blob: 11b9cc42bc09b10ea0e09ec2d8b9eeb6ce631504 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Driver for the Asahi Kasei EMD Corporation AK8974
3 * and Aichi Steel AMI305 magnetometer chips.
4 * Based on a patch from Samu Onkalo and the AK8975 IIO driver.
5 *
6 * Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
7 * Copyright (c) 2010 NVIDIA Corporation.
8 * Copyright (C) 2016 Linaro Ltd.
9 *
10 * Author: Samu Onkalo <samu.p.onkalo@nokia.com>
11 * Author: Linus Walleij <linus.walleij@linaro.org>
12 */
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/i2c.h>
16#include <linux/interrupt.h>
17#include <linux/irq.h> /* For irq_get_irq_data() */
18#include <linux/completion.h>
19#include <linux/err.h>
20#include <linux/mutex.h>
21#include <linux/delay.h>
22#include <linux/bitops.h>
23#include <linux/random.h>
24#include <linux/regmap.h>
25#include <linux/regulator/consumer.h>
26#include <linux/pm_runtime.h>
27
28#include <linux/iio/iio.h>
29#include <linux/iio/sysfs.h>
30#include <linux/iio/buffer.h>
31#include <linux/iio/trigger.h>
32#include <linux/iio/trigger_consumer.h>
33#include <linux/iio/triggered_buffer.h>
34
35/*
36 * 16-bit registers are little-endian. LSB is at the address defined below
37 * and MSB is at the next higher address.
38 */
39
40/* These registers are common for AK8974 and AMI30x */
41#define AK8974_SELFTEST 0x0C
42#define AK8974_SELFTEST_IDLE 0x55
43#define AK8974_SELFTEST_OK 0xAA
44
45#define AK8974_INFO 0x0D
46
47#define AK8974_WHOAMI 0x0F
48#define AK8974_WHOAMI_VALUE_AMI306 0x46
49#define AK8974_WHOAMI_VALUE_AMI305 0x47
50#define AK8974_WHOAMI_VALUE_AK8974 0x48
51
52#define AK8974_DATA_X 0x10
53#define AK8974_DATA_Y 0x12
54#define AK8974_DATA_Z 0x14
55#define AK8974_INT_SRC 0x16
56#define AK8974_STATUS 0x18
57#define AK8974_INT_CLEAR 0x1A
58#define AK8974_CTRL1 0x1B
59#define AK8974_CTRL2 0x1C
60#define AK8974_CTRL3 0x1D
61#define AK8974_INT_CTRL 0x1E
62#define AK8974_INT_THRES 0x26 /* Absolute any axis value threshold */
63#define AK8974_PRESET 0x30
64
65/* AK8974-specific offsets */
66#define AK8974_OFFSET_X 0x20
67#define AK8974_OFFSET_Y 0x22
68#define AK8974_OFFSET_Z 0x24
69/* AMI305-specific offsets */
70#define AMI305_OFFSET_X 0x6C
71#define AMI305_OFFSET_Y 0x72
72#define AMI305_OFFSET_Z 0x78
73
74/* Different temperature registers */
75#define AK8974_TEMP 0x31
76#define AMI305_TEMP 0x60
77
78/* AMI306-specific control register */
79#define AMI306_CTRL4 0x5C
80
81/* AMI306 factory calibration data */
82
83/* fine axis sensitivity */
84#define AMI306_FINEOUTPUT_X 0x90
85#define AMI306_FINEOUTPUT_Y 0x92
86#define AMI306_FINEOUTPUT_Z 0x94
87
88/* axis sensitivity */
