rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * sun4i-ss-cipher.c - hardware cryptographic accelerator for Allwinner A20 SoC |
| 3 | * |
| 4 | * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com> |
| 5 | * |
| 6 | * This file add support for AES cipher with 128,192,256 bits |
| 7 | * keysize in CBC and ECB mode. |
| 8 | * Add support also for DES and 3DES in CBC and ECB mode. |
| 9 | * |
| 10 | * You could find the datasheet in Documentation/arm/sunxi/README |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or modify |
| 13 | * it under the terms of the GNU General Public License as published by |
| 14 | * the Free Software Foundation; either version 2 of the License, or |
| 15 | * (at your option) any later version. |
| 16 | */ |
| 17 | #include "sun4i-ss.h" |
| 18 | |
| 19 | static int sun4i_ss_opti_poll(struct skcipher_request *areq) |
| 20 | { |
| 21 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 22 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 23 | struct sun4i_ss_ctx *ss = op->ss; |
| 24 | unsigned int ivsize = crypto_skcipher_ivsize(tfm); |
| 25 | struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq); |
| 26 | u32 mode = ctx->mode; |
| 27 | /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */ |
| 28 | u32 rx_cnt = SS_RX_DEFAULT; |
| 29 | u32 tx_cnt = 0; |
| 30 | u32 spaces; |
| 31 | u32 v; |
| 32 | int err = 0; |
| 33 | unsigned int i; |
| 34 | unsigned int ileft = areq->cryptlen; |
| 35 | unsigned int oleft = areq->cryptlen; |
| 36 | unsigned int todo; |
| 37 | struct sg_mapping_iter mi, mo; |
| 38 | unsigned int oi, oo; /* offset for in and out */ |
| 39 | unsigned long flags; |
| 40 | |
| 41 | if (!areq->cryptlen) |
| 42 | return 0; |
| 43 | |
| 44 | if (!areq->iv) { |
| 45 | dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n"); |
| 46 | return -EINVAL; |
| 47 | } |
| 48 | |
| 49 | if (!areq->src || !areq->dst) { |
| 50 | dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n"); |
| 51 | return -EINVAL; |
| 52 | } |
| 53 | |
| 54 | spin_lock_irqsave(&ss->slock, flags); |
| 55 | |
| 56 | for (i = 0; i < op->keylen; i += 4) |
| 57 | writel(*(op->key + i / 4), ss->base + SS_KEY0 + i); |
| 58 | |
| 59 | if (areq->iv) { |
| 60 | for (i = 0; i < 4 && i < ivsize / 4; i++) { |
| 61 | v = *(u32 *)(areq->iv + i * 4); |
| 62 | writel(v, ss->base + SS_IV0 + i * 4); |
| 63 | } |
| 64 | } |
| 65 | writel(mode, ss->base + SS_CTL); |
| 66 | |
| 67 | sg_miter_start(&mi, areq->src, sg_nents(areq->src), |
| 68 | SG_MITER_FROM_SG | SG_MITER_ATOMIC); |
| 69 | sg_miter_start(&mo, areq->dst, sg_nents(areq->dst), |
| 70 | SG_MITER_TO_SG | SG_MITER_ATOMIC); |
| 71 | sg_miter_next(&mi); |
| 72 | sg_miter_next(&mo); |
| 73 | if (!mi.addr || !mo.addr) { |
| 74 | dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); |
| 75 | err = -EINVAL; |
| 76 | goto release_ss; |
| 77 | } |
| 78 | |
| 79 | ileft = areq->cryptlen / 4; |
| 80 | oleft = areq->cryptlen / 4; |
| 81 | oi = 0; |
| 82 | oo = 0; |
| 83 | do { |
| 84 | todo = min(rx_cnt, ileft); |
| 85 | todo = min_t(size_t, todo, (mi.length - oi) / 4); |
| 86 | if (todo) { |
| 87 | ileft -= todo; |
| 88 | writesl(ss->base + SS_RXFIFO, mi.addr + oi, todo); |
| 89 | oi += todo * 4; |
