blob: 5f5fc11cf2cbb2dec7a8e43c62eb191af8388737 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * A fairly generic DMA-API to IOMMU-API glue layer.
3 *
4 * Copyright (C) 2014-2015 ARM Ltd.
5 *
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22#include <linux/device.h>
23#include <linux/dma-iommu.h>
24#include <linux/gfp.h>
25#include <linux/huge_mm.h>
26#include <linux/iommu.h>
27#include <linux/iova.h>
28#include <linux/irq.h>
29#include <linux/mm.h>
30#include <linux/pci.h>
31#include <linux/scatterlist.h>
32#include <linux/vmalloc.h>
33
34#define IOMMU_MAPPING_ERROR 0
35
36struct iommu_dma_msi_page {
37 struct list_head list;
38 dma_addr_t iova;
39 phys_addr_t phys;
40};
41
42enum iommu_dma_cookie_type {
43 IOMMU_DMA_IOVA_COOKIE,
44 IOMMU_DMA_MSI_COOKIE,
45};
46
47struct iommu_dma_cookie {
48 enum iommu_dma_cookie_type type;
49 union {
50 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
51 struct iova_domain iovad;
52 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
53 dma_addr_t msi_iova;
54 };
55 struct list_head msi_page_list;
56 spinlock_t msi_lock;
57};
58
59static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
60{
61 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
62 return cookie->iovad.granule;
63 return PAGE_SIZE;
64}
65
66static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
67{
68 struct iommu_dma_cookie *cookie;
69
70 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
71 if (cookie) {
72 spin_lock_init(&cookie->msi_lock);
73 INIT_LIST_HEAD(&cookie->msi_page_list);
74 cookie->type = type;
75 }
76 return cookie;
77}
78
79int iommu_dma_init(void)
80{
81 return iova_cache_get();
82}
83
84/**
85 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
86 * @domain: IOMMU domain to prepare for DMA-API usage
87 *
88 * IOMMU drivers should normally call this from their domain_alloc
89 * callback when domain->type == IOMMU_DOMAIN_DMA.
90 */
91int iommu_get_dma_cookie(struct iommu_domain *domain)
92{
93 if (domain->iova_cookie)
94 return -EEXIST;
95
96 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
97 if (!domain->iova_cookie)
98 return -ENOMEM;
99
100 return 0;
101}
102EXPORT_SYMBOL(iommu_get_dma_cookie);
103
104/**
105 * iommu_get_msi_cookie - Acquire just MSI remapping resources
106 * @domain: IOMMU domain to prepare
107 * @base: Start address of IOVA region for MSI mappings
108 *
109 * Users who manage their own IOVA allocation and do not want DMA API support,
110 * but would still like to take advantage of automatic MSI remapping, can use
111 * this to initialise their own domain appropriately. Users should reserve a
112 * contiguous IOVA region, starting at @base, large enough to accommodate the
113 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
114 * used by the devices attached to @domain.
115 */
116int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
117{
118 struct iommu_dma_cookie *cookie;
119
120 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
121 return -EINVAL;
122
123 if (domain->iova_cookie)
124 return -EEXIST;
125
126 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
127 if (!cookie)
128 return -ENOMEM;
129
130 cookie->msi_iova = base;
131 domain->iova_cookie = cookie;
132 return 0;
133}
134EXPORT_SYMBOL(iommu_get_msi_cookie);
135
136/**
137 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
138 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
139 * iommu_get_msi_cookie()
140 *
141 * IOMMU drivers should normally call this from their domain_free callback.
142 */
143void iommu_put_dma_cookie(struct iommu_domain *domain)
144{
145 struct iommu_dma_cookie *cookie = domain->iova_cookie;
146 struct iommu_dma_msi_page *msi, *tmp;
147
148 if (!cookie)
149 return;
150
151 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
152 put_iova_domain(&cookie->iovad);
153
154 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
155 list_del(&msi->list);
156 kfree(msi);
157 }
158 kfree(cookie);
159 domain->iova_cookie = NULL;
160}
161EXPORT_SYMBOL(iommu_put_dma_cookie);
162
163/**
164 * iommu_dma_get_resv_regions - Reserved region driver helper
165 * @dev: Device from iommu_get_resv_regions()
166 * @list: Reserved region list from iommu_get_resv_regions()
167 *
168 * IOMMU drivers can use this to implement their .get_resv_regions callback
169 * for general non-IOMMU-specific reservations. Currently, this covers host
170 * bridge windows for PCI devices.
