rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * A fairly generic DMA-API to IOMMU-API glue layer. |
| 3 | * |
| 4 | * Copyright (C) 2014-2015 ARM Ltd. |
| 5 | * |
| 6 | * based in part on arch/arm/mm/dma-mapping.c: |
| 7 | * Copyright (C) 2000-2004 Russell King |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License version 2 as |
| 11 | * published by the Free Software Foundation. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 20 | */ |
| 21 | |
| 22 | #include <linux/device.h> |
| 23 | #include <linux/dma-iommu.h> |
| 24 | #include <linux/gfp.h> |
| 25 | #include <linux/huge_mm.h> |
| 26 | #include <linux/iommu.h> |
| 27 | #include <linux/iova.h> |
| 28 | #include <linux/irq.h> |
| 29 | #include <linux/mm.h> |
| 30 | #include <linux/pci.h> |
| 31 | #include <linux/scatterlist.h> |
| 32 | #include <linux/vmalloc.h> |
| 33 | |
| 34 | #define IOMMU_MAPPING_ERROR 0 |
| 35 | |
| 36 | struct iommu_dma_msi_page { |
| 37 | struct list_head list; |
| 38 | dma_addr_t iova; |
| 39 | phys_addr_t phys; |
| 40 | }; |
| 41 | |
| 42 | enum iommu_dma_cookie_type { |
| 43 | IOMMU_DMA_IOVA_COOKIE, |
| 44 | IOMMU_DMA_MSI_COOKIE, |
| 45 | }; |
| 46 | |
| 47 | struct iommu_dma_cookie { |
| 48 | enum iommu_dma_cookie_type type; |
| 49 | union { |
| 50 | /* Full allocator for IOMMU_DMA_IOVA_COOKIE */ |
| 51 | struct iova_domain iovad; |
| 52 | /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */ |
| 53 | dma_addr_t msi_iova; |
| 54 | }; |
| 55 | struct list_head msi_page_list; |
| 56 | spinlock_t msi_lock; |
| 57 | }; |
| 58 | |
| 59 | static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie) |
| 60 | { |
| 61 | if (cookie->type == IOMMU_DMA_IOVA_COOKIE) |
| 62 | return cookie->iovad.granule; |
| 63 | return PAGE_SIZE; |
| 64 | } |
| 65 | |
| 66 | static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type) |
| 67 | { |
| 68 | struct iommu_dma_cookie *cookie; |
| 69 | |
| 70 | cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); |
| 71 | if (cookie) { |
| 72 | spin_lock_init(&cookie->msi_lock); |
| 73 | INIT_LIST_HEAD(&cookie->msi_page_list); |
| 74 | cookie->type = type; |
| 75 | } |
| 76 | return cookie; |
| 77 | } |
| 78 | |
| 79 | int iommu_dma_init(void) |
| 80 | { |
| 81 | return iova_cache_get(); |
| 82 | } |
| 83 | |
| 84 | /** |
| 85 | * iommu_get_dma_cookie - Acquire DMA-API resources for a domain |
| 86 | * @domain: IOMMU domain to prepare for DMA-API usage |
| 87 | * |
| 88 | * IOMMU drivers should normally call this from their domain_alloc |
| 89 | * callback when domain->type == IOMMU_DOMAIN_DMA. |
| 90 | */ |
| 91 | int iommu_get_dma_cookie(struct iommu_domain *domain) |
| 92 | { |
| 93 | if (domain->iova_cookie) |
| 94 | return -EEXIST; |
| 95 | |
| 96 | domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE); |
| 97 | if (!domain->iova_cookie) |
| 98 | return -ENOMEM; |
| 99 | |
| 100 | return 0; |
| 101 | } |
| 102 | EXPORT_SYMBOL(iommu_get_dma_cookie); |
| 103 | |
| 104 | /** |
| 105 | * iommu_get_msi_cookie - Acquire just MSI remapping resources |
| 106 | * @domain: IOMMU domain to prepare |
| 107 | * @base: Start address of IOVA region for MSI mappings |
| 108 | * |
| 109 | * Users who manage their own IOVA allocation and do not want DMA API support, |
| 110 | * but would still like to take advantage of automatic MSI remapping, can use |
| 111 | * this to initialise their own domain appropriately. Users should reserve a |
| 112 | * contiguous IOVA region, starting at @base, large enough to accommodate the |
| 113 | * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address |
| 114 | * used by the devices attached to @domain. |
| 115 | */ |
| 116 | int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base) |
| 117 | { |
| 118 | struct iommu_dma_cookie *cookie; |
| 119 | |
| 120 | if (domain->type != IOMMU_DOMAIN_UNMANAGED) |
| 121 | return -EINVAL; |
| 122 | |
| 123 | if (domain->iova_cookie) |
| 124 | return -EEXIST; |
| 125 | |
| 126 | cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE); |
| 127 | if (!cookie) |
| 128 | return -ENOMEM; |
| 129 | |
| 130 | cookie->msi_iova = base; |
| 131 | domain->iova_cookie = cookie; |
| 132 | return 0; |
| 133 | } |
| 134 | EXPORT_SYMBOL(iommu_get_msi_cookie); |
| 135 | |
| 136 | /** |
| 137 | * iommu_put_dma_cookie - Release a domain's DMA mapping resources |
| 138 | * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or |
| 139 | * iommu_get_msi_cookie() |
| 140 | * |
| 141 | * IOMMU drivers should normally call this from their domain_free callback. |
| 142 | */ |
| 143 | void iommu_put_dma_cookie(struct iommu_domain *domain) |
| 144 | { |
| 145 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 146 | struct iommu_dma_msi_page *msi, *tmp; |
| 147 | |
| 148 | if (!cookie) |
| 149 | return; |
| 150 | |
