blob: b499e72b2847e8f137ea2aa0b3f58fc566d8c04e [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
3 * Shaohua Li <shli@fb.com>
4 */
5#include <linux/module.h>
6
7#include <linux/moduleparam.h>
8#include <linux/sched.h>
9#include <linux/fs.h>
10#include <linux/blkdev.h>
11#include <linux/init.h>
12#include <linux/slab.h>
13#include <linux/blk-mq.h>
14#include <linux/hrtimer.h>
15#include <linux/lightnvm.h>
16#include <linux/configfs.h>
17#include <linux/badblocks.h>
18
19#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
20#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
21#define SECTOR_MASK (PAGE_SECTORS - 1)
22
23#define FREE_BATCH 16
24
25#define TICKS_PER_SEC 50ULL
26#define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
27
28static inline u64 mb_per_tick(int mbps)
29{
30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31}
32
33struct nullb_cmd {
34 struct list_head list;
35 struct llist_node ll_list;
36 call_single_data_t csd;
37 struct request *rq;
38 struct bio *bio;
39 unsigned int tag;
40 struct nullb_queue *nq;
41 struct hrtimer timer;
42 blk_status_t error;
43};
44
45struct nullb_queue {
46 unsigned long *tag_map;
47 wait_queue_head_t wait;
48 unsigned int queue_depth;
49 struct nullb_device *dev;
50
51 struct nullb_cmd *cmds;
52};
53
54/*
55 * Status flags for nullb_device.
56 *
57 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
58 * UP: Device is currently on and visible in userspace.
59 * THROTTLED: Device is being throttled.
60 * CACHE: Device is using a write-back cache.
61 */
62enum nullb_device_flags {
63 NULLB_DEV_FL_CONFIGURED = 0,
64 NULLB_DEV_FL_UP = 1,
65 NULLB_DEV_FL_THROTTLED = 2,
66 NULLB_DEV_FL_CACHE = 3,
67};
68
69#define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
70/*
71 * nullb_page is a page in memory for nullb devices.
72 *
73 * @page: The page holding the data.
74 * @bitmap: The bitmap represents which sector in the page has data.
75 * Each bit represents one block size. For example, sector 8
76 * will use the 7th bit
77 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
78 * page is being flushing to storage. FREE means the cache page is freed and
79 * should be skipped from flushing to storage. Please see
80 * null_make_cache_space
81 */
82struct nullb_page {
83 struct page *page;
84 DECLARE_BITMAP(bitmap, MAP_SZ);
85};
86#define NULLB_PAGE_LOCK (MAP_SZ - 1)
87#define NULLB_PAGE_FREE (MAP_SZ - 2)
88
89struct nullb_device {
90 struct nullb *nullb;
91 struct config_item item;
92 struct radix_tree_root data; /* data stored in the disk */
93 struct radix_tree_root cache; /* disk cache data */
94 unsigned long flags; /* device flags */
95 unsigned int curr_cache;
96 struct badblocks badblocks;
97
98 unsigned long size; /* device size in MB */
99 unsigned long completion_nsec; /* time in ns to complete a request */
100 unsigned long cache_size; /* disk cache size in MB */
101 unsigned int submit_queues; /* number of submission queues */
102 unsigned int home_node; /* home node for the device */
103 unsigned int queue_mode; /* block interface */
104 unsigned int blocksize; /* block size */
105 unsigned int irqmode; /* IRQ completion handler */
106 unsigned int hw_queue_depth; /* queue depth */
107 unsigned int index; /* index of the disk, only valid with a disk */
108 unsigned int mbps; /* Bandwidth throttle cap (in MB/s) */
109 bool use_lightnvm; /* register as a LightNVM device */
110 bool blocking; /* blocking blk-mq device */
111 bool use_per_node_hctx; /* use per-node allocation for hardware context */
112 bool power; /* power on/off the device */
113 bool memory_backed; /* if data is stored in memory */
114 bool discard; /* if support discard */
115};
116
117struct nullb {
118 struct nullb_device *dev;
119 struct list_head list;
120 unsigned int index;
121 struct request_queue *q;
122 struct gendisk *disk;
123 struct nvm_dev *ndev;
124 struct blk_mq_tag_set *tag_set;
125 struct blk_mq_tag_set __tag_set;
126 unsigned int queue_depth;
127 atomic_long_t cur_bytes;
128 struct hrtimer bw_timer;
129 unsigned long cache_flush_pos;
130 spinlock_t lock;
131
132 struct nullb_queue *queues;
133 unsigned int nr_queues;
134 char disk_name[DISK_NAME_LEN];
135};
136
137static LIST_HEAD(nullb_list);
138static struct mutex lock;
139static int null_major;
140static DEFINE_IDA(nullb_indexes);
141static struct kmem_cache *ppa_cache;
142static struct blk_mq_tag_set tag_set;
143
144enum {
145 NULL_IRQ_NONE = 0,
146 NULL_IRQ_SOFTIRQ = 1,
147 NULL_IRQ_TIMER = 2,
148};
149
150enum {
151 NULL_Q_BIO = 0,
152 NULL_Q_RQ = 1,
153 NULL_Q_MQ = 2,
154};
155
156static int g_submit_queues = 1;
157module_param_named(submit_queues, g_submit_queues, int, S_IRUGO);
158MODULE_PARM_DESC(submit_queues, "Number of submission queues");
159
160static int g_home_node = NUMA_NO_NODE;
161module_param_named(home_node, g_home_node, int, S_IRUGO);
162MODULE_PARM_DESC(home_node, "Home node for the device");
163
164static int g_queue_mode = NULL_Q_MQ;
165
166static int null_param_store_val(const char *str, int *val, int min, int max)
167{
168 int ret, new_val;
169
170 ret = kstrtoint(str, 10, &new_val);
171 if (ret)
172 return -EINVAL;
173
174 if (new_val < min || new_val > max)
175 return -EINVAL;
176
177 *val = new_val;
178 return 0;
179}
180
181static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
182{
183 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
184}
185
186static const struct kernel_param_ops null_queue_mode_param_ops = {
187 .set = null_set_queue_mode,
188 .get = param_get_int,
189};
190
191device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, S_IRUGO);
192MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
193
194static int g_gb = 250;
195module_param_named(gb, g_gb, int, S_IRUGO);
196MODULE_PARM_DESC(gb, "Size in GB");
197
198static int g_bs = 512;
199module_param_named(bs, g_bs, int, S_IRUGO);
200MODULE_PARM_DESC(bs, "Block size (in bytes)");
201
202static int nr_devices = 1;
203module_param(nr_devices, int, S_IRUGO);
204MODULE_PARM_DESC(nr_devices, "Number of devices to register");
205
206static bool g_use_lightnvm;
207module_param_named(use_lightnvm, g_use_lightnvm, bool, S_IRUGO);
208MODULE_PARM_DESC(use_lightnvm, "Register as a LightNVM device");
209
210static bool g_blocking;
211module_param_named(blocking, g_blocking, bool, S_IRUGO);
212MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
213
214static bool shared_tags;
215module_param(shared_tags, bool, S_IRUGO);
216MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
217
218static int g_irqmode = NULL_IRQ_SOFTIRQ;
219
220static int null_set_irqmode(const char *str, const struct kernel_param *kp)
221{
222 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
223 NULL_IRQ_TIMER);
224}
225
226static const struct kernel_param_ops null_irqmode_param_ops = {
227 .set = null_set_irqmode,
228 .get = param_get_int,
229};
230
231device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, S_IRUGO);
232MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
233
234static unsigned long g_completion_nsec = 10000;
235module_param_named(completion_nsec, g_completion_nsec, ulong, S_IRUGO);
236MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
237
238static int g_hw_queue_depth = 64;
239module_param_named(hw_queue_depth, g_hw_queue_depth, int, S_IRUGO);
240MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
241
242static bool g_use_per_node_hctx;
243module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, S_IRUGO);
244MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
245
246static struct nullb_device *null_alloc_dev(void);
247static void null_free_dev(struct nullb_device *dev);
248static void null_del_dev(struct nullb *nullb);
249static int null_add_dev(struct nullb_device *dev);
250static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
251
252static inline struct nullb_device *to_nullb_device(struct config_item *item)
253{
254 return item ? container_of(item, struct nullb_device, item) : NULL;
255}
256
257static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
258{
259 return snprintf(page, PAGE_SIZE, "%u\n", val);
260}
261
262static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
263 char *page)
264{
265 return snprintf(page, PAGE_SIZE, "%lu\n", val);
266}
267
268static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
269{
270 return snprintf(page, PAGE_SIZE, "%u\n", val);
271}
272
273static ssize_t nullb_device_uint_attr_store(unsigned int *val,
274 const char *page, size_t count)
275{
276 unsigned int tmp;
277 int result;
278
279 result = kstrtouint(page, 0, &tmp);
280 if (result)
281 return result;
282
283 *val = tmp;
284 return count;
285}
286
287static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
288 const char *page, size_t count)
289{
290 int result;
291 unsigned long tmp;
292
293 result = kstrtoul(page, 0, &tmp);
294 if (result)
295 return result;
296
297 *val = tmp;
298 return count;
299}
300
301static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
302 size_t count)
303{
304 bool tmp;
305 int result;
306
307 result = kstrtobool(page, &tmp);
308 if (result)
309 return result;
310
311 *val = tmp;
312 return count;
313}
314
315/* The following macro should only be used with TYPE = {uint, ulong, bool}. */
316#define NULLB_DEVICE_ATTR(NAME, TYPE) \
317static ssize_t \
318nullb_device_##NAME##_show(struct config_item *item, char *page) \
319{ \
320 return nullb_device_##TYPE##_attr_show( \
321 to_nullb_device(item)->NAME, page); \
322} \
323static ssize_t \
324nullb_device_##NAME##_store(struct config_item *item, const char *page, \
325 size_t count) \
326{ \
327 if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags)) \
328 return -EBUSY; \
329 return nullb_device_##TYPE##_attr_store( \
330 &to_nullb_device(item)->NAME, page, count); \
331} \
332CONFIGFS_ATTR(nullb_device_, NAME);
333
334NULLB_DEVICE_ATTR(size, ulong);
335NULLB_DEVICE_ATTR(completion_nsec, ulong);
336NULLB_DEVICE_ATTR(submit_queues, uint);
337NULLB_DEVICE_ATTR(home_node, uint);
338NULLB_DEVICE_ATTR(queue_mode, uint);
339NULLB_DEVICE_ATTR(blocksize, uint);
340NULLB_DEVICE_ATTR(irqmode, uint);
341NULLB_DEVICE_ATTR(hw_queue_depth, uint);
342NULLB_DEVICE_ATTR(index, uint);
343NULLB_DEVICE_ATTR(use_lightnvm, bool);
344NULLB_DEVICE_ATTR(blocking, bool);
345NULLB_DEVICE_ATTR(use_per_node_hctx, bool);
346NULLB_DEVICE_ATTR(memory_backed, bool);
347NULLB_DEVICE_ATTR(discard, bool);
348NULLB_DEVICE_ATTR(mbps, uint);
349NULLB_DEVICE_ATTR(cache_size, ulong);
350
351static ssize_t nullb_device_power_show(struct config_item *item, char *page)
352{
353 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
354}
355
356static ssize_t nullb_device_power_store(struct config_item *item,
357 const char *page, size_t count)
358{
359 struct nullb_device *dev = to_nullb_device(item);
360 bool newp = false;
361 ssize_t ret;
362
363 ret = nullb_device_bool_attr_store(&newp, page, count);
364 if (ret < 0)
365 return ret;
366
367 if (!dev->power && newp) {
368 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
369 return count;
370 if (null_add_dev(dev)) {
371 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
372 return -ENOMEM;
373 }
374
375 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
376 dev->power = newp;
377 } else if (dev->power && !newp) {
378 mutex_lock(&lock);
379 dev->power = newp;
380 null_del_dev(dev->nullb);
381 mutex_unlock(&lock);
382 clear_bit(NULLB_DEV_FL_UP, &dev->flags);
383 }
384
385 return count;
386}
387
388CONFIGFS_ATTR(nullb_device_, power);
389
390static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
391{
392 struct nullb_device *t_dev = to_nullb_device(item);
393
394 return badblocks_show(&t_dev->badblocks, page, 0);
395}
396
397static ssize_t nullb_device_badblocks_store(struct config_item *item,
398 const char *page, size_t count)
399{
400 struct nullb_device *t_dev = to_nullb_device(item);
401 char *orig, *buf, *tmp;
402 u64 start, end;
403 int ret;
404
405 orig = kstrndup(page, count, GFP_KERNEL);
406 if (!orig)
407 return -ENOMEM;
408
409 buf = strstrip(orig);
410
411 ret = -EINVAL;
412 if (buf[0] != '+' && buf[0] != '-')
413 goto out;
414 tmp = strchr(&buf[1], '-');
415 if (!tmp)
416 goto out;
417 *tmp = '\0';
418 ret = kstrtoull(buf + 1, 0, &start);
419 if (ret)
420 goto out;
421 ret = kstrtoull(tmp + 1, 0, &end);
422 if (ret)
423 goto out;
424 ret = -EINVAL;
425 if (start > end)
426 goto out;
427 /* enable badblocks */
428 cmpxchg(&t_dev->badblocks.shift, -1, 0);
429 if (buf[0] == '+')
430 ret = badblocks_set(&t_dev->badblocks, start,
431 end - start + 1, 1);
432 else
433 ret = badblocks_clear(&t_dev->badblocks, start,
434 end - start + 1);
435 if (ret == 0)
436 ret = count;
437out:
438 kfree(orig);
439 return ret;
440}
441CONFIGFS_ATTR(nullb_device_, badblocks);
442
443static struct configfs_attribute *nullb_device_attrs[] = {
444 &nullb_device_attr_size,
445 &nullb_device_attr_completion_nsec,
446 &nullb_device_attr_submit_queues,
447 &nullb_device_attr_home_node,
448 &nullb_device_attr_queue_mode,
449 &nullb_device_attr_blocksize,
450 &nullb_device_attr_irqmode,
451 &nullb_device_attr_hw_queue_depth,
452 &nullb_device_attr_index,
453 &nullb_device_attr_use_lightnvm,
454 &nullb_device_attr_blocking,
455 &nullb_device_attr_use_per_node_hctx,
456 &nullb_device_attr_power,
457 &nullb_device_attr_memory_backed,
458 &nullb_device_attr_discard,
459 &nullb_device_attr_mbps,
460 &nullb_device_attr_cache_size,
461 &nullb_device_attr_badblocks,
462 NULL,
463};
464
465static void nullb_device_release(struct config_item *item)
466{
467 struct nullb_device *dev = to_nullb_device(item);
468
469 null_free_device_storage(dev, false);
470 null_free_dev(dev);
471}
472
473static struct configfs_item_operations nullb_device_ops = {
474 .release = nullb_device_release,
475};
476
477static struct config_item_type nullb_device_type = {
