blob: f81e329d71bfc0969f8054f6bf6c2875e9c230e2 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/file.h>
57#include <linux/stat.h>
58#include <linux/errno.h>
59#include <linux/major.h>
60#include <linux/wait.h>
61#include <linux/blkdev.h>
62#include <linux/blkpg.h>
63#include <linux/init.h>
64#include <linux/swap.h>
65#include <linux/slab.h>
66#include <linux/compat.h>
67#include <linux/suspend.h>
68#include <linux/freezer.h>
69#include <linux/mutex.h>
70#include <linux/writeback.h>
71#include <linux/completion.h>
72#include <linux/highmem.h>
73#include <linux/kthread.h>
74#include <linux/splice.h>
75#include <linux/sysfs.h>
76#include <linux/miscdevice.h>
77#include <linux/falloc.h>
78#include <linux/uio.h>
79#include "loop.h"
80
81#include <linux/uaccess.h>
82
83static DEFINE_IDR(loop_index_idr);
84static DEFINE_MUTEX(loop_index_mutex);
85
86static int max_part;
87static int part_shift;
88
89static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
93{
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
98
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
105 }
106
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
111
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
116}
117
118static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119{
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
123}
124
125static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
127};
128
129static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
133};
134
135/* xfer_funcs[0] is special - its release function is never called */
136static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
139};
140
141static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142{
143 loff_t loopsize;
144
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
152
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
155 /*
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
158 */
159 return loopsize >> 9;
160}
161
162static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163{
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165}
166
167static void __loop_update_dio(struct loop_device *lo, bool dio)
168{
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
175
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
179 }
180
181 /*
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
186 *
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane applications should be PAGE_SIZE aligned
190 */
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
201 }
202
203 if (lo->use_dio == use_dio)
204 return;
205
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
208
209 /*
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
213 */
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio) {
217 queue_flag_clear_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
218 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
219 } else {
220 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
222 }
223 blk_mq_unfreeze_queue(lo->lo_queue);
224}
225
226static int
227figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
228{
229 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
230 sector_t x = (sector_t)size;
231 struct block_device *bdev = lo->lo_device;
232
233 if (unlikely((loff_t)x != size))
234 return -EFBIG;
235 if (lo->lo_offset != offset)
236 lo->lo_offset = offset;
237 if (lo->lo_sizelimit != sizelimit)
238 lo->lo_sizelimit = sizelimit;
239 set_capacity(lo->lo_disk, x);
240 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
241 /* let user-space know about the new size */
242 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
243 return 0;
244}
245
246static inline int
247lo_do_transfer(struct loop_device *lo, int cmd,
248 struct page *rpage, unsigned roffs,
249 struct page *lpage, unsigned loffs,
250 int size, sector_t rblock)
251{
252 int ret;
253
254 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
255 if (likely(!ret))
256 return 0;
257
258 printk_ratelimited(KERN_ERR
259 "loop: Transfer error at byte offset %llu, length %i.\n",
260 (unsigned long long)rblock << 9, size);
261 return ret;
262}
263
264static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
265{
266 struct iov_iter i;
267 ssize_t bw;
268
269 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
270
271 file_start_write(file);
272 bw = vfs_iter_write(file, &i, ppos, 0);
273 file_end_write(file);
274
275 if (likely(bw == bvec->bv_len))
276 return 0;
277
278 printk_ratelimited(KERN_ERR
279 "loop: Write error at byte offset %llu, length %i.\n",
280 (unsigned long long)*ppos, bvec->bv_len);
281 if (bw >= 0)
282 bw = -EIO;
283 return bw;
284}
285
286static int lo_write_simple(struct loop_device *lo, struct request *rq,
287 loff_t pos)
288{
289 struct bio_vec bvec;
290 struct req_iterator iter;
291 int ret = 0;
292
293 rq_for_each_segment(bvec, rq, iter) {
294 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
295 if (ret < 0)
296 break;
297 cond_resched();
298 }
299
300 return ret;
301}
302
303/*
304 * This is the slow, transforming version that needs to double buffer the
305 * data as it cannot do the transformations in place without having direct
306 * access to the destination pages of the backing file.
307 */
308static int lo_write_transfer(struct loop_device *lo, struct request *rq,
309 loff_t pos)
310{
311 struct bio_vec bvec, b;
312 struct req_iterator iter;
313 struct page *page;
314 int ret = 0;
315
316 page = alloc_page(GFP_NOIO);
317 if (unlikely(!page))
318 return -ENOMEM;
319
320 rq_for_each_segment(bvec, rq, iter) {
321 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
322 bvec.bv_offset, bvec.bv_len, pos >> 9);
323 if (unlikely(ret))
324 break;
325
326 b.bv_page = page;
327 b.bv_offset = 0;
328 b.bv_len = bvec.bv_len;
329 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
330 if (ret < 0)
331 break;
332 }
333
334 __free_page(page);
335 return ret;
336}
337
338static int lo_read_simple(struct loop_device *lo, struct request *rq,
339 loff_t pos)
340{
341 struct bio_vec bvec;
342 struct req_iterator iter;
343 struct iov_iter i;
344 ssize_t len;
345
346 rq_for_each_segment(bvec, rq, iter) {
347 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
348 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
349 if (len < 0)
350 return len;
351
352 flush_dcache_page(bvec.bv_page);
353
354 if (len != bvec.bv_len) {
355 struct bio *bio;
356
357 __rq_for_each_bio(bio, rq)
358 zero_fill_bio(bio);
359 break;
360 }
361 cond_resched();
362 }
363
364 return 0;
365}
366
367static int lo_read_transfer(struct loop_device *lo, struct request *rq,
368 loff_t pos)
369{
370 struct bio_vec bvec, b;
371 struct req_iterator iter;
372 struct iov_iter i;
373 struct page *page;
374 ssize_t len;
375 int ret = 0;
376
377 page = alloc_page(GFP_NOIO);
378 if (unlikely(!page))
379 return -ENOMEM;
380
381 rq_for_each_segment(bvec, rq, iter) {
382 loff_t offset = pos;
383
384 b.bv_page = page;
385 b.bv_offset = 0;
386 b.bv_len = bvec.bv_len;
387
388 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
389 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
390 if (len < 0) {
391 ret = len;
392 goto out_free_page;
393 }
394
395 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
396 bvec.bv_offset, len, offset >> 9);
397 if (ret)
398 goto out_free_page;
399
400 flush_dcache_page(bvec.bv_page);
401
402 if (len != bvec.bv_len) {
403 struct bio *bio;
404
405 __rq_for_each_bio(bio, rq)
406 zero_fill_bio(bio);
407 break;
408 }
409 }
410
411 ret = 0;
412out_free_page:
413 __free_page(page);
414 return ret;
415}
416
417static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
418 int mode)
419{
420 /*
421 * We use fallocate to manipulate the space mappings used by the image
422 * a.k.a. discard/zerorange. However we do not support this if
423 * encryption is enabled, because it may give an attacker useful
424 * information.