| 90 | } |
| 91 | if (oi == mi.length) { |
| 92 | sg_miter_next(&mi); |
| 93 | oi = 0; |
| 94 | } |
| 95 | |
| 96 | spaces = readl(ss->base + SS_FCSR); |
| 97 | rx_cnt = SS_RXFIFO_SPACES(spaces); |
| 98 | tx_cnt = SS_TXFIFO_SPACES(spaces); |
| 99 | |
| 100 | todo = min(tx_cnt, oleft); |
| 101 | todo = min_t(size_t, todo, (mo.length - oo) / 4); |
| 102 | if (todo) { |
| 103 | oleft -= todo; |
| 104 | readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo); |
| 105 | oo += todo * 4; |
| 106 | } |
| 107 | if (oo == mo.length) { |
| 108 | sg_miter_next(&mo); |
| 109 | oo = 0; |
| 110 | } |
| 111 | } while (oleft); |
| 112 | |
| 113 | if (areq->iv) { |
| 114 | for (i = 0; i < 4 && i < ivsize / 4; i++) { |
| 115 | v = readl(ss->base + SS_IV0 + i * 4); |
| 116 | *(u32 *)(areq->iv + i * 4) = v; |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | release_ss: |
| 121 | sg_miter_stop(&mi); |
| 122 | sg_miter_stop(&mo); |
| 123 | writel(0, ss->base + SS_CTL); |
| 124 | spin_unlock_irqrestore(&ss->slock, flags); |
| 125 | return err; |
| 126 | } |
| 127 | |
| 128 | /* Generic function that support SG with size not multiple of 4 */ |
| 129 | static int sun4i_ss_cipher_poll(struct skcipher_request *areq) |
| 130 | { |
| 131 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 132 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 133 | struct sun4i_ss_ctx *ss = op->ss; |
| 134 | int no_chunk = 1; |
| 135 | struct scatterlist *in_sg = areq->src; |
| 136 | struct scatterlist *out_sg = areq->dst; |
| 137 | unsigned int ivsize = crypto_skcipher_ivsize(tfm); |
| 138 | struct sun4i_cipher_req_ctx *ctx = skcipher_request_ctx(areq); |
| 139 | u32 mode = ctx->mode; |
| 140 | /* when activating SS, the default FIFO space is SS_RX_DEFAULT(32) */ |
| 141 | u32 rx_cnt = SS_RX_DEFAULT; |
| 142 | u32 tx_cnt = 0; |
| 143 | u32 v; |
| 144 | u32 spaces; |
| 145 | int err = 0; |
| 146 | unsigned int i; |
| 147 | unsigned int ileft = areq->cryptlen; |
| 148 | unsigned int oleft = areq->cryptlen; |
| 149 | unsigned int todo; |
| 150 | struct sg_mapping_iter mi, mo; |
| 151 | unsigned int oi, oo; /* offset for in and out */ |
| 152 | char buf[4 * SS_RX_MAX];/* buffer for linearize SG src */ |
| 153 | char bufo[4 * SS_TX_MAX]; /* buffer for linearize SG dst */ |
| 154 | unsigned int ob = 0; /* offset in buf */ |
| 155 | unsigned int obo = 0; /* offset in bufo*/ |
| 156 | unsigned int obl = 0; /* length of data in bufo */ |
| 157 | unsigned long flags; |
| 158 | |
| 159 | if (!areq->cryptlen) |
| 160 | return 0; |
| 161 | |
| 162 | if (!areq->iv) { |
| 163 | dev_err_ratelimited(ss->dev, "ERROR: Empty IV\n"); |
| 164 | return -EINVAL; |
| 165 | } |
| 166 | |
| 167 | if (!areq->src || !areq->dst) { |
| 168 | dev_err_ratelimited(ss->dev, "ERROR: Some SGs are NULL\n"); |
| 169 | return -EINVAL; |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * if we have only SGs with size multiple of 4, |
| 174 | * we can use the SS optimized function |
| 175 | */ |
| 176 | while (in_sg && no_chunk == 1) { |
| 177 | if (in_sg->length % 4) |
| 178 | no_chunk = 0; |
| 179 | in_sg = sg_next(in_sg); |
| 180 | } |
| 181 | while (out_sg && no_chunk == 1) { |
| 182 | if (out_sg->length % 4) |