478 .ct_item_ops = &nullb_device_ops,
479 .ct_attrs = nullb_device_attrs,
480 .ct_owner = THIS_MODULE,
481};
482
483static struct
484config_item *nullb_group_make_item(struct config_group *group, const char *name)
485{
486 struct nullb_device *dev;
487
488 dev = null_alloc_dev();
489 if (!dev)
490 return ERR_PTR(-ENOMEM);
491
492 config_item_init_type_name(&dev->item, name, &nullb_device_type);
493
494 return &dev->item;
495}
496
497static void
498nullb_group_drop_item(struct config_group *group, struct config_item *item)
499{
500 struct nullb_device *dev = to_nullb_device(item);
501
502 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
503 mutex_lock(&lock);
504 dev->power = false;
505 null_del_dev(dev->nullb);
506 mutex_unlock(&lock);
507 }
508
509 config_item_put(item);
510}
511
512static ssize_t memb_group_features_show(struct config_item *item, char *page)
513{
514 return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks\n");
515}
516
517CONFIGFS_ATTR_RO(memb_group_, features);
518
519static struct configfs_attribute *nullb_group_attrs[] = {
520 &memb_group_attr_features,
521 NULL,
522};
523
524static struct configfs_group_operations nullb_group_ops = {
525 .make_item = nullb_group_make_item,
526 .drop_item = nullb_group_drop_item,
527};
528
529static struct config_item_type nullb_group_type = {
530 .ct_group_ops = &nullb_group_ops,
531 .ct_attrs = nullb_group_attrs,
532 .ct_owner = THIS_MODULE,
533};
534
535static struct configfs_subsystem nullb_subsys = {
536 .su_group = {
537 .cg_item = {
538 .ci_namebuf = "nullb",
539 .ci_type = &nullb_group_type,
540 },
541 },
542};
543
544static inline int null_cache_active(struct nullb *nullb)
545{
546 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
547}
548
549static struct nullb_device *null_alloc_dev(void)
550{
551 struct nullb_device *dev;
552
553 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
554 if (!dev)
555 return NULL;
556 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
557 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
558 if (badblocks_init(&dev->badblocks, 0)) {
559 kfree(dev);
560 return NULL;
561 }
562
563 dev->size = g_gb * 1024;
564 dev->completion_nsec = g_completion_nsec;
565 dev->submit_queues = g_submit_queues;
566 dev->home_node = g_home_node;
567 dev->queue_mode = g_queue_mode;
568 dev->blocksize = g_bs;
569 dev->irqmode = g_irqmode;
570 dev->hw_queue_depth = g_hw_queue_depth;
571 dev->use_lightnvm = g_use_lightnvm;
572 dev->blocking = g_blocking;
573 dev->use_per_node_hctx = g_use_per_node_hctx;
574 return dev;
575}
576
577static void null_free_dev(struct nullb_device *dev)
578{
579 if (!dev)
580 return;
581
582 badblocks_exit(&dev->badblocks);
583 kfree(dev);
584}
585
586static void put_tag(struct nullb_queue *nq, unsigned int tag)
587{
588 clear_bit_unlock(tag, nq->tag_map);
589
590 if (waitqueue_active(&nq->wait))
591 wake_up(&nq->wait);
592}
593
594static unsigned int get_tag(struct nullb_queue *nq)
595{
596 unsigned int tag;
597
598 do {
599 tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
600 if (tag >= nq->queue_depth)
601 return -1U;
602 } while (test_and_set_bit_lock(tag, nq->tag_map));
603
604 return tag;
605}
606
607static void free_cmd(struct nullb_cmd *cmd)
608{
609 put_tag(cmd->nq, cmd->tag);
610}
611
612static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
613
614static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
615{
616 struct nullb_cmd *cmd;
617 unsigned int tag;
618
619 tag = get_tag(nq);
620 if (tag != -1U) {
621 cmd = &nq->cmds[tag];
622 cmd->tag = tag;
623 cmd->error = BLK_STS_OK;
624 cmd->nq = nq;
625 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
626 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
627 HRTIMER_MODE_REL);
628 cmd->timer.function = null_cmd_timer_expired;
629 }
630 return cmd;
631 }
632
633 return NULL;
634}
635
636static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
637{
638 struct nullb_cmd *cmd;
639 DEFINE_WAIT(wait);
640
641 cmd = __alloc_cmd(nq);
642 if (cmd || !can_wait)
643 return cmd;
644
645 do {
646 prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
647 cmd = __alloc_cmd(nq);
648 if (cmd)
649 break;
650
651 io_schedule();
652 } while (1);
653
654 finish_wait(&nq->wait, &wait);
655 return cmd;
656}
657
658static void end_cmd(struct nullb_cmd *cmd)
659{
660 struct request_queue *q = NULL;
661 int queue_mode = cmd->nq->dev->queue_mode;
662
663 if (cmd->rq)
664 q = cmd->rq->q;
665
666 switch (queue_mode) {
667 case NULL_Q_MQ:
668 blk_mq_end_request(cmd->rq, cmd->error);
669 return;
670 case NULL_Q_RQ:
671 INIT_LIST_HEAD(&cmd->rq->queuelist);
672 blk_end_request_all(cmd->rq, cmd->error);
673 break;
674 case NULL_Q_BIO:
675 cmd->bio->bi_status = cmd->error;
676 bio_endio(cmd->bio);
677 break;
678 }
679
680 free_cmd(cmd);
681
682 /* Restart queue if needed, as we are freeing a tag */
683 if (queue_mode == NULL_Q_RQ && blk_queue_stopped(q)) {
684 unsigned long flags;
685
686 spin_lock_irqsave(q->queue_lock, flags);
687 blk_start_queue_async(q);
688 spin_unlock_irqrestore(q->queue_lock, flags);
689 }
690}
691
692static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
693{
694 end_cmd(container_of(timer, struct nullb_cmd, timer));
695
696 return HRTIMER_NORESTART;
697}
698
699static void null_cmd_end_timer(struct nullb_cmd *cmd)
700{
701 ktime_t kt = cmd->nq->dev->completion_nsec;
702
703 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
704}
705
706static void null_softirq_done_fn(struct request *rq)
707{
708 struct nullb *nullb = rq->q->queuedata;
709
710 if (nullb->dev->queue_mode == NULL_Q_MQ)
711 end_cmd(blk_mq_rq_to_pdu(rq));
712 else
713 end_cmd(rq->special);
714}
715
716static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
717{
718 struct nullb_page *t_page;
719
720 t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
721 if (!t_page)
722 goto out;
723
724 t_page->page = alloc_pages(gfp_flags, 0);
725 if (!t_page->page)
726 goto out_freepage;
727
728 memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
729 return t_page;
730out_freepage:
731 kfree(t_page);
732out:
733 return NULL;
734}
735
736static void null_free_page(struct nullb_page *t_page)
737{
738 __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
739 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
740 return;
741 __free_page(t_page->page);
742 kfree(t_page);
743}
744
745static bool null_page_empty(struct nullb_page *page)
746{
747 int size = MAP_SZ - 2;
748
749 return find_first_bit(page->bitmap, size) == size;
750}
751
752static void null_free_sector(struct nullb *nullb, sector_t sector,
753 bool is_cache)
754{
755 unsigned int sector_bit;
756 u64 idx;
757 struct nullb_page *t_page, *ret;
758 struct radix_tree_root *root;
759
760 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
761 idx = sector >> PAGE_SECTORS_SHIFT;
762 sector_bit = (sector & SECTOR_MASK);
763
764 t_page = radix_tree_lookup(root, idx);