| 151 | if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) |
| 152 | put_iova_domain(&cookie->iovad); |
| 153 | |
| 154 | list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { |
| 155 | list_del(&msi->list); |
| 156 | kfree(msi); |
| 157 | } |
| 158 | kfree(cookie); |
| 159 | domain->iova_cookie = NULL; |
| 160 | } |
| 161 | EXPORT_SYMBOL(iommu_put_dma_cookie); |
| 162 | |
| 163 | /** |
| 164 | * iommu_dma_get_resv_regions - Reserved region driver helper |
| 165 | * @dev: Device from iommu_get_resv_regions() |
| 166 | * @list: Reserved region list from iommu_get_resv_regions() |
| 167 | * |
| 168 | * IOMMU drivers can use this to implement their .get_resv_regions callback |
| 169 | * for general non-IOMMU-specific reservations. Currently, this covers host |
| 170 | * bridge windows for PCI devices. |
| 171 | */ |
| 172 | void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list) |
| 173 | { |
| 174 | struct pci_host_bridge *bridge; |
| 175 | struct resource_entry *window; |
| 176 | |
| 177 | if (!dev_is_pci(dev)) |
| 178 | return; |
| 179 | |
| 180 | bridge = pci_find_host_bridge(to_pci_dev(dev)->bus); |
| 181 | resource_list_for_each_entry(window, &bridge->windows) { |
| 182 | struct iommu_resv_region *region; |
| 183 | phys_addr_t start; |
| 184 | size_t length; |
| 185 | |
| 186 | if (resource_type(window->res) != IORESOURCE_MEM) |
| 187 | continue; |
| 188 | |
| 189 | start = window->res->start - window->offset; |
| 190 | length = window->res->end - window->res->start + 1; |
| 191 | region = iommu_alloc_resv_region(start, length, 0, |
| 192 | IOMMU_RESV_RESERVED); |
| 193 | if (!region) |
| 194 | return; |
| 195 | |
| 196 | list_add_tail(®ion->list, list); |
| 197 | } |
| 198 | } |
| 199 | EXPORT_SYMBOL(iommu_dma_get_resv_regions); |
| 200 | |
| 201 | static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie, |
| 202 | phys_addr_t start, phys_addr_t end) |
| 203 | { |
| 204 | struct iova_domain *iovad = &cookie->iovad; |
| 205 | struct iommu_dma_msi_page *msi_page; |
| 206 | int i, num_pages; |
| 207 | |
| 208 | start -= iova_offset(iovad, start); |
| 209 | num_pages = iova_align(iovad, end - start) >> iova_shift(iovad); |
| 210 | |
| 211 | for (i = 0; i < num_pages; i++) { |
| 212 | msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL); |
| 213 | if (!msi_page) |
| 214 | return -ENOMEM; |
| 215 | |
| 216 | msi_page->phys = start; |
| 217 | msi_page->iova = start; |
| 218 | INIT_LIST_HEAD(&msi_page->list); |
| 219 | list_add(&msi_page->list, &cookie->msi_page_list); |
| 220 | start += iovad->granule; |
| 221 | } |
| 222 | |
| 223 | return 0; |
| 224 | } |
| 225 | |
| 226 | static int iova_reserve_iommu_regions(struct device *dev, |
| 227 | struct iommu_domain *domain) |
| 228 | { |
| 229 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 230 | struct iova_domain *iovad = &cookie->iovad; |
| 231 | struct iommu_resv_region *region; |
| 232 | LIST_HEAD(resv_regions); |
| 233 | int ret = 0; |
| 234 | |
| 235 | iommu_get_resv_regions(dev, &resv_regions); |
| 236 | list_for_each_entry(region, &resv_regions, list) { |
| 237 | unsigned long lo, hi; |
| 238 | |
| 239 | /* We ARE the software that manages these! */ |
| 240 | if (region->type == IOMMU_RESV_SW_MSI) |
| 241 | continue; |
| 242 | |
| 243 | lo = iova_pfn(iovad, region->start); |
| 244 | hi = iova_pfn(iovad, region->start + region->length - 1); |
| 245 | reserve_iova(iovad, lo, hi); |
| 246 | |
| 247 | if (region->type == IOMMU_RESV_MSI) |
| 248 | ret = cookie_init_hw_msi_region(cookie, region->start, |
| 249 | region->start + region->length); |
| 250 | if (ret) |
| 251 | break; |
| 252 | } |
| 253 | iommu_put_resv_regions(dev, &resv_regions); |
| 254 | |
| 255 | return ret; |
| 256 | } |
| 257 | |
| 258 | /** |
| 259 | * iommu_dma_init_domain - Initialise a DMA mapping domain |
| 260 | * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() |
| 261 | * @base: IOVA at which the mappable address space starts |
| 262 | * @size: Size of IOVA space |
| 263 | * @dev: Device the domain is being initialised for |
| 264 | * |
| 265 | * @base and @size should be exact multiples of IOMMU page granularity to |
| 266 | * avoid rounding surprises. If necessary, we reserve the page at address 0 |
| 267 | * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but |
| 268 | * any change which could make prior IOVAs invalid will fail. |
| 269 | */ |
| 270 | int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, |
| 271 | u64 size, struct device *dev) |
| 272 | { |
| 273 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 274 | struct iova_domain *iovad = &cookie->iovad; |
| 275 | unsigned long order, base_pfn, end_pfn; |
| 276 | |
| 277 | if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE) |
| 278 | return -EINVAL; |
| 279 | |
| 280 | /* Use the smallest supported page size for IOVA granularity */ |
