blob: edceda640fa2f14cc3702ce20ef1f268dbf423d3 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
9 *
10 * See industrialio/accels/sca3000.h for comments.
11 */
12
13#include <linux/interrupt.h>
14#include <linux/fs.h>
15#include <linux/device.h>
16#include <linux/slab.h>
17#include <linux/kernel.h>
18#include <linux/spi/spi.h>
19#include <linux/sysfs.h>
20#include <linux/module.h>
21#include <linux/uaccess.h>
22#include <linux/iio/iio.h>
23#include <linux/iio/sysfs.h>
24#include <linux/iio/events.h>
25#include <linux/iio/buffer.h>
26#include <linux/iio/kfifo_buf.h>
27
28#define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
29#define SCA3000_READ_REG(a) ((a) << 2)
30
31#define SCA3000_REG_REVID_ADDR 0x00
32#define SCA3000_REG_REVID_MAJOR_MASK GENMASK(8, 4)
33#define SCA3000_REG_REVID_MINOR_MASK GENMASK(3, 0)
34
35#define SCA3000_REG_STATUS_ADDR 0x02
36#define SCA3000_LOCKED BIT(5)
37#define SCA3000_EEPROM_CS_ERROR BIT(1)
38#define SCA3000_SPI_FRAME_ERROR BIT(0)
39
40/* All reads done using register decrement so no need to directly access LSBs */
41#define SCA3000_REG_X_MSB_ADDR 0x05
42#define SCA3000_REG_Y_MSB_ADDR 0x07
43#define SCA3000_REG_Z_MSB_ADDR 0x09
44
45#define SCA3000_REG_RING_OUT_ADDR 0x0f
46
47/* Temp read untested - the e05 doesn't have the sensor */
48#define SCA3000_REG_TEMP_MSB_ADDR 0x13
49
50#define SCA3000_REG_MODE_ADDR 0x14
51#define SCA3000_MODE_PROT_MASK 0x28
52#define SCA3000_REG_MODE_RING_BUF_ENABLE BIT(7)
53#define SCA3000_REG_MODE_RING_BUF_8BIT BIT(6)
54
55/*
56 * Free fall detection triggers an interrupt if the acceleration
57 * is below a threshold for equivalent of 25cm drop
58 */
59#define SCA3000_REG_MODE_FREE_FALL_DETECT BIT(4)
60#define SCA3000_REG_MODE_MEAS_MODE_NORMAL 0x00
61#define SCA3000_REG_MODE_MEAS_MODE_OP_1 0x01
62#define SCA3000_REG_MODE_MEAS_MODE_OP_2 0x02
63
64/*
65 * In motion detection mode the accelerations are band pass filtered
66 * (approx 1 - 25Hz) and then a programmable threshold used to trigger
67 * and interrupt.
68 */
69#define SCA3000_REG_MODE_MEAS_MODE_MOT_DET 0x03
70#define SCA3000_REG_MODE_MODE_MASK 0x03
71
72#define SCA3000_REG_BUF_COUNT_ADDR 0x15
73
74#define SCA3000_REG_INT_STATUS_ADDR 0x16
75#define SCA3000_REG_INT_STATUS_THREE_QUARTERS BIT(7)
76#define SCA3000_REG_INT_STATUS_HALF BIT(6)
77
78#define SCA3000_INT_STATUS_FREE_FALL BIT(3)
79#define SCA3000_INT_STATUS_Y_TRIGGER BIT(2)
80#define SCA3000_INT_STATUS_X_TRIGGER BIT(1)
81#define SCA3000_INT_STATUS_Z_TRIGGER BIT(0)
82
83/* Used to allow access to multiplexed registers */
84#define SCA3000_REG_CTRL_SEL_ADDR 0x18
85/* Only available for SCA3000-D03 and SCA3000-D01 */
86#define SCA3000_REG_CTRL_SEL_I2C_DISABLE 0x01
87#define SCA3000_REG_CTRL_SEL_MD_CTRL 0x02
88#define SCA3000_REG_CTRL_SEL_MD_Y_TH 0x03
89#define SCA3000_REG_CTRL_SEL_MD_X_TH 0x04
90#define SCA3000_REG_CTRL_SEL_MD_Z_TH 0x05
91/*
92 * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
93 * will not function
94 */
95#define SCA3000_REG_CTRL_SEL_OUT_CTRL 0x0B
96
97#define SCA3000_REG_OUT_CTRL_PROT_MASK 0xE0
98#define SCA3000_REG_OUT_CTRL_BUF_X_EN 0x10
99#define SCA3000_REG_OUT_CTRL_BUF_Y_EN 0x08
100#define SCA3000_REG_OUT_CTRL_BUF_Z_EN 0x04
101#define SCA3000_REG_OUT_CTRL_BUF_DIV_MASK 0x03
102#define SCA3000_REG_OUT_CTRL_BUF_DIV_4 0x02
103#define SCA3000_REG_OUT_CTRL_BUF_DIV_2 0x01
104
105
106/*
107 * Control which motion detector interrupts are on.
108 * For now only OR combinations are supported.
109 */
110#define SCA3000_MD_CTRL_PROT_MASK 0xC0
111#define SCA3000_MD_CTRL_OR_Y BIT(0)
112#define SCA3000_MD_CTRL_OR_X BIT(1)
113#define SCA3000_MD_CTRL_OR_Z BIT(2)
114/* Currently unsupported */
115#define SCA3000_MD_CTRL_AND_Y BIT(3)
116#define SCA3000_MD_CTRL_AND_X BIT(4)
117#define SAC3000_MD_CTRL_AND_Z BIT(5)
118
119/*
120 * Some control registers of complex access methods requiring this register to
121 * be used to remove a lock.
122 */
123#define SCA3000_REG_UNLOCK_ADDR 0x1e
124
125#define SCA3000_REG_INT_MASK_ADDR 0x21
126#define SCA3000_REG_INT_MASK_PROT_MASK 0x1C
127
128#define SCA3000_REG_INT_MASK_RING_THREE_QUARTER BIT(7)
129#define SCA3000_REG_INT_MASK_RING_HALF BIT(6)
130
131#define SCA3000_REG_INT_MASK_ALL_INTS 0x02
132#define SCA3000_REG_INT_MASK_ACTIVE_HIGH 0x01
133#define SCA3000_REG_INT_MASK_ACTIVE_LOW 0x00
134/* Values of multiplexed registers (write to ctrl_data after select) */
135#define SCA3000_REG_CTRL_DATA_ADDR 0x22
136
137/*
138 * Measurement modes available on some sca3000 series chips. Code assumes others
139 * may become available in the future.