765 if (t_page) {
766 __clear_bit(sector_bit, t_page->bitmap);
767
768 if (null_page_empty(t_page)) {
769 ret = radix_tree_delete_item(root, idx, t_page);
770 WARN_ON(ret != t_page);
771 null_free_page(ret);
772 if (is_cache)
773 nullb->dev->curr_cache -= PAGE_SIZE;
774 }
775 }
776}
777
778static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
779 struct nullb_page *t_page, bool is_cache)
780{
781 struct radix_tree_root *root;
782
783 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
784
785 if (radix_tree_insert(root, idx, t_page)) {
786 null_free_page(t_page);
787 t_page = radix_tree_lookup(root, idx);
788 WARN_ON(!t_page || t_page->page->index != idx);
789 } else if (is_cache)
790 nullb->dev->curr_cache += PAGE_SIZE;
791
792 return t_page;
793}
794
795static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
796{
797 unsigned long pos = 0;
798 int nr_pages;
799 struct nullb_page *ret, *t_pages[FREE_BATCH];
800 struct radix_tree_root *root;
801
802 root = is_cache ? &dev->cache : &dev->data;
803
804 do {
805 int i;
806
807 nr_pages = radix_tree_gang_lookup(root,
808 (void **)t_pages, pos, FREE_BATCH);
809
810 for (i = 0; i < nr_pages; i++) {
811 pos = t_pages[i]->page->index;
812 ret = radix_tree_delete_item(root, pos, t_pages[i]);
813 WARN_ON(ret != t_pages[i]);
814 null_free_page(ret);
815 }
816
817 pos++;
818 } while (nr_pages == FREE_BATCH);
819
820 if (is_cache)
821 dev->curr_cache = 0;
822}
823
824static struct nullb_page *__null_lookup_page(struct nullb *nullb,
825 sector_t sector, bool for_write, bool is_cache)
826{
827 unsigned int sector_bit;
828 u64 idx;
829 struct nullb_page *t_page;
830 struct radix_tree_root *root;
831
832 idx = sector >> PAGE_SECTORS_SHIFT;
833 sector_bit = (sector & SECTOR_MASK);
834
835 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
836 t_page = radix_tree_lookup(root, idx);
837 WARN_ON(t_page && t_page->page->index != idx);
838
839 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
840 return t_page;
841
842 return NULL;
843}
844
845static struct nullb_page *null_lookup_page(struct nullb *nullb,
846 sector_t sector, bool for_write, bool ignore_cache)
847{
848 struct nullb_page *page = NULL;
849
850 if (!ignore_cache)
851 page = __null_lookup_page(nullb, sector, for_write, true);
852 if (page)
853 return page;
854 return __null_lookup_page(nullb, sector, for_write, false);
855}
856
857static struct nullb_page *null_insert_page(struct nullb *nullb,
858 sector_t sector, bool ignore_cache)
859{
860 u64 idx;
861 struct nullb_page *t_page;
862
863 t_page = null_lookup_page(nullb, sector, true, ignore_cache);
864 if (t_page)
865 return t_page;
866
867 spin_unlock_irq(&nullb->lock);
868
869 t_page = null_alloc_page(GFP_NOIO);
870 if (!t_page)
871 goto out_lock;
872
873 if (radix_tree_preload(GFP_NOIO))
874 goto out_freepage;
875
876 spin_lock_irq(&nullb->lock);
877 idx = sector >> PAGE_SECTORS_SHIFT;
878 t_page->page->index = idx;
879 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
880 radix_tree_preload_end();
881
882 return t_page;
883out_freepage:
884 null_free_page(t_page);
885out_lock:
886 spin_lock_irq(&nullb->lock);
887 return null_lookup_page(nullb, sector, true, ignore_cache);
888}
889
890static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
891{
892 int i;
893 unsigned int offset;
894 u64 idx;
895 struct nullb_page *t_page, *ret;
896 void *dst, *src;
897
898 idx = c_page->page->index;
899
900 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
901
902 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
903 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
904 null_free_page(c_page);
905 if (t_page && null_page_empty(t_page)) {
906 ret = radix_tree_delete_item(&nullb->dev->data,
907 idx, t_page);
908 null_free_page(t_page);
909 }
910 return 0;
911 }
912
913 if (!t_page)
914 return -ENOMEM;
915
916 src = kmap_atomic(c_page->page);
917 dst = kmap_atomic(t_page->page);
918
919 for (i = 0; i < PAGE_SECTORS;
920 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
921 if (test_bit(i, c_page->bitmap)) {
922 offset = (i << SECTOR_SHIFT);
923 memcpy(dst + offset, src + offset,
924 nullb->dev->blocksize);
925 __set_bit(i, t_page->bitmap);
926 }
927 }
928
929 kunmap_atomic(dst);
930 kunmap_atomic(src);
931
932 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
933 null_free_page(ret);
934 nullb->dev->curr_cache -= PAGE_SIZE;
935
936 return 0;
937}
938
939static int null_make_cache_space(struct nullb *nullb, unsigned long n)
940{
941 int i, err, nr_pages;
942 struct nullb_page *c_pages[FREE_BATCH];
943 unsigned long flushed = 0, one_round;
944
945again:
946 if ((nullb->dev->cache_size * 1024 * 1024) >
947 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
948 return 0;
949
950 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
951 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
952 /*
953 * nullb_flush_cache_page could unlock before using the c_pages. To
954 * avoid race, we don't allow page free
955 */
956 for (i = 0; i < nr_pages; i++) {
957 nullb->cache_flush_pos = c_pages[i]->page->index;
958 /*
959 * We found the page which is being flushed to disk by other
960 * threads
961 */
962 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
963 c_pages[i] = NULL;
964 else
965 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
966 }
967
968 one_round = 0;
969 for (i = 0; i < nr_pages; i++) {
970 if (c_pages[i] == NULL)
971 continue;
972 err = null_flush_cache_page(nullb, c_pages[i]);
973 if (err)
974 return err;
975 one_round++;
976 }
977 flushed += one_round << PAGE_SHIFT;
978
979 if (n > flushed) {
980 if (nr_pages == 0)
981 nullb->cache_flush_pos = 0;
982 if (one_round == 0) {
983 /* give other threads a chance */
984 spin_unlock_irq(&nullb->lock);
985 spin_lock_irq(&nullb->lock);
986 }
987 goto again;
988 }
989 return 0;
990}
991
992static int copy_to_nullb(struct nullb *nullb, struct page *source,
993 unsigned int off, sector_t sector, size_t n, bool is_fua)
994{
995 size_t temp, count = 0;
996 unsigned int offset;
997 struct nullb_page *t_page;
998 void *dst, *src;
999
1000 while (count < n) {
1001 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1002
1003 if (null_cache_active(nullb) && !is_fua)
1004 null_make_cache_space(nullb, PAGE_SIZE);
1005
1006 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1007 t_page = null_insert_page(nullb, sector,
1008 !null_cache_active(nullb) || is_fua);
1009 if (!t_page)
1010 return -ENOSPC;
1011
1012 src = kmap_atomic(source);
1013 dst = kmap_atomic(t_page->page);
1014 memcpy(dst + offset, src + off + count, temp);
1015 kunmap_atomic(dst);
1016 kunmap_atomic(src);
1017
1018 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1019
1020 if (is_fua)
1021 null_free_sector(nullb, sector, true);
1022
1023 count += temp;
1024 sector += temp >> SECTOR_SHIFT;
1025 }
1026 return 0;
1027}
1028