| 281 | order = __ffs(domain->pgsize_bitmap); |
| 282 | base_pfn = max_t(unsigned long, 1, base >> order); |
| 283 | end_pfn = (base + size - 1) >> order; |
| 284 | |
| 285 | /* Check the domain allows at least some access to the device... */ |
| 286 | if (domain->geometry.force_aperture) { |
| 287 | if (base > domain->geometry.aperture_end || |
| 288 | base + size <= domain->geometry.aperture_start) { |
| 289 | pr_warn("specified DMA range outside IOMMU capability\n"); |
| 290 | return -EFAULT; |
| 291 | } |
| 292 | /* ...then finally give it a kicking to make sure it fits */ |
| 293 | base_pfn = max_t(unsigned long, base_pfn, |
| 294 | domain->geometry.aperture_start >> order); |
| 295 | end_pfn = min_t(unsigned long, end_pfn, |
| 296 | domain->geometry.aperture_end >> order); |
| 297 | } |
| 298 | /* |
| 299 | * PCI devices may have larger DMA masks, but still prefer allocating |
| 300 | * within a 32-bit mask to avoid DAC addressing. Such limitations don't |
| 301 | * apply to the typical platform device, so for those we may as well |
| 302 | * leave the cache limit at the top of their range to save an rb_last() |
| 303 | * traversal on every allocation. |
| 304 | */ |
| 305 | if (dev && dev_is_pci(dev)) |
| 306 | end_pfn &= DMA_BIT_MASK(32) >> order; |
| 307 | |
| 308 | /* start_pfn is always nonzero for an already-initialised domain */ |
| 309 | if (iovad->start_pfn) { |
| 310 | if (1UL << order != iovad->granule || |
| 311 | base_pfn != iovad->start_pfn) { |
| 312 | pr_warn("Incompatible range for DMA domain\n"); |
| 313 | return -EFAULT; |
| 314 | } |
| 315 | /* |
| 316 | * If we have devices with different DMA masks, move the free |
| 317 | * area cache limit down for the benefit of the smaller one. |
| 318 | */ |
| 319 | iovad->dma_32bit_pfn = min(end_pfn + 1, iovad->dma_32bit_pfn); |
| 320 | |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn); |
| 325 | if (!dev) |
| 326 | return 0; |
| 327 | |
| 328 | return iova_reserve_iommu_regions(dev, domain); |
| 329 | } |
| 330 | EXPORT_SYMBOL(iommu_dma_init_domain); |
| 331 | |
| 332 | /** |
| 333 | * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API |
| 334 | * page flags. |
| 335 | * @dir: Direction of DMA transfer |
| 336 | * @coherent: Is the DMA master cache-coherent? |
| 337 | * @attrs: DMA attributes for the mapping |
| 338 | * |
| 339 | * Return: corresponding IOMMU API page protection flags |
| 340 | */ |
| 341 | int dma_info_to_prot(enum dma_data_direction dir, bool coherent, |
| 342 | unsigned long attrs) |
| 343 | { |
| 344 | int prot = coherent ? IOMMU_CACHE : 0; |
| 345 | |
| 346 | if (attrs & DMA_ATTR_PRIVILEGED) |
| 347 | prot |= IOMMU_PRIV; |
| 348 | |
| 349 | switch (dir) { |
| 350 | case DMA_BIDIRECTIONAL: |
| 351 | return prot | IOMMU_READ | IOMMU_WRITE; |
| 352 | case DMA_TO_DEVICE: |
| 353 | return prot | IOMMU_READ; |
| 354 | case DMA_FROM_DEVICE: |
| 355 | return prot | IOMMU_WRITE; |
| 356 | default: |
| 357 | return 0; |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain, |
| 362 | size_t size, dma_addr_t dma_limit, struct device *dev) |
| 363 | { |
| 364 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 365 | struct iova_domain *iovad = &cookie->iovad; |
| 366 | unsigned long shift, iova_len, iova = 0; |
| 367 | |
| 368 | if (cookie->type == IOMMU_DMA_MSI_COOKIE) { |
| 369 | cookie->msi_iova += size; |
| 370 | return cookie->msi_iova - size; |
| 371 | } |
| 372 | |
| 373 | shift = iova_shift(iovad); |
| 374 | iova_len = size >> shift; |
| 375 | /* |
| 376 | * Freeing non-power-of-two-sized allocations back into the IOVA caches |
| 377 | * will come back to bite us badly, so we have to waste a bit of space |
| 378 | * rounding up anything cacheable to make sure that can't happen. The |
| 379 | * order of the unadjusted size will still match upon freeing. |
| 380 | */ |
| 381 | if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1))) |
| 382 | iova_len = roundup_pow_of_two(iova_len); |
| 383 | |
| 384 | if (domain->geometry.force_aperture) |
| 385 | dma_limit = min(dma_limit, domain->geometry.aperture_end); |
| 386 | |
| 387 | /* Try to get PCI devices a SAC address */ |
| 388 | if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev)) |
| 389 | iova = alloc_iova_fast(iovad, iova_len, DMA_BIT_MASK(32) >> shift); |
| 390 | |
| 391 | if (!iova) |
| 392 | iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift); |
| 393 | |
| 394 | return (dma_addr_t)iova << shift; |
| 395 | } |
| 396 | |
| 397 | static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie, |
| 398 | dma_addr_t iova, size_t size) |
| 399 | { |
| 400 | struct iova_domain *iovad = &cookie->iovad; |
| 401 | |
| 402 | /* The MSI case is only ever cleaning up its most recent allocation */ |
| 403 | if (cookie->type == IOMMU_DMA_MSI_COOKIE) |
