blob: b37808c9b6a45768b849308eb8e4add7d4294f6f [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/cpufreq_times.h>
23#include <linux/delay.h>
24#include <linux/device.h>
25#include <linux/init.h>
26#include <linux/kernel_stat.h>
27#include <linux/module.h>
28#include <linux/mutex.h>
29#include <linux/slab.h>
30#include <linux/suspend.h>
31#include <linux/syscore_ops.h>
32#include <linux/tick.h>
33#include <trace/events/power.h>
34
35static LIST_HEAD(cpufreq_policy_list);
36
37static inline bool policy_is_inactive(struct cpufreq_policy *policy)
38{
39 return cpumask_empty(policy->cpus);
40}
41
42/* Macros to iterate over CPU policies */
43#define for_each_suitable_policy(__policy, __active) \
44 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
45 if ((__active) == !policy_is_inactive(__policy))
46
47#define for_each_active_policy(__policy) \
48 for_each_suitable_policy(__policy, true)
49#define for_each_inactive_policy(__policy) \
50 for_each_suitable_policy(__policy, false)
51
52#define for_each_policy(__policy) \
53 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
54
55/* Iterate over governors */
56static LIST_HEAD(cpufreq_governor_list);
57#define for_each_governor(__governor) \
58 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
59
60/**
61 * The "cpufreq driver" - the arch- or hardware-dependent low
62 * level driver of CPUFreq support, and its spinlock. This lock
63 * also protects the cpufreq_cpu_data array.
64 */
65static struct cpufreq_driver *cpufreq_driver;
66static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
67static DEFINE_RWLOCK(cpufreq_driver_lock);
68
69/* Flag to suspend/resume CPUFreq governors */
70static bool cpufreq_suspended;
71
72static inline bool has_target(void)
73{
74 return cpufreq_driver->target_index || cpufreq_driver->target;
75}
76
77/* internal prototypes */
78static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
79static int cpufreq_init_governor(struct cpufreq_policy *policy);
80static void cpufreq_exit_governor(struct cpufreq_policy *policy);
81static int cpufreq_start_governor(struct cpufreq_policy *policy);
82static void cpufreq_stop_governor(struct cpufreq_policy *policy);
83static void cpufreq_governor_limits(struct cpufreq_policy *policy);
84
85/**
86 * Two notifier lists: the "policy" list is involved in the
87 * validation process for a new CPU frequency policy; the
88 * "transition" list for kernel code that needs to handle
89 * changes to devices when the CPU clock speed changes.
90 * The mutex locks both lists.
91 */
92static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
93static struct srcu_notifier_head cpufreq_transition_notifier_list;
94
95static bool init_cpufreq_transition_notifier_list_called;
96static int __init init_cpufreq_transition_notifier_list(void)
97{
98 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
99 init_cpufreq_transition_notifier_list_called = true;
100 return 0;
101}
102pure_initcall(init_cpufreq_transition_notifier_list);
103
104static int off __read_mostly;
105static int cpufreq_disabled(void)
106{
107 return off;
108}
109void disable_cpufreq(void)
110{
111 off = 1;
112}
113static DEFINE_MUTEX(cpufreq_governor_mutex);
114
115bool have_governor_per_policy(void)
116{
117 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
118}
119EXPORT_SYMBOL_GPL(have_governor_per_policy);
120
121struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
122{
123 if (have_governor_per_policy())
124 return &policy->kobj;
125 else
126 return cpufreq_global_kobject;
127}
128EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
129
130static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
131{
132 u64 idle_time;
133 u64 cur_wall_time;
134 u64 busy_time;
135
136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
143 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
144
145 idle_time = cur_wall_time - busy_time;
146 if (wall)
147 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
148
149 return div_u64(idle_time, NSEC_PER_USEC);
150}
151
152u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
153{
154 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
155
156 if (idle_time == -1ULL)
157 return get_cpu_idle_time_jiffy(cpu, wall);
158 else if (!io_busy)
159 idle_time += get_cpu_iowait_time_us(cpu, wall);
160
161 return idle_time;
162}
163EXPORT_SYMBOL_GPL(get_cpu_idle_time);
164
165/*
166 * This is a generic cpufreq init() routine which can be used by cpufreq
167 * drivers of SMP systems. It will do following:
168 * - validate & show freq table passed
169 * - set policies transition latency
170 * - policy->cpus with all possible CPUs
171 */
172int cpufreq_generic_init(struct cpufreq_policy *policy,
173 struct cpufreq_frequency_table *table,
174 unsigned int transition_latency)
175{
176 int ret;
177
178 ret = cpufreq_table_validate_and_show(policy, table);
179 if (ret) {
180 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
181 return ret;
182 }
183
184 policy->cpuinfo.transition_latency = transition_latency;
185
186 /*
187 * The driver only supports the SMP configuration where all processors
188 * share the clock and voltage and clock.
189 */
190 cpumask_setall(policy->cpus);
191
192 return 0;
193}
194EXPORT_SYMBOL_GPL(cpufreq_generic_init);
195
196struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
197{
198 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
199
200 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
201}
202EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
203
204unsigned int cpufreq_generic_get(unsigned int cpu)
205{
206 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
207
208 if (!policy || IS_ERR(policy->clk)) {
209 pr_err("%s: No %s associated to cpu: %d\n",
210 __func__, policy ? "clk" : "policy", cpu);
211 return 0;
212 }
213
214 return clk_get_rate(policy->clk) / 1000;
215}
216EXPORT_SYMBOL_GPL(cpufreq_generic_get);
217
218/**
219 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
220 *
221 * @cpu: cpu to find policy for.
222 *
223 * This returns policy for 'cpu', returns NULL if it doesn't exist.
224 * It also increments the kobject reference count to mark it busy and so would
225 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
226 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
227 * freed as that depends on the kobj count.
228 *
229 * Return: A valid policy on success, otherwise NULL on failure.
230 */
231struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
232{
233 struct cpufreq_policy *policy = NULL;
234 unsigned long flags;
235
236 if (WARN_ON(cpu >= nr_cpu_ids))
237 return NULL;
238
239 /* get the cpufreq driver */
240 read_lock_irqsave(&cpufreq_driver_lock, flags);
241
242 if (cpufreq_driver) {
243 /* get the CPU */
244 policy = cpufreq_cpu_get_raw(cpu);
245 if (policy)
246 kobject_get(&policy->kobj);
247 }
248
249 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
250
251 return policy;
252}
253EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
254
255/**
256 * cpufreq_cpu_put: Decrements the usage count of a policy
257 *
258 * @policy: policy earlier returned by cpufreq_cpu_get().
259 *
260 * This decrements the kobject reference count incremented earlier by calling
261 * cpufreq_cpu_get().
262 */
263void cpufreq_cpu_put(struct cpufreq_policy *policy)
264{
265 kobject_put(&policy->kobj);
266}
267EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
268
269/*********************************************************************
270 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
271 *********************************************************************/
272
273/**
274 * adjust_jiffies - adjust the system "loops_per_jiffy"
275 *
276 * This function alters the system "loops_per_jiffy" for the clock
277 * speed change. Note that loops_per_jiffy cannot be updated on SMP
278 * systems as each CPU might be scaled differently. So, use the arch
279 * per-CPU loops_per_jiffy value wherever possible.
280 */
281static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
282{
283#ifndef CONFIG_SMP
284 static unsigned long l_p_j_ref;
285 static unsigned int l_p_j_ref_freq;
286
287 if (ci->flags & CPUFREQ_CONST_LOOPS)
288 return;
289
290 if (!l_p_j_ref_freq) {
291 l_p_j_ref = loops_per_jiffy;
292 l_p_j_ref_freq = ci->old;
293 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
294 l_p_j_ref, l_p_j_ref_freq);
295 }
296 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
297 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
298 ci->new);
299 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
300 loops_per_jiffy, ci->new);
301 }
302#endif
303}
304
305static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
306 struct cpufreq_freqs *freqs, unsigned int state)
307{
308 BUG_ON(irqs_disabled());
309
310 if (cpufreq_disabled())
311 return;
312
313 freqs->flags = cpufreq_driver->flags;
314 pr_debug("notification %u of frequency transition to %u kHz\n",
315 state, freqs->new);
316
317 switch (state) {
318
319 case CPUFREQ_PRECHANGE:
320 /* detect if the driver reported a value as "old frequency"
321 * which is not equal to what the cpufreq core thinks is
322 * "old frequency".
323 */
324 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
325 if ((policy) && (policy->cpu == freqs->cpu) &&
326 (policy->cur) && (policy->cur != freqs->old)) {
327 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
328 freqs->old, policy->cur);
329 freqs->old = policy->cur;
330 }
331 }
332 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
333 CPUFREQ_PRECHANGE, freqs);
334 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
335 break;
336
337 case CPUFREQ_POSTCHANGE:
338 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
339 pr_debug("FREQ: %lu - CPU: %lu\n",
340 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
341 trace_cpu_frequency(freqs->new, freqs->cpu);
342 cpufreq_stats_record_transition(policy, freqs->new);
343 cpufreq_times_record_transition(freqs);
344 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
345 CPUFREQ_POSTCHANGE, freqs);
346 if (likely(policy) && likely(policy->cpu == freqs->cpu))
347 policy->cur = freqs->new;
348 break;
349 }
350}
351
352/**
353 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
354 * on frequency transition.
