blob: 1d2267c6d31aa02ce697ef817b76f9ecbe0901be [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#include <linux/acpi.h>
19#include <linux/acpi_iort.h>
20#include <linux/bitmap.h>
21#include <linux/cpu.h>
22#include <linux/delay.h>
23#include <linux/dma-iommu.h>
24#include <linux/interrupt.h>
25#include <linux/irqdomain.h>
26#include <linux/log2.h>
27#include <linux/mm.h>
28#include <linux/msi.h>
29#include <linux/of.h>
30#include <linux/of_address.h>
31#include <linux/of_irq.h>
32#include <linux/of_pci.h>
33#include <linux/of_platform.h>
34#include <linux/percpu.h>
35#include <linux/slab.h>
36
37#include <linux/irqchip.h>
38#include <linux/irqchip/arm-gic-v3.h>
39#include <linux/irqchip/arm-gic-v4.h>
40
41#include <asm/cputype.h>
42#include <asm/exception.h>
43
44#include "irq-gic-common.h"
45
46#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
47#define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
48#define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
49
50#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
51
52static u32 lpi_id_bits;
53
54/*
55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56 * deal with (one configuration byte per interrupt). PENDBASE has to
57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
58 */
59#define LPI_NRBITS lpi_id_bits
60#define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
61#define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
62
63#define LPI_PROP_DEFAULT_PRIO 0xa0
64
65/*
66 * Collection structure - just an ID, and a redistributor address to
67 * ping. We use one per CPU as a bag of interrupts assigned to this
68 * CPU.
69 */
70struct its_collection {
71 u64 target_address;
72 u16 col_id;
73};
74
75/*
76 * The ITS_BASER structure - contains memory information, cached
77 * value of BASER register configuration and ITS page size.
78 */
79struct its_baser {
80 void *base;
81 u64 val;
82 u32 order;
83 u32 psz;
84};
85
86/*
87 * The ITS structure - contains most of the infrastructure, with the
88 * top-level MSI domain, the command queue, the collections, and the
89 * list of devices writing to it.
90 *
91 * dev_alloc_lock has to be taken for device allocations, while the
92 * spinlock must be taken to parse data structures such as the device
93 * list.
94 */
95struct its_node {
96 raw_spinlock_t lock;
97 struct mutex dev_alloc_lock;
98 struct list_head entry;
99 void __iomem *base;
100 phys_addr_t phys_base;
101 struct its_cmd_block *cmd_base;
102 struct its_cmd_block *cmd_write;
103 struct its_baser tables[GITS_BASER_NR_REGS];
104 struct its_collection *collections;
105 struct list_head its_device_list;
106 u64 flags;
107 u32 ite_size;
108 u32 device_ids;
109 int numa_node;
110 bool is_v4;
111};
112
113#define ITS_ITT_ALIGN SZ_256
114
115/* The maximum number of VPEID bits supported by VLPI commands */
116#define ITS_MAX_VPEID_BITS (16)
117#define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
118
119/* Convert page order to size in bytes */
120#define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
121
122struct event_lpi_map {
123 unsigned long *lpi_map;
124 u16 *col_map;
125 irq_hw_number_t lpi_base;
126 int nr_lpis;
127 struct mutex vlpi_lock;
128 struct its_vm *vm;
129 struct its_vlpi_map *vlpi_maps;
130 int nr_vlpis;
131};
132
133/*
134 * The ITS view of a device - belongs to an ITS, owns an interrupt
135 * translation table, and a list of interrupts. If it some of its
136 * LPIs are injected into a guest (GICv4), the event_map.vm field
137 * indicates which one.
138 */
139struct its_device {
140 struct list_head entry;
141 struct its_node *its;
142 struct event_lpi_map event_map;
143 void *itt;
144 u32 nr_ites;
145 u32 device_id;
146 bool shared;
147};
148
149static struct {
150 raw_spinlock_t lock;
151 struct its_device *dev;
152 struct its_vpe **vpes;
153 int next_victim;
154} vpe_proxy;
155
156static LIST_HEAD(its_nodes);
157static DEFINE_SPINLOCK(its_lock);
158static struct rdists *gic_rdists;
159static struct irq_domain *its_parent;
160
161/*
162 * We have a maximum number of 16 ITSs in the whole system if we're
163 * using the ITSList mechanism
164 */
165#define ITS_LIST_MAX 16
166
167static unsigned long its_list_map;
168static u16 vmovp_seq_num;
169static DEFINE_RAW_SPINLOCK(vmovp_lock);
170
171static DEFINE_IDA(its_vpeid_ida);
172
173#define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
174#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
175#define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
176
177static struct its_collection *dev_event_to_col(struct its_device *its_dev,
178 u32 event)
179{
180 struct its_node *its = its_dev->its;
181
182 return its->collections + its_dev->event_map.col_map[event];
183}
184
185/*
186 * ITS command descriptors - parameters to be encoded in a command
187 * block.
188 */
189struct its_cmd_desc {
190 union {
191 struct {
192 struct its_device *dev;
193 u32 event_id;
194 } its_inv_cmd;
195
196 struct {
197 struct its_device *dev;
198 u32 event_id;
199 } its_clear_cmd;
200
201 struct {
202 struct its_device *dev;
203 u32 event_id;
204 } its_int_cmd;
205
206 struct {
207 struct its_device *dev;
208 int valid;
209 } its_mapd_cmd;
210
211 struct {
212 struct its_collection *col;
213 int valid;
214 } its_mapc_cmd;
215
216 struct {
217 struct its_device *dev;
218 u32 phys_id;
219 u32 event_id;
220 } its_mapti_cmd;
221
222 struct {
223 struct its_device *dev;
224 struct its_collection *col;
225 u32 event_id;
226 } its_movi_cmd;
227
228 struct {
229 struct its_device *dev;
230 u32 event_id;
231 } its_discard_cmd;
232
233 struct {
234 struct its_collection *col;
235 } its_invall_cmd;
236
237 struct {
238 struct its_vpe *vpe;
239 } its_vinvall_cmd;
240
241 struct {
242 struct its_vpe *vpe;
243 struct its_collection *col;
244 bool valid;
245 } its_vmapp_cmd;
246
247 struct {
248 struct its_vpe *vpe;
249 struct its_device *dev;
250 u32 virt_id;
251 u32 event_id;
252 bool db_enabled;
253 } its_vmapti_cmd;
254
255 struct {
256 struct its_vpe *vpe;
257 struct its_device *dev;
258 u32 event_id;
259 bool db_enabled;
260 } its_vmovi_cmd;
261
262 struct {
263 struct its_vpe *vpe;
264 struct its_collection *col;
265 u16 seq_num;
266 u16 its_list;
267 } its_vmovp_cmd;
268 };
269};
270
271/*
272 * The ITS command block, which is what the ITS actually parses.
273 */
274struct its_cmd_block {
275 u64 raw_cmd[4];
276};
277
278#define ITS_CMD_QUEUE_SZ SZ_64K
279#define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
280
281typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
282 struct its_cmd_desc *);
283
284typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_cmd_block *,
285 struct its_cmd_desc *);
286
287static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
288{
289 u64 mask = GENMASK_ULL(h, l);
290 *raw_cmd &= ~mask;
291 *raw_cmd |= (val << l) & mask;
292}
293
294static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
295{
296 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
297}
298
299static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
300{
301 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
302}
303
304static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
305{
306 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
307}
308
309static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
310{
311 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
312}
313
314static void its_encode_size(struct its_cmd_block *cmd, u8 size)
315{
316 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
317}
318
319static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
320{
321 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
322}
323
324static void its_encode_valid(struct its_cmd_block *cmd, int valid)
325{
326 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
327}
328
329static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
330{
331 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
332}
333
334static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
335{
336 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
337}
338
339static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
340{
341 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
342}
343
344static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
345{
346 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
347}
348
349static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
350{
351 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
352}
353
354static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
355{
356 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
357}
358
359static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
360{
361 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
362}
363
364static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
365{
366 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
367}
368
369static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
370{
371 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
372}
373
374static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
375{
376 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
377}
378
379static inline void its_fixup_cmd(struct its_cmd_block *cmd)
380{
381 /* Let's fixup BE commands */
382 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
383 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
384 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
385 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
386}
387
388static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
389 struct its_cmd_desc *desc)
390{
391 unsigned long itt_addr;
392 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
393
394 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
395 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
396
397 its_encode_cmd(cmd, GITS_CMD_MAPD);
398 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
399 its_encode_size(cmd, size - 1);
400 its_encode_itt(cmd, itt_addr);
401 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
402
403 its_fixup_cmd(cmd);
404
405 return NULL;
406}
407
408static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
409 struct its_cmd_desc *desc)
410{
411 its_encode_cmd(cmd, GITS_CMD_MAPC);
412 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
413 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
414 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
415
416 its_fixup_cmd(cmd);
417
418 return desc->its_mapc_cmd.col;
419}
420
421static struct its_collection *its_build_mapti_cmd(struct its_cmd_block *cmd,
422 struct its_cmd_desc *desc)
423{
424 struct its_collection *col;
425
426 col = dev_event_to_col(desc->its_mapti_cmd.dev,
427 desc->its_mapti_cmd.event_id);
428
429 its_encode_cmd(cmd, GITS_CMD_MAPTI);
430 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
431 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
432 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
433 its_encode_collection(cmd, col->col_id);
434
435 its_fixup_cmd(cmd);
436
437 return col;
438}
439
440static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
441 struct its_cmd_desc *desc)
442{
443 struct its_collection *col;
444
445 col = dev_event_to_col(desc->its_movi_cmd.dev,
446 desc->its_movi_cmd.event_id);
447
448 its_encode_cmd(cmd, GITS_CMD_MOVI);
449 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
450 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
451 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
452
453 its_fixup_cmd(cmd);
454
455 return col;
456}
457
458static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
459 struct its_cmd_desc *desc)
460{
461 struct its_collection *col;
462
463 col = dev_event_to_col(desc->its_discard_cmd.dev,
464 desc->its_discard_cmd.event_id);
465
466 its_encode_cmd(cmd, GITS_CMD_DISCARD);
467 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
468 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
469
470 its_fixup_cmd(cmd);
471
472 return col;
473}
474
475static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
476 struct its_cmd_desc *desc)
477{
478 struct its_collection *col;
479
480 col = dev_event_to_col(desc->its_inv_cmd.dev,
481 desc->its_inv_cmd.event_id);
482
483 its_encode_cmd(cmd, GITS_CMD_INV);
484 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
485 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
486
487 its_fixup_cmd(cmd);