1029static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1030 unsigned int off, sector_t sector, size_t n)
1031{
1032 size_t temp, count = 0;
1033 unsigned int offset;
1034 struct nullb_page *t_page;
1035 void *dst, *src;
1036
1037 while (count < n) {
1038 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1039
1040 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1041 t_page = null_lookup_page(nullb, sector, false,
1042 !null_cache_active(nullb));
1043
1044 dst = kmap_atomic(dest);
1045 if (!t_page) {
1046 memset(dst + off + count, 0, temp);
1047 goto next;
1048 }
1049 src = kmap_atomic(t_page->page);
1050 memcpy(dst + off + count, src + offset, temp);
1051 kunmap_atomic(src);
1052next:
1053 kunmap_atomic(dst);
1054
1055 count += temp;
1056 sector += temp >> SECTOR_SHIFT;
1057 }
1058 return 0;
1059}
1060
1061static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
1062{
1063 size_t temp;
1064
1065 spin_lock_irq(&nullb->lock);
1066 while (n > 0) {
1067 temp = min_t(size_t, n, nullb->dev->blocksize);
1068 null_free_sector(nullb, sector, false);
1069 if (null_cache_active(nullb))
1070 null_free_sector(nullb, sector, true);
1071 sector += temp >> SECTOR_SHIFT;
1072 n -= temp;
1073 }
1074 spin_unlock_irq(&nullb->lock);
1075}
1076
1077static int null_handle_flush(struct nullb *nullb)
1078{
1079 int err;
1080
1081 if (!null_cache_active(nullb))
1082 return 0;
1083
1084 spin_lock_irq(&nullb->lock);
1085 while (true) {
1086 err = null_make_cache_space(nullb,
1087 nullb->dev->cache_size * 1024 * 1024);
1088 if (err || nullb->dev->curr_cache == 0)
1089 break;
1090 }
1091
1092 WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1093 spin_unlock_irq(&nullb->lock);
1094 return err;
1095}
1096
1097static int null_transfer(struct nullb *nullb, struct page *page,
1098 unsigned int len, unsigned int off, bool is_write, sector_t sector,
1099 bool is_fua)
1100{
1101 int err = 0;
1102
1103 if (!is_write) {
1104 err = copy_from_nullb(nullb, page, off, sector, len);
1105 flush_dcache_page(page);
1106 } else {
1107 flush_dcache_page(page);
1108 err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1109 }
1110
1111 return err;
1112}
1113
1114static int null_handle_rq(struct nullb_cmd *cmd)
1115{
1116 struct request *rq = cmd->rq;
1117 struct nullb *nullb = cmd->nq->dev->nullb;
1118 int err;
1119 unsigned int len;
1120 sector_t sector;
1121 struct req_iterator iter;
1122 struct bio_vec bvec;
1123
1124 sector = blk_rq_pos(rq);
1125
1126 if (req_op(rq) == REQ_OP_DISCARD) {
1127 null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1128 return 0;
1129 }
1130
1131 spin_lock_irq(&nullb->lock);
1132 rq_for_each_segment(bvec, rq, iter) {
1133 len = bvec.bv_len;
1134 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1135 op_is_write(req_op(rq)), sector,
1136 rq->cmd_flags & REQ_FUA);
1137 if (err) {
1138 spin_unlock_irq(&nullb->lock);
1139 return err;
1140 }
1141 sector += len >> SECTOR_SHIFT;
1142 }
1143 spin_unlock_irq(&nullb->lock);
1144
1145 return 0;
1146}
1147
1148static int null_handle_bio(struct nullb_cmd *cmd)
1149{
1150 struct bio *bio = cmd->bio;
1151 struct nullb *nullb = cmd->nq->dev->nullb;
1152 int err;
1153 unsigned int len;
1154 sector_t sector;
1155 struct bio_vec bvec;
1156 struct bvec_iter iter;
1157
1158 sector = bio->bi_iter.bi_sector;
1159
1160 if (bio_op(bio) == REQ_OP_DISCARD) {
1161 null_handle_discard(nullb, sector,
1162 bio_sectors(bio) << SECTOR_SHIFT);
1163 return 0;
1164 }
1165
1166 spin_lock_irq(&nullb->lock);
1167 bio_for_each_segment(bvec, bio, iter) {
1168 len = bvec.bv_len;
1169 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1170 op_is_write(bio_op(bio)), sector,
1171 bio_op(bio) & REQ_FUA);
1172 if (err) {
1173 spin_unlock_irq(&nullb->lock);
1174 return err;
1175 }
1176 sector += len >> SECTOR_SHIFT;
1177 }
1178 spin_unlock_irq(&nullb->lock);
1179 return 0;
1180}
1181
1182static void null_stop_queue(struct nullb *nullb)
1183{
1184 struct request_queue *q = nullb->q;
1185
1186 if (nullb->dev->queue_mode == NULL_Q_MQ)
1187 blk_mq_stop_hw_queues(q);
1188 else {
1189 spin_lock_irq(q->queue_lock);
1190 blk_stop_queue(q);
1191 spin_unlock_irq(q->queue_lock);
1192 }
1193}
1194
1195static void null_restart_queue_async(struct nullb *nullb)
1196{
1197 struct request_queue *q = nullb->q;
1198 unsigned long flags;
1199
1200 if (nullb->dev->queue_mode == NULL_Q_MQ)
1201 blk_mq_start_stopped_hw_queues(q, true);
1202 else {
1203 spin_lock_irqsave(q->queue_lock, flags);
1204 blk_start_queue_async(q);
1205 spin_unlock_irqrestore(q->queue_lock, flags);
1206 }
1207}
1208
1209static blk_status_t null_handle_cmd(struct nullb_cmd *cmd)
1210{
1211 struct nullb_device *dev = cmd->nq->dev;
1212 struct nullb *nullb = dev->nullb;
1213 int err = 0;
1214
1215 if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1216 struct request *rq = cmd->rq;
1217
1218 if (!hrtimer_active(&nullb->bw_timer))
1219 hrtimer_restart(&nullb->bw_timer);
1220
1221 if (atomic_long_sub_return(blk_rq_bytes(rq),
1222 &nullb->cur_bytes) < 0) {
1223 null_stop_queue(nullb);
1224 /* race with timer */
1225 if (atomic_long_read(&nullb->cur_bytes) > 0)
1226 null_restart_queue_async(nullb);
1227 if (dev->queue_mode == NULL_Q_RQ) {
1228 struct request_queue *q = nullb->q;
1229
1230 spin_lock_irq(q->queue_lock);
1231 rq->rq_flags |= RQF_DONTPREP;
1232 blk_requeue_request(q, rq);
1233 spin_unlock_irq(q->queue_lock);
1234 return BLK_STS_OK;
1235 } else
1236 /* requeue request */
1237 return BLK_STS_RESOURCE;
1238 }
1239 }
1240
1241 if (nullb->dev->badblocks.shift != -1) {
1242 int bad_sectors;
1243 sector_t sector, size, first_bad;
1244 bool is_flush = true;
1245
1246 if (dev->queue_mode == NULL_Q_BIO &&
1247 bio_op(cmd->bio) != REQ_OP_FLUSH) {
1248 is_flush = false;
1249 sector = cmd->bio->bi_iter.bi_sector;
1250 size = bio_sectors(cmd->bio);
1251 }
1252 if (dev->queue_mode != NULL_Q_BIO &&
1253 req_op(cmd->rq) != REQ_OP_FLUSH) {
1254 is_flush = false;
1255 sector = blk_rq_pos(cmd->rq);
1256 size = blk_rq_sectors(cmd->rq);
1257 }
1258 if (!is_flush && badblocks_check(&nullb->dev->badblocks, sector,
1259 size, &first_bad, &bad_sectors)) {
1260 cmd->error = BLK_STS_IOERR;
1261 goto out;
1262 }
1263 }
1264
1265 if (dev->memory_backed) {
1266 if (dev->queue_mode == NULL_Q_BIO) {
1267 if (bio_op(cmd->bio) == REQ_OP_FLUSH)
1268 err = null_handle_flush(nullb);
1269 else
1270 err = null_handle_bio(cmd);
1271 } else {
1272 if (req_op(cmd->rq) == REQ_OP_FLUSH)
1273 err = null_handle_flush(nullb);
1274 else
1275 err = null_handle_rq(cmd);
1276 }
1277 }
1278 cmd->error = errno_to_blk_status(err);
1279out:
1280 /* Complete IO by inline, softirq or timer */
1281 switch (dev->irqmode) {
1282 case NULL_IRQ_SOFTIRQ:
1283 switch (dev->queue_mode) {
1284 case NULL_Q_MQ:
1285 blk_mq_complete_request(cmd->rq);
1286 break;
1287 case NULL_Q_RQ:
1288 blk_complete_request(cmd->rq);
1289 break;
1290 case NULL_Q_BIO:
1291 /*
1292 * XXX: no proper submitting cpu information available.