425 */
426 struct file *file = lo->lo_backing_file;
427 int ret;
428
429 mode |= FALLOC_FL_KEEP_SIZE;
430
431 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
432 ret = -EOPNOTSUPP;
433 goto out;
434 }
435
436 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
437 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
438 ret = -EIO;
439 out:
440 return ret;
441}
442
443static int lo_req_flush(struct loop_device *lo, struct request *rq)
444{
445 struct file *file = lo->lo_backing_file;
446 int ret = vfs_fsync(file, 0);
447 if (unlikely(ret && ret != -EINVAL))
448 ret = -EIO;
449
450 return ret;
451}
452
453static void lo_complete_rq(struct request *rq)
454{
455 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
456
457 if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
458 cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
459 struct bio *bio = cmd->rq->bio;
460
461 bio_advance(bio, cmd->ret);
462 zero_fill_bio(bio);
463 }
464
465 blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK);
466}
467
468static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
469{
470 if (!atomic_dec_and_test(&cmd->ref))
471 return;
472 kfree(cmd->bvec);
473 cmd->bvec = NULL;
474 blk_mq_complete_request(cmd->rq);
475}
476
477static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
478{
479 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
480
481 cmd->ret = ret;
482 lo_rw_aio_do_completion(cmd);
483}
484
485static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
486 loff_t pos, bool rw)
487{
488 struct iov_iter iter;
489 struct bio_vec *bvec;
490 struct request *rq = cmd->rq;
491 struct bio *bio = rq->bio;
492 struct file *file = lo->lo_backing_file;
493 unsigned int offset;
494 int segments = 0;
495 int ret;
496
497 if (rq->bio != rq->biotail) {
498 struct req_iterator iter;
499 struct bio_vec tmp;
500
501 __rq_for_each_bio(bio, rq)
502 segments += bio_segments(bio);
503 bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO);
504 if (!bvec)
505 return -EIO;
506 cmd->bvec = bvec;
507
508 /*
509 * The bios of the request may be started from the middle of
510 * the 'bvec' because of bio splitting, so we can't directly
511 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
512 * API will take care of all details for us.
513 */
514 rq_for_each_segment(tmp, rq, iter) {
515 *bvec = tmp;
516 bvec++;
517 }
518 bvec = cmd->bvec;
519 offset = 0;
520 } else {
521 /*
522 * Same here, this bio may be started from the middle of the
523 * 'bvec' because of bio splitting, so offset from the bvec
524 * must be passed to iov iterator
525 */
526 offset = bio->bi_iter.bi_bvec_done;
527 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
528 segments = bio_segments(bio);
529 }
530 atomic_set(&cmd->ref, 2);
531
532 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
533 segments, blk_rq_bytes(rq));
534 iter.iov_offset = offset;
535
536 cmd->iocb.ki_pos = pos;
537 cmd->iocb.ki_filp = file;
538 cmd->iocb.ki_complete = lo_rw_aio_complete;
539 cmd->iocb.ki_flags = IOCB_DIRECT;
540
541 if (rw == WRITE)
542 ret = call_write_iter(file, &cmd->iocb, &iter);
543 else
544 ret = call_read_iter(file, &cmd->iocb, &iter);
545
546 lo_rw_aio_do_completion(cmd);
547
548 if (ret != -EIOCBQUEUED)
549 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
550 return 0;
551}
552
553static int do_req_filebacked(struct loop_device *lo, struct request *rq)
554{
555 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
556 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
557
558 /*
559 * lo_write_simple and lo_read_simple should have been covered
560 * by io submit style function like lo_rw_aio(), one blocker
561 * is that lo_read_simple() need to call flush_dcache_page after
562 * the page is written from kernel, and it isn't easy to handle
563 * this in io submit style function which submits all segments
564 * of the req at one time. And direct read IO doesn't need to
565 * run flush_dcache_page().
566 */
567 switch (req_op(rq)) {
568 case REQ_OP_FLUSH:
569 return lo_req_flush(lo, rq);
570 case REQ_OP_WRITE_ZEROES:
571 /*
572 * If the caller doesn't want deallocation, call zeroout to
573 * write zeroes the range. Otherwise, punch them out.
574 */
575 return lo_fallocate(lo, rq, pos,
576 (rq->cmd_flags & REQ_NOUNMAP) ?
577 FALLOC_FL_ZERO_RANGE :
578 FALLOC_FL_PUNCH_HOLE);
579 case REQ_OP_DISCARD:
580 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
581 case REQ_OP_WRITE:
582 if (lo->transfer)
583 return lo_write_transfer(lo, rq, pos);
584 else if (cmd->use_aio)
585 return lo_rw_aio(lo, cmd, pos, WRITE);
586 else
587 return lo_write_simple(lo, rq, pos);
588 case REQ_OP_READ:
589 if (lo->transfer)
590 return lo_read_transfer(lo, rq, pos);
591 else if (cmd->use_aio)
592 return lo_rw_aio(lo, cmd, pos, READ);
593 else
594 return lo_read_simple(lo, rq, pos);
595 default:
596 WARN_ON_ONCE(1);
597 return -EIO;
598 break;
599 }
600}
601
602static inline void loop_update_dio(struct loop_device *lo)
603{
604 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
605 lo->use_dio);
606}
607
608static void loop_reread_partitions(struct loop_device *lo,
609 struct block_device *bdev)
610{
611 int rc;
612
613 /*
614 * bd_mutex has been held already in release path, so don't
615 * acquire it if this function is called in such case.
616 *
617 * If the reread partition isn't from release path, lo_refcnt
618 * must be at least one and it can only become zero when the
619 * current holder is released.
620 */
621 if (!atomic_read(&lo->lo_refcnt))
622 rc = __blkdev_reread_part(bdev);
623 else
624 rc = blkdev_reread_part(bdev);
625 if (rc)
626 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
627 __func__, lo->lo_number, lo->lo_file_name, rc);
628}
629
630static inline int is_loop_device(struct file *file)
631{
632 struct inode *i = file->f_mapping->host;
633
634 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
635}
636
637static int loop_validate_file(struct file *file, struct block_device *bdev)
638{
639 struct inode *inode = file->f_mapping->host;
640 struct file *f = file;
641
642 /* Avoid recursion */
643 while (is_loop_device(f)) {
644 struct loop_device *l;
645
646 if (f->f_mapping->host->i_bdev == bdev)
647 return -EBADF;
648
649 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
650 if (l->lo_state == Lo_unbound) {
651 return -EINVAL;
652 }
653 f = l->lo_backing_file;
654 }
655 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
656 return -EINVAL;
657 return 0;
658}
659
660/*
661 * loop_change_fd switched the backing store of a loopback device to
662 * a new file. This is useful for operating system installers to free up
663 * the original file and in High Availability environments to switch to
664 * an alternative location for the content in case of server meltdown.
665 * This can only work if the loop device is used read-only, and if the
666 * new backing store is the same size and type as the old backing store.