488
489 return col;
490}
491
492static struct its_collection *its_build_int_cmd(struct its_cmd_block *cmd,
493 struct its_cmd_desc *desc)
494{
495 struct its_collection *col;
496
497 col = dev_event_to_col(desc->its_int_cmd.dev,
498 desc->its_int_cmd.event_id);
499
500 its_encode_cmd(cmd, GITS_CMD_INT);
501 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
502 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
503
504 its_fixup_cmd(cmd);
505
506 return col;
507}
508
509static struct its_collection *its_build_clear_cmd(struct its_cmd_block *cmd,
510 struct its_cmd_desc *desc)
511{
512 struct its_collection *col;
513
514 col = dev_event_to_col(desc->its_clear_cmd.dev,
515 desc->its_clear_cmd.event_id);
516
517 its_encode_cmd(cmd, GITS_CMD_CLEAR);
518 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
519 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
520
521 its_fixup_cmd(cmd);
522
523 return col;
524}
525
526static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
527 struct its_cmd_desc *desc)
528{
529 its_encode_cmd(cmd, GITS_CMD_INVALL);
530 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
531
532 its_fixup_cmd(cmd);
533
534 return NULL;
535}
536
537static struct its_vpe *its_build_vinvall_cmd(struct its_cmd_block *cmd,
538 struct its_cmd_desc *desc)
539{
540 its_encode_cmd(cmd, GITS_CMD_VINVALL);
541 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
542
543 its_fixup_cmd(cmd);
544
545 return desc->its_vinvall_cmd.vpe;
546}
547
548static struct its_vpe *its_build_vmapp_cmd(struct its_cmd_block *cmd,
549 struct its_cmd_desc *desc)
550{
551 unsigned long vpt_addr;
552
553 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
554
555 its_encode_cmd(cmd, GITS_CMD_VMAPP);
556 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
557 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
558 its_encode_target(cmd, desc->its_vmapp_cmd.col->target_address);
559 its_encode_vpt_addr(cmd, vpt_addr);
560 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
561
562 its_fixup_cmd(cmd);
563
564 return desc->its_vmapp_cmd.vpe;
565}
566
567static struct its_vpe *its_build_vmapti_cmd(struct its_cmd_block *cmd,
568 struct its_cmd_desc *desc)
569{
570 u32 db;
571
572 if (desc->its_vmapti_cmd.db_enabled)
573 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
574 else
575 db = 1023;
576
577 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
578 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
579 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
580 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
581 its_encode_db_phys_id(cmd, db);
582 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
583
584 its_fixup_cmd(cmd);
585
586 return desc->its_vmapti_cmd.vpe;
587}
588
589static struct its_vpe *its_build_vmovi_cmd(struct its_cmd_block *cmd,
590 struct its_cmd_desc *desc)
591{
592 u32 db;
593
594 if (desc->its_vmovi_cmd.db_enabled)
595 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
596 else
597 db = 1023;
598
599 its_encode_cmd(cmd, GITS_CMD_VMOVI);
600 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
601 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
602 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
603 its_encode_db_phys_id(cmd, db);
604 its_encode_db_valid(cmd, true);
605
606 its_fixup_cmd(cmd);
607
608 return desc->its_vmovi_cmd.vpe;
609}
610
611static struct its_vpe *its_build_vmovp_cmd(struct its_cmd_block *cmd,
612 struct its_cmd_desc *desc)
613{
614 its_encode_cmd(cmd, GITS_CMD_VMOVP);
615 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
616 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
617 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
618 its_encode_target(cmd, desc->its_vmovp_cmd.col->target_address);
619
620 its_fixup_cmd(cmd);
621
622 return desc->its_vmovp_cmd.vpe;
623}
624
625static u64 its_cmd_ptr_to_offset(struct its_node *its,
626 struct its_cmd_block *ptr)
627{
628 return (ptr - its->cmd_base) * sizeof(*ptr);
629}
630
631static int its_queue_full(struct its_node *its)
632{
633 int widx;
634 int ridx;
635
636 widx = its->cmd_write - its->cmd_base;
637 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
638
639 /* This is incredibly unlikely to happen, unless the ITS locks up. */
640 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
641 return 1;
642
643 return 0;
644}
645
646static struct its_cmd_block *its_allocate_entry(struct its_node *its)
647{
648 struct its_cmd_block *cmd;
649 u32 count = 1000000; /* 1s! */
650
651 while (its_queue_full(its)) {
652 count--;
653 if (!count) {
654 pr_err_ratelimited("ITS queue not draining\n");
655 return NULL;
656 }
657 cpu_relax();
658 udelay(1);
659 }
660
661 cmd = its->cmd_write++;
662
663 /* Handle queue wrapping */
664 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
665 its->cmd_write = its->cmd_base;
666
667 /* Clear command */
668 cmd->raw_cmd[0] = 0;
669 cmd->raw_cmd[1] = 0;
670 cmd->raw_cmd[2] = 0;
671 cmd->raw_cmd[3] = 0;
672
673 return cmd;
674}
675
676static struct its_cmd_block *its_post_commands(struct its_node *its)
677{
678 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
679
680 writel_relaxed(wr, its->base + GITS_CWRITER);
681
682 return its->cmd_write;
683}
684
685static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
686{
687 /*
688 * Make sure the commands written to memory are observable by
689 * the ITS.
690 */
691 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
692 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
693 else
694 dsb(ishst);
695}
696
697static void its_wait_for_range_completion(struct its_node *its,
698 struct its_cmd_block *from,
699 struct its_cmd_block *to)
700{
701 u64 rd_idx, from_idx, to_idx;
702 u32 count = 1000000; /* 1s! */
703
704 from_idx = its_cmd_ptr_to_offset(its, from);
705 to_idx = its_cmd_ptr_to_offset(its, to);
706
707 while (1) {
708 rd_idx = readl_relaxed(its->base + GITS_CREADR);
709
710 /* Direct case */
711 if (from_idx < to_idx && rd_idx >= to_idx)
712 break;
713
714 /* Wrapped case */
715 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
716 break;
717
718 count--;
719 if (!count) {
720 pr_err_ratelimited("ITS queue timeout\n");
721 return;
722 }
723 cpu_relax();
724 udelay(1);
725 }
726}
727
728/* Warning, macro hell follows */
729#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
730void name(struct its_node *its, \
731 buildtype builder, \
732 struct its_cmd_desc *desc) \
733{ \
734 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
735 synctype *sync_obj; \
736 unsigned long flags; \
737 \
738 raw_spin_lock_irqsave(&its->lock, flags); \
739 \
740 cmd = its_allocate_entry(its); \
741 if (!cmd) { /* We're soooooo screewed... */ \
742 raw_spin_unlock_irqrestore(&its->lock, flags); \
743 return; \
744 } \
745 sync_obj = builder(cmd, desc); \
746 its_flush_cmd(its, cmd); \
747 \
748 if (sync_obj) { \
749 sync_cmd = its_allocate_entry(its); \
750 if (!sync_cmd) \
751 goto post; \
752 \
753 buildfn(sync_cmd, sync_obj); \
754 its_flush_cmd(its, sync_cmd); \
755 } \
756 \
757post: \
758 next_cmd = its_post_commands(its); \
759 raw_spin_unlock_irqrestore(&its->lock, flags); \
760 \
761 its_wait_for_range_completion(its, cmd, next_cmd); \
762}
763
764static void its_build_sync_cmd(struct its_cmd_block *sync_cmd,
765 struct its_collection *sync_col)
766{
767 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
768 its_encode_target(sync_cmd, sync_col->target_address);
769
770 its_fixup_cmd(sync_cmd);
771}
772
773static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
774 struct its_collection, its_build_sync_cmd)
775
776static void its_build_vsync_cmd(struct its_cmd_block *sync_cmd,
777 struct its_vpe *sync_vpe)
778{
779 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
780 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
781
782 its_fixup_cmd(sync_cmd);
783}
784
785static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
786 struct its_vpe, its_build_vsync_cmd)
787
788static void its_send_int(struct its_device *dev, u32 event_id)
789{
790 struct its_cmd_desc desc;
791
792 desc.its_int_cmd.dev = dev;
793 desc.its_int_cmd.event_id = event_id;
794
795 its_send_single_command(dev->its, its_build_int_cmd, &desc);
796}
797
798static void its_send_clear(struct its_device *dev, u32 event_id)
799{
800 struct its_cmd_desc desc;
801
802 desc.its_clear_cmd.dev = dev;
803 desc.its_clear_cmd.event_id = event_id;
804
805 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
806}
807
808static void its_send_inv(struct its_device *dev, u32 event_id)
809{
810 struct its_cmd_desc desc;
811
812 desc.its_inv_cmd.dev = dev;
813 desc.its_inv_cmd.event_id = event_id;
814
815 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
816}
817
818static void its_send_mapd(struct its_device *dev, int valid)
819{
820 struct its_cmd_desc desc;
821
822 desc.its_mapd_cmd.dev = dev;
823 desc.its_mapd_cmd.valid = !!valid;
824
825 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
826}
827
828static void its_send_mapc(struct its_node *its, struct its_collection *col,
829 int valid)
830{
831 struct its_cmd_desc desc;
832
833 desc.its_mapc_cmd.col = col;
834 desc.its_mapc_cmd.valid = !!valid;
835
836 its_send_single_command(its, its_build_mapc_cmd, &desc);
837}
838
839static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
840{
841 struct its_cmd_desc desc;
842
843 desc.its_mapti_cmd.dev = dev;
844 desc.its_mapti_cmd.phys_id = irq_id;
845 desc.its_mapti_cmd.event_id = id;
846
847 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
848}
849
850static void its_send_movi(struct its_device *dev,
851 struct its_collection *col, u32 id)
852{
853 struct its_cmd_desc desc;
854
855 desc.its_movi_cmd.dev = dev;
856 desc.its_movi_cmd.col = col;
857 desc.its_movi_cmd.event_id = id;
858
859 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
860}
861
862static void its_send_discard(struct its_device *dev, u32 id)
863{
864 struct its_cmd_desc desc;
865
866 desc.its_discard_cmd.dev = dev;
867 desc.its_discard_cmd.event_id = id;
868
869 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
870}
871
872static void its_send_invall(struct its_node *its, struct its_collection *col)
873{
874 struct its_cmd_desc desc;
875
876 desc.its_invall_cmd.col = col;
877
878 its_send_single_command(its, its_build_invall_cmd, &desc);
879}
880
881static void its_send_vmapti(struct its_device *dev, u32 id)
882{
883 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
884 struct its_cmd_desc desc;
885
886 desc.its_vmapti_cmd.vpe = map->vpe;
887 desc.its_vmapti_cmd.dev = dev;
888 desc.its_vmapti_cmd.virt_id = map->vintid;
889 desc.its_vmapti_cmd.event_id = id;
890 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
891
892 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
893}
894
895static void its_send_vmovi(struct its_device *dev, u32 id)
896{
897 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
898 struct its_cmd_desc desc;
899
900 desc.its_vmovi_cmd.vpe = map->vpe;
901 desc.its_vmovi_cmd.dev = dev;
902 desc.its_vmovi_cmd.event_id = id;
903 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
904
905 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
906}
907
908static void its_send_vmapp(struct its_vpe *vpe, bool valid)
909{
910 struct its_cmd_desc desc;
911 struct its_node *its;
912
913 desc.its_vmapp_cmd.vpe = vpe;
914 desc.its_vmapp_cmd.valid = valid;
915
916 list_for_each_entry(its, &its_nodes, entry) {
917 if (!its->is_v4)
918 continue;
919
920 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
921 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
922 }
923}
924
925static void its_send_vmovp(struct its_vpe *vpe)
926{
927 struct its_cmd_desc desc;
928 struct its_node *its;
929 unsigned long flags;
930 int col_id = vpe->col_idx;
931
932 desc.its_vmovp_cmd.vpe = vpe;
933 desc.its_vmovp_cmd.its_list = (u16)its_list_map;
934
935 if (!its_list_map) {
936 its = list_first_entry(&its_nodes, struct its_node, entry);
937 desc.its_vmovp_cmd.seq_num = 0;
938 desc.its_vmovp_cmd.col = &its->collections[col_id];
939 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
940 return;
941 }
942
943 /*
944 * Yet another marvel of the architecture. If using the
945 * its_list "feature", we need to make sure that all ITSs
946 * receive all VMOVP commands in the same order. The only way
947 * to guarantee this is to make vmovp a serialization point.