171 */
172void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
173{
174 struct pci_host_bridge *bridge;
175 struct resource_entry *window;
176
177 if (!dev_is_pci(dev))
178 return;
179
180 bridge = pci_find_host_bridge(to_pci_dev(dev)->bus);
181 resource_list_for_each_entry(window, &bridge->windows) {
182 struct iommu_resv_region *region;
183 phys_addr_t start;
184 size_t length;
185
186 if (resource_type(window->res) != IORESOURCE_MEM)
187 continue;
188
189 start = window->res->start - window->offset;
190 length = window->res->end - window->res->start + 1;
191 region = iommu_alloc_resv_region(start, length, 0,
192 IOMMU_RESV_RESERVED);
193 if (!region)
194 return;
195
196 list_add_tail(&region->list, list);
197 }
198}
199EXPORT_SYMBOL(iommu_dma_get_resv_regions);
200
201static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
202 phys_addr_t start, phys_addr_t end)
203{
204 struct iova_domain *iovad = &cookie->iovad;
205 struct iommu_dma_msi_page *msi_page;
206 int i, num_pages;
207
208 start -= iova_offset(iovad, start);
209 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
210
211 for (i = 0; i < num_pages; i++) {
212 msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
213 if (!msi_page)
214 return -ENOMEM;
215
216 msi_page->phys = start;
217 msi_page->iova = start;
218 INIT_LIST_HEAD(&msi_page->list);
219 list_add(&msi_page->list, &cookie->msi_page_list);
220 start += iovad->granule;
221 }
222
223 return 0;
224}
225
226static int iova_reserve_iommu_regions(struct device *dev,
227 struct iommu_domain *domain)
228{
229 struct iommu_dma_cookie *cookie = domain->iova_cookie;
230 struct iova_domain *iovad = &cookie->iovad;
231 struct iommu_resv_region *region;
232 LIST_HEAD(resv_regions);
233 int ret = 0;
234
235 iommu_get_resv_regions(dev, &resv_regions);
236 list_for_each_entry(region, &resv_regions, list) {
237 unsigned long lo, hi;
238
239 /* We ARE the software that manages these! */
240 if (region->type == IOMMU_RESV_SW_MSI)
241 continue;
242
243 lo = iova_pfn(iovad, region->start);
244 hi = iova_pfn(iovad, region->start + region->length - 1);
245 reserve_iova(iovad, lo, hi);
246
247 if (region->type == IOMMU_RESV_MSI)
248 ret = cookie_init_hw_msi_region(cookie, region->start,
249 region->start + region->length);
250 if (ret)
251 break;
252 }
253 iommu_put_resv_regions(dev, &resv_regions);
254
255 return ret;
256}
257
258/**
259 * iommu_dma_init_domain - Initialise a DMA mapping domain
260 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
261 * @base: IOVA at which the mappable address space starts
262 * @size: Size of IOVA space
263 * @dev: Device the domain is being initialised for
264 *
265 * @base and @size should be exact multiples of IOMMU page granularity to
266 * avoid rounding surprises. If necessary, we reserve the page at address 0
267 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
268 * any change which could make prior IOVAs invalid will fail.