667 */
668static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
669 unsigned int arg)
670{
671 struct file *file, *old_file;
672 struct inode *inode;
673 int error;
674
675 error = -ENXIO;
676 if (lo->lo_state != Lo_bound)
677 goto out;
678
679 /* the loop device has to be read-only */
680 error = -EINVAL;
681 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
682 goto out;
683
684 error = -EBADF;
685 file = fget(arg);
686 if (!file)
687 goto out;
688
689 error = loop_validate_file(file, bdev);
690 if (error)
691 goto out_putf;
692
693 inode = file->f_mapping->host;
694 old_file = lo->lo_backing_file;
695
696 error = -EINVAL;
697
698 /* size of the new backing store needs to be the same */
699 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
700 goto out_putf;
701
702 /* and ... switch */
703 blk_mq_freeze_queue(lo->lo_queue);
704 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
705 lo->lo_backing_file = file;
706 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
707 mapping_set_gfp_mask(file->f_mapping,
708 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
709 loop_update_dio(lo);
710 blk_mq_unfreeze_queue(lo->lo_queue);
711
712 fput(old_file);
713 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
714 loop_reread_partitions(lo, bdev);
715 return 0;
716
717 out_putf:
718 fput(file);
719 out:
720 return error;
721}
722
723/* loop sysfs attributes */
724
725static ssize_t loop_attr_show(struct device *dev, char *page,
726 ssize_t (*callback)(struct loop_device *, char *))
727{
728 struct gendisk *disk = dev_to_disk(dev);
729 struct loop_device *lo = disk->private_data;
730
731 return callback(lo, page);
732}
733
734#define LOOP_ATTR_RO(_name) \
735static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
736static ssize_t loop_attr_do_show_##_name(struct device *d, \
737 struct device_attribute *attr, char *b) \
738{ \
739 return loop_attr_show(d, b, loop_attr_##_name##_show); \
740} \
741static struct device_attribute loop_attr_##_name = \
742 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
743
744static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
745{
746 ssize_t ret;
747 char *p = NULL;
748
749 spin_lock_irq(&lo->lo_lock);
750 if (lo->lo_backing_file)
751 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
752 spin_unlock_irq(&lo->lo_lock);
753
754 if (IS_ERR_OR_NULL(p))
755 ret = PTR_ERR(p);
756 else {
757 ret = strlen(p);
758 memmove(buf, p, ret);
759 buf[ret++] = '\n';
760 buf[ret] = 0;
761 }
762
763 return ret;
764}
765
766static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
767{
768 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
769}
770
771static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
772{
773 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
774}
775
776static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
777{
778 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
779
780 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
781}
782
783static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
784{
785 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
786
787 return sprintf(buf, "%s\n", partscan ? "1" : "0");
788}
789
790static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
791{
792 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
793
794 return sprintf(buf, "%s\n", dio ? "1" : "0");
795}
796
797LOOP_ATTR_RO(backing_file);
798LOOP_ATTR_RO(offset);
799LOOP_ATTR_RO(sizelimit);
800LOOP_ATTR_RO(autoclear);
801LOOP_ATTR_RO(partscan);
802LOOP_ATTR_RO(dio);
803
804static struct attribute *loop_attrs[] = {
805 &loop_attr_backing_file.attr,
806 &loop_attr_offset.attr,
807 &loop_attr_sizelimit.attr,
808 &loop_attr_autoclear.attr,
809 &loop_attr_partscan.attr,
810 &loop_attr_dio.attr,
811 NULL,
812};
813
814static struct attribute_group loop_attribute_group = {
815 .name = "loop",
816 .attrs= loop_attrs,
817};
818
819static void loop_sysfs_init(struct loop_device *lo)
820{
821 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
822 &loop_attribute_group);
823}
824
825static void loop_sysfs_exit(struct loop_device *lo)
826{
827 if (lo->sysfs_inited)
828 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
829 &loop_attribute_group);
830}
831
832static void loop_config_discard(struct loop_device *lo)
833{
834 struct file *file = lo->lo_backing_file;
835 struct inode *inode = file->f_mapping->host;
836 struct request_queue *q = lo->lo_queue;
837
838 /*
839 * We use punch hole to reclaim the free space used by the
840 * image a.k.a. discard. However we do not support discard if
841 * encryption is enabled, because it may give an attacker
842 * useful information.
843 */
844 if ((!file->f_op->fallocate) ||
845 lo->lo_encrypt_key_size) {
846 q->limits.discard_granularity = 0;
847 q->limits.discard_alignment = 0;
848 blk_queue_max_discard_sectors(q, 0);
849 blk_queue_max_write_zeroes_sectors(q, 0);
850 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
851 return;
852 }
853
854 q->limits.discard_granularity = inode->i_sb->s_blocksize;
855 q->limits.discard_alignment = 0;
856
857 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
858 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
859 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
860}
861
862static void loop_unprepare_queue(struct loop_device *lo)
863{
864 kthread_flush_worker(&lo->worker);
865 kthread_stop(lo->worker_task);
866}
867
868static int loop_kthread_worker_fn(void *worker_ptr)
869{
870 current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO;
871 return kthread_worker_fn(worker_ptr);
872}
873
874static int loop_prepare_queue(struct loop_device *lo)
875{
876 kthread_init_worker(&lo->worker);
877 lo->worker_task = kthread_run(loop_kthread_worker_fn,
878 &lo->worker, "loop%d", lo->lo_number);
879 if (IS_ERR(lo->worker_task))
880 return -ENOMEM;
881 set_user_nice(lo->worker_task, MIN_NICE);
882 return 0;
883}
884
885static int loop_set_fd(struct loop_device *lo, fmode_t mode,
886 struct block_device *bdev, unsigned int arg)
887{
888 struct file *file;
889 struct inode *inode;
890 struct address_space *mapping;
891 int lo_flags = 0;
892 int error;
893 loff_t size;
894
895 /* This is safe, since we have a reference from open(). */
896 __module_get(THIS_MODULE);
897
898 error = -EBADF;
899 file = fget(arg);
900 if (!file)
901 goto out;
902
903 error = -EBUSY;
904 if (lo->lo_state != Lo_unbound)
905 goto out_putf;
906
907 error = loop_validate_file(file, bdev);
908 if (error)
909 goto out_putf;
910
911 mapping = file->f_mapping;
912 inode = mapping->host;
913
914 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
915 !file->f_op->write_iter)
916 lo_flags |= LO_FLAGS_READ_ONLY;
917
918 error = -EFBIG;
919 size = get_loop_size(lo, file);
920 if ((loff_t)(sector_t)size != size)
921 goto out_putf;
922 error = loop_prepare_queue(lo);
923 if (error)
924 goto out_putf;
925
926 error = 0;
927
928 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
929
930 lo->use_dio = false;
931 lo->lo_device = bdev;
932 lo->lo_flags = lo_flags;
933 lo->lo_backing_file = file;
934 lo->transfer = NULL;
935 lo->ioctl = NULL;
936 lo->lo_sizelimit = 0;
937 lo->old_gfp_mask = mapping_gfp_mask(mapping);
938 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
939
940 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
941 blk_queue_write_cache(lo->lo_queue, true, false);
942
943 loop_update_dio(lo);
944 set_capacity(lo->lo_disk, size);
945 bd_set_size(bdev, size << 9);
946 loop_sysfs_init(lo);
947 /* let user-space know about the new size */
948 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
949
950 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
951 block_size(inode->i_bdev) : PAGE_SIZE);
952
953 lo->lo_state = Lo_bound;
954 if (part_shift)
955 lo->lo_flags |= LO_FLAGS_PARTSCAN;
956 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
957 loop_reread_partitions(lo, bdev);
958
959 /* Grab the block_device to prevent its destruction after we
960 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
961 */
962 bdgrab(bdev);
963 return 0;
964
965 out_putf:
966 fput(file);
967 out:
968 /* This is safe: open() is still holding a reference. */
969 module_put(THIS_MODULE);
970 return error;
971}
972
973static int
974loop_release_xfer(struct loop_device *lo)
975{
976 int err = 0;
977 struct loop_func_table *xfer = lo->lo_encryption;
978
979 if (xfer) {
980 if (xfer->release)
981 err = xfer->release(lo);
982 lo->transfer = NULL;
983 lo->lo_encryption = NULL;
984 module_put(xfer->owner);
985 }
986 return err;
987}
988
989static int
990loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
991 const struct loop_info64 *i)
992{
993 int err = 0;
994
995 if (xfer) {
996 struct module *owner = xfer->owner;
997
998 if (!try_module_get(owner))
999 return -EINVAL;
1000 if (xfer->init)
1001 err = xfer->init(lo, i);
1002 if (err)
1003 module_put(owner);
1004 else
1005 lo->lo_encryption = xfer;
1006 }
1007 return err;
1008}
1009
1010static int loop_clr_fd(struct loop_device *lo)
1011{
1012 struct file *filp = lo->lo_backing_file;
1013 gfp_t gfp = lo->old_gfp_mask;
1014 struct block_device *bdev = lo->lo_device;
1015
1016 if (lo->lo_state != Lo_bound)
1017 return -ENXIO;
1018
1019 /*
1020 * If we've explicitly asked to tear down the loop device,
1021 * and it has an elevated reference count, set it for auto-teardown when
1022 * the last reference goes away. This stops $!~#$@ udev from
1023 * preventing teardown because it decided that it needs to run blkid on
1024 * the loopback device whenever they appear. xfstests is notorious for
1025 * failing tests because blkid via udev races with a losetup
1026 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1027 * command to fail with EBUSY.