89#define AMI306_SENS_X 0x96
90#define AMI306_SENS_Y 0x98
91#define AMI306_SENS_Z 0x9A
92
93/* axis cross-interference */
94#define AMI306_GAIN_PARA_XZ 0x9C
95#define AMI306_GAIN_PARA_XY 0x9D
96#define AMI306_GAIN_PARA_YZ 0x9E
97#define AMI306_GAIN_PARA_YX 0x9F
98#define AMI306_GAIN_PARA_ZY 0xA0
99#define AMI306_GAIN_PARA_ZX 0xA1
100
101/* offset at ZERO magnetic field */
102#define AMI306_OFFZERO_X 0xF8
103#define AMI306_OFFZERO_Y 0xFA
104#define AMI306_OFFZERO_Z 0xFC
105
106
107#define AK8974_INT_X_HIGH BIT(7) /* Axis over +threshold */
108#define AK8974_INT_Y_HIGH BIT(6)
109#define AK8974_INT_Z_HIGH BIT(5)
110#define AK8974_INT_X_LOW BIT(4) /* Axis below -threshold */
111#define AK8974_INT_Y_LOW BIT(3)
112#define AK8974_INT_Z_LOW BIT(2)
113#define AK8974_INT_RANGE BIT(1) /* Range overflow (any axis) */
114
115#define AK8974_STATUS_DRDY BIT(6) /* Data ready */
116#define AK8974_STATUS_OVERRUN BIT(5) /* Data overrun */
117#define AK8974_STATUS_INT BIT(4) /* Interrupt occurred */
118
119#define AK8974_CTRL1_POWER BIT(7) /* 0 = standby; 1 = active */
120#define AK8974_CTRL1_RATE BIT(4) /* 0 = 10 Hz; 1 = 20 Hz */
121#define AK8974_CTRL1_FORCE_EN BIT(1) /* 0 = normal; 1 = force */
122#define AK8974_CTRL1_MODE2 BIT(0) /* 0 */
123
124#define AK8974_CTRL2_INT_EN BIT(4) /* 1 = enable interrupts */
125#define AK8974_CTRL2_DRDY_EN BIT(3) /* 1 = enable data ready signal */
126#define AK8974_CTRL2_DRDY_POL BIT(2) /* 1 = data ready active high */
127#define AK8974_CTRL2_RESDEF (AK8974_CTRL2_DRDY_POL)
128
129#define AK8974_CTRL3_RESET BIT(7) /* Software reset */
130#define AK8974_CTRL3_FORCE BIT(6) /* Start forced measurement */
131#define AK8974_CTRL3_SELFTEST BIT(4) /* Set selftest register */
132#define AK8974_CTRL3_RESDEF 0x00
133
134#define AK8974_INT_CTRL_XEN BIT(7) /* Enable interrupt for this axis */
135#define AK8974_INT_CTRL_YEN BIT(6)
136#define AK8974_INT_CTRL_ZEN BIT(5)
137#define AK8974_INT_CTRL_XYZEN (BIT(7)|BIT(6)|BIT(5))
138#define AK8974_INT_CTRL_POL BIT(3) /* 0 = active low; 1 = active high */
139#define AK8974_INT_CTRL_PULSE BIT(1) /* 0 = latched; 1 = pulse (50 usec) */
140#define AK8974_INT_CTRL_RESDEF (AK8974_INT_CTRL_XYZEN | AK8974_INT_CTRL_POL)
141
142/* The AMI305 has elaborate FW version and serial number registers */
143#define AMI305_VER 0xE8
144#define AMI305_SN 0xEA
145
146#define AK8974_MAX_RANGE 2048
147
148#define AK8974_POWERON_DELAY 50
149#define AK8974_ACTIVATE_DELAY 1
150#define AK8974_SELFTEST_DELAY 1
151/*
152 * Set the autosuspend to two orders of magnitude larger than the poweron
153 * delay to make sane reasonable power tradeoff savings (5 seconds in
154 * this case).
