blob: fba0fff8040d60f8b8131bd51fc62498654cc7a9 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/bcache.txt.
22 */
23
24#include "bcache.h"
25#include "btree.h"
26#include "debug.h"
27#include "extents.h"
28
29#include <linux/slab.h>
30#include <linux/bitops.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/prefetch.h>
34#include <linux/random.h>
35#include <linux/rcupdate.h>
36#include <linux/sched/clock.h>
37#include <linux/rculist.h>
38
39#include <trace/events/bcache.h>
40
41/*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91#define MAX_NEED_GC 64
92#define MAX_SAVE_PRIO 72
93
94#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
95
96#define PTR_HASH(c, k) \
97 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
98
99#define insert_lock(s, b) ((b)->level <= (s)->lock)
100
101/*
102 * These macros are for recursing down the btree - they handle the details of
103 * locking and looking up nodes in the cache for you. They're best treated as
104 * mere syntax when reading code that uses them.
105 *
106 * op->lock determines whether we take a read or a write lock at a given depth.
107 * If you've got a read lock and find that you need a write lock (i.e. you're
108 * going to have to split), set op->lock and return -EINTR; btree_root() will
109 * call you again and you'll have the correct lock.
110 */
111
112/**
113 * btree - recurse down the btree on a specified key
114 * @fn: function to call, which will be passed the child node
115 * @key: key to recurse on
116 * @b: parent btree node
117 * @op: pointer to struct btree_op
118 */
119#define btree(fn, key, b, op, ...) \
120({ \
121 int _r, l = (b)->level - 1; \
122 bool _w = l <= (op)->lock; \
123 struct btree *_child = bch_btree_node_get((b)->c, op, key, l, \
124 _w, b); \
125 if (!IS_ERR(_child)) { \
126 _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
127 rw_unlock(_w, _child); \
128 } else \
129 _r = PTR_ERR(_child); \
130 _r; \
131})
132
133/**
134 * btree_root - call a function on the root of the btree
135 * @fn: function to call, which will be passed the child node
136 * @c: cache set
137 * @op: pointer to struct btree_op
138 */
139#define btree_root(fn, c, op, ...) \
140({ \
141 int _r = -EINTR; \
142 do { \
143 struct btree *_b = (c)->root; \
144 bool _w = insert_lock(op, _b); \
145 rw_lock(_w, _b, _b->level); \
146 if (_b == (c)->root && \
147 _w == insert_lock(op, _b)) { \
148 _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
149 } \
150 rw_unlock(_w, _b); \
151 bch_cannibalize_unlock(c); \
152 if (_r == -EINTR) \
153 schedule(); \
154 } while (_r == -EINTR); \
155 \
156 finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
157 _r; \
158})
159
160static inline struct bset *write_block(struct btree *b)
161{
162 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
163}
164
165static void bch_btree_init_next(struct btree *b)
166{
167 /* If not a leaf node, always sort */
168 if (b->level && b->keys.nsets)
169 bch_btree_sort(&b->keys, &b->c->sort);
170 else
171 bch_btree_sort_lazy(&b->keys, &b->c->sort);
172
173 if (b->written < btree_blocks(b))
174 bch_bset_init_next(&b->keys, write_block(b),
175 bset_magic(&b->c->sb));
176
177}
178
179/* Btree key manipulation */
180
181void bkey_put(struct cache_set *c, struct bkey *k)
182{
183 unsigned i;
184
185 for (i = 0; i < KEY_PTRS(k); i++)
186 if (ptr_available(c, k, i))
187 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
188}
189
190/* Btree IO */
191
192static uint64_t btree_csum_set(struct btree *b, struct bset *i)
193{
194 uint64_t crc = b->key.ptr[0];
195 void *data = (void *) i + 8, *end = bset_bkey_last(i);
196
197 crc = bch_crc64_update(crc, data, end - data);
198 return crc ^ 0xffffffffffffffffULL;
199}
200
201void bch_btree_node_read_done(struct btree *b)
202{
203 const char *err = "bad btree header";
204 struct bset *i = btree_bset_first(b);
205 struct btree_iter *iter;
206
207 iter = mempool_alloc(b->c->fill_iter, GFP_NOIO);
208 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
209 iter->used = 0;
210
211#ifdef CONFIG_BCACHE_DEBUG
212 iter->b = &b->keys;
213#endif
214
215 if (!i->seq)
216 goto err;
217
218 for (;
219 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
220 i = write_block(b)) {
221 err = "unsupported bset version";
222 if (i->version > BCACHE_BSET_VERSION)
223 goto err;
224
225 err = "bad btree header";
226 if (b->written + set_blocks(i, block_bytes(b->c)) >
227 btree_blocks(b))
228 goto err;
229
230 err = "bad magic";
231 if (i->magic != bset_magic(&b->c->sb))
232 goto err;
233
234 err = "bad checksum";
235 switch (i->version) {
236 case 0:
237 if (i->csum != csum_set(i))
238 goto err;
239 break;
240 case BCACHE_BSET_VERSION:
241 if (i->csum != btree_csum_set(b, i))
242 goto err;
243 break;
244 }
245
246 err = "empty set";
247 if (i != b->keys.set[0].data && !i->keys)
248 goto err;
249
250 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
251
252 b->written += set_blocks(i, block_bytes(b->c));
253 }
254
255 err = "corrupted btree";
256 for (i = write_block(b);
257 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
258 i = ((void *) i) + block_bytes(b->c))
259 if (i->seq == b->keys.set[0].data->seq)
260 goto err;
261
262 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
263
264 i = b->keys.set[0].data;
265 err = "short btree key";
266 if (b->keys.set[0].size &&
267 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
268 goto err;
269
270 if (b->written < btree_blocks(b))
271 bch_bset_init_next(&b->keys, write_block(b),
272 bset_magic(&b->c->sb));
273out:
274 mempool_free(iter, b->c->fill_iter);
275 return;
276err:
277 set_btree_node_io_error(b);
278 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
279 err, PTR_BUCKET_NR(b->c, &b->key, 0),
280 bset_block_offset(b, i), i->keys);
281 goto out;
282}
283
284static void btree_node_read_endio(struct bio *bio)
285{
286 struct closure *cl = bio->bi_private;
287 closure_put(cl);
