blob: 45b8ccdfb08523cf9d4a1440a0f8a654481cf611 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
21 *
22 */
23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/device.h>
28#include <linux/interrupt.h>
29#include <linux/sysctl.h>
30#include <linux/slab.h>
31#include <linux/acpi.h>
32#include <linux/completion.h>
33#include <linux/hyperv.h>
34#include <linux/kernel_stat.h>
35#include <linux/clockchips.h>
36#include <linux/cpu.h>
37#include <linux/sched/task_stack.h>
38
39#include <asm/hyperv.h>
40#include <asm/hypervisor.h>
41#include <asm/mshyperv.h>
42#include <linux/notifier.h>
43#include <linux/ptrace.h>
44#include <linux/screen_info.h>
45#include <linux/kdebug.h>
46#include <linux/efi.h>
47#include <linux/random.h>
48#include "hyperv_vmbus.h"
49
50struct vmbus_dynid {
51 struct list_head node;
52 struct hv_vmbus_device_id id;
53};
54
55static struct acpi_device *hv_acpi_dev;
56
57static struct completion probe_event;
58
59static int hyperv_cpuhp_online;
60
61static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
62 void *args)
63{
64 struct pt_regs *regs;
65
66 regs = current_pt_regs();
67
68 hyperv_report_panic(regs);
69 return NOTIFY_DONE;
70}
71
72static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
73 void *args)
74{
75 struct die_args *die = (struct die_args *)args;
76 struct pt_regs *regs = die->regs;
77
78 hyperv_report_panic(regs);
79 return NOTIFY_DONE;
80}
81
82static struct notifier_block hyperv_die_block = {
83 .notifier_call = hyperv_die_event,
84};
85static struct notifier_block hyperv_panic_block = {
86 .notifier_call = hyperv_panic_event,
87};
88
89static const char *fb_mmio_name = "fb_range";
90static struct resource *fb_mmio;
91static struct resource *hyperv_mmio;
92static DEFINE_SEMAPHORE(hyperv_mmio_lock);
93
94static int vmbus_exists(void)
95{
96 if (hv_acpi_dev == NULL)
97 return -ENODEV;
98
99 return 0;
100}
101
102#define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103static void print_alias_name(struct hv_device *hv_dev, char *alias_name)
104{
105 int i;
106 for (i = 0; i < VMBUS_ALIAS_LEN; i += 2)
107 sprintf(&alias_name[i], "%02x", hv_dev->dev_type.b[i/2]);
108}
109
110static u8 channel_monitor_group(struct vmbus_channel *channel)
111{
112 return (u8)channel->offermsg.monitorid / 32;
113}
114
115static u8 channel_monitor_offset(struct vmbus_channel *channel)
116{
117 return (u8)channel->offermsg.monitorid % 32;
118}
119
120static u32 channel_pending(struct vmbus_channel *channel,
121 struct hv_monitor_page *monitor_page)
122{
123 u8 monitor_group = channel_monitor_group(channel);
124 return monitor_page->trigger_group[monitor_group].pending;
125}
126
127static u32 channel_latency(struct vmbus_channel *channel,
128 struct hv_monitor_page *monitor_page)
129{
130 u8 monitor_group = channel_monitor_group(channel);
131 u8 monitor_offset = channel_monitor_offset(channel);
132 return monitor_page->latency[monitor_group][monitor_offset];
133}
134
135static u32 channel_conn_id(struct vmbus_channel *channel,
136 struct hv_monitor_page *monitor_page)
137{
138 u8 monitor_group = channel_monitor_group(channel);
139 u8 monitor_offset = channel_monitor_offset(channel);
140 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
141}
142
143static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
144 char *buf)
145{
146 struct hv_device *hv_dev = device_to_hv_device(dev);
147
148 if (!hv_dev->channel)
149 return -ENODEV;
150 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
151}
152static DEVICE_ATTR_RO(id);
153
154static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
155 char *buf)
156{
157 struct hv_device *hv_dev = device_to_hv_device(dev);
158
159 if (!hv_dev->channel)
160 return -ENODEV;
161 return sprintf(buf, "%d\n", hv_dev->channel->state);
162}
163static DEVICE_ATTR_RO(state);
164
165static ssize_t monitor_id_show(struct device *dev,
166 struct device_attribute *dev_attr, char *buf)
167{
168 struct hv_device *hv_dev = device_to_hv_device(dev);
169
170 if (!hv_dev->channel)
171 return -ENODEV;
172 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
173}
174static DEVICE_ATTR_RO(monitor_id);
175
176static ssize_t class_id_show(struct device *dev,
177 struct device_attribute *dev_attr, char *buf)
178{
179 struct hv_device *hv_dev = device_to_hv_device(dev);
180
181 if (!hv_dev->channel)
182 return -ENODEV;
183 return sprintf(buf, "{%pUl}\n",
184 hv_dev->channel->offermsg.offer.if_type.b);
185}
186static DEVICE_ATTR_RO(class_id);
187
188static ssize_t device_id_show(struct device *dev,
189 struct device_attribute *dev_attr, char *buf)
190{
191 struct hv_device *hv_dev = device_to_hv_device(dev);
192
193 if (!hv_dev->channel)
194 return -ENODEV;
195 return sprintf(buf, "{%pUl}\n",
196 hv_dev->channel->offermsg.offer.if_instance.b);
197}
198static DEVICE_ATTR_RO(device_id);
199
200static ssize_t modalias_show(struct device *dev,
201 struct device_attribute *dev_attr, char *buf)
202{
203 struct hv_device *hv_dev = device_to_hv_device(dev);
204 char alias_name[VMBUS_ALIAS_LEN + 1];
205
206 print_alias_name(hv_dev, alias_name);
207 return sprintf(buf, "vmbus:%s\n", alias_name);
208}
209static DEVICE_ATTR_RO(modalias);
210
211static ssize_t server_monitor_pending_show(struct device *dev,
212 struct device_attribute *dev_attr,
213 char *buf)
214{
215 struct hv_device *hv_dev = device_to_hv_device(dev);
216
217 if (!hv_dev->channel)
218 return -ENODEV;
219 return sprintf(buf, "%d\n",
