blob: 6db4204e5d5d500c72a66a82689984601eb9ee6e [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16
17/**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
37#include <linux/clk-provider.h>
38#include <linux/clkdev.h>
39#include <linux/clk.h>
40#include <linux/clk/bcm2835.h>
41#include <linux/debugfs.h>
42#include <linux/delay.h>
43#include <linux/module.h>
44#include <linux/of.h>
45#include <linux/platform_device.h>
46#include <linux/slab.h>
47#include <dt-bindings/clock/bcm2835.h>
48
49#define CM_PASSWORD 0x5a000000
50
51#define CM_GNRICCTL 0x000
52#define CM_GNRICDIV 0x004
53# define CM_DIV_FRAC_BITS 12
54# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55
56#define CM_VPUCTL 0x008
57#define CM_VPUDIV 0x00c
58#define CM_SYSCTL 0x010
59#define CM_SYSDIV 0x014
60#define CM_PERIACTL 0x018
61#define CM_PERIADIV 0x01c
62#define CM_PERIICTL 0x020
63#define CM_PERIIDIV 0x024
64#define CM_H264CTL 0x028
65#define CM_H264DIV 0x02c
66#define CM_ISPCTL 0x030
67#define CM_ISPDIV 0x034
68#define CM_V3DCTL 0x038
69#define CM_V3DDIV 0x03c
70#define CM_CAM0CTL 0x040
71#define CM_CAM0DIV 0x044
72#define CM_CAM1CTL 0x048
73#define CM_CAM1DIV 0x04c
74#define CM_CCP2CTL 0x050
75#define CM_CCP2DIV 0x054
76#define CM_DSI0ECTL 0x058
77#define CM_DSI0EDIV 0x05c
78#define CM_DSI0PCTL 0x060
79#define CM_DSI0PDIV 0x064
80#define CM_DPICTL 0x068
81#define CM_DPIDIV 0x06c
82#define CM_GP0CTL 0x070
83#define CM_GP0DIV 0x074
84#define CM_GP1CTL 0x078
85#define CM_GP1DIV 0x07c
86#define CM_GP2CTL 0x080
87#define CM_GP2DIV 0x084
88#define CM_HSMCTL 0x088
89#define CM_HSMDIV 0x08c
90#define CM_OTPCTL 0x090
91#define CM_OTPDIV 0x094
92#define CM_PCMCTL 0x098
93#define CM_PCMDIV 0x09c
94#define CM_PWMCTL 0x0a0
95#define CM_PWMDIV 0x0a4
96#define CM_SLIMCTL 0x0a8
97#define CM_SLIMDIV 0x0ac
98#define CM_SMICTL 0x0b0
99#define CM_SMIDIV 0x0b4
100/* no definition for 0x0b8 and 0x0bc */
101#define CM_TCNTCTL 0x0c0
102# define CM_TCNT_SRC1_SHIFT 12
103#define CM_TCNTCNT 0x0c4
104#define CM_TECCTL 0x0c8
105#define CM_TECDIV 0x0cc
106#define CM_TD0CTL 0x0d0
107#define CM_TD0DIV 0x0d4
108#define CM_TD1CTL 0x0d8
109#define CM_TD1DIV 0x0dc
110#define CM_TSENSCTL 0x0e0
111#define CM_TSENSDIV 0x0e4
112#define CM_TIMERCTL 0x0e8
113#define CM_TIMERDIV 0x0ec
114#define CM_UARTCTL 0x0f0
115#define CM_UARTDIV 0x0f4
116#define CM_VECCTL 0x0f8
117#define CM_VECDIV 0x0fc
118#define CM_PULSECTL 0x190
119#define CM_PULSEDIV 0x194
120#define CM_SDCCTL 0x1a8
121#define CM_SDCDIV 0x1ac
122#define CM_ARMCTL 0x1b0
123#define CM_AVEOCTL 0x1b8
124#define CM_AVEODIV 0x1bc
125#define CM_EMMCCTL 0x1c0
126#define CM_EMMCDIV 0x1c4
127
128/* General bits for the CM_*CTL regs */
129# define CM_ENABLE BIT(4)
130# define CM_KILL BIT(5)
131# define CM_GATE_BIT 6
132# define CM_GATE BIT(CM_GATE_BIT)
133# define CM_BUSY BIT(7)
134# define CM_BUSYD BIT(8)
135# define CM_FRAC BIT(9)
136# define CM_SRC_SHIFT 0
137# define CM_SRC_BITS 4
138# define CM_SRC_MASK 0xf
139# define CM_SRC_GND 0
140# define CM_SRC_OSC 1
141# define CM_SRC_TESTDEBUG0 2
142# define CM_SRC_TESTDEBUG1 3
143# define CM_SRC_PLLA_CORE 4
144# define CM_SRC_PLLA_PER 4
145# define CM_SRC_PLLC_CORE0 5
146# define CM_SRC_PLLC_PER 5
147# define CM_SRC_PLLC_CORE1 8
148# define CM_SRC_PLLD_CORE 6
149# define CM_SRC_PLLD_PER 6
150# define CM_SRC_PLLH_AUX 7
151# define CM_SRC_PLLC_CORE1 8
152# define CM_SRC_PLLC_CORE2 9
153
154#define CM_OSCCOUNT 0x100
155
156#define CM_PLLA 0x104
157# define CM_PLL_ANARST BIT(8)
158# define CM_PLLA_HOLDPER BIT(7)
159# define CM_PLLA_LOADPER BIT(6)
160# define CM_PLLA_HOLDCORE BIT(5)
161# define CM_PLLA_LOADCORE BIT(4)
162# define CM_PLLA_HOLDCCP2 BIT(3)
163# define CM_PLLA_LOADCCP2 BIT(2)
164# define CM_PLLA_HOLDDSI0 BIT(1)
165# define CM_PLLA_LOADDSI0 BIT(0)
166
167#define CM_PLLC 0x108
168# define CM_PLLC_HOLDPER BIT(7)
169# define CM_PLLC_LOADPER BIT(6)
170# define CM_PLLC_HOLDCORE2 BIT(5)
171# define CM_PLLC_LOADCORE2 BIT(4)
172# define CM_PLLC_HOLDCORE1 BIT(3)
173# define CM_PLLC_LOADCORE1 BIT(2)
174# define CM_PLLC_HOLDCORE0 BIT(1)
175# define CM_PLLC_LOADCORE0 BIT(0)
176
177#define CM_PLLD 0x10c
178# define CM_PLLD_HOLDPER BIT(7)
179# define CM_PLLD_LOADPER BIT(6)
180# define CM_PLLD_HOLDCORE BIT(5)
181# define CM_PLLD_LOADCORE BIT(4)
182# define CM_PLLD_HOLDDSI1 BIT(3)
183# define CM_PLLD_LOADDSI1 BIT(2)
184# define CM_PLLD_HOLDDSI0 BIT(1)
185# define CM_PLLD_LOADDSI0 BIT(0)
186
187#define CM_PLLH 0x110
188# define CM_PLLH_LOADRCAL BIT(2)
189# define CM_PLLH_LOADAUX BIT(1)
190# define CM_PLLH_LOADPIX BIT(0)
191
192#define CM_LOCK 0x114
193# define CM_LOCK_FLOCKH BIT(12)
194# define CM_LOCK_FLOCKD BIT(11)
195# define CM_LOCK_FLOCKC BIT(10)
196# define CM_LOCK_FLOCKB BIT(9)
197# define CM_LOCK_FLOCKA BIT(8)
198
199#define CM_EVENT 0x118
200#define CM_DSI1ECTL 0x158
201#define CM_DSI1EDIV 0x15c
202#define CM_DSI1PCTL 0x160
203#define CM_DSI1PDIV 0x164
204#define CM_DFTCTL 0x168
205#define CM_DFTDIV 0x16c
206
207#define CM_PLLB 0x170
208# define CM_PLLB_HOLDARM BIT(1)
209# define CM_PLLB_LOADARM BIT(0)
210
211#define A2W_PLLA_CTRL 0x1100
212#define A2W_PLLC_CTRL 0x1120
213#define A2W_PLLD_CTRL 0x1140
214#define A2W_PLLH_CTRL 0x1160
215#define A2W_PLLB_CTRL 0x11e0
216# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
217# define A2W_PLL_CTRL_PWRDN BIT(16)
218# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
219# define A2W_PLL_CTRL_PDIV_SHIFT 12
220# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
221# define A2W_PLL_CTRL_NDIV_SHIFT 0
222
223#define A2W_PLLA_ANA0 0x1010
224#define A2W_PLLC_ANA0 0x1030
225#define A2W_PLLD_ANA0 0x1050
226#define A2W_PLLH_ANA0 0x1070
227#define A2W_PLLB_ANA0 0x10f0
228
229#define A2W_PLL_KA_SHIFT 7
230#define A2W_PLL_KA_MASK GENMASK(9, 7)
231#define A2W_PLL_KI_SHIFT 19
232#define A2W_PLL_KI_MASK GENMASK(21, 19)
233#define A2W_PLL_KP_SHIFT 15
234#define A2W_PLL_KP_MASK GENMASK(18, 15)
235
236#define A2W_PLLH_KA_SHIFT 19
237#define A2W_PLLH_KA_MASK GENMASK(21, 19)
238#define A2W_PLLH_KI_LOW_SHIFT 22
239#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
240#define A2W_PLLH_KI_HIGH_SHIFT 0
241#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
242#define A2W_PLLH_KP_SHIFT 1
243#define A2W_PLLH_KP_MASK GENMASK(4, 1)