288}
289
290static void bch_btree_node_read(struct btree *b)
291{
292 uint64_t start_time = local_clock();
293 struct closure cl;
294 struct bio *bio;
295
296 trace_bcache_btree_read(b);
297
298 closure_init_stack(&cl);
299
300 bio = bch_bbio_alloc(b->c);
301 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
302 bio->bi_end_io = btree_node_read_endio;
303 bio->bi_private = &cl;
304 bio->bi_opf = REQ_OP_READ | REQ_META;
305
306 bch_bio_map(bio, b->keys.set[0].data);
307
308 bch_submit_bbio(bio, b->c, &b->key, 0);
309 closure_sync(&cl);
310
311 if (bio->bi_status)
312 set_btree_node_io_error(b);
313
314 bch_bbio_free(bio, b->c);
315
316 if (btree_node_io_error(b))
317 goto err;
318
319 bch_btree_node_read_done(b);
320 bch_time_stats_update(&b->c->btree_read_time, start_time);
321
322 return;
323err:
324 bch_cache_set_error(b->c, "io error reading bucket %zu",
325 PTR_BUCKET_NR(b->c, &b->key, 0));
326}
327
328static void btree_complete_write(struct btree *b, struct btree_write *w)
329{
330 if (w->prio_blocked &&
331 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
332 wake_up_allocators(b->c);
333
334 if (w->journal) {
335 atomic_dec_bug(w->journal);
336 __closure_wake_up(&b->c->journal.wait);
337 }
338
339 w->prio_blocked = 0;
340 w->journal = NULL;
341}
342
343static void btree_node_write_unlock(struct closure *cl)
344{
345 struct btree *b = container_of(cl, struct btree, io);
346
347 up(&b->io_mutex);
348}
349
350static void __btree_node_write_done(struct closure *cl)
351{
352 struct btree *b = container_of(cl, struct btree, io);
353 struct btree_write *w = btree_prev_write(b);
354
355 bch_bbio_free(b->bio, b->c);
356 b->bio = NULL;
357 btree_complete_write(b, w);
358
359 if (btree_node_dirty(b))
360 schedule_delayed_work(&b->work, 30 * HZ);
361
362 closure_return_with_destructor(cl, btree_node_write_unlock);
363}
364
365static void btree_node_write_done(struct closure *cl)
366{
367 struct btree *b = container_of(cl, struct btree, io);
368
369 bio_free_pages(b->bio);
370 __btree_node_write_done(cl);
371}
372
373static void btree_node_write_endio(struct bio *bio)
374{
375 struct closure *cl = bio->bi_private;
376 struct btree *b = container_of(cl, struct btree, io);
377
378 if (bio->bi_status)
379 set_btree_node_io_error(b);
380
381 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
382 closure_put(cl);
383}
384
385static void do_btree_node_write(struct btree *b)
386{
387 struct closure *cl = &b->io;
388 struct bset *i = btree_bset_last(b);
389 BKEY_PADDED(key) k;
390
391 i->version = BCACHE_BSET_VERSION;
392 i->csum = btree_csum_set(b, i);
393
394 BUG_ON(b->bio);
395 b->bio = bch_bbio_alloc(b->c);
396
397 b->bio->bi_end_io = btree_node_write_endio;
398 b->bio->bi_private = cl;
399 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
400 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
401 bch_bio_map(b->bio, i);
402
403 /*
404 * If we're appending to a leaf node, we don't technically need FUA -
405 * this write just needs to be persisted before the next journal write,
406 * which will be marked FLUSH|FUA.
407 *
408 * Similarly if we're writing a new btree root - the pointer is going to
409 * be in the next journal entry.
410 *
411 * But if we're writing a new btree node (that isn't a root) or
412 * appending to a non leaf btree node, we need either FUA or a flush
413 * when we write the parent with the new pointer. FUA is cheaper than a
414 * flush, and writes appending to leaf nodes aren't blocking anything so
415 * just make all btree node writes FUA to keep things sane.
416 */
417
418 bkey_copy(&k.key, &b->key);
419 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
420 bset_sector_offset(&b->keys, i));
421
422 if (!bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
423 int j;
424 struct bio_vec *bv;
425 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
426
427 bio_for_each_segment_all(bv, b->bio, j)
428 memcpy(page_address(bv->bv_page),
429 base + j * PAGE_SIZE, PAGE_SIZE);
430
431 bch_submit_bbio(b->bio, b->c, &k.key, 0);
432
433 continue_at(cl, btree_node_write_done, NULL);
434 } else {
435 b->bio->bi_vcnt = 0;
436 bch_bio_map(b->bio, i);
437
438 bch_submit_bbio(b->bio, b->c, &k.key, 0);
439
440 closure_sync(cl);
441 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
442 }
443}
444
445void __bch_btree_node_write(struct btree *b, struct closure *parent)
446{
447 struct bset *i = btree_bset_last(b);
448
449 lockdep_assert_held(&b->write_lock);
450
451 trace_bcache_btree_write(b);
452
453 BUG_ON(current->bio_list);
454 BUG_ON(b->written >= btree_blocks(b));
455 BUG_ON(b->written && !i->keys);
456 BUG_ON(btree_bset_first(b)->seq != i->seq);
457 bch_check_keys(&b->keys, "writing");
458
459 cancel_delayed_work(&b->work);
460
461 /* If caller isn't waiting for write, parent refcount is cache set */
462 down(&b->io_mutex);
463 closure_init(&b->io, parent ?: &b->c->cl);
464
465 clear_bit(BTREE_NODE_dirty, &b->flags);
466 change_bit(BTREE_NODE_write_idx, &b->flags);
467
468 do_btree_node_write(b);
469
470 atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
471 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
472
473 b->written += set_blocks(i, block_bytes(b->c));
474}
475
476void bch_btree_node_write(struct btree *b, struct closure *parent)
477{
478 unsigned nsets = b->keys.nsets;
479
480 lockdep_assert_held(&b->lock);
481
482 __bch_btree_node_write(b, parent);
483
484 /*
485 * do verify if there was more than one set initially (i.e. we did a
486 * sort) and we sorted down to a single set:
487 */
488 if (nsets && !b->keys.nsets)
489 bch_btree_verify(b);
490
491 bch_btree_init_next(b);
492}
493
494static void bch_btree_node_write_sync(struct btree *b)
495{
496 struct closure cl;
497
498 closure_init_stack(&cl);
499
500 mutex_lock(&b->write_lock);
501 bch_btree_node_write(b, &cl);
502 mutex_unlock(&b->write_lock);
503
504 closure_sync(&cl);
505}
506