1028 */
1029 if (atomic_read(&lo->lo_refcnt) > 1) {
1030 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1031 mutex_unlock(&lo->lo_ctl_mutex);
1032 return 0;
1033 }
1034
1035 if (filp == NULL)
1036 return -EINVAL;
1037
1038 /* freeze request queue during the transition */
1039 blk_mq_freeze_queue(lo->lo_queue);
1040
1041 spin_lock_irq(&lo->lo_lock);
1042 lo->lo_state = Lo_rundown;
1043 lo->lo_backing_file = NULL;
1044 spin_unlock_irq(&lo->lo_lock);
1045
1046 loop_release_xfer(lo);
1047 lo->transfer = NULL;
1048 lo->ioctl = NULL;
1049 lo->lo_device = NULL;
1050 lo->lo_encryption = NULL;
1051 lo->lo_offset = 0;
1052 lo->lo_sizelimit = 0;
1053 lo->lo_encrypt_key_size = 0;
1054 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1055 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1056 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1057 blk_queue_logical_block_size(lo->lo_queue, 512);
1058 blk_queue_physical_block_size(lo->lo_queue, 512);
1059 blk_queue_io_min(lo->lo_queue, 512);
1060 if (bdev) {
1061 bdput(bdev);
1062 invalidate_bdev(bdev);
1063 }
1064 set_capacity(lo->lo_disk, 0);
1065 loop_sysfs_exit(lo);
1066 if (bdev) {
1067 bd_set_size(bdev, 0);
1068 /* let user-space know about this change */
1069 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1070 }
1071 mapping_set_gfp_mask(filp->f_mapping, gfp);
1072 lo->lo_state = Lo_unbound;
1073 /* This is safe: open() is still holding a reference. */
1074 module_put(THIS_MODULE);
1075 blk_mq_unfreeze_queue(lo->lo_queue);
1076
1077 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1078 loop_reread_partitions(lo, bdev);
1079 lo->lo_flags = 0;
1080 if (!part_shift)
1081 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1082 loop_unprepare_queue(lo);
1083 mutex_unlock(&lo->lo_ctl_mutex);
1084 /*
1085 * Need not hold lo_ctl_mutex to fput backing file.
1086 * Calling fput holding lo_ctl_mutex triggers a circular
1087 * lock dependency possibility warning as fput can take
1088 * bd_mutex which is usually taken before lo_ctl_mutex.
1089 */
1090 fput(filp);
1091 return 0;
1092}
1093
1094static int
1095loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1096{
1097 int err;
1098 struct loop_func_table *xfer;
1099 kuid_t uid = current_uid();
1100
1101 if (lo->lo_encrypt_key_size &&
1102 !uid_eq(lo->lo_key_owner, uid) &&
1103 !capable(CAP_SYS_ADMIN))
1104 return -EPERM;
1105 if (lo->lo_state != Lo_bound)
1106 return -ENXIO;
1107 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1108 return -EINVAL;
1109
1110 if (lo->lo_offset != info->lo_offset ||
1111 lo->lo_sizelimit != info->lo_sizelimit) {
1112 sync_blockdev(lo->lo_device);
1113 invalidate_bdev(lo->lo_device);
1114 }
1115
1116 /* I/O need to be drained during transfer transition */
1117 blk_mq_freeze_queue(lo->lo_queue);
1118
1119 err = loop_release_xfer(lo);
1120 if (err)
1121 goto exit;
1122
1123 if (info->lo_encrypt_type) {
1124 unsigned int type = info->lo_encrypt_type;
1125
1126 if (type >= MAX_LO_CRYPT) {
1127 err = -EINVAL;
1128 goto exit;
1129 }
1130 xfer = xfer_funcs[type];
1131 if (xfer == NULL) {
1132 err = -EINVAL;
1133 goto exit;
1134 }
1135 } else
1136 xfer = NULL;
1137
1138 err = loop_init_xfer(lo, xfer, info);
1139 if (err)
1140 goto exit;
1141
1142 if (lo->lo_offset != info->lo_offset ||
1143 lo->lo_sizelimit != info->lo_sizelimit) {
1144 /* kill_bdev should have truncated all the pages */
1145 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1146 err = -EAGAIN;
1147 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1148 __func__, lo->lo_number, lo->lo_file_name,
1149 lo->lo_device->bd_inode->i_mapping->nrpages);
1150 goto exit;
1151 }
1152 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1153 err = -EFBIG;
1154 goto exit;
1155 }
1156 }
1157
1158 loop_config_discard(lo);
1159
1160 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1161 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1162 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1163 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1164
1165 if (!xfer)
1166 xfer = &none_funcs;
1167 lo->transfer = xfer->transfer;
1168 lo->ioctl = xfer->ioctl;
1169
1170 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1171 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1172 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1173
1174 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1175 lo->lo_init[0] = info->lo_init[0];
1176 lo->lo_init[1] = info->lo_init[1];
1177 if (info->lo_encrypt_key_size) {
1178 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1179 info->lo_encrypt_key_size);
1180 lo->lo_key_owner = uid;
1181 }
1182
1183 /* update dio if lo_offset or transfer is changed */
1184 __loop_update_dio(lo, lo->use_dio);
1185
1186 exit:
1187 blk_mq_unfreeze_queue(lo->lo_queue);
1188
1189 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1190 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1191 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1192 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1193 loop_reread_partitions(lo, lo->lo_device);
1194 }
1195
1196 return err;
1197}
1198
1199static int
1200loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1201{
1202 struct path path;
1203 struct kstat stat;
1204 int ret;
1205
1206 if (lo->lo_state != Lo_bound) {
1207 mutex_unlock(&lo->lo_ctl_mutex);
1208 return -ENXIO;
1209 }
1210
1211 memset(info, 0, sizeof(*info));
1212 info->lo_number = lo->lo_number;
1213 info->lo_offset = lo->lo_offset;
1214 info->lo_sizelimit = lo->lo_sizelimit;
1215 info->lo_flags = lo->lo_flags;
1216 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1217 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1218 info->lo_encrypt_type =
1219 lo->lo_encryption ? lo->lo_encryption->number : 0;
1220 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1221 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1222 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1223 lo->lo_encrypt_key_size);
1224 }
1225
1226 /* Drop lo_ctl_mutex while we call into the filesystem. */
1227 path = lo->lo_backing_file->f_path;
1228 path_get(&path);
1229 mutex_unlock(&lo->lo_ctl_mutex);
1230 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1231 if (!ret) {
1232 info->lo_device = huge_encode_dev(stat.dev);
1233 info->lo_inode = stat.ino;
1234 info->lo_rdevice = huge_encode_dev(stat.rdev);
1235 }
1236 path_put(&path);