948 *
949 * Wall <-- Head.
950 */
951 raw_spin_lock_irqsave(&vmovp_lock, flags);
952
953 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
954
955 /* Emit VMOVPs */
956 list_for_each_entry(its, &its_nodes, entry) {
957 if (!its->is_v4)
958 continue;
959
960 desc.its_vmovp_cmd.col = &its->collections[col_id];
961 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
962 }
963
964 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
965}
966
967static void its_send_vinvall(struct its_vpe *vpe)
968{
969 struct its_cmd_desc desc;
970 struct its_node *its;
971
972 desc.its_vinvall_cmd.vpe = vpe;
973
974 list_for_each_entry(its, &its_nodes, entry) {
975 if (!its->is_v4)
976 continue;
977 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
978 }
979}
980
981/*
982 * irqchip functions - assumes MSI, mostly.
983 */
984
985static inline u32 its_get_event_id(struct irq_data *d)
986{
987 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
988 return d->hwirq - its_dev->event_map.lpi_base;
989}
990
991static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
992{
993 irq_hw_number_t hwirq;
994 struct page *prop_page;
995 u8 *cfg;
996
997 if (irqd_is_forwarded_to_vcpu(d)) {
998 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
999 u32 event = its_get_event_id(d);
1000
1001 prop_page = its_dev->event_map.vm->vprop_page;
1002 hwirq = its_dev->event_map.vlpi_maps[event].vintid;
1003 } else {
1004 prop_page = gic_rdists->prop_page;
1005 hwirq = d->hwirq;
1006 }
1007
1008 cfg = page_address(prop_page) + hwirq - 8192;
1009 *cfg &= ~clr;
1010 *cfg |= set | LPI_PROP_GROUP1;
1011
1012 /*
1013 * Make the above write visible to the redistributors.
1014 * And yes, we're flushing exactly: One. Single. Byte.
1015 * Humpf...
1016 */
1017 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1018 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1019 else
1020 dsb(ishst);
1021}
1022
1023static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1024{
1025 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1026
1027 lpi_write_config(d, clr, set);
1028 its_send_inv(its_dev, its_get_event_id(d));
1029}
1030
1031static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1032{
1033 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1034 u32 event = its_get_event_id(d);
1035
1036 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1037 return;
1038
1039 its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1040
1041 /*
1042 * More fun with the architecture:
1043 *
1044 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1045 * value or to 1023, depending on the enable bit. But that
1046 * would be issueing a mapping for an /existing/ DevID+EventID
1047 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1048 * to the /same/ vPE, using this opportunity to adjust the
1049 * doorbell. Mouahahahaha. We loves it, Precious.
1050 */
1051 its_send_vmovi(its_dev, event);
1052}
1053
1054static void its_mask_irq(struct irq_data *d)
1055{
1056 if (irqd_is_forwarded_to_vcpu(d))
1057 its_vlpi_set_doorbell(d, false);
1058
1059 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1060}
1061
1062static void its_unmask_irq(struct irq_data *d)
1063{
1064 if (irqd_is_forwarded_to_vcpu(d))
1065 its_vlpi_set_doorbell(d, true);
1066
1067 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1068}
1069
1070static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1071 bool force)
1072{
1073 unsigned int cpu;
1074 const struct cpumask *cpu_mask = cpu_online_mask;
1075 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1076 struct its_collection *target_col;
1077 u32 id = its_get_event_id(d);
1078
1079 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1080 if (irqd_is_forwarded_to_vcpu(d))
1081 return -EINVAL;
1082
1083 /* lpi cannot be routed to a redistributor that is on a foreign node */
1084 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1085 if (its_dev->its->numa_node >= 0) {
1086 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1087 if (!cpumask_intersects(mask_val, cpu_mask))
1088 return -EINVAL;
1089 }
1090 }
1091
1092 cpu = cpumask_any_and(mask_val, cpu_mask);
1093
1094 if (cpu >= nr_cpu_ids)
1095 return -EINVAL;
1096
1097 /* don't set the affinity when the target cpu is same as current one */
1098 if (cpu != its_dev->event_map.col_map[id]) {
1099 target_col = &its_dev->its->collections[cpu];
1100 its_send_movi(its_dev, target_col, id);
1101 its_dev->event_map.col_map[id] = cpu;
1102 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1103 }
1104
1105 return IRQ_SET_MASK_OK_DONE;
1106}
1107
1108static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1109{
1110 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1111 struct its_node *its;
1112 u64 addr;
1113
1114 its = its_dev->its;
1115 addr = its->phys_base + GITS_TRANSLATER;
1116
1117 msg->address_lo = lower_32_bits(addr);
1118 msg->address_hi = upper_32_bits(addr);
1119 msg->data = its_get_event_id(d);
1120
1121 iommu_dma_map_msi_msg(d->irq, msg);
1122}
1123
1124static int its_irq_set_irqchip_state(struct irq_data *d,
1125 enum irqchip_irq_state which,
1126 bool state)
1127{
1128 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1129 u32 event = its_get_event_id(d);
1130
1131 if (which != IRQCHIP_STATE_PENDING)
1132 return -EINVAL;
1133
1134 if (state)
1135 its_send_int(its_dev, event);
1136 else
1137 its_send_clear(its_dev, event);
1138
1139 return 0;
1140}
1141
1142static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1143{
1144 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1145 u32 event = its_get_event_id(d);
1146 int ret = 0;
1147
1148 if (!info->map)
1149 return -EINVAL;
1150
1151 mutex_lock(&its_dev->event_map.vlpi_lock);
1152
1153 if (!its_dev->event_map.vm) {
1154 struct its_vlpi_map *maps;
1155
1156 maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis,
1157 GFP_KERNEL);
1158 if (!maps) {
1159 ret = -ENOMEM;
1160 goto out;
1161 }
1162
1163 its_dev->event_map.vm = info->map->vm;
1164 its_dev->event_map.vlpi_maps = maps;
1165 } else if (its_dev->event_map.vm != info->map->vm) {
1166 ret = -EINVAL;
1167 goto out;
1168 }
1169
1170 /* Get our private copy of the mapping information */
1171 its_dev->event_map.vlpi_maps[event] = *info->map;
1172
1173 if (irqd_is_forwarded_to_vcpu(d)) {
1174 /* Already mapped, move it around */
1175 its_send_vmovi(its_dev, event);
1176 } else {
1177 /* Drop the physical mapping */
1178 its_send_discard(its_dev, event);
1179
1180 /* and install the virtual one */
1181 its_send_vmapti(its_dev, event);
1182 irqd_set_forwarded_to_vcpu(d);
1183
1184 /* Increment the number of VLPIs */
1185 its_dev->event_map.nr_vlpis++;
1186 }
1187
1188out:
1189 mutex_unlock(&its_dev->event_map.vlpi_lock);
1190 return ret;
1191}
1192
1193static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1194{
1195 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1196 u32 event = its_get_event_id(d);
1197 int ret = 0;
1198
1199 mutex_lock(&its_dev->event_map.vlpi_lock);
1200
1201 if (!its_dev->event_map.vm ||
1202 !its_dev->event_map.vlpi_maps[event].vm) {
1203 ret = -EINVAL;
1204 goto out;
1205 }
1206
1207 /* Copy our mapping information to the incoming request */
1208 *info->map = its_dev->event_map.vlpi_maps[event];
1209
1210out:
1211 mutex_unlock(&its_dev->event_map.vlpi_lock);
1212 return ret;
1213}
1214
1215static int its_vlpi_unmap(struct irq_data *d)
1216{
1217 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1218 u32 event = its_get_event_id(d);
1219 int ret = 0;
1220
1221 mutex_lock(&its_dev->event_map.vlpi_lock);
1222
1223 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1224 ret = -EINVAL;
1225 goto out;
1226 }
1227
1228 /* Drop the virtual mapping */
1229 its_send_discard(its_dev, event);
1230
1231 /* and restore the physical one */
1232 irqd_clr_forwarded_to_vcpu(d);
1233 its_send_mapti(its_dev, d->hwirq, event);
1234 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1235 LPI_PROP_ENABLED |
1236 LPI_PROP_GROUP1));
1237
1238 /*
1239 * Drop the refcount and make the device available again if
1240 * this was the last VLPI.
1241 */
1242 if (!--its_dev->event_map.nr_vlpis) {
1243 its_dev->event_map.vm = NULL;
1244 kfree(its_dev->event_map.vlpi_maps);
1245 }
1246
1247out:
1248 mutex_unlock(&its_dev->event_map.vlpi_lock);
1249 return ret;
1250}
1251
1252static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1253{
1254 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1255
1256 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1257 return -EINVAL;
1258
1259 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1260 lpi_update_config(d, 0xff, info->config);
1261 else
1262 lpi_write_config(d, 0xff, info->config);
1263 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1264
1265 return 0;
1266}
1267
1268static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1269{
1270 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1271 struct its_cmd_info *info = vcpu_info;
1272
1273 /* Need a v4 ITS */
1274 if (!its_dev->its->is_v4)
1275 return -EINVAL;
1276
1277 /* Unmap request? */
1278 if (!info)
1279 return its_vlpi_unmap(d);
1280
1281 switch (info->cmd_type) {
1282 case MAP_VLPI:
1283 return its_vlpi_map(d, info);
1284
1285 case GET_VLPI:
1286 return its_vlpi_get(d, info);
1287
1288 case PROP_UPDATE_VLPI:
1289 case PROP_UPDATE_AND_INV_VLPI:
1290 return its_vlpi_prop_update(d, info);
1291
1292 default:
1293 return -EINVAL;
1294 }
1295}
1296
1297static struct irq_chip its_irq_chip = {
1298 .name = "ITS",
1299 .irq_mask = its_mask_irq,
1300 .irq_unmask = its_unmask_irq,
1301 .irq_eoi = irq_chip_eoi_parent,
1302 .irq_set_affinity = its_set_affinity,
1303 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1304 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1305 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1306};
1307
1308/*
1309 * How we allocate LPIs:
1310 *
1311 * The GIC has id_bits bits for interrupt identifiers. From there, we
1312 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1313 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1314 * bits to the right.