507static void btree_node_write_work(struct work_struct *w)
508{
509 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
510
511 mutex_lock(&b->write_lock);
512 if (btree_node_dirty(b))
513 __bch_btree_node_write(b, NULL);
514 mutex_unlock(&b->write_lock);
515}
516
517static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
518{
519 struct bset *i = btree_bset_last(b);
520 struct btree_write *w = btree_current_write(b);
521
522 lockdep_assert_held(&b->write_lock);
523
524 BUG_ON(!b->written);
525 BUG_ON(!i->keys);
526
527 if (!btree_node_dirty(b))
528 schedule_delayed_work(&b->work, 30 * HZ);
529
530 set_btree_node_dirty(b);
531
532 if (journal_ref) {
533 if (w->journal &&
534 journal_pin_cmp(b->c, w->journal, journal_ref)) {
535 atomic_dec_bug(w->journal);
536 w->journal = NULL;
537 }
538
539 if (!w->journal) {
540 w->journal = journal_ref;
541 atomic_inc(w->journal);
542 }
543 }
544
545 /* Force write if set is too big */
546 if (set_bytes(i) > PAGE_SIZE - 48 &&
547 !current->bio_list)
548 bch_btree_node_write(b, NULL);
549}
550
551/*
552 * Btree in memory cache - allocation/freeing
553 * mca -> memory cache
554 */
555
556#define mca_reserve(c) (((c->root && c->root->level) \
557 ? c->root->level : 1) * 8 + 16)
558#define mca_can_free(c) \
559 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
560
561static void mca_data_free(struct btree *b)
562{
563 BUG_ON(b->io_mutex.count != 1);
564
565 bch_btree_keys_free(&b->keys);
566
567 b->c->btree_cache_used--;
568 list_move(&b->list, &b->c->btree_cache_freed);
569}
570
571static void mca_bucket_free(struct btree *b)
572{
573 BUG_ON(btree_node_dirty(b));
574
575 b->key.ptr[0] = 0;
576 hlist_del_init_rcu(&b->hash);
577 list_move(&b->list, &b->c->btree_cache_freeable);
578}
579
580static unsigned btree_order(struct bkey *k)
581{
582 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
583}
584
585static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
586{
587 if (!bch_btree_keys_alloc(&b->keys,
588 max_t(unsigned,
589 ilog2(b->c->btree_pages),
590 btree_order(k)),
591 gfp)) {
592 b->c->btree_cache_used++;
593 list_move(&b->list, &b->c->btree_cache);
594 } else {
595 list_move(&b->list, &b->c->btree_cache_freed);
596 }
597}
598
599static struct btree *mca_bucket_alloc(struct cache_set *c,
600 struct bkey *k, gfp_t gfp)
601{
602 struct btree *b = kzalloc(sizeof(struct btree), gfp);
603 if (!b)
604 return NULL;
605
606 init_rwsem(&b->lock);
607 lockdep_set_novalidate_class(&b->lock);
608 mutex_init(&b->write_lock);
609 lockdep_set_novalidate_class(&b->write_lock);
610 INIT_LIST_HEAD(&b->list);
611 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
612 b->c = c;
613 sema_init(&b->io_mutex, 1);
614
615 mca_data_alloc(b, k, gfp);
616 return b;
617}
618
619static int mca_reap(struct btree *b, unsigned min_order, bool flush)
620{
621 struct closure cl;
622
623 closure_init_stack(&cl);
624 lockdep_assert_held(&b->c->bucket_lock);
625
626 if (!down_write_trylock(&b->lock))
627 return -ENOMEM;
628
629 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
630
631 if (b->keys.page_order < min_order)
632 goto out_unlock;
633
634 if (!flush) {
635 if (btree_node_dirty(b))
636 goto out_unlock;
637
638 if (down_trylock(&b->io_mutex))
639 goto out_unlock;
640 up(&b->io_mutex);
641 }
642
643 mutex_lock(&b->write_lock);
644 if (btree_node_dirty(b))
645 __bch_btree_node_write(b, &cl);
646 mutex_unlock(&b->write_lock);
647
648 closure_sync(&cl);
649
650 /* wait for any in flight btree write */
651 down(&b->io_mutex);
652 up(&b->io_mutex);
653
654 return 0;
655out_unlock:
656 rw_unlock(true, b);
657 return -ENOMEM;
658}
659
660static unsigned long bch_mca_scan(struct shrinker *shrink,
661 struct shrink_control *sc)
662{
663 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
664 struct btree *b, *t;
665 unsigned long i, nr = sc->nr_to_scan;
666 unsigned long freed = 0;
667
668 if (c->shrinker_disabled)
669 return SHRINK_STOP;
670
671 if (c->btree_cache_alloc_lock)
672 return SHRINK_STOP;
673
674 /* Return -1 if we can't do anything right now */
675 if (sc->gfp_mask & __GFP_IO)
676 mutex_lock(&c->bucket_lock);
677 else if (!mutex_trylock(&c->bucket_lock))
678 return -1;
679
680 /*
681 * It's _really_ critical that we don't free too many btree nodes - we
682 * have to always leave ourselves a reserve. The reserve is how we
683 * guarantee that allocating memory for a new btree node can always
684 * succeed, so that inserting keys into the btree can always succeed and
685 * IO can always make forward progress:
686 */
687 nr /= c->btree_pages;
688 if (nr == 0)
689 nr = 1;
690 nr = min_t(unsigned long, nr, mca_can_free(c));
691
692 i = 0;
693 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
694 if (freed >= nr)
695 break;
696
697 if (++i > 3 &&
698 !mca_reap(b, 0, false)) {
699 mca_data_free(b);
700 rw_unlock(true, b);
701 freed++;
702 }
703 }
704
705 for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
706 if (list_empty(&c->btree_cache))
707 goto out;
708
709 b = list_first_entry(&c->btree_cache, struct btree, list);
710 list_rotate_left(&c->btree_cache);
711
712 if (!b->accessed &&
713 !mca_reap(b, 0, false)) {
714 mca_bucket_free(b);
715 mca_data_free(b);
716 rw_unlock(true, b);
717 freed++;
718 } else
719 b->accessed = 0;
720 }
721out:
722 mutex_unlock(&c->bucket_lock);
723 return freed;
724}
725
726static unsigned long bch_mca_count(struct shrinker *shrink,
727 struct shrink_control *sc)
728{
729 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
730
731 if (c->shrinker_disabled)
732 return 0;
733
734 if (c->btree_cache_alloc_lock)
735 return 0;
736
737 return mca_can_free(c) * c->btree_pages;
738}
739
740void bch_btree_cache_free(struct cache_set *c)
741{
742 struct btree *b;
743 struct closure cl;
744 closure_init_stack(&cl);
745
746 if (c->shrink.list.next)
747 unregister_shrinker(&c->shrink);
748
749 mutex_lock(&c->bucket_lock);
750
751#ifdef CONFIG_BCACHE_DEBUG
752 if (c->verify_data)