269 */
270int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
271 u64 size, struct device *dev)
272{
273 struct iommu_dma_cookie *cookie = domain->iova_cookie;
274 struct iova_domain *iovad = &cookie->iovad;
275 unsigned long order, base_pfn, end_pfn;
276
277 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
278 return -EINVAL;
279
280 /* Use the smallest supported page size for IOVA granularity */
281 order = __ffs(domain->pgsize_bitmap);
282 base_pfn = max_t(unsigned long, 1, base >> order);
283 end_pfn = (base + size - 1) >> order;
284
285 /* Check the domain allows at least some access to the device... */
286 if (domain->geometry.force_aperture) {
287 if (base > domain->geometry.aperture_end ||
288 base + size <= domain->geometry.aperture_start) {
289 pr_warn("specified DMA range outside IOMMU capability\n");
290 return -EFAULT;
291 }
292 /* ...then finally give it a kicking to make sure it fits */
293 base_pfn = max_t(unsigned long, base_pfn,
294 domain->geometry.aperture_start >> order);
295 end_pfn = min_t(unsigned long, end_pfn,
296 domain->geometry.aperture_end >> order);
297 }
298 /*
299 * PCI devices may have larger DMA masks, but still prefer allocating
300 * within a 32-bit mask to avoid DAC addressing. Such limitations don't
301 * apply to the typical platform device, so for those we may as well
302 * leave the cache limit at the top of their range to save an rb_last()
303 * traversal on every allocation.
304 */
305 if (dev && dev_is_pci(dev))
306 end_pfn &= DMA_BIT_MASK(32) >> order;
307
308 /* start_pfn is always nonzero for an already-initialised domain */
309 if (iovad->start_pfn) {
310 if (1UL << order != iovad->granule ||
311 base_pfn != iovad->start_pfn) {
312 pr_warn("Incompatible range for DMA domain\n");
313 return -EFAULT;
314 }
315 /*
316 * If we have devices with different DMA masks, move the free
317 * area cache limit down for the benefit of the smaller one.
318 */
319 iovad->dma_32bit_pfn = min(end_pfn + 1, iovad->dma_32bit_pfn);
320
321 return 0;
322 }
323
324 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
325 if (!dev)
326 return 0;
327
328 return iova_reserve_iommu_regions(dev, domain);
329}
330EXPORT_SYMBOL(iommu_dma_init_domain);
331
332/**
333 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
334 * page flags.
335 * @dir: Direction of DMA transfer
336 * @coherent: Is the DMA master cache-coherent?
337 * @attrs: DMA attributes for the mapping
338 *
339 * Return: corresponding IOMMU API page protection flags
340 */
341int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
342 unsigned long attrs)
343{
344 int prot = coherent ? IOMMU_CACHE : 0;
345
346 if (attrs & DMA_ATTR_PRIVILEGED)
347 prot |= IOMMU_PRIV;
348
349 switch (dir) {
350 case DMA_BIDIRECTIONAL:
351 return prot | IOMMU_READ | IOMMU_WRITE;
352 case DMA_TO_DEVICE:
353 return prot | IOMMU_READ;
354 case DMA_FROM_DEVICE:
355 return prot | IOMMU_WRITE;
356 default:
357 return 0;
358 }
359}
360
361static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
362 size_t size, dma_addr_t dma_limit, struct device *dev)
363{
364 struct iommu_dma_cookie *cookie = domain->iova_cookie;
365 struct iova_domain *iovad = &cookie->iovad;
366 unsigned long shift, iova_len, iova = 0;
367
368 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
369 cookie->msi_iova += size;
370 return cookie->msi_iova - size;
371 }
372
373 shift = iova_shift(iovad);
374 iova_len = size >> shift;
375 /*
376 * Freeing non-power-of-two-sized allocations back into the IOVA caches
377 * will come back to bite us badly, so we have to waste a bit of space
378 * rounding up anything cacheable to make sure that can't happen. The
379 * order of the unadjusted size will still match upon freeing.