1293 */
1294 end_cmd(cmd);
1295 break;
1296 }
1297 break;
1298 case NULL_IRQ_NONE:
1299 end_cmd(cmd);
1300 break;
1301 case NULL_IRQ_TIMER:
1302 null_cmd_end_timer(cmd);
1303 break;
1304 }
1305 return BLK_STS_OK;
1306}
1307
1308static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1309{
1310 struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1311 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1312 unsigned int mbps = nullb->dev->mbps;
1313
1314 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1315 return HRTIMER_NORESTART;
1316
1317 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1318 null_restart_queue_async(nullb);
1319
1320 hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1321
1322 return HRTIMER_RESTART;
1323}
1324
1325static void nullb_setup_bwtimer(struct nullb *nullb)
1326{
1327 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1328
1329 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1330 nullb->bw_timer.function = nullb_bwtimer_fn;
1331 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1332 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1333}
1334
1335static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1336{
1337 int index = 0;
1338
1339 if (nullb->nr_queues != 1)
1340 index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1341
1342 return &nullb->queues[index];
1343}
1344
1345static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
1346{
1347 struct nullb *nullb = q->queuedata;
1348 struct nullb_queue *nq = nullb_to_queue(nullb);
1349 struct nullb_cmd *cmd;
1350
1351 cmd = alloc_cmd(nq, 1);
1352 cmd->bio = bio;
1353
1354 null_handle_cmd(cmd);
1355 return BLK_QC_T_NONE;
1356}
1357
1358static int null_rq_prep_fn(struct request_queue *q, struct request *req)
1359{
1360 struct nullb *nullb = q->queuedata;
1361 struct nullb_queue *nq = nullb_to_queue(nullb);
1362 struct nullb_cmd *cmd;
1363
1364 cmd = alloc_cmd(nq, 0);
1365 if (cmd) {
1366 cmd->rq = req;
1367 req->special = cmd;
1368 return BLKPREP_OK;
1369 }
1370 blk_stop_queue(q);
1371
1372 return BLKPREP_DEFER;
1373}
1374
1375static void null_request_fn(struct request_queue *q)
1376{
1377 struct request *rq;
1378
1379 while ((rq = blk_fetch_request(q)) != NULL) {
1380 struct nullb_cmd *cmd = rq->special;
1381
1382 spin_unlock_irq(q->queue_lock);
1383 null_handle_cmd(cmd);
1384 spin_lock_irq(q->queue_lock);
1385 }
1386}
1387
1388static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1389 const struct blk_mq_queue_data *bd)
1390{
1391 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1392 struct nullb_queue *nq = hctx->driver_data;
1393
1394 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1395
1396 if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1397 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1398 cmd->timer.function = null_cmd_timer_expired;
1399 }
1400 cmd->rq = bd->rq;
1401 cmd->error = BLK_STS_OK;
1402 cmd->nq = nq;
1403
1404 blk_mq_start_request(bd->rq);
1405
1406 return null_handle_cmd(cmd);
1407}
1408
1409static const struct blk_mq_ops null_mq_ops = {
1410 .queue_rq = null_queue_rq,
1411 .complete = null_softirq_done_fn,
1412};
1413
1414static void cleanup_queue(struct nullb_queue *nq)
1415{
1416 kfree(nq->tag_map);
1417 kfree(nq->cmds);
1418}
1419
1420static void cleanup_queues(struct nullb *nullb)
1421{
1422 int i;
1423
1424 for (i = 0; i < nullb->nr_queues; i++)
1425 cleanup_queue(&nullb->queues[i]);
1426
1427 kfree(nullb->queues);
1428}
1429
1430#ifdef CONFIG_NVM
1431
1432static void null_lnvm_end_io(struct request *rq, blk_status_t status)
1433{
1434 struct nvm_rq *rqd = rq->end_io_data;
1435
1436 /* XXX: lighnvm core seems to expect NVM_RSP_* values here.. */
1437 rqd->error = status ? -EIO : 0;
1438 nvm_end_io(rqd);
1439
1440 blk_put_request(rq);
1441}
1442
1443static int null_lnvm_submit_io(struct nvm_dev *dev, struct nvm_rq *rqd)
1444{
1445 struct request_queue *q = dev->q;
1446 struct request *rq;
1447 struct bio *bio = rqd->bio;
1448
1449 rq = blk_mq_alloc_request(q,
1450 op_is_write(bio_op(bio)) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
1451 if (IS_ERR(rq))
1452 return -ENOMEM;
1453
1454 blk_init_request_from_bio(rq, bio);
1455
1456 rq->end_io_data = rqd;
1457
1458 blk_execute_rq_nowait(q, NULL, rq, 0, null_lnvm_end_io);
1459
1460 return 0;
1461}
1462
1463static int null_lnvm_id(struct nvm_dev *dev, struct nvm_id *id)
1464{
1465 struct nullb *nullb = dev->q->queuedata;
1466 sector_t size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
1467 sector_t blksize;
1468 struct nvm_id_group *grp;
1469
1470 id->ver_id = 0x1;
1471 id->vmnt = 0;
1472 id->cap = 0x2;
1473 id->dom = 0x1;
1474
1475 id->ppaf.blk_offset = 0;
1476 id->ppaf.blk_len = 16;
1477 id->ppaf.pg_offset = 16;
1478 id->ppaf.pg_len = 16;
1479 id->ppaf.sect_offset = 32;
1480 id->ppaf.sect_len = 8;
1481 id->ppaf.pln_offset = 40;
1482 id->ppaf.pln_len = 8;
1483 id->ppaf.lun_offset = 48;
1484 id->ppaf.lun_len = 8;
1485 id->ppaf.ch_offset = 56;
1486 id->ppaf.ch_len = 8;
1487
1488 sector_div(size, nullb->dev->blocksize); /* convert size to pages */
1489 size >>= 8; /* concert size to pgs pr blk */
1490 grp = &id->grp;
1491 grp->mtype = 0;
1492 grp->fmtype = 0;
1493 grp->num_ch = 1;
1494 grp->num_pg = 256;
1495 blksize = size;
1496 size >>= 16;
1497 grp->num_lun = size + 1;
1498 sector_div(blksize, grp->num_lun);
1499 grp->num_blk = blksize;
1500 grp->num_pln = 1;
1501
1502 grp->fpg_sz = nullb->dev->blocksize;
1503 grp->csecs = nullb->dev->blocksize;
1504 grp->trdt = 25000;
1505 grp->trdm = 25000;
1506 grp->tprt = 500000;
1507 grp->tprm = 500000;
1508 grp->tbet = 1500000;
1509 grp->tbem = 1500000;
1510 grp->mpos = 0x010101; /* single plane rwe */
1511 grp->cpar = nullb->dev->hw_queue_depth;
1512
1513 return 0;
1514}
1515
1516static void *null_lnvm_create_dma_pool(struct nvm_dev *dev, char *name)
1517{
1518 mempool_t *virtmem_pool;
1519
1520 virtmem_pool = mempool_create_slab_pool(64, ppa_cache);
1521 if (!virtmem_pool) {
1522 pr_err("null_blk: Unable to create virtual memory pool\n");
1523 return NULL;
1524 }
1525
1526 return virtmem_pool;
1527}
1528
1529static void null_lnvm_destroy_dma_pool(void *pool)
1530{
1531 mempool_destroy(pool);
1532}
1533
1534static void *null_lnvm_dev_dma_alloc(struct nvm_dev *dev, void *pool,
1535 gfp_t mem_flags, dma_addr_t *dma_handler)
1536{
1537 return mempool_alloc(pool, mem_flags);
1538}
1539
1540static void null_lnvm_dev_dma_free(void *pool, void *entry,
1541 dma_addr_t dma_handler)
1542{
1543 mempool_free(entry, pool);
1544}
1545
1546static struct nvm_dev_ops null_lnvm_dev_ops = {
1547 .identity = null_lnvm_id,
1548 .submit_io = null_lnvm_submit_io,
1549
1550 .create_dma_pool = null_lnvm_create_dma_pool,
1551 .destroy_dma_pool = null_lnvm_destroy_dma_pool,