244
245#define A2W_XOSC_CTRL 0x1190
246# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
247# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
248# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
249# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
250# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
251# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
252# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
253# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
254
255#define A2W_PLLA_FRAC 0x1200
256#define A2W_PLLC_FRAC 0x1220
257#define A2W_PLLD_FRAC 0x1240
258#define A2W_PLLH_FRAC 0x1260
259#define A2W_PLLB_FRAC 0x12e0
260# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
261# define A2W_PLL_FRAC_BITS 20
262
263#define A2W_PLL_CHANNEL_DISABLE BIT(8)
264#define A2W_PLL_DIV_BITS 8
265#define A2W_PLL_DIV_SHIFT 0
266
267#define A2W_PLLA_DSI0 0x1300
268#define A2W_PLLA_CORE 0x1400
269#define A2W_PLLA_PER 0x1500
270#define A2W_PLLA_CCP2 0x1600
271
272#define A2W_PLLC_CORE2 0x1320
273#define A2W_PLLC_CORE1 0x1420
274#define A2W_PLLC_PER 0x1520
275#define A2W_PLLC_CORE0 0x1620
276
277#define A2W_PLLD_DSI0 0x1340
278#define A2W_PLLD_CORE 0x1440
279#define A2W_PLLD_PER 0x1540
280#define A2W_PLLD_DSI1 0x1640
281
282#define A2W_PLLH_AUX 0x1360
283#define A2W_PLLH_RCAL 0x1460
284#define A2W_PLLH_PIX 0x1560
285#define A2W_PLLH_STS 0x1660
286
287#define A2W_PLLH_CTRLR 0x1960
288#define A2W_PLLH_FRACR 0x1a60
289#define A2W_PLLH_AUXR 0x1b60
290#define A2W_PLLH_RCALR 0x1c60
291#define A2W_PLLH_PIXR 0x1d60
292#define A2W_PLLH_STSR 0x1e60
293
294#define A2W_PLLB_ARM 0x13e0
295#define A2W_PLLB_SP0 0x14e0
296#define A2W_PLLB_SP1 0x15e0
297#define A2W_PLLB_SP2 0x16e0
298
299#define LOCK_TIMEOUT_NS 100000000
300#define BCM2835_MAX_FB_RATE 1750000000u
301
302/*
303 * Names of clocks used within the driver that need to be replaced
304 * with an external parent's name. This array is in the order that
305 * the clocks node in the DT references external clocks.
306 */
307static const char *const cprman_parent_names[] = {
308 "xosc",
309 "dsi0_byte",
310 "dsi0_ddr2",
311 "dsi0_ddr",
312 "dsi1_byte",
313 "dsi1_ddr2",
314 "dsi1_ddr",
315};
316
317struct bcm2835_cprman {
318 struct device *dev;
319 void __iomem *regs;
320 spinlock_t regs_lock; /* spinlock for all clocks */
321
322 /*
323 * Real names of cprman clock parents looked up through
324 * of_clk_get_parent_name(), which will be used in the
325 * parent_names[] arrays for clock registration.
326 */
327 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
328
329 /* Must be last */
330 struct clk_hw_onecell_data onecell;
331};
332
333static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334{
335 writel(CM_PASSWORD | val, cprman->regs + reg);
336}
337
338static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339{
340 return readl(cprman->regs + reg);
341}
342
343/* Does a cycle of measuring a clock through the TCNT clock, which may
344 * source from many other clocks in the system.
345 */
346static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
347 u32 tcnt_mux)
348{
349 u32 osccount = 19200; /* 1ms */
350 u32 count;
351 ktime_t timeout;
352
353 spin_lock(&cprman->regs_lock);
354
355 cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356
357 cprman_write(cprman, CM_TCNTCTL,
358 (tcnt_mux & CM_SRC_MASK) |
359 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360
361 cprman_write(cprman, CM_OSCCOUNT, osccount);
362
363 /* do a kind delay at the start */
364 mdelay(1);
365
366 /* Finish off whatever is left of OSCCOUNT */
367 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
368 while (cprman_read(cprman, CM_OSCCOUNT)) {
369 if (ktime_after(ktime_get(), timeout)) {
370 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
371 count = 0;
372 goto out;
373 }
374 cpu_relax();
375 }
376
377 /* Wait for BUSY to clear. */
378 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
379 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
380 if (ktime_after(ktime_get(), timeout)) {
381 dev_err(cprman->dev, "timeout waiting for !BUSY\n");
382 count = 0;
383 goto out;
384 }
385 cpu_relax();
386 }
387
388 count = cprman_read(cprman, CM_TCNTCNT);
389
390 cprman_write(cprman, CM_TCNTCTL, 0);
391
392out:
393 spin_unlock(&cprman->regs_lock);
394
395 return count * 1000;
396}
397
398static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
399 struct debugfs_reg32 *regs, size_t nregs,
400 struct dentry *dentry)
401{
402 struct dentry *regdump;
403 struct debugfs_regset32 *regset;
404
405 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
406 if (!regset)
407 return -ENOMEM;
408
409 regset->regs = regs;
410 regset->nregs = nregs;
411 regset->base = cprman->regs + base;
412
413 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
414 regset);
415
416 return regdump ? 0 : -ENOMEM;
417}
418
419/*
420 * These are fixed clocks. They're probably not all root clocks and it may
421 * be possible to turn them on and off but until this is mapped out better
422 * it's the only way they can be used.
423 */
424void __init bcm2835_init_clocks(void)
425{
426 struct clk_hw *hw;
427 int ret;
428
429 hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
430 if (IS_ERR(hw))
431 pr_err("apb_pclk not registered\n");
432
433 hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
434 if (IS_ERR(hw))
435 pr_err("uart0_pclk not registered\n");
436 ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
437 if (ret)
438 pr_err("uart0_pclk alias not registered\n");
439
440 hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
441 if (IS_ERR(hw))
442 pr_err("uart1_pclk not registered\n");
443 ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
444 if (ret)
445 pr_err("uart1_pclk alias not registered\n");
446}
447
448struct bcm2835_pll_data {
449 const char *name;
450 u32 cm_ctrl_reg;
451 u32 a2w_ctrl_reg;
452 u32 frac_reg;
453 u32 ana_reg_base;
454 u32 reference_enable_mask;
455 /* Bit in CM_LOCK to indicate when the PLL has locked. */
456 u32 lock_mask;
457
458 const struct bcm2835_pll_ana_bits *ana;
459
460 unsigned long min_rate;
461 unsigned long max_rate;
462 /*
463 * Highest rate for the VCO before we have to use the
464 * pre-divide-by-2.