155 */
156#define AK8974_AUTOSUSPEND_DELAY 5000
157
158#define AK8974_MEASTIME 3
159
160#define AK8974_PWR_ON 1
161#define AK8974_PWR_OFF 0
162
163/**
164 * struct ak8974 - state container for the AK8974 driver
165 * @i2c: parent I2C client
166 * @orientation: mounting matrix, flipped axis etc
167 * @map: regmap to access the AK8974 registers over I2C
168 * @regs: the avdd and dvdd power regulators
169 * @name: the name of the part
170 * @variant: the whoami ID value (for selecting code paths)
171 * @lock: locks the magnetometer for exclusive use during a measurement
172 * @drdy_irq: uses the DRDY IRQ line
173 * @drdy_complete: completion for DRDY
174 * @drdy_active_low: the DRDY IRQ is active low
175 */
176struct ak8974 {
177 struct i2c_client *i2c;
178 struct iio_mount_matrix orientation;
179 struct regmap *map;
180 struct regulator_bulk_data regs[2];
181 const char *name;
182 u8 variant;
183 struct mutex lock;
184 bool drdy_irq;
185 struct completion drdy_complete;
186 bool drdy_active_low;
187 /* Ensure timestamp is naturally aligned */
188 struct {
189 __le16 channels[3];
190 s64 ts __aligned(8);
191 } scan;
192};
193
194static const char ak8974_reg_avdd[] = "avdd";
195static const char ak8974_reg_dvdd[] = "dvdd";
196
197static int ak8974_get_u16_val(struct ak8974 *ak8974, u8 reg, u16 *val)
198{
199 int ret;
200 __le16 bulk;
201
202 ret = regmap_bulk_read(ak8974->map, reg, &bulk, 2);
203 if (ret)
204 return ret;
205 *val = le16_to_cpu(bulk);
206
207 return 0;
208}
209
210static int ak8974_set_u16_val(struct ak8974 *ak8974, u8 reg, u16 val)
211{
212 __le16 bulk = cpu_to_le16(val);
213
214 return regmap_bulk_write(ak8974->map, reg, &bulk, 2);
215}
216
217static int ak8974_set_power(struct ak8974 *ak8974, bool mode)
218{
219 int ret;
220 u8 val;
221
222 val = mode ? AK8974_CTRL1_POWER : 0;
223 val |= AK8974_CTRL1_FORCE_EN;
224 ret = regmap_write(ak8974->map, AK8974_CTRL1, val);
225 if (ret < 0)
226 return ret;
227
228 if (mode)
229 msleep(AK8974_ACTIVATE_DELAY);
230
231 return 0;
232}
233
234static int ak8974_reset(struct ak8974 *ak8974)
235{
236 int ret;
237
238 /* Power on to get register access. Sets CTRL1 reg to reset state */
239 ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
240 if (ret)
241 return ret;
242 ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_RESDEF);
243 if (ret)
244 return ret;
245 ret = regmap_write(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_RESDEF);
246 if (ret)
247 return ret;
248 ret = regmap_write(ak8974->map, AK8974_INT_CTRL,
249 AK8974_INT_CTRL_RESDEF);
250 if (ret)
251 return ret;
252
253 /* After reset, power off is default state */
254 return ak8974_set_power(ak8974, AK8974_PWR_OFF);
255}
256
257static int ak8974_configure(struct ak8974 *ak8974)
258{
259 int ret;
260
261 ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_DRDY_EN |
262 AK8974_CTRL2_INT_EN);
263 if (ret)
264 return ret;
265 ret = regmap_write(ak8974->map, AK8974_CTRL3, 0);
266 if (ret)
267 return ret;
268 if (ak8974->variant == AK8974_WHOAMI_VALUE_AMI306) {
269 /* magic from datasheet: set high-speed measurement mode */
270 ret = ak8974_set_u16_val(ak8974, AMI306_CTRL4, 0xA07E);
271 if (ret)
272 return ret;
273 }
274 ret = regmap_write(ak8974->map, AK8974_INT_CTRL, AK8974_INT_CTRL_POL);
275 if (ret)
276 return ret;
277
278 return regmap_write(ak8974->map, AK8974_PRESET, 0);
279}
280
281static int ak8974_trigmeas(struct ak8974 *ak8974)
282{
283 unsigned int clear;
284 u8 mask;
285 u8 val;
286 int ret;
287
288 /* Clear any previous measurement overflow status */