220 channel_pending(hv_dev->channel,
221 vmbus_connection.monitor_pages[1]));
222}
223static DEVICE_ATTR_RO(server_monitor_pending);
224
225static ssize_t client_monitor_pending_show(struct device *dev,
226 struct device_attribute *dev_attr,
227 char *buf)
228{
229 struct hv_device *hv_dev = device_to_hv_device(dev);
230
231 if (!hv_dev->channel)
232 return -ENODEV;
233 return sprintf(buf, "%d\n",
234 channel_pending(hv_dev->channel,
235 vmbus_connection.monitor_pages[1]));
236}
237static DEVICE_ATTR_RO(client_monitor_pending);
238
239static ssize_t server_monitor_latency_show(struct device *dev,
240 struct device_attribute *dev_attr,
241 char *buf)
242{
243 struct hv_device *hv_dev = device_to_hv_device(dev);
244
245 if (!hv_dev->channel)
246 return -ENODEV;
247 return sprintf(buf, "%d\n",
248 channel_latency(hv_dev->channel,
249 vmbus_connection.monitor_pages[0]));
250}
251static DEVICE_ATTR_RO(server_monitor_latency);
252
253static ssize_t client_monitor_latency_show(struct device *dev,
254 struct device_attribute *dev_attr,
255 char *buf)
256{
257 struct hv_device *hv_dev = device_to_hv_device(dev);
258
259 if (!hv_dev->channel)
260 return -ENODEV;
261 return sprintf(buf, "%d\n",
262 channel_latency(hv_dev->channel,
263 vmbus_connection.monitor_pages[1]));
264}
265static DEVICE_ATTR_RO(client_monitor_latency);
266
267static ssize_t server_monitor_conn_id_show(struct device *dev,
268 struct device_attribute *dev_attr,
269 char *buf)
270{
271 struct hv_device *hv_dev = device_to_hv_device(dev);
272
273 if (!hv_dev->channel)
274 return -ENODEV;
275 return sprintf(buf, "%d\n",
276 channel_conn_id(hv_dev->channel,
277 vmbus_connection.monitor_pages[0]));
278}
279static DEVICE_ATTR_RO(server_monitor_conn_id);
280
281static ssize_t client_monitor_conn_id_show(struct device *dev,
282 struct device_attribute *dev_attr,
283 char *buf)
284{
285 struct hv_device *hv_dev = device_to_hv_device(dev);
286
287 if (!hv_dev->channel)
288 return -ENODEV;
289 return sprintf(buf, "%d\n",
290 channel_conn_id(hv_dev->channel,
291 vmbus_connection.monitor_pages[1]));
292}
293static DEVICE_ATTR_RO(client_monitor_conn_id);
294
295static ssize_t out_intr_mask_show(struct device *dev,
296 struct device_attribute *dev_attr, char *buf)
297{
298 struct hv_device *hv_dev = device_to_hv_device(dev);
299 struct hv_ring_buffer_debug_info outbound;
300 int ret;
301
302 if (!hv_dev->channel)
303 return -ENODEV;
304
305 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
306 &outbound);
307 if (ret < 0)
308 return ret;
309
310 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
311}
312static DEVICE_ATTR_RO(out_intr_mask);
313
314static ssize_t out_read_index_show(struct device *dev,
315 struct device_attribute *dev_attr, char *buf)
316{
317 struct hv_device *hv_dev = device_to_hv_device(dev);
318 struct hv_ring_buffer_debug_info outbound;
319 int ret;
320
321 if (!hv_dev->channel)
322 return -ENODEV;
323
324 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
325 &outbound);
326 if (ret < 0)
327 return ret;
328 return sprintf(buf, "%d\n", outbound.current_read_index);
329}
330static DEVICE_ATTR_RO(out_read_index);
331
332static ssize_t out_write_index_show(struct device *dev,
333 struct device_attribute *dev_attr,
334 char *buf)
335{
336 struct hv_device *hv_dev = device_to_hv_device(dev);
337 struct hv_ring_buffer_debug_info outbound;
338 int ret;
339
340 if (!hv_dev->channel)
341 return -ENODEV;
342
343 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
344 &outbound);
345 if (ret < 0)
346 return ret;
347 return sprintf(buf, "%d\n", outbound.current_write_index);
348}
349static DEVICE_ATTR_RO(out_write_index);
350
351static ssize_t out_read_bytes_avail_show(struct device *dev,
352 struct device_attribute *dev_attr,
353 char *buf)
354{
355 struct hv_device *hv_dev = device_to_hv_device(dev);
356 struct hv_ring_buffer_debug_info outbound;
357 int ret;
358
359 if (!hv_dev->channel)
360 return -ENODEV;
361
362 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
363 &outbound);
364 if (ret < 0)
365 return ret;
366 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
367}
368static DEVICE_ATTR_RO(out_read_bytes_avail);
369
370static ssize_t out_write_bytes_avail_show(struct device *dev,
371 struct device_attribute *dev_attr,
372 char *buf)
373{
374 struct hv_device *hv_dev = device_to_hv_device(dev);
375 struct hv_ring_buffer_debug_info outbound;
376 int ret;
377
378 if (!hv_dev->channel)
379 return -ENODEV;
380
381 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
382 &outbound);
383 if (ret < 0)
384 return ret;
385 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
386}
387static DEVICE_ATTR_RO(out_write_bytes_avail);
388
389static ssize_t in_intr_mask_show(struct device *dev,
390 struct device_attribute *dev_attr, char *buf)
391{
392 struct hv_device *hv_dev = device_to_hv_device(dev);
393 struct hv_ring_buffer_debug_info inbound;
394 int ret;
395
396 if (!hv_dev->channel)
397 return -ENODEV;
398
399 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
400 if (ret < 0)
401 return ret;
402
403 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
404}
405static DEVICE_ATTR_RO(in_intr_mask);
406
407static ssize_t in_read_index_show(struct device *dev,
408 struct device_attribute *dev_attr, char *buf)
409{
410 struct hv_device *hv_dev = device_to_hv_device(dev);
411 struct hv_ring_buffer_debug_info inbound;
412 int ret;
413
414 if (!hv_dev->channel)