465 */
466 unsigned long max_fb_rate;
467};
468
469struct bcm2835_pll_ana_bits {
470 u32 mask0;
471 u32 set0;
472 u32 mask1;
473 u32 set1;
474 u32 mask3;
475 u32 set3;
476 u32 fb_prediv_mask;
477};
478
479static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
480 .mask0 = 0,
481 .set0 = 0,
482 .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
483 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
484 .mask3 = A2W_PLL_KA_MASK,
485 .set3 = (2 << A2W_PLL_KA_SHIFT),
486 .fb_prediv_mask = BIT(14),
487};
488
489static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
490 .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
491 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
492 .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
493 .set1 = (6 << A2W_PLLH_KP_SHIFT),
494 .mask3 = 0,
495 .set3 = 0,
496 .fb_prediv_mask = BIT(11),
497};
498
499struct bcm2835_pll_divider_data {
500 const char *name;
501 const char *source_pll;
502
503 u32 cm_reg;
504 u32 a2w_reg;
505
506 u32 load_mask;
507 u32 hold_mask;
508 u32 fixed_divider;
509 u32 flags;
510};
511
512struct bcm2835_clock_data {
513 const char *name;
514
515 const char *const *parents;
516 int num_mux_parents;
517
518 /* Bitmap encoding which parents accept rate change propagation. */
519 unsigned int set_rate_parent;
520
521 u32 ctl_reg;
522 u32 div_reg;
523
524 /* Number of integer bits in the divider */
525 u32 int_bits;
526 /* Number of fractional bits in the divider */
527 u32 frac_bits;
528
529 u32 flags;
530
531 bool is_vpu_clock;
532 bool is_mash_clock;
533 bool low_jitter;
534
535 u32 tcnt_mux;
536};
537
538struct bcm2835_gate_data {
539 const char *name;
540 const char *parent;
541
542 u32 ctl_reg;
543};
544
545struct bcm2835_pll {
546 struct clk_hw hw;
547 struct bcm2835_cprman *cprman;
548 const struct bcm2835_pll_data *data;
549};
550
551static int bcm2835_pll_is_on(struct clk_hw *hw)
552{
553 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
554 struct bcm2835_cprman *cprman = pll->cprman;
555 const struct bcm2835_pll_data *data = pll->data;
556
557 return cprman_read(cprman, data->a2w_ctrl_reg) &
558 A2W_PLL_CTRL_PRST_DISABLE;
559}
560
561static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
562 unsigned long parent_rate,
563 u32 *ndiv, u32 *fdiv)
564{
565 u64 div;
566
567 div = (u64)rate << A2W_PLL_FRAC_BITS;
568 do_div(div, parent_rate);
569
570 *ndiv = div >> A2W_PLL_FRAC_BITS;
571 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
572}
573
574static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
575 u32 ndiv, u32 fdiv, u32 pdiv)
576{
577 u64 rate;
578
579 if (pdiv == 0)
580 return 0;
581
582 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
583 do_div(rate, pdiv);
584 return rate >> A2W_PLL_FRAC_BITS;
585}
586
587static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
588 unsigned long *parent_rate)
589{
590 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
591 const struct bcm2835_pll_data *data = pll->data;
592 u32 ndiv, fdiv;
593
594 rate = clamp(rate, data->min_rate, data->max_rate);
595
596 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
597
598 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
599}
600
601static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
602 unsigned long parent_rate)
603{
604 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
605 struct bcm2835_cprman *cprman = pll->cprman;
606 const struct bcm2835_pll_data *data = pll->data;
607 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
608 u32 ndiv, pdiv, fdiv;
609 bool using_prediv;
610
611 if (parent_rate == 0)
612 return 0;
613
614 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
615 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
616 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
617 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
618 data->ana->fb_prediv_mask;
619
620 if (using_prediv) {
621 ndiv *= 2;
622 fdiv *= 2;
623 }
624
625 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
626}
627
628static void bcm2835_pll_off(struct clk_hw *hw)
629{
630 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
631 struct bcm2835_cprman *cprman = pll->cprman;
632 const struct bcm2835_pll_data *data = pll->data;
633
634 spin_lock(&cprman->regs_lock);
635 cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
636 cprman_write(cprman, data->a2w_ctrl_reg,
637 cprman_read(cprman, data->a2w_ctrl_reg) |
638 A2W_PLL_CTRL_PWRDN);
639 spin_unlock(&cprman->regs_lock);
640}
641
642static int bcm2835_pll_on(struct clk_hw *hw)
643{
644 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
645 struct bcm2835_cprman *cprman = pll->cprman;
646 const struct bcm2835_pll_data *data = pll->data;
647 ktime_t timeout;
648
649 cprman_write(cprman, data->a2w_ctrl_reg,
650 cprman_read(cprman, data->a2w_ctrl_reg) &
651 ~A2W_PLL_CTRL_PWRDN);
652
653 /* Take the PLL out of reset. */
654 spin_lock(&cprman->regs_lock);
655 cprman_write(cprman, data->cm_ctrl_reg,
656 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
657 spin_unlock(&cprman->regs_lock);
658
659 /* Wait for the PLL to lock. */
660 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
661 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
662 if (ktime_after(ktime_get(), timeout)) {
663 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
664 clk_hw_get_name(hw));
665 return -ETIMEDOUT;
666 }
667
668 cpu_relax();
669 }
670
671 cprman_write(cprman, data->a2w_ctrl_reg,
672 cprman_read(cprman, data->a2w_ctrl_reg) |
673 A2W_PLL_CTRL_PRST_DISABLE);
674
675 return 0;
676}
677
678static void
679bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
680{
681 int i;
682
683 /*
684 * ANA register setup is done as a series of writes to
685 * ANA3-ANA0, in that order. This lets us write all 4
686 * registers as a single cycle of the serdes interface (taking
687 * 100 xosc clocks), whereas if we were to update ana0, 1, and
688 * 3 individually through their partial-write registers, each
689 * would be their own serdes cycle.
690 */
691 for (i = 3; i >= 0; i--)
692 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
693}
694
695static int bcm2835_pll_set_rate(struct clk_hw *hw,
696 unsigned long rate, unsigned long parent_rate)
697{
698 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
699 struct bcm2835_cprman *cprman = pll->cprman;
700 const struct bcm2835_pll_data *data = pll->data;
701 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
702 u32 ndiv, fdiv, a2w_ctl;
703 u32 ana[4];
704 int i;
705
706 if (rate > data->max_fb_rate) {
707 use_fb_prediv = true;
708 rate /= 2;
709 } else {
710 use_fb_prediv = false;
711 }
712
713 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
714
715 for (i = 3; i >= 0; i--)
716 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
717
718 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
719
720 ana[0] &= ~data->ana->mask0;
721 ana[0] |= data->ana->set0;
722 ana[1] &= ~data->ana->mask1;
723 ana[1] |= data->ana->set1;
724 ana[3] &= ~data->ana->mask3;
725 ana[3] |= data->ana->set3;
726
727 if (was_using_prediv && !use_fb_prediv) {
728 ana[1] &= ~data->ana->fb_prediv_mask;
729 do_ana_setup_first = true;
730 } else if (!was_using_prediv && use_fb_prediv) {
731 ana[1] |= data->ana->fb_prediv_mask;
732 do_ana_setup_first = false;
733 } else {
734 do_ana_setup_first = true;
735 }
736
737 /* Unmask the reference clock from the oscillator. */
738 spin_lock(&cprman->regs_lock);
739 cprman_write(cprman, A2W_XOSC_CTRL,
740 cprman_read(cprman, A2W_XOSC_CTRL) |
741 data->reference_enable_mask);
742 spin_unlock(&cprman->regs_lock);
743
744 if (do_ana_setup_first)
745 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
746
747 /* Set the PLL multiplier from the oscillator. */
748 cprman_write(cprman, data->frac_reg, fdiv);
749
750 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
751 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
752 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
753 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
754 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
755 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
756
757 if (!do_ana_setup_first)
758 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
759
760 return 0;
761}
762
763static int bcm2835_pll_debug_init(struct clk_hw *hw,
764 struct dentry *dentry)
765{
766 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
767 struct bcm2835_cprman *cprman = pll->cprman;
768 const struct bcm2835_pll_data *data = pll->data;
769 struct debugfs_reg32 *regs;
770
771 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
772 if (!regs)
773 return -ENOMEM;
774
775 regs[0].name = "cm_ctrl";
776 regs[0].offset = data->cm_ctrl_reg;
777 regs[1].name = "a2w_ctrl";
778 regs[1].offset = data->a2w_ctrl_reg;
779 regs[2].name = "frac";
780 regs[2].offset = data->frac_reg;
781 regs[3].name = "ana0";
782 regs[3].offset = data->ana_reg_base + 0 * 4;
783 regs[4].name = "ana1";
784 regs[4].offset = data->ana_reg_base + 1 * 4;
785 regs[5].name = "ana2";
786 regs[5].offset = data->ana_reg_base + 2 * 4;
787 regs[6].name = "ana3";
788 regs[6].offset = data->ana_reg_base + 3 * 4;
789
790 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
791}
792
793static const struct clk_ops bcm2835_pll_clk_ops = {
794 .is_prepared = bcm2835_pll_is_on,
795 .prepare = bcm2835_pll_on,
796 .unprepare = bcm2835_pll_off,
797 .recalc_rate = bcm2835_pll_get_rate,
798 .set_rate = bcm2835_pll_set_rate,
799 .round_rate = bcm2835_pll_round_rate,
800 .debug_init = bcm2835_pll_debug_init,
801};
802
803struct bcm2835_pll_divider {
804 struct clk_divider div;
805 struct bcm2835_cprman *cprman;
806 const struct bcm2835_pll_divider_data *data;
807};
808
809static struct bcm2835_pll_divider *
810bcm2835_pll_divider_from_hw(struct clk_hw *hw)
811{
812 return container_of(hw, struct bcm2835_pll_divider, div.hw);
813}
814
815static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
816{
817 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
818 struct bcm2835_cprman *cprman = divider->cprman;
819 const struct bcm2835_pll_divider_data *data = divider->data;
820
821 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
822}
823
824static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
825 unsigned long rate,
826 unsigned long *parent_rate)
827{
828 return clk_divider_ops.round_rate(hw, rate, parent_rate);
829}
830
831static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
832 unsigned long parent_rate)
833{
834 return clk_divider_ops.recalc_rate(hw, parent_rate);
835}
836
837static void bcm2835_pll_divider_off(struct clk_hw *hw)
838{
839 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
840 struct bcm2835_cprman *cprman = divider->cprman;
841 const struct bcm2835_pll_divider_data *data = divider->data;
842
843 spin_lock(&cprman->regs_lock);
844 cprman_write(cprman, data->cm_reg,
845 (cprman_read(cprman, data->cm_reg) &
846 ~data->load_mask) | data->hold_mask);
847 cprman_write(cprman, data->a2w_reg,
848 cprman_read(cprman, data->a2w_reg) |
849 A2W_PLL_CHANNEL_DISABLE);
850 spin_unlock(&cprman->regs_lock);
851}
852
853static int bcm2835_pll_divider_on(struct clk_hw *hw)
854{
855 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
856 struct bcm2835_cprman *cprman = divider->cprman;
857 const struct bcm2835_pll_divider_data *data = divider->data;
858
859 spin_lock(&cprman->regs_lock);
860 cprman_write(cprman, data->a2w_reg,
861 cprman_read(cprman, data->a2w_reg) &
862 ~A2W_PLL_CHANNEL_DISABLE);
863
864 cprman_write(cprman, data->cm_reg,
865 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
866 spin_unlock(&cprman->regs_lock);
867
868 return 0;
869}
870
871static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
872 unsigned long rate,
873 unsigned long parent_rate)
874{
875 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
876 struct bcm2835_cprman *cprman = divider->cprman;
877 const struct bcm2835_pll_divider_data *data = divider->data;
878 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
879
880 div = DIV_ROUND_UP_ULL(parent_rate, rate);
881
882 div = min(div, max_div);
883 if (div == max_div)
884 div = 0;
885
886 cprman_write(cprman, data->a2w_reg, div);
887 cm = cprman_read(cprman, data->cm_reg);
888 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
889 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
890
891 return 0;
892}
893
894static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
895 struct dentry *dentry)
896{
897 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
898 struct bcm2835_cprman *cprman = divider->cprman;
899 const struct bcm2835_pll_divider_data *data = divider->data;
900 struct debugfs_reg32 *regs;
901
902 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
903 if (!regs)
904 return -ENOMEM;
905
906 regs[0].name = "cm";
907 regs[0].offset = data->cm_reg;
908 regs[1].name = "a2w";
909 regs[1].offset = data->a2w_reg;
910
911 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
912}
913
914static const struct clk_ops bcm2835_pll_divider_clk_ops = {
915 .is_prepared = bcm2835_pll_divider_is_on,
916 .prepare = bcm2835_pll_divider_on,
917 .unprepare = bcm2835_pll_divider_off,
918 .recalc_rate = bcm2835_pll_divider_get_rate,
919 .set_rate = bcm2835_pll_divider_set_rate,
920 .round_rate = bcm2835_pll_divider_round_rate,
921 .debug_init = bcm2835_pll_divider_debug_init,
922};
923
924/*
925 * The CM dividers do fixed-point division, so we can't use the
926 * generic integer divider code like the PLL dividers do (and we can't
927 * fake it by having some fixed shifts preceding it in the clock tree,
928 * because we'd run out of bits in a 32-bit unsigned long).