355 *
356 * This function calls the transition notifiers and the "adjust_jiffies"
357 * function. It is called twice on all CPU frequency changes that have
358 * external effects.
359 */
360static void cpufreq_notify_transition(struct cpufreq_policy *policy,
361 struct cpufreq_freqs *freqs, unsigned int state)
362{
363 for_each_cpu(freqs->cpu, policy->cpus)
364 __cpufreq_notify_transition(policy, freqs, state);
365}
366
367/* Do post notifications when there are chances that transition has failed */
368static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
369 struct cpufreq_freqs *freqs, int transition_failed)
370{
371 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
372 if (!transition_failed)
373 return;
374
375 swap(freqs->old, freqs->new);
376 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
377 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
378}
379
380void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
381 struct cpufreq_freqs *freqs)
382{
383
384 /*
385 * Catch double invocations of _begin() which lead to self-deadlock.
386 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
387 * doesn't invoke _begin() on their behalf, and hence the chances of
388 * double invocations are very low. Moreover, there are scenarios
389 * where these checks can emit false-positive warnings in these
390 * drivers; so we avoid that by skipping them altogether.
391 */
392 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
393 && current == policy->transition_task);
394
395wait:
396 wait_event(policy->transition_wait, !policy->transition_ongoing);
397
398 spin_lock(&policy->transition_lock);
399
400 if (unlikely(policy->transition_ongoing)) {
401 spin_unlock(&policy->transition_lock);
402 goto wait;
403 }
404
405 policy->transition_ongoing = true;
406 policy->transition_task = current;
407
408 spin_unlock(&policy->transition_lock);
409
410 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
411}
412EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
413
414void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
415 struct cpufreq_freqs *freqs, int transition_failed)
416{
417 if (unlikely(WARN_ON(!policy->transition_ongoing)))
418 return;
419
420 cpufreq_notify_post_transition(policy, freqs, transition_failed);
421
422 policy->transition_ongoing = false;
423 policy->transition_task = NULL;
424
425 wake_up(&policy->transition_wait);
426}
427EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
428
429/*
430 * Fast frequency switching status count. Positive means "enabled", negative
431 * means "disabled" and 0 means "not decided yet".
432 */
433static int cpufreq_fast_switch_count;
434static DEFINE_MUTEX(cpufreq_fast_switch_lock);
435
436static void cpufreq_list_transition_notifiers(void)
437{
438 struct notifier_block *nb;
439
440 pr_info("Registered transition notifiers:\n");
441
442 mutex_lock(&cpufreq_transition_notifier_list.mutex);
443
444 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
445 pr_info("%pF\n", nb->notifier_call);
446
447 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
448}
449
450/**
451 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
452 * @policy: cpufreq policy to enable fast frequency switching for.
453 *
454 * Try to enable fast frequency switching for @policy.
455 *
456 * The attempt will fail if there is at least one transition notifier registered
457 * at this point, as fast frequency switching is quite fundamentally at odds
458 * with transition notifiers. Thus if successful, it will make registration of
459 * transition notifiers fail going forward.
460 */
461void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
462{
463 lockdep_assert_held(&policy->rwsem);
464
465 if (!policy->fast_switch_possible)
466 return;
467
468 mutex_lock(&cpufreq_fast_switch_lock);
469 if (cpufreq_fast_switch_count >= 0) {
470 cpufreq_fast_switch_count++;
471 policy->fast_switch_enabled = true;
472 } else {
473 pr_warn("CPU%u: Fast frequency switching not enabled\n",
474 policy->cpu);
475 cpufreq_list_transition_notifiers();
476 }
477 mutex_unlock(&cpufreq_fast_switch_lock);
478}
479EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
480
481/**
482 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
483 * @policy: cpufreq policy to disable fast frequency switching for.
484 */
485void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
486{
487 mutex_lock(&cpufreq_fast_switch_lock);
488 if (policy->fast_switch_enabled) {
489 policy->fast_switch_enabled = false;
490 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
491 cpufreq_fast_switch_count--;
492 }
493 mutex_unlock(&cpufreq_fast_switch_lock);
494}
495EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
496
497/**
498 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
499 * one.
500 * @target_freq: target frequency to resolve.
501 *
502 * The target to driver frequency mapping is cached in the policy.
503 *
504 * Return: Lowest driver-supported frequency greater than or equal to the
505 * given target_freq, subject to policy (min/max) and driver limitations.
506 */
507unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
508 unsigned int target_freq)
509{
510 target_freq = clamp_val(target_freq, policy->min, policy->max);
511 policy->cached_target_freq = target_freq;
512
513 if (cpufreq_driver->target_index) {
514 int idx;
515
516 idx = cpufreq_frequency_table_target(policy, target_freq,
517 CPUFREQ_RELATION_L);
518 policy->cached_resolved_idx = idx;
519 return policy->freq_table[idx].frequency;
520 }
521
522 if (cpufreq_driver->resolve_freq)
523 return cpufreq_driver->resolve_freq(policy, target_freq);
524
525 return target_freq;
526}
527EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
528
529unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
530{
531 unsigned int latency;
532
533 if (policy->transition_delay_us)
534 return policy->transition_delay_us;
535
536 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
537 if (latency) {
538 /*
539 * For platforms that can change the frequency very fast (< 10
540 * us), the above formula gives a decent transition delay. But
541 * for platforms where transition_latency is in milliseconds, it
542 * ends up giving unrealistic values.
543 *
544 * Cap the default transition delay to 10 ms, which seems to be
545 * a reasonable amount of time after which we should reevaluate
546 * the frequency.
547 */
548 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
549 }
550
551 return LATENCY_MULTIPLIER;
552}
553EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
554
555/*********************************************************************
556 * SYSFS INTERFACE *
557 *********************************************************************/
558static ssize_t show_boost(struct kobject *kobj,
559 struct kobj_attribute *attr, char *buf)
560{
561 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
562}
563
564static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
565 const char *buf, size_t count)
566{
567 int ret, enable;
568
569 ret = sscanf(buf, "%d", &enable);
570 if (ret != 1 || enable < 0 || enable > 1)
571 return -EINVAL;
572
573 if (cpufreq_boost_trigger_state(enable)) {
574 pr_err("%s: Cannot %s BOOST!\n",
575 __func__, enable ? "enable" : "disable");
576 return -EINVAL;
577 }
578
579 pr_debug("%s: cpufreq BOOST %s\n",
580 __func__, enable ? "enabled" : "disabled");
581
582 return count;
583}
584define_one_global_rw(boost);
585
586static struct cpufreq_governor *find_governor(const char *str_governor)
587{
588 struct cpufreq_governor *t;
589
590 for_each_governor(t)
591 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
592 return t;
593
594 return NULL;
595}
596
597/**
598 * cpufreq_parse_governor - parse a governor string
599 */
600static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
601 struct cpufreq_governor **governor)
602{
603 int err = -EINVAL;
604
605 if (cpufreq_driver->setpolicy) {
606 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
607 *policy = CPUFREQ_POLICY_PERFORMANCE;
608 err = 0;
609 } else if (!strncasecmp(str_governor, "powersave",
610 CPUFREQ_NAME_LEN)) {
611 *policy = CPUFREQ_POLICY_POWERSAVE;
612 err = 0;
613 }
614 } else {
615 struct cpufreq_governor *t;
616
617 mutex_lock(&cpufreq_governor_mutex);
618
619 t = find_governor(str_governor);
620
621 if (t == NULL) {
622 int ret;
623
624 mutex_unlock(&cpufreq_governor_mutex);
625 ret = request_module("cpufreq_%s", str_governor);
626 mutex_lock(&cpufreq_governor_mutex);
627
628 if (ret == 0)
629 t = find_governor(str_governor);
630 }
631
632 if (t != NULL) {
633 *governor = t;
634 err = 0;
635 }
636
637 mutex_unlock(&cpufreq_governor_mutex);
638 }
639 return err;
640}
641
642/**
643 * cpufreq_per_cpu_attr_read() / show_##file_name() -
644 * print out cpufreq information
645 *
646 * Write out information from cpufreq_driver->policy[cpu]; object must be
647 * "unsigned int".