1237 return ret;
1238}
1239
1240static void
1241loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1242{
1243 memset(info64, 0, sizeof(*info64));
1244 info64->lo_number = info->lo_number;
1245 info64->lo_device = info->lo_device;
1246 info64->lo_inode = info->lo_inode;
1247 info64->lo_rdevice = info->lo_rdevice;
1248 info64->lo_offset = info->lo_offset;
1249 info64->lo_sizelimit = 0;
1250 info64->lo_encrypt_type = info->lo_encrypt_type;
1251 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1252 info64->lo_flags = info->lo_flags;
1253 info64->lo_init[0] = info->lo_init[0];
1254 info64->lo_init[1] = info->lo_init[1];
1255 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1256 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1257 else
1258 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1259 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1260}
1261
1262static int
1263loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1264{
1265 memset(info, 0, sizeof(*info));
1266 info->lo_number = info64->lo_number;
1267 info->lo_device = info64->lo_device;
1268 info->lo_inode = info64->lo_inode;
1269 info->lo_rdevice = info64->lo_rdevice;
1270 info->lo_offset = info64->lo_offset;
1271 info->lo_encrypt_type = info64->lo_encrypt_type;
1272 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1273 info->lo_flags = info64->lo_flags;
1274 info->lo_init[0] = info64->lo_init[0];
1275 info->lo_init[1] = info64->lo_init[1];
1276 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1277 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1278 else
1279 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1280 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1281
1282 /* error in case values were truncated */
1283 if (info->lo_device != info64->lo_device ||
1284 info->lo_rdevice != info64->lo_rdevice ||
1285 info->lo_inode != info64->lo_inode ||
1286 info->lo_offset != info64->lo_offset)
1287 return -EOVERFLOW;
1288
1289 return 0;
1290}
1291
1292static int
1293loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1294{
1295 struct loop_info info;
1296 struct loop_info64 info64;
1297
1298 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1299 return -EFAULT;
1300 loop_info64_from_old(&info, &info64);
1301 return loop_set_status(lo, &info64);
1302}
1303
1304static int
1305loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1306{
1307 struct loop_info64 info64;
1308
1309 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1310 return -EFAULT;
1311 return loop_set_status(lo, &info64);
1312}
1313
1314static int
1315loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1316 struct loop_info info;
1317 struct loop_info64 info64;
1318 int err;
1319
1320 if (!arg) {
1321 mutex_unlock(&lo->lo_ctl_mutex);
1322 return -EINVAL;
1323 }
1324 err = loop_get_status(lo, &info64);
1325 if (!err)
1326 err = loop_info64_to_old(&info64, &info);
1327 if (!err && copy_to_user(arg, &info, sizeof(info)))
1328 err = -EFAULT;
1329
1330 return err;
1331}
1332
1333static int
1334loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1335 struct loop_info64 info64;
1336 int err;
1337
1338 if (!arg) {
1339 mutex_unlock(&lo->lo_ctl_mutex);
1340 return -EINVAL;
1341 }
1342 err = loop_get_status(lo, &info64);
1343 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1344 err = -EFAULT;
1345
1346 return err;
1347}
1348
1349static int loop_set_capacity(struct loop_device *lo)
1350{
1351 if (unlikely(lo->lo_state != Lo_bound))
1352 return -ENXIO;
1353
1354 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1355}
1356
1357static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1358{
1359 int error = -ENXIO;
1360 if (lo->lo_state != Lo_bound)
1361 goto out;
1362
1363 __loop_update_dio(lo, !!arg);
1364 if (lo->use_dio == !!arg)
1365 return 0;
1366 error = -EINVAL;
1367 out:
1368 return error;
1369}
1370
1371static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1372{
1373 int err = 0;
1374
1375 if (lo->lo_state != Lo_bound)
1376 return -ENXIO;
1377
1378 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1379 return -EINVAL;
1380
1381 if (lo->lo_queue->limits.logical_block_size != arg) {
1382 sync_blockdev(lo->lo_device);
1383 invalidate_bdev(lo->lo_device);
1384 }
1385
1386 blk_mq_freeze_queue(lo->lo_queue);
1387
1388 /* invalidate_bdev should have truncated all the pages */
1389 if (lo->lo_queue->limits.logical_block_size != arg &&
1390 lo->lo_device->bd_inode->i_mapping->nrpages) {
1391 err = -EAGAIN;
1392 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1393 __func__, lo->lo_number, lo->lo_file_name,
1394 lo->lo_device->bd_inode->i_mapping->nrpages);
1395 goto out_unfreeze;
1396 }
1397
1398 blk_queue_logical_block_size(lo->lo_queue, arg);
1399 blk_queue_physical_block_size(lo->lo_queue, arg);
1400 blk_queue_io_min(lo->lo_queue, arg);
1401 loop_update_dio(lo);
1402out_unfreeze:
1403 blk_mq_unfreeze_queue(lo->lo_queue);
1404
1405 return err;
1406}
1407
1408static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1409 unsigned int cmd, unsigned long arg)
1410{
1411 struct loop_device *lo = bdev->bd_disk->private_data;
1412 int err;
1413
1414 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1415 switch (cmd) {
1416 case LOOP_SET_FD:
1417 err = loop_set_fd(lo, mode, bdev, arg);
1418 break;
1419 case LOOP_CHANGE_FD:
1420 err = loop_change_fd(lo, bdev, arg);
1421 break;
1422 case LOOP_CLR_FD:
1423 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1424 err = loop_clr_fd(lo);
1425 if (!err)
1426 goto out_unlocked;
1427 break;
1428 case LOOP_SET_STATUS:
1429 err = -EPERM;
1430 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1431 err = loop_set_status_old(lo,
1432 (struct loop_info __user *)arg);
1433 break;
1434 case LOOP_GET_STATUS:
1435 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1436 /* loop_get_status() unlocks lo_ctl_mutex */
1437 goto out_unlocked;
1438 case LOOP_SET_STATUS64:
1439 err = -EPERM;
1440 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1441 err = loop_set_status64(lo,
1442 (struct loop_info64 __user *) arg);
1443 break;
1444 case LOOP_GET_STATUS64:
1445 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1446 /* loop_get_status() unlocks lo_ctl_mutex */
1447 goto out_unlocked;
1448 case LOOP_SET_CAPACITY:
1449 err = -EPERM;
1450 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1451 err = loop_set_capacity(lo);