380 */
381 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
382 iova_len = roundup_pow_of_two(iova_len);
383
384 if (domain->geometry.force_aperture)
385 dma_limit = min(dma_limit, domain->geometry.aperture_end);
386
387 /* Try to get PCI devices a SAC address */
388 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
389 iova = alloc_iova_fast(iovad, iova_len, DMA_BIT_MASK(32) >> shift);
390
391 if (!iova)
392 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift);
393
394 return (dma_addr_t)iova << shift;
395}
396
397static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
398 dma_addr_t iova, size_t size)
399{
400 struct iova_domain *iovad = &cookie->iovad;
401
402 /* The MSI case is only ever cleaning up its most recent allocation */
403 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
404 cookie->msi_iova -= size;
405 else
406 free_iova_fast(iovad, iova_pfn(iovad, iova),
407 size >> iova_shift(iovad));
408}
409
410static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr,
411 size_t size)
412{
413 struct iommu_dma_cookie *cookie = domain->iova_cookie;
414 struct iova_domain *iovad = &cookie->iovad;
415 size_t iova_off = iova_offset(iovad, dma_addr);
416
417 dma_addr -= iova_off;
418 size = iova_align(iovad, size + iova_off);
419
420 WARN_ON(iommu_unmap(domain, dma_addr, size) != size);
421 iommu_dma_free_iova(cookie, dma_addr, size);
422}
423
424static void __iommu_dma_free_pages(struct page **pages, int count)
425{
426 while (count--)
427 __free_page(pages[count]);
428 kvfree(pages);
429}
430
431static struct page **__iommu_dma_alloc_pages(unsigned int count,
432 unsigned long order_mask, gfp_t gfp)
433{
434 struct page **pages;
435 unsigned int i = 0, array_size = count * sizeof(*pages);
436
437 order_mask &= (2U << MAX_ORDER) - 1;
438 if (!order_mask)
439 return NULL;
440
441 if (array_size <= PAGE_SIZE)
442 pages = kzalloc(array_size, GFP_KERNEL);
443 else
444 pages = vzalloc(array_size);
445 if (!pages)
446 return NULL;
447
448 /* IOMMU can map any pages, so himem can also be used here */
449 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
450
451 while (count) {
452 struct page *page = NULL;
453 unsigned int order_size;
454
455 /*
456 * Higher-order allocations are a convenience rather
457 * than a necessity, hence using __GFP_NORETRY until
458 * falling back to minimum-order allocations.
459 */
460 for (order_mask &= (2U << __fls(count)) - 1;
461 order_mask; order_mask &= ~order_size) {
462 unsigned int order = __fls(order_mask);
463
464 order_size = 1U << order;
465 page = alloc_pages((order_mask - order_size) ?
466 gfp | __GFP_NORETRY : gfp, order);
467 if (!page)
468 continue;
469 if (!order)
470 break;
471 if (!PageCompound(page)) {
472 split_page(page, order);
473 break;
474 } else if (!split_huge_page(page)) {
475 break;
476 }
477 __free_pages(page, order);
478 }
479 if (!page) {
480 __iommu_dma_free_pages(pages, i);
481 return NULL;
482 }
483 count -= order_size;
484 while (order_size--)
485 pages[i++] = page++;
486 }
487 return pages;
488}
489
490
491void iommu_dma_free_from_reserved_range(struct device *dev,
492 struct page **pages, size_t size, dma_addr_t *handle)
493{
494 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
495 struct iommu_dma_cookie *cookie = domain->iova_cookie;
496 struct iova_domain *iovad = &cookie->iovad;
497 unsigned long shift = iova_shift(iovad);
498 unsigned long pfn = (*handle) >> shift;
499 size_t unmap_size = size;
500
501 unmap_size -= iommu_unmap(domain, pfn << shift, size);
502 WARN_ON(unmap_size > 0);
503
504 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
505 *handle = IOMMU_MAPPING_ERROR;
506}
507
508/**
509 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
510 * @dev: Device which owns this buffer
511 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
512 * @size: Size of buffer in bytes
513 * @handle: DMA address of buffer
514 *
515 * Frees both the pages associated with the buffer, and the array
516 * describing them
517 */
518void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
519 dma_addr_t *handle)
520{
521 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size);
522 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
523 *handle = IOMMU_MAPPING_ERROR;
524}
525
526/**
527 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
528 * @dev: Device to allocate memory for. Must be a real device
529 * attached to an iommu_dma_domain
530 * @size: Size of buffer in bytes
531 * @gfp: Allocation flags
532 * @attrs: DMA attributes for this allocation
533 * @prot: IOMMU mapping flags
534 * @handle: Out argument for allocated DMA handle
535 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
536 * given VA/PA are visible to the given non-coherent device.