| 404 | cookie->msi_iova -= size; |
| 405 | else |
| 406 | free_iova_fast(iovad, iova_pfn(iovad, iova), |
| 407 | size >> iova_shift(iovad)); |
| 408 | } |
| 409 | |
| 410 | static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr, |
| 411 | size_t size) |
| 412 | { |
| 413 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 414 | struct iova_domain *iovad = &cookie->iovad; |
| 415 | size_t iova_off = iova_offset(iovad, dma_addr); |
| 416 | |
| 417 | dma_addr -= iova_off; |
| 418 | size = iova_align(iovad, size + iova_off); |
| 419 | |
| 420 | WARN_ON(iommu_unmap(domain, dma_addr, size) != size); |
| 421 | iommu_dma_free_iova(cookie, dma_addr, size); |
| 422 | } |
| 423 | |
| 424 | static void __iommu_dma_free_pages(struct page **pages, int count) |
| 425 | { |
| 426 | while (count--) |
| 427 | __free_page(pages[count]); |
| 428 | kvfree(pages); |
| 429 | } |
| 430 | |
| 431 | static struct page **__iommu_dma_alloc_pages(unsigned int count, |
| 432 | unsigned long order_mask, gfp_t gfp) |
| 433 | { |
| 434 | struct page **pages; |
| 435 | unsigned int i = 0, array_size = count * sizeof(*pages); |
| 436 | |
| 437 | order_mask &= (2U << MAX_ORDER) - 1; |
| 438 | if (!order_mask) |
| 439 | return NULL; |
| 440 | |
| 441 | if (array_size <= PAGE_SIZE) |
| 442 | pages = kzalloc(array_size, GFP_KERNEL); |
| 443 | else |
| 444 | pages = vzalloc(array_size); |
| 445 | if (!pages) |
| 446 | return NULL; |
| 447 | |
| 448 | /* IOMMU can map any pages, so himem can also be used here */ |
| 449 | gfp |= __GFP_NOWARN | __GFP_HIGHMEM; |
| 450 | |
| 451 | while (count) { |
| 452 | struct page *page = NULL; |
| 453 | unsigned int order_size; |
| 454 | |
| 455 | /* |
| 456 | * Higher-order allocations are a convenience rather |
| 457 | * than a necessity, hence using __GFP_NORETRY until |
| 458 | * falling back to minimum-order allocations. |
| 459 | */ |
| 460 | for (order_mask &= (2U << __fls(count)) - 1; |
| 461 | order_mask; order_mask &= ~order_size) { |
| 462 | unsigned int order = __fls(order_mask); |
| 463 | |
| 464 | order_size = 1U << order; |
| 465 | page = alloc_pages((order_mask - order_size) ? |
| 466 | gfp | __GFP_NORETRY : gfp, order); |
| 467 | if (!page) |
| 468 | continue; |
| 469 | if (!order) |
| 470 | break; |
| 471 | if (!PageCompound(page)) { |
| 472 | split_page(page, order); |
| 473 | break; |
| 474 | } else if (!split_huge_page(page)) { |
| 475 | break; |
| 476 | } |
| 477 | __free_pages(page, order); |
| 478 | } |
| 479 | if (!page) { |
| 480 | __iommu_dma_free_pages(pages, i); |
| 481 | return NULL; |
| 482 | } |
| 483 | count -= order_size; |
| 484 | while (order_size--) |
| 485 | pages[i++] = page++; |
| 486 | } |
| 487 | return pages; |
| 488 | } |
| 489 | |
| 490 | |
| 491 | void iommu_dma_free_from_reserved_range(struct device *dev, |
| 492 | struct page **pages, size_t size, dma_addr_t *handle) |
| 493 | { |
| 494 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 495 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 496 | struct iova_domain *iovad = &cookie->iovad; |
| 497 | unsigned long shift = iova_shift(iovad); |
| 498 | unsigned long pfn = (*handle) >> shift; |
| 499 | size_t unmap_size = size; |
| 500 | |
| 501 | unmap_size -= iommu_unmap(domain, pfn << shift, size); |
| 502 | WARN_ON(unmap_size > 0); |
| 503 | |
| 504 | __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); |
| 505 | *handle = IOMMU_MAPPING_ERROR; |
| 506 | } |
| 507 | |
| 508 | /** |
| 509 | * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() |
| 510 | * @dev: Device which owns this buffer |
| 511 | * @pages: Array of buffer pages as returned by iommu_dma_alloc() |
| 512 | * @size: Size of buffer in bytes |
| 513 | * @handle: DMA address of buffer |
| 514 | * |
| 515 | * Frees both the pages associated with the buffer, and the array |
| 516 | * describing them |
| 517 | */ |
| 518 | void iommu_dma_free(struct device *dev, struct page **pages, size_t size, |
| 519 | dma_addr_t *handle) |
| 520 | { |
| 521 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle, size); |
| 522 | __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); |
| 523 | *handle = IOMMU_MAPPING_ERROR; |
| 524 | } |
| 525 | |
| 526 | /** |
| 527 | * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space |
| 528 | * @dev: Device to allocate memory for. Must be a real device |
| 529 | * attached to an iommu_dma_domain |
| 530 | * @size: Size of buffer in bytes |
| 531 | * @gfp: Allocation flags |
| 532 | * @attrs: DMA attributes for this allocation |
| 533 | * @prot: IOMMU mapping flags |
| 534 | * @handle: Out argument for allocated DMA handle |
| 535 | * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the |
| 536 | * given VA/PA are visible to the given non-coherent device. |
| 537 | * |
| 538 | * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, |