415 return -ENODEV;
416
417 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
418 if (ret < 0)
419 return ret;
420
421 return sprintf(buf, "%d\n", inbound.current_read_index);
422}
423static DEVICE_ATTR_RO(in_read_index);
424
425static ssize_t in_write_index_show(struct device *dev,
426 struct device_attribute *dev_attr, char *buf)
427{
428 struct hv_device *hv_dev = device_to_hv_device(dev);
429 struct hv_ring_buffer_debug_info inbound;
430 int ret;
431
432 if (!hv_dev->channel)
433 return -ENODEV;
434
435 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
436 if (ret < 0)
437 return ret;
438
439 return sprintf(buf, "%d\n", inbound.current_write_index);
440}
441static DEVICE_ATTR_RO(in_write_index);
442
443static ssize_t in_read_bytes_avail_show(struct device *dev,
444 struct device_attribute *dev_attr,
445 char *buf)
446{
447 struct hv_device *hv_dev = device_to_hv_device(dev);
448 struct hv_ring_buffer_debug_info inbound;
449 int ret;
450
451 if (!hv_dev->channel)
452 return -ENODEV;
453
454 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
455 if (ret < 0)
456 return ret;
457
458 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
459}
460static DEVICE_ATTR_RO(in_read_bytes_avail);
461
462static ssize_t in_write_bytes_avail_show(struct device *dev,
463 struct device_attribute *dev_attr,
464 char *buf)
465{
466 struct hv_device *hv_dev = device_to_hv_device(dev);
467 struct hv_ring_buffer_debug_info inbound;
468 int ret;
469
470 if (!hv_dev->channel)
471 return -ENODEV;
472
473 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
474 if (ret < 0)
475 return ret;
476
477 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
478}
479static DEVICE_ATTR_RO(in_write_bytes_avail);
480
481static ssize_t channel_vp_mapping_show(struct device *dev,
482 struct device_attribute *dev_attr,
483 char *buf)
484{
485 struct hv_device *hv_dev = device_to_hv_device(dev);
486 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
487 unsigned long flags;
488 int buf_size = PAGE_SIZE, n_written, tot_written;
489 struct list_head *cur;
490
491 if (!channel)
492 return -ENODEV;
493
494 tot_written = snprintf(buf, buf_size, "%u:%u\n",
495 channel->offermsg.child_relid, channel->target_cpu);
496
497 spin_lock_irqsave(&channel->lock, flags);
498
499 list_for_each(cur, &channel->sc_list) {
500 if (tot_written >= buf_size - 1)
501 break;
502
503 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
504 n_written = scnprintf(buf + tot_written,
505 buf_size - tot_written,
506 "%u:%u\n",
507 cur_sc->offermsg.child_relid,
508 cur_sc->target_cpu);
509 tot_written += n_written;
510 }
511
512 spin_unlock_irqrestore(&channel->lock, flags);
513
514 return tot_written;
515}
516static DEVICE_ATTR_RO(channel_vp_mapping);
517
518static ssize_t vendor_show(struct device *dev,
519 struct device_attribute *dev_attr,
520 char *buf)
521{
522 struct hv_device *hv_dev = device_to_hv_device(dev);
523 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
524}
525static DEVICE_ATTR_RO(vendor);
526
527static ssize_t device_show(struct device *dev,
528 struct device_attribute *dev_attr,
529 char *buf)
530{
531 struct hv_device *hv_dev = device_to_hv_device(dev);
532 return sprintf(buf, "0x%x\n", hv_dev->device_id);
533}
534static DEVICE_ATTR_RO(device);
535
536/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
537static struct attribute *vmbus_dev_attrs[] = {
538 &dev_attr_id.attr,
539 &dev_attr_state.attr,
540 &dev_attr_monitor_id.attr,
541 &dev_attr_class_id.attr,
542 &dev_attr_device_id.attr,
543 &dev_attr_modalias.attr,
544 &dev_attr_server_monitor_pending.attr,
545 &dev_attr_client_monitor_pending.attr,
546 &dev_attr_server_monitor_latency.attr,
547 &dev_attr_client_monitor_latency.attr,
548 &dev_attr_server_monitor_conn_id.attr,
549 &dev_attr_client_monitor_conn_id.attr,
550 &dev_attr_out_intr_mask.attr,
551 &dev_attr_out_read_index.attr,
552 &dev_attr_out_write_index.attr,
553 &dev_attr_out_read_bytes_avail.attr,
554 &dev_attr_out_write_bytes_avail.attr,
555 &dev_attr_in_intr_mask.attr,
556 &dev_attr_in_read_index.attr,
557 &dev_attr_in_write_index.attr,
558 &dev_attr_in_read_bytes_avail.attr,
559 &dev_attr_in_write_bytes_avail.attr,
560 &dev_attr_channel_vp_mapping.attr,
561 &dev_attr_vendor.attr,
562 &dev_attr_device.attr,
563 NULL,
564};
565ATTRIBUTE_GROUPS(vmbus_dev);
566
567/*
568 * vmbus_uevent - add uevent for our device
569 *
570 * This routine is invoked when a device is added or removed on the vmbus to
571 * generate a uevent to udev in the userspace. The udev will then look at its
572 * rule and the uevent generated here to load the appropriate driver
573 *
574 * The alias string will be of the form vmbus:guid where guid is the string
575 * representation of the device guid (each byte of the guid will be
576 * represented with two hex characters.
577 */
578static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
579{
580 struct hv_device *dev = device_to_hv_device(device);
581 int ret;
582 char alias_name[VMBUS_ALIAS_LEN + 1];
583
584 print_alias_name(dev, alias_name);
585 ret = add_uevent_var(env, "MODALIAS=vmbus:%s", alias_name);
586 return ret;
587}
588
589static const uuid_le null_guid;
590
591static inline bool is_null_guid(const uuid_le *guid)
592{
593 if (uuid_le_cmp(*guid, null_guid))
594 return false;
595 return true;
596}
597
598/*
599 * Return a matching hv_vmbus_device_id pointer.
600 * If there is no match, return NULL.