648 */
649
650#define show_one(file_name, object) \
651static ssize_t show_##file_name \
652(struct cpufreq_policy *policy, char *buf) \
653{ \
654 return sprintf(buf, "%u\n", policy->object); \
655}
656
657show_one(cpuinfo_min_freq, cpuinfo.min_freq);
658show_one(cpuinfo_max_freq, cpuinfo.max_freq);
659show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
660show_one(scaling_min_freq, min);
661show_one(scaling_max_freq, max);
662
663__weak unsigned int arch_freq_get_on_cpu(int cpu)
664{
665 return 0;
666}
667
668static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
669{
670 ssize_t ret;
671 unsigned int freq;
672
673 freq = arch_freq_get_on_cpu(policy->cpu);
674 if (freq)
675 ret = sprintf(buf, "%u\n", freq);
676 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
677 cpufreq_driver->get)
678 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
679 else
680 ret = sprintf(buf, "%u\n", policy->cur);
681 return ret;
682}
683
684static int cpufreq_set_policy(struct cpufreq_policy *policy,
685 struct cpufreq_policy *new_policy);
686
687/**
688 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
689 */
690#define store_one(file_name, object) \
691static ssize_t store_##file_name \
692(struct cpufreq_policy *policy, const char *buf, size_t count) \
693{ \
694 int ret, temp; \
695 struct cpufreq_policy new_policy; \
696 \
697 memcpy(&new_policy, policy, sizeof(*policy)); \
698 new_policy.min = policy->user_policy.min; \
699 new_policy.max = policy->user_policy.max; \
700 \
701 ret = sscanf(buf, "%u", &new_policy.object); \
702 if (ret != 1) \
703 return -EINVAL; \
704 \
705 temp = new_policy.object; \
706 ret = cpufreq_set_policy(policy, &new_policy); \
707 if (!ret) \
708 policy->user_policy.object = temp; \
709 \
710 return ret ? ret : count; \
711}
712
713store_one(scaling_min_freq, min);
714store_one(scaling_max_freq, max);
715
716/**
717 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
718 */
719static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
720 char *buf)
721{
722 unsigned int cur_freq = __cpufreq_get(policy);
723
724 if (cur_freq)
725 return sprintf(buf, "%u\n", cur_freq);
726
727 return sprintf(buf, "<unknown>\n");
728}
729
730/**
731 * show_scaling_governor - show the current policy for the specified CPU
732 */
733static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
734{
735 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
736 return sprintf(buf, "powersave\n");
737 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
738 return sprintf(buf, "performance\n");
739 else if (policy->governor)
740 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
741 policy->governor->name);
742 return -EINVAL;
743}
744
745/**
746 * store_scaling_governor - store policy for the specified CPU
747 */
748static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
749 const char *buf, size_t count)
750{
751 int ret;
752 char str_governor[16];
753 struct cpufreq_policy new_policy;
754
755 memcpy(&new_policy, policy, sizeof(*policy));
756
757 ret = sscanf(buf, "%15s", str_governor);
758 if (ret != 1)
759 return -EINVAL;
760
761 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
762 &new_policy.governor))
763 return -EINVAL;
764
765 ret = cpufreq_set_policy(policy, &new_policy);
766 return ret ? ret : count;
767}
768
769/**
770 * show_scaling_driver - show the cpufreq driver currently loaded
771 */
772static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
773{
774 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
775}
776
777/**
778 * show_scaling_available_governors - show the available CPUfreq governors
779 */
780static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
781 char *buf)
782{
783 ssize_t i = 0;
784 struct cpufreq_governor *t;
785
786 if (!has_target()) {
787 i += sprintf(buf, "performance powersave");
788 goto out;
789 }
790
791 for_each_governor(t) {
792 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
793 - (CPUFREQ_NAME_LEN + 2)))
794 goto out;
795 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
796 }
797out:
798 i += sprintf(&buf[i], "\n");
799 return i;
800}
801
802ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
803{
804 ssize_t i = 0;
805 unsigned int cpu;
806
807 for_each_cpu(cpu, mask) {
808 if (i)
809 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
810 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
811 if (i >= (PAGE_SIZE - 5))
812 break;
813 }
814 i += sprintf(&buf[i], "\n");
815 return i;
816}
817EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
818
819/**
820 * show_related_cpus - show the CPUs affected by each transition even if
821 * hw coordination is in use
822 */
823static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
824{
825 return cpufreq_show_cpus(policy->related_cpus, buf);
826}
827
828/**
829 * show_affected_cpus - show the CPUs affected by each transition
830 */
831static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
832{
833 return cpufreq_show_cpus(policy->cpus, buf);
834}
835
836static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
837 const char *buf, size_t count)
838{
839 unsigned int freq = 0;
840 unsigned int ret;
841
842 if (!policy->governor || !policy->governor->store_setspeed)
843 return -EINVAL;
844
845 ret = sscanf(buf, "%u", &freq);
846 if (ret != 1)
847 return -EINVAL;
848
849 policy->governor->store_setspeed(policy, freq);
850
851 return count;
852}
853
854static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
855{
856 if (!policy->governor || !policy->governor->show_setspeed)
857 return sprintf(buf, "<unsupported>\n");
858
859 return policy->governor->show_setspeed(policy, buf);
860}
861
862/**
863 * show_bios_limit - show the current cpufreq HW/BIOS limitation
864 */
865static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
866{
867 unsigned int limit;
868 int ret;
869 if (cpufreq_driver->bios_limit) {
870 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
871 if (!ret)
872 return sprintf(buf, "%u\n", limit);
873 }
874 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
875}
876
877cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
878cpufreq_freq_attr_ro(cpuinfo_min_freq);
879cpufreq_freq_attr_ro(cpuinfo_max_freq);
880cpufreq_freq_attr_ro(cpuinfo_transition_latency);
881cpufreq_freq_attr_ro(scaling_available_governors);
882cpufreq_freq_attr_ro(scaling_driver);
883cpufreq_freq_attr_ro(scaling_cur_freq);
884cpufreq_freq_attr_ro(bios_limit);
885cpufreq_freq_attr_ro(related_cpus);
886cpufreq_freq_attr_ro(affected_cpus);
887cpufreq_freq_attr_rw(scaling_min_freq);
888cpufreq_freq_attr_rw(scaling_max_freq);
889cpufreq_freq_attr_rw(scaling_governor);
890cpufreq_freq_attr_rw(scaling_setspeed);
891
892static struct attribute *default_attrs[] = {
893 &cpuinfo_min_freq.attr,
894 &cpuinfo_max_freq.attr,
895 &cpuinfo_transition_latency.attr,
896 &scaling_min_freq.attr,
897 &scaling_max_freq.attr,
898 &affected_cpus.attr,
899 &related_cpus.attr,
900 &scaling_governor.attr,
901 &scaling_driver.attr,
902 &scaling_available_governors.attr,
903 &scaling_setspeed.attr,
904 NULL
905};
906
907#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
908#define to_attr(a) container_of(a, struct freq_attr, attr)
909
910static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
911{
912 struct cpufreq_policy *policy = to_policy(kobj);
913 struct freq_attr *fattr = to_attr(attr);
914 ssize_t ret;
915
916 if (!fattr->show)
917 return -EIO;
918
919 down_read(&policy->rwsem);
920 ret = fattr->show(policy, buf);
921 up_read(&policy->rwsem);
922
923 return ret;
924}
925
926static ssize_t store(struct kobject *kobj, struct attribute *attr,
927 const char *buf, size_t count)
928{
929 struct cpufreq_policy *policy = to_policy(kobj);
930 struct freq_attr *fattr = to_attr(attr);
931 ssize_t ret = -EINVAL;
932
933 if (!fattr->store)
934 return -EIO;
935
936 cpus_read_lock();
937
938 if (cpu_online(policy->cpu)) {
939 down_write(&policy->rwsem);
940 ret = fattr->store(policy, buf, count);
941 up_write(&policy->rwsem);
942 }
943
944 cpus_read_unlock();
945
946 return ret;
947}
948
949static void cpufreq_sysfs_release(struct kobject *kobj)
950{
951 struct cpufreq_policy *policy = to_policy(kobj);
952 pr_debug("last reference is dropped\n");
953 complete(&policy->kobj_unregister);
954}
955
956static const struct sysfs_ops sysfs_ops = {
957 .show = show,
958 .store = store,
959};
960
961static struct kobj_type ktype_cpufreq = {
962 .sysfs_ops = &sysfs_ops,
963 .default_attrs = default_attrs,
964 .release = cpufreq_sysfs_release,
965};
966
967static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
968{
969 struct device *dev = get_cpu_device(cpu);
970
971 if (!dev)
972 return;
973
974 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
975 return;
976
977 dev_dbg(dev, "%s: Adding symlink\n", __func__);
978 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
979 dev_err(dev, "cpufreq symlink creation failed\n");
980}
981
982static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
983 struct device *dev)
984{
985 dev_dbg(dev, "%s: Removing symlink\n", __func__);
986 sysfs_remove_link(&dev->kobj, "cpufreq");
987}
988
989static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
990{
991 struct freq_attr **drv_attr;
992 int ret = 0;
993
994 /* set up files for this cpu device */
995 drv_attr = cpufreq_driver->attr;
996 while (drv_attr && *drv_attr) {
997 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
998 if (ret)
999 return ret;
1000 drv_attr++;
1001 }
1002 if (cpufreq_driver->get) {
1003 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1004 if (ret)
1005 return ret;
1006 }
1007
1008 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1009 if (ret)
1010 return ret;
1011
1012 if (cpufreq_driver->bios_limit) {