929 */
930struct bcm2835_clock {
931 struct clk_hw hw;
932 struct bcm2835_cprman *cprman;
933 const struct bcm2835_clock_data *data;
934};
935
936static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
937{
938 return container_of(hw, struct bcm2835_clock, hw);
939}
940
941static int bcm2835_clock_is_on(struct clk_hw *hw)
942{
943 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
944 struct bcm2835_cprman *cprman = clock->cprman;
945 const struct bcm2835_clock_data *data = clock->data;
946
947 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
948}
949
950static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
951 unsigned long rate,
952 unsigned long parent_rate,
953 bool round_up)
954{
955 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
956 const struct bcm2835_clock_data *data = clock->data;
957 u32 unused_frac_mask =
958 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
959 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
960 u64 rem;
961 u32 div, mindiv, maxdiv;
962
963 rem = do_div(temp, rate);
964 div = temp;
965
966 /* Round up and mask off the unused bits */
967 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
968 div += unused_frac_mask + 1;
969 div &= ~unused_frac_mask;
970
971 /* different clamping limits apply for a mash clock */
972 if (data->is_mash_clock) {
973 /* clamp to min divider of 2 */
974 mindiv = 2 << CM_DIV_FRAC_BITS;
975 /* clamp to the highest possible integer divider */
976 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
977 } else {
978 /* clamp to min divider of 1 */
979 mindiv = 1 << CM_DIV_FRAC_BITS;
980 /* clamp to the highest possible fractional divider */
981 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
982 CM_DIV_FRAC_BITS - data->frac_bits);
983 }
984
985 /* apply the clamping limits */
986 div = max_t(u32, div, mindiv);
987 div = min_t(u32, div, maxdiv);
988
989 return div;
990}
991
992static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
993 unsigned long parent_rate,
994 u32 div)
995{
996 const struct bcm2835_clock_data *data = clock->data;
997 u64 temp;
998
999 if (data->int_bits == 0 && data->frac_bits == 0)
1000 return parent_rate;
1001
1002 /*
1003 * The divisor is a 12.12 fixed point field, but only some of
1004 * the bits are populated in any given clock.
1005 */
1006 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
1007 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
1008
1009 if (div == 0)
1010 return 0;
1011
1012 temp = (u64)parent_rate << data->frac_bits;
1013
1014 do_div(temp, div);
1015
1016 return temp;
1017}
1018
1019static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1020 unsigned long parent_rate)
1021{
1022 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1023 struct bcm2835_cprman *cprman = clock->cprman;
1024 const struct bcm2835_clock_data *data = clock->data;
1025 u32 div;
1026
1027 if (data->int_bits == 0 && data->frac_bits == 0)
1028 return parent_rate;
1029
1030 div = cprman_read(cprman, data->div_reg);
1031
1032 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1033}
1034
1035static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1036{
1037 struct bcm2835_cprman *cprman = clock->cprman;
1038 const struct bcm2835_clock_data *data = clock->data;
1039 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1040
1041 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1042 if (ktime_after(ktime_get(), timeout)) {
1043 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1044 clk_hw_get_name(&clock->hw));
1045 return;
1046 }
1047 cpu_relax();
1048 }
1049}
1050
1051static void bcm2835_clock_off(struct clk_hw *hw)
1052{
1053 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1054 struct bcm2835_cprman *cprman = clock->cprman;
1055 const struct bcm2835_clock_data *data = clock->data;
1056
1057 spin_lock(&cprman->regs_lock);
1058 cprman_write(cprman, data->ctl_reg,
1059 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1060 spin_unlock(&cprman->regs_lock);
1061
1062 /* BUSY will remain high until the divider completes its cycle. */
1063 bcm2835_clock_wait_busy(clock);
1064}
1065
1066static int bcm2835_clock_on(struct clk_hw *hw)
1067{
1068 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1069 struct bcm2835_cprman *cprman = clock->cprman;
1070 const struct bcm2835_clock_data *data = clock->data;
1071
1072 spin_lock(&cprman->regs_lock);
1073 cprman_write(cprman, data->ctl_reg,
1074 cprman_read(cprman, data->ctl_reg) |
1075 CM_ENABLE |
1076 CM_GATE);
1077 spin_unlock(&cprman->regs_lock);
1078
1079 /* Debug code to measure the clock once it's turned on to see
1080 * if it's ticking at the rate we expect.
1081 */
1082 if (data->tcnt_mux && false) {
1083 dev_info(cprman->dev,
1084 "clk %s: rate %ld, measure %ld\n",
1085 data->name,
1086 clk_hw_get_rate(hw),
1087 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1088 }
1089
1090 return 0;
1091}
1092
1093static int bcm2835_clock_set_rate(struct clk_hw *hw,
1094 unsigned long rate, unsigned long parent_rate)
1095{
1096 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1097 struct bcm2835_cprman *cprman = clock->cprman;
1098 const struct bcm2835_clock_data *data = clock->data;
1099 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1100 u32 ctl;
1101
1102 spin_lock(&cprman->regs_lock);
1103
1104 /*
1105 * Setting up frac support
1106 *
1107 * In principle it is recommended to stop/start the clock first,
1108 * but as we set CLK_SET_RATE_GATE during registration of the
1109 * clock this requirement should be take care of by the
1110 * clk-framework.
1111 */
1112 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1113 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1114 cprman_write(cprman, data->ctl_reg, ctl);
1115
1116 cprman_write(cprman, data->div_reg, div);
1117
1118 spin_unlock(&cprman->regs_lock);
1119
1120 return 0;
1121}
1122
1123static bool
1124bcm2835_clk_is_pllc(struct clk_hw *hw)
1125{
1126 if (!hw)
1127 return false;
1128
1129 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1130}
1131
1132static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1133 int parent_idx,
1134 unsigned long rate,
1135 u32 *div,
1136 unsigned long *prate,
1137 unsigned long *avgrate)
1138{
1139 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1140 struct bcm2835_cprman *cprman = clock->cprman;
1141 const struct bcm2835_clock_data *data = clock->data;
1142 unsigned long best_rate = 0;
1143 u32 curdiv, mindiv, maxdiv;
1144 struct clk_hw *parent;
1145
1146 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1147
1148 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1149 *prate = clk_hw_get_rate(parent);
1150 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1151
1152 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1153
1154 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1155 unsigned long high, low;
1156 u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1157
1158 high = bcm2835_clock_rate_from_divisor(clock, *prate,
1159 int_div);
1160 int_div += CM_DIV_FRAC_MASK + 1;
1161 low = bcm2835_clock_rate_from_divisor(clock, *prate,
1162 int_div);
1163
1164 /*
1165 * Return a value which is the maximum deviation
1166 * below the ideal rate, for use as a metric.