753 list_move(&c->verify_data->list, &c->btree_cache);
754
755 free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
756#endif
757
758 list_splice(&c->btree_cache_freeable,
759 &c->btree_cache);
760
761 while (!list_empty(&c->btree_cache)) {
762 b = list_first_entry(&c->btree_cache, struct btree, list);
763
764 if (btree_node_dirty(b))
765 btree_complete_write(b, btree_current_write(b));
766 clear_bit(BTREE_NODE_dirty, &b->flags);
767
768 mca_data_free(b);
769 }
770
771 while (!list_empty(&c->btree_cache_freed)) {
772 b = list_first_entry(&c->btree_cache_freed,
773 struct btree, list);
774 list_del(&b->list);
775 cancel_delayed_work_sync(&b->work);
776 kfree(b);
777 }
778
779 mutex_unlock(&c->bucket_lock);
780}
781
782int bch_btree_cache_alloc(struct cache_set *c)
783{
784 unsigned i;
785
786 for (i = 0; i < mca_reserve(c); i++)
787 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
788 return -ENOMEM;
789
790 list_splice_init(&c->btree_cache,
791 &c->btree_cache_freeable);
792
793#ifdef CONFIG_BCACHE_DEBUG
794 mutex_init(&c->verify_lock);
795
796 c->verify_ondisk = (void *)
797 __get_free_pages(GFP_KERNEL|__GFP_COMP, ilog2(bucket_pages(c)));
798
799 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
800
801 if (c->verify_data &&
802 c->verify_data->keys.set->data)
803 list_del_init(&c->verify_data->list);
804 else
805 c->verify_data = NULL;
806#endif
807
808 c->shrink.count_objects = bch_mca_count;
809 c->shrink.scan_objects = bch_mca_scan;
810 c->shrink.seeks = 4;
811 c->shrink.batch = c->btree_pages * 2;
812
813 if (register_shrinker(&c->shrink))
814 pr_warn("bcache: %s: could not register shrinker",
815 __func__);
816
817 return 0;
818}
819
820/* Btree in memory cache - hash table */
821
822static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
823{
824 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
825}
826
827static struct btree *mca_find(struct cache_set *c, struct bkey *k)
828{
829 struct btree *b;
830
831 rcu_read_lock();
832 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
833 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
834 goto out;
835 b = NULL;
836out:
837 rcu_read_unlock();
838 return b;
839}
840
841static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
842{
843 spin_lock(&c->btree_cannibalize_lock);
844 if (likely(c->btree_cache_alloc_lock == NULL)) {
845 c->btree_cache_alloc_lock = current;
846 } else if (c->btree_cache_alloc_lock != current) {
847 if (op)
848 prepare_to_wait(&c->btree_cache_wait, &op->wait,
849 TASK_UNINTERRUPTIBLE);
850 spin_unlock(&c->btree_cannibalize_lock);
851 return -EINTR;
852 }
853 spin_unlock(&c->btree_cannibalize_lock);
854
855 return 0;
856}
857
858static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
859 struct bkey *k)
860{
861 struct btree *b;
862
863 trace_bcache_btree_cache_cannibalize(c);
864
865 if (mca_cannibalize_lock(c, op))
866 return ERR_PTR(-EINTR);
867
868 list_for_each_entry_reverse(b, &c->btree_cache, list)
869 if (!mca_reap(b, btree_order(k), false))
870 return b;
871
872 list_for_each_entry_reverse(b, &c->btree_cache, list)
873 if (!mca_reap(b, btree_order(k), true))
874 return b;
875
876 WARN(1, "btree cache cannibalize failed\n");
877 return ERR_PTR(-ENOMEM);
878}
879
880/*
881 * We can only have one thread cannibalizing other cached btree nodes at a time,
882 * or we'll deadlock. We use an open coded mutex to ensure that, which a
883 * cannibalize_bucket() will take. This means every time we unlock the root of
884 * the btree, we need to release this lock if we have it held.
885 */
886static void bch_cannibalize_unlock(struct cache_set *c)
887{
888 spin_lock(&c->btree_cannibalize_lock);
889 if (c->btree_cache_alloc_lock == current) {
890 c->btree_cache_alloc_lock = NULL;
891 wake_up(&c->btree_cache_wait);
892 }
893 spin_unlock(&c->btree_cannibalize_lock);
894}
895
896static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
897 struct bkey *k, int level)
898{
899 struct btree *b;
900
901 BUG_ON(current->bio_list);
902
903 lockdep_assert_held(&c->bucket_lock);
904
905 if (mca_find(c, k))
906 return NULL;
907
908 /* btree_free() doesn't free memory; it sticks the node on the end of
909 * the list. Check if there's any freed nodes there:
910 */
911 list_for_each_entry(b, &c->btree_cache_freeable, list)
912 if (!mca_reap(b, btree_order(k), false))
913 goto out;
914
915 /* We never free struct btree itself, just the memory that holds the on
916 * disk node. Check the freed list before allocating a new one:
917 */
918 list_for_each_entry(b, &c->btree_cache_freed, list)
919 if (!mca_reap(b, 0, false)) {
920 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
921 if (!b->keys.set[0].data)
922 goto err;
923 else
924 goto out;
925 }
926
927 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
928 if (!b)
929 goto err;
930
931 BUG_ON(!down_write_trylock(&b->lock));
932 if (!b->keys.set->data)
933 goto err;
934out:
935 BUG_ON(b->io_mutex.count != 1);
936
937 bkey_copy(&b->key, k);
938 list_move(&b->list, &c->btree_cache);
939 hlist_del_init_rcu(&b->hash);
940 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
941
942 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
943 b->parent = (void *) ~0UL;
944 b->flags = 0;
945 b->written = 0;
946 b->level = level;
947
948 if (!b->level)
949 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
950 &b->c->expensive_debug_checks);
951 else
952 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
953 &b->c->expensive_debug_checks);
954
955 return b;
956err:
957 if (b)
958 rw_unlock(true, b);
959
960 b = mca_cannibalize(c, op, k);
961 if (!IS_ERR(b))
962 goto out;
963
964 return b;
965}
966
967/**
968 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
969 * in from disk if necessary.
970 *
971 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
972 *
973 * The btree node will have either a read or a write lock held, depending on
974 * level and op->lock.