601 */
602static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
603 const uuid_le *guid)
604{
605 const struct hv_vmbus_device_id *id = NULL;
606 struct vmbus_dynid *dynid;
607
608 /* Look at the dynamic ids first, before the static ones */
609 spin_lock(&drv->dynids.lock);
610 list_for_each_entry(dynid, &drv->dynids.list, node) {
611 if (!uuid_le_cmp(dynid->id.guid, *guid)) {
612 id = &dynid->id;
613 break;
614 }
615 }
616 spin_unlock(&drv->dynids.lock);
617
618 if (id)
619 return id;
620
621 id = drv->id_table;
622 if (id == NULL)
623 return NULL; /* empty device table */
624
625 for (; !is_null_guid(&id->guid); id++)
626 if (!uuid_le_cmp(id->guid, *guid))
627 return id;
628
629 return NULL;
630}
631
632/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
633static int vmbus_add_dynid(struct hv_driver *drv, uuid_le *guid)
634{
635 struct vmbus_dynid *dynid;
636
637 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
638 if (!dynid)
639 return -ENOMEM;
640
641 dynid->id.guid = *guid;
642
643 spin_lock(&drv->dynids.lock);
644 list_add_tail(&dynid->node, &drv->dynids.list);
645 spin_unlock(&drv->dynids.lock);
646
647 return driver_attach(&drv->driver);
648}
649
650static void vmbus_free_dynids(struct hv_driver *drv)
651{
652 struct vmbus_dynid *dynid, *n;
653
654 spin_lock(&drv->dynids.lock);
655 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
656 list_del(&dynid->node);
657 kfree(dynid);
658 }
659 spin_unlock(&drv->dynids.lock);
660}
661
662/*
663 * store_new_id - sysfs frontend to vmbus_add_dynid()
664 *
665 * Allow GUIDs to be added to an existing driver via sysfs.
666 */
667static ssize_t new_id_store(struct device_driver *driver, const char *buf,
668 size_t count)
669{
670 struct hv_driver *drv = drv_to_hv_drv(driver);
671 uuid_le guid;
672 ssize_t retval;
673
674 retval = uuid_le_to_bin(buf, &guid);
675 if (retval)
676 return retval;
677
678 if (hv_vmbus_get_id(drv, &guid))
679 return -EEXIST;
680
681 retval = vmbus_add_dynid(drv, &guid);
682 if (retval)
683 return retval;
684 return count;
685}
686static DRIVER_ATTR_WO(new_id);
687
688/*
689 * store_remove_id - remove a PCI device ID from this driver
690 *
691 * Removes a dynamic pci device ID to this driver.
692 */
693static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
694 size_t count)
695{
696 struct hv_driver *drv = drv_to_hv_drv(driver);
697 struct vmbus_dynid *dynid, *n;
698 uuid_le guid;
699 ssize_t retval;
700
701 retval = uuid_le_to_bin(buf, &guid);
702 if (retval)
703 return retval;
704
705 retval = -ENODEV;
706 spin_lock(&drv->dynids.lock);
707 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
708 struct hv_vmbus_device_id *id = &dynid->id;
709
710 if (!uuid_le_cmp(id->guid, guid)) {
711 list_del(&dynid->node);
712 kfree(dynid);
713 retval = count;
714 break;
715 }
716 }
717 spin_unlock(&drv->dynids.lock);
718
719 return retval;
720}
721static DRIVER_ATTR_WO(remove_id);
722
723static struct attribute *vmbus_drv_attrs[] = {
724 &driver_attr_new_id.attr,
725 &driver_attr_remove_id.attr,
726 NULL,
727};
728ATTRIBUTE_GROUPS(vmbus_drv);
729
730
731/*
732 * vmbus_match - Attempt to match the specified device to the specified driver
733 */
734static int vmbus_match(struct device *device, struct device_driver *driver)
735{
736 struct hv_driver *drv = drv_to_hv_drv(driver);
737 struct hv_device *hv_dev = device_to_hv_device(device);
738
739 /* The hv_sock driver handles all hv_sock offers. */
740 if (is_hvsock_channel(hv_dev->channel))
741 return drv->hvsock;
742
743 if (hv_vmbus_get_id(drv, &hv_dev->dev_type))
744 return 1;
745
746 return 0;
747}
748
749/*
750 * vmbus_probe - Add the new vmbus's child device
751 */
752static int vmbus_probe(struct device *child_device)
753{
754 int ret = 0;
755 struct hv_driver *drv =
756 drv_to_hv_drv(child_device->driver);
757 struct hv_device *dev = device_to_hv_device(child_device);
758 const struct hv_vmbus_device_id *dev_id;
759
760 dev_id = hv_vmbus_get_id(drv, &dev->dev_type);
761 if (drv->probe) {
762 ret = drv->probe(dev, dev_id);
763 if (ret != 0)
764 pr_err("probe failed for device %s (%d)\n",
765 dev_name(child_device), ret);
766
767 } else {
768 pr_err("probe not set for driver %s\n",
769 dev_name(child_device));
770 ret = -ENODEV;
771 }
772 return ret;
773}
774
775/*
776 * vmbus_remove - Remove a vmbus device
777 */
778static int vmbus_remove(struct device *child_device)
779{
780 struct hv_driver *drv;
781 struct hv_device *dev = device_to_hv_device(child_device);
782
783 if (child_device->driver) {
784 drv = drv_to_hv_drv(child_device->driver);
785 if (drv->remove)
786 drv->remove(dev);
787 }
788
789 return 0;
790}
791
792
793/*
794 * vmbus_shutdown - Shutdown a vmbus device
795 */
796static void vmbus_shutdown(struct device *child_device)
797{
798 struct hv_driver *drv;
799 struct hv_device *dev = device_to_hv_device(child_device);
800
801
802 /* The device may not be attached yet */
803 if (!child_device->driver)
804 return;
805
806 drv = drv_to_hv_drv(child_device->driver);
807
808 if (drv->shutdown)
809 drv->shutdown(dev);
810}
811
812
813/*
814 * vmbus_device_release - Final callback release of the vmbus child device
815 */
816static void vmbus_device_release(struct device *device)
817{
818 struct hv_device *hv_dev = device_to_hv_device(device);
819 struct vmbus_channel *channel = hv_dev->channel;
820
821 mutex_lock(&vmbus_connection.channel_mutex);
822 hv_process_channel_removal(channel->offermsg.child_relid);
823 mutex_unlock(&vmbus_connection.channel_mutex);
824 kfree(hv_dev);
825
826}
827
828/* The one and only one */
