505 list_del(&brd->brd_list);
506#ifdef CONFIG_BLK_DEV_RAM_DAX
507 kill_dax(brd->dax_dev);
508 put_dax(brd->dax_dev);
509#endif
510 del_gendisk(brd->brd_disk);
511 brd_free(brd);
512}
513
514static struct kobject *brd_probe(dev_t dev, int *part, void *data)
515{
516 struct brd_device *brd;
517 struct kobject *kobj;
518 bool new;
519
520 mutex_lock(&brd_devices_mutex);
521 brd = brd_init_one(MINOR(dev) / max_part, &new);
522 kobj = brd ? get_disk(brd->brd_disk) : NULL;
523 mutex_unlock(&brd_devices_mutex);
524
525 if (new)
526 *part = 0;
527
528 return kobj;
529}
530
531static inline void brd_check_and_reset_par(void)
532{
533 if (unlikely(!max_part))
534 max_part = 1;
535
536 /*
537 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
538 * otherwise, it is possiable to get same dev_t when adding partitions.
539 */
540 if ((1U << MINORBITS) % max_part != 0)
541 max_part = 1UL << fls(max_part);
542
543 if (max_part > DISK_MAX_PARTS) {
544 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
545 DISK_MAX_PARTS, DISK_MAX_PARTS);
546 max_part = DISK_MAX_PARTS;
547 }
548}
549
550static int __init brd_init(void)
551{
552 struct brd_device *brd, *next;
553 int i;
554
555 /*
556 * brd module now has a feature to instantiate underlying device
557 * structure on-demand, provided that there is an access dev node.
558 *
559 * (1) if rd_nr is specified, create that many upfront. else
560 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
561 * (2) User can further extend brd devices by create dev node themselves
562 * and have kernel automatically instantiate actual device
563 * on-demand. Example:
564 * mknod /path/devnod_name b 1 X # 1 is the rd major
565 * fdisk -l /path/devnod_name
566 * If (X / max_part) was not already created it will be created
567 * dynamically.
568 */
569
570 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
571 return -EIO;
572
573 brd_check_and_reset_par();
574
575 for (i = 0; i < rd_nr; i++) {
576 brd = brd_alloc(i);
577 if (!brd)
578 goto out_free;
579 list_add_tail(&brd->brd_list, &brd_devices);
580 }
581
582 /* point of no return */
583
584 list_for_each_entry(brd, &brd_devices, brd_list)
585 add_disk(brd->brd_disk);
586
587 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
588 THIS_MODULE, brd_probe, NULL, NULL);
589
590 pr_info("brd: module loaded\n");
591 return 0;
592
593out_free:
594 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
595 list_del(&brd->brd_list);
596 brd_free(brd);
597 }
598 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
599
600 pr_info("brd: module NOT loaded !!!\n");
601 return -ENOMEM;
602}
603
604static void __exit brd_exit(void)
605{
606 struct brd_device *brd, *next;
607
608 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
609 brd_del_one(brd);
610
611 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
612 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
613
614 pr_info("brd: module unloaded\n");
615}
616
617module_init(brd_init);
618module_exit(brd_exit);
619