537 *
538 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
539 * but an IOMMU which supports smaller pages might not map the whole thing.
540 *
541 * Return: Array of struct page pointers describing the buffer,
542 * or NULL on failure.
543 */
544struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
545 unsigned long attrs, int prot, dma_addr_t *handle,
546 void (*flush_page)(struct device *, const void *, phys_addr_t))
547{
548 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
549 struct iommu_dma_cookie *cookie = domain->iova_cookie;
550 struct iova_domain *iovad = &cookie->iovad;
551 struct page **pages;
552 struct sg_table sgt;
553 dma_addr_t iova;
554 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
555
556 *handle = IOMMU_MAPPING_ERROR;
557
558 min_size = alloc_sizes & -alloc_sizes;
559 if (min_size < PAGE_SIZE) {
560 min_size = PAGE_SIZE;
561 alloc_sizes |= PAGE_SIZE;
562 } else {
563 size = ALIGN(size, min_size);
564 }
565 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
566 alloc_sizes = min_size;
567
568 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
569 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
570 if (!pages)
571 return NULL;
572
573 size = iova_align(iovad, size);
574 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
575 if (!iova)
576 goto out_free_pages;
577
578 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
579 goto out_free_iova;
580
581 if (!(prot & IOMMU_CACHE)) {
582 struct sg_mapping_iter miter;
583 /*
584 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
585 * sufficient here, so skip it by using the "wrong" direction.
586 */
587 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
588 while (sg_miter_next(&miter))
589 flush_page(dev, miter.addr, page_to_phys(miter.page));
590 sg_miter_stop(&miter);
591 }
592
593 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
594 < size)
595 goto out_free_sg;
596
597 *handle = iova;
598 sg_free_table(&sgt);
599 return pages;
600
601out_free_sg:
602 sg_free_table(&sgt);
603out_free_iova:
604 iommu_dma_free_iova(cookie, iova, size);
605out_free_pages:
606 __iommu_dma_free_pages(pages, count);
607 return NULL;
608}
609
610/**
611 * iommu_dma_mmap - Map a buffer into provided user VMA
612 * @pages: Array representing buffer from iommu_dma_alloc()
613 * @size: Size of buffer in bytes
614 * @vma: VMA describing requested userspace mapping
615 *
616 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
617 * for verifying the correct size and protection of @vma beforehand.
618 */
619
620int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
621{
622 unsigned long uaddr = vma->vm_start;
623 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
624 int ret = -ENXIO;
625
626 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
627 ret = vm_insert_page(vma, uaddr, pages[i]);
628 if (ret)
629 break;
630 uaddr += PAGE_SIZE;
631 }
632 return ret;
633}
634
635static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
636 size_t size, int prot)
637{
638 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
639 struct iommu_dma_cookie *cookie = domain->iova_cookie;
640 size_t iova_off = 0;
641 dma_addr_t iova;
642
643 if (cookie->type == IOMMU_DMA_IOVA_COOKIE) {
644 iova_off = iova_offset(&cookie->iovad, phys);
645 size = iova_align(&cookie->iovad, size + iova_off);
646 }
647
648 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
649 if (!iova)
650 return IOMMU_MAPPING_ERROR;
651
652 if (iommu_map(domain, iova, phys - iova_off, size, prot)) {
653 iommu_dma_free_iova(cookie, iova, size);
654 return IOMMU_MAPPING_ERROR;
655 }
656 return iova + iova_off;
657}
658
659dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
660 unsigned long offset, size_t size, int prot)
661{
662 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
663}
664
665void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
666 enum dma_data_direction dir, unsigned long attrs)
667{
668 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
669}
670
671/*
672 * Prepare a successfully-mapped scatterlist to give back to the caller.
673 *
674 * At this point the segments are already laid out by iommu_dma_map_sg() to
675 * avoid individually crossing any boundaries, so we merely need to check a
676 * segment's start address to avoid concatenating across one.