289 ret = regmap_read(ak8974->map, AK8974_INT_CLEAR, &clear);
290 if (ret)
291 return ret;
292
293 /* If we have a DRDY IRQ line, use it */
294 if (ak8974->drdy_irq) {
295 mask = AK8974_CTRL2_INT_EN |
296 AK8974_CTRL2_DRDY_EN |
297 AK8974_CTRL2_DRDY_POL;
298 val = AK8974_CTRL2_DRDY_EN;
299
300 if (!ak8974->drdy_active_low)
301 val |= AK8974_CTRL2_DRDY_POL;
302
303 init_completion(&ak8974->drdy_complete);
304 ret = regmap_update_bits(ak8974->map, AK8974_CTRL2,
305 mask, val);
306 if (ret)
307 return ret;
308 }
309
310 /* Force a measurement */
311 return regmap_update_bits(ak8974->map,
312 AK8974_CTRL3,
313 AK8974_CTRL3_FORCE,
314 AK8974_CTRL3_FORCE);
315}
316
317static int ak8974_await_drdy(struct ak8974 *ak8974)
318{
319 int timeout = 2;
320 unsigned int val;
321 int ret;
322
323 if (ak8974->drdy_irq) {
324 ret = wait_for_completion_timeout(&ak8974->drdy_complete,
325 1 + msecs_to_jiffies(1000));
326 if (!ret) {
327 dev_err(&ak8974->i2c->dev,
328 "timeout waiting for DRDY IRQ\n");
329 return -ETIMEDOUT;
330 }
331 return 0;
332 }
333
334 /* Default delay-based poll loop */
335 do {
336 msleep(AK8974_MEASTIME);
337 ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
338 if (ret < 0)
339 return ret;
340 if (val & AK8974_STATUS_DRDY)
341 return 0;
342 } while (--timeout);
343
344 dev_err(&ak8974->i2c->dev, "timeout waiting for DRDY\n");
345 return -ETIMEDOUT;
346}
347
348static int ak8974_getresult(struct ak8974 *ak8974, __le16 *result)
349{
350 unsigned int src;
351 int ret;
352
353 ret = ak8974_await_drdy(ak8974);
354 if (ret)
355 return ret;
356 ret = regmap_read(ak8974->map, AK8974_INT_SRC, &src);
357 if (ret < 0)
358 return ret;
359
360 /* Out of range overflow! Strong magnet close? */
361 if (src & AK8974_INT_RANGE) {
362 dev_err(&ak8974->i2c->dev,
363 "range overflow in sensor\n");
364 return -ERANGE;
365 }
366
367 ret = regmap_bulk_read(ak8974->map, AK8974_DATA_X, result, 6);
368 if (ret)
369 return ret;
370
371 return ret;
372}
373
374static irqreturn_t ak8974_drdy_irq(int irq, void *d)
375{
376 struct ak8974 *ak8974 = d;
377
378 if (!ak8974->drdy_irq)
379 return IRQ_NONE;
380
381 /* TODO: timestamp here to get good measurement stamps */
382 return IRQ_WAKE_THREAD;
383}
384
385static irqreturn_t ak8974_drdy_irq_thread(int irq, void *d)
386{
387 struct ak8974 *ak8974 = d;
388 unsigned int val;
389 int ret;
390
391 /* Check if this was a DRDY from us */
392 ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
393 if (ret < 0) {
394 dev_err(&ak8974->i2c->dev, "error reading DRDY status\n");
395 return IRQ_HANDLED;
396 }
397 if (val & AK8974_STATUS_DRDY) {
398 /* Yes this was our IRQ */
399 complete(&ak8974->drdy_complete);
400 return IRQ_HANDLED;
401 }
402
403 /* We may be on a shared IRQ, let the next client check */
404 return IRQ_NONE;
405}
406
407static int ak8974_selftest(struct ak8974 *ak8974)
408{
409 struct device *dev = &ak8974->i2c->dev;
410 unsigned int val;
411 int ret;
412
413 ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
414 if (ret)
415 return ret;
416 if (val != AK8974_SELFTEST_IDLE) {
417 dev_err(dev, "selftest not idle before test\n");
418 return -EIO;
419 }
420
421 /* Trigger self-test */
422 ret = regmap_update_bits(ak8974->map,
423 AK8974_CTRL3,
424 AK8974_CTRL3_SELFTEST,
425 AK8974_CTRL3_SELFTEST);
426 if (ret) {
427 dev_err(dev, "could not write CTRL3\n");
428 return ret;
429 }
430
431 msleep(AK8974_SELFTEST_DELAY);
432
433 ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
434 if (ret)
435 return ret;
436 if (val != AK8974_SELFTEST_OK) {