| 183 | no_chunk = 0; |
| 184 | out_sg = sg_next(out_sg); |
| 185 | } |
| 186 | |
| 187 | if (no_chunk == 1) |
| 188 | return sun4i_ss_opti_poll(areq); |
| 189 | |
| 190 | spin_lock_irqsave(&ss->slock, flags); |
| 191 | |
| 192 | for (i = 0; i < op->keylen; i += 4) |
| 193 | writel(*(op->key + i / 4), ss->base + SS_KEY0 + i); |
| 194 | |
| 195 | if (areq->iv) { |
| 196 | for (i = 0; i < 4 && i < ivsize / 4; i++) { |
| 197 | v = *(u32 *)(areq->iv + i * 4); |
| 198 | writel(v, ss->base + SS_IV0 + i * 4); |
| 199 | } |
| 200 | } |
| 201 | writel(mode, ss->base + SS_CTL); |
| 202 | |
| 203 | sg_miter_start(&mi, areq->src, sg_nents(areq->src), |
| 204 | SG_MITER_FROM_SG | SG_MITER_ATOMIC); |
| 205 | sg_miter_start(&mo, areq->dst, sg_nents(areq->dst), |
| 206 | SG_MITER_TO_SG | SG_MITER_ATOMIC); |
| 207 | sg_miter_next(&mi); |
| 208 | sg_miter_next(&mo); |
| 209 | if (!mi.addr || !mo.addr) { |
| 210 | dev_err_ratelimited(ss->dev, "ERROR: sg_miter return null\n"); |
| 211 | err = -EINVAL; |
| 212 | goto release_ss; |
| 213 | } |
| 214 | ileft = areq->cryptlen; |
| 215 | oleft = areq->cryptlen; |
| 216 | oi = 0; |
| 217 | oo = 0; |
| 218 | |
| 219 | while (oleft) { |
| 220 | if (ileft) { |
| 221 | /* |
| 222 | * todo is the number of consecutive 4byte word that we |
| 223 | * can read from current SG |
| 224 | */ |
| 225 | todo = min(rx_cnt, ileft / 4); |
| 226 | todo = min_t(size_t, todo, (mi.length - oi) / 4); |
| 227 | if (todo && !ob) { |
| 228 | writesl(ss->base + SS_RXFIFO, mi.addr + oi, |
| 229 | todo); |
| 230 | ileft -= todo * 4; |
| 231 | oi += todo * 4; |
| 232 | } else { |
| 233 | /* |
| 234 | * not enough consecutive bytes, so we need to |
| 235 | * linearize in buf. todo is in bytes |
| 236 | * After that copy, if we have a multiple of 4 |
| 237 | * we need to be able to write all buf in one |
| 238 | * pass, so it is why we min() with rx_cnt |
| 239 | */ |
| 240 | todo = min(rx_cnt * 4 - ob, ileft); |
| 241 | todo = min_t(size_t, todo, mi.length - oi); |
| 242 | memcpy(buf + ob, mi.addr + oi, todo); |
| 243 | ileft -= todo; |
| 244 | oi += todo; |
| 245 | ob += todo; |
| 246 | if (!(ob % 4)) { |
| 247 | writesl(ss->base + SS_RXFIFO, buf, |
| 248 | ob / 4); |
| 249 | ob = 0; |
| 250 | } |
| 251 | } |
| 252 | if (oi == mi.length) { |
| 253 | sg_miter_next(&mi); |
| 254 | oi = 0; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | spaces = readl(ss->base + SS_FCSR); |
| 259 | rx_cnt = SS_RXFIFO_SPACES(spaces); |
| 260 | tx_cnt = SS_TXFIFO_SPACES(spaces); |
| 261 | dev_dbg(ss->dev, |
| 262 | "%x %u/%zu %u/%u cnt=%u %u/%zu %u/%u cnt=%u %u\n", |
| 263 | mode, |
| 264 | oi, mi.length, ileft, areq->cryptlen, rx_cnt, |
| 265 | oo, mo.length, oleft, areq->cryptlen, tx_cnt, ob); |
| 266 | |
| 267 | if (!tx_cnt) |
| 268 | continue; |
| 269 | /* todo in 4bytes word */ |
| 270 | todo = min(tx_cnt, oleft / 4); |
| 271 | todo = min_t(size_t, todo, (mo.length - oo) / 4); |
| 272 | if (todo) { |
| 273 | readsl(ss->base + SS_TXFIFO, mo.addr + oo, todo); |
| 274 | oleft -= todo * 4; |
| 275 | oo += todo * 4; |
| 276 | if (oo == mo.length) { |
| 277 | sg_miter_next(&mo); |
| 278 | oo = 0; |
| 279 | } |
| 280 | } else { |
| 281 | /* |
| 282 | * read obl bytes in bufo, we read at maximum for |