677 */
678static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
679 dma_addr_t dma_addr)
680{
681 struct scatterlist *s, *cur = sg;
682 unsigned long seg_mask = dma_get_seg_boundary(dev);
683 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
684 int i, count = 0;
685
686 for_each_sg(sg, s, nents, i) {
687 /* Restore this segment's original unaligned fields first */
688 unsigned int s_iova_off = sg_dma_address(s);
689 unsigned int s_length = sg_dma_len(s);
690 unsigned int s_iova_len = s->length;
691
692 s->offset += s_iova_off;
693 s->length = s_length;
694 sg_dma_address(s) = IOMMU_MAPPING_ERROR;
695 sg_dma_len(s) = 0;
696
697 /*
698 * Now fill in the real DMA data. If...
699 * - there is a valid output segment to append to
700 * - and this segment starts on an IOVA page boundary
701 * - but doesn't fall at a segment boundary
702 * - and wouldn't make the resulting output segment too long
703 */
704 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
705 (max_len - cur_len >= s_length)) {
706 /* ...then concatenate it with the previous one */
707 cur_len += s_length;
708 } else {
709 /* Otherwise start the next output segment */
710 if (i > 0)
711 cur = sg_next(cur);
712 cur_len = s_length;
713 count++;
714
715 sg_dma_address(cur) = dma_addr + s_iova_off;
716 }
717
718 sg_dma_len(cur) = cur_len;
719 dma_addr += s_iova_len;
720
721 if (s_length + s_iova_off < s_iova_len)
722 cur_len = 0;
723 }
724 return count;
725}
726
727/*
728 * If mapping failed, then just restore the original list,
729 * but making sure the DMA fields are invalidated.
730 */
731static void __invalidate_sg(struct scatterlist *sg, int nents)
732{
733 struct scatterlist *s;
734 int i;
735
736 for_each_sg(sg, s, nents, i) {
737 if (sg_dma_address(s) != IOMMU_MAPPING_ERROR)
738 s->offset += sg_dma_address(s);
739 if (sg_dma_len(s))
740 s->length = sg_dma_len(s);
741 sg_dma_address(s) = IOMMU_MAPPING_ERROR;
742 sg_dma_len(s) = 0;
743 }
744}
745
746/*
747 * The DMA API client is passing in a scatterlist which could describe
748 * any old buffer layout, but the IOMMU API requires everything to be
749 * aligned to IOMMU pages. Hence the need for this complicated bit of
750 * impedance-matching, to be able to hand off a suitably-aligned list,
751 * but still preserve the original offsets and sizes for the caller.
752 */
753int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
754 int nents, int prot)
755{
756 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
757 struct iommu_dma_cookie *cookie = domain->iova_cookie;
758 struct iova_domain *iovad = &cookie->iovad;
759 struct scatterlist *s, *prev = NULL;
760 dma_addr_t iova;
761 size_t iova_len = 0;
762 unsigned long mask = dma_get_seg_boundary(dev);
763 int i;
764
765 /*
766 * Work out how much IOVA space we need, and align the segments to
767 * IOVA granules for the IOMMU driver to handle. With some clever
768 * trickery we can modify the list in-place, but reversibly, by
769 * stashing the unaligned parts in the as-yet-unused DMA fields.
770 */
771 for_each_sg(sg, s, nents, i) {
772 size_t s_iova_off = iova_offset(iovad, s->offset);
773 size_t s_length = s->length;
774 size_t pad_len = (mask - iova_len + 1) & mask;
775
776 sg_dma_address(s) = s_iova_off;
777 sg_dma_len(s) = s_length;
778 s->offset -= s_iova_off;
779 s_length = iova_align(iovad, s_length + s_iova_off);
780 s->length = s_length;
781
782 /*
783 * Due to the alignment of our single IOVA allocation, we can
784 * depend on these assumptions about the segment boundary mask:
785 * - If mask size >= IOVA size, then the IOVA range cannot
786 * possibly fall across a boundary, so we don't care.
787 * - If mask size < IOVA size, then the IOVA range must start
788 * exactly on a boundary, therefore we can lay things out
789 * based purely on segment lengths without needing to know
790 * the actual addresses beforehand.