437 dev_err(dev, "selftest result NOT OK (%02x)\n", val);
438 return -EIO;
439 }
440
441 ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
442 if (ret)
443 return ret;
444 if (val != AK8974_SELFTEST_IDLE) {
445 dev_err(dev, "selftest not idle after test (%02x)\n", val);
446 return -EIO;
447 }
448 dev_dbg(dev, "passed self-test\n");
449
450 return 0;
451}
452
453static void ak8974_read_calib_data(struct ak8974 *ak8974, unsigned int reg,
454 __le16 *tab, size_t tab_size)
455{
456 int ret = regmap_bulk_read(ak8974->map, reg, tab, tab_size);
457 if (ret) {
458 memset(tab, 0xFF, tab_size);
459 dev_warn(&ak8974->i2c->dev,
460 "can't read calibration data (regs %u..%zu): %d\n",
461 reg, reg + tab_size - 1, ret);
462 } else {
463 add_device_randomness(tab, tab_size);
464 }
465}
466
467static int ak8974_detect(struct ak8974 *ak8974)
468{
469 unsigned int whoami;
470 const char *name;
471 int ret;
472 unsigned int fw;
473 u16 sn;
474
475 ret = regmap_read(ak8974->map, AK8974_WHOAMI, &whoami);
476 if (ret)
477 return ret;
478
479 name = "ami305";
480
481 switch (whoami) {
482 case AK8974_WHOAMI_VALUE_AMI306:
483 name = "ami306";
484 /* fall-through */
485 case AK8974_WHOAMI_VALUE_AMI305:
486 ret = regmap_read(ak8974->map, AMI305_VER, &fw);
487 if (ret)
488 return ret;
489 fw &= 0x7f; /* only bits 0 thru 6 valid */
490 ret = ak8974_get_u16_val(ak8974, AMI305_SN, &sn);
491 if (ret)
492 return ret;
493 add_device_randomness(&sn, sizeof(sn));
494 dev_info(&ak8974->i2c->dev,
495 "detected %s, FW ver %02x, S/N: %04x\n",
496 name, fw, sn);
497 break;
498 case AK8974_WHOAMI_VALUE_AK8974:
499 name = "ak8974";
500 dev_info(&ak8974->i2c->dev, "detected AK8974\n");
501 break;
502 default:
503 dev_err(&ak8974->i2c->dev, "unsupported device (%02x) ",
504 whoami);
505 return -ENODEV;
506 }
507
508 ak8974->name = name;
509 ak8974->variant = whoami;
510
511 if (whoami == AK8974_WHOAMI_VALUE_AMI306) {
512 __le16 fab_data1[9], fab_data2[3];
513 int i;
514
515 ak8974_read_calib_data(ak8974, AMI306_FINEOUTPUT_X,
516 fab_data1, sizeof(fab_data1));
517 ak8974_read_calib_data(ak8974, AMI306_OFFZERO_X,
518 fab_data2, sizeof(fab_data2));
519
520 for (i = 0; i < 3; ++i) {
521 static const char axis[3] = "XYZ";
522 static const char pgaxis[6] = "ZYZXYX";
523 unsigned offz = le16_to_cpu(fab_data2[i]) & 0x7F;
524 unsigned fine = le16_to_cpu(fab_data1[i]);
525 unsigned sens = le16_to_cpu(fab_data1[i + 3]);
526 unsigned pgain1 = le16_to_cpu(fab_data1[i + 6]);
527 unsigned pgain2 = pgain1 >> 8;
528
529 pgain1 &= 0xFF;
530
531 dev_info(&ak8974->i2c->dev,
532 "factory calibration for axis %c: offz=%u sens=%u fine=%u pga%c=%u pga%c=%u\n",
533 axis[i], offz, sens, fine, pgaxis[i * 2],
534 pgain1, pgaxis[i * 2 + 1], pgain2);
535 }
536 }
537
538 return 0;
539}
540
541static int ak8974_read_raw(struct iio_dev *indio_dev,
542 struct iio_chan_spec const *chan,
543 int *val, int *val2,
544 long mask)
545{
546 struct ak8974 *ak8974 = iio_priv(indio_dev);
547 __le16 hw_values[3];
548 int ret = -EINVAL;
549
550 pm_runtime_get_sync(&ak8974->i2c->dev);
551 mutex_lock(&ak8974->lock);
552
553 switch (mask) {
554 case IIO_CHAN_INFO_RAW:
555 if (chan->address > 2) {
556 dev_err(&ak8974->i2c->dev, "faulty channel address\n");
557 ret = -EIO;
558 goto out_unlock;
559 }
560 ret = ak8974_trigmeas(ak8974);
561 if (ret)
562 goto out_unlock;
563 ret = ak8974_getresult(ak8974, hw_values);
564 if (ret)
565 goto out_unlock;
566
567 /*
568 * We read all axes and discard all but one, for optimized
569 * reading, use the triggered buffer.