1315 *
1316 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1317 */
1318#define IRQS_PER_CHUNK_SHIFT 5
1319#define IRQS_PER_CHUNK (1UL << IRQS_PER_CHUNK_SHIFT)
1320#define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1321
1322static unsigned long *lpi_bitmap;
1323static u32 lpi_chunks;
1324static DEFINE_SPINLOCK(lpi_lock);
1325
1326static int its_lpi_to_chunk(int lpi)
1327{
1328 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1329}
1330
1331static int its_chunk_to_lpi(int chunk)
1332{
1333 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1334}
1335
1336static int __init its_lpi_init(u32 id_bits)
1337{
1338 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1339
1340 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
1341 GFP_KERNEL);
1342 if (!lpi_bitmap) {
1343 lpi_chunks = 0;
1344 return -ENOMEM;
1345 }
1346
1347 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1348 return 0;
1349}
1350
1351static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1352{
1353 unsigned long *bitmap = NULL;
1354 int chunk_id;
1355 int nr_chunks;
1356 int i;
1357
1358 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1359
1360 spin_lock(&lpi_lock);
1361
1362 do {
1363 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1364 0, nr_chunks, 0);
1365 if (chunk_id < lpi_chunks)
1366 break;
1367
1368 nr_chunks--;
1369 } while (nr_chunks > 0);
1370
1371 if (!nr_chunks)
1372 goto out;
1373
1374 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
1375 GFP_ATOMIC);
1376 if (!bitmap)
1377 goto out;
1378
1379 for (i = 0; i < nr_chunks; i++)
1380 set_bit(chunk_id + i, lpi_bitmap);
1381
1382 *base = its_chunk_to_lpi(chunk_id);
1383 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
1384
1385out:
1386 spin_unlock(&lpi_lock);
1387
1388 if (!bitmap)
1389 *base = *nr_ids = 0;
1390
1391 return bitmap;
1392}
1393
1394static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1395{
1396 int lpi;
1397
1398 spin_lock(&lpi_lock);
1399
1400 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1401 int chunk = its_lpi_to_chunk(lpi);
1402
1403 BUG_ON(chunk > lpi_chunks);
1404 if (test_bit(chunk, lpi_bitmap)) {
1405 clear_bit(chunk, lpi_bitmap);
1406 } else {
1407 pr_err("Bad LPI chunk %d\n", chunk);
1408 }
1409 }
1410
1411 spin_unlock(&lpi_lock);
1412
1413 kfree(bitmap);
1414}
1415
1416static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1417{
1418 struct page *prop_page;
1419
1420 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1421 if (!prop_page)
1422 return NULL;
1423
1424 /* Priority 0xa0, Group-1, disabled */
1425 memset(page_address(prop_page),
1426 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1427 LPI_PROPBASE_SZ);
1428
1429 /* Make sure the GIC will observe the written configuration */
1430 gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1431
1432 return prop_page;
1433}
1434
1435static void its_free_prop_table(struct page *prop_page)
1436{
1437 free_pages((unsigned long)page_address(prop_page),
1438 get_order(LPI_PROPBASE_SZ));
1439}
1440
1441static int __init its_alloc_lpi_tables(void)
1442{
1443 phys_addr_t paddr;
1444
1445 lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1446 gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1447 if (!gic_rdists->prop_page) {
1448 pr_err("Failed to allocate PROPBASE\n");
1449 return -ENOMEM;
1450 }
1451
1452 paddr = page_to_phys(gic_rdists->prop_page);
1453 pr_info("GIC: using LPI property table @%pa\n", &paddr);
1454
1455 return its_lpi_init(lpi_id_bits);
1456}
1457
1458static const char *its_base_type_string[] = {
1459 [GITS_BASER_TYPE_DEVICE] = "Devices",
1460 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
1461 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
1462 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
1463 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
1464 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
1465 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
1466};
1467
1468static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1469{
1470 u32 idx = baser - its->tables;
1471
1472 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1473}
1474
1475static void its_write_baser(struct its_node *its, struct its_baser *baser,
1476 u64 val)
1477{
1478 u32 idx = baser - its->tables;
1479
1480 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1481 baser->val = its_read_baser(its, baser);
1482}
1483
1484static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1485 u64 cache, u64 shr, u32 psz, u32 order,
1486 bool indirect)
1487{
1488 u64 val = its_read_baser(its, baser);
1489 u64 esz = GITS_BASER_ENTRY_SIZE(val);
1490 u64 type = GITS_BASER_TYPE(val);
1491 u64 baser_phys, tmp;
1492 u32 alloc_pages;
1493 void *base;
1494
1495retry_alloc_baser:
1496 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1497 if (alloc_pages > GITS_BASER_PAGES_MAX) {
1498 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1499 &its->phys_base, its_base_type_string[type],
1500 alloc_pages, GITS_BASER_PAGES_MAX);
1501 alloc_pages = GITS_BASER_PAGES_MAX;
1502 order = get_order(GITS_BASER_PAGES_MAX * psz);
1503 }
1504
1505 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1506 if (!base)
1507 return -ENOMEM;
1508
1509 baser_phys = virt_to_phys(base);
1510
1511 /* Check if the physical address of the memory is above 48bits */
1512 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1513
1514 /* 52bit PA is supported only when PageSize=64K */
1515 if (psz != SZ_64K) {
1516 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1517 free_pages((unsigned long)base, order);
1518 return -ENXIO;
1519 }
1520
1521 /* Convert 52bit PA to 48bit field */
1522 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1523 }
1524
1525retry_baser:
1526 val = (baser_phys |
1527 (type << GITS_BASER_TYPE_SHIFT) |
1528 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
1529 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
1530 cache |
1531 shr |
1532 GITS_BASER_VALID);
1533
1534 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
1535
1536 switch (psz) {
1537 case SZ_4K:
1538 val |= GITS_BASER_PAGE_SIZE_4K;
1539 break;
1540 case SZ_16K:
1541 val |= GITS_BASER_PAGE_SIZE_16K;
1542 break;
1543 case SZ_64K:
1544 val |= GITS_BASER_PAGE_SIZE_64K;
1545 break;
1546 }
1547
1548 its_write_baser(its, baser, val);
1549 tmp = baser->val;
1550
1551 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1552 /*
1553 * Shareability didn't stick. Just use
1554 * whatever the read reported, which is likely
1555 * to be the only thing this redistributor
1556 * supports. If that's zero, make it
1557 * non-cacheable as well.
1558 */
1559 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1560 if (!shr) {
1561 cache = GITS_BASER_nC;
1562 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1563 }
1564 goto retry_baser;
1565 }
1566
1567 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1568 /*
1569 * Page size didn't stick. Let's try a smaller
1570 * size and retry. If we reach 4K, then
1571 * something is horribly wrong...
1572 */
1573 free_pages((unsigned long)base, order);
1574 baser->base = NULL;
1575
1576 switch (psz) {
1577 case SZ_16K:
1578 psz = SZ_4K;
1579 goto retry_alloc_baser;
1580 case SZ_64K:
1581 psz = SZ_16K;
1582 goto retry_alloc_baser;
1583 }
1584 }
1585
1586 if (val != tmp) {
1587 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1588 &its->phys_base, its_base_type_string[type],
1589 val, tmp);
1590 free_pages((unsigned long)base, order);
1591 return -ENXIO;
1592 }
1593
1594 baser->order = order;
1595 baser->base = base;
1596 baser->psz = psz;
1597 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1598
1599 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1600 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1601 its_base_type_string[type],
1602 (unsigned long)virt_to_phys(base),
1603 indirect ? "indirect" : "flat", (int)esz,
1604 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1605
1606 return 0;
1607}
1608
1609static bool its_parse_indirect_baser(struct its_node *its,
1610 struct its_baser *baser,
1611 u32 psz, u32 *order, u32 ids)
1612{
1613 u64 tmp = its_read_baser(its, baser);
1614 u64 type = GITS_BASER_TYPE(tmp);
1615 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1616 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1617 u32 new_order = *order;
1618 bool indirect = false;
1619
1620 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1621 if ((esz << ids) > (psz * 2)) {
1622 /*
1623 * Find out whether hw supports a single or two-level table by
1624 * table by reading bit at offset '62' after writing '1' to it.
1625 */
1626 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1627 indirect = !!(baser->val & GITS_BASER_INDIRECT);
1628
1629 if (indirect) {
1630 /*
1631 * The size of the lvl2 table is equal to ITS page size
1632 * which is 'psz'. For computing lvl1 table size,
1633 * subtract ID bits that sparse lvl2 table from 'ids'
1634 * which is reported by ITS hardware times lvl1 table
1635 * entry size.
1636 */
1637 ids -= ilog2(psz / (int)esz);
1638 esz = GITS_LVL1_ENTRY_SIZE;
1639 }
1640 }
1641
1642 /*
1643 * Allocate as many entries as required to fit the
1644 * range of device IDs that the ITS can grok... The ID
1645 * space being incredibly sparse, this results in a
1646 * massive waste of memory if two-level device table
1647 * feature is not supported by hardware.
1648 */
1649 new_order = max_t(u32, get_order(esz << ids), new_order);
1650 if (new_order >= MAX_ORDER) {
1651 new_order = MAX_ORDER - 1;
1652 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1653 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1654 &its->phys_base, its_base_type_string[type],
1655 its->device_ids, ids);
1656 }
1657
1658 *order = new_order;
1659
1660 return indirect;
1661}
1662
1663static void its_free_tables(struct its_node *its)
1664{
1665 int i;
1666
1667 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1668 if (its->tables[i].base) {
1669 free_pages((unsigned long)its->tables[i].base,
1670 its->tables[i].order);
1671 its->tables[i].base = NULL;
1672 }
1673 }
1674}
1675
1676static int its_alloc_tables(struct its_node *its)
1677{
1678 u64 typer = gic_read_typer(its->base + GITS_TYPER);
1679 u32 ids = GITS_TYPER_DEVBITS(typer);
1680 u64 shr = GITS_BASER_InnerShareable;
1681 u64 cache = GITS_BASER_RaWaWb;
1682 u32 psz = SZ_64K;
1683 int err, i;
1684
1685 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1686 /*
1687 * erratum 22375: only alloc 8MB table size
1688 * erratum 24313: ignore memory access type
1689 */
1690 cache = GITS_BASER_nCnB;
1691 ids = 0x14; /* 20 bits, 8MB */
1692 }
1693
1694 its->device_ids = ids;
1695
1696 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1697 struct its_baser *baser = its->tables + i;
1698 u64 val = its_read_baser(its, baser);
1699 u64 type = GITS_BASER_TYPE(val);
1700 u32 order = get_order(psz);
1701 bool indirect = false;
1702
1703 switch (type) {
1704 case GITS_BASER_TYPE_NONE:
1705 continue;
1706
1707 case GITS_BASER_TYPE_DEVICE:
1708 indirect = its_parse_indirect_baser(its, baser,
1709 psz, &order,
1710 its->device_ids);
1711 break;
1712
1713 case GITS_BASER_TYPE_VCPU:
1714 indirect = its_parse_indirect_baser(its, baser,
1715 psz, &order,
1716 ITS_MAX_VPEID_BITS);
1717 break;
1718 }
1719
1720 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1721 if (err < 0) {
1722 its_free_tables(its);
1723 return err;
1724 }
1725
1726 /* Update settings which will be used for next BASERn */
1727 psz = baser->psz;
1728 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1729 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1730 }
1731
1732 return 0;
1733}
1734
1735static int its_alloc_collections(struct its_node *its)
1736{
1737 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1738 GFP_KERNEL);
1739 if (!its->collections)
1740 return -ENOMEM;
1741
1742 return 0;
1743}
1744
1745static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1746{
1747 struct page *pend_page;
1748 /*
1749 * The pending pages have to be at least 64kB aligned,
1750 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1751 */
1752 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1753 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1754 if (!pend_page)
1755 return NULL;
1756
1757 /* Make sure the GIC will observe the zero-ed page */
1758 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1759
1760 return pend_page;
1761}
1762
1763static void its_free_pending_table(struct page *pt)
1764{
1765 free_pages((unsigned long)page_address(pt),
1766 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1767}
1768
1769static void its_cpu_init_lpis(void)
1770{
1771 void __iomem *rbase = gic_data_rdist_rd_base();
1772 struct page *pend_page;
1773 u64 val, tmp;
1774
1775 /* If we didn't allocate the pending table yet, do it now */
1776 pend_page = gic_data_rdist()->pend_page;
1777 if (!pend_page) {
1778 phys_addr_t paddr;
1779
1780 pend_page = its_allocate_pending_table(GFP_NOWAIT);
1781 if (!pend_page) {
1782 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1783 smp_processor_id());
1784 return;
1785 }
1786
1787 paddr = page_to_phys(pend_page);
1788 pr_info("CPU%d: using LPI pending table @%pa\n",
1789 smp_processor_id(), &paddr);
1790 gic_data_rdist()->pend_page = pend_page;
1791 }
1792
1793 /* Disable LPIs */
1794 val = readl_relaxed(rbase + GICR_CTLR);
1795 val &= ~GICR_CTLR_ENABLE_LPIS;
1796 writel_relaxed(val, rbase + GICR_CTLR);
1797
1798 /*
1799 * Make sure any change to the table is observable by the GIC.