791 * - The mask must be a power of 2, so pad_len == 0 if
792 * iova_len == 0, thus we cannot dereference prev the first
793 * time through here (i.e. before it has a meaningful value).
794 */
795 if (pad_len && pad_len < s_length - 1) {
796 prev->length += pad_len;
797 iova_len += pad_len;
798 }
799
800 iova_len += s_length;
801 prev = s;
802 }
803
804 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
805 if (!iova)
806 goto out_restore_sg;
807
808 /*
809 * We'll leave any physical concatenation to the IOMMU driver's
810 * implementation - it knows better than we do.
811 */
812 if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len)
813 goto out_free_iova;
814
815 return __finalise_sg(dev, sg, nents, iova);
816
817out_free_iova:
818 iommu_dma_free_iova(cookie, iova, iova_len);
819out_restore_sg:
820 __invalidate_sg(sg, nents);
821 return 0;
822}
823
824void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
825 enum dma_data_direction dir, unsigned long attrs)
826{
827 dma_addr_t start, end;
828 struct scatterlist *tmp;
829 int i;
830 /*
831 * The scatterlist segments are mapped into a single
832 * contiguous IOVA allocation, so this is incredibly easy.
833 */
834 start = sg_dma_address(sg);
835 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
836 if (sg_dma_len(tmp) == 0)
837 break;
838 sg = tmp;
839 }
840 end = sg_dma_address(sg) + sg_dma_len(sg);
841 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start);
842}
843
844struct page **
845iommu_dma_alloc_fix_iova(struct device *dev, size_t size, gfp_t gfp,
846 unsigned long attrs, int prot, dma_addr_t handle,
847 void (*flush_page)(struct device *, const void *, phys_addr_t))
848{
849 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
850 struct iommu_dma_cookie *cookie = domain->iova_cookie;
851 struct iova_domain *iovad = &cookie->iovad;
852 struct page **pages;
853 struct sg_table sgt;
854 dma_addr_t iova = handle;
855 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
856
857 min_size = alloc_sizes & -alloc_sizes;
858 if (min_size < PAGE_SIZE) {
859 min_size = PAGE_SIZE;
860 alloc_sizes |= PAGE_SIZE;
861 } else {
862 size = ALIGN(size, min_size);
863 }
864 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
865 alloc_sizes = min_size;
866
867 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
868 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
869 if (!pages)
870 return NULL;
871
872 size = iova_align(iovad, size);
873 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
874 goto out_free_iova;
875
876 if (!(prot & IOMMU_CACHE)) {
877 struct sg_mapping_iter miter;
878 /*
879 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
880 * sufficient here, so skip it by using the "wrong" direction.
881 */
882 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents,
883 SG_MITER_FROM_SG);
884 while (sg_miter_next(&miter))
885 flush_page(dev, miter.addr, page_to_phys(miter.page));
886 sg_miter_stop(&miter);
887 }
888
889 if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot)
890 < size)
891 goto out_free_sg;
892
893 sg_free_table(&sgt);
894 return pages;
895
896out_free_sg:
897 sg_free_table(&sgt);
898out_free_iova:
899 iommu_dma_free_iova(cookie, iova, size);
900 __iommu_dma_free_pages(pages, count);
901 return NULL;
902}
903
904/*
905 * User have to provide the dma address in the reserved iova area for mapping
906 */
907int dma_map_sg_within_reserved_iova(struct device *dev, struct scatterlist *sg,
908 int nents, int prot, dma_addr_t dma_addr)
909{
910 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
911 struct iommu_dma_cookie *cookie = domain->iova_cookie;
912 struct iova_domain *iovad = &cookie->iovad;
913 struct scatterlist *s, *prev = NULL;
914 size_t iova_len = 0;
915 size_t map_len = 0;
916 int i;
917
918 for_each_sg(sg, s, nents, i) {
919 size_t s_iova_off = iova_offset(iovad, s->offset);
920 size_t s_length = s->length;
921
922 sg_dma_address(s) = s_iova_off;
923 sg_dma_len(s) = s_length;
924 s->offset -= s_iova_off;
925 s_length = iova_align(iovad, s_length + s_iova_off);
926 s->length = s_length;
927
928 iova_len += s_length;
929 prev = s;
930 }
931
932 map_len = iommu_map_sg(domain, dma_addr, sg, nents, prot);
933
934 return __finalise_sg(dev, sg, nents, dma_addr);
935}
936EXPORT_SYMBOL(dma_map_sg_within_reserved_iova);
937
938void dma_unmap_sg_within_reserved_iova(struct device *dev,
939 struct scatterlist *sg, int nents,
940 int prot, size_t size)
941{
942 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
943 struct iommu_dma_cookie *cookie = domain->iova_cookie;
944 struct iova_domain *iovad = &cookie->iovad;
945 unsigned long shift = iova_shift(iovad);
946 unsigned long pfn = sg_dma_address(sg) >> shift;
947
948 /*
949 * The scatterlist segments are mapped into a single
950 * contiguous IOVA allocation, so this is incredibly easy.