1552 .dev_dma_alloc = null_lnvm_dev_dma_alloc,
1553 .dev_dma_free = null_lnvm_dev_dma_free,
1554
1555 /* Simulate nvme protocol restriction */
1556 .max_phys_sect = 64,
1557};
1558
1559static int null_nvm_register(struct nullb *nullb)
1560{
1561 struct nvm_dev *dev;
1562 int rv;
1563
1564 dev = nvm_alloc_dev(0);
1565 if (!dev)
1566 return -ENOMEM;
1567
1568 dev->q = nullb->q;
1569 memcpy(dev->name, nullb->disk_name, DISK_NAME_LEN);
1570 dev->ops = &null_lnvm_dev_ops;
1571
1572 rv = nvm_register(dev);
1573 if (rv) {
1574 kfree(dev);
1575 return rv;
1576 }
1577 nullb->ndev = dev;
1578 return 0;
1579}
1580
1581static void null_nvm_unregister(struct nullb *nullb)
1582{
1583 nvm_unregister(nullb->ndev);
1584}
1585#else
1586static int null_nvm_register(struct nullb *nullb)
1587{
1588 pr_err("null_blk: CONFIG_NVM needs to be enabled for LightNVM\n");
1589 return -EINVAL;
1590}
1591static void null_nvm_unregister(struct nullb *nullb) {}
1592#endif /* CONFIG_NVM */
1593
1594static void null_del_dev(struct nullb *nullb)
1595{
1596 struct nullb_device *dev;
1597
1598 if (!nullb)
1599 return;
1600
1601 dev = nullb->dev;
1602
1603 ida_simple_remove(&nullb_indexes, nullb->index);
1604
1605 list_del_init(&nullb->list);
1606
1607 if (dev->use_lightnvm)
1608 null_nvm_unregister(nullb);
1609 else
1610 del_gendisk(nullb->disk);
1611
1612 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1613 hrtimer_cancel(&nullb->bw_timer);
1614 atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1615 null_restart_queue_async(nullb);
1616 }
1617
1618 blk_cleanup_queue(nullb->q);
1619 if (dev->queue_mode == NULL_Q_MQ &&
1620 nullb->tag_set == &nullb->__tag_set)
1621 blk_mq_free_tag_set(nullb->tag_set);
1622 if (!dev->use_lightnvm)
1623 put_disk(nullb->disk);
1624 cleanup_queues(nullb);
1625 if (null_cache_active(nullb))
1626 null_free_device_storage(nullb->dev, true);
1627 kfree(nullb);
1628 dev->nullb = NULL;
1629}
1630
1631static void null_config_discard(struct nullb *nullb)
1632{
1633 if (nullb->dev->discard == false)
1634 return;
1635 nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1636 nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1637 blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1638 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, nullb->q);
1639}
1640
1641static int null_open(struct block_device *bdev, fmode_t mode)
1642{
1643 return 0;
1644}
1645
1646static void null_release(struct gendisk *disk, fmode_t mode)
1647{
1648}
1649
1650static const struct block_device_operations null_fops = {
1651 .owner = THIS_MODULE,
1652 .open = null_open,
1653 .release = null_release,
1654};
1655
1656static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1657{
1658 BUG_ON(!nullb);
1659 BUG_ON(!nq);
1660
1661 init_waitqueue_head(&nq->wait);
1662 nq->queue_depth = nullb->queue_depth;
1663 nq->dev = nullb->dev;
1664}
1665
1666static void null_init_queues(struct nullb *nullb)
1667{
1668 struct request_queue *q = nullb->q;
1669 struct blk_mq_hw_ctx *hctx;
1670 struct nullb_queue *nq;
1671 int i;
1672
1673 queue_for_each_hw_ctx(q, hctx, i) {
1674 if (!hctx->nr_ctx || !hctx->tags)
1675 continue;
1676 nq = &nullb->queues[i];
1677 hctx->driver_data = nq;
1678 null_init_queue(nullb, nq);
1679 nullb->nr_queues++;
1680 }
1681}
1682
1683static int setup_commands(struct nullb_queue *nq)
1684{
1685 struct nullb_cmd *cmd;
1686 int i, tag_size;
1687
1688 nq->cmds = kzalloc(nq->queue_depth * sizeof(*cmd), GFP_KERNEL);
1689 if (!nq->cmds)
1690 return -ENOMEM;
1691
1692 tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1693 nq->tag_map = kzalloc(tag_size * sizeof(unsigned long), GFP_KERNEL);
1694 if (!nq->tag_map) {
1695 kfree(nq->cmds);
1696 return -ENOMEM;
1697 }
1698
1699 for (i = 0; i < nq->queue_depth; i++) {
1700 cmd = &nq->cmds[i];
1701 INIT_LIST_HEAD(&cmd->list);
1702 cmd->ll_list.next = NULL;
1703 cmd->tag = -1U;
1704 }
1705
1706 return 0;
1707}
1708
1709static int setup_queues(struct nullb *nullb)
1710{
1711 nullb->queues = kzalloc(nullb->dev->submit_queues *
1712 sizeof(struct nullb_queue), GFP_KERNEL);
1713 if (!nullb->queues)
1714 return -ENOMEM;
1715
1716 nullb->nr_queues = 0;
1717 nullb->queue_depth = nullb->dev->hw_queue_depth;
1718
1719 return 0;
1720}
1721
1722static int init_driver_queues(struct nullb *nullb)
1723{
1724 struct nullb_queue *nq;
1725 int i, ret = 0;
1726
1727 for (i = 0; i < nullb->dev->submit_queues; i++) {
1728 nq = &nullb->queues[i];
1729
1730 null_init_queue(nullb, nq);
1731
1732 ret = setup_commands(nq);
1733 if (ret)
1734 return ret;
1735 nullb->nr_queues++;
1736 }
1737 return 0;
1738}
1739
1740static int null_gendisk_register(struct nullb *nullb)
1741{
1742 struct gendisk *disk;
1743 sector_t size;
1744
1745 disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1746 if (!disk)
1747 return -ENOMEM;
1748 size = (sector_t)nullb->dev->size * 1024 * 1024ULL;
1749 set_capacity(disk, size >> 9);
1750
1751 disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1752 disk->major = null_major;
1753 disk->first_minor = nullb->index;
1754 disk->fops = &null_fops;
1755 disk->private_data = nullb;
1756 disk->queue = nullb->q;
1757 strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1758
1759 add_disk(disk);
1760 return 0;
1761}
1762
1763static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1764{
1765 set->ops = &null_mq_ops;
1766 set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1767 g_submit_queues;
1768 set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1769 g_hw_queue_depth;
1770 set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1771 set->cmd_size = sizeof(struct nullb_cmd);
1772 set->flags = BLK_MQ_F_SHOULD_MERGE;
1773 set->driver_data = NULL;
1774
1775 if ((nullb && nullb->dev->blocking) || g_blocking)
1776 set->flags |= BLK_MQ_F_BLOCKING;
1777
1778 return blk_mq_alloc_tag_set(set);
1779}
1780
1781static void null_validate_conf(struct nullb_device *dev)
1782{
1783 dev->blocksize = round_down(dev->blocksize, 512);
1784 dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1785 if (dev->use_lightnvm && dev->blocksize != 4096)
1786 dev->blocksize = 4096;
1787
1788 if (dev->use_lightnvm && dev->queue_mode != NULL_Q_MQ)
1789 dev->queue_mode = NULL_Q_MQ;
1790
1791 if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1792 if (dev->submit_queues != nr_online_nodes)
1793 dev->submit_queues = nr_online_nodes;
1794 } else if (dev->submit_queues > nr_cpu_ids)
1795 dev->submit_queues = nr_cpu_ids;
1796 else if (dev->submit_queues == 0)
1797 dev->submit_queues = 1;
1798
1799 dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1800 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1801
1802 /* Do memory allocation, so set blocking */
1803 if (dev->memory_backed)
1804 dev->blocking = true;
1805 else /* cache is meaningless */