1800 */
1801 dsb(sy);
1802
1803 /* set PROPBASE */
1804 val = (page_to_phys(gic_rdists->prop_page) |
1805 GICR_PROPBASER_InnerShareable |
1806 GICR_PROPBASER_RaWaWb |
1807 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1808
1809 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1810 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1811
1812 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1813 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1814 /*
1815 * The HW reports non-shareable, we must
1816 * remove the cacheability attributes as
1817 * well.
1818 */
1819 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1820 GICR_PROPBASER_CACHEABILITY_MASK);
1821 val |= GICR_PROPBASER_nC;
1822 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1823 }
1824 pr_info_once("GIC: using cache flushing for LPI property table\n");
1825 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1826 }
1827
1828 /* set PENDBASE */
1829 val = (page_to_phys(pend_page) |
1830 GICR_PENDBASER_InnerShareable |
1831 GICR_PENDBASER_RaWaWb);
1832
1833 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1834 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1835
1836 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1837 /*
1838 * The HW reports non-shareable, we must remove the
1839 * cacheability attributes as well.
1840 */
1841 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1842 GICR_PENDBASER_CACHEABILITY_MASK);
1843 val |= GICR_PENDBASER_nC;
1844 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1845 }
1846
1847 /* Enable LPIs */
1848 val = readl_relaxed(rbase + GICR_CTLR);
1849 val |= GICR_CTLR_ENABLE_LPIS;
1850 writel_relaxed(val, rbase + GICR_CTLR);
1851
1852 /* Make sure the GIC has seen the above */
1853 dsb(sy);
1854}
1855
1856static void its_cpu_init_collection(void)
1857{
1858 struct its_node *its;
1859 int cpu;
1860
1861 spin_lock(&its_lock);
1862 cpu = smp_processor_id();
1863
1864 list_for_each_entry(its, &its_nodes, entry) {
1865 u64 target;
1866
1867 /* avoid cross node collections and its mapping */
1868 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1869 struct device_node *cpu_node;
1870
1871 cpu_node = of_get_cpu_node(cpu, NULL);
1872 if (its->numa_node != NUMA_NO_NODE &&
1873 its->numa_node != of_node_to_nid(cpu_node))
1874 continue;
1875 }
1876
1877 /*
1878 * We now have to bind each collection to its target
1879 * redistributor.
1880 */
1881 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1882 /*
1883 * This ITS wants the physical address of the
1884 * redistributor.
1885 */
1886 target = gic_data_rdist()->phys_base;
1887 } else {
1888 /*
1889 * This ITS wants a linear CPU number.
1890 */
1891 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1892 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1893 }
1894
1895 /* Perform collection mapping */
1896 its->collections[cpu].target_address = target;
1897 its->collections[cpu].col_id = cpu;
1898
1899 its_send_mapc(its, &its->collections[cpu], 1);
1900 its_send_invall(its, &its->collections[cpu]);
1901 }
1902
1903 spin_unlock(&its_lock);
1904}
1905
1906static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1907{
1908 struct its_device *its_dev = NULL, *tmp;
1909 unsigned long flags;
1910
1911 raw_spin_lock_irqsave(&its->lock, flags);
1912
1913 list_for_each_entry(tmp, &its->its_device_list, entry) {
1914 if (tmp->device_id == dev_id) {
1915 its_dev = tmp;
1916 break;
1917 }
1918 }
1919
1920 raw_spin_unlock_irqrestore(&its->lock, flags);
1921
1922 return its_dev;
1923}
1924
1925static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1926{
1927 int i;
1928
1929 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1930 if (GITS_BASER_TYPE(its->tables[i].val) == type)
1931 return &its->tables[i];
1932 }
1933
1934 return NULL;
1935}
1936
1937static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
1938{
1939 struct page *page;
1940 u32 esz, idx;
1941 __le64 *table;
1942
1943 /* Don't allow device id that exceeds single, flat table limit */
1944 esz = GITS_BASER_ENTRY_SIZE(baser->val);
1945 if (!(baser->val & GITS_BASER_INDIRECT))
1946 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1947
1948 /* Compute 1st level table index & check if that exceeds table limit */
1949 idx = id >> ilog2(baser->psz / esz);
1950 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1951 return false;
1952
1953 table = baser->base;
1954
1955 /* Allocate memory for 2nd level table */
1956 if (!table[idx]) {
1957 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1958 if (!page)
1959 return false;
1960
1961 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
1962 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1963 gic_flush_dcache_to_poc(page_address(page), baser->psz);
1964
1965 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1966
1967 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1968 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1969 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
1970
1971 /* Ensure updated table contents are visible to ITS hardware */
1972 dsb(sy);
1973 }
1974
1975 return true;
1976}
1977
1978static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1979{
1980 struct its_baser *baser;
1981
1982 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1983
1984 /* Don't allow device id that exceeds ITS hardware limit */
1985 if (!baser)
1986 return (ilog2(dev_id) < its->device_ids);
1987
1988 return its_alloc_table_entry(baser, dev_id);
1989}
1990
1991static bool its_alloc_vpe_table(u32 vpe_id)
1992{
1993 struct its_node *its;
1994
1995 /*
1996 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
1997 * could try and only do it on ITSs corresponding to devices
1998 * that have interrupts targeted at this VPE, but the
1999 * complexity becomes crazy (and you have tons of memory
2000 * anyway, right?).
2001 */
2002 list_for_each_entry(its, &its_nodes, entry) {
2003 struct its_baser *baser;
2004
2005 if (!its->is_v4)
2006 continue;
2007
2008 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2009 if (!baser)
2010 return false;
2011
2012 if (!its_alloc_table_entry(baser, vpe_id))
2013 return false;
2014 }
2015
2016 return true;
2017}
2018
2019static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2020 int nvecs, bool alloc_lpis)
2021{
2022 struct its_device *dev;
2023 unsigned long *lpi_map = NULL;
2024 unsigned long flags;
2025 u16 *col_map = NULL;
2026 void *itt;
2027 int lpi_base;
2028 int nr_lpis;
2029 int nr_ites;
2030 int sz;
2031
2032 if (!its_alloc_device_table(its, dev_id))
2033 return NULL;
2034
2035 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2036 /*
2037 * We allocate at least one chunk worth of LPIs bet device,
2038 * and thus that many ITEs. The device may require less though.
2039 */
2040 nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs));
2041 sz = nr_ites * its->ite_size;
2042 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2043 itt = kzalloc(sz, GFP_KERNEL);
2044 if (alloc_lpis) {
2045 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2046 if (lpi_map)
2047 col_map = kzalloc(sizeof(*col_map) * nr_lpis,
2048 GFP_KERNEL);
2049 } else {
2050 col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL);
2051 nr_lpis = 0;
2052 lpi_base = 0;
2053 }
2054
2055 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
2056 kfree(dev);
2057 kfree(itt);
2058 kfree(lpi_map);
2059 kfree(col_map);
2060 return NULL;
2061 }
2062
2063 gic_flush_dcache_to_poc(itt, sz);
2064
2065 dev->its = its;
2066 dev->itt = itt;
2067 dev->nr_ites = nr_ites;
2068 dev->event_map.lpi_map = lpi_map;
2069 dev->event_map.col_map = col_map;
2070 dev->event_map.lpi_base = lpi_base;
2071 dev->event_map.nr_lpis = nr_lpis;
2072 mutex_init(&dev->event_map.vlpi_lock);
2073 dev->device_id = dev_id;
2074 INIT_LIST_HEAD(&dev->entry);
2075
2076 raw_spin_lock_irqsave(&its->lock, flags);
2077 list_add(&dev->entry, &its->its_device_list);
2078 raw_spin_unlock_irqrestore(&its->lock, flags);
2079
2080 /* Map device to its ITT */
2081 its_send_mapd(dev, 1);
2082
2083 return dev;
2084}
2085
2086static void its_free_device(struct its_device *its_dev)
2087{
2088 unsigned long flags;
2089
2090 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2091 list_del(&its_dev->entry);
2092 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2093 kfree(its_dev->itt);
2094 kfree(its_dev);
2095}
2096
2097static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2098{
2099 int idx;
2100
2101 idx = bitmap_find_free_region(dev->event_map.lpi_map,
2102 dev->event_map.nr_lpis,
2103 get_count_order(nvecs));
2104 if (idx < 0)
2105 return -ENOSPC;
2106
2107 *hwirq = dev->event_map.lpi_base + idx;
2108 set_bit(idx, dev->event_map.lpi_map);
2109
2110 return 0;
2111}
2112
2113static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2114 int nvec, msi_alloc_info_t *info)
2115{
2116 struct its_node *its;
2117 struct its_device *its_dev;
2118 struct msi_domain_info *msi_info;
2119 u32 dev_id;
2120 int err = 0;
2121
2122 /*
2123 * We ignore "dev" entierely, and rely on the dev_id that has
2124 * been passed via the scratchpad. This limits this domain's
2125 * usefulness to upper layers that definitely know that they
2126 * are built on top of the ITS.
2127 */
2128 dev_id = info->scratchpad[0].ul;
2129
2130 msi_info = msi_get_domain_info(domain);
2131 its = msi_info->data;
2132
2133 if (!gic_rdists->has_direct_lpi &&
2134 vpe_proxy.dev &&
2135 vpe_proxy.dev->its == its &&
2136 dev_id == vpe_proxy.dev->device_id) {
2137 /* Bad luck. Get yourself a better implementation */
2138 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2139 dev_id);
2140 return -EINVAL;
2141 }
2142
2143 mutex_lock(&its->dev_alloc_lock);
2144 its_dev = its_find_device(its, dev_id);
2145 if (its_dev) {
2146 /*
2147 * We already have seen this ID, probably through
2148 * another alias (PCI bridge of some sort). No need to
2149 * create the device.