1013 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1014 if (ret)
1015 return ret;
1016 }
1017
1018 return 0;
1019}
1020
1021__weak struct cpufreq_governor *cpufreq_default_governor(void)
1022{
1023 return NULL;
1024}
1025
1026static int cpufreq_init_policy(struct cpufreq_policy *policy)
1027{
1028 struct cpufreq_governor *gov = NULL;
1029 struct cpufreq_policy new_policy;
1030
1031 memcpy(&new_policy, policy, sizeof(*policy));
1032
1033 /* Update governor of new_policy to the governor used before hotplug */
1034 gov = find_governor(policy->last_governor);
1035 if (gov) {
1036 pr_debug("Restoring governor %s for cpu %d\n",
1037 policy->governor->name, policy->cpu);
1038 } else {
1039 gov = cpufreq_default_governor();
1040 if (!gov)
1041 return -ENODATA;
1042 }
1043
1044 new_policy.governor = gov;
1045
1046 /* Use the default policy if there is no last_policy. */
1047 if (cpufreq_driver->setpolicy) {
1048 if (policy->last_policy)
1049 new_policy.policy = policy->last_policy;
1050 else
1051 cpufreq_parse_governor(gov->name, &new_policy.policy,
1052 NULL);
1053 }
1054 /* set default policy */
1055 return cpufreq_set_policy(policy, &new_policy);
1056}
1057
1058static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1059{
1060 int ret = 0;
1061
1062 /* Has this CPU been taken care of already? */
1063 if (cpumask_test_cpu(cpu, policy->cpus))
1064 return 0;
1065
1066 down_write(&policy->rwsem);
1067 if (has_target())
1068 cpufreq_stop_governor(policy);
1069
1070 cpumask_set_cpu(cpu, policy->cpus);
1071
1072 if (has_target()) {
1073 ret = cpufreq_start_governor(policy);
1074 if (ret)
1075 pr_err("%s: Failed to start governor\n", __func__);
1076 }
1077 up_write(&policy->rwsem);
1078 return ret;
1079}
1080
1081static void handle_update(struct work_struct *work)
1082{
1083 struct cpufreq_policy *policy =
1084 container_of(work, struct cpufreq_policy, update);
1085 unsigned int cpu = policy->cpu;
1086 pr_debug("handle_update for cpu %u called\n", cpu);
1087 cpufreq_update_policy(cpu);
1088}
1089
1090static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1091{
1092 struct cpufreq_policy *policy;
1093 int ret;
1094
1095 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1096 if (!policy)
1097 return NULL;
1098
1099 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1100 goto err_free_policy;
1101
1102 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1103 goto err_free_cpumask;
1104
1105 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1106 goto err_free_rcpumask;
1107
1108 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1109 cpufreq_global_kobject, "policy%u", cpu);
1110 if (ret) {
1111 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1112 kobject_put(&policy->kobj);
1113 goto err_free_real_cpus;
1114 }
1115
1116 INIT_LIST_HEAD(&policy->policy_list);
1117 init_rwsem(&policy->rwsem);
1118 spin_lock_init(&policy->transition_lock);
1119 init_waitqueue_head(&policy->transition_wait);
1120 init_completion(&policy->kobj_unregister);
1121 INIT_WORK(&policy->update, handle_update);
1122
1123 policy->cpu = cpu;
1124 return policy;
1125
1126err_free_real_cpus:
1127 free_cpumask_var(policy->real_cpus);
1128err_free_rcpumask:
1129 free_cpumask_var(policy->related_cpus);
1130err_free_cpumask:
1131 free_cpumask_var(policy->cpus);
1132err_free_policy:
1133 kfree(policy);
1134
1135 return NULL;
1136}
1137
1138static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1139{
1140 struct kobject *kobj;
1141 struct completion *cmp;
1142
1143 down_write(&policy->rwsem);
1144 cpufreq_stats_free_table(policy);
1145 kobj = &policy->kobj;
1146 cmp = &policy->kobj_unregister;
1147 up_write(&policy->rwsem);
1148 kobject_put(kobj);
1149
1150 /*
1151 * We need to make sure that the underlying kobj is
1152 * actually not referenced anymore by anybody before we
1153 * proceed with unloading.
1154 */
1155 pr_debug("waiting for dropping of refcount\n");
1156 wait_for_completion(cmp);
1157 pr_debug("wait complete\n");
1158}
1159
1160static void cpufreq_policy_free(struct cpufreq_policy *policy)
1161{
1162 unsigned long flags;
1163 int cpu;
1164
1165 /* Remove policy from list */
1166 write_lock_irqsave(&cpufreq_driver_lock, flags);
1167 list_del(&policy->policy_list);
1168
1169 for_each_cpu(cpu, policy->related_cpus)
1170 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1171 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1172
1173 cpufreq_policy_put_kobj(policy);
1174 free_cpumask_var(policy->real_cpus);
1175 free_cpumask_var(policy->related_cpus);
1176 free_cpumask_var(policy->cpus);
1177 kfree(policy);
1178}
1179
1180static int cpufreq_online(unsigned int cpu)
1181{
1182 struct cpufreq_policy *policy;
1183 bool new_policy;
1184 unsigned long flags;
1185 unsigned int j;
1186 int ret;
1187
1188 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1189
1190 /* Check if this CPU already has a policy to manage it */
1191 policy = per_cpu(cpufreq_cpu_data, cpu);
1192 if (policy) {
1193 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1194 if (!policy_is_inactive(policy))
1195 return cpufreq_add_policy_cpu(policy, cpu);
1196
1197 /* This is the only online CPU for the policy. Start over. */
1198 new_policy = false;
1199 down_write(&policy->rwsem);
1200 policy->cpu = cpu;
1201 policy->governor = NULL;
1202 up_write(&policy->rwsem);
1203 } else {
1204 new_policy = true;
1205 policy = cpufreq_policy_alloc(cpu);
1206 if (!policy)
1207 return -ENOMEM;
1208 }
1209
1210 cpumask_copy(policy->cpus, cpumask_of(cpu));
1211
1212 /* call driver. From then on the cpufreq must be able
1213 * to accept all calls to ->verify and ->setpolicy for this CPU
1214 */
1215 ret = cpufreq_driver->init(policy);
1216 if (ret) {
1217 pr_debug("initialization failed\n");
1218 goto out_free_policy;
1219 }
1220
1221 down_write(&policy->rwsem);
1222
1223 if (new_policy) {
1224 /* related_cpus should at least include policy->cpus. */
1225 cpumask_copy(policy->related_cpus, policy->cpus);
1226 }
1227
1228 /*
1229 * affected cpus must always be the one, which are online. We aren't
1230 * managing offline cpus here.
1231 */
1232 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1233
1234 if (new_policy) {
1235 policy->user_policy.min = policy->min;
1236 policy->user_policy.max = policy->max;
1237
1238 for_each_cpu(j, policy->related_cpus) {
1239 per_cpu(cpufreq_cpu_data, j) = policy;
1240 add_cpu_dev_symlink(policy, j);
1241 }
1242 } else {
1243 policy->min = policy->user_policy.min;
1244 policy->max = policy->user_policy.max;
1245 }
1246
1247 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1248 policy->cur = cpufreq_driver->get(policy->cpu);
1249 if (!policy->cur) {
1250 pr_err("%s: ->get() failed\n", __func__);
1251 goto out_exit_policy;
1252 }
1253 }
1254
1255 /*
1256 * Sometimes boot loaders set CPU frequency to a value outside of
1257 * frequency table present with cpufreq core. In such cases CPU might be
1258 * unstable if it has to run on that frequency for long duration of time
1259 * and so its better to set it to a frequency which is specified in
1260 * freq-table. This also makes cpufreq stats inconsistent as
1261 * cpufreq-stats would fail to register because current frequency of CPU
1262 * isn't found in freq-table.
1263 *
1264 * Because we don't want this change to effect boot process badly, we go
1265 * for the next freq which is >= policy->cur ('cur' must be set by now,
1266 * otherwise we will end up setting freq to lowest of the table as 'cur'
1267 * is initialized to zero).
1268 *
1269 * We are passing target-freq as "policy->cur - 1" otherwise
1270 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1271 * equal to target-freq.
1272 */
1273 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1274 && has_target()) {
1275 /* Are we running at unknown frequency ? */
1276 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1277 if (ret == -EINVAL) {
1278 /* Warn user and fix it */
1279 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1280 __func__, policy->cpu, policy->cur);
1281 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1282 CPUFREQ_RELATION_L);
1283
1284 /*
1285 * Reaching here after boot in a few seconds may not
1286 * mean that system will remain stable at "unknown"
1287 * frequency for longer duration. Hence, a BUG_ON().
1288 */
1289 BUG_ON(ret);
1290 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1291 __func__, policy->cpu, policy->cur);
1292 }
1293 }
1294
1295 if (new_policy) {
1296 ret = cpufreq_add_dev_interface(policy);
1297 if (ret)
1298 goto out_exit_policy;
1299
1300 cpufreq_stats_create_table(policy);
1301 cpufreq_times_create_policy(policy);
1302
1303 write_lock_irqsave(&cpufreq_driver_lock, flags);
1304 list_add(&policy->policy_list, &cpufreq_policy_list);
1305 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1306 }
1307
1308 ret = cpufreq_init_policy(policy);
1309 if (ret) {
1310 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1311 __func__, cpu, ret);
1312 /* cpufreq_policy_free() will notify based on this */
1313 new_policy = false;
1314 goto out_exit_policy;
1315 }
1316
1317 up_write(&policy->rwsem);
1318
1319 kobject_uevent(&policy->kobj, KOBJ_ADD);
1320
1321 /* Callback for handling stuff after policy is ready */
1322 if (cpufreq_driver->ready)
1323 cpufreq_driver->ready(policy);
1324
1325 pr_debug("initialization complete\n");
1326
1327 return 0;
1328
1329out_exit_policy:
1330 for_each_cpu(j, policy->real_cpus)
1331 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1332
1333 up_write(&policy->rwsem);
1334
1335 if (cpufreq_driver->exit)
1336 cpufreq_driver->exit(policy);
1337
1338out_free_policy:
1339 cpufreq_policy_free(policy);
1340 return ret;
1341}
1342
1343/**
1344 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1345 * @dev: CPU device.