1167 */
1168 return *avgrate - max(*avgrate - low, high - *avgrate);
1169 }
1170 return *avgrate;
1171 }
1172
1173 if (data->frac_bits)
1174 dev_warn(cprman->dev,
1175 "frac bits are not used when propagating rate change");
1176
1177 /* clamp to min divider of 2 if we're dealing with a mash clock */
1178 mindiv = data->is_mash_clock ? 2 : 1;
1179 maxdiv = BIT(data->int_bits) - 1;
1180
1181 /* TODO: Be smart, and only test a subset of the available divisors. */
1182 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1183 unsigned long tmp_rate;
1184
1185 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1186 tmp_rate /= curdiv;
1187 if (curdiv == mindiv ||
1188 (tmp_rate > best_rate && tmp_rate <= rate))
1189 best_rate = tmp_rate;
1190
1191 if (best_rate == rate)
1192 break;
1193 }
1194
1195 *div = curdiv << CM_DIV_FRAC_BITS;
1196 *prate = curdiv * best_rate;
1197 *avgrate = best_rate;
1198
1199 return best_rate;
1200}
1201
1202static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1203 struct clk_rate_request *req)
1204{
1205 struct clk_hw *parent, *best_parent = NULL;
1206 bool current_parent_is_pllc;
1207 unsigned long rate, best_rate = 0;
1208 unsigned long prate, best_prate = 0;
1209 unsigned long avgrate, best_avgrate = 0;
1210 size_t i;
1211 u32 div;
1212
1213 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1214
1215 /*
1216 * Select parent clock that results in the closest but lower rate
1217 */
1218 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1219 parent = clk_hw_get_parent_by_index(hw, i);
1220 if (!parent)
1221 continue;
1222
1223 /*
1224 * Don't choose a PLLC-derived clock as our parent
1225 * unless it had been manually set that way. PLLC's
1226 * frequency gets adjusted by the firmware due to
1227 * over-temp or under-voltage conditions, without
1228 * prior notification to our clock consumer.
1229 */
1230 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1231 continue;
1232
1233 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1234 &div, &prate,
1235 &avgrate);
1236 if (rate > best_rate && rate <= req->rate) {
1237 best_parent = parent;
1238 best_prate = prate;
1239 best_rate = rate;
1240 best_avgrate = avgrate;
1241 }
1242 }
1243
1244 if (!best_parent)
1245 return -EINVAL;
1246
1247 req->best_parent_hw = best_parent;
1248 req->best_parent_rate = best_prate;
1249
1250 req->rate = best_avgrate;
1251
1252 return 0;
1253}
1254
1255static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1256{
1257 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1258 struct bcm2835_cprman *cprman = clock->cprman;
1259 const struct bcm2835_clock_data *data = clock->data;
1260 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1261
1262 cprman_write(cprman, data->ctl_reg, src);
1263 return 0;
1264}
1265
1266static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1267{
1268 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1269 struct bcm2835_cprman *cprman = clock->cprman;
1270 const struct bcm2835_clock_data *data = clock->data;
1271 u32 src = cprman_read(cprman, data->ctl_reg);
1272
1273 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1274}
1275
1276static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1277 {
1278 .name = "ctl",
1279 .offset = 0,
1280 },
1281 {
1282 .name = "div",
1283 .offset = 4,
1284 },
1285};
1286
1287static int bcm2835_clock_debug_init(struct clk_hw *hw,
1288 struct dentry *dentry)
1289{
1290 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1291 struct bcm2835_cprman *cprman = clock->cprman;
1292 const struct bcm2835_clock_data *data = clock->data;
1293
1294 return bcm2835_debugfs_regset(
1295 cprman, data->ctl_reg,
1296 bcm2835_debugfs_clock_reg32,
1297 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1298 dentry);
1299}
1300
1301static const struct clk_ops bcm2835_clock_clk_ops = {
1302 .is_prepared = bcm2835_clock_is_on,
1303 .prepare = bcm2835_clock_on,
1304 .unprepare = bcm2835_clock_off,
1305 .recalc_rate = bcm2835_clock_get_rate,
1306 .set_rate = bcm2835_clock_set_rate,
1307 .determine_rate = bcm2835_clock_determine_rate,
1308 .set_parent = bcm2835_clock_set_parent,
1309 .get_parent = bcm2835_clock_get_parent,
1310 .debug_init = bcm2835_clock_debug_init,
1311};
1312
1313static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1314{
1315 return true;
1316}
1317
1318/*
1319 * The VPU clock can never be disabled (it doesn't have an ENABLE
1320 * bit), so it gets its own set of clock ops.
1321 */
1322static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1323 .is_prepared = bcm2835_vpu_clock_is_on,
1324 .recalc_rate = bcm2835_clock_get_rate,
1325 .set_rate = bcm2835_clock_set_rate,
1326 .determine_rate = bcm2835_clock_determine_rate,
1327 .set_parent = bcm2835_clock_set_parent,
1328 .get_parent = bcm2835_clock_get_parent,
1329 .debug_init = bcm2835_clock_debug_init,
1330};
1331
1332static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1333 const struct bcm2835_pll_data *data)
1334{
1335 struct bcm2835_pll *pll;
1336 struct clk_init_data init;
1337 int ret;
1338
1339 memset(&init, 0, sizeof(init));
1340
1341 /* All of the PLLs derive from the external oscillator. */
1342 init.parent_names = &cprman->real_parent_names[0];
1343 init.num_parents = 1;
1344 init.name = data->name;
1345 init.ops = &bcm2835_pll_clk_ops;
1346 init.flags = CLK_IGNORE_UNUSED;
1347
1348 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1349 if (!pll)
1350 return NULL;
1351
1352 pll->cprman = cprman;
1353 pll->data = data;
1354 pll->hw.init = &init;
1355
1356 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1357 if (ret)
1358 return NULL;
1359 return &pll->hw;
1360}
1361
1362static struct clk_hw *
1363bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1364 const struct bcm2835_pll_divider_data *data)
1365{
1366 struct bcm2835_pll_divider *divider;
1367 struct clk_init_data init;
1368 const char *divider_name;
1369 int ret;
1370
1371 if (data->fixed_divider != 1) {
1372 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1373 "%s_prediv", data->name);
1374 if (!divider_name)
1375 return NULL;
1376 } else {
1377 divider_name = data->name;
1378 }
1379
1380 memset(&init, 0, sizeof(init));
1381
1382 init.parent_names = &data->source_pll;
1383 init.num_parents = 1;
1384 init.name = divider_name;
1385 init.ops = &bcm2835_pll_divider_clk_ops;
1386 init.flags = data->flags | CLK_IGNORE_UNUSED;
1387
1388 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1389 if (!divider)
1390 return NULL;
1391
1392 divider->div.reg = cprman->regs + data->a2w_reg;
1393 divider->div.shift = A2W_PLL_DIV_SHIFT;
1394 divider->div.width = A2W_PLL_DIV_BITS;
1395 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1396 divider->div.lock = &cprman->regs_lock;
1397 divider->div.hw.init = &init;
1398 divider->div.table = NULL;
1399
1400 divider->cprman = cprman;
1401 divider->data = data;
1402
1403 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1404 if (ret)
1405 return ERR_PTR(ret);
1406
1407 /*
1408 * PLLH's channels have a fixed divide by 10 afterwards, which
1409 * is what our consumers are actually using.
1410 */
1411 if (data->fixed_divider != 1) {
1412 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1413 divider_name,
1414 CLK_SET_RATE_PARENT,
1415 1,
1416 data->fixed_divider);
1417 }
1418
1419 return &divider->div.hw;
1420}
1421
1422static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1423 const struct bcm2835_clock_data *data)
1424{
1425 struct bcm2835_clock *clock;
1426 struct clk_init_data init;
1427 const char *parents[1 << CM_SRC_BITS];
1428 size_t i, j;
1429 int ret;
1430
1431 /*
1432 * Replace our strings referencing parent clocks with the
1433 * actual clock-output-name of the parent.
1434 */
1435 for (i = 0; i < data->num_mux_parents; i++) {
1436 parents[i] = data->parents[i];
1437
1438 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1439 if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1440 parents[i] = cprman->real_parent_names[j];
1441 break;
1442 }
1443 }
1444 }
1445
1446 memset(&init, 0, sizeof(init));
1447 init.parent_names = parents;
1448 init.num_parents = data->num_mux_parents;
1449 init.name = data->name;
1450 init.flags = data->flags | CLK_IGNORE_UNUSED;
1451
1452 /*
1453 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1454 * rate changes on at least of the parents.
1455 */
1456 if (data->set_rate_parent)
1457 init.flags |= CLK_SET_RATE_PARENT;
1458
1459 if (data->is_vpu_clock) {
1460 init.ops = &bcm2835_vpu_clock_clk_ops;
1461 } else {
1462 init.ops = &bcm2835_clock_clk_ops;
1463 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1464
1465 /* If the clock wasn't actually enabled at boot, it's not
1466 * critical.