140 *
141 * Bypass - Bypass the low-pass filter in the signal channel so as to increase
142 * signal bandwidth.
143 *
144 * Narrow - Narrow low-pass filtering of the signal channel and half output
145 * data rate by decimation.
146 *
147 * Wide - Widen low-pass filtering of signal channel to increase bandwidth
148 */
149#define SCA3000_OP_MODE_BYPASS 0x01
150#define SCA3000_OP_MODE_NARROW 0x02
151#define SCA3000_OP_MODE_WIDE 0x04
152#define SCA3000_MAX_TX 6
153#define SCA3000_MAX_RX 2
154
155/**
156 * struct sca3000_state - device instance state information
157 * @us: the associated spi device
158 * @info: chip variant information
159 * @last_timestamp: the timestamp of the last event
160 * @mo_det_use_count: reference counter for the motion detection unit
161 * @lock: lock used to protect elements of sca3000_state
162 * and the underlying device state.
163 * @tx: dma-able transmit buffer
164 * @rx: dma-able receive buffer
165 **/
166struct sca3000_state {
167 struct spi_device *us;
168 const struct sca3000_chip_info *info;
169 s64 last_timestamp;
170 int mo_det_use_count;
171 struct mutex lock;
172 /* Can these share a cacheline ? */
173 u8 rx[384] ____cacheline_aligned;
174 u8 tx[6] ____cacheline_aligned;
175};
176
177/**
178 * struct sca3000_chip_info - model dependent parameters
179 * @scale: scale * 10^-6
180 * @temp_output: some devices have temperature sensors.
181 * @measurement_mode_freq: normal mode sampling frequency
182 * @measurement_mode_3db_freq: 3db cutoff frequency of the low pass filter for
183 * the normal measurement mode.
184 * @option_mode_1: first optional mode. Not all models have one
185 * @option_mode_1_freq: option mode 1 sampling frequency
186 * @option_mode_1_3db_freq: 3db cutoff frequency of the low pass filter for
187 * the first option mode.
188 * @option_mode_2: second optional mode. Not all chips have one
189 * @option_mode_2_freq: option mode 2 sampling frequency
190 * @option_mode_2_3db_freq: 3db cutoff frequency of the low pass filter for
191 * the second option mode.
192 * @mod_det_mult_xz: Bit wise multipliers to calculate the threshold
193 * for motion detection in the x and z axis.
194 * @mod_det_mult_y: Bit wise multipliers to calculate the threshold
195 * for motion detection in the y axis.
196 *
197 * This structure is used to hold information about the functionality of a given
198 * sca3000 variant.
199 **/
200struct sca3000_chip_info {
201 unsigned int scale;
202 bool temp_output;
203 int measurement_mode_freq;
204 int measurement_mode_3db_freq;
205 int option_mode_1;
206 int option_mode_1_freq;
207 int option_mode_1_3db_freq;
208 int option_mode_2;
209 int option_mode_2_freq;
210 int option_mode_2_3db_freq;
211 int mot_det_mult_xz[6];
212 int mot_det_mult_y[7];
213};
214
215enum sca3000_variant {
216 d01,
217 e02,
218 e04,
219 e05,
220};
221
222/*
223 * Note where option modes are not defined, the chip simply does not
224 * support any.
225 * Other chips in the sca3000 series use i2c and are not included here.
226 *
227 * Some of these devices are only listed in the family data sheet and
228 * do not actually appear to be available.
229 */
230static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
231 [d01] = {
232 .scale = 7357,
233 .temp_output = true,
234 .measurement_mode_freq = 250,
235 .measurement_mode_3db_freq = 45,
236 .option_mode_1 = SCA3000_OP_MODE_BYPASS,
237 .option_mode_1_freq = 250,
238 .option_mode_1_3db_freq = 70,
239 .mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
240 .mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
241 },
242 [e02] = {
243 .scale = 9810,
244 .measurement_mode_freq = 125,
245 .measurement_mode_3db_freq = 40,
246 .option_mode_1 = SCA3000_OP_MODE_NARROW,
247 .option_mode_1_freq = 63,
248 .option_mode_1_3db_freq = 11,
249 .mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
250 .mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
251 },
252 [e04] = {
253 .scale = 19620,
254 .measurement_mode_freq = 100,
255 .measurement_mode_3db_freq = 38,
256 .option_mode_1 = SCA3000_OP_MODE_NARROW,
257 .option_mode_1_freq = 50,
258 .option_mode_1_3db_freq = 9,
259 .option_mode_2 = SCA3000_OP_MODE_WIDE,
260 .option_mode_2_freq = 400,
261 .option_mode_2_3db_freq = 70,
262 .mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
263 .mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
264 },
265 [e05] = {
266 .scale = 61313,
267 .measurement_mode_freq = 200,
268 .measurement_mode_3db_freq = 60,
269 .option_mode_1 = SCA3000_OP_MODE_NARROW,
270 .option_mode_1_freq = 50,
271 .option_mode_1_3db_freq = 9,
272 .option_mode_2 = SCA3000_OP_MODE_WIDE,
273 .option_mode_2_freq = 400,
274 .option_mode_2_3db_freq = 75,
275 .mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
276 .mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
277 },
278};
279
280static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
281{
282 st->tx[0] = SCA3000_WRITE_REG(address);
283 st->tx[1] = val;
284 return spi_write(st->us, st->tx, 2);
285}
286
287static int sca3000_read_data_short(struct sca3000_state *st,
288 u8 reg_address_high,
289 int len)
290{
291 struct spi_transfer xfer[2] = {
292 {
293 .len = 1,
294 .tx_buf = st->tx,
295 }, {
296 .len = len,
297 .rx_buf = st->rx,
298 }
299 };
300 st->tx[0] = SCA3000_READ_REG(reg_address_high);
301
302 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
303}
304
305/**
306 * sca3000_reg_lock_on() - test if the ctrl register lock is on
307 * @st: Driver specific device instance data.
308 *
309 * Lock must be held.