570 */
571 *val = (s16)le16_to_cpu(hw_values[chan->address]);
572
573 ret = IIO_VAL_INT;
574 }
575
576 out_unlock:
577 mutex_unlock(&ak8974->lock);
578 pm_runtime_mark_last_busy(&ak8974->i2c->dev);
579 pm_runtime_put_autosuspend(&ak8974->i2c->dev);
580
581 return ret;
582}
583
584static void ak8974_fill_buffer(struct iio_dev *indio_dev)
585{
586 struct ak8974 *ak8974 = iio_priv(indio_dev);
587 int ret;
588
589 pm_runtime_get_sync(&ak8974->i2c->dev);
590 mutex_lock(&ak8974->lock);
591
592 ret = ak8974_trigmeas(ak8974);
593 if (ret) {
594 dev_err(&ak8974->i2c->dev, "error triggering measure\n");
595 goto out_unlock;
596 }
597 ret = ak8974_getresult(ak8974, ak8974->scan.channels);
598 if (ret) {
599 dev_err(&ak8974->i2c->dev, "error getting measures\n");
600 goto out_unlock;
601 }
602
603 iio_push_to_buffers_with_timestamp(indio_dev, &ak8974->scan,
604 iio_get_time_ns(indio_dev));
605
606 out_unlock:
607 mutex_unlock(&ak8974->lock);
608 pm_runtime_mark_last_busy(&ak8974->i2c->dev);
609 pm_runtime_put_autosuspend(&ak8974->i2c->dev);
610}
611
612static irqreturn_t ak8974_handle_trigger(int irq, void *p)
613{
614 const struct iio_poll_func *pf = p;
615 struct iio_dev *indio_dev = pf->indio_dev;
616
617 ak8974_fill_buffer(indio_dev);
618 iio_trigger_notify_done(indio_dev->trig);
619
620 return IRQ_HANDLED;
621}
622
623static const struct iio_mount_matrix *
624ak8974_get_mount_matrix(const struct iio_dev *indio_dev,
625 const struct iio_chan_spec *chan)
626{
627 struct ak8974 *ak8974 = iio_priv(indio_dev);
628
629 return &ak8974->orientation;
630}
631
632static const struct iio_chan_spec_ext_info ak8974_ext_info[] = {
633 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8974_get_mount_matrix),
634 { },
635};
636
637#define AK8974_AXIS_CHANNEL(axis, index) \
638 { \
639 .type = IIO_MAGN, \
640 .modified = 1, \
641 .channel2 = IIO_MOD_##axis, \
642 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
643 .ext_info = ak8974_ext_info, \
644 .address = index, \
645 .scan_index = index, \
646 .scan_type = { \
647 .sign = 's', \
648 .realbits = 16, \
649 .storagebits = 16, \
650 .endianness = IIO_LE \
651 }, \
652 }
653
654static const struct iio_chan_spec ak8974_channels[] = {
655 AK8974_AXIS_CHANNEL(X, 0),
656 AK8974_AXIS_CHANNEL(Y, 1),
657 AK8974_AXIS_CHANNEL(Z, 2),
658 IIO_CHAN_SOFT_TIMESTAMP(3),
659};
660
661static const unsigned long ak8974_scan_masks[] = { 0x7, 0 };
662
663static const struct iio_info ak8974_info = {
664 .read_raw = &ak8974_read_raw,
665 .driver_module = THIS_MODULE,
666};
667
668static bool ak8974_writeable_reg(struct device *dev, unsigned int reg)
669{
670 struct i2c_client *i2c = to_i2c_client(dev);
671 struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
672 struct ak8974 *ak8974 = iio_priv(indio_dev);
673
674 switch (reg) {
675 case AK8974_CTRL1:
676 case AK8974_CTRL2:
677 case AK8974_CTRL3:
678 case AK8974_INT_CTRL:
679 case AK8974_INT_THRES:
680 case AK8974_INT_THRES + 1:
681 case AK8974_PRESET:
682 case AK8974_PRESET + 1:
683 return true;
684 case AK8974_OFFSET_X:
685 case AK8974_OFFSET_X + 1:
686 case AK8974_OFFSET_Y:
687 case AK8974_OFFSET_Y + 1:
688 case AK8974_OFFSET_Z:
689 case AK8974_OFFSET_Z + 1:
690 if (ak8974->variant == AK8974_WHOAMI_VALUE_AK8974)
691 return true;
692 return false;
693 case AMI305_OFFSET_X:
694 case AMI305_OFFSET_X + 1:
695 case AMI305_OFFSET_Y:
696 case AMI305_OFFSET_Y + 1:
697 case AMI305_OFFSET_Z:
698 case AMI305_OFFSET_Z + 1:
699 return ak8974->variant == AK8974_WHOAMI_VALUE_AMI305 ||