975 */
976struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
977 struct bkey *k, int level, bool write,
978 struct btree *parent)
979{
980 int i = 0;
981 struct btree *b;
982
983 BUG_ON(level < 0);
984retry:
985 b = mca_find(c, k);
986
987 if (!b) {
988 if (current->bio_list)
989 return ERR_PTR(-EAGAIN);
990
991 mutex_lock(&c->bucket_lock);
992 b = mca_alloc(c, op, k, level);
993 mutex_unlock(&c->bucket_lock);
994
995 if (!b)
996 goto retry;
997 if (IS_ERR(b))
998 return b;
999
1000 bch_btree_node_read(b);
1001
1002 if (!write)
1003 downgrade_write(&b->lock);
1004 } else {
1005 rw_lock(write, b, level);
1006 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1007 rw_unlock(write, b);
1008 goto retry;
1009 }
1010 BUG_ON(b->level != level);
1011 }
1012
1013 b->parent = parent;
1014 b->accessed = 1;
1015
1016 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1017 prefetch(b->keys.set[i].tree);
1018 prefetch(b->keys.set[i].data);
1019 }
1020
1021 for (; i <= b->keys.nsets; i++)
1022 prefetch(b->keys.set[i].data);
1023
1024 if (btree_node_io_error(b)) {
1025 rw_unlock(write, b);
1026 return ERR_PTR(-EIO);
1027 }
1028
1029 BUG_ON(!b->written);
1030
1031 return b;
1032}
1033
1034static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1035{
1036 struct btree *b;
1037
1038 mutex_lock(&parent->c->bucket_lock);
1039 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1040 mutex_unlock(&parent->c->bucket_lock);
1041
1042 if (!IS_ERR_OR_NULL(b)) {
1043 b->parent = parent;
1044 bch_btree_node_read(b);
1045 rw_unlock(true, b);
1046 }
1047}
1048
1049/* Btree alloc */
1050
1051static void btree_node_free(struct btree *b)
1052{
1053 trace_bcache_btree_node_free(b);
1054
1055 BUG_ON(b == b->c->root);
1056
1057 mutex_lock(&b->write_lock);
1058
1059 if (btree_node_dirty(b))
1060 btree_complete_write(b, btree_current_write(b));
1061 clear_bit(BTREE_NODE_dirty, &b->flags);
1062
1063 mutex_unlock(&b->write_lock);
1064
1065 cancel_delayed_work(&b->work);
1066
1067 mutex_lock(&b->c->bucket_lock);
1068 bch_bucket_free(b->c, &b->key);
1069 mca_bucket_free(b);
1070 mutex_unlock(&b->c->bucket_lock);
1071}
1072
1073struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1074 int level, bool wait,
1075 struct btree *parent)
1076{
1077 BKEY_PADDED(key) k;
1078 struct btree *b = ERR_PTR(-EAGAIN);
1079
1080 mutex_lock(&c->bucket_lock);
1081retry:
1082 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1083 goto err;
1084
1085 bkey_put(c, &k.key);
1086 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1087
1088 b = mca_alloc(c, op, &k.key, level);
1089 if (IS_ERR(b))
1090 goto err_free;
1091
1092 if (!b) {
1093 cache_bug(c,
1094 "Tried to allocate bucket that was in btree cache");
1095 goto retry;
1096 }
1097
1098 b->accessed = 1;
1099 b->parent = parent;
1100 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1101
1102 mutex_unlock(&c->bucket_lock);
1103
1104 trace_bcache_btree_node_alloc(b);
1105 return b;
1106err_free:
1107 bch_bucket_free(c, &k.key);
1108err:
1109 mutex_unlock(&c->bucket_lock);
1110
1111 trace_bcache_btree_node_alloc_fail(c);
1112 return b;
1113}
1114
1115static struct btree *bch_btree_node_alloc(struct cache_set *c,
1116 struct btree_op *op, int level,
1117 struct btree *parent)
1118{
1119 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1120}
1121
1122static struct btree *btree_node_alloc_replacement(struct btree *b,
1123 struct btree_op *op)
1124{
1125 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1126 if (!IS_ERR_OR_NULL(n)) {
1127 mutex_lock(&n->write_lock);
1128 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1129 bkey_copy_key(&n->key, &b->key);
1130 mutex_unlock(&n->write_lock);
1131 }
1132
1133 return n;
1134}
1135
1136static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1137{
1138 unsigned i;
1139
1140 mutex_lock(&b->c->bucket_lock);
1141
1142 atomic_inc(&b->c->prio_blocked);
1143
1144 bkey_copy(k, &b->key);
1145 bkey_copy_key(k, &ZERO_KEY);
1146
1147 for (i = 0; i < KEY_PTRS(k); i++)
1148 SET_PTR_GEN(k, i,
1149 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1150 PTR_BUCKET(b->c, &b->key, i)));
1151
1152 mutex_unlock(&b->c->bucket_lock);
1153}
1154
1155static int btree_check_reserve(struct btree *b, struct btree_op *op)
1156{
1157 struct cache_set *c = b->c;
1158 struct cache *ca;
1159 unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
1160
1161 mutex_lock(&c->bucket_lock);
1162
1163 for_each_cache(ca, c, i)
1164 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1165 if (op)
1166 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1167 TASK_UNINTERRUPTIBLE);
1168 mutex_unlock(&c->bucket_lock);
1169 return -EINTR;
1170 }
1171
1172 mutex_unlock(&c->bucket_lock);
1173
1174 return mca_cannibalize_lock(b->c, op);
1175}
1176
1177/* Garbage collection */
1178
1179static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1180 struct bkey *k)
1181{
1182 uint8_t stale = 0;
1183 unsigned i;
1184 struct bucket *g;
1185
1186 /*
1187 * ptr_invalid() can't return true for the keys that mark btree nodes as
1188 * freed, but since ptr_bad() returns true we'll never actually use them
1189 * for anything and thus we don't want mark their pointers here
1190 */
1191 if (!bkey_cmp(k, &ZERO_KEY))
1192 return stale;
1193
1194 for (i = 0; i < KEY_PTRS(k); i++) {
1195 if (!ptr_available(c, k, i))
1196 continue;
1197
1198 g = PTR_BUCKET(c, k, i);
1199
1200 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1201 g->last_gc = PTR_GEN(k, i);
1202
1203 if (ptr_stale(c, k, i)) {
1204 stale = max(stale, ptr_stale(c, k, i));
1205 continue;
1206 }
1207
1208 cache_bug_on(GC_MARK(g) &&
1209 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1210 c, "inconsistent ptrs: mark = %llu, level = %i",
1211 GC_MARK(g), level);
1212
1213 if (level)
1214 SET_GC_MARK(g, GC_MARK_METADATA);
1215 else if (KEY_DIRTY(k))
1216 SET_GC_MARK(g, GC_MARK_DIRTY);