310 **/
311static int sca3000_reg_lock_on(struct sca3000_state *st)
312{
313 int ret;
314
315 ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
316 if (ret < 0)
317 return ret;
318
319 return !(st->rx[0] & SCA3000_LOCKED);
320}
321
322/**
323 * __sca3000_unlock_reg_lock() - unlock the control registers
324 * @st: Driver specific device instance data.
325 *
326 * Note the device does not appear to support doing this in a single transfer.
327 * This should only ever be used as part of ctrl reg read.
328 * Lock must be held before calling this
329 */
330static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
331{
332 struct spi_transfer xfer[3] = {
333 {
334 .len = 2,
335 .cs_change = 1,
336 .tx_buf = st->tx,
337 }, {
338 .len = 2,
339 .cs_change = 1,
340 .tx_buf = st->tx + 2,
341 }, {
342 .len = 2,
343 .tx_buf = st->tx + 4,
344 },
345 };
346 st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
347 st->tx[1] = 0x00;
348 st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
349 st->tx[3] = 0x50;
350 st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
351 st->tx[5] = 0xA0;
352
353 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
354}
355
356/**
357 * sca3000_write_ctrl_reg() write to a lock protect ctrl register
358 * @st: Driver specific device instance data.
359 * @sel: selects which registers we wish to write to
360 * @val: the value to be written
361 *
362 * Certain control registers are protected against overwriting by the lock
363 * register and use a shared write address. This function allows writing of
364 * these registers.
365 * Lock must be held.
366 */
367static int sca3000_write_ctrl_reg(struct sca3000_state *st,
368 u8 sel,
369 uint8_t val)
370{
371 int ret;
372
373 ret = sca3000_reg_lock_on(st);
374 if (ret < 0)
375 goto error_ret;
376 if (ret) {
377 ret = __sca3000_unlock_reg_lock(st);
378 if (ret)
379 goto error_ret;
380 }
381
382 /* Set the control select register */
383 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
384 if (ret)
385 goto error_ret;
386
387 /* Write the actual value into the register */
388 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
389
390error_ret:
391 return ret;
392}
393
394/**
395 * sca3000_read_ctrl_reg() read from lock protected control register.
396 * @st: Driver specific device instance data.
397 * @ctrl_reg: Which ctrl register do we want to read.
398 *
399 * Lock must be held.
400 */
401static int sca3000_read_ctrl_reg(struct sca3000_state *st,
402 u8 ctrl_reg)
403{
404 int ret;
405
406 ret = sca3000_reg_lock_on(st);
407 if (ret < 0)
408 goto error_ret;
409 if (ret) {
410 ret = __sca3000_unlock_reg_lock(st);
411 if (ret)
412 goto error_ret;
413 }
414 /* Set the control select register */
415 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
416 if (ret)
417 goto error_ret;
418 ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
419 if (ret)
420 goto error_ret;
421 return st->rx[0];
422error_ret:
423 return ret;
424}
425
426/**
427 * sca3000_show_rev() - sysfs interface to read the chip revision number
428 * @indio_dev: Device instance specific generic IIO data.
429 * Driver specific device instance data can be obtained via
430 * via iio_priv(indio_dev)
431 */
432static int sca3000_print_rev(struct iio_dev *indio_dev)
433{
434 int ret;
435 struct sca3000_state *st = iio_priv(indio_dev);
436
437 mutex_lock(&st->lock);
438 ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
439 if (ret < 0)
440 goto error_ret;
441 dev_info(&indio_dev->dev,
442 "sca3000 revision major=%lu, minor=%lu\n",
443 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
444 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
445error_ret:
446 mutex_unlock(&st->lock);
447
448 return ret;
449}
450
451static ssize_t
452sca3000_show_available_3db_freqs(struct device *dev,
453 struct device_attribute *attr,
454 char *buf)
455{
456 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
457 struct sca3000_state *st = iio_priv(indio_dev);
458 int len;
459
460 len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
461 if (st->info->option_mode_1)
462 len += sprintf(buf + len, " %d",
463 st->info->option_mode_1_3db_freq);
464 if (st->info->option_mode_2)
465 len += sprintf(buf + len, " %d",
466 st->info->option_mode_2_3db_freq);
467 len += sprintf(buf + len, "\n");
468
469 return len;
470}
471
472static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
473 S_IRUGO, sca3000_show_available_3db_freqs,
474 NULL, 0);
475
476static const struct iio_event_spec sca3000_event = {
477 .type = IIO_EV_TYPE_MAG,
478 .dir = IIO_EV_DIR_RISING,
479 .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
480};
481
482/*
483 * Note the hack in the number of bits to pretend we have 2 more than
484 * we do in the fifo.
485 */
486#define SCA3000_CHAN(index, mod) \
487 { \
488 .type = IIO_ACCEL, \
489 .modified = 1, \
490 .channel2 = mod, \
491 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
492 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
493 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
494 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
495 .address = index, \
496 .scan_index = index, \
497 .scan_type = { \
498 .sign = 's', \
499 .realbits = 13, \
500 .storagebits = 16, \
501 .shift = 3, \
502 .endianness = IIO_BE, \
503 }, \
504 .event_spec = &sca3000_event, \
505 .num_event_specs = 1, \
506 }
507
508static const struct iio_event_spec sca3000_freefall_event_spec = {
509 .type = IIO_EV_TYPE_MAG,
510 .dir = IIO_EV_DIR_FALLING,
511 .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
512 BIT(IIO_EV_INFO_PERIOD),
513};
514
515static const struct iio_chan_spec sca3000_channels[] = {
516 SCA3000_CHAN(0, IIO_MOD_X),
517 SCA3000_CHAN(1, IIO_MOD_Y),
518 SCA3000_CHAN(2, IIO_MOD_Z),
519 {
520 .type = IIO_ACCEL,
521 .modified = 1,
522 .channel2 = IIO_MOD_X_AND_Y_AND_Z,
523 .scan_index = -1, /* Fake channel */
524 .event_spec = &sca3000_freefall_event_spec,
525 .num_event_specs = 1,
526 },
527};
528
529static const struct iio_chan_spec sca3000_channels_with_temp[] = {
530 SCA3000_CHAN(0, IIO_MOD_X),
531 SCA3000_CHAN(1, IIO_MOD_Y),
532 SCA3000_CHAN(2, IIO_MOD_Z),
533 {
534 .type = IIO_TEMP,
535 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
536 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
537 BIT(IIO_CHAN_INFO_OFFSET),
538 /* No buffer support */
539 .scan_index = -1,
540 },
541 {
542 .type = IIO_ACCEL,
543 .modified = 1,
544 .channel2 = IIO_MOD_X_AND_Y_AND_Z,
545 .scan_index = -1, /* Fake channel */
546 .event_spec = &sca3000_freefall_event_spec,
547 .num_event_specs = 1,
548 },
549};
550
551static u8 sca3000_addresses[3][3] = {
552 [0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
553 SCA3000_MD_CTRL_OR_X},
554 [1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
555 SCA3000_MD_CTRL_OR_Y},
556 [2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
557 SCA3000_MD_CTRL_OR_Z},
558};
559
560/**
561 * __sca3000_get_base_freq() - obtain mode specific base frequency
562 * @st: Private driver specific device instance specific state.