829static struct bus_type hv_bus = {
830 .name = "vmbus",
831 .match = vmbus_match,
832 .shutdown = vmbus_shutdown,
833 .remove = vmbus_remove,
834 .probe = vmbus_probe,
835 .uevent = vmbus_uevent,
836 .dev_groups = vmbus_dev_groups,
837 .drv_groups = vmbus_drv_groups,
838};
839
840struct onmessage_work_context {
841 struct work_struct work;
842 struct hv_message msg;
843};
844
845static void vmbus_onmessage_work(struct work_struct *work)
846{
847 struct onmessage_work_context *ctx;
848
849 /* Do not process messages if we're in DISCONNECTED state */
850 if (vmbus_connection.conn_state == DISCONNECTED)
851 return;
852
853 ctx = container_of(work, struct onmessage_work_context,
854 work);
855 vmbus_onmessage(&ctx->msg);
856 kfree(ctx);
857}
858
859static void hv_process_timer_expiration(struct hv_message *msg,
860 struct hv_per_cpu_context *hv_cpu)
861{
862 struct clock_event_device *dev = hv_cpu->clk_evt;
863
864 if (dev->event_handler)
865 dev->event_handler(dev);
866
867 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
868}
869
870void vmbus_on_msg_dpc(unsigned long data)
871{
872 struct hv_per_cpu_context *hv_cpu = (void *)data;
873 void *page_addr = hv_cpu->synic_message_page;
874 struct hv_message *msg = (struct hv_message *)page_addr +
875 VMBUS_MESSAGE_SINT;
876 struct vmbus_channel_message_header *hdr;
877 const struct vmbus_channel_message_table_entry *entry;
878 struct onmessage_work_context *ctx;
879 u32 message_type = msg->header.message_type;
880
881 if (message_type == HVMSG_NONE)
882 /* no msg */
883 return;
884
885 hdr = (struct vmbus_channel_message_header *)msg->u.payload;
886
887 if (hdr->msgtype >= CHANNELMSG_COUNT) {
888 WARN_ONCE(1, "unknown msgtype=%d\n", hdr->msgtype);
889 goto msg_handled;
890 }
891
892 entry = &channel_message_table[hdr->msgtype];
893
894 if (!entry->message_handler)
895 goto msg_handled;
896
897 if (entry->handler_type == VMHT_BLOCKING) {
898 ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
899 if (ctx == NULL)
900 return;
901
902 INIT_WORK(&ctx->work, vmbus_onmessage_work);
903 memcpy(&ctx->msg, msg, sizeof(*msg));
904
905 /*
906 * The host can generate a rescind message while we
907 * may still be handling the original offer. We deal with
908 * this condition by ensuring the processing is done on the
909 * same CPU.
910 */
911 switch (hdr->msgtype) {
912 case CHANNELMSG_RESCIND_CHANNELOFFER:
913 /*
914 * If we are handling the rescind message;
915 * schedule the work on the global work queue.
916 */
917 schedule_work_on(vmbus_connection.connect_cpu,
918 &ctx->work);
919 break;
920
921 case CHANNELMSG_OFFERCHANNEL:
922 atomic_inc(&vmbus_connection.offer_in_progress);
923 queue_work_on(vmbus_connection.connect_cpu,
924 vmbus_connection.work_queue,
925 &ctx->work);
926 break;
927
928 default:
929 queue_work(vmbus_connection.work_queue, &ctx->work);
930 }
931 } else
932 entry->message_handler(hdr);
933
934msg_handled:
935 vmbus_signal_eom(msg, message_type);
936}
937
938
939/*
940 * Direct callback for channels using other deferred processing
941 */
942static void vmbus_channel_isr(struct vmbus_channel *channel)
943{
944 void (*callback_fn)(void *);
945
946 callback_fn = READ_ONCE(channel->onchannel_callback);
947 if (likely(callback_fn != NULL))
948 (*callback_fn)(channel->channel_callback_context);
949}
950
951/*
952 * Schedule all channels with events pending
953 */
954static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
955{
956 unsigned long *recv_int_page;
957 u32 maxbits, relid;
958
959 if (vmbus_proto_version < VERSION_WIN8) {
960 maxbits = MAX_NUM_CHANNELS_SUPPORTED;
961 recv_int_page = vmbus_connection.recv_int_page;
962 } else {
963 /*
964 * When the host is win8 and beyond, the event page
965 * can be directly checked to get the id of the channel
966 * that has the interrupt pending.
967 */
968 void *page_addr = hv_cpu->synic_event_page;
969 union hv_synic_event_flags *event
970 = (union hv_synic_event_flags *)page_addr +
971 VMBUS_MESSAGE_SINT;
972
973 maxbits = HV_EVENT_FLAGS_COUNT;
974 recv_int_page = event->flags;
975 }
976
977 if (unlikely(!recv_int_page))
978 return;
979
980 for_each_set_bit(relid, recv_int_page, maxbits) {
981 struct vmbus_channel *channel;
982
983 if (!sync_test_and_clear_bit(relid, recv_int_page))
984 continue;
985
986 /* Special case - vmbus channel protocol msg */
987 if (relid == 0)
988 continue;
989
990 rcu_read_lock();
991
992 /* Find channel based on relid */
993 list_for_each_entry_rcu(channel, &hv_cpu->chan_list, percpu_list) {
994 if (channel->offermsg.child_relid != relid)
995 continue;
996
997 if (channel->rescind)
998 continue;
999
1000 switch (channel->callback_mode) {
1001 case HV_CALL_ISR:
1002 vmbus_channel_isr(channel);
1003 break;
1004
1005 case HV_CALL_BATCHED:
1006 hv_begin_read(&channel->inbound);
1007 /* fallthrough */
1008 case HV_CALL_DIRECT:
1009 tasklet_schedule(&channel->callback_event);
1010 }
1011 }
1012
1013 rcu_read_unlock();
1014 }
1015}
1016
1017static void vmbus_isr(void)
1018{
1019 struct hv_per_cpu_context *hv_cpu
1020 = this_cpu_ptr(hv_context.cpu_context);
1021 void *page_addr = hv_cpu->synic_event_page;
1022 struct hv_message *msg;
1023 union hv_synic_event_flags *event;
1024 bool handled = false;
1025
1026 if (unlikely(page_addr == NULL))
1027 return;
1028
1029 event = (union hv_synic_event_flags *)page_addr +
1030 VMBUS_MESSAGE_SINT;
1031 /*
1032 * Check for events before checking for messages. This is the order
1033 * in which events and messages are checked in Windows guests on
1034 * Hyper-V, and the Windows team suggested we do the same.