1346 * @sif: Subsystem interface structure pointer (not used)
1347 */
1348static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1349{
1350 struct cpufreq_policy *policy;
1351 unsigned cpu = dev->id;
1352 int ret;
1353
1354 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1355
1356 if (cpu_online(cpu)) {
1357 ret = cpufreq_online(cpu);
1358 if (ret)
1359 return ret;
1360 }
1361
1362 /* Create sysfs link on CPU registration */
1363 policy = per_cpu(cpufreq_cpu_data, cpu);
1364 if (policy)
1365 add_cpu_dev_symlink(policy, cpu);
1366
1367 return 0;
1368}
1369
1370static int cpufreq_offline(unsigned int cpu)
1371{
1372 struct cpufreq_policy *policy;
1373 int ret;
1374
1375 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1376
1377 policy = cpufreq_cpu_get_raw(cpu);
1378 if (!policy) {
1379 pr_debug("%s: No cpu_data found\n", __func__);
1380 return 0;
1381 }
1382
1383 down_write(&policy->rwsem);
1384 if (has_target())
1385 cpufreq_stop_governor(policy);
1386
1387 cpumask_clear_cpu(cpu, policy->cpus);
1388
1389 if (policy_is_inactive(policy)) {
1390 if (has_target())
1391 strncpy(policy->last_governor, policy->governor->name,
1392 CPUFREQ_NAME_LEN);
1393 else
1394 policy->last_policy = policy->policy;
1395 } else if (cpu == policy->cpu) {
1396 /* Nominate new CPU */
1397 policy->cpu = cpumask_any(policy->cpus);
1398 }
1399
1400 /* Start governor again for active policy */
1401 if (!policy_is_inactive(policy)) {
1402 if (has_target()) {
1403 ret = cpufreq_start_governor(policy);
1404 if (ret)
1405 pr_err("%s: Failed to start governor\n", __func__);
1406 }
1407
1408 goto unlock;
1409 }
1410
1411 if (cpufreq_driver->stop_cpu)
1412 cpufreq_driver->stop_cpu(policy);
1413
1414 if (has_target())
1415 cpufreq_exit_governor(policy);
1416
1417 /*
1418 * Perform the ->exit() even during light-weight tear-down,
1419 * since this is a core component, and is essential for the
1420 * subsequent light-weight ->init() to succeed.
1421 */
1422 if (cpufreq_driver->exit) {
1423 cpufreq_driver->exit(policy);
1424 policy->freq_table = NULL;
1425 }
1426
1427unlock:
1428 up_write(&policy->rwsem);
1429 return 0;
1430}
1431
1432/**
1433 * cpufreq_remove_dev - remove a CPU device
1434 *
1435 * Removes the cpufreq interface for a CPU device.
1436 */
1437static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1438{
1439 unsigned int cpu = dev->id;
1440 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1441
1442 if (!policy)
1443 return;
1444
1445 if (cpu_online(cpu))
1446 cpufreq_offline(cpu);
1447
1448 cpumask_clear_cpu(cpu, policy->real_cpus);
1449 remove_cpu_dev_symlink(policy, dev);
1450
1451 if (cpumask_empty(policy->real_cpus))
1452 cpufreq_policy_free(policy);
1453}
1454
1455/**
1456 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1457 * in deep trouble.
1458 * @policy: policy managing CPUs
1459 * @new_freq: CPU frequency the CPU actually runs at
1460 *
1461 * We adjust to current frequency first, and need to clean up later.
1462 * So either call to cpufreq_update_policy() or schedule handle_update()).
1463 */
1464static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1465 unsigned int new_freq)
1466{
1467 struct cpufreq_freqs freqs;
1468
1469 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1470 policy->cur, new_freq);
1471
1472 freqs.old = policy->cur;
1473 freqs.new = new_freq;
1474
1475 cpufreq_freq_transition_begin(policy, &freqs);
1476 cpufreq_freq_transition_end(policy, &freqs, 0);
1477}
1478
1479/**
1480 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1481 * @cpu: CPU number
1482 *
1483 * This is the last known freq, without actually getting it from the driver.
1484 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1485 */
1486unsigned int cpufreq_quick_get(unsigned int cpu)
1487{
1488 struct cpufreq_policy *policy;
1489 unsigned int ret_freq = 0;
1490 unsigned long flags;
1491
1492 read_lock_irqsave(&cpufreq_driver_lock, flags);
1493
1494 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1495 ret_freq = cpufreq_driver->get(cpu);
1496 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1497 return ret_freq;
1498 }
1499
1500 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1501
1502 policy = cpufreq_cpu_get(cpu);
1503 if (policy) {
1504 ret_freq = policy->cur;
1505 cpufreq_cpu_put(policy);
1506 }
1507
1508 return ret_freq;
1509}
1510EXPORT_SYMBOL(cpufreq_quick_get);
1511
1512/**
1513 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1514 * @cpu: CPU number
1515 *
1516 * Just return the max possible frequency for a given CPU.
1517 */
1518unsigned int cpufreq_quick_get_max(unsigned int cpu)
1519{
1520 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1521 unsigned int ret_freq = 0;
1522
1523 if (policy) {
1524 ret_freq = policy->max;
1525 cpufreq_cpu_put(policy);
1526 }
1527
1528 return ret_freq;
1529}
1530EXPORT_SYMBOL(cpufreq_quick_get_max);
1531
1532static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1533{
1534 unsigned int ret_freq = 0;
1535
1536 if (unlikely(policy_is_inactive(policy)) || !cpufreq_driver->get)
1537 return ret_freq;
1538
1539 ret_freq = cpufreq_driver->get(policy->cpu);
1540
1541 /*
1542 * If fast frequency switching is used with the given policy, the check
1543 * against policy->cur is pointless, so skip it in that case too.
1544 */
1545 if (policy->fast_switch_enabled)
1546 return ret_freq;
1547
1548 if (ret_freq && policy->cur &&
1549 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1550 /* verify no discrepancy between actual and
1551 saved value exists */
1552 if (unlikely(ret_freq != policy->cur)) {
1553 cpufreq_out_of_sync(policy, ret_freq);
1554 schedule_work(&policy->update);
1555 }
1556 }
1557
1558 return ret_freq;
1559}
1560
1561/**
1562 * cpufreq_get - get the current CPU frequency (in kHz)
1563 * @cpu: CPU number
1564 *
1565 * Get the CPU current (static) CPU frequency
1566 */
1567unsigned int cpufreq_get(unsigned int cpu)
1568{
1569 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1570 unsigned int ret_freq = 0;
1571
1572 if (policy) {
1573 down_read(&policy->rwsem);
1574 ret_freq = __cpufreq_get(policy);
1575 up_read(&policy->rwsem);
1576
1577 cpufreq_cpu_put(policy);
1578 }
1579
1580 return ret_freq;
1581}
1582EXPORT_SYMBOL(cpufreq_get);
1583
1584static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1585{
1586 unsigned int new_freq;
1587
1588 new_freq = cpufreq_driver->get(policy->cpu);
1589 if (!new_freq)
1590 return 0;
1591
1592 if (!policy->cur) {
1593 pr_debug("cpufreq: Driver did not initialize current freq\n");
1594 policy->cur = new_freq;
1595 } else if (policy->cur != new_freq && has_target()) {
1596 cpufreq_out_of_sync(policy, new_freq);
1597 }
1598
1599 return new_freq;
1600}
1601
1602static struct subsys_interface cpufreq_interface = {
1603 .name = "cpufreq",
1604 .subsys = &cpu_subsys,
1605 .add_dev = cpufreq_add_dev,
1606 .remove_dev = cpufreq_remove_dev,
1607};
1608
1609/*
1610 * In case platform wants some specific frequency to be configured
1611 * during suspend..
1612 */
1613int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1614{
1615 int ret;
1616
1617 if (!policy->suspend_freq) {
1618 pr_debug("%s: suspend_freq not defined\n", __func__);
1619 return 0;
1620 }
1621
1622 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1623 policy->suspend_freq);
1624
1625 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1626 CPUFREQ_RELATION_H);
1627 if (ret)
1628 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1629 __func__, policy->suspend_freq, ret);
1630
1631 return ret;
1632}
1633EXPORT_SYMBOL(cpufreq_generic_suspend);
1634
1635/**
1636 * cpufreq_suspend() - Suspend CPUFreq governors
1637 *
1638 * Called during system wide Suspend/Hibernate cycles for suspending governors
1639 * as some platforms can't change frequency after this point in suspend cycle.
1640 * Because some of the devices (like: i2c, regulators, etc) they use for
1641 * changing frequency are suspended quickly after this point.