1467 */
1468 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1469 init.flags &= ~CLK_IS_CRITICAL;
1470 }
1471
1472 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1473 if (!clock)
1474 return NULL;
1475
1476 clock->cprman = cprman;
1477 clock->data = data;
1478 clock->hw.init = &init;
1479
1480 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1481 if (ret)
1482 return ERR_PTR(ret);
1483 return &clock->hw;
1484}
1485
1486static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1487 const struct bcm2835_gate_data *data)
1488{
1489 return clk_hw_register_gate(cprman->dev, data->name, data->parent,
1490 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1491 cprman->regs + data->ctl_reg,
1492 CM_GATE_BIT, 0, &cprman->regs_lock);
1493}
1494
1495typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1496 const void *data);
1497struct bcm2835_clk_desc {
1498 bcm2835_clk_register clk_register;
1499 const void *data;
1500};
1501
1502/* assignment helper macros for different clock types */
1503#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1504 .data = __VA_ARGS__ }
1505#define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1506 &(struct bcm2835_pll_data) \
1507 {__VA_ARGS__})
1508#define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1509 &(struct bcm2835_pll_divider_data) \
1510 {__VA_ARGS__})
1511#define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1512 &(struct bcm2835_clock_data) \
1513 {__VA_ARGS__})
1514#define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1515 &(struct bcm2835_gate_data) \
1516 {__VA_ARGS__})
1517
1518/* parent mux arrays plus helper macros */
1519
1520/* main oscillator parent mux */
1521static const char *const bcm2835_clock_osc_parents[] = {
1522 "gnd",
1523 "xosc",
1524 "testdebug0",
1525 "testdebug1"
1526};
1527
1528#define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1529 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1530 .parents = bcm2835_clock_osc_parents, \
1531 __VA_ARGS__)
1532
1533/* main peripherial parent mux */
1534static const char *const bcm2835_clock_per_parents[] = {
1535 "gnd",
1536 "xosc",
1537 "testdebug0",
1538 "testdebug1",
1539 "plla_per",
1540 "pllc_per",
1541 "plld_per",
1542 "pllh_aux",
1543};
1544
1545#define REGISTER_PER_CLK(...) REGISTER_CLK( \
1546 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1547 .parents = bcm2835_clock_per_parents, \
1548 __VA_ARGS__)
1549
1550/*
1551 * Restrict clock sources for the PCM peripheral to the oscillator and
1552 * PLLD_PER because other source may have varying rates or be switched
1553 * off.
1554 *
1555 * Prevent other sources from being selected by replacing their names in
1556 * the list of potential parents with dummy entries (entry index is
1557 * significant).
1558 */
1559static const char *const bcm2835_pcm_per_parents[] = {
1560 "-",
1561 "xosc",
1562 "-",
1563 "-",
1564 "-",
1565 "-",
1566 "plld_per",
1567 "-",
1568};
1569
1570#define REGISTER_PCM_CLK(...) REGISTER_CLK( \
1571 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1572 .parents = bcm2835_pcm_per_parents, \
1573 __VA_ARGS__)
1574
1575/* main vpu parent mux */
1576static const char *const bcm2835_clock_vpu_parents[] = {
1577 "gnd",
1578 "xosc",
1579 "testdebug0",
1580 "testdebug1",
1581 "plla_core",
1582 "pllc_core0",
1583 "plld_core",
1584 "pllh_aux",
1585 "pllc_core1",
1586 "pllc_core2",
1587};
1588
1589#define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1590 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1591 .parents = bcm2835_clock_vpu_parents, \
1592 __VA_ARGS__)
1593
1594/*
1595 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1596 * analog PHY. The _inv variants are generated internally to cprman,
1597 * but we don't use them so they aren't hooked up.
1598 */
1599static const char *const bcm2835_clock_dsi0_parents[] = {
1600 "gnd",
1601 "xosc",
1602 "testdebug0",
1603 "testdebug1",
1604 "dsi0_ddr",
1605 "dsi0_ddr_inv",
1606 "dsi0_ddr2",
1607 "dsi0_ddr2_inv",
1608 "dsi0_byte",
1609 "dsi0_byte_inv",
1610};
1611
1612static const char *const bcm2835_clock_dsi1_parents[] = {
1613 "gnd",
1614 "xosc",
1615 "testdebug0",
1616 "testdebug1",
1617 "dsi1_ddr",
1618 "dsi1_ddr_inv",
1619 "dsi1_ddr2",
1620 "dsi1_ddr2_inv",
1621 "dsi1_byte",
1622 "dsi1_byte_inv",
1623};
1624
1625#define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
1626 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1627 .parents = bcm2835_clock_dsi0_parents, \
1628 __VA_ARGS__)
1629
1630#define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
1631 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1632 .parents = bcm2835_clock_dsi1_parents, \
1633 __VA_ARGS__)
1634
1635/*
1636 * the real definition of all the pll, pll_dividers and clocks
1637 * these make use of the above REGISTER_* macros
1638 */
1639static const struct bcm2835_clk_desc clk_desc_array[] = {
1640 /* the PLL + PLL dividers */
1641
1642 /*
1643 * PLLA is the auxiliary PLL, used to drive the CCP2
1644 * (Compact Camera Port 2) transmitter clock.
1645 *
1646 * It is in the PX LDO power domain, which is on when the
1647 * AUDIO domain is on.
1648 */
1649 [BCM2835_PLLA] = REGISTER_PLL(
1650 .name = "plla",
1651 .cm_ctrl_reg = CM_PLLA,
1652 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1653 .frac_reg = A2W_PLLA_FRAC,
1654 .ana_reg_base = A2W_PLLA_ANA0,
1655 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1656 .lock_mask = CM_LOCK_FLOCKA,
1657
1658 .ana = &bcm2835_ana_default,
1659
1660 .min_rate = 600000000u,
1661 .max_rate = 2400000000u,
1662 .max_fb_rate = BCM2835_MAX_FB_RATE),
1663 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1664 .name = "plla_core",
1665 .source_pll = "plla",
1666 .cm_reg = CM_PLLA,
1667 .a2w_reg = A2W_PLLA_CORE,
1668 .load_mask = CM_PLLA_LOADCORE,
1669 .hold_mask = CM_PLLA_HOLDCORE,
1670 .fixed_divider = 1,
1671 .flags = CLK_SET_RATE_PARENT),
1672 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1673 .name = "plla_per",
1674 .source_pll = "plla",
1675 .cm_reg = CM_PLLA,
1676 .a2w_reg = A2W_PLLA_PER,
1677 .load_mask = CM_PLLA_LOADPER,
1678 .hold_mask = CM_PLLA_HOLDPER,
1679 .fixed_divider = 1,
1680 .flags = CLK_SET_RATE_PARENT),
1681 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1682 .name = "plla_dsi0",
1683 .source_pll = "plla",
1684 .cm_reg = CM_PLLA,
1685 .a2w_reg = A2W_PLLA_DSI0,
1686 .load_mask = CM_PLLA_LOADDSI0,
1687 .hold_mask = CM_PLLA_HOLDDSI0,
1688 .fixed_divider = 1),
1689 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1690 .name = "plla_ccp2",
1691 .source_pll = "plla",
1692 .cm_reg = CM_PLLA,
1693 .a2w_reg = A2W_PLLA_CCP2,
1694 .load_mask = CM_PLLA_LOADCCP2,
1695 .hold_mask = CM_PLLA_HOLDCCP2,
1696 .fixed_divider = 1,
1697 .flags = CLK_SET_RATE_PARENT),
1698
1699 /* PLLB is used for the ARM's clock. */
1700 [BCM2835_PLLB] = REGISTER_PLL(
1701 .name = "pllb",
1702 .cm_ctrl_reg = CM_PLLB,
1703 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1704 .frac_reg = A2W_PLLB_FRAC,
1705 .ana_reg_base = A2W_PLLB_ANA0,
1706 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1707 .lock_mask = CM_LOCK_FLOCKB,
1708
1709 .ana = &bcm2835_ana_default,
1710
1711 .min_rate = 600000000u,
1712 .max_rate = 3000000000u,
1713 .max_fb_rate = BCM2835_MAX_FB_RATE),
1714 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1715 .name = "pllb_arm",
1716 .source_pll = "pllb",
1717 .cm_reg = CM_PLLB,
1718 .a2w_reg = A2W_PLLB_ARM,
1719 .load_mask = CM_PLLB_LOADARM,
1720 .hold_mask = CM_PLLB_HOLDARM,
1721 .fixed_divider = 1,
1722 .flags = CLK_SET_RATE_PARENT),
1723
1724 /*
1725 * PLLC is the core PLL, used to drive the core VPU clock.
1726 *
1727 * It is in the PX LDO power domain, which is on when the
1728 * AUDIO domain is on.