1452 break;
1453 case LOOP_SET_DIRECT_IO:
1454 err = -EPERM;
1455 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1456 err = loop_set_dio(lo, arg);
1457 break;
1458 case LOOP_SET_BLOCK_SIZE:
1459 err = -EPERM;
1460 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1461 err = loop_set_block_size(lo, arg);
1462 break;
1463 default:
1464 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1465 }
1466 mutex_unlock(&lo->lo_ctl_mutex);
1467
1468out_unlocked:
1469 return err;
1470}
1471
1472#ifdef CONFIG_COMPAT
1473struct compat_loop_info {
1474 compat_int_t lo_number; /* ioctl r/o */
1475 compat_dev_t lo_device; /* ioctl r/o */
1476 compat_ulong_t lo_inode; /* ioctl r/o */
1477 compat_dev_t lo_rdevice; /* ioctl r/o */
1478 compat_int_t lo_offset;
1479 compat_int_t lo_encrypt_type;
1480 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1481 compat_int_t lo_flags; /* ioctl r/o */
1482 char lo_name[LO_NAME_SIZE];
1483 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1484 compat_ulong_t lo_init[2];
1485 char reserved[4];
1486};
1487
1488/*
1489 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1490 * - noinlined to reduce stack space usage in main part of driver
1491 */
1492static noinline int
1493loop_info64_from_compat(const struct compat_loop_info __user *arg,
1494 struct loop_info64 *info64)
1495{
1496 struct compat_loop_info info;
1497
1498 if (copy_from_user(&info, arg, sizeof(info)))
1499 return -EFAULT;
1500
1501 memset(info64, 0, sizeof(*info64));
1502 info64->lo_number = info.lo_number;
1503 info64->lo_device = info.lo_device;
1504 info64->lo_inode = info.lo_inode;
1505 info64->lo_rdevice = info.lo_rdevice;
1506 info64->lo_offset = info.lo_offset;
1507 info64->lo_sizelimit = 0;
1508 info64->lo_encrypt_type = info.lo_encrypt_type;
1509 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1510 info64->lo_flags = info.lo_flags;
1511 info64->lo_init[0] = info.lo_init[0];
1512 info64->lo_init[1] = info.lo_init[1];
1513 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1514 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1515 else
1516 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1517 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1518 return 0;
1519}
1520
1521/*
1522 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1523 * - noinlined to reduce stack space usage in main part of driver
1524 */
1525static noinline int
1526loop_info64_to_compat(const struct loop_info64 *info64,
1527 struct compat_loop_info __user *arg)
1528{
1529 struct compat_loop_info info;
1530
1531 memset(&info, 0, sizeof(info));
1532 info.lo_number = info64->lo_number;
1533 info.lo_device = info64->lo_device;
1534 info.lo_inode = info64->lo_inode;
1535 info.lo_rdevice = info64->lo_rdevice;
1536 info.lo_offset = info64->lo_offset;
1537 info.lo_encrypt_type = info64->lo_encrypt_type;
1538 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1539 info.lo_flags = info64->lo_flags;
1540 info.lo_init[0] = info64->lo_init[0];
1541 info.lo_init[1] = info64->lo_init[1];
1542 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1543 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1544 else
1545 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1546 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1547
1548 /* error in case values were truncated */
1549 if (info.lo_device != info64->lo_device ||
1550 info.lo_rdevice != info64->lo_rdevice ||
1551 info.lo_inode != info64->lo_inode ||
1552 info.lo_offset != info64->lo_offset ||
1553 info.lo_init[0] != info64->lo_init[0] ||
1554 info.lo_init[1] != info64->lo_init[1])
1555 return -EOVERFLOW;
1556
1557 if (copy_to_user(arg, &info, sizeof(info)))
1558 return -EFAULT;
1559 return 0;
1560}
1561
1562static int
1563loop_set_status_compat(struct loop_device *lo,
1564 const struct compat_loop_info __user *arg)
1565{
1566 struct loop_info64 info64;
1567 int ret;
1568
1569 ret = loop_info64_from_compat(arg, &info64);
1570 if (ret < 0)
1571 return ret;
1572 return loop_set_status(lo, &info64);
1573}
1574
1575static int
1576loop_get_status_compat(struct loop_device *lo,
1577 struct compat_loop_info __user *arg)
1578{
1579 struct loop_info64 info64;
1580 int err;
1581
1582 if (!arg) {
1583 mutex_unlock(&lo->lo_ctl_mutex);
1584 return -EINVAL;
1585 }
1586 err = loop_get_status(lo, &info64);
1587 if (!err)
1588 err = loop_info64_to_compat(&info64, arg);
1589 return err;
1590}
1591
1592static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1593 unsigned int cmd, unsigned long arg)
1594{
1595 struct loop_device *lo = bdev->bd_disk->private_data;
1596 int err;
1597
1598 switch(cmd) {
1599 case LOOP_SET_STATUS:
1600 mutex_lock(&lo->lo_ctl_mutex);
1601 err = loop_set_status_compat(
1602 lo, (const struct compat_loop_info __user *) arg);
1603 mutex_unlock(&lo->lo_ctl_mutex);
1604 break;
1605 case LOOP_GET_STATUS:
1606 mutex_lock(&lo->lo_ctl_mutex);
1607 err = loop_get_status_compat(
1608 lo, (struct compat_loop_info __user *) arg);
1609 /* loop_get_status() unlocks lo_ctl_mutex */
1610 break;
1611 case LOOP_SET_CAPACITY:
1612 case LOOP_CLR_FD:
1613 case LOOP_GET_STATUS64:
1614 case LOOP_SET_STATUS64:
1615 arg = (unsigned long) compat_ptr(arg);
1616 case LOOP_SET_FD:
1617 case LOOP_CHANGE_FD:
1618 case LOOP_SET_BLOCK_SIZE:
1619 case LOOP_SET_DIRECT_IO:
1620 err = lo_ioctl(bdev, mode, cmd, arg);
1621 break;
1622 default:
1623 err = -ENOIOCTLCMD;
1624 break;
1625 }
1626 return err;
1627}
1628#endif
1629
1630static int lo_open(struct block_device *bdev, fmode_t mode)
1631{
1632 struct loop_device *lo;
1633 int err = 0;
1634
1635 mutex_lock(&loop_index_mutex);
1636 lo = bdev->bd_disk->private_data;
1637 if (!lo) {
1638 err = -ENXIO;
1639 goto out;
1640 }
1641
1642 atomic_inc(&lo->lo_refcnt);
1643out:
1644 mutex_unlock(&loop_index_mutex);
1645 return err;
1646}
1647
1648static void __lo_release(struct loop_device *lo)
1649{
1650 int err;
1651
1652 if (atomic_dec_return(&lo->lo_refcnt))
1653 return;
1654
1655 mutex_lock(&lo->lo_ctl_mutex);
1656 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1657 /*
1658 * In autoclear mode, stop the loop thread
1659 * and remove configuration after last close.
1660 */
1661 err = loop_clr_fd(lo);
1662 if (!err)
1663 return;
1664 } else if (lo->lo_state == Lo_bound) {
1665 /*
1666 * Otherwise keep thread (if running) and config,
1667 * but flush possible ongoing bios in thread.