1642 */
1643void cpufreq_suspend(void)
1644{
1645 struct cpufreq_policy *policy;
1646
1647 if (!cpufreq_driver)
1648 return;
1649
1650 if (!has_target() && !cpufreq_driver->suspend)
1651 goto suspend;
1652
1653 pr_debug("%s: Suspending Governors\n", __func__);
1654
1655 for_each_active_policy(policy) {
1656 if (has_target()) {
1657 down_write(&policy->rwsem);
1658 cpufreq_stop_governor(policy);
1659 up_write(&policy->rwsem);
1660 }
1661
1662 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1663 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1664 policy);
1665 }
1666
1667suspend:
1668 cpufreq_suspended = true;
1669}
1670
1671/**
1672 * cpufreq_resume() - Resume CPUFreq governors
1673 *
1674 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1675 * are suspended with cpufreq_suspend().
1676 */
1677void cpufreq_resume(void)
1678{
1679 struct cpufreq_policy *policy;
1680 int ret;
1681
1682 if (!cpufreq_driver)
1683 return;
1684
1685 if (unlikely(!cpufreq_suspended))
1686 return;
1687
1688 cpufreq_suspended = false;
1689
1690 if (!has_target() && !cpufreq_driver->resume)
1691 return;
1692
1693 pr_debug("%s: Resuming Governors\n", __func__);
1694
1695 for_each_active_policy(policy) {
1696 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1697 pr_err("%s: Failed to resume driver: %p\n", __func__,
1698 policy);
1699 } else if (has_target()) {
1700 down_write(&policy->rwsem);
1701 ret = cpufreq_start_governor(policy);
1702 up_write(&policy->rwsem);
1703
1704 if (ret)
1705 pr_err("%s: Failed to start governor for policy: %p\n",
1706 __func__, policy);
1707 }
1708 }
1709}
1710
1711/**
1712 * cpufreq_get_current_driver - return current driver's name
1713 *
1714 * Return the name string of the currently loaded cpufreq driver
1715 * or NULL, if none.
1716 */
1717const char *cpufreq_get_current_driver(void)
1718{
1719 if (cpufreq_driver)
1720 return cpufreq_driver->name;
1721
1722 return NULL;
1723}
1724EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1725
1726/**
1727 * cpufreq_get_driver_data - return current driver data
1728 *
1729 * Return the private data of the currently loaded cpufreq
1730 * driver, or NULL if no cpufreq driver is loaded.
1731 */
1732void *cpufreq_get_driver_data(void)
1733{
1734 if (cpufreq_driver)
1735 return cpufreq_driver->driver_data;
1736
1737 return NULL;
1738}
1739EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1740
1741/*********************************************************************
1742 * NOTIFIER LISTS INTERFACE *
1743 *********************************************************************/
1744
1745/**
1746 * cpufreq_register_notifier - register a driver with cpufreq
1747 * @nb: notifier function to register
1748 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1749 *
1750 * Add a driver to one of two lists: either a list of drivers that
1751 * are notified about clock rate changes (once before and once after
1752 * the transition), or a list of drivers that are notified about
1753 * changes in cpufreq policy.
1754 *
1755 * This function may sleep, and has the same return conditions as
1756 * blocking_notifier_chain_register.
1757 */
1758int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1759{
1760 int ret;
1761
1762 if (cpufreq_disabled())
1763 return -EINVAL;
1764
1765 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1766
1767 switch (list) {
1768 case CPUFREQ_TRANSITION_NOTIFIER:
1769 mutex_lock(&cpufreq_fast_switch_lock);
1770
1771 if (cpufreq_fast_switch_count > 0) {
1772 mutex_unlock(&cpufreq_fast_switch_lock);
1773 return -EBUSY;
1774 }
1775 ret = srcu_notifier_chain_register(
1776 &cpufreq_transition_notifier_list, nb);
1777 if (!ret)
1778 cpufreq_fast_switch_count--;
1779
1780 mutex_unlock(&cpufreq_fast_switch_lock);
1781 break;
1782 case CPUFREQ_POLICY_NOTIFIER:
1783 ret = blocking_notifier_chain_register(
1784 &cpufreq_policy_notifier_list, nb);
1785 break;
1786 default:
1787 ret = -EINVAL;
1788 }
1789
1790 return ret;
1791}
1792EXPORT_SYMBOL(cpufreq_register_notifier);
1793
1794/**
1795 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1796 * @nb: notifier block to be unregistered
1797 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1798 *
1799 * Remove a driver from the CPU frequency notifier list.
1800 *
1801 * This function may sleep, and has the same return conditions as
1802 * blocking_notifier_chain_unregister.
1803 */
1804int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1805{
1806 int ret;
1807
1808 if (cpufreq_disabled())
1809 return -EINVAL;
1810
1811 switch (list) {
1812 case CPUFREQ_TRANSITION_NOTIFIER:
1813 mutex_lock(&cpufreq_fast_switch_lock);
1814
1815 ret = srcu_notifier_chain_unregister(
1816 &cpufreq_transition_notifier_list, nb);
1817 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1818 cpufreq_fast_switch_count++;
1819
1820 mutex_unlock(&cpufreq_fast_switch_lock);
1821 break;
1822 case CPUFREQ_POLICY_NOTIFIER:
1823 ret = blocking_notifier_chain_unregister(
1824 &cpufreq_policy_notifier_list, nb);
1825 break;
1826 default:
1827 ret = -EINVAL;
1828 }
1829
1830 return ret;
1831}
1832EXPORT_SYMBOL(cpufreq_unregister_notifier);
1833
1834
1835/*********************************************************************
1836 * GOVERNORS *
1837 *********************************************************************/
1838
1839/**
1840 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1841 * @policy: cpufreq policy to switch the frequency for.
1842 * @target_freq: New frequency to set (may be approximate).
1843 *
1844 * Carry out a fast frequency switch without sleeping.
1845 *
1846 * The driver's ->fast_switch() callback invoked by this function must be
1847 * suitable for being called from within RCU-sched read-side critical sections
1848 * and it is expected to select the minimum available frequency greater than or
1849 * equal to @target_freq (CPUFREQ_RELATION_L).
1850 *
1851 * This function must not be called if policy->fast_switch_enabled is unset.
1852 *
1853 * Governors calling this function must guarantee that it will never be invoked
1854 * twice in parallel for the same policy and that it will never be called in
1855 * parallel with either ->target() or ->target_index() for the same policy.
1856 *
1857 * Returns the actual frequency set for the CPU.
1858 *
1859 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1860 * error condition, the hardware configuration must be preserved.
1861 */
1862unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1863 unsigned int target_freq)
1864{
1865 target_freq = clamp_val(target_freq, policy->min, policy->max);
1866
1867 return cpufreq_driver->fast_switch(policy, target_freq);
1868}
1869EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1870
1871/* Must set freqs->new to intermediate frequency */
1872static int __target_intermediate(struct cpufreq_policy *policy,
1873 struct cpufreq_freqs *freqs, int index)
1874{
1875 int ret;
1876
1877 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1878
1879 /* We don't need to switch to intermediate freq */
1880 if (!freqs->new)
1881 return 0;
1882
1883 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1884 __func__, policy->cpu, freqs->old, freqs->new);
1885
1886 cpufreq_freq_transition_begin(policy, freqs);
1887 ret = cpufreq_driver->target_intermediate(policy, index);
1888 cpufreq_freq_transition_end(policy, freqs, ret);
1889
1890 if (ret)
1891 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1892 __func__, ret);
1893
1894 return ret;
1895}
1896
1897static int __target_index(struct cpufreq_policy *policy, int index)
1898{
1899 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1900 unsigned int intermediate_freq = 0;
1901 unsigned int newfreq = policy->freq_table[index].frequency;
1902 int retval = -EINVAL;
1903 bool notify;
1904
1905 if (newfreq == policy->cur)
1906 return 0;
1907
1908 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1909 if (notify) {
1910 /* Handle switching to intermediate frequency */
1911 if (cpufreq_driver->get_intermediate) {
1912 retval = __target_intermediate(policy, &freqs, index);
1913 if (retval)
1914 return retval;
1915
1916 intermediate_freq = freqs.new;
1917 /* Set old freq to intermediate */
1918 if (intermediate_freq)
1919 freqs.old = freqs.new;
1920 }
1921
1922 freqs.new = newfreq;
1923 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1924 __func__, policy->cpu, freqs.old, freqs.new);
1925
1926 cpufreq_freq_transition_begin(policy, &freqs);
1927 }
1928
1929 retval = cpufreq_driver->target_index(policy, index);
1930 if (retval)
1931 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1932 retval);
1933
1934 if (notify) {
1935 cpufreq_freq_transition_end(policy, &freqs, retval);
1936
1937 /*
1938 * Failed after setting to intermediate freq? Driver should have
1939 * reverted back to initial frequency and so should we. Check
1940 * here for intermediate_freq instead of get_intermediate, in
1941 * case we haven't switched to intermediate freq at all.
1942 */
1943 if (unlikely(retval && intermediate_freq)) {
1944 freqs.old = intermediate_freq;
1945 freqs.new = policy->restore_freq;
1946 cpufreq_freq_transition_begin(policy, &freqs);
1947 cpufreq_freq_transition_end(policy, &freqs, 0);
1948 }
1949 }
1950
1951 return retval;
1952}
1953
1954int __cpufreq_driver_target(struct cpufreq_policy *policy,
1955 unsigned int target_freq,
1956 unsigned int relation)
1957{
1958 unsigned int old_target_freq = target_freq;
1959 int index;
1960
1961 if (cpufreq_disabled())
1962 return -ENODEV;
1963
1964 /* Make sure that target_freq is within supported range */
1965 target_freq = clamp_val(target_freq, policy->min, policy->max);
1966
1967 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1968 policy->cpu, target_freq, relation, old_target_freq);
1969
1970 /*
1971 * This might look like a redundant call as we are checking it again
1972 * after finding index. But it is left intentionally for cases where
1973 * exactly same freq is called again and so we can save on few function
1974 * calls.