| 539 | * but an IOMMU which supports smaller pages might not map the whole thing. |
| 540 | * |
| 541 | * Return: Array of struct page pointers describing the buffer, |
| 542 | * or NULL on failure. |
| 543 | */ |
| 544 | struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, |
| 545 | unsigned long attrs, int prot, dma_addr_t *handle, |
| 546 | void (*flush_page)(struct device *, const void *, phys_addr_t)) |
| 547 | { |
| 548 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 549 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 550 | struct iova_domain *iovad = &cookie->iovad; |
| 551 | struct page **pages; |
| 552 | struct sg_table sgt; |
| 553 | dma_addr_t iova; |
| 554 | unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; |
| 555 | |
| 556 | *handle = IOMMU_MAPPING_ERROR; |
| 557 | |
| 558 | min_size = alloc_sizes & -alloc_sizes; |
| 559 | if (min_size < PAGE_SIZE) { |
| 560 | min_size = PAGE_SIZE; |
| 561 | alloc_sizes |= PAGE_SIZE; |
| 562 | } else { |
| 563 | size = ALIGN(size, min_size); |
| 564 | } |
| 565 | if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) |
| 566 | alloc_sizes = min_size; |
| 567 | |
| 568 | count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 569 | pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp); |
| 570 | if (!pages) |
| 571 | return NULL; |
| 572 | |
| 573 | size = iova_align(iovad, size); |
| 574 | iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev); |
| 575 | if (!iova) |
| 576 | goto out_free_pages; |
| 577 | |
| 578 | if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) |
| 579 | goto out_free_iova; |
| 580 | |
| 581 | if (!(prot & IOMMU_CACHE)) { |
| 582 | struct sg_mapping_iter miter; |
| 583 | /* |
| 584 | * The CPU-centric flushing implied by SG_MITER_TO_SG isn't |
| 585 | * sufficient here, so skip it by using the "wrong" direction. |
| 586 | */ |
| 587 | sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); |
| 588 | while (sg_miter_next(&miter)) |
| 589 | flush_page(dev, miter.addr, page_to_phys(miter.page)); |
| 590 | sg_miter_stop(&miter); |
| 591 | } |
| 592 | |
| 593 | if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot) |
| 594 | < size) |
| 595 | goto out_free_sg; |
| 596 | |
| 597 | *handle = iova; |
| 598 | sg_free_table(&sgt); |
| 599 | return pages; |
| 600 | |
| 601 | out_free_sg: |
| 602 | sg_free_table(&sgt); |
| 603 | out_free_iova: |
| 604 | iommu_dma_free_iova(cookie, iova, size); |
| 605 | out_free_pages: |
| 606 | __iommu_dma_free_pages(pages, count); |
| 607 | return NULL; |
| 608 | } |
| 609 | |
| 610 | /** |
| 611 | * iommu_dma_mmap - Map a buffer into provided user VMA |
| 612 | * @pages: Array representing buffer from iommu_dma_alloc() |
| 613 | * @size: Size of buffer in bytes |
| 614 | * @vma: VMA describing requested userspace mapping |
| 615 | * |
| 616 | * Maps the pages of the buffer in @pages into @vma. The caller is responsible |
| 617 | * for verifying the correct size and protection of @vma beforehand. |
| 618 | */ |
| 619 | |
| 620 | int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) |
| 621 | { |
| 622 | unsigned long uaddr = vma->vm_start; |
| 623 | unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 624 | int ret = -ENXIO; |
| 625 | |
| 626 | for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { |
| 627 | ret = vm_insert_page(vma, uaddr, pages[i]); |
| 628 | if (ret) |
| 629 | break; |
| 630 | uaddr += PAGE_SIZE; |
| 631 | } |
| 632 | return ret; |
| 633 | } |
| 634 | |
| 635 | static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, |
| 636 | size_t size, int prot) |
| 637 | { |
| 638 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 639 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 640 | size_t iova_off = 0; |
| 641 | dma_addr_t iova; |
| 642 | |
| 643 | if (cookie->type == IOMMU_DMA_IOVA_COOKIE) { |
| 644 | iova_off = iova_offset(&cookie->iovad, phys); |
| 645 | size = iova_align(&cookie->iovad, size + iova_off); |
| 646 | } |
| 647 | |
| 648 | iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev); |
| 649 | if (!iova) |
| 650 | return IOMMU_MAPPING_ERROR; |
| 651 | |
| 652 | if (iommu_map(domain, iova, phys - iova_off, size, prot)) { |
| 653 | iommu_dma_free_iova(cookie, iova, size); |
| 654 | return IOMMU_MAPPING_ERROR; |
| 655 | } |
| 656 | return iova + iova_off; |
| 657 | } |
| 658 | |
| 659 | dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, |
| 660 | unsigned long offset, size_t size, int prot) |
| 661 | { |
| 662 | return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot); |
| 663 | } |
| 664 | |
| 665 | void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, |
| 666 | enum dma_data_direction dir, unsigned long attrs) |
| 667 | { |
| 668 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size); |
| 669 | } |