1668 */
1669 blk_mq_freeze_queue(lo->lo_queue);
1670 blk_mq_unfreeze_queue(lo->lo_queue);
1671 }
1672
1673 mutex_unlock(&lo->lo_ctl_mutex);
1674}
1675
1676static void lo_release(struct gendisk *disk, fmode_t mode)
1677{
1678 mutex_lock(&loop_index_mutex);
1679 __lo_release(disk->private_data);
1680 mutex_unlock(&loop_index_mutex);
1681}
1682
1683static const struct block_device_operations lo_fops = {
1684 .owner = THIS_MODULE,
1685 .open = lo_open,
1686 .release = lo_release,
1687 .ioctl = lo_ioctl,
1688#ifdef CONFIG_COMPAT
1689 .compat_ioctl = lo_compat_ioctl,
1690#endif
1691};
1692
1693/*
1694 * And now the modules code and kernel interface.
1695 */
1696static int max_loop;
1697module_param(max_loop, int, S_IRUGO);
1698MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1699module_param(max_part, int, S_IRUGO);
1700MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1701MODULE_LICENSE("GPL");
1702MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1703
1704int loop_register_transfer(struct loop_func_table *funcs)
1705{
1706 unsigned int n = funcs->number;
1707
1708 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1709 return -EINVAL;
1710 xfer_funcs[n] = funcs;
1711 return 0;
1712}
1713
1714static int unregister_transfer_cb(int id, void *ptr, void *data)
1715{
1716 struct loop_device *lo = ptr;
1717 struct loop_func_table *xfer = data;
1718
1719 mutex_lock(&lo->lo_ctl_mutex);
1720 if (lo->lo_encryption == xfer)
1721 loop_release_xfer(lo);
1722 mutex_unlock(&lo->lo_ctl_mutex);
1723 return 0;
1724}
1725
1726int loop_unregister_transfer(int number)
1727{
1728 unsigned int n = number;
1729 struct loop_func_table *xfer;
1730
1731 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1732 return -EINVAL;
1733
1734 xfer_funcs[n] = NULL;
1735 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1736 return 0;
1737}
1738
1739EXPORT_SYMBOL(loop_register_transfer);
1740EXPORT_SYMBOL(loop_unregister_transfer);
1741
1742static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1743 const struct blk_mq_queue_data *bd)
1744{
1745 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1746 struct loop_device *lo = cmd->rq->q->queuedata;
1747
1748 blk_mq_start_request(bd->rq);
1749
1750 if (lo->lo_state != Lo_bound)
1751 return BLK_STS_IOERR;
1752
1753 switch (req_op(cmd->rq)) {
1754 case REQ_OP_FLUSH:
1755 case REQ_OP_DISCARD:
1756 case REQ_OP_WRITE_ZEROES:
1757 cmd->use_aio = false;
1758 break;
1759 default:
1760 cmd->use_aio = lo->use_dio;
1761 break;
1762 }
1763
1764 kthread_queue_work(&lo->worker, &cmd->work);
1765
1766 return BLK_STS_OK;
1767}
1768
1769static void loop_handle_cmd(struct loop_cmd *cmd)
1770{
1771 const bool write = op_is_write(req_op(cmd->rq));
1772 struct loop_device *lo = cmd->rq->q->queuedata;
1773 int ret = 0;
1774
1775 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1776 ret = -EIO;
1777 goto failed;
1778 }
1779
1780 ret = do_req_filebacked(lo, cmd->rq);
1781 failed:
1782 /* complete non-aio request */
1783 if (!cmd->use_aio || ret) {
1784 cmd->ret = ret ? -EIO : 0;
1785 blk_mq_complete_request(cmd->rq);
1786 }
1787}
1788
1789static void loop_queue_work(struct kthread_work *work)
1790{
1791 struct loop_cmd *cmd =
1792 container_of(work, struct loop_cmd, work);
1793
1794 loop_handle_cmd(cmd);
1795}
1796
1797static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1798 unsigned int hctx_idx, unsigned int numa_node)
1799{
1800 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1801
1802 cmd->rq = rq;
1803 kthread_init_work(&cmd->work, loop_queue_work);
1804
1805 return 0;
1806}
1807
1808static const struct blk_mq_ops loop_mq_ops = {
1809 .queue_rq = loop_queue_rq,
1810 .init_request = loop_init_request,
1811 .complete = lo_complete_rq,
1812};
1813
1814static int loop_add(struct loop_device **l, int i)
1815{
1816 struct loop_device *lo;
1817 struct gendisk *disk;
1818 int err;
1819
1820 err = -ENOMEM;
1821 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1822 if (!lo)
1823 goto out;
1824
1825 lo->lo_state = Lo_unbound;
1826
1827 /* allocate id, if @id >= 0, we're requesting that specific id */
1828 if (i >= 0) {
1829 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1830 if (err == -ENOSPC)
1831 err = -EEXIST;
1832 } else {
1833 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1834 }
1835 if (err < 0)
1836 goto out_free_dev;
1837 i = err;
1838
1839 err = -ENOMEM;
1840 lo->tag_set.ops = &loop_mq_ops;
1841 lo->tag_set.nr_hw_queues = 1;
1842 lo->tag_set.queue_depth = 128;
1843 lo->tag_set.numa_node = NUMA_NO_NODE;
1844 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1845 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1846 lo->tag_set.driver_data = lo;
1847
1848 err = blk_mq_alloc_tag_set(&lo->tag_set);
1849 if (err)
1850 goto out_free_idr;
1851
1852 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1853 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1854 err = PTR_ERR(lo->lo_queue);
1855 goto out_cleanup_tags;
1856 }
1857 lo->lo_queue->queuedata = lo;
1858
1859 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1860
1861 /*
1862 * By default, we do buffer IO, so it doesn't make sense to enable
1863 * merge because the I/O submitted to backing file is handled page by
1864 * page. For directio mode, merge does help to dispatch bigger request
1865 * to underlayer disk. We will enable merge once directio is enabled.
1866 */
1867 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1868
1869 err = -ENOMEM;
1870 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1871 if (!disk)
1872 goto out_free_queue;
1873
1874 /*
1875 * Disable partition scanning by default. The in-kernel partition
1876 * scanning can be requested individually per-device during its
1877 * setup. Userspace can always add and remove partitions from all
1878 * devices. The needed partition minors are allocated from the
1879 * extended minor space, the main loop device numbers will continue
1880 * to match the loop minors, regardless of the number of partitions
1881 * used.
1882 *
1883 * If max_part is given, partition scanning is globally enabled for
1884 * all loop devices. The minors for the main loop devices will be
1885 * multiples of max_part.
1886 *
1887 * Note: Global-for-all-devices, set-only-at-init, read-only module
1888 * parameteters like 'max_loop' and 'max_part' make things needlessly
1889 * complicated, are too static, inflexible and may surprise
1890 * userspace tools. Parameters like this in general should be avoided.