1975 */
1976 if (target_freq == policy->cur)
1977 return 0;
1978
1979 /* Save last value to restore later on errors */
1980 policy->restore_freq = policy->cur;
1981
1982 if (cpufreq_driver->target)
1983 return cpufreq_driver->target(policy, target_freq, relation);
1984
1985 if (!cpufreq_driver->target_index)
1986 return -EINVAL;
1987
1988 index = cpufreq_frequency_table_target(policy, target_freq, relation);
1989
1990 return __target_index(policy, index);
1991}
1992EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1993
1994int cpufreq_driver_target(struct cpufreq_policy *policy,
1995 unsigned int target_freq,
1996 unsigned int relation)
1997{
1998 int ret = -EINVAL;
1999
2000 down_write(&policy->rwsem);
2001
2002 ret = __cpufreq_driver_target(policy, target_freq, relation);
2003
2004 up_write(&policy->rwsem);
2005
2006 return ret;
2007}
2008EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2009
2010__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2011{
2012 return NULL;
2013}
2014
2015static int cpufreq_init_governor(struct cpufreq_policy *policy)
2016{
2017 int ret;
2018
2019 /* Don't start any governor operations if we are entering suspend */
2020 if (cpufreq_suspended)
2021 return 0;
2022 /*
2023 * Governor might not be initiated here if ACPI _PPC changed
2024 * notification happened, so check it.
2025 */
2026 if (!policy->governor)
2027 return -EINVAL;
2028
2029 /* Platform doesn't want dynamic frequency switching ? */
2030 if (policy->governor->dynamic_switching &&
2031 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2032 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2033
2034 if (gov) {
2035 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2036 policy->governor->name, gov->name);
2037 policy->governor = gov;
2038 } else {
2039 return -EINVAL;
2040 }
2041 }
2042
2043 if (!try_module_get(policy->governor->owner))
2044 return -EINVAL;
2045
2046 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2047
2048 if (policy->governor->init) {
2049 ret = policy->governor->init(policy);
2050 if (ret) {
2051 module_put(policy->governor->owner);
2052 return ret;
2053 }
2054 }
2055
2056 return 0;
2057}
2058
2059static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2060{
2061 if (cpufreq_suspended || !policy->governor)
2062 return;
2063
2064 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2065
2066 if (policy->governor->exit)
2067 policy->governor->exit(policy);
2068
2069 module_put(policy->governor->owner);
2070}
2071
2072static int cpufreq_start_governor(struct cpufreq_policy *policy)
2073{
2074 int ret;
2075
2076 if (cpufreq_suspended)
2077 return 0;
2078
2079 if (!policy->governor)
2080 return -EINVAL;
2081
2082 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2083
2084 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2085 cpufreq_update_current_freq(policy);
2086
2087 if (policy->governor->start) {
2088 ret = policy->governor->start(policy);
2089 if (ret)
2090 return ret;
2091 }
2092
2093 if (policy->governor->limits)
2094 policy->governor->limits(policy);
2095
2096 return 0;
2097}
2098
2099static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2100{
2101 if (cpufreq_suspended || !policy->governor)
2102 return;
2103
2104 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2105
2106 if (policy->governor->stop)
2107 policy->governor->stop(policy);
2108}
2109
2110static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2111{
2112 if (cpufreq_suspended || !policy->governor)
2113 return;
2114
2115 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2116
2117 if (policy->governor->limits)
2118 policy->governor->limits(policy);
2119}
2120
2121int cpufreq_register_governor(struct cpufreq_governor *governor)
2122{
2123 int err;
2124
2125 if (!governor)
2126 return -EINVAL;
2127
2128 if (cpufreq_disabled())
2129 return -ENODEV;
2130
2131 mutex_lock(&cpufreq_governor_mutex);
2132
2133 err = -EBUSY;
2134 if (!find_governor(governor->name)) {
2135 err = 0;
2136 list_add(&governor->governor_list, &cpufreq_governor_list);
2137 }
2138
2139 mutex_unlock(&cpufreq_governor_mutex);
2140 return err;
2141}
2142EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2143
2144void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2145{
2146 struct cpufreq_policy *policy;
2147 unsigned long flags;
2148
2149 if (!governor)
2150 return;
2151
2152 if (cpufreq_disabled())
2153 return;
2154
2155 /* clear last_governor for all inactive policies */
2156 read_lock_irqsave(&cpufreq_driver_lock, flags);
2157 for_each_inactive_policy(policy) {
2158 if (!strcmp(policy->last_governor, governor->name)) {
2159 policy->governor = NULL;
2160 strcpy(policy->last_governor, "\0");
2161 }
2162 }
2163 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2164
2165 mutex_lock(&cpufreq_governor_mutex);
2166 list_del(&governor->governor_list);
2167 mutex_unlock(&cpufreq_governor_mutex);
2168 return;
2169}
2170EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2171
2172
2173/*********************************************************************
2174 * POLICY INTERFACE *
2175 *********************************************************************/
2176
2177/**
2178 * cpufreq_get_policy - get the current cpufreq_policy
2179 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2180 * is written
2181 *
2182 * Reads the current cpufreq policy.
2183 */
2184int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2185{
2186 struct cpufreq_policy *cpu_policy;
2187 if (!policy)
2188 return -EINVAL;
2189
2190 cpu_policy = cpufreq_cpu_get(cpu);
2191 if (!cpu_policy)
2192 return -EINVAL;
2193
2194 memcpy(policy, cpu_policy, sizeof(*policy));
2195
2196 cpufreq_cpu_put(cpu_policy);
2197 return 0;
2198}
2199EXPORT_SYMBOL(cpufreq_get_policy);
2200
2201/*
2202 * policy : current policy.
2203 * new_policy: policy to be set.
2204 */
2205static int cpufreq_set_policy(struct cpufreq_policy *policy,
2206 struct cpufreq_policy *new_policy)
2207{
2208 struct cpufreq_governor *old_gov;
2209 int ret;
2210
2211 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2212 new_policy->cpu, new_policy->min, new_policy->max);
2213
2214 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2215
2216 /*
2217 * This check works well when we store new min/max freq attributes,
2218 * because new_policy is a copy of policy with one field updated.
2219 */
2220 if (new_policy->min > new_policy->max)
2221 return -EINVAL;
2222
2223 /* verify the cpu speed can be set within this limit */
2224 ret = cpufreq_driver->verify(new_policy);
2225 if (ret)
2226 return ret;
2227
2228 /* adjust if necessary - all reasons */
2229 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2230 CPUFREQ_ADJUST, new_policy);
2231
2232 /*
2233 * verify the cpu speed can be set within this limit, which might be
2234 * different to the first one
2235 */
2236 ret = cpufreq_driver->verify(new_policy);
2237 if (ret)
2238 return ret;
2239
2240 /* notification of the new policy */
2241 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2242 CPUFREQ_NOTIFY, new_policy);
2243
2244 policy->min = new_policy->min;
2245 policy->max = new_policy->max;
2246
2247 arch_set_max_freq_scale(policy->cpus, policy->max);
2248
2249 trace_cpu_frequency_limits(policy->max, policy->min, policy->cpu);
2250
2251 policy->cached_target_freq = UINT_MAX;
2252
2253 pr_debug("new min and max freqs are %u - %u kHz\n",
2254 policy->min, policy->max);
2255
2256 if (cpufreq_driver->setpolicy) {
2257 policy->policy = new_policy->policy;
2258 pr_debug("setting range\n");
2259 return cpufreq_driver->setpolicy(new_policy);
2260 }
2261
2262 if (new_policy->governor == policy->governor) {
2263 pr_debug("cpufreq: governor limits update\n");
2264 cpufreq_governor_limits(policy);
2265 return 0;
2266 }
2267
2268 pr_debug("governor switch\n");
2269
2270 /* save old, working values */
2271 old_gov = policy->governor;
2272 /* end old governor */
2273 if (old_gov) {
2274 cpufreq_stop_governor(policy);
2275 cpufreq_exit_governor(policy);
2276 }
2277
2278 /* start new governor */
2279 policy->governor = new_policy->governor;
2280 ret = cpufreq_init_governor(policy);
2281 if (!ret) {
2282 ret = cpufreq_start_governor(policy);
2283 if (!ret) {
2284 pr_debug("cpufreq: governor change\n");
2285 return 0;
2286 }
2287 cpufreq_exit_governor(policy);
2288 }
2289
2290 /* new governor failed, so re-start old one */
2291 pr_debug("starting governor %s failed\n", policy->governor->name);
2292 if (old_gov) {
2293 policy->governor = old_gov;
2294 if (cpufreq_init_governor(policy))
2295 policy->governor = NULL;
2296 else
2297 cpufreq_start_governor(policy);
2298 }
2299
2300 return ret;
2301}
2302
2303/**
2304 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2305 * @cpu: CPU which shall be re-evaluated
2306 *
2307 * Useful for policy notifiers which have different necessities
2308 * at different times.