| 283 | * emptying the device |
| 284 | */ |
| 285 | readsl(ss->base + SS_TXFIFO, bufo, tx_cnt); |
| 286 | obl = tx_cnt * 4; |
| 287 | obo = 0; |
| 288 | do { |
| 289 | /* |
| 290 | * how many bytes we can copy ? |
| 291 | * no more than remaining SG size |
| 292 | * no more than remaining buffer |
| 293 | * no need to test against oleft |
| 294 | */ |
| 295 | todo = min_t(size_t, |
| 296 | mo.length - oo, obl - obo); |
| 297 | memcpy(mo.addr + oo, bufo + obo, todo); |
| 298 | oleft -= todo; |
| 299 | obo += todo; |
| 300 | oo += todo; |
| 301 | if (oo == mo.length) { |
| 302 | sg_miter_next(&mo); |
| 303 | oo = 0; |
| 304 | } |
| 305 | } while (obo < obl); |
| 306 | /* bufo must be fully used here */ |
| 307 | } |
| 308 | } |
| 309 | if (areq->iv) { |
| 310 | for (i = 0; i < 4 && i < ivsize / 4; i++) { |
| 311 | v = readl(ss->base + SS_IV0 + i * 4); |
| 312 | *(u32 *)(areq->iv + i * 4) = v; |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | release_ss: |
| 317 | sg_miter_stop(&mi); |
| 318 | sg_miter_stop(&mo); |
| 319 | writel(0, ss->base + SS_CTL); |
| 320 | spin_unlock_irqrestore(&ss->slock, flags); |
| 321 | |
| 322 | return err; |
| 323 | } |
| 324 | |
| 325 | /* CBC AES */ |
| 326 | int sun4i_ss_cbc_aes_encrypt(struct skcipher_request *areq) |
| 327 | { |
| 328 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 329 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 330 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 331 | |
| 332 | rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | |
| 333 | op->keymode; |
| 334 | return sun4i_ss_cipher_poll(areq); |
| 335 | } |
| 336 | |
| 337 | int sun4i_ss_cbc_aes_decrypt(struct skcipher_request *areq) |
| 338 | { |
| 339 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 340 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 341 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 342 | |
| 343 | rctx->mode = SS_OP_AES | SS_CBC | SS_ENABLED | SS_DECRYPTION | |
| 344 | op->keymode; |
| 345 | return sun4i_ss_cipher_poll(areq); |
| 346 | } |
| 347 | |
| 348 | /* ECB AES */ |
| 349 | int sun4i_ss_ecb_aes_encrypt(struct skcipher_request *areq) |
| 350 | { |
| 351 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 352 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 353 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 354 | |
| 355 | rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | |
| 356 | op->keymode; |
| 357 | return sun4i_ss_cipher_poll(areq); |
| 358 | } |
| 359 | |
| 360 | int sun4i_ss_ecb_aes_decrypt(struct skcipher_request *areq) |
| 361 | { |
| 362 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 363 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 364 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 365 | |
| 366 | rctx->mode = SS_OP_AES | SS_ECB | SS_ENABLED | SS_DECRYPTION | |
| 367 | op->keymode; |
| 368 | return sun4i_ss_cipher_poll(areq); |
| 369 | } |
| 370 | |
| 371 | /* CBC DES */ |
| 372 | int sun4i_ss_cbc_des_encrypt(struct skcipher_request *areq) |
| 373 | { |
| 374 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 375 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 376 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 377 | |