1217 else if (!GC_MARK(g))
1218 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1219
1220 /* guard against overflow */
1221 SET_GC_SECTORS_USED(g, min_t(unsigned,
1222 GC_SECTORS_USED(g) + KEY_SIZE(k),
1223 MAX_GC_SECTORS_USED));
1224
1225 BUG_ON(!GC_SECTORS_USED(g));
1226 }
1227
1228 return stale;
1229}
1230
1231#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1232
1233void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1234{
1235 unsigned i;
1236
1237 for (i = 0; i < KEY_PTRS(k); i++)
1238 if (ptr_available(c, k, i) &&
1239 !ptr_stale(c, k, i)) {
1240 struct bucket *b = PTR_BUCKET(c, k, i);
1241
1242 b->gen = PTR_GEN(k, i);
1243
1244 if (level && bkey_cmp(k, &ZERO_KEY))
1245 b->prio = BTREE_PRIO;
1246 else if (!level && b->prio == BTREE_PRIO)
1247 b->prio = INITIAL_PRIO;
1248 }
1249
1250 __bch_btree_mark_key(c, level, k);
1251}
1252
1253static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1254{
1255 uint8_t stale = 0;
1256 unsigned keys = 0, good_keys = 0;
1257 struct bkey *k;
1258 struct btree_iter iter;
1259 struct bset_tree *t;
1260
1261 gc->nodes++;
1262
1263 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1264 stale = max(stale, btree_mark_key(b, k));
1265 keys++;
1266
1267 if (bch_ptr_bad(&b->keys, k))
1268 continue;
1269
1270 gc->key_bytes += bkey_u64s(k);
1271 gc->nkeys++;
1272 good_keys++;
1273
1274 gc->data += KEY_SIZE(k);
1275 }
1276
1277 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1278 btree_bug_on(t->size &&
1279 bset_written(&b->keys, t) &&
1280 bkey_cmp(&b->key, &t->end) < 0,
1281 b, "found short btree key in gc");
1282
1283 if (b->c->gc_always_rewrite)
1284 return true;
1285
1286 if (stale > 10)
1287 return true;
1288
1289 if ((keys - good_keys) * 2 > keys)
1290 return true;
1291
1292 return false;
1293}
1294
1295#define GC_MERGE_NODES 4U
1296
1297struct gc_merge_info {
1298 struct btree *b;
1299 unsigned keys;
1300};
1301
1302static int bch_btree_insert_node(struct btree *, struct btree_op *,
1303 struct keylist *, atomic_t *, struct bkey *);
1304
1305static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1306 struct gc_stat *gc, struct gc_merge_info *r)
1307{
1308 unsigned i, nodes = 0, keys = 0, blocks;
1309 struct btree *new_nodes[GC_MERGE_NODES];
1310 struct keylist keylist;
1311 struct closure cl;
1312 struct bkey *k;
1313
1314 bch_keylist_init(&keylist);
1315
1316 if (btree_check_reserve(b, NULL))
1317 return 0;
1318
1319 memset(new_nodes, 0, sizeof(new_nodes));
1320 closure_init_stack(&cl);
1321
1322 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1323 keys += r[nodes++].keys;
1324
1325 blocks = btree_default_blocks(b->c) * 2 / 3;
1326
1327 if (nodes < 2 ||
1328 __set_blocks(b->keys.set[0].data, keys,
1329 block_bytes(b->c)) > blocks * (nodes - 1))
1330 return 0;
1331
1332 for (i = 0; i < nodes; i++) {
1333 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1334 if (IS_ERR_OR_NULL(new_nodes[i]))
1335 goto out_nocoalesce;
1336 }
1337
1338 /*
1339 * We have to check the reserve here, after we've allocated our new
1340 * nodes, to make sure the insert below will succeed - we also check
1341 * before as an optimization to potentially avoid a bunch of expensive
1342 * allocs/sorts
1343 */
1344 if (btree_check_reserve(b, NULL))
1345 goto out_nocoalesce;
1346
1347 for (i = 0; i < nodes; i++)
1348 mutex_lock(&new_nodes[i]->write_lock);
1349
1350 for (i = nodes - 1; i > 0; --i) {
1351 struct bset *n1 = btree_bset_first(new_nodes[i]);
1352 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1353 struct bkey *k, *last = NULL;
1354
1355 keys = 0;
1356
1357 if (i > 1) {
1358 for (k = n2->start;
1359 k < bset_bkey_last(n2);
1360 k = bkey_next(k)) {
1361 if (__set_blocks(n1, n1->keys + keys +
1362 bkey_u64s(k),
1363 block_bytes(b->c)) > blocks)
1364 break;
1365
1366 last = k;
1367 keys += bkey_u64s(k);
1368 }
1369 } else {
1370 /*
1371 * Last node we're not getting rid of - we're getting
1372 * rid of the node at r[0]. Have to try and fit all of
1373 * the remaining keys into this node; we can't ensure
1374 * they will always fit due to rounding and variable
1375 * length keys (shouldn't be possible in practice,
1376 * though)
1377 */
1378 if (__set_blocks(n1, n1->keys + n2->keys,
1379 block_bytes(b->c)) >
1380 btree_blocks(new_nodes[i]))
1381 goto out_unlock_nocoalesce;
1382
1383 keys = n2->keys;
1384 /* Take the key of the node we're getting rid of */
1385 last = &r->b->key;
1386 }
1387
1388 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1389 btree_blocks(new_nodes[i]));
1390
1391 if (last)
1392 bkey_copy_key(&new_nodes[i]->key, last);
1393
1394 memcpy(bset_bkey_last(n1),
1395 n2->start,
1396 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1397
1398 n1->keys += keys;
1399 r[i].keys = n1->keys;
1400
1401 memmove(n2->start,
1402 bset_bkey_idx(n2, keys),
1403 (void *) bset_bkey_last(n2) -
1404 (void *) bset_bkey_idx(n2, keys));
1405
1406 n2->keys -= keys;
1407
1408 if (__bch_keylist_realloc(&keylist,
1409 bkey_u64s(&new_nodes[i]->key)))
1410 goto out_unlock_nocoalesce;
1411
1412 bch_btree_node_write(new_nodes[i], &cl);
1413 bch_keylist_add(&keylist, &new_nodes[i]->key);
1414 }
1415
1416 for (i = 0; i < nodes; i++)
1417 mutex_unlock(&new_nodes[i]->write_lock);
1418
1419 closure_sync(&cl);
1420
1421 /* We emptied out this node */
1422 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1423 btree_node_free(new_nodes[0]);
1424 rw_unlock(true, new_nodes[0]);
1425 new_nodes[0] = NULL;
1426
1427 for (i = 0; i < nodes; i++) {
1428 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1429 goto out_nocoalesce;
1430
1431 make_btree_freeing_key(r[i].b, keylist.top);
1432 bch_keylist_push(&keylist);
1433 }
1434
1435 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1436 BUG_ON(!bch_keylist_empty(&keylist));
1437
1438 for (i = 0; i < nodes; i++) {
1439 btree_node_free(r[i].b);