563 * @info: chip type specific information.
564 * @base_freq: Base frequency for the current measurement mode.
565 *
566 * lock must be held
567 */
568static inline int __sca3000_get_base_freq(struct sca3000_state *st,
569 const struct sca3000_chip_info *info,
570 int *base_freq)
571{
572 int ret;
573
574 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
575 if (ret)
576 goto error_ret;
577 switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
578 case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
579 *base_freq = info->measurement_mode_freq;
580 break;
581 case SCA3000_REG_MODE_MEAS_MODE_OP_1:
582 *base_freq = info->option_mode_1_freq;
583 break;
584 case SCA3000_REG_MODE_MEAS_MODE_OP_2:
585 *base_freq = info->option_mode_2_freq;
586 break;
587 default:
588 ret = -EINVAL;
589 }
590error_ret:
591 return ret;
592}
593
594/**
595 * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
596 * @st: Private driver specific device instance specific state.
597 * @val: The frequency read back.
598 *
599 * lock must be held
600 **/
601static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
602{
603 int ret;
604
605 ret = __sca3000_get_base_freq(st, st->info, val);
606 if (ret)
607 return ret;
608
609 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
610 if (ret < 0)
611 return ret;
612
613 if (*val > 0) {
614 ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
615 switch (ret) {
616 case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
617 *val /= 2;
618 break;
619 case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
620 *val /= 4;
621 break;
622 }
623 }
624
625 return 0;
626}
627
628/**
629 * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
630 * @st: Private driver specific device instance specific state.
631 * @val: The frequency desired.
632 *
633 * lock must be held
634 */
635static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
636{
637 int ret, base_freq, ctrlval;
638
639 ret = __sca3000_get_base_freq(st, st->info, &base_freq);
640 if (ret)
641 return ret;
642
643 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
644 if (ret < 0)
645 return ret;
646
647 ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
648
649 if (val == base_freq / 2)
650 ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
651 if (val == base_freq / 4)
652 ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
653 else if (val != base_freq)
654 return -EINVAL;
655
656 return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
657 ctrlval);
658}
659
660static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
661{
662 int ret;
663
664 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
665 if (ret)
666 return ret;
667
668 /* mask bottom 2 bits - only ones that are relevant */
669 st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
670 switch (st->rx[0]) {
671 case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
672 *val = st->info->measurement_mode_3db_freq;
673 return IIO_VAL_INT;
674 case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
675 return -EBUSY;
676 case SCA3000_REG_MODE_MEAS_MODE_OP_1:
677 *val = st->info->option_mode_1_3db_freq;
678 return IIO_VAL_INT;
679 case SCA3000_REG_MODE_MEAS_MODE_OP_2:
680 *val = st->info->option_mode_2_3db_freq;
681 return IIO_VAL_INT;
682 default:
683 return -EINVAL;
684 }
685}
686
687static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
688{
689 int ret;
690 int mode;
691
692 if (val == st->info->measurement_mode_3db_freq)
693 mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
694 else if (st->info->option_mode_1 &&
695 (val == st->info->option_mode_1_3db_freq))
696 mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
697 else if (st->info->option_mode_2 &&
698 (val == st->info->option_mode_2_3db_freq))
699 mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
700 else
701 return -EINVAL;
702 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
703 if (ret)
704 return ret;
705
706 st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
707 st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
708
709 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
710}
711
712static int sca3000_read_raw(struct iio_dev *indio_dev,
713 struct iio_chan_spec const *chan,
714 int *val,
715 int *val2,
716 long mask)
717{
718 struct sca3000_state *st = iio_priv(indio_dev);
719 int ret;
720 u8 address;
721
722 switch (mask) {
723 case IIO_CHAN_INFO_RAW:
724 mutex_lock(&st->lock);
725 if (chan->type == IIO_ACCEL) {
726 if (st->mo_det_use_count) {
727 mutex_unlock(&st->lock);
728 return -EBUSY;
729 }
730 address = sca3000_addresses[chan->address][0];
731 ret = sca3000_read_data_short(st, address, 2);
732 if (ret < 0) {
733 mutex_unlock(&st->lock);
734 return ret;
735 }
736 *val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
737 *val = ((*val) << (sizeof(*val) * 8 - 13)) >>
738 (sizeof(*val) * 8 - 13);
739 } else {
740 /* get the temperature when available */
741 ret = sca3000_read_data_short(st,
742 SCA3000_REG_TEMP_MSB_ADDR,
743 2);
744 if (ret < 0) {
745 mutex_unlock(&st->lock);
746 return ret;
747 }
748 *val = ((st->rx[0] & 0x3F) << 3) |
749 ((st->rx[1] & 0xE0) >> 5);
750 }
751 mutex_unlock(&st->lock);
752 return IIO_VAL_INT;
753 case IIO_CHAN_INFO_SCALE:
754 *val = 0;
755 if (chan->type == IIO_ACCEL)
756 *val2 = st->info->scale;
757 else /* temperature */
758 *val2 = 555556;
759 return IIO_VAL_INT_PLUS_MICRO;
760 case IIO_CHAN_INFO_OFFSET:
761 *val = -214;
762 *val2 = 600000;
763 return IIO_VAL_INT_PLUS_MICRO;
764 case IIO_CHAN_INFO_SAMP_FREQ:
765 mutex_lock(&st->lock);
766 ret = sca3000_read_raw_samp_freq(st, val);
767 mutex_unlock(&st->lock);
768 return ret ? ret : IIO_VAL_INT;
769 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
770 mutex_lock(&st->lock);
771 ret = sca3000_read_3db_freq(st, val);
772 mutex_unlock(&st->lock);
773 return ret;
774 default:
775 return -EINVAL;
776 }
777}
778
779static int sca3000_write_raw(struct iio_dev *indio_dev,
780 struct iio_chan_spec const *chan,
781 int val, int val2, long mask)
782{
783 struct sca3000_state *st = iio_priv(indio_dev);
784 int ret;
785
786 switch (mask) {
787 case IIO_CHAN_INFO_SAMP_FREQ:
788 if (val2)
789 return -EINVAL;
790 mutex_lock(&st->lock);
791 ret = sca3000_write_raw_samp_freq(st, val);
792 mutex_unlock(&st->lock);
793 return ret;
794 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
795 if (val2)
796 return -EINVAL;
797 mutex_lock(&st->lock);
798 ret = sca3000_write_3db_freq(st, val);
799 mutex_unlock(&st->lock);
800 return ret;
801 default:
802 return -EINVAL;
803 }
804
805 return ret;
806}
807
808/**
809 * sca3000_read_av_freq() - sysfs function to get available frequencies
810 * @dev: Device structure for this device.