2150 */
2151 its_dev->shared = true;
2152 pr_debug("Reusing ITT for devID %x\n", dev_id);
2153 goto out;
2154 }
2155
2156 its_dev = its_create_device(its, dev_id, nvec, true);
2157 if (!its_dev) {
2158 err = -ENOMEM;
2159 goto out;
2160 }
2161
2162 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2163out:
2164 mutex_unlock(&its->dev_alloc_lock);
2165 info->scratchpad[0].ptr = its_dev;
2166 return err;
2167}
2168
2169static struct msi_domain_ops its_msi_domain_ops = {
2170 .msi_prepare = its_msi_prepare,
2171};
2172
2173static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2174 unsigned int virq,
2175 irq_hw_number_t hwirq)
2176{
2177 struct irq_fwspec fwspec;
2178
2179 if (irq_domain_get_of_node(domain->parent)) {
2180 fwspec.fwnode = domain->parent->fwnode;
2181 fwspec.param_count = 3;
2182 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2183 fwspec.param[1] = hwirq;
2184 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2185 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2186 fwspec.fwnode = domain->parent->fwnode;
2187 fwspec.param_count = 2;
2188 fwspec.param[0] = hwirq;
2189 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2190 } else {
2191 return -EINVAL;
2192 }
2193
2194 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2195}
2196
2197static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2198 unsigned int nr_irqs, void *args)
2199{
2200 msi_alloc_info_t *info = args;
2201 struct its_device *its_dev = info->scratchpad[0].ptr;
2202 struct irq_data *irqd;
2203 irq_hw_number_t hwirq;
2204 int err;
2205 int i;
2206
2207 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2208 if (err)
2209 return err;
2210
2211 for (i = 0; i < nr_irqs; i++) {
2212 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2213 if (err)
2214 return err;
2215
2216 irq_domain_set_hwirq_and_chip(domain, virq + i,
2217 hwirq + i, &its_irq_chip, its_dev);
2218 irqd = irq_get_irq_data(virq + i);
2219 irqd_set_single_target(irqd);
2220 irqd_set_affinity_on_activate(irqd);
2221 pr_debug("ID:%d pID:%d vID:%d\n",
2222 (int)(hwirq + i - its_dev->event_map.lpi_base),
2223 (int)(hwirq + i), virq + i);
2224 }
2225
2226 return 0;
2227}
2228
2229static void its_irq_domain_activate(struct irq_domain *domain,
2230 struct irq_data *d)
2231{
2232 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2233 u32 event = its_get_event_id(d);
2234 const struct cpumask *cpu_mask = cpu_online_mask;
2235 int cpu;
2236
2237 /* get the cpu_mask of local node */
2238 if (its_dev->its->numa_node >= 0)
2239 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2240
2241 /* Bind the LPI to the first possible CPU */
2242 cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2243 if (cpu >= nr_cpu_ids) {
2244 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2245 return;
2246
2247 cpu = cpumask_first(cpu_online_mask);
2248 }
2249
2250 its_dev->event_map.col_map[event] = cpu;
2251 irq_data_update_effective_affinity(d, cpumask_of(cpu));
2252
2253 /* Map the GIC IRQ and event to the device */
2254 its_send_mapti(its_dev, d->hwirq, event);
2255}
2256
2257static void its_irq_domain_deactivate(struct irq_domain *domain,
2258 struct irq_data *d)
2259{
2260 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2261 u32 event = its_get_event_id(d);
2262
2263 /* Stop the delivery of interrupts */
2264 its_send_discard(its_dev, event);
2265}
2266
2267static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2268 unsigned int nr_irqs)
2269{
2270 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2271 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2272 struct its_node *its = its_dev->its;
2273 int i;
2274
2275 bitmap_release_region(its_dev->event_map.lpi_map,
2276 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
2277 get_count_order(nr_irqs));
2278
2279 for (i = 0; i < nr_irqs; i++) {
2280 struct irq_data *data = irq_domain_get_irq_data(domain,
2281 virq + i);
2282 /* Nuke the entry in the domain */
2283 irq_domain_reset_irq_data(data);
2284 }
2285
2286 mutex_lock(&its->dev_alloc_lock);
2287
2288 /*
2289 * If all interrupts have been freed, start mopping the
2290 * floor. This is conditionned on the device not being shared.
2291 */
2292 if (!its_dev->shared &&
2293 bitmap_empty(its_dev->event_map.lpi_map,
2294 its_dev->event_map.nr_lpis)) {
2295 its_lpi_free_chunks(its_dev->event_map.lpi_map,
2296 its_dev->event_map.lpi_base,
2297 its_dev->event_map.nr_lpis);
2298 kfree(its_dev->event_map.col_map);
2299
2300 /* Unmap device/itt */
2301 its_send_mapd(its_dev, 0);
2302 its_free_device(its_dev);
2303 }
2304
2305 mutex_unlock(&its->dev_alloc_lock);
2306
2307 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2308}
2309
2310static const struct irq_domain_ops its_domain_ops = {
2311 .alloc = its_irq_domain_alloc,
2312 .free = its_irq_domain_free,
2313 .activate = its_irq_domain_activate,
2314 .deactivate = its_irq_domain_deactivate,
2315};
2316
2317/*
2318 * This is insane.
2319 *
2320 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2321 * likely), the only way to perform an invalidate is to use a fake
2322 * device to issue an INV command, implying that the LPI has first
2323 * been mapped to some event on that device. Since this is not exactly
2324 * cheap, we try to keep that mapping around as long as possible, and
2325 * only issue an UNMAP if we're short on available slots.
2326 *
2327 * Broken by design(tm).
2328 */
2329static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2330{
2331 /* Already unmapped? */
2332 if (vpe->vpe_proxy_event == -1)
2333 return;
2334
2335 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2336 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2337
2338 /*
2339 * We don't track empty slots at all, so let's move the
2340 * next_victim pointer if we can quickly reuse that slot
2341 * instead of nuking an existing entry. Not clear that this is
2342 * always a win though, and this might just generate a ripple
2343 * effect... Let's just hope VPEs don't migrate too often.
2344 */
2345 if (vpe_proxy.vpes[vpe_proxy.next_victim])
2346 vpe_proxy.next_victim = vpe->vpe_proxy_event;
2347
2348 vpe->vpe_proxy_event = -1;
2349}
2350
2351static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2352{
2353 if (!gic_rdists->has_direct_lpi) {
2354 unsigned long flags;
2355
2356 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2357 its_vpe_db_proxy_unmap_locked(vpe);
2358 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2359 }
2360}
2361
2362static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2363{
2364 /* Already mapped? */
2365 if (vpe->vpe_proxy_event != -1)
2366 return;
2367
2368 /* This slot was already allocated. Kick the other VPE out. */
2369 if (vpe_proxy.vpes[vpe_proxy.next_victim])
2370 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2371
2372 /* Map the new VPE instead */
2373 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2374 vpe->vpe_proxy_event = vpe_proxy.next_victim;
2375 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2376
2377 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2378 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2379}
2380
2381static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2382{
2383 unsigned long flags;
2384 struct its_collection *target_col;
2385
2386 if (gic_rdists->has_direct_lpi) {
2387 void __iomem *rdbase;
2388
2389 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2390 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2391 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2392 cpu_relax();
2393
2394 return;
2395 }
2396
2397 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2398
2399 its_vpe_db_proxy_map_locked(vpe);
2400
2401 target_col = &vpe_proxy.dev->its->collections[to];
2402 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2403 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2404
2405 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2406}
2407
2408static int its_vpe_set_affinity(struct irq_data *d,
2409 const struct cpumask *mask_val,
2410 bool force)
2411{
2412 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2413 int cpu = cpumask_first(mask_val);
2414
2415 /*
2416 * Changing affinity is mega expensive, so let's be as lazy as
2417 * we can and only do it if we really have to. Also, if mapped
2418 * into the proxy device, we need to move the doorbell
2419 * interrupt to its new location.
2420 */
2421 if (vpe->col_idx != cpu) {
2422 int from = vpe->col_idx;
2423
2424 vpe->col_idx = cpu;
2425 its_send_vmovp(vpe);
2426 its_vpe_db_proxy_move(vpe, from, cpu);
2427 }
2428
2429 return IRQ_SET_MASK_OK_DONE;
2430}
2431
2432static void its_vpe_schedule(struct its_vpe *vpe)
2433{
2434 void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2435 u64 val;
2436
2437 /* Schedule the VPE */
2438 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2439 GENMASK_ULL(51, 12);
2440 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2441 val |= GICR_VPROPBASER_RaWb;
2442 val |= GICR_VPROPBASER_InnerShareable;
2443 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2444
2445 val = virt_to_phys(page_address(vpe->vpt_page)) &
2446 GENMASK_ULL(51, 16);
2447 val |= GICR_VPENDBASER_RaWaWb;
2448 val |= GICR_VPENDBASER_NonShareable;
2449 /*
2450 * There is no good way of finding out if the pending table is
2451 * empty as we can race against the doorbell interrupt very
2452 * easily. So in the end, vpe->pending_last is only an
2453 * indication that the vcpu has something pending, not one
2454 * that the pending table is empty. A good implementation
2455 * would be able to read its coarse map pretty quickly anyway,
2456 * making this a tolerable issue.
2457 */
2458 val |= GICR_VPENDBASER_PendingLast;
2459 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2460 val |= GICR_VPENDBASER_Valid;
2461 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2462}
2463
2464static void its_vpe_deschedule(struct its_vpe *vpe)
2465{
2466 void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2467 u32 count = 1000000; /* 1s! */
2468 bool clean;
2469 u64 val;
2470
2471 /* We're being scheduled out */
2472 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2473 val &= ~GICR_VPENDBASER_Valid;
2474 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2475
2476 do {
2477 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2478 clean = !(val & GICR_VPENDBASER_Dirty);
2479 if (!clean) {
2480 count--;
2481 cpu_relax();
2482 udelay(1);
2483 }
2484 } while (!clean && count);
2485
2486 if (unlikely(!clean && !count)) {
2487 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2488 vpe->idai = false;
2489 vpe->pending_last = true;
2490 } else {
2491 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2492 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2493 }
2494}
2495
2496static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2497{
2498 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2499 struct its_cmd_info *info = vcpu_info;
2500
2501 switch (info->cmd_type) {
2502 case SCHEDULE_VPE:
2503 its_vpe_schedule(vpe);
2504 return 0;
2505
2506 case DESCHEDULE_VPE:
2507 its_vpe_deschedule(vpe);
2508 return 0;
2509
2510 case INVALL_VPE:
2511 its_send_vinvall(vpe);
2512 return 0;
2513
2514 default:
2515 return -EINVAL;
2516 }
2517}
2518
2519static void its_vpe_send_cmd(struct its_vpe *vpe,
2520 void (*cmd)(struct its_device *, u32))
2521{
2522 unsigned long flags;
2523
2524 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2525
2526 its_vpe_db_proxy_map_locked(vpe);
2527 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2528
2529 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2530}
2531
2532static void its_vpe_send_inv(struct irq_data *d)
2533{
2534 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2535
2536 if (gic_rdists->has_direct_lpi) {
2537 void __iomem *rdbase;
2538
2539 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2540 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2541 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2542 cpu_relax();
2543 } else {
2544 its_vpe_send_cmd(vpe, its_send_inv);
2545 }
2546}
2547
2548static void its_vpe_mask_irq(struct irq_data *d)
2549{
2550 /*
2551 * We need to unmask the LPI, which is described by the parent
2552 * irq_data. Instead of calling into the parent (which won't
2553 * exactly do the right thing, let's simply use the
2554 * parent_data pointer. Yes, I'm naughty.