| 670 | |
| 671 | /* |
| 672 | * Prepare a successfully-mapped scatterlist to give back to the caller. |
| 673 | * |
| 674 | * At this point the segments are already laid out by iommu_dma_map_sg() to |
| 675 | * avoid individually crossing any boundaries, so we merely need to check a |
| 676 | * segment's start address to avoid concatenating across one. |
| 677 | */ |
| 678 | static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, |
| 679 | dma_addr_t dma_addr) |
| 680 | { |
| 681 | struct scatterlist *s, *cur = sg; |
| 682 | unsigned long seg_mask = dma_get_seg_boundary(dev); |
| 683 | unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); |
| 684 | int i, count = 0; |
| 685 | |
| 686 | for_each_sg(sg, s, nents, i) { |
| 687 | /* Restore this segment's original unaligned fields first */ |
| 688 | unsigned int s_iova_off = sg_dma_address(s); |
| 689 | unsigned int s_length = sg_dma_len(s); |
| 690 | unsigned int s_iova_len = s->length; |
| 691 | |
| 692 | s->offset += s_iova_off; |
| 693 | s->length = s_length; |
| 694 | sg_dma_address(s) = IOMMU_MAPPING_ERROR; |
| 695 | sg_dma_len(s) = 0; |
| 696 | |
| 697 | /* |
| 698 | * Now fill in the real DMA data. If... |
| 699 | * - there is a valid output segment to append to |
| 700 | * - and this segment starts on an IOVA page boundary |
| 701 | * - but doesn't fall at a segment boundary |
| 702 | * - and wouldn't make the resulting output segment too long |
| 703 | */ |
| 704 | if (cur_len && !s_iova_off && (dma_addr & seg_mask) && |
| 705 | (max_len - cur_len >= s_length)) { |
| 706 | /* ...then concatenate it with the previous one */ |
| 707 | cur_len += s_length; |
| 708 | } else { |
| 709 | /* Otherwise start the next output segment */ |
| 710 | if (i > 0) |
| 711 | cur = sg_next(cur); |
| 712 | cur_len = s_length; |
| 713 | count++; |
| 714 | |
| 715 | sg_dma_address(cur) = dma_addr + s_iova_off; |
| 716 | } |
| 717 | |
| 718 | sg_dma_len(cur) = cur_len; |
| 719 | dma_addr += s_iova_len; |
| 720 | |
| 721 | if (s_length + s_iova_off < s_iova_len) |
| 722 | cur_len = 0; |
| 723 | } |
| 724 | return count; |
| 725 | } |
| 726 | |
| 727 | /* |
| 728 | * If mapping failed, then just restore the original list, |
| 729 | * but making sure the DMA fields are invalidated. |
| 730 | */ |
| 731 | static void __invalidate_sg(struct scatterlist *sg, int nents) |
| 732 | { |
| 733 | struct scatterlist *s; |
| 734 | int i; |
| 735 | |
| 736 | for_each_sg(sg, s, nents, i) { |
| 737 | if (sg_dma_address(s) != IOMMU_MAPPING_ERROR) |
| 738 | s->offset += sg_dma_address(s); |
| 739 | if (sg_dma_len(s)) |
| 740 | s->length = sg_dma_len(s); |
| 741 | sg_dma_address(s) = IOMMU_MAPPING_ERROR; |
| 742 | sg_dma_len(s) = 0; |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | /* |
| 747 | * The DMA API client is passing in a scatterlist which could describe |
| 748 | * any old buffer layout, but the IOMMU API requires everything to be |
| 749 | * aligned to IOMMU pages. Hence the need for this complicated bit of |
| 750 | * impedance-matching, to be able to hand off a suitably-aligned list, |
| 751 | * but still preserve the original offsets and sizes for the caller. |
| 752 | */ |
| 753 | int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, |
| 754 | int nents, int prot) |
| 755 | { |
| 756 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 757 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 758 | struct iova_domain *iovad = &cookie->iovad; |
| 759 | struct scatterlist *s, *prev = NULL; |
| 760 | dma_addr_t iova; |
| 761 | size_t iova_len = 0; |
| 762 | unsigned long mask = dma_get_seg_boundary(dev); |
| 763 | int i; |
| 764 | |
| 765 | /* |
| 766 | * Work out how much IOVA space we need, and align the segments to |
| 767 | * IOVA granules for the IOMMU driver to handle. With some clever |
| 768 | * trickery we can modify the list in-place, but reversibly, by |
| 769 | * stashing the unaligned parts in the as-yet-unused DMA fields. |
| 770 | */ |
| 771 | for_each_sg(sg, s, nents, i) { |
| 772 | size_t s_iova_off = iova_offset(iovad, s->offset); |
| 773 | size_t s_length = s->length; |
| 774 | size_t pad_len = (mask - iova_len + 1) & mask; |
| 775 | |
| 776 | sg_dma_address(s) = s_iova_off; |
| 777 | sg_dma_len(s) = s_length; |
| 778 | s->offset -= s_iova_off; |
| 779 | s_length = iova_align(iovad, s_length + s_iova_off); |
| 780 | s->length = s_length; |
| 781 | |
| 782 | /* |
| 783 | * Due to the alignment of our single IOVA allocation, we can |
| 784 | * depend on these assumptions about the segment boundary mask: |
| 785 | * - If mask size >= IOVA size, then the IOVA range cannot |
| 786 | * possibly fall across a boundary, so we don't care. |
| 787 | * - If mask size < IOVA size, then the IOVA range must start |
| 788 | * exactly on a boundary, therefore we can lay things out |