| 378 | rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | |
| 379 | op->keymode; |
| 380 | return sun4i_ss_cipher_poll(areq); |
| 381 | } |
| 382 | |
| 383 | int sun4i_ss_cbc_des_decrypt(struct skcipher_request *areq) |
| 384 | { |
| 385 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 386 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 387 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 388 | |
| 389 | rctx->mode = SS_OP_DES | SS_CBC | SS_ENABLED | SS_DECRYPTION | |
| 390 | op->keymode; |
| 391 | return sun4i_ss_cipher_poll(areq); |
| 392 | } |
| 393 | |
| 394 | /* ECB DES */ |
| 395 | int sun4i_ss_ecb_des_encrypt(struct skcipher_request *areq) |
| 396 | { |
| 397 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 398 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 399 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 400 | |
| 401 | rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | |
| 402 | op->keymode; |
| 403 | return sun4i_ss_cipher_poll(areq); |
| 404 | } |
| 405 | |
| 406 | int sun4i_ss_ecb_des_decrypt(struct skcipher_request *areq) |
| 407 | { |
| 408 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 409 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 410 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 411 | |
| 412 | rctx->mode = SS_OP_DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | |
| 413 | op->keymode; |
| 414 | return sun4i_ss_cipher_poll(areq); |
| 415 | } |
| 416 | |
| 417 | /* CBC 3DES */ |
| 418 | int sun4i_ss_cbc_des3_encrypt(struct skcipher_request *areq) |
| 419 | { |
| 420 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 421 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 422 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 423 | |
| 424 | rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_ENCRYPTION | |
| 425 | op->keymode; |
| 426 | return sun4i_ss_cipher_poll(areq); |
| 427 | } |
| 428 | |
| 429 | int sun4i_ss_cbc_des3_decrypt(struct skcipher_request *areq) |
| 430 | { |
| 431 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 432 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 433 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 434 | |
| 435 | rctx->mode = SS_OP_3DES | SS_CBC | SS_ENABLED | SS_DECRYPTION | |
| 436 | op->keymode; |
| 437 | return sun4i_ss_cipher_poll(areq); |
| 438 | } |
| 439 | |
| 440 | /* ECB 3DES */ |
| 441 | int sun4i_ss_ecb_des3_encrypt(struct skcipher_request *areq) |
| 442 | { |
| 443 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 444 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 445 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 446 | |
| 447 | rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_ENCRYPTION | |
| 448 | op->keymode; |
| 449 | return sun4i_ss_cipher_poll(areq); |
| 450 | } |
| 451 | |
| 452 | int sun4i_ss_ecb_des3_decrypt(struct skcipher_request *areq) |
| 453 | { |
| 454 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq); |
| 455 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 456 | struct sun4i_cipher_req_ctx *rctx = skcipher_request_ctx(areq); |
| 457 | |
| 458 | rctx->mode = SS_OP_3DES | SS_ECB | SS_ENABLED | SS_DECRYPTION | |