951 */
952 size -= iommu_unmap(domain, pfn << shift, size);
953 WARN_ON(size > 0);
954}
955EXPORT_SYMBOL(dma_unmap_sg_within_reserved_iova);
956
957dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
958 size_t size, enum dma_data_direction dir, unsigned long attrs)
959{
960 return __iommu_dma_map(dev, phys, size,
961 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
962}
963
964void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
965 size_t size, enum dma_data_direction dir, unsigned long attrs)
966{
967 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size);
968}
969
970int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
971{
972 return dma_addr == IOMMU_MAPPING_ERROR;
973}
974
975static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
976 phys_addr_t msi_addr, struct iommu_domain *domain)
977{
978 struct iommu_dma_cookie *cookie = domain->iova_cookie;
979 struct iommu_dma_msi_page *msi_page;
980 dma_addr_t iova;
981 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
982 size_t size = cookie_msi_granule(cookie);
983
984 msi_addr &= ~(phys_addr_t)(size - 1);
985 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
986 if (msi_page->phys == msi_addr)
987 return msi_page;
988
989 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
990 if (!msi_page)
991 return NULL;
992
993 iova = __iommu_dma_map(dev, msi_addr, size, prot);
994 if (iommu_dma_mapping_error(dev, iova))
995 goto out_free_page;
996
997 INIT_LIST_HEAD(&msi_page->list);
998 msi_page->phys = msi_addr;
999 msi_page->iova = iova;
1000 list_add(&msi_page->list, &cookie->msi_page_list);
1001 return msi_page;
1002
1003out_free_page:
1004 kfree(msi_page);
1005 return NULL;
1006}
1007
1008void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
1009{
1010 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
1011 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1012 struct iommu_dma_cookie *cookie;
1013 struct iommu_dma_msi_page *msi_page;
1014 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
1015 unsigned long flags;
1016
1017 if (!domain || !domain->iova_cookie)
1018 return;
1019
1020 cookie = domain->iova_cookie;
1021
1022 /*
1023 * We disable IRQs to rule out a possible inversion against
1024 * irq_desc_lock if, say, someone tries to retarget the affinity
1025 * of an MSI from within an IPI handler.
1026 */
1027 spin_lock_irqsave(&cookie->msi_lock, flags);
1028 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1029 spin_unlock_irqrestore(&cookie->msi_lock, flags);
1030
1031 if (WARN_ON(!msi_page)) {
1032 /*
1033 * We're called from a void callback, so the best we can do is
1034 * 'fail' by filling the message with obviously bogus values.
1035 * Since we got this far due to an IOMMU being present, it's
1036 * not like the existing address would have worked anyway...
1037 */
1038 msg->address_hi = ~0U;
1039 msg->address_lo = ~0U;
1040 msg->data = ~0U;
1041 } else {
1042 msg->address_hi = upper_32_bits(msi_page->iova);
1043 msg->address_lo &= cookie_msi_granule(cookie) - 1;
1044 msg->address_lo += lower_32_bits(msi_page->iova);
1045 }
1046}