1440 rw_unlock(true, r[i].b);
1441
1442 r[i].b = new_nodes[i];
1443 }
1444
1445 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1446 r[nodes - 1].b = ERR_PTR(-EINTR);
1447
1448 trace_bcache_btree_gc_coalesce(nodes);
1449 gc->nodes--;
1450
1451 bch_keylist_free(&keylist);
1452
1453 /* Invalidated our iterator */
1454 return -EINTR;
1455
1456out_unlock_nocoalesce:
1457 for (i = 0; i < nodes; i++)
1458 mutex_unlock(&new_nodes[i]->write_lock);
1459
1460out_nocoalesce:
1461 closure_sync(&cl);
1462 bch_keylist_free(&keylist);
1463
1464 while ((k = bch_keylist_pop(&keylist)))
1465 if (!bkey_cmp(k, &ZERO_KEY))
1466 atomic_dec(&b->c->prio_blocked);
1467
1468 for (i = 0; i < nodes; i++)
1469 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1470 btree_node_free(new_nodes[i]);
1471 rw_unlock(true, new_nodes[i]);
1472 }
1473 return 0;
1474}
1475
1476static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1477 struct btree *replace)
1478{
1479 struct keylist keys;
1480 struct btree *n;
1481
1482 if (btree_check_reserve(b, NULL))
1483 return 0;
1484
1485 n = btree_node_alloc_replacement(replace, NULL);
1486
1487 /* recheck reserve after allocating replacement node */
1488 if (btree_check_reserve(b, NULL)) {
1489 btree_node_free(n);
1490 rw_unlock(true, n);
1491 return 0;
1492 }
1493
1494 bch_btree_node_write_sync(n);
1495
1496 bch_keylist_init(&keys);
1497 bch_keylist_add(&keys, &n->key);
1498
1499 make_btree_freeing_key(replace, keys.top);
1500 bch_keylist_push(&keys);
1501
1502 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1503 BUG_ON(!bch_keylist_empty(&keys));
1504
1505 btree_node_free(replace);
1506 rw_unlock(true, n);
1507
1508 /* Invalidated our iterator */
1509 return -EINTR;
1510}
1511
1512static unsigned btree_gc_count_keys(struct btree *b)
1513{
1514 struct bkey *k;
1515 struct btree_iter iter;
1516 unsigned ret = 0;
1517
1518 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1519 ret += bkey_u64s(k);
1520
1521 return ret;
1522}
1523
1524static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1525 struct closure *writes, struct gc_stat *gc)
1526{
1527 int ret = 0;
1528 bool should_rewrite;
1529 struct bkey *k;
1530 struct btree_iter iter;
1531 struct gc_merge_info r[GC_MERGE_NODES];
1532 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1533
1534 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1535
1536 for (i = r; i < r + ARRAY_SIZE(r); i++)
1537 i->b = ERR_PTR(-EINTR);
1538
1539 while (1) {
1540 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1541 if (k) {
1542 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1543 true, b);
1544 if (IS_ERR(r->b)) {
1545 ret = PTR_ERR(r->b);
1546 break;
1547 }
1548
1549 r->keys = btree_gc_count_keys(r->b);
1550
1551 ret = btree_gc_coalesce(b, op, gc, r);
1552 if (ret)
1553 break;
1554 }
1555
1556 if (!last->b)
1557 break;
1558
1559 if (!IS_ERR(last->b)) {
1560 should_rewrite = btree_gc_mark_node(last->b, gc);
1561 if (should_rewrite) {
1562 ret = btree_gc_rewrite_node(b, op, last->b);
1563 if (ret)
1564 break;
1565 }
1566
1567 if (last->b->level) {
1568 ret = btree_gc_recurse(last->b, op, writes, gc);
1569 if (ret)
1570 break;
1571 }
1572
1573 bkey_copy_key(&b->c->gc_done, &last->b->key);
1574
1575 /*
1576 * Must flush leaf nodes before gc ends, since replace
1577 * operations aren't journalled
1578 */
1579 mutex_lock(&last->b->write_lock);
1580 if (btree_node_dirty(last->b))
1581 bch_btree_node_write(last->b, writes);
1582 mutex_unlock(&last->b->write_lock);
1583 rw_unlock(true, last->b);
1584 }
1585
1586 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1587 r->b = NULL;
1588
1589 if (need_resched()) {
1590 ret = -EAGAIN;
1591 break;
1592 }
1593 }
1594
1595 for (i = r; i < r + ARRAY_SIZE(r); i++)
1596 if (!IS_ERR_OR_NULL(i->b)) {
1597 mutex_lock(&i->b->write_lock);
1598 if (btree_node_dirty(i->b))
1599 bch_btree_node_write(i->b, writes);
1600 mutex_unlock(&i->b->write_lock);
1601 rw_unlock(true, i->b);
1602 }
1603
1604 return ret;
1605}
1606
1607static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1608 struct closure *writes, struct gc_stat *gc)
1609{
1610 struct btree *n = NULL;
1611 int ret = 0;
1612 bool should_rewrite;
1613
1614 should_rewrite = btree_gc_mark_node(b, gc);
1615 if (should_rewrite) {
1616 n = btree_node_alloc_replacement(b, NULL);
1617
1618 if (!IS_ERR_OR_NULL(n)) {
1619 bch_btree_node_write_sync(n);
1620
1621 bch_btree_set_root(n);
1622 btree_node_free(b);
1623 rw_unlock(true, n);
1624
1625 return -EINTR;
1626 }
1627 }
1628
1629 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1630
1631 if (b->level) {
1632 ret = btree_gc_recurse(b, op, writes, gc);
1633 if (ret)
1634 return ret;
1635 }
1636
1637 bkey_copy_key(&b->c->gc_done, &b->key);
1638
1639 return ret;
1640}
1641
1642static void btree_gc_start(struct cache_set *c)
1643{
1644 struct cache *ca;
1645 struct bucket *b;
1646 unsigned i;
1647
1648 if (!c->gc_mark_valid)
1649 return;
1650
1651 mutex_lock(&c->bucket_lock);
1652
1653 c->gc_mark_valid = 0;
1654 c->gc_done = ZERO_KEY;
1655
1656 for_each_cache(ca, c, i)
1657 for_each_bucket(b, ca) {
1658 b->last_gc = b->gen;
1659 if (!atomic_read(&b->pin)) {
1660 SET_GC_MARK(b, 0);
1661 SET_GC_SECTORS_USED(b, 0);
1662 }
1663 }
1664
1665 mutex_unlock(&c->bucket_lock);
1666}
1667
1668static size_t bch_btree_gc_finish(struct cache_set *c)
1669{
1670 size_t available = 0;
1671 struct bucket *b;
1672 struct cache *ca;
1673 unsigned i;
1674
1675 mutex_lock(&c->bucket_lock);
1676
1677 set_gc_sectors(c);
1678 c->gc_mark_valid = 1;
1679 c->need_gc = 0;
1680
1681 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1682 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1683 GC_MARK_METADATA);
1684
1685 /* don't reclaim buckets to which writeback keys point */
1686 rcu_read_lock();
1687 for (i = 0; i < c->nr_uuids; i++) {
1688 struct bcache_device *d = c->devices[i];