| 789 | * based purely on segment lengths without needing to know |
| 790 | * the actual addresses beforehand. |
| 791 | * - The mask must be a power of 2, so pad_len == 0 if |
| 792 | * iova_len == 0, thus we cannot dereference prev the first |
| 793 | * time through here (i.e. before it has a meaningful value). |
| 794 | */ |
| 795 | if (pad_len && pad_len < s_length - 1) { |
| 796 | prev->length += pad_len; |
| 797 | iova_len += pad_len; |
| 798 | } |
| 799 | |
| 800 | iova_len += s_length; |
| 801 | prev = s; |
| 802 | } |
| 803 | |
| 804 | iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev); |
| 805 | if (!iova) |
| 806 | goto out_restore_sg; |
| 807 | |
| 808 | /* |
| 809 | * We'll leave any physical concatenation to the IOMMU driver's |
| 810 | * implementation - it knows better than we do. |
| 811 | */ |
| 812 | if (iommu_map_sg(domain, iova, sg, nents, prot) < iova_len) |
| 813 | goto out_free_iova; |
| 814 | |
| 815 | return __finalise_sg(dev, sg, nents, iova); |
| 816 | |
| 817 | out_free_iova: |
| 818 | iommu_dma_free_iova(cookie, iova, iova_len); |
| 819 | out_restore_sg: |
| 820 | __invalidate_sg(sg, nents); |
| 821 | return 0; |
| 822 | } |
| 823 | |
| 824 | void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, |
| 825 | enum dma_data_direction dir, unsigned long attrs) |
| 826 | { |
| 827 | dma_addr_t start, end; |
| 828 | struct scatterlist *tmp; |
| 829 | int i; |
| 830 | /* |
| 831 | * The scatterlist segments are mapped into a single |
| 832 | * contiguous IOVA allocation, so this is incredibly easy. |
| 833 | */ |
| 834 | start = sg_dma_address(sg); |
| 835 | for_each_sg(sg_next(sg), tmp, nents - 1, i) { |
| 836 | if (sg_dma_len(tmp) == 0) |
| 837 | break; |
| 838 | sg = tmp; |
| 839 | } |
| 840 | end = sg_dma_address(sg) + sg_dma_len(sg); |
| 841 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), start, end - start); |
| 842 | } |
| 843 | |
| 844 | struct page ** |
| 845 | iommu_dma_alloc_fix_iova(struct device *dev, size_t size, gfp_t gfp, |
| 846 | unsigned long attrs, int prot, dma_addr_t handle, |
| 847 | void (*flush_page)(struct device *, const void *, phys_addr_t)) |
| 848 | { |
| 849 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 850 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 851 | struct iova_domain *iovad = &cookie->iovad; |
| 852 | struct page **pages; |
| 853 | struct sg_table sgt; |
| 854 | dma_addr_t iova = handle; |
| 855 | unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; |
| 856 | |
| 857 | min_size = alloc_sizes & -alloc_sizes; |
| 858 | if (min_size < PAGE_SIZE) { |
| 859 | min_size = PAGE_SIZE; |
| 860 | alloc_sizes |= PAGE_SIZE; |
| 861 | } else { |
| 862 | size = ALIGN(size, min_size); |
| 863 | } |
| 864 | if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) |
| 865 | alloc_sizes = min_size; |
| 866 | |
| 867 | count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| 868 | pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp); |
| 869 | if (!pages) |
| 870 | return NULL; |
| 871 | |
| 872 | size = iova_align(iovad, size); |
| 873 | if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) |
| 874 | goto out_free_iova; |
| 875 | |
| 876 | if (!(prot & IOMMU_CACHE)) { |
| 877 | struct sg_mapping_iter miter; |
| 878 | /* |
| 879 | * The CPU-centric flushing implied by SG_MITER_TO_SG isn't |
| 880 | * sufficient here, so skip it by using the "wrong" direction. |
| 881 | */ |
| 882 | sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, |
| 883 | SG_MITER_FROM_SG); |
| 884 | while (sg_miter_next(&miter)) |
| 885 | flush_page(dev, miter.addr, page_to_phys(miter.page)); |
| 886 | sg_miter_stop(&miter); |
| 887 | } |
| 888 | |
| 889 | if (iommu_map_sg(domain, iova, sgt.sgl, sgt.orig_nents, prot) |
| 890 | < size) |
| 891 | goto out_free_sg; |
| 892 | |
| 893 | sg_free_table(&sgt); |
| 894 | return pages; |
| 895 | |
| 896 | out_free_sg: |
| 897 | sg_free_table(&sgt); |
| 898 | out_free_iova: |
| 899 | iommu_dma_free_iova(cookie, iova, size); |
| 900 | __iommu_dma_free_pages(pages, count); |
| 901 | return NULL; |
| 902 | } |
| 903 | |
| 904 | /* |
| 905 | * User have to provide the dma address in the reserved iova area for mapping |
| 906 | */ |
| 907 | int dma_map_sg_within_reserved_iova(struct device *dev, struct scatterlist *sg, |
| 908 | int nents, int prot, dma_addr_t dma_addr) |
| 909 | { |
| 910 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 911 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 912 | struct iova_domain *iovad = &cookie->iovad; |
| 913 | struct scatterlist *s, *prev = NULL; |
| 914 | size_t iova_len = 0; |
| 915 | size_t map_len = 0; |
| 916 | int i; |
| 917 | |
| 918 | for_each_sg(sg, s, nents, i) { |
| 919 | size_t s_iova_off = iova_offset(iovad, s->offset); |
| 920 | size_t s_length = s->length; |