2309 */
2310void cpufreq_update_policy(unsigned int cpu)
2311{
2312 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2313 struct cpufreq_policy new_policy;
2314
2315 if (!policy)
2316 return;
2317
2318 down_write(&policy->rwsem);
2319
2320 if (policy_is_inactive(policy))
2321 goto unlock;
2322
2323 pr_debug("updating policy for CPU %u\n", cpu);
2324 memcpy(&new_policy, policy, sizeof(*policy));
2325 new_policy.min = policy->user_policy.min;
2326 new_policy.max = policy->user_policy.max;
2327
2328 /*
2329 * BIOS might change freq behind our back
2330 * -> ask driver for current freq and notify governors about a change
2331 */
2332 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2333 if (cpufreq_suspended)
2334 goto unlock;
2335
2336 new_policy.cur = cpufreq_update_current_freq(policy);
2337 if (WARN_ON(!new_policy.cur))
2338 goto unlock;
2339 }
2340
2341 cpufreq_set_policy(policy, &new_policy);
2342
2343unlock:
2344 up_write(&policy->rwsem);
2345
2346 cpufreq_cpu_put(policy);
2347}
2348EXPORT_SYMBOL(cpufreq_update_policy);
2349
2350/*********************************************************************
2351 * BOOST *
2352 *********************************************************************/
2353static int cpufreq_boost_set_sw(int state)
2354{
2355 struct cpufreq_policy *policy;
2356 int ret = -EINVAL;
2357
2358 for_each_active_policy(policy) {
2359 if (!policy->freq_table)
2360 continue;
2361
2362 ret = cpufreq_frequency_table_cpuinfo(policy,
2363 policy->freq_table);
2364 if (ret) {
2365 pr_err("%s: Policy frequency update failed\n",
2366 __func__);
2367 break;
2368 }
2369
2370 down_write(&policy->rwsem);
2371 policy->user_policy.max = policy->max;
2372 cpufreq_governor_limits(policy);
2373 up_write(&policy->rwsem);
2374 }
2375
2376 return ret;
2377}
2378
2379int cpufreq_boost_trigger_state(int state)
2380{
2381 unsigned long flags;
2382 int ret = 0;
2383
2384 if (cpufreq_driver->boost_enabled == state)
2385 return 0;
2386
2387 write_lock_irqsave(&cpufreq_driver_lock, flags);
2388 cpufreq_driver->boost_enabled = state;
2389 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2390
2391 ret = cpufreq_driver->set_boost(state);
2392 if (ret) {
2393 write_lock_irqsave(&cpufreq_driver_lock, flags);
2394 cpufreq_driver->boost_enabled = !state;
2395 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2396
2397 pr_err("%s: Cannot %s BOOST\n",
2398 __func__, state ? "enable" : "disable");
2399 }
2400
2401 return ret;
2402}
2403
2404static bool cpufreq_boost_supported(void)
2405{
2406 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2407}
2408
2409static int create_boost_sysfs_file(void)
2410{
2411 int ret;
2412
2413 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2414 if (ret)
2415 pr_err("%s: cannot register global BOOST sysfs file\n",
2416 __func__);
2417
2418 return ret;
2419}
2420
2421static void remove_boost_sysfs_file(void)
2422{
2423 if (cpufreq_boost_supported())
2424 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2425}
2426
2427int cpufreq_enable_boost_support(void)
2428{
2429 if (!cpufreq_driver)
2430 return -EINVAL;
2431
2432 if (cpufreq_boost_supported())
2433 return 0;
2434
2435 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2436
2437 /* This will get removed on driver unregister */
2438 return create_boost_sysfs_file();
2439}
2440EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2441
2442int cpufreq_boost_enabled(void)
2443{
2444 return cpufreq_driver->boost_enabled;
2445}
2446EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2447
2448/*********************************************************************
2449 * FREQUENCY INVARIANT ACCOUNTING SUPPORT *
2450 *********************************************************************/
2451
2452__weak void arch_set_freq_scale(struct cpumask *cpus,
2453 unsigned long cur_freq,
2454 unsigned long max_freq)
2455{
2456}
2457EXPORT_SYMBOL_GPL(arch_set_freq_scale);
2458
2459__weak void arch_set_max_freq_scale(struct cpumask *cpus,
2460 unsigned long policy_max_freq)
2461{
2462}
2463EXPORT_SYMBOL_GPL(arch_set_max_freq_scale);
2464
2465/*********************************************************************
2466 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2467 *********************************************************************/
2468static enum cpuhp_state hp_online;
2469
2470static int cpuhp_cpufreq_online(unsigned int cpu)
2471{
2472 cpufreq_online(cpu);
2473
2474 return 0;
2475}
2476
2477static int cpuhp_cpufreq_offline(unsigned int cpu)
2478{
2479 cpufreq_offline(cpu);
2480
2481 return 0;
2482}
2483
2484/**
2485 * cpufreq_register_driver - register a CPU Frequency driver
2486 * @driver_data: A struct cpufreq_driver containing the values#
2487 * submitted by the CPU Frequency driver.
2488 *
2489 * Registers a CPU Frequency driver to this core code. This code
2490 * returns zero on success, -EEXIST when another driver got here first
2491 * (and isn't unregistered in the meantime).
2492 *
2493 */
2494int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2495{
2496 unsigned long flags;
2497 int ret;
2498
2499 if (cpufreq_disabled())
2500 return -ENODEV;
2501
2502 /*
2503 * The cpufreq core depends heavily on the availability of device
2504 * structure, make sure they are available before proceeding further.
2505 */
2506 if (!get_cpu_device(0))
2507 return -EPROBE_DEFER;
2508
2509 if (!driver_data || !driver_data->verify || !driver_data->init ||
2510 !(driver_data->setpolicy || driver_data->target_index ||
2511 driver_data->target) ||
2512 (driver_data->setpolicy && (driver_data->target_index ||
2513 driver_data->target)) ||
2514 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2515 return -EINVAL;
2516
2517 pr_debug("trying to register driver %s\n", driver_data->name);
2518
2519 /* Protect against concurrent CPU online/offline. */
2520 cpus_read_lock();
2521
2522 write_lock_irqsave(&cpufreq_driver_lock, flags);
2523 if (cpufreq_driver) {
2524 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2525 ret = -EEXIST;
2526 goto out;
2527 }
2528 cpufreq_driver = driver_data;
2529 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2530
2531 if (driver_data->setpolicy)
2532 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2533
2534 if (cpufreq_boost_supported()) {
2535 ret = create_boost_sysfs_file();
2536 if (ret)
2537 goto err_null_driver;
2538 }
2539
2540 ret = subsys_interface_register(&cpufreq_interface);
2541 if (ret)
2542 goto err_boost_unreg;
2543
2544 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2545 list_empty(&cpufreq_policy_list)) {
2546 /* if all ->init() calls failed, unregister */
2547 ret = -ENODEV;
2548 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2549 driver_data->name);
2550 goto err_if_unreg;
2551 }
2552
2553 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2554 "cpufreq:online",
2555 cpuhp_cpufreq_online,
2556 cpuhp_cpufreq_offline);
2557 if (ret < 0)
2558 goto err_if_unreg;
2559 hp_online = ret;
2560 ret = 0;
2561
2562 pr_debug("driver %s up and running\n", driver_data->name);
2563 goto out;
2564
2565err_if_unreg:
2566 subsys_interface_unregister(&cpufreq_interface);
2567err_boost_unreg:
2568 remove_boost_sysfs_file();
2569err_null_driver:
2570 write_lock_irqsave(&cpufreq_driver_lock, flags);
2571 cpufreq_driver = NULL;
2572 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2573out:
2574 cpus_read_unlock();
2575 return ret;
2576}
2577EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2578
2579/**
2580 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2581 *
2582 * Unregister the current CPUFreq driver. Only call this if you have
2583 * the right to do so, i.e. if you have succeeded in initialising before!
2584 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2585 * currently not initialised.
2586 */
2587int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2588{
2589 unsigned long flags;
2590
2591 if (!cpufreq_driver || (driver != cpufreq_driver))
2592 return -EINVAL;
2593
2594 pr_debug("unregistering driver %s\n", driver->name);
2595
2596 /* Protect against concurrent cpu hotplug */
2597 cpus_read_lock();
2598 subsys_interface_unregister(&cpufreq_interface);
2599 remove_boost_sysfs_file();
2600 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2601
2602 write_lock_irqsave(&cpufreq_driver_lock, flags);
2603
2604 cpufreq_driver = NULL;
2605
2606 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2607 cpus_read_unlock();
2608
2609 return 0;
2610}
2611EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2612
2613struct kobject *cpufreq_global_kobject;
2614EXPORT_SYMBOL(cpufreq_global_kobject);
2615
2616static int __init cpufreq_core_init(void)
2617{
2618 if (cpufreq_disabled())
2619 return -ENODEV;
2620
2621 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2622 BUG_ON(!cpufreq_global_kobject);
2623
2624 return 0;
2625}
2626module_param(off, int, 0444);
2627core_initcall(cpufreq_core_init);