2555 */
2556 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2557 its_vpe_send_inv(d);
2558}
2559
2560static void its_vpe_unmask_irq(struct irq_data *d)
2561{
2562 /* Same hack as above... */
2563 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2564 its_vpe_send_inv(d);
2565}
2566
2567static int its_vpe_set_irqchip_state(struct irq_data *d,
2568 enum irqchip_irq_state which,
2569 bool state)
2570{
2571 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2572
2573 if (which != IRQCHIP_STATE_PENDING)
2574 return -EINVAL;
2575
2576 if (gic_rdists->has_direct_lpi) {
2577 void __iomem *rdbase;
2578
2579 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2580 if (state) {
2581 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2582 } else {
2583 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2584 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2585 cpu_relax();
2586 }
2587 } else {
2588 if (state)
2589 its_vpe_send_cmd(vpe, its_send_int);
2590 else
2591 its_vpe_send_cmd(vpe, its_send_clear);
2592 }
2593
2594 return 0;
2595}
2596
2597static int its_vpe_retrigger(struct irq_data *d)
2598{
2599 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
2600}
2601
2602static struct irq_chip its_vpe_irq_chip = {
2603 .name = "GICv4-vpe",
2604 .irq_mask = its_vpe_mask_irq,
2605 .irq_unmask = its_vpe_unmask_irq,
2606 .irq_eoi = irq_chip_eoi_parent,
2607 .irq_set_affinity = its_vpe_set_affinity,
2608 .irq_retrigger = its_vpe_retrigger,
2609 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
2610 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
2611};
2612
2613static int its_vpe_id_alloc(void)
2614{
2615 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2616}
2617
2618static void its_vpe_id_free(u16 id)
2619{
2620 ida_simple_remove(&its_vpeid_ida, id);
2621}
2622
2623static int its_vpe_init(struct its_vpe *vpe)
2624{
2625 struct page *vpt_page;
2626 int vpe_id;
2627
2628 /* Allocate vpe_id */
2629 vpe_id = its_vpe_id_alloc();
2630 if (vpe_id < 0)
2631 return vpe_id;
2632
2633 /* Allocate VPT */
2634 vpt_page = its_allocate_pending_table(GFP_KERNEL);
2635 if (!vpt_page) {
2636 its_vpe_id_free(vpe_id);
2637 return -ENOMEM;
2638 }
2639
2640 if (!its_alloc_vpe_table(vpe_id)) {
2641 its_vpe_id_free(vpe_id);
2642 its_free_pending_table(vpt_page);
2643 return -ENOMEM;
2644 }
2645
2646 vpe->vpe_id = vpe_id;
2647 vpe->vpt_page = vpt_page;
2648 vpe->vpe_proxy_event = -1;
2649
2650 return 0;
2651}
2652
2653static void its_vpe_teardown(struct its_vpe *vpe)
2654{
2655 its_vpe_db_proxy_unmap(vpe);
2656 its_vpe_id_free(vpe->vpe_id);
2657 its_free_pending_table(vpe->vpt_page);
2658}
2659
2660static void its_vpe_irq_domain_free(struct irq_domain *domain,
2661 unsigned int virq,
2662 unsigned int nr_irqs)
2663{
2664 struct its_vm *vm = domain->host_data;
2665 int i;
2666
2667 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2668
2669 for (i = 0; i < nr_irqs; i++) {
2670 struct irq_data *data = irq_domain_get_irq_data(domain,
2671 virq + i);
2672 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2673
2674 BUG_ON(vm != vpe->its_vm);
2675
2676 clear_bit(data->hwirq, vm->db_bitmap);
2677 its_vpe_teardown(vpe);
2678 irq_domain_reset_irq_data(data);
2679 }
2680
2681 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2682 its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2683 its_free_prop_table(vm->vprop_page);
2684 }
2685}
2686
2687static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2688 unsigned int nr_irqs, void *args)
2689{
2690 struct its_vm *vm = args;
2691 unsigned long *bitmap;
2692 struct page *vprop_page;
2693 int base, nr_ids, i, err = 0;
2694
2695 BUG_ON(!vm);
2696
2697 bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2698 if (!bitmap)
2699 return -ENOMEM;
2700
2701 if (nr_ids < nr_irqs) {
2702 its_lpi_free_chunks(bitmap, base, nr_ids);
2703 return -ENOMEM;
2704 }
2705
2706 vprop_page = its_allocate_prop_table(GFP_KERNEL);
2707 if (!vprop_page) {
2708 its_lpi_free_chunks(bitmap, base, nr_ids);
2709 return -ENOMEM;
2710 }
2711
2712 vm->db_bitmap = bitmap;
2713 vm->db_lpi_base = base;
2714 vm->nr_db_lpis = nr_ids;
2715 vm->vprop_page = vprop_page;
2716
2717 for (i = 0; i < nr_irqs; i++) {
2718 vm->vpes[i]->vpe_db_lpi = base + i;
2719 err = its_vpe_init(vm->vpes[i]);
2720 if (err)
2721 break;
2722 err = its_irq_gic_domain_alloc(domain, virq + i,
2723 vm->vpes[i]->vpe_db_lpi);
2724 if (err)
2725 break;
2726 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2727 &its_vpe_irq_chip, vm->vpes[i]);
2728 set_bit(i, bitmap);
2729 }
2730
2731 if (err) {
2732 if (i > 0)
2733 its_vpe_irq_domain_free(domain, virq, i - 1);
2734
2735 its_lpi_free_chunks(bitmap, base, nr_ids);
2736 its_free_prop_table(vprop_page);
2737 }
2738
2739 return err;
2740}
2741
2742static void its_vpe_irq_domain_activate(struct irq_domain *domain,
2743 struct irq_data *d)
2744{
2745 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2746
2747 /* Map the VPE to the first possible CPU */
2748 vpe->col_idx = cpumask_first(cpu_online_mask);
2749 its_send_vmapp(vpe, true);
2750 its_send_vinvall(vpe);
2751}
2752
2753static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2754 struct irq_data *d)
2755{
2756 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2757
2758 its_send_vmapp(vpe, false);
2759}
2760
2761static const struct irq_domain_ops its_vpe_domain_ops = {
2762 .alloc = its_vpe_irq_domain_alloc,
2763 .free = its_vpe_irq_domain_free,
2764 .activate = its_vpe_irq_domain_activate,
2765 .deactivate = its_vpe_irq_domain_deactivate,
2766};
2767
2768static int its_force_quiescent(void __iomem *base)
2769{
2770 u32 count = 1000000; /* 1s */
2771 u32 val;
2772
2773 val = readl_relaxed(base + GITS_CTLR);
2774 /*
2775 * GIC architecture specification requires the ITS to be both
2776 * disabled and quiescent for writes to GITS_BASER<n> or
2777 * GITS_CBASER to not have UNPREDICTABLE results.
2778 */
2779 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2780 return 0;
2781
2782 /* Disable the generation of all interrupts to this ITS */
2783 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2784 writel_relaxed(val, base + GITS_CTLR);
2785
2786 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
2787 while (1) {
2788 val = readl_relaxed(base + GITS_CTLR);
2789 if (val & GITS_CTLR_QUIESCENT)
2790 return 0;
2791
2792 count--;
2793 if (!count)
2794 return -EBUSY;
2795
2796 cpu_relax();
2797 udelay(1);
2798 }
2799}
2800
2801static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
2802{
2803 struct its_node *its = data;
2804
2805 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2806}
2807
2808static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
2809{
2810 struct its_node *its = data;
2811
2812 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2813}
2814
2815static void __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2816{
2817 struct its_node *its = data;
2818
2819 /* On QDF2400, the size of the ITE is 16Bytes */
2820 its->ite_size = 16;
2821}
2822
2823static const struct gic_quirk its_quirks[] = {
2824#ifdef CONFIG_CAVIUM_ERRATUM_22375
2825 {
2826 .desc = "ITS: Cavium errata 22375, 24313",
2827 .iidr = 0xa100034c, /* ThunderX pass 1.x */
2828 .mask = 0xffff0fff,
2829 .init = its_enable_quirk_cavium_22375,
2830 },
2831#endif
2832#ifdef CONFIG_CAVIUM_ERRATUM_23144
2833 {
2834 .desc = "ITS: Cavium erratum 23144",
2835 .iidr = 0xa100034c, /* ThunderX pass 1.x */
2836 .mask = 0xffff0fff,
2837 .init = its_enable_quirk_cavium_23144,
2838 },
2839#endif
2840#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
2841 {
2842 .desc = "ITS: QDF2400 erratum 0065",
2843 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
2844 .mask = 0xffffffff,
2845 .init = its_enable_quirk_qdf2400_e0065,
2846 },
2847#endif
2848 {
2849 }
2850};
2851
2852static void its_enable_quirks(struct its_node *its)
2853{
2854 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
2855
2856 gic_enable_quirks(iidr, its_quirks, its);
2857}
2858
2859static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
2860{
2861 struct irq_domain *inner_domain;
2862 struct msi_domain_info *info;
2863
2864 info = kzalloc(sizeof(*info), GFP_KERNEL);
2865 if (!info)
2866 return -ENOMEM;
2867
2868 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
2869 if (!inner_domain) {
2870 kfree(info);
2871 return -ENOMEM;
2872 }
2873
2874 inner_domain->parent = its_parent;
2875 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
2876 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_REMAP;
2877 info->ops = &its_msi_domain_ops;
2878 info->data = its;
2879 inner_domain->host_data = info;
2880
2881 return 0;
2882}
2883
2884static int its_init_vpe_domain(void)
2885{
2886 struct its_node *its;
2887 u32 devid;
2888 int entries;
2889
2890 if (gic_rdists->has_direct_lpi) {
2891 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
2892 return 0;
2893 }
2894
2895 /* Any ITS will do, even if not v4 */
2896 its = list_first_entry(&its_nodes, struct its_node, entry);
2897
2898 entries = roundup_pow_of_two(nr_cpu_ids);
2899 vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries,
2900 GFP_KERNEL);
2901 if (!vpe_proxy.vpes) {
2902 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
2903 return -ENOMEM;
2904 }
2905
2906 /* Use the last possible DevID */
2907 devid = GENMASK(its->device_ids - 1, 0);
2908 vpe_proxy.dev = its_create_device(its, devid, entries, false);
2909 if (!vpe_proxy.dev) {
2910 kfree(vpe_proxy.vpes);
2911 pr_err("ITS: Can't allocate GICv4 proxy device\n");
2912 return -ENOMEM;
2913 }
2914
2915 BUG_ON(entries > vpe_proxy.dev->nr_ites);
2916
2917 raw_spin_lock_init(&vpe_proxy.lock);
2918 vpe_proxy.next_victim = 0;
2919 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
2920 devid, vpe_proxy.dev->nr_ites);
2921
2922 return 0;
2923}
2924
2925static int __init its_compute_its_list_map(struct resource *res,
2926 void __iomem *its_base)
2927{
2928 int its_number;
2929 u32 ctlr;
2930
2931 /*
2932 * This is assumed to be done early enough that we're
2933 * guaranteed to be single-threaded, hence no
2934 * locking. Should this change, we should address
2935 * this.