1729 */
1730 [BCM2835_PLLC] = REGISTER_PLL(
1731 .name = "pllc",
1732 .cm_ctrl_reg = CM_PLLC,
1733 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1734 .frac_reg = A2W_PLLC_FRAC,
1735 .ana_reg_base = A2W_PLLC_ANA0,
1736 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1737 .lock_mask = CM_LOCK_FLOCKC,
1738
1739 .ana = &bcm2835_ana_default,
1740
1741 .min_rate = 600000000u,
1742 .max_rate = 3000000000u,
1743 .max_fb_rate = BCM2835_MAX_FB_RATE),
1744 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1745 .name = "pllc_core0",
1746 .source_pll = "pllc",
1747 .cm_reg = CM_PLLC,
1748 .a2w_reg = A2W_PLLC_CORE0,
1749 .load_mask = CM_PLLC_LOADCORE0,
1750 .hold_mask = CM_PLLC_HOLDCORE0,
1751 .fixed_divider = 1,
1752 .flags = CLK_SET_RATE_PARENT),
1753 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1754 .name = "pllc_core1",
1755 .source_pll = "pllc",
1756 .cm_reg = CM_PLLC,
1757 .a2w_reg = A2W_PLLC_CORE1,
1758 .load_mask = CM_PLLC_LOADCORE1,
1759 .hold_mask = CM_PLLC_HOLDCORE1,
1760 .fixed_divider = 1,
1761 .flags = CLK_SET_RATE_PARENT),
1762 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1763 .name = "pllc_core2",
1764 .source_pll = "pllc",
1765 .cm_reg = CM_PLLC,
1766 .a2w_reg = A2W_PLLC_CORE2,
1767 .load_mask = CM_PLLC_LOADCORE2,
1768 .hold_mask = CM_PLLC_HOLDCORE2,
1769 .fixed_divider = 1,
1770 .flags = CLK_SET_RATE_PARENT),
1771 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1772 .name = "pllc_per",
1773 .source_pll = "pllc",
1774 .cm_reg = CM_PLLC,
1775 .a2w_reg = A2W_PLLC_PER,
1776 .load_mask = CM_PLLC_LOADPER,
1777 .hold_mask = CM_PLLC_HOLDPER,
1778 .fixed_divider = 1,
1779 .flags = CLK_SET_RATE_PARENT),
1780
1781 /*
1782 * PLLD is the display PLL, used to drive DSI display panels.
1783 *
1784 * It is in the PX LDO power domain, which is on when the
1785 * AUDIO domain is on.
1786 */
1787 [BCM2835_PLLD] = REGISTER_PLL(
1788 .name = "plld",
1789 .cm_ctrl_reg = CM_PLLD,
1790 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1791 .frac_reg = A2W_PLLD_FRAC,
1792 .ana_reg_base = A2W_PLLD_ANA0,
1793 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1794 .lock_mask = CM_LOCK_FLOCKD,
1795
1796 .ana = &bcm2835_ana_default,
1797
1798 .min_rate = 600000000u,
1799 .max_rate = 2400000000u,
1800 .max_fb_rate = BCM2835_MAX_FB_RATE),
1801 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1802 .name = "plld_core",
1803 .source_pll = "plld",
1804 .cm_reg = CM_PLLD,
1805 .a2w_reg = A2W_PLLD_CORE,
1806 .load_mask = CM_PLLD_LOADCORE,
1807 .hold_mask = CM_PLLD_HOLDCORE,
1808 .fixed_divider = 1,
1809 .flags = CLK_SET_RATE_PARENT),
1810 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1811 .name = "plld_per",
1812 .source_pll = "plld",
1813 .cm_reg = CM_PLLD,
1814 .a2w_reg = A2W_PLLD_PER,
1815 .load_mask = CM_PLLD_LOADPER,
1816 .hold_mask = CM_PLLD_HOLDPER,
1817 .fixed_divider = 1,
1818 .flags = CLK_SET_RATE_PARENT),
1819 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1820 .name = "plld_dsi0",
1821 .source_pll = "plld",
1822 .cm_reg = CM_PLLD,
1823 .a2w_reg = A2W_PLLD_DSI0,
1824 .load_mask = CM_PLLD_LOADDSI0,
1825 .hold_mask = CM_PLLD_HOLDDSI0,
1826 .fixed_divider = 1),
1827 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1828 .name = "plld_dsi1",
1829 .source_pll = "plld",
1830 .cm_reg = CM_PLLD,
1831 .a2w_reg = A2W_PLLD_DSI1,
1832 .load_mask = CM_PLLD_LOADDSI1,
1833 .hold_mask = CM_PLLD_HOLDDSI1,
1834 .fixed_divider = 1),
1835
1836 /*
1837 * PLLH is used to supply the pixel clock or the AUX clock for the
1838 * TV encoder.
1839 *
1840 * It is in the HDMI power domain.
1841 */
1842 [BCM2835_PLLH] = REGISTER_PLL(
1843 "pllh",
1844 .cm_ctrl_reg = CM_PLLH,
1845 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1846 .frac_reg = A2W_PLLH_FRAC,
1847 .ana_reg_base = A2W_PLLH_ANA0,
1848 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1849 .lock_mask = CM_LOCK_FLOCKH,
1850
1851 .ana = &bcm2835_ana_pllh,
1852
1853 .min_rate = 600000000u,
1854 .max_rate = 3000000000u,
1855 .max_fb_rate = BCM2835_MAX_FB_RATE),
1856 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1857 .name = "pllh_rcal",
1858 .source_pll = "pllh",
1859 .cm_reg = CM_PLLH,
1860 .a2w_reg = A2W_PLLH_RCAL,
1861 .load_mask = CM_PLLH_LOADRCAL,
1862 .hold_mask = 0,
1863 .fixed_divider = 10,
1864 .flags = CLK_SET_RATE_PARENT),
1865 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1866 .name = "pllh_aux",
1867 .source_pll = "pllh",
1868 .cm_reg = CM_PLLH,
1869 .a2w_reg = A2W_PLLH_AUX,
1870 .load_mask = CM_PLLH_LOADAUX,
1871 .hold_mask = 0,
1872 .fixed_divider = 1,
1873 .flags = CLK_SET_RATE_PARENT),
1874 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1875 .name = "pllh_pix",
1876 .source_pll = "pllh",
1877 .cm_reg = CM_PLLH,
1878 .a2w_reg = A2W_PLLH_PIX,
1879 .load_mask = CM_PLLH_LOADPIX,
1880 .hold_mask = 0,
1881 .fixed_divider = 10,
1882 .flags = CLK_SET_RATE_PARENT),
1883
1884 /* the clocks */
1885
1886 /* clocks with oscillator parent mux */
1887
1888 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1889 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1890 .name = "otp",
1891 .ctl_reg = CM_OTPCTL,
1892 .div_reg = CM_OTPDIV,
1893 .int_bits = 4,
1894 .frac_bits = 0,
1895 .tcnt_mux = 6),
1896 /*
1897 * Used for a 1Mhz clock for the system clocksource, and also used
1898 * bythe watchdog timer and the camera pulse generator.
1899 */
1900 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1901 .name = "timer",
1902 .ctl_reg = CM_TIMERCTL,
1903 .div_reg = CM_TIMERDIV,
1904 .int_bits = 6,
1905 .frac_bits = 12),
1906 /*
1907 * Clock for the temperature sensor.
1908 * Generally run at 2Mhz, max 5Mhz.
1909 */
1910 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1911 .name = "tsens",
1912 .ctl_reg = CM_TSENSCTL,
1913 .div_reg = CM_TSENSDIV,
1914 .int_bits = 5,
1915 .frac_bits = 0),
1916 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1917 .name = "tec",
1918 .ctl_reg = CM_TECCTL,
1919 .div_reg = CM_TECDIV,
1920 .int_bits = 6,
1921 .frac_bits = 0),
1922
1923 /* clocks with vpu parent mux */
1924 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1925 .name = "h264",
1926 .ctl_reg = CM_H264CTL,
1927 .div_reg = CM_H264DIV,
1928 .int_bits = 4,
1929 .frac_bits = 8,
1930 .tcnt_mux = 1),
1931 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1932 .name = "isp",
1933 .ctl_reg = CM_ISPCTL,
1934 .div_reg = CM_ISPDIV,
1935 .int_bits = 4,
1936 .frac_bits = 8,
1937 .tcnt_mux = 2),
1938
1939 /*
1940 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1941 * in the SDRAM controller can't be used.
1942 */
1943 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1944 .name = "sdram",
1945 .ctl_reg = CM_SDCCTL,
1946 .div_reg = CM_SDCDIV,
1947 .int_bits = 6,
1948 .frac_bits = 0,
1949 .tcnt_mux = 3),
1950 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1951 .name = "v3d",
1952 .ctl_reg = CM_V3DCTL,
1953 .div_reg = CM_V3DDIV,
1954 .int_bits = 4,
1955 .frac_bits = 8,
1956 .tcnt_mux = 4),
1957 /*
1958 * VPU clock. This doesn't have an enable bit, since it drives
1959 * the bus for everything else, and is special so it doesn't need
1960 * to be gated for rate changes. It is also known as "clk_audio"
1961 * in various hardware documentation.