1035 */
1036
1037 if ((vmbus_proto_version == VERSION_WS2008) ||
1038 (vmbus_proto_version == VERSION_WIN7)) {
1039
1040 /* Since we are a child, we only need to check bit 0 */
1041 if (sync_test_and_clear_bit(0, event->flags))
1042 handled = true;
1043 } else {
1044 /*
1045 * Our host is win8 or above. The signaling mechanism
1046 * has changed and we can directly look at the event page.
1047 * If bit n is set then we have an interrup on the channel
1048 * whose id is n.
1049 */
1050 handled = true;
1051 }
1052
1053 if (handled)
1054 vmbus_chan_sched(hv_cpu);
1055
1056 page_addr = hv_cpu->synic_message_page;
1057 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1058
1059 /* Check if there are actual msgs to be processed */
1060 if (msg->header.message_type != HVMSG_NONE) {
1061 if (msg->header.message_type == HVMSG_TIMER_EXPIRED)
1062 hv_process_timer_expiration(msg, hv_cpu);
1063 else
1064 tasklet_schedule(&hv_cpu->msg_dpc);
1065 }
1066
1067 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR, 0);
1068}
1069
1070
1071/*
1072 * vmbus_bus_init -Main vmbus driver initialization routine.
1073 *
1074 * Here, we
1075 * - initialize the vmbus driver context
1076 * - invoke the vmbus hv main init routine
1077 * - retrieve the channel offers
1078 */
1079static int vmbus_bus_init(void)
1080{
1081 int ret;
1082
1083 /* Hypervisor initialization...setup hypercall page..etc */
1084 ret = hv_init();
1085 if (ret != 0) {
1086 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1087 return ret;
1088 }
1089
1090 ret = bus_register(&hv_bus);
1091 if (ret)
1092 return ret;
1093
1094 hv_setup_vmbus_irq(vmbus_isr);
1095
1096 ret = hv_synic_alloc();
1097 if (ret)
1098 goto err_alloc;
1099 /*
1100 * Initialize the per-cpu interrupt state and
1101 * connect to the host.
1102 */
1103 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv:online",
1104 hv_synic_init, hv_synic_cleanup);
1105 if (ret < 0)
1106 goto err_alloc;
1107 hyperv_cpuhp_online = ret;
1108
1109 ret = vmbus_connect();
1110 if (ret)
1111 goto err_connect;
1112
1113 /*
1114 * Only register if the crash MSRs are available
1115 */
1116 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1117 register_die_notifier(&hyperv_die_block);
1118 atomic_notifier_chain_register(&panic_notifier_list,
1119 &hyperv_panic_block);
1120 }
1121
1122 vmbus_request_offers();
1123
1124 return 0;
1125
1126err_connect:
1127 cpuhp_remove_state(hyperv_cpuhp_online);
1128err_alloc:
1129 hv_synic_free();
1130 hv_remove_vmbus_irq();
1131
1132 bus_unregister(&hv_bus);
1133
1134 return ret;
1135}
1136
1137/**
1138 * __vmbus_child_driver_register() - Register a vmbus's driver
1139 * @hv_driver: Pointer to driver structure you want to register
1140 * @owner: owner module of the drv
1141 * @mod_name: module name string
1142 *
1143 * Registers the given driver with Linux through the 'driver_register()' call
1144 * and sets up the hyper-v vmbus handling for this driver.
1145 * It will return the state of the 'driver_register()' call.
1146 *
1147 */
1148int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1149{
1150 int ret;
1151
1152 pr_info("registering driver %s\n", hv_driver->name);
1153
1154 ret = vmbus_exists();
1155 if (ret < 0)
1156 return ret;
1157
1158 hv_driver->driver.name = hv_driver->name;
1159 hv_driver->driver.owner = owner;
1160 hv_driver->driver.mod_name = mod_name;
1161 hv_driver->driver.bus = &hv_bus;
1162
1163 spin_lock_init(&hv_driver->dynids.lock);
1164 INIT_LIST_HEAD(&hv_driver->dynids.list);
1165
1166 ret = driver_register(&hv_driver->driver);
1167
1168 return ret;
1169}
1170EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1171
1172/**
1173 * vmbus_driver_unregister() - Unregister a vmbus's driver
1174 * @hv_driver: Pointer to driver structure you want to
1175 * un-register
1176 *
1177 * Un-register the given driver that was previous registered with a call to
1178 * vmbus_driver_register()
1179 */
1180void vmbus_driver_unregister(struct hv_driver *hv_driver)
1181{
1182 pr_info("unregistering driver %s\n", hv_driver->name);
1183
1184 if (!vmbus_exists()) {
1185 driver_unregister(&hv_driver->driver);
1186 vmbus_free_dynids(hv_driver);
1187 }
1188}
1189EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1190
1191/*
1192 * vmbus_device_create - Creates and registers a new child device
1193 * on the vmbus.
1194 */
1195struct hv_device *vmbus_device_create(const uuid_le *type,
1196 const uuid_le *instance,
1197 struct vmbus_channel *channel)
1198{
1199 struct hv_device *child_device_obj;
1200
1201 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
1202 if (!child_device_obj) {
1203 pr_err("Unable to allocate device object for child device\n");
1204 return NULL;
1205 }
1206
1207 child_device_obj->channel = channel;
1208 memcpy(&child_device_obj->dev_type, type, sizeof(uuid_le));
1209 memcpy(&child_device_obj->dev_instance, instance,
1210 sizeof(uuid_le));
1211 child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
1212
1213
1214 return child_device_obj;
1215}
1216
1217/*
1218 * vmbus_device_register - Register the child device
1219 */
1220int vmbus_device_register(struct hv_device *child_device_obj)
1221{
1222 int ret = 0;
1223
1224 dev_set_name(&child_device_obj->device, "%pUl",
1225 child_device_obj->channel->offermsg.offer.if_instance.b);
1226
1227 child_device_obj->device.bus = &hv_bus;
1228 child_device_obj->device.parent = &hv_acpi_dev->dev;
1229 child_device_obj->device.release = vmbus_device_release;
1230
1231 /*
1232 * Register with the LDM. This will kick off the driver/device
1233 * binding...which will eventually call vmbus_match() and vmbus_probe()
1234 */
1235 ret = device_register(&child_device_obj->device);
1236
1237 if (ret)
1238 pr_err("Unable to register child device\n");
1239 else
1240 pr_debug("child device %s registered\n",
1241 dev_name(&child_device_obj->device));
1242
1243 return ret;
1244}
1245
1246/*
1247 * vmbus_device_unregister - Remove the specified child device
1248 * from the vmbus.