811 * @attr: Description of the attribute.
812 * @buf: Incoming string
813 *
814 * The later modes are only relevant to the ring buffer - and depend on current
815 * mode. Note that data sheet gives rather wide tolerances for these so integer
816 * division will give good enough answer and not all chips have them specified
817 * at all.
818 **/
819static ssize_t sca3000_read_av_freq(struct device *dev,
820 struct device_attribute *attr,
821 char *buf)
822{
823 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
824 struct sca3000_state *st = iio_priv(indio_dev);
825 int len = 0, ret, val;
826
827 mutex_lock(&st->lock);
828 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
829 val = st->rx[0];
830 mutex_unlock(&st->lock);
831 if (ret)
832 goto error_ret;
833
834 switch (val & SCA3000_REG_MODE_MODE_MASK) {
835 case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
836 len += sprintf(buf + len, "%d %d %d\n",
837 st->info->measurement_mode_freq,
838 st->info->measurement_mode_freq / 2,
839 st->info->measurement_mode_freq / 4);
840 break;
841 case SCA3000_REG_MODE_MEAS_MODE_OP_1:
842 len += sprintf(buf + len, "%d %d %d\n",
843 st->info->option_mode_1_freq,
844 st->info->option_mode_1_freq / 2,
845 st->info->option_mode_1_freq / 4);
846 break;
847 case SCA3000_REG_MODE_MEAS_MODE_OP_2:
848 len += sprintf(buf + len, "%d %d %d\n",
849 st->info->option_mode_2_freq,
850 st->info->option_mode_2_freq / 2,
851 st->info->option_mode_2_freq / 4);
852 break;
853 }
854 return len;
855error_ret:
856 return ret;
857}
858
859/*
860 * Should only really be registered if ring buffer support is compiled in.
861 * Does no harm however and doing it right would add a fair bit of complexity
862 */
863static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
864
865/**
866 * sca3000_read_event_value() - query of a threshold or period
867 **/
868static int sca3000_read_event_value(struct iio_dev *indio_dev,
869 const struct iio_chan_spec *chan,
870 enum iio_event_type type,
871 enum iio_event_direction dir,
872 enum iio_event_info info,
873 int *val, int *val2)
874{
875 int ret, i;
876 struct sca3000_state *st = iio_priv(indio_dev);
877
878 switch (info) {
879 case IIO_EV_INFO_VALUE:
880 mutex_lock(&st->lock);
881 ret = sca3000_read_ctrl_reg(st,
882 sca3000_addresses[chan->address][1]);
883 mutex_unlock(&st->lock);
884 if (ret < 0)
885 return ret;
886 *val = 0;
887 if (chan->channel2 == IIO_MOD_Y)
888 for_each_set_bit(i, (unsigned long *)&ret,
889 ARRAY_SIZE(st->info->mot_det_mult_y))
890 *val += st->info->mot_det_mult_y[i];
891 else
892 for_each_set_bit(i, (unsigned long *)&ret,
893 ARRAY_SIZE(st->info->mot_det_mult_xz))
894 *val += st->info->mot_det_mult_xz[i];
895
896 return IIO_VAL_INT;
897 case IIO_EV_INFO_PERIOD:
898 *val = 0;
899 *val2 = 226000;
900 return IIO_VAL_INT_PLUS_MICRO;
901 default:
902 return -EINVAL;
903 }
904}
905
906/**
907 * sca3000_write_value() - control of threshold and period
908 * @indio_dev: Device instance specific IIO information.
909 * @chan: Description of the channel for which the event is being
910 * configured.
911 * @type: The type of event being configured, here magnitude rising
912 * as everything else is read only.
913 * @dir: Direction of the event (here rising)
914 * @info: What information about the event are we configuring.
915 * Here the threshold only.
916 * @val: Integer part of the value being written..
917 * @val2: Non integer part of the value being written. Here always 0.
918 */
919static int sca3000_write_event_value(struct iio_dev *indio_dev,
920 const struct iio_chan_spec *chan,
921 enum iio_event_type type,
922 enum iio_event_direction dir,
923 enum iio_event_info info,
924 int val, int val2)
925{
926 struct sca3000_state *st = iio_priv(indio_dev);
927 int ret;
928 int i;
929 u8 nonlinear = 0;
930
931 if (chan->channel2 == IIO_MOD_Y) {
932 i = ARRAY_SIZE(st->info->mot_det_mult_y);
933 while (i > 0)
934 if (val >= st->info->mot_det_mult_y[--i]) {
935 nonlinear |= (1 << i);
936 val -= st->info->mot_det_mult_y[i];
937 }
938 } else {
939 i = ARRAY_SIZE(st->info->mot_det_mult_xz);
940 while (i > 0)
941 if (val >= st->info->mot_det_mult_xz[--i]) {
942 nonlinear |= (1 << i);
943 val -= st->info->mot_det_mult_xz[i];
944 }
945 }
946
947 mutex_lock(&st->lock);
948 ret = sca3000_write_ctrl_reg(st,
949 sca3000_addresses[chan->address][1],
950 nonlinear);
951 mutex_unlock(&st->lock);
952
953 return ret;
954}
955
956static struct attribute *sca3000_attributes[] = {
957 &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
958 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
959 NULL,
960};
961
962static const struct attribute_group sca3000_attribute_group = {
963 .attrs = sca3000_attributes,
964};
965
966static int sca3000_read_data(struct sca3000_state *st,
967 u8 reg_address_high,
968 u8 *rx,
969 int len)
970{
971 int ret;
972 struct spi_transfer xfer[2] = {
973 {
974 .len = 1,
975 .tx_buf = st->tx,
976 }, {
977 .len = len,
978 .rx_buf = rx,
979 }
980 };
981
982 st->tx[0] = SCA3000_READ_REG(reg_address_high);
983 ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
984 if (ret) {
985 dev_err(&st->us->dev, "problem reading register\n");
986 return ret;
987 }
988
989 return 0;
990}
991
992/**
993 * sca3000_ring_int_process() - ring specific interrupt handling.