1891 */
1892 if (!part_shift)
1893 disk->flags |= GENHD_FL_NO_PART_SCAN;
1894 disk->flags |= GENHD_FL_EXT_DEVT;
1895 mutex_init(&lo->lo_ctl_mutex);
1896 atomic_set(&lo->lo_refcnt, 0);
1897 lo->lo_number = i;
1898 spin_lock_init(&lo->lo_lock);
1899 disk->major = LOOP_MAJOR;
1900 disk->first_minor = i << part_shift;
1901 disk->fops = &lo_fops;
1902 disk->private_data = lo;
1903 disk->queue = lo->lo_queue;
1904 sprintf(disk->disk_name, "loop%d", i);
1905 add_disk(disk);
1906 *l = lo;
1907 return lo->lo_number;
1908
1909out_free_queue:
1910 blk_cleanup_queue(lo->lo_queue);
1911out_cleanup_tags:
1912 blk_mq_free_tag_set(&lo->tag_set);
1913out_free_idr:
1914 idr_remove(&loop_index_idr, i);
1915out_free_dev:
1916 kfree(lo);
1917out:
1918 return err;
1919}
1920
1921static void loop_remove(struct loop_device *lo)
1922{
1923 blk_cleanup_queue(lo->lo_queue);
1924 del_gendisk(lo->lo_disk);
1925 blk_mq_free_tag_set(&lo->tag_set);
1926 put_disk(lo->lo_disk);
1927 kfree(lo);
1928}
1929
1930static int find_free_cb(int id, void *ptr, void *data)
1931{
1932 struct loop_device *lo = ptr;
1933 struct loop_device **l = data;
1934
1935 if (lo->lo_state == Lo_unbound) {
1936 *l = lo;
1937 return 1;
1938 }
1939 return 0;
1940}
1941
1942static int loop_lookup(struct loop_device **l, int i)
1943{
1944 struct loop_device *lo;
1945 int ret = -ENODEV;
1946
1947 if (i < 0) {
1948 int err;
1949
1950 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1951 if (err == 1) {
1952 *l = lo;
1953 ret = lo->lo_number;
1954 }
1955 goto out;
1956 }
1957
1958 /* lookup and return a specific i */
1959 lo = idr_find(&loop_index_idr, i);
1960 if (lo) {
1961 *l = lo;
1962 ret = lo->lo_number;
1963 }
1964out:
1965 return ret;
1966}
1967
1968static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1969{
1970 struct loop_device *lo;
1971 struct kobject *kobj;
1972 int err;
1973
1974 mutex_lock(&loop_index_mutex);
1975 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1976 if (err < 0)
1977 err = loop_add(&lo, MINOR(dev) >> part_shift);
1978 if (err < 0)
1979 kobj = NULL;
1980 else
1981 kobj = get_disk(lo->lo_disk);
1982 mutex_unlock(&loop_index_mutex);
1983
1984 *part = 0;
1985 return kobj;
1986}
1987
1988static long loop_control_ioctl(struct file *file, unsigned int cmd,
1989 unsigned long parm)
1990{
1991 struct loop_device *lo;
1992 int ret = -ENOSYS;
1993
1994 mutex_lock(&loop_index_mutex);
1995 switch (cmd) {
1996 case LOOP_CTL_ADD:
1997 ret = loop_lookup(&lo, parm);
1998 if (ret >= 0) {
1999 ret = -EEXIST;
2000 break;
2001 }
2002 ret = loop_add(&lo, parm);
2003 break;
2004 case LOOP_CTL_REMOVE:
2005 ret = loop_lookup(&lo, parm);
2006 if (ret < 0)
2007 break;
2008 mutex_lock(&lo->lo_ctl_mutex);
2009 if (lo->lo_state != Lo_unbound) {
2010 ret = -EBUSY;
2011 mutex_unlock(&lo->lo_ctl_mutex);
2012 break;
2013 }
2014 if (atomic_read(&lo->lo_refcnt) > 0) {
2015 ret = -EBUSY;
2016 mutex_unlock(&lo->lo_ctl_mutex);
2017 break;
2018 }
2019 lo->lo_disk->private_data = NULL;
2020 mutex_unlock(&lo->lo_ctl_mutex);
2021 idr_remove(&loop_index_idr, lo->lo_number);
2022 loop_remove(lo);
2023 break;
2024 case LOOP_CTL_GET_FREE:
2025 ret = loop_lookup(&lo, -1);
2026 if (ret >= 0)
2027 break;
2028 ret = loop_add(&lo, -1);
2029 }
2030 mutex_unlock(&loop_index_mutex);
2031
2032 return ret;
2033}
2034
2035static const struct file_operations loop_ctl_fops = {
2036 .open = nonseekable_open,
2037 .unlocked_ioctl = loop_control_ioctl,
2038 .compat_ioctl = loop_control_ioctl,
2039 .owner = THIS_MODULE,
2040 .llseek = noop_llseek,
2041};
2042
2043static struct miscdevice loop_misc = {
2044 .minor = LOOP_CTRL_MINOR,
2045 .name = "loop-control",
2046 .fops = &loop_ctl_fops,
2047};
2048
2049MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2050MODULE_ALIAS("devname:loop-control");
2051
2052static int __init loop_init(void)
2053{
2054 int i, nr;
2055 unsigned long range;
2056 struct loop_device *lo;
2057 int err;
2058
2059 part_shift = 0;
2060 if (max_part > 0) {
2061 part_shift = fls(max_part);
2062
2063 /*
2064 * Adjust max_part according to part_shift as it is exported
2065 * to user space so that user can decide correct minor number
2066 * if [s]he want to create more devices.
2067 *
2068 * Note that -1 is required because partition 0 is reserved
2069 * for the whole disk.
2070 */
2071 max_part = (1UL << part_shift) - 1;
2072 }
2073
2074 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2075 err = -EINVAL;
2076 goto err_out;
2077 }
2078
2079 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2080 err = -EINVAL;
2081 goto err_out;
2082 }
2083
2084 /*
2085 * If max_loop is specified, create that many devices upfront.
2086 * This also becomes a hard limit. If max_loop is not specified,
2087 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2088 * init time. Loop devices can be requested on-demand with the
2089 * /dev/loop-control interface, or be instantiated by accessing
2090 * a 'dead' device node.
2091 */
2092 if (max_loop) {
2093 nr = max_loop;
2094 range = max_loop << part_shift;
2095 } else {
2096 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2097 range = 1UL << MINORBITS;
2098 }
2099
2100 err = misc_register(&loop_misc);
2101 if (err < 0)
2102 goto err_out;
2103
2104
2105 if (register_blkdev(LOOP_MAJOR, "loop")) {
2106 err = -EIO;
2107 goto misc_out;
2108 }
2109
2110 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2111 THIS_MODULE, loop_probe, NULL, NULL);
2112
2113 /* pre-create number of devices given by config or max_loop */
2114 mutex_lock(&loop_index_mutex);
2115 for (i = 0; i < nr; i++)
2116 loop_add(&lo, i);
2117 mutex_unlock(&loop_index_mutex);
2118
2119 printk(KERN_INFO "loop: module loaded\n");
2120 return 0;
2121
2122misc_out:
2123 misc_deregister(&loop_misc);
2124err_out:
2125 return err;
2126}
2127
2128static int loop_exit_cb(int id, void *ptr, void *data)
2129{
2130 struct loop_device *lo = ptr;
2131
2132 loop_remove(lo);
2133 return 0;
2134}
2135
2136static void __exit loop_exit(void)
2137{
2138 unsigned long range;
2139
2140 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2141
2142 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2143 idr_destroy(&loop_index_idr);
2144
2145 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2146 unregister_blkdev(LOOP_MAJOR, "loop");
2147
2148 misc_deregister(&loop_misc);
2149}
2150
2151module_init(loop_init);
2152module_exit(loop_exit);
2153
2154#ifndef MODULE
2155static int __init max_loop_setup(char *str)
2156{
2157 max_loop = simple_strtol(str, NULL, 0);
2158 return 1;
2159}
2160
2161__setup("max_loop=", max_loop_setup);
2162#endif