1249 */
1250void vmbus_device_unregister(struct hv_device *device_obj)
1251{
1252 pr_debug("child device %s unregistered\n",
1253 dev_name(&device_obj->device));
1254
1255 /*
1256 * Kick off the process of unregistering the device.
1257 * This will call vmbus_remove() and eventually vmbus_device_release()
1258 */
1259 device_unregister(&device_obj->device);
1260}
1261
1262
1263/*
1264 * VMBUS is an acpi enumerated device. Get the information we
1265 * need from DSDT.
1266 */
1267#define VTPM_BASE_ADDRESS 0xfed40000
1268static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1269{
1270 resource_size_t start = 0;
1271 resource_size_t end = 0;
1272 struct resource *new_res;
1273 struct resource **old_res = &hyperv_mmio;
1274 struct resource **prev_res = NULL;
1275
1276 switch (res->type) {
1277
1278 /*
1279 * "Address" descriptors are for bus windows. Ignore
1280 * "memory" descriptors, which are for registers on
1281 * devices.
1282 */
1283 case ACPI_RESOURCE_TYPE_ADDRESS32:
1284 start = res->data.address32.address.minimum;
1285 end = res->data.address32.address.maximum;
1286 break;
1287
1288 case ACPI_RESOURCE_TYPE_ADDRESS64:
1289 start = res->data.address64.address.minimum;
1290 end = res->data.address64.address.maximum;
1291 break;
1292
1293 default:
1294 /* Unused resource type */
1295 return AE_OK;
1296
1297 }
1298 /*
1299 * Ignore ranges that are below 1MB, as they're not
1300 * necessary or useful here.
1301 */
1302 if (end < 0x100000)
1303 return AE_OK;
1304
1305 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
1306 if (!new_res)
1307 return AE_NO_MEMORY;
1308
1309 /* If this range overlaps the virtual TPM, truncate it. */
1310 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
1311 end = VTPM_BASE_ADDRESS;
1312
1313 new_res->name = "hyperv mmio";
1314 new_res->flags = IORESOURCE_MEM;
1315 new_res->start = start;
1316 new_res->end = end;
1317
1318 /*
1319 * If two ranges are adjacent, merge them.
1320 */
1321 do {
1322 if (!*old_res) {
1323 *old_res = new_res;
1324 break;
1325 }
1326
1327 if (((*old_res)->end + 1) == new_res->start) {
1328 (*old_res)->end = new_res->end;
1329 kfree(new_res);
1330 break;
1331 }
1332
1333 if ((*old_res)->start == new_res->end + 1) {
1334 (*old_res)->start = new_res->start;
1335 kfree(new_res);
1336 break;
1337 }
1338
1339 if ((*old_res)->start > new_res->end) {
1340 new_res->sibling = *old_res;
1341 if (prev_res)
1342 (*prev_res)->sibling = new_res;
1343 *old_res = new_res;
1344 break;
1345 }
1346
1347 prev_res = old_res;
1348 old_res = &(*old_res)->sibling;
1349
1350 } while (1);
1351
1352 return AE_OK;
1353}
1354
1355static int vmbus_acpi_remove(struct acpi_device *device)
1356{
1357 struct resource *cur_res;
1358 struct resource *next_res;
1359
1360 if (hyperv_mmio) {
1361 if (fb_mmio) {
1362 __release_region(hyperv_mmio, fb_mmio->start,
1363 resource_size(fb_mmio));
1364 fb_mmio = NULL;
1365 }
1366
1367 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
1368 next_res = cur_res->sibling;
1369 kfree(cur_res);
1370 }
1371 }
1372
1373 return 0;
1374}
1375
1376static void vmbus_reserve_fb(void)
1377{
1378 int size;
1379 /*
1380 * Make a claim for the frame buffer in the resource tree under the
1381 * first node, which will be the one below 4GB. The length seems to
1382 * be underreported, particularly in a Generation 1 VM. So start out
1383 * reserving a larger area and make it smaller until it succeeds.
1384 */
1385
1386 if (screen_info.lfb_base) {
1387 if (efi_enabled(EFI_BOOT))
1388 size = max_t(__u32, screen_info.lfb_size, 0x800000);
1389 else
1390 size = max_t(__u32, screen_info.lfb_size, 0x4000000);
1391
1392 for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
1393 fb_mmio = __request_region(hyperv_mmio,
1394 screen_info.lfb_base, size,
1395 fb_mmio_name, 0);
1396 }
1397 }
1398}
1399
1400/**
1401 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1402 * @new: If successful, supplied a pointer to the
1403 * allocated MMIO space.
1404 * @device_obj: Identifies the caller
1405 * @min: Minimum guest physical address of the
1406 * allocation
1407 * @max: Maximum guest physical address
1408 * @size: Size of the range to be allocated
1409 * @align: Alignment of the range to be allocated
1410 * @fb_overlap_ok: Whether this allocation can be allowed
1411 * to overlap the video frame buffer.
1412 *
1413 * This function walks the resources granted to VMBus by the
1414 * _CRS object in the ACPI namespace underneath the parent
1415 * "bridge" whether that's a root PCI bus in the Generation 1
1416 * case or a Module Device in the Generation 2 case. It then
1417 * attempts to allocate from the global MMIO pool in a way that
1418 * matches the constraints supplied in these parameters and by
1419 * that _CRS.
1420 *
1421 * Return: 0 on success, -errno on failure
1422 */
1423int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1424 resource_size_t min, resource_size_t max,
1425 resource_size_t size, resource_size_t align,
1426 bool fb_overlap_ok)
1427{
1428 struct resource *iter, *shadow;
1429 resource_size_t range_min, range_max, start;
1430 const char *dev_n = dev_name(&device_obj->device);
1431 int retval;
1432
1433 retval = -ENXIO;
1434 down(&hyperv_mmio_lock);
1435
1436 /*
1437 * If overlaps with frame buffers are allowed, then first attempt to
1438 * make the allocation from within the reserved region. Because it
1439 * is already reserved, no shadow allocation is necessary.