994 * @val: Value of the interrupt status register.
995 * @indio_dev: Device instance specific IIO device structure.
996 */
997static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
998{
999 struct sca3000_state *st = iio_priv(indio_dev);
1000 int ret, i, num_available;
1001
1002 mutex_lock(&st->lock);
1003
1004 if (val & SCA3000_REG_INT_STATUS_HALF) {
1005 ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1006 1);
1007 if (ret)
1008 goto error_ret;
1009 num_available = st->rx[0];
1010 /*
1011 * num_available is the total number of samples available
1012 * i.e. number of time points * number of channels.
1013 */
1014 ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
1015 num_available * 2);
1016 if (ret)
1017 goto error_ret;
1018 for (i = 0; i < num_available / 3; i++) {
1019 /*
1020 * Dirty hack to cover for 11 bit in fifo, 13 bit
1021 * direct reading.
1022 *
1023 * In theory the bottom two bits are undefined.
1024 * In reality they appear to always be 0.
1025 */
1026 iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
1027 }
1028 }
1029error_ret:
1030 mutex_unlock(&st->lock);
1031}
1032
1033/**
1034 * sca3000_event_handler() - handling ring and non ring events
1035 * @irq: The irq being handled.
1036 * @private: struct iio_device pointer for the device.
1037 *
1038 * Ring related interrupt handler. Depending on event, push to
1039 * the ring buffer event chrdev or the event one.
1040 *
1041 * This function is complicated by the fact that the devices can signify ring
1042 * and non ring events via the same interrupt line and they can only
1043 * be distinguished via a read of the relevant status register.
1044 */
1045static irqreturn_t sca3000_event_handler(int irq, void *private)
1046{
1047 struct iio_dev *indio_dev = private;
1048 struct sca3000_state *st = iio_priv(indio_dev);
1049 int ret, val;
1050 s64 last_timestamp = iio_get_time_ns(indio_dev);
1051
1052 /*
1053 * Could lead if badly timed to an extra read of status reg,
1054 * but ensures no interrupt is missed.
1055 */
1056 mutex_lock(&st->lock);
1057 ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1058 val = st->rx[0];
1059 mutex_unlock(&st->lock);
1060 if (ret)
1061 goto done;
1062
1063 sca3000_ring_int_process(val, indio_dev);
1064
1065 if (val & SCA3000_INT_STATUS_FREE_FALL)
1066 iio_push_event(indio_dev,
1067 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1068 0,
1069 IIO_MOD_X_AND_Y_AND_Z,
1070 IIO_EV_TYPE_MAG,
1071 IIO_EV_DIR_FALLING),
1072 last_timestamp);
1073
1074 if (val & SCA3000_INT_STATUS_Y_TRIGGER)
1075 iio_push_event(indio_dev,
1076 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1077 0,
1078 IIO_MOD_Y,
1079 IIO_EV_TYPE_MAG,
1080 IIO_EV_DIR_RISING),
1081 last_timestamp);
1082
1083 if (val & SCA3000_INT_STATUS_X_TRIGGER)
1084 iio_push_event(indio_dev,
1085 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1086 0,
1087 IIO_MOD_X,
1088 IIO_EV_TYPE_MAG,
1089 IIO_EV_DIR_RISING),
1090 last_timestamp);
1091
1092 if (val & SCA3000_INT_STATUS_Z_TRIGGER)
1093 iio_push_event(indio_dev,
1094 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1095 0,
1096 IIO_MOD_Z,
1097 IIO_EV_TYPE_MAG,
1098 IIO_EV_DIR_RISING),
1099 last_timestamp);
1100
1101done:
1102 return IRQ_HANDLED;
1103}
1104
1105/**
1106 * sca3000_read_event_config() what events are enabled
1107 **/
1108static int sca3000_read_event_config(struct iio_dev *indio_dev,
1109 const struct iio_chan_spec *chan,
1110 enum iio_event_type type,
1111 enum iio_event_direction dir)
1112{
1113 struct sca3000_state *st = iio_priv(indio_dev);
1114 int ret;
1115 /* read current value of mode register */
1116 mutex_lock(&st->lock);
1117
1118 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1119 if (ret)
1120 goto error_ret;
1121
1122 switch (chan->channel2) {
1123 case IIO_MOD_X_AND_Y_AND_Z:
1124 ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
1125 break;
1126 case IIO_MOD_X:
1127 case IIO_MOD_Y:
1128 case IIO_MOD_Z:
1129 /*
1130 * Motion detection mode cannot run at the same time as
1131 * acceleration data being read.