700 ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
701 case AMI306_CTRL4:
702 case AMI306_CTRL4 + 1:
703 return ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
704 default:
705 return false;
706 }
707}
708
709static bool ak8974_precious_reg(struct device *dev, unsigned int reg)
710{
711 return reg == AK8974_INT_CLEAR;
712}
713
714static const struct regmap_config ak8974_regmap_config = {
715 .reg_bits = 8,
716 .val_bits = 8,
717 .max_register = 0xff,
718 .writeable_reg = ak8974_writeable_reg,
719 .precious_reg = ak8974_precious_reg,
720};
721
722static int ak8974_probe(struct i2c_client *i2c,
723 const struct i2c_device_id *id)
724{
725 struct iio_dev *indio_dev;
726 struct ak8974 *ak8974;
727 unsigned long irq_trig;
728 int irq = i2c->irq;
729 int ret;
730
731 /* Register with IIO */
732 indio_dev = devm_iio_device_alloc(&i2c->dev, sizeof(*ak8974));
733 if (indio_dev == NULL)
734 return -ENOMEM;
735
736 ak8974 = iio_priv(indio_dev);
737 i2c_set_clientdata(i2c, indio_dev);
738 ak8974->i2c = i2c;
739 mutex_init(&ak8974->lock);
740
741 ret = of_iio_read_mount_matrix(&i2c->dev,
742 "mount-matrix",
743 &ak8974->orientation);
744 if (ret)
745 return ret;
746
747 ak8974->regs[0].supply = ak8974_reg_avdd;
748 ak8974->regs[1].supply = ak8974_reg_dvdd;
749
750 ret = devm_regulator_bulk_get(&i2c->dev,
751 ARRAY_SIZE(ak8974->regs),
752 ak8974->regs);
753 if (ret < 0) {
754 dev_err(&i2c->dev, "cannot get regulators\n");
755 return ret;
756 }
757
758 ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
759 if (ret < 0) {
760 dev_err(&i2c->dev, "cannot enable regulators\n");
761 return ret;
762 }
763
764 /* Take runtime PM online */
765 pm_runtime_get_noresume(&i2c->dev);
766 pm_runtime_set_active(&i2c->dev);
767 pm_runtime_enable(&i2c->dev);
768
769 ak8974->map = devm_regmap_init_i2c(i2c, &ak8974_regmap_config);
770 if (IS_ERR(ak8974->map)) {
771 dev_err(&i2c->dev, "failed to allocate register map\n");
772 pm_runtime_put_noidle(&i2c->dev);
773 pm_runtime_disable(&i2c->dev);
774 return PTR_ERR(ak8974->map);
775 }
776
777 ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
778 if (ret) {
779 dev_err(&i2c->dev, "could not power on\n");
780 goto disable_pm;
781 }
782
783 ret = ak8974_detect(ak8974);
784 if (ret) {
785 dev_err(&i2c->dev, "neither AK8974 nor AMI30x found\n");
786 goto disable_pm;
787 }
788
789 ret = ak8974_selftest(ak8974);
790 if (ret)
791 dev_err(&i2c->dev, "selftest failed (continuing anyway)\n");
792
793 ret = ak8974_reset(ak8974);
794 if (ret) {
795 dev_err(&i2c->dev, "AK8974 reset failed\n");
796 goto disable_pm;
797 }
798
799 indio_dev->dev.parent = &i2c->dev;
800 indio_dev->channels = ak8974_channels;
801 indio_dev->num_channels = ARRAY_SIZE(ak8974_channels);
802 indio_dev->info = &ak8974_info;
803 indio_dev->available_scan_masks = ak8974_scan_masks;
804 indio_dev->modes = INDIO_DIRECT_MODE;
805 indio_dev->name = ak8974->name;
806
807 ret = iio_triggered_buffer_setup(indio_dev, NULL,
808 ak8974_handle_trigger,
809 NULL);
810 if (ret) {
811 dev_err(&i2c->dev, "triggered buffer setup failed\n");
812 goto disable_pm;
813 }
814
815 /* If we have a valid DRDY IRQ, make use of it */
816 if (irq > 0) {
817 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
818 if (irq_trig == IRQF_TRIGGER_RISING) {
819 dev_info(&i2c->dev, "enable rising edge DRDY IRQ\n");
820 } else if (irq_trig == IRQF_TRIGGER_FALLING) {
821 ak8974->drdy_active_low = true;
822 dev_info(&i2c->dev, "enable falling edge DRDY IRQ\n");
823 } else {
824 irq_trig = IRQF_TRIGGER_RISING;