1962 */
1963 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1964 .name = "vpu",
1965 .ctl_reg = CM_VPUCTL,
1966 .div_reg = CM_VPUDIV,
1967 .int_bits = 12,
1968 .frac_bits = 8,
1969 .flags = CLK_IS_CRITICAL,
1970 .is_vpu_clock = true,
1971 .tcnt_mux = 5),
1972
1973 /* clocks with per parent mux */
1974 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1975 .name = "aveo",
1976 .ctl_reg = CM_AVEOCTL,
1977 .div_reg = CM_AVEODIV,
1978 .int_bits = 4,
1979 .frac_bits = 0,
1980 .tcnt_mux = 38),
1981 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1982 .name = "cam0",
1983 .ctl_reg = CM_CAM0CTL,
1984 .div_reg = CM_CAM0DIV,
1985 .int_bits = 4,
1986 .frac_bits = 8,
1987 .tcnt_mux = 14),
1988 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1989 .name = "cam1",
1990 .ctl_reg = CM_CAM1CTL,
1991 .div_reg = CM_CAM1DIV,
1992 .int_bits = 4,
1993 .frac_bits = 8,
1994 .tcnt_mux = 15),
1995 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1996 .name = "dft",
1997 .ctl_reg = CM_DFTCTL,
1998 .div_reg = CM_DFTDIV,
1999 .int_bits = 5,
2000 .frac_bits = 0),
2001 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
2002 .name = "dpi",
2003 .ctl_reg = CM_DPICTL,
2004 .div_reg = CM_DPIDIV,
2005 .int_bits = 4,
2006 .frac_bits = 8,
2007 .tcnt_mux = 17),
2008
2009 /* Arasan EMMC clock */
2010 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
2011 .name = "emmc",
2012 .ctl_reg = CM_EMMCCTL,
2013 .div_reg = CM_EMMCDIV,
2014 .int_bits = 4,
2015 .frac_bits = 8,
2016 .tcnt_mux = 39),
2017
2018 /* General purpose (GPIO) clocks */
2019 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
2020 .name = "gp0",
2021 .ctl_reg = CM_GP0CTL,
2022 .div_reg = CM_GP0DIV,
2023 .int_bits = 12,
2024 .frac_bits = 12,
2025 .is_mash_clock = true,
2026 .tcnt_mux = 20),
2027 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
2028 .name = "gp1",
2029 .ctl_reg = CM_GP1CTL,
2030 .div_reg = CM_GP1DIV,
2031 .int_bits = 12,
2032 .frac_bits = 12,
2033 .flags = CLK_IS_CRITICAL,
2034 .is_mash_clock = true,
2035 .tcnt_mux = 21),
2036 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
2037 .name = "gp2",
2038 .ctl_reg = CM_GP2CTL,
2039 .div_reg = CM_GP2DIV,
2040 .int_bits = 12,
2041 .frac_bits = 12,
2042 .flags = CLK_IS_CRITICAL),
2043
2044 /* HDMI state machine */
2045 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
2046 .name = "hsm",
2047 .ctl_reg = CM_HSMCTL,
2048 .div_reg = CM_HSMDIV,
2049 .int_bits = 4,
2050 .frac_bits = 8,
2051 .tcnt_mux = 22),
2052 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
2053 .name = "pcm",
2054 .ctl_reg = CM_PCMCTL,
2055 .div_reg = CM_PCMDIV,
2056 .int_bits = 12,
2057 .frac_bits = 12,
2058 .is_mash_clock = true,
2059 .low_jitter = true,
2060 .tcnt_mux = 23),
2061 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
2062 .name = "pwm",
2063 .ctl_reg = CM_PWMCTL,
2064 .div_reg = CM_PWMDIV,
2065 .int_bits = 12,
2066 .frac_bits = 12,
2067 .is_mash_clock = true,
2068 .tcnt_mux = 24),
2069 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
2070 .name = "slim",
2071 .ctl_reg = CM_SLIMCTL,
2072 .div_reg = CM_SLIMDIV,
2073 .int_bits = 12,
2074 .frac_bits = 12,
2075 .is_mash_clock = true,
2076 .tcnt_mux = 25),
2077 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
2078 .name = "smi",
2079 .ctl_reg = CM_SMICTL,
2080 .div_reg = CM_SMIDIV,
2081 .int_bits = 4,
2082 .frac_bits = 8,
2083 .tcnt_mux = 27),
2084 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
2085 .name = "uart",
2086 .ctl_reg = CM_UARTCTL,
2087 .div_reg = CM_UARTDIV,
2088 .int_bits = 10,
2089 .frac_bits = 12,
2090 .tcnt_mux = 28),
2091
2092 /* TV encoder clock. Only operating frequency is 108Mhz. */
2093 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
2094 .name = "vec",
2095 .ctl_reg = CM_VECCTL,
2096 .div_reg = CM_VECDIV,
2097 .int_bits = 4,
2098 .frac_bits = 0,
2099 /*
2100 * Allow rate change propagation only on PLLH_AUX which is
2101 * assigned index 7 in the parent array.
2102 */
2103 .set_rate_parent = BIT(7),
2104 .tcnt_mux = 29),
2105
2106 /* dsi clocks */
2107 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2108 .name = "dsi0e",
2109 .ctl_reg = CM_DSI0ECTL,
2110 .div_reg = CM_DSI0EDIV,
2111 .int_bits = 4,
2112 .frac_bits = 8,
2113 .tcnt_mux = 18),
2114 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2115 .name = "dsi1e",
2116 .ctl_reg = CM_DSI1ECTL,
2117 .div_reg = CM_DSI1EDIV,
2118 .int_bits = 4,
2119 .frac_bits = 8,
2120 .tcnt_mux = 19),
2121 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2122 .name = "dsi0p",
2123 .ctl_reg = CM_DSI0PCTL,
2124 .div_reg = CM_DSI0PDIV,
2125 .int_bits = 0,
2126 .frac_bits = 0,
2127 .tcnt_mux = 12),
2128 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2129 .name = "dsi1p",
2130 .ctl_reg = CM_DSI1PCTL,
2131 .div_reg = CM_DSI1PDIV,
2132 .int_bits = 0,
2133 .frac_bits = 0,
2134 .tcnt_mux = 13),
2135
2136 /* the gates */
2137
2138 /*
2139 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2140 * you have the debug bit set in the power manager, which we
2141 * don't bother exposing) are individual gates off of the
2142 * non-stop vpu clock.
2143 */
2144 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2145 .name = "peri_image",
2146 .parent = "vpu",
2147 .ctl_reg = CM_PERIICTL),
2148};
2149
2150/*
2151 * Permanently take a reference on the parent of the SDRAM clock.
2152 *
2153 * While the SDRAM is being driven by its dedicated PLL most of the
2154 * time, there is a little loop running in the firmware that
2155 * periodically switches the SDRAM to using our CM clock to do PVT
2156 * recalibration, with the assumption that the previously configured
2157 * SDRAM parent is still enabled and running.
2158 */
2159static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2160{
2161 struct clk *parent = clk_get_parent(sdc);
2162
2163 if (IS_ERR(parent))
2164 return PTR_ERR(parent);
2165
2166 return clk_prepare_enable(parent);
2167}
2168
2169static int bcm2835_clk_probe(struct platform_device *pdev)
2170{
2171 struct device *dev = &pdev->dev;
2172 struct clk_hw **hws;
2173 struct bcm2835_cprman *cprman;
2174 struct resource *res;
2175 const struct bcm2835_clk_desc *desc;
2176 const size_t asize = ARRAY_SIZE(clk_desc_array);
2177 size_t i;
2178 int ret;
2179
2180 cprman = devm_kzalloc(dev, sizeof(*cprman) +
2181 sizeof(*cprman->onecell.hws) * asize,
2182 GFP_KERNEL);
2183 if (!cprman)
2184 return -ENOMEM;
2185
2186 spin_lock_init(&cprman->regs_lock);
2187 cprman->dev = dev;
2188 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2189 cprman->regs = devm_ioremap_resource(dev, res);
2190 if (IS_ERR(cprman->regs))
2191 return PTR_ERR(cprman->regs);
2192
2193 memcpy(cprman->real_parent_names, cprman_parent_names,
2194 sizeof(cprman_parent_names));
2195 of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2196 ARRAY_SIZE(cprman_parent_names));
2197
2198 /*
2199 * Make sure the external oscillator has been registered.
2200 *
2201 * The other (DSI) clocks are not present on older device
2202 * trees, which we still need to support for backwards
2203 * compatibility.
2204 */
2205 if (!cprman->real_parent_names[0])
2206 return -ENODEV;
2207
2208 platform_set_drvdata(pdev, cprman);
2209
2210 cprman->onecell.num = asize;
2211 hws = cprman->onecell.hws;
2212
2213 for (i = 0; i < asize; i++) {
2214 desc = &clk_desc_array[i];
2215 if (desc->clk_register && desc->data)
2216 hws[i] = desc->clk_register(cprman, desc->data);
2217 }
2218
2219 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2220 if (ret)
2221 return ret;
2222
2223 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2224 &cprman->onecell);
2225}
2226
2227static const struct of_device_id bcm2835_clk_of_match[] = {
2228 { .compatible = "brcm,bcm2835-cprman", },
2229 {}
2230};
2231MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2232
2233static struct platform_driver bcm2835_clk_driver = {
2234 .driver = {
2235 .name = "bcm2835-clk",
2236 .of_match_table = bcm2835_clk_of_match,
2237 },
2238 .probe = bcm2835_clk_probe,
2239};
2240
2241builtin_platform_driver(bcm2835_clk_driver);
2242
2243MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2244MODULE_DESCRIPTION("BCM2835 clock driver");
2245MODULE_LICENSE("GPL v2");