1132 */
1133 if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1134 != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
1135 ret = 0;
1136 } else {
1137 ret = sca3000_read_ctrl_reg(st,
1138 SCA3000_REG_CTRL_SEL_MD_CTRL);
1139 if (ret < 0)
1140 goto error_ret;
1141 /* only supporting logical or's for now */
1142 ret = !!(ret & sca3000_addresses[chan->address][2]);
1143 }
1144 break;
1145 default:
1146 ret = -EINVAL;
1147 }
1148
1149error_ret:
1150 mutex_unlock(&st->lock);
1151
1152 return ret;
1153}
1154
1155static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
1156{
1157 struct sca3000_state *st = iio_priv(indio_dev);
1158 int ret;
1159
1160 /* read current value of mode register */
1161 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1162 if (ret)
1163 return ret;
1164
1165 /* if off and should be on */
1166 if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1167 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1168 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
1169 /* if on and should be off */
1170 else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1171 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1172 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
1173 else
1174 return 0;
1175}
1176
1177static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
1178 int state)
1179{
1180 struct sca3000_state *st = iio_priv(indio_dev);
1181 int ret, ctrlval;
1182
1183 /*
1184 * First read the motion detector config to find out if
1185 * this axis is on
1186 */
1187 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1188 if (ret < 0)
1189 return ret;
1190 ctrlval = ret;
1191 /* if off and should be on */
1192 if (state && !(ctrlval & sca3000_addresses[axis][2])) {
1193 ret = sca3000_write_ctrl_reg(st,
1194 SCA3000_REG_CTRL_SEL_MD_CTRL,
1195 ctrlval |
1196 sca3000_addresses[axis][2]);
1197 if (ret)
1198 return ret;
1199 st->mo_det_use_count++;
1200 } else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
1201 ret = sca3000_write_ctrl_reg(st,
1202 SCA3000_REG_CTRL_SEL_MD_CTRL,
1203 ctrlval &
1204 ~(sca3000_addresses[axis][2]));
1205 if (ret)
1206 return ret;
1207 st->mo_det_use_count--;
1208 }
1209
1210 /* read current value of mode register */
1211 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1212 if (ret)
1213 return ret;
1214 /* if off and should be on */
1215 if ((st->mo_det_use_count) &&
1216 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1217 != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1218 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1219 (st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
1220 | SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
1221 /* if on and should be off */
1222 else if (!(st->mo_det_use_count) &&
1223 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1224 == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1225 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1226 st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
1227 else
1228 return 0;
1229}
1230
1231/**
1232 * sca3000_write_event_config() - simple on off control for motion detector
1233 * @indio_dev: IIO device instance specific structure. Data specific to this
1234 * particular driver may be accessed via iio_priv(indio_dev).
1235 * @chan: Description of the channel whose event we are configuring.
1236 * @type: The type of event.
1237 * @dir: The direction of the event.
1238 * @state: Desired state of event being configured.
1239 *
1240 * This is a per axis control, but enabling any will result in the
1241 * motion detector unit being enabled.
1242 * N.B. enabling motion detector stops normal data acquisition.
1243 * There is a complexity in knowing which mode to return to when
1244 * this mode is disabled. Currently normal mode is assumed.
1245 **/
1246static int sca3000_write_event_config(struct iio_dev *indio_dev,
1247 const struct iio_chan_spec *chan,
1248 enum iio_event_type type,
1249 enum iio_event_direction dir,
1250 int state)
1251{
1252 struct sca3000_state *st = iio_priv(indio_dev);
1253 int ret;
1254
1255 mutex_lock(&st->lock);
1256 switch (chan->channel2) {
1257 case IIO_MOD_X_AND_Y_AND_Z:
1258 ret = sca3000_freefall_set_state(indio_dev, state);
1259 break;
1260
1261 case IIO_MOD_X:
1262 case IIO_MOD_Y:
1263 case IIO_MOD_Z:
1264 ret = sca3000_motion_detect_set_state(indio_dev,
1265 chan->address,
1266 state);
1267 break;
1268 default:
1269 ret = -EINVAL;
1270 break;
1271 }
1272 mutex_unlock(&st->lock);
1273
1274 return ret;
1275}
1276
1277static int sca3000_configure_ring(struct iio_dev *indio_dev)
1278{
1279 struct iio_buffer *buffer;
1280
1281 buffer = devm_iio_kfifo_allocate(&indio_dev->dev);
1282 if (!buffer)
1283 return -ENOMEM;
1284
1285 iio_device_attach_buffer(indio_dev, buffer);
1286 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1287
1288 return 0;
1289}
1290
1291static inline
1292int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
1293{
1294 struct sca3000_state *st = iio_priv(indio_dev);
1295 int ret;
1296
1297 mutex_lock(&st->lock);
1298 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1299 if (ret)
1300 goto error_ret;
1301 if (state) {
1302 dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
1303 ret = sca3000_write_reg(st,
1304 SCA3000_REG_MODE_ADDR,
1305 (st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
1306 } else
1307 ret = sca3000_write_reg(st,
1308 SCA3000_REG_MODE_ADDR,
1309 (st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
1310error_ret:
1311 mutex_unlock(&st->lock);
1312
1313 return ret;
1314}
1315
1316/**
1317 * sca3000_hw_ring_preenable() - hw ring buffer preenable function
1318 * @indio_dev: structure representing the IIO device. Device instance
1319 * specific state can be accessed via iio_priv(indio_dev).
1320 *
1321 * Very simple enable function as the chip will allows normal reads
1322 * during ring buffer operation so as long as it is indeed running
1323 * before we notify the core, the precise ordering does not matter.
1324 */
1325static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
1326{
1327 int ret;
1328 struct sca3000_state *st = iio_priv(indio_dev);
1329
1330 mutex_lock(&st->lock);
1331
1332 /* Enable the 50% full interrupt */
1333 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1334 if (ret)
1335 goto error_unlock;
1336 ret = sca3000_write_reg(st,
1337 SCA3000_REG_INT_MASK_ADDR,
1338 st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
1339 if (ret)
1340 goto error_unlock;
1341
1342 mutex_unlock(&st->lock);
1343
1344 return __sca3000_hw_ring_state_set(indio_dev, 1);
1345
1346error_unlock:
1347 mutex_unlock(&st->lock);
1348
1349 return ret;
1350}
1351
1352static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
1353{
1354 int ret;
1355 struct sca3000_state *st = iio_priv(indio_dev);
1356
1357 ret = __sca3000_hw_ring_state_set(indio_dev, 0);
1358 if (ret)
1359 return ret;
1360
1361 /* Disable the 50% full interrupt */
1362 mutex_lock(&st->lock);
1363
1364 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1365 if (ret)
1366 goto unlock;
1367 ret = sca3000_write_reg(st,
1368 SCA3000_REG_INT_MASK_ADDR,
1369 st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
1370unlock:
1371 mutex_unlock(&st->lock);
1372 return ret;
1373}
1374
1375static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
1376 .preenable = &sca3000_hw_ring_preenable,
1377 .postdisable = &sca3000_hw_ring_postdisable,
1378};
1379
1380/**
1381 * sca3000_clean_setup() - get the device into a predictable state
1382 * @st: Device instance specific private data structure
1383 *
1384 * Devices use flash memory to store many of the register values
1385 * and hence can come up in somewhat unpredictable states.