825 }
826 irq_trig |= IRQF_ONESHOT;
827 irq_trig |= IRQF_SHARED;
828
829 ret = devm_request_threaded_irq(&i2c->dev,
830 irq,
831 ak8974_drdy_irq,
832 ak8974_drdy_irq_thread,
833 irq_trig,
834 ak8974->name,
835 ak8974);
836 if (ret) {
837 dev_err(&i2c->dev, "unable to request DRDY IRQ "
838 "- proceeding without IRQ\n");
839 goto no_irq;
840 }
841 ak8974->drdy_irq = true;
842 }
843
844no_irq:
845 ret = iio_device_register(indio_dev);
846 if (ret) {
847 dev_err(&i2c->dev, "device register failed\n");
848 goto cleanup_buffer;
849 }
850
851 pm_runtime_set_autosuspend_delay(&i2c->dev,
852 AK8974_AUTOSUSPEND_DELAY);
853 pm_runtime_use_autosuspend(&i2c->dev);
854 pm_runtime_put(&i2c->dev);
855
856 return 0;
857
858cleanup_buffer:
859 iio_triggered_buffer_cleanup(indio_dev);
860disable_pm:
861 pm_runtime_put_noidle(&i2c->dev);
862 pm_runtime_disable(&i2c->dev);
863 ak8974_set_power(ak8974, AK8974_PWR_OFF);
864 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
865
866 return ret;
867}
868
869static int ak8974_remove(struct i2c_client *i2c)
870{
871 struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
872 struct ak8974 *ak8974 = iio_priv(indio_dev);
873
874 iio_device_unregister(indio_dev);
875 iio_triggered_buffer_cleanup(indio_dev);
876 pm_runtime_get_sync(&i2c->dev);
877 pm_runtime_put_noidle(&i2c->dev);
878 pm_runtime_disable(&i2c->dev);
879 ak8974_set_power(ak8974, AK8974_PWR_OFF);
880 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
881
882 return 0;
883}
884
885static int __maybe_unused ak8974_runtime_suspend(struct device *dev)
886{
887 struct ak8974 *ak8974 =
888 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
889
890 ak8974_set_power(ak8974, AK8974_PWR_OFF);
891 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
892
893 return 0;
894}
895
896static int __maybe_unused ak8974_runtime_resume(struct device *dev)
897{
898 struct ak8974 *ak8974 =
899 iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
900 int ret;
901
902 ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
903 if (ret)
904 return ret;
905 msleep(AK8974_POWERON_DELAY);
906 ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
907 if (ret)
908 goto out_regulator_disable;
909
910 ret = ak8974_configure(ak8974);
911 if (ret)
912 goto out_disable_power;
913
914 return 0;
915
916out_disable_power:
917 ak8974_set_power(ak8974, AK8974_PWR_OFF);
918out_regulator_disable:
919 regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
920
921 return ret;
922}
923
924static const struct dev_pm_ops ak8974_dev_pm_ops = {
925 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
926 pm_runtime_force_resume)
927 SET_RUNTIME_PM_OPS(ak8974_runtime_suspend,
928 ak8974_runtime_resume, NULL)
929};
930
931static const struct i2c_device_id ak8974_id[] = {
932 {"ami305", 0 },
933 {"ami306", 0 },
934 {"ak8974", 0 },
935 {}
936};
937MODULE_DEVICE_TABLE(i2c, ak8974_id);
938
939static const struct of_device_id ak8974_of_match[] = {
940 { .compatible = "asahi-kasei,ak8974", },
941 {}
942};
943MODULE_DEVICE_TABLE(of, ak8974_of_match);
944
945static struct i2c_driver ak8974_driver = {
946 .driver = {
947 .name = "ak8974",
948 .pm = &ak8974_dev_pm_ops,
949 .of_match_table = of_match_ptr(ak8974_of_match),
950 },
951 .probe = ak8974_probe,
952 .remove = ak8974_remove,
953 .id_table = ak8974_id,
954};
955module_i2c_driver(ak8974_driver);
956
957MODULE_DESCRIPTION("AK8974 and AMI30x 3-axis magnetometer driver");
958MODULE_AUTHOR("Samu Onkalo");
959MODULE_AUTHOR("Linus Walleij");
960MODULE_LICENSE("GPL v2");