1806 dev->cache_size = 0;
1807 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1808 dev->cache_size);
1809 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1810 /* can not stop a queue */
1811 if (dev->queue_mode == NULL_Q_BIO)
1812 dev->mbps = 0;
1813}
1814
1815static int null_add_dev(struct nullb_device *dev)
1816{
1817 struct nullb *nullb;
1818 int rv;
1819
1820 null_validate_conf(dev);
1821
1822 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1823 if (!nullb) {
1824 rv = -ENOMEM;
1825 goto out;
1826 }
1827 nullb->dev = dev;
1828 dev->nullb = nullb;
1829
1830 spin_lock_init(&nullb->lock);
1831
1832 rv = setup_queues(nullb);
1833 if (rv)
1834 goto out_free_nullb;
1835
1836 if (dev->queue_mode == NULL_Q_MQ) {
1837 if (shared_tags) {
1838 nullb->tag_set = &tag_set;
1839 rv = 0;
1840 } else {
1841 nullb->tag_set = &nullb->__tag_set;
1842 rv = null_init_tag_set(nullb, nullb->tag_set);
1843 }
1844
1845 if (rv)
1846 goto out_cleanup_queues;
1847
1848 nullb->q = blk_mq_init_queue(nullb->tag_set);
1849 if (IS_ERR(nullb->q)) {
1850 rv = -ENOMEM;
1851 goto out_cleanup_tags;
1852 }
1853 null_init_queues(nullb);
1854 } else if (dev->queue_mode == NULL_Q_BIO) {
1855 nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node);
1856 if (!nullb->q) {
1857 rv = -ENOMEM;
1858 goto out_cleanup_queues;
1859 }
1860 blk_queue_make_request(nullb->q, null_queue_bio);
1861 rv = init_driver_queues(nullb);
1862 if (rv)
1863 goto out_cleanup_blk_queue;
1864 } else {
1865 nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock,
1866 dev->home_node);
1867 if (!nullb->q) {
1868 rv = -ENOMEM;
1869 goto out_cleanup_queues;
1870 }
1871 blk_queue_prep_rq(nullb->q, null_rq_prep_fn);
1872 blk_queue_softirq_done(nullb->q, null_softirq_done_fn);
1873 rv = init_driver_queues(nullb);
1874 if (rv)
1875 goto out_cleanup_blk_queue;
1876 }
1877
1878 if (dev->mbps) {
1879 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1880 nullb_setup_bwtimer(nullb);
1881 }
1882
1883 if (dev->cache_size > 0) {
1884 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1885 blk_queue_write_cache(nullb->q, true, true);
1886 blk_queue_flush_queueable(nullb->q, true);
1887 }
1888
1889 nullb->q->queuedata = nullb;
1890 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, nullb->q);
1891 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1892
1893 mutex_lock(&lock);
1894 nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1895 dev->index = nullb->index;
1896 mutex_unlock(&lock);
1897
1898 blk_queue_logical_block_size(nullb->q, dev->blocksize);
1899 blk_queue_physical_block_size(nullb->q, dev->blocksize);
1900
1901 null_config_discard(nullb);
1902
1903 sprintf(nullb->disk_name, "nullb%d", nullb->index);
1904
1905 if (dev->use_lightnvm)
1906 rv = null_nvm_register(nullb);
1907 else
1908 rv = null_gendisk_register(nullb);
1909
1910 if (rv)
1911 goto out_cleanup_blk_queue;
1912
1913 mutex_lock(&lock);
1914 list_add_tail(&nullb->list, &nullb_list);
1915 mutex_unlock(&lock);
1916
1917 return 0;
1918out_cleanup_blk_queue:
1919 blk_cleanup_queue(nullb->q);
1920out_cleanup_tags:
1921 if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1922 blk_mq_free_tag_set(nullb->tag_set);
1923out_cleanup_queues:
1924 cleanup_queues(nullb);
1925out_free_nullb:
1926 kfree(nullb);
1927 dev->nullb = NULL;
1928out:
1929 return rv;
1930}
1931
1932static int __init null_init(void)
1933{
1934 int ret = 0;
1935 unsigned int i;
1936 struct nullb *nullb;
1937 struct nullb_device *dev;
1938
1939 if (g_bs > PAGE_SIZE) {
1940 pr_warn("null_blk: invalid block size\n");
1941 pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE);
1942 g_bs = PAGE_SIZE;
1943 }
1944
1945 if (g_use_lightnvm && g_bs != 4096) {
1946 pr_warn("null_blk: LightNVM only supports 4k block size\n");
1947 pr_warn("null_blk: defaults block size to 4k\n");
1948 g_bs = 4096;
1949 }
1950
1951 if (g_use_lightnvm && g_queue_mode != NULL_Q_MQ) {
1952 pr_warn("null_blk: LightNVM only supported for blk-mq\n");
1953 pr_warn("null_blk: defaults queue mode to blk-mq\n");
1954 g_queue_mode = NULL_Q_MQ;
1955 }
1956
1957 if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1958 if (g_submit_queues != nr_online_nodes) {
1959 pr_warn("null_blk: submit_queues param is set to %u.\n",
1960 nr_online_nodes);
1961 g_submit_queues = nr_online_nodes;
1962 }
1963 } else if (g_submit_queues > nr_cpu_ids)
1964 g_submit_queues = nr_cpu_ids;
1965 else if (g_submit_queues <= 0)
1966 g_submit_queues = 1;
1967
1968 if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1969 ret = null_init_tag_set(NULL, &tag_set);
1970 if (ret)
1971 return ret;
1972 }
1973
1974 config_group_init(&nullb_subsys.su_group);
1975 mutex_init(&nullb_subsys.su_mutex);
1976
1977 ret = configfs_register_subsystem(&nullb_subsys);
1978 if (ret)
1979 goto err_tagset;
1980
1981 mutex_init(&lock);
1982
1983 null_major = register_blkdev(0, "nullb");
1984 if (null_major < 0) {
1985 ret = null_major;
1986 goto err_conf;
1987 }
1988
1989 if (g_use_lightnvm) {
1990 ppa_cache = kmem_cache_create("ppa_cache", 64 * sizeof(u64),
1991 0, 0, NULL);
1992 if (!ppa_cache) {
1993 pr_err("null_blk: unable to create ppa cache\n");
1994 ret = -ENOMEM;
1995 goto err_ppa;
1996 }
1997 }
1998
1999 for (i = 0; i < nr_devices; i++) {
2000 dev = null_alloc_dev();
2001 if (!dev) {
2002 ret = -ENOMEM;
2003 goto err_dev;
2004 }
2005 ret = null_add_dev(dev);
2006 if (ret) {
2007 null_free_dev(dev);
2008 goto err_dev;
2009 }
2010 }
2011
2012 pr_info("null: module loaded\n");
2013 return 0;
2014
2015err_dev:
2016 while (!list_empty(&nullb_list)) {
2017 nullb = list_entry(nullb_list.next, struct nullb, list);
2018 dev = nullb->dev;
2019 null_del_dev(nullb);
2020 null_free_dev(dev);
2021 }
2022 kmem_cache_destroy(ppa_cache);
2023err_ppa:
2024 unregister_blkdev(null_major, "nullb");
2025err_conf:
2026 configfs_unregister_subsystem(&nullb_subsys);
2027err_tagset:
2028 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2029 blk_mq_free_tag_set(&tag_set);
2030 return ret;
2031}
2032
2033static void __exit null_exit(void)
2034{
2035 struct nullb *nullb;
2036
2037 configfs_unregister_subsystem(&nullb_subsys);
2038
2039 unregister_blkdev(null_major, "nullb");
2040
2041 mutex_lock(&lock);
2042 while (!list_empty(&nullb_list)) {
2043 struct nullb_device *dev;
2044
2045 nullb = list_entry(nullb_list.next, struct nullb, list);
2046 dev = nullb->dev;
2047 null_del_dev(nullb);
2048 null_free_dev(dev);
2049 }
2050 mutex_unlock(&lock);
2051
2052 if (g_queue_mode == NULL_Q_MQ && shared_tags)
2053 blk_mq_free_tag_set(&tag_set);
2054
2055 kmem_cache_destroy(ppa_cache);
2056}
2057
2058module_init(null_init);
2059module_exit(null_exit);
2060
2061MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2062MODULE_LICENSE("GPL");