1440 */
1441 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
1442 !(max < fb_mmio->start)) {
1443
1444 range_min = fb_mmio->start;
1445 range_max = fb_mmio->end;
1446 start = (range_min + align - 1) & ~(align - 1);
1447 for (; start + size - 1 <= range_max; start += align) {
1448 *new = request_mem_region_exclusive(start, size, dev_n);
1449 if (*new) {
1450 retval = 0;
1451 goto exit;
1452 }
1453 }
1454 }
1455
1456 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1457 if ((iter->start >= max) || (iter->end <= min))
1458 continue;
1459
1460 range_min = iter->start;
1461 range_max = iter->end;
1462 start = (range_min + align - 1) & ~(align - 1);
1463 for (; start + size - 1 <= range_max; start += align) {
1464 shadow = __request_region(iter, start, size, NULL,
1465 IORESOURCE_BUSY);
1466 if (!shadow)
1467 continue;
1468
1469 *new = request_mem_region_exclusive(start, size, dev_n);
1470 if (*new) {
1471 shadow->name = (char *)*new;
1472 retval = 0;
1473 goto exit;
1474 }
1475
1476 __release_region(iter, start, size);
1477 }
1478 }
1479
1480exit:
1481 up(&hyperv_mmio_lock);
1482 return retval;
1483}
1484EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
1485
1486/**
1487 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1488 * @start: Base address of region to release.
1489 * @size: Size of the range to be allocated
1490 *
1491 * This function releases anything requested by
1492 * vmbus_mmio_allocate().
1493 */
1494void vmbus_free_mmio(resource_size_t start, resource_size_t size)
1495{
1496 struct resource *iter;
1497
1498 down(&hyperv_mmio_lock);
1499 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
1500 if ((iter->start >= start + size) || (iter->end <= start))
1501 continue;
1502
1503 __release_region(iter, start, size);
1504 }
1505 release_mem_region(start, size);
1506 up(&hyperv_mmio_lock);
1507
1508}
1509EXPORT_SYMBOL_GPL(vmbus_free_mmio);
1510
1511static int vmbus_acpi_add(struct acpi_device *device)
1512{
1513 acpi_status result;
1514 int ret_val = -ENODEV;
1515 struct acpi_device *ancestor;
1516
1517 hv_acpi_dev = device;
1518
1519 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1520 vmbus_walk_resources, NULL);
1521
1522 if (ACPI_FAILURE(result))
1523 goto acpi_walk_err;
1524 /*
1525 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1526 * firmware) is the VMOD that has the mmio ranges. Get that.
1527 */
1528 for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
1529 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
1530 vmbus_walk_resources, NULL);
1531
1532 if (ACPI_FAILURE(result))
1533 continue;
1534 if (hyperv_mmio) {
1535 vmbus_reserve_fb();
1536 break;
1537 }
1538 }
1539 ret_val = 0;
1540
1541acpi_walk_err:
1542 complete(&probe_event);
1543 if (ret_val)
1544 vmbus_acpi_remove(device);
1545 return ret_val;
1546}
1547
1548static const struct acpi_device_id vmbus_acpi_device_ids[] = {
1549 {"VMBUS", 0},
1550 {"VMBus", 0},
1551 {"", 0},
1552};
1553MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
1554
1555static struct acpi_driver vmbus_acpi_driver = {
1556 .name = "vmbus",
1557 .ids = vmbus_acpi_device_ids,
1558 .ops = {
1559 .add = vmbus_acpi_add,
1560 .remove = vmbus_acpi_remove,
1561 },
1562};
1563
1564static void hv_kexec_handler(void)
1565{
1566 hv_synic_clockevents_cleanup();
1567 vmbus_initiate_unload(false);
1568 vmbus_connection.conn_state = DISCONNECTED;
1569 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1570 mb();
1571 cpuhp_remove_state(hyperv_cpuhp_online);
1572 hyperv_cleanup();
1573};
1574
1575static void hv_crash_handler(struct pt_regs *regs)
1576{
1577 vmbus_initiate_unload(true);
1578 /*
1579 * In crash handler we can't schedule synic cleanup for all CPUs,
1580 * doing the cleanup for current CPU only. This should be sufficient
1581 * for kdump.
1582 */
1583 vmbus_connection.conn_state = DISCONNECTED;
1584 hv_synic_cleanup(smp_processor_id());
1585 hyperv_cleanup();
1586};
1587
1588static int __init hv_acpi_init(void)
1589{
1590 int ret, t;
1591
1592 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
1593 return -ENODEV;
1594
1595 init_completion(&probe_event);
1596
1597 /*
1598 * Get ACPI resources first.
1599 */
1600 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
1601
1602 if (ret)
1603 return ret;
1604
1605 t = wait_for_completion_timeout(&probe_event, 5*HZ);
1606 if (t == 0) {
1607 ret = -ETIMEDOUT;
1608 goto cleanup;
1609 }
1610
1611 ret = vmbus_bus_init();
1612 if (ret)
1613 goto cleanup;
1614
1615 hv_setup_kexec_handler(hv_kexec_handler);
1616 hv_setup_crash_handler(hv_crash_handler);
1617
1618 return 0;
1619
1620cleanup:
1621 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1622 hv_acpi_dev = NULL;
1623 return ret;
1624}
1625
1626static void __exit vmbus_exit(void)
1627{
1628 int cpu;
1629
1630 hv_remove_kexec_handler();
1631 hv_remove_crash_handler();
1632 vmbus_connection.conn_state = DISCONNECTED;
1633 hv_synic_clockevents_cleanup();
1634 vmbus_disconnect();
1635 hv_remove_vmbus_irq();
1636 for_each_online_cpu(cpu) {
1637 struct hv_per_cpu_context *hv_cpu
1638 = per_cpu_ptr(hv_context.cpu_context, cpu);
1639
1640 tasklet_kill(&hv_cpu->msg_dpc);
1641 }
1642 vmbus_free_channels();
1643
1644 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1645 unregister_die_notifier(&hyperv_die_block);
1646 atomic_notifier_chain_unregister(&panic_notifier_list,
1647 &hyperv_panic_block);
1648 }
1649 bus_unregister(&hv_bus);
1650
1651 cpuhp_remove_state(hyperv_cpuhp_online);
1652 hv_synic_free();
1653 acpi_bus_unregister_driver(&vmbus_acpi_driver);
1654}
1655
1656
1657MODULE_LICENSE("GPL");
1658
1659subsys_initcall(hv_acpi_init);
1660module_exit(vmbus_exit);