| 459 | op->keymode; |
| 460 | return sun4i_ss_cipher_poll(areq); |
| 461 | } |
| 462 | |
| 463 | int sun4i_ss_cipher_init(struct crypto_tfm *tfm) |
| 464 | { |
| 465 | struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm); |
| 466 | struct sun4i_ss_alg_template *algt; |
| 467 | |
| 468 | memset(op, 0, sizeof(struct sun4i_tfm_ctx)); |
| 469 | |
| 470 | algt = container_of(tfm->__crt_alg, struct sun4i_ss_alg_template, |
| 471 | alg.crypto.base); |
| 472 | op->ss = algt->ss; |
| 473 | |
| 474 | crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), |
| 475 | sizeof(struct sun4i_cipher_req_ctx)); |
| 476 | |
| 477 | return 0; |
| 478 | } |
| 479 | |
| 480 | /* check and set the AES key, prepare the mode to be used */ |
| 481 | int sun4i_ss_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| 482 | unsigned int keylen) |
| 483 | { |
| 484 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 485 | struct sun4i_ss_ctx *ss = op->ss; |
| 486 | |
| 487 | switch (keylen) { |
| 488 | case 128 / 8: |
| 489 | op->keymode = SS_AES_128BITS; |
| 490 | break; |
| 491 | case 192 / 8: |
| 492 | op->keymode = SS_AES_192BITS; |
| 493 | break; |
| 494 | case 256 / 8: |
| 495 | op->keymode = SS_AES_256BITS; |
| 496 | break; |
| 497 | default: |
| 498 | dev_err(ss->dev, "ERROR: Invalid keylen %u\n", keylen); |
| 499 | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 500 | return -EINVAL; |
| 501 | } |
| 502 | op->keylen = keylen; |
| 503 | memcpy(op->key, key, keylen); |
| 504 | return 0; |
| 505 | } |
| 506 | |
| 507 | /* check and set the DES key, prepare the mode to be used */ |
| 508 | int sun4i_ss_des_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| 509 | unsigned int keylen) |
| 510 | { |
| 511 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 512 | struct sun4i_ss_ctx *ss = op->ss; |
| 513 | u32 flags; |
| 514 | u32 tmp[DES_EXPKEY_WORDS]; |
| 515 | int ret; |
| 516 | |
| 517 | if (unlikely(keylen != DES_KEY_SIZE)) { |
| 518 | dev_err(ss->dev, "Invalid keylen %u\n", keylen); |
| 519 | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 520 | return -EINVAL; |
| 521 | } |
| 522 | |
| 523 | flags = crypto_skcipher_get_flags(tfm); |
| 524 | |
| 525 | ret = des_ekey(tmp, key); |
| 526 | if (unlikely(!ret) && (flags & CRYPTO_TFM_REQ_WEAK_KEY)) { |
| 527 | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY); |
| 528 | dev_dbg(ss->dev, "Weak key %u\n", keylen); |
| 529 | return -EINVAL; |
| 530 | } |
| 531 | |
| 532 | op->keylen = keylen; |
| 533 | memcpy(op->key, key, keylen); |
| 534 | return 0; |
| 535 | } |
| 536 | |
| 537 | /* check and set the 3DES key, prepare the mode to be used */ |
| 538 | int sun4i_ss_des3_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| 539 | unsigned int keylen) |
| 540 | { |
| 541 | struct sun4i_tfm_ctx *op = crypto_skcipher_ctx(tfm); |
| 542 | struct sun4i_ss_ctx *ss = op->ss; |
| 543 | |
| 544 | if (unlikely(keylen != 3 * DES_KEY_SIZE)) { |
| 545 | dev_err(ss->dev, "Invalid keylen %u\n", keylen); |
| 546 | crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 547 | return -EINVAL; |
| 548 | } |
| 549 | op->keylen = keylen; |
| 550 | memcpy(op->key, key, keylen); |
| 551 | return 0; |
| 552 | } |