2936 */
2937 its_number = find_first_zero_bit(&its_list_map, ITS_LIST_MAX);
2938 if (its_number >= ITS_LIST_MAX) {
2939 pr_err("ITS@%pa: No ITSList entry available!\n",
2940 &res->start);
2941 return -EINVAL;
2942 }
2943
2944 ctlr = readl_relaxed(its_base + GITS_CTLR);
2945 ctlr &= ~GITS_CTLR_ITS_NUMBER;
2946 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
2947 writel_relaxed(ctlr, its_base + GITS_CTLR);
2948 ctlr = readl_relaxed(its_base + GITS_CTLR);
2949 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
2950 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
2951 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
2952 }
2953
2954 if (test_and_set_bit(its_number, &its_list_map)) {
2955 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
2956 &res->start, its_number);
2957 return -EINVAL;
2958 }
2959
2960 return its_number;
2961}
2962
2963static int __init its_probe_one(struct resource *res,
2964 struct fwnode_handle *handle, int numa_node)
2965{
2966 struct its_node *its;
2967 void __iomem *its_base;
2968 u32 val, ctlr;
2969 u64 baser, tmp, typer;
2970 int err;
2971
2972 its_base = ioremap(res->start, resource_size(res));
2973 if (!its_base) {
2974 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
2975 return -ENOMEM;
2976 }
2977
2978 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
2979 if (val != 0x30 && val != 0x40) {
2980 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
2981 err = -ENODEV;
2982 goto out_unmap;
2983 }
2984
2985 err = its_force_quiescent(its_base);
2986 if (err) {
2987 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
2988 goto out_unmap;
2989 }
2990
2991 pr_info("ITS %pR\n", res);
2992
2993 its = kzalloc(sizeof(*its), GFP_KERNEL);
2994 if (!its) {
2995 err = -ENOMEM;
2996 goto out_unmap;
2997 }
2998
2999 raw_spin_lock_init(&its->lock);
3000 mutex_init(&its->dev_alloc_lock);
3001 INIT_LIST_HEAD(&its->entry);
3002 INIT_LIST_HEAD(&its->its_device_list);
3003 typer = gic_read_typer(its_base + GITS_TYPER);
3004 its->base = its_base;
3005 its->phys_base = res->start;
3006 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3007 its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3008 if (its->is_v4) {
3009 if (!(typer & GITS_TYPER_VMOVP)) {
3010 err = its_compute_its_list_map(res, its_base);
3011 if (err < 0)
3012 goto out_free_its;
3013
3014 pr_info("ITS@%pa: Using ITS number %d\n",
3015 &res->start, err);
3016 } else {
3017 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3018 }
3019 }
3020
3021 its->numa_node = numa_node;
3022
3023 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3024 get_order(ITS_CMD_QUEUE_SZ));
3025 if (!its->cmd_base) {
3026 err = -ENOMEM;
3027 goto out_free_its;
3028 }
3029 its->cmd_write = its->cmd_base;
3030
3031 its_enable_quirks(its);
3032
3033 err = its_alloc_tables(its);
3034 if (err)
3035 goto out_free_cmd;
3036
3037 err = its_alloc_collections(its);
3038 if (err)
3039 goto out_free_tables;
3040
3041 baser = (virt_to_phys(its->cmd_base) |
3042 GITS_CBASER_RaWaWb |
3043 GITS_CBASER_InnerShareable |
3044 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
3045 GITS_CBASER_VALID);
3046
3047 gits_write_cbaser(baser, its->base + GITS_CBASER);
3048 tmp = gits_read_cbaser(its->base + GITS_CBASER);
3049
3050 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3051 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3052 /*
3053 * The HW reports non-shareable, we must
3054 * remove the cacheability attributes as
3055 * well.
3056 */
3057 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3058 GITS_CBASER_CACHEABILITY_MASK);
3059 baser |= GITS_CBASER_nC;
3060 gits_write_cbaser(baser, its->base + GITS_CBASER);
3061 }
3062 pr_info("ITS: using cache flushing for cmd queue\n");
3063 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3064 }
3065
3066 gits_write_cwriter(0, its->base + GITS_CWRITER);
3067 ctlr = readl_relaxed(its->base + GITS_CTLR);
3068 ctlr |= GITS_CTLR_ENABLE;
3069 if (its->is_v4)
3070 ctlr |= GITS_CTLR_ImDe;
3071 writel_relaxed(ctlr, its->base + GITS_CTLR);
3072
3073 err = its_init_domain(handle, its);
3074 if (err)
3075 goto out_free_tables;
3076
3077 spin_lock(&its_lock);
3078 list_add(&its->entry, &its_nodes);
3079 spin_unlock(&its_lock);
3080
3081 return 0;
3082
3083out_free_tables:
3084 its_free_tables(its);
3085out_free_cmd:
3086 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3087out_free_its:
3088 kfree(its);
3089out_unmap:
3090 iounmap(its_base);
3091 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3092 return err;
3093}
3094
3095static bool gic_rdists_supports_plpis(void)
3096{
3097 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3098}
3099
3100int its_cpu_init(void)
3101{
3102 if (!list_empty(&its_nodes)) {
3103 if (!gic_rdists_supports_plpis()) {
3104 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3105 return -ENXIO;
3106 }
3107 its_cpu_init_lpis();
3108 its_cpu_init_collection();
3109 }
3110
3111 return 0;
3112}
3113
3114static const struct of_device_id its_device_id[] = {
3115 { .compatible = "arm,gic-v3-its", },
3116 {},
3117};
3118
3119static int __init its_of_probe(struct device_node *node)
3120{
3121 struct device_node *np;
3122 struct resource res;
3123
3124 for (np = of_find_matching_node(node, its_device_id); np;
3125 np = of_find_matching_node(np, its_device_id)) {
3126 if (!of_device_is_available(np))
3127 continue;
3128 if (!of_property_read_bool(np, "msi-controller")) {
3129 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3130 np);
3131 continue;
3132 }
3133
3134 if (of_address_to_resource(np, 0, &res)) {
3135 pr_warn("%pOF: no regs?\n", np);
3136 continue;
3137 }
3138
3139 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3140 }
3141 return 0;
3142}
3143
3144#ifdef CONFIG_ACPI
3145
3146#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3147
3148#ifdef CONFIG_ACPI_NUMA
3149struct its_srat_map {
3150 /* numa node id */
3151 u32 numa_node;
3152 /* GIC ITS ID */
3153 u32 its_id;
3154};
3155
3156static struct its_srat_map *its_srat_maps __initdata;
3157static int its_in_srat __initdata;
3158
3159static int __init acpi_get_its_numa_node(u32 its_id)
3160{
3161 int i;
3162
3163 for (i = 0; i < its_in_srat; i++) {
3164 if (its_id == its_srat_maps[i].its_id)
3165 return its_srat_maps[i].numa_node;
3166 }
3167 return NUMA_NO_NODE;
3168}
3169
3170static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3171 const unsigned long end)
3172{
3173 return 0;
3174}
3175
3176static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3177 const unsigned long end)
3178{
3179 int node;
3180 struct acpi_srat_gic_its_affinity *its_affinity;
3181
3182 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3183 if (!its_affinity)
3184 return -EINVAL;
3185
3186 if (its_affinity->header.length < sizeof(*its_affinity)) {
3187 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3188 its_affinity->header.length);
3189 return -EINVAL;
3190 }
3191
3192 node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3193
3194 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3195 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3196 return 0;
3197 }
3198
3199 its_srat_maps[its_in_srat].numa_node = node;
3200 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3201 its_in_srat++;
3202 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3203 its_affinity->proximity_domain, its_affinity->its_id, node);
3204
3205 return 0;
3206}
3207
3208static void __init acpi_table_parse_srat_its(void)
3209{
3210 int count;
3211
3212 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3213 sizeof(struct acpi_table_srat),
3214 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3215 gic_acpi_match_srat_its, 0);
3216 if (count <= 0)
3217 return;
3218
3219 its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
3220 GFP_KERNEL);
3221 if (!its_srat_maps) {
3222 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3223 return;
3224 }
3225
3226 acpi_table_parse_entries(ACPI_SIG_SRAT,
3227 sizeof(struct acpi_table_srat),
3228 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3229 gic_acpi_parse_srat_its, 0);
3230}
3231
3232/* free the its_srat_maps after ITS probing */
3233static void __init acpi_its_srat_maps_free(void)
3234{
3235 kfree(its_srat_maps);
3236}
3237#else
3238static void __init acpi_table_parse_srat_its(void) { }
3239static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3240static void __init acpi_its_srat_maps_free(void) { }
3241#endif
3242
3243static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3244 const unsigned long end)
3245{
3246 struct acpi_madt_generic_translator *its_entry;
3247 struct fwnode_handle *dom_handle;
3248 struct resource res;
3249 int err;
3250
3251 its_entry = (struct acpi_madt_generic_translator *)header;
3252 memset(&res, 0, sizeof(res));
3253 res.start = its_entry->base_address;
3254 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3255 res.flags = IORESOURCE_MEM;
3256
3257 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3258 if (!dom_handle) {
3259 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3260 &res.start);
3261 return -ENOMEM;
3262 }
3263
3264 err = iort_register_domain_token(its_entry->translation_id, dom_handle);
3265 if (err) {
3266 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3267 &res.start, its_entry->translation_id);
3268 goto dom_err;
3269 }
3270
3271 err = its_probe_one(&res, dom_handle,
3272 acpi_get_its_numa_node(its_entry->translation_id));
3273 if (!err)
3274 return 0;
3275
3276 iort_deregister_domain_token(its_entry->translation_id);
3277dom_err:
3278 irq_domain_free_fwnode(dom_handle);
3279 return err;
3280}
3281
3282static void __init its_acpi_probe(void)
3283{
3284 acpi_table_parse_srat_its();
3285 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3286 gic_acpi_parse_madt_its, 0);
3287 acpi_its_srat_maps_free();
3288}
3289#else
3290static void __init its_acpi_probe(void) { }
3291#endif
3292
3293int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3294 struct irq_domain *parent_domain)
3295{
3296 struct device_node *of_node;
3297 struct its_node *its;
3298 bool has_v4 = false;
3299 int err;
3300
3301 its_parent = parent_domain;
3302 of_node = to_of_node(handle);
3303 if (of_node)
3304 its_of_probe(of_node);
3305 else
3306 its_acpi_probe();
3307
3308 if (list_empty(&its_nodes)) {
3309 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3310 return -ENXIO;
3311 }
3312
3313 gic_rdists = rdists;
3314 err = its_alloc_lpi_tables();
3315 if (err)
3316 return err;
3317
3318 list_for_each_entry(its, &its_nodes, entry)
3319 has_v4 |= its->is_v4;
3320
3321 if (has_v4 & rdists->has_vlpis) {
3322 if (its_init_vpe_domain() ||
3323 its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3324 rdists->has_vlpis = false;
3325 pr_err("ITS: Disabling GICv4 support\n");
3326 }
3327 }
3328
3329 return 0;
3330}