| 921 | |
| 922 | sg_dma_address(s) = s_iova_off; |
| 923 | sg_dma_len(s) = s_length; |
| 924 | s->offset -= s_iova_off; |
| 925 | s_length = iova_align(iovad, s_length + s_iova_off); |
| 926 | s->length = s_length; |
| 927 | |
| 928 | iova_len += s_length; |
| 929 | prev = s; |
| 930 | } |
| 931 | |
| 932 | map_len = iommu_map_sg(domain, dma_addr, sg, nents, prot); |
| 933 | |
| 934 | return __finalise_sg(dev, sg, nents, dma_addr); |
| 935 | } |
| 936 | EXPORT_SYMBOL(dma_map_sg_within_reserved_iova); |
| 937 | |
| 938 | void dma_unmap_sg_within_reserved_iova(struct device *dev, |
| 939 | struct scatterlist *sg, int nents, |
| 940 | int prot, size_t size) |
| 941 | { |
| 942 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 943 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 944 | struct iova_domain *iovad = &cookie->iovad; |
| 945 | unsigned long shift = iova_shift(iovad); |
| 946 | unsigned long pfn = sg_dma_address(sg) >> shift; |
| 947 | |
| 948 | /* |
| 949 | * The scatterlist segments are mapped into a single |
| 950 | * contiguous IOVA allocation, so this is incredibly easy. |
| 951 | */ |
| 952 | size -= iommu_unmap(domain, pfn << shift, size); |
| 953 | WARN_ON(size > 0); |
| 954 | } |
| 955 | EXPORT_SYMBOL(dma_unmap_sg_within_reserved_iova); |
| 956 | |
| 957 | dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, |
| 958 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 959 | { |
| 960 | return __iommu_dma_map(dev, phys, size, |
| 961 | dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO); |
| 962 | } |
| 963 | |
| 964 | void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, |
| 965 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
| 966 | { |
| 967 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle, size); |
| 968 | } |
| 969 | |
| 970 | int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) |
| 971 | { |
| 972 | return dma_addr == IOMMU_MAPPING_ERROR; |
| 973 | } |
| 974 | |
| 975 | static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, |
| 976 | phys_addr_t msi_addr, struct iommu_domain *domain) |
| 977 | { |
| 978 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
| 979 | struct iommu_dma_msi_page *msi_page; |
| 980 | dma_addr_t iova; |
| 981 | int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; |
| 982 | size_t size = cookie_msi_granule(cookie); |
| 983 | |
| 984 | msi_addr &= ~(phys_addr_t)(size - 1); |
| 985 | list_for_each_entry(msi_page, &cookie->msi_page_list, list) |
| 986 | if (msi_page->phys == msi_addr) |
| 987 | return msi_page; |
| 988 | |
| 989 | msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); |
| 990 | if (!msi_page) |
| 991 | return NULL; |
| 992 | |
| 993 | iova = __iommu_dma_map(dev, msi_addr, size, prot); |
| 994 | if (iommu_dma_mapping_error(dev, iova)) |
| 995 | goto out_free_page; |
| 996 | |
| 997 | INIT_LIST_HEAD(&msi_page->list); |
| 998 | msi_page->phys = msi_addr; |
| 999 | msi_page->iova = iova; |
| 1000 | list_add(&msi_page->list, &cookie->msi_page_list); |
| 1001 | return msi_page; |
| 1002 | |
| 1003 | out_free_page: |
| 1004 | kfree(msi_page); |
| 1005 | return NULL; |
| 1006 | } |
| 1007 | |
| 1008 | void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg) |
| 1009 | { |
| 1010 | struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq)); |
| 1011 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); |
| 1012 | struct iommu_dma_cookie *cookie; |
| 1013 | struct iommu_dma_msi_page *msi_page; |
| 1014 | phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo; |
| 1015 | unsigned long flags; |
| 1016 | |
| 1017 | if (!domain || !domain->iova_cookie) |
| 1018 | return; |
| 1019 | |
| 1020 | cookie = domain->iova_cookie; |
| 1021 | |
| 1022 | /* |
| 1023 | * We disable IRQs to rule out a possible inversion against |
| 1024 | * irq_desc_lock if, say, someone tries to retarget the affinity |
| 1025 | * of an MSI from within an IPI handler. |
| 1026 | */ |
| 1027 | spin_lock_irqsave(&cookie->msi_lock, flags); |
| 1028 | msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); |
| 1029 | spin_unlock_irqrestore(&cookie->msi_lock, flags); |
| 1030 | |
| 1031 | if (WARN_ON(!msi_page)) { |
| 1032 | /* |
| 1033 | * We're called from a void callback, so the best we can do is |
| 1034 | * 'fail' by filling the message with obviously bogus values. |
| 1035 | * Since we got this far due to an IOMMU being present, it's |
| 1036 | * not like the existing address would have worked anyway... |
| 1037 | */ |
| 1038 | msg->address_hi = ~0U; |
| 1039 | msg->address_lo = ~0U; |
| 1040 | msg->data = ~0U; |
| 1041 | } else { |
| 1042 | msg->address_hi = upper_32_bits(msi_page->iova); |
| 1043 | msg->address_lo &= cookie_msi_granule(cookie) - 1; |
| 1044 | msg->address_lo += lower_32_bits(msi_page->iova); |
| 1045 | } |
| 1046 | } |