1386 * Hence reset everything on driver load.
1387 */
1388static int sca3000_clean_setup(struct sca3000_state *st)
1389{
1390 int ret;
1391
1392 mutex_lock(&st->lock);
1393 /* Ensure all interrupts have been acknowledged */
1394 ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1395 if (ret)
1396 goto error_ret;
1397
1398 /* Turn off all motion detection channels */
1399 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1400 if (ret < 0)
1401 goto error_ret;
1402 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1403 ret & SCA3000_MD_CTRL_PROT_MASK);
1404 if (ret)
1405 goto error_ret;
1406
1407 /* Disable ring buffer */
1408 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1409 if (ret < 0)
1410 goto error_ret;
1411 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1412 (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
1413 | SCA3000_REG_OUT_CTRL_BUF_X_EN
1414 | SCA3000_REG_OUT_CTRL_BUF_Y_EN
1415 | SCA3000_REG_OUT_CTRL_BUF_Z_EN
1416 | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
1417 if (ret)
1418 goto error_ret;
1419 /* Enable interrupts, relevant to mode and set up as active low */
1420 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1421 if (ret)
1422 goto error_ret;
1423 ret = sca3000_write_reg(st,
1424 SCA3000_REG_INT_MASK_ADDR,
1425 (ret & SCA3000_REG_INT_MASK_PROT_MASK)
1426 | SCA3000_REG_INT_MASK_ACTIVE_LOW);
1427 if (ret)
1428 goto error_ret;
1429 /*
1430 * Select normal measurement mode, free fall off, ring off
1431 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1432 * as that occurs in one of the example on the datasheet
1433 */
1434 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1435 if (ret)
1436 goto error_ret;
1437 ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1438 (st->rx[0] & SCA3000_MODE_PROT_MASK));
1439
1440error_ret:
1441 mutex_unlock(&st->lock);
1442 return ret;
1443}
1444
1445static const struct iio_info sca3000_info = {
1446 .attrs = &sca3000_attribute_group,
1447 .read_raw = &sca3000_read_raw,
1448 .write_raw = &sca3000_write_raw,
1449 .read_event_value = &sca3000_read_event_value,
1450 .write_event_value = &sca3000_write_event_value,
1451 .read_event_config = &sca3000_read_event_config,
1452 .write_event_config = &sca3000_write_event_config,
1453 .driver_module = THIS_MODULE,
1454};
1455
1456static int sca3000_probe(struct spi_device *spi)
1457{
1458 int ret;
1459 struct sca3000_state *st;
1460 struct iio_dev *indio_dev;
1461
1462 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1463 if (!indio_dev)
1464 return -ENOMEM;
1465
1466 st = iio_priv(indio_dev);
1467 spi_set_drvdata(spi, indio_dev);
1468 st->us = spi;
1469 mutex_init(&st->lock);
1470 st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1471 ->driver_data];
1472
1473 indio_dev->dev.parent = &spi->dev;
1474 indio_dev->name = spi_get_device_id(spi)->name;
1475 indio_dev->info = &sca3000_info;
1476 if (st->info->temp_output) {
1477 indio_dev->channels = sca3000_channels_with_temp;
1478 indio_dev->num_channels =
1479 ARRAY_SIZE(sca3000_channels_with_temp);
1480 } else {
1481 indio_dev->channels = sca3000_channels;
1482 indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1483 }
1484 indio_dev->modes = INDIO_DIRECT_MODE;
1485
1486 sca3000_configure_ring(indio_dev);
1487
1488 if (spi->irq) {
1489 ret = request_threaded_irq(spi->irq,
1490 NULL,
1491 &sca3000_event_handler,
1492 IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1493 "sca3000",
1494 indio_dev);
1495 if (ret)
1496 return ret;
1497 }
1498 indio_dev->setup_ops = &sca3000_ring_setup_ops;
1499 ret = sca3000_clean_setup(st);
1500 if (ret)
1501 goto error_free_irq;
1502
1503 ret = sca3000_print_rev(indio_dev);
1504 if (ret)
1505 goto error_free_irq;
1506
1507 return iio_device_register(indio_dev);
1508
1509error_free_irq:
1510 if (spi->irq)
1511 free_irq(spi->irq, indio_dev);
1512
1513 return ret;
1514}
1515
1516static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1517{
1518 int ret;
1519
1520 mutex_lock(&st->lock);
1521 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1522 if (ret)
1523 goto error_ret;
1524 ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
1525 (st->rx[0] &
1526 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
1527 SCA3000_REG_INT_MASK_RING_HALF |
1528 SCA3000_REG_INT_MASK_ALL_INTS)));
1529error_ret:
1530 mutex_unlock(&st->lock);
1531 return ret;
1532}
1533
1534static int sca3000_remove(struct spi_device *spi)
1535{
1536 struct iio_dev *indio_dev = spi_get_drvdata(spi);
1537 struct sca3000_state *st = iio_priv(indio_dev);
1538
1539 iio_device_unregister(indio_dev);
1540
1541 /* Must ensure no interrupts can be generated after this! */
1542 sca3000_stop_all_interrupts(st);
1543 if (spi->irq)
1544 free_irq(spi->irq, indio_dev);
1545
1546 return 0;
1547}
1548
1549static const struct spi_device_id sca3000_id[] = {
1550 {"sca3000_d01", d01},
1551 {"sca3000_e02", e02},
1552 {"sca3000_e04", e04},
1553 {"sca3000_e05", e05},
1554 {}
1555};
1556MODULE_DEVICE_TABLE(spi, sca3000_id);
1557
1558static struct spi_driver sca3000_driver = {
1559 .driver = {
1560 .name = "sca3000",
1561 },
1562 .probe = sca3000_probe,
1563 .remove = sca3000_remove,
1564 .id_table = sca3000_id,
1565};
1566module_spi_driver(sca3000_driver);
1567
1568MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1569MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1570MODULE_LICENSE("GPL v2");