1689 struct cached_dev *dc;
1690 struct keybuf_key *w, *n;
1691 unsigned j;
1692
1693 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1694 continue;
1695 dc = container_of(d, struct cached_dev, disk);
1696
1697 spin_lock(&dc->writeback_keys.lock);
1698 rbtree_postorder_for_each_entry_safe(w, n,
1699 &dc->writeback_keys.keys, node)
1700 for (j = 0; j < KEY_PTRS(&w->key); j++)
1701 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1702 GC_MARK_DIRTY);
1703 spin_unlock(&dc->writeback_keys.lock);
1704 }
1705 rcu_read_unlock();
1706
1707 for_each_cache(ca, c, i) {
1708 uint64_t *i;
1709
1710 ca->invalidate_needs_gc = 0;
1711
1712 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1713 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1714
1715 for (i = ca->prio_buckets;
1716 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1717 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1718
1719 for_each_bucket(b, ca) {
1720 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1721
1722 if (atomic_read(&b->pin))
1723 continue;
1724
1725 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1726
1727 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1728 available++;
1729 }
1730 }
1731
1732 mutex_unlock(&c->bucket_lock);
1733 return available;
1734}
1735
1736static void bch_btree_gc(struct cache_set *c)
1737{
1738 int ret;
1739 unsigned long available;
1740 struct gc_stat stats;
1741 struct closure writes;
1742 struct btree_op op;
1743 uint64_t start_time = local_clock();
1744
1745 trace_bcache_gc_start(c);
1746
1747 memset(&stats, 0, sizeof(struct gc_stat));
1748 closure_init_stack(&writes);
1749 bch_btree_op_init(&op, SHRT_MAX);
1750
1751 btree_gc_start(c);
1752
1753 do {
1754 ret = btree_root(gc_root, c, &op, &writes, &stats);
1755 closure_sync(&writes);
1756 cond_resched();
1757
1758 if (ret && ret != -EAGAIN)
1759 pr_warn("gc failed!");
1760 } while (ret);
1761
1762 available = bch_btree_gc_finish(c);
1763 wake_up_allocators(c);
1764
1765 bch_time_stats_update(&c->btree_gc_time, start_time);
1766
1767 stats.key_bytes *= sizeof(uint64_t);
1768 stats.data <<= 9;
1769 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1770 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1771
1772 trace_bcache_gc_end(c);
1773
1774 bch_moving_gc(c);
1775}
1776
1777static bool gc_should_run(struct cache_set *c)
1778{
1779 struct cache *ca;
1780 unsigned i;
1781
1782 for_each_cache(ca, c, i)
1783 if (ca->invalidate_needs_gc)
1784 return true;
1785
1786 if (atomic_read(&c->sectors_to_gc) < 0)
1787 return true;
1788
1789 return false;
1790}
1791
1792static int bch_gc_thread(void *arg)
1793{
1794 struct cache_set *c = arg;
1795
1796 while (1) {
1797 wait_event_interruptible(c->gc_wait,
1798 kthread_should_stop() || gc_should_run(c));
1799
1800 if (kthread_should_stop())
1801 break;
1802
1803 set_gc_sectors(c);
1804 bch_btree_gc(c);
1805 }
1806
1807 return 0;
1808}
1809
1810int bch_gc_thread_start(struct cache_set *c)
1811{
1812 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1813 if (IS_ERR(c->gc_thread))
1814 return PTR_ERR(c->gc_thread);
1815
1816 return 0;
1817}
1818
1819/* Initial partial gc */
1820
1821static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1822{
1823 int ret = 0;
1824 struct bkey *k, *p = NULL;
1825 struct btree_iter iter;
1826
1827 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1828 bch_initial_mark_key(b->c, b->level, k);
1829
1830 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1831
1832 if (b->level) {
1833 bch_btree_iter_init(&b->keys, &iter, NULL);
1834
1835 do {
1836 k = bch_btree_iter_next_filter(&iter, &b->keys,
1837 bch_ptr_bad);
1838 if (k)
1839 btree_node_prefetch(b, k);
1840
1841 if (p)
1842 ret = btree(check_recurse, p, b, op);
1843
1844 p = k;
1845 } while (p && !ret);
1846 }
1847
1848 return ret;
1849}
1850
1851int bch_btree_check(struct cache_set *c)
1852{
1853 struct btree_op op;
1854
1855 bch_btree_op_init(&op, SHRT_MAX);
1856
1857 return btree_root(check_recurse, c, &op);
1858}
1859
1860void bch_initial_gc_finish(struct cache_set *c)
1861{
1862 struct cache *ca;
1863 struct bucket *b;
1864 unsigned i;
1865
1866 bch_btree_gc_finish(c);
1867
1868 mutex_lock(&c->bucket_lock);
1869
1870 /*
1871 * We need to put some unused buckets directly on the prio freelist in
1872 * order to get the allocator thread started - it needs freed buckets in
1873 * order to rewrite the prios and gens, and it needs to rewrite prios
1874 * and gens in order to free buckets.
1875 *
1876 * This is only safe for buckets that have no live data in them, which
1877 * there should always be some of.
1878 */
1879 for_each_cache(ca, c, i) {
1880 for_each_bucket(b, ca) {
1881 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1882 fifo_full(&ca->free[RESERVE_BTREE]))
1883 break;
1884
1885 if (bch_can_invalidate_bucket(ca, b) &&
1886 !GC_MARK(b)) {
1887 __bch_invalidate_one_bucket(ca, b);
1888 if (!fifo_push(&ca->free[RESERVE_PRIO],
1889 b - ca->buckets))
1890 fifo_push(&ca->free[RESERVE_BTREE],
1891 b - ca->buckets);
1892 }
1893 }
1894 }
1895
1896 mutex_unlock(&c->bucket_lock);
1897}
1898
1899/* Btree insertion */
1900
1901static bool btree_insert_key(struct btree *b, struct bkey *k,
1902 struct bkey *replace_key)
1903{
1904 unsigned status;
1905
1906 BUG_ON(bkey_cmp(k, &b->key) > 0);
1907
1908 status = bch_btree_insert_key(&b->keys, k, replace_key);
1909 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
1910 bch_check_keys(&b->keys, "%u for %s", status,
1911 replace_key ? "replace" : "insert");
1912
1913 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
1914 status);
1915 return true;
1916 } else
1917 return false;
1918}
1919
1920static size_t insert_u64s_remaining(struct btree *b)
1921{
1922 long ret = bch_btree_keys_u64s_remaining(&b->keys);
1923
1924 /*
1925 * Might land in the middle of an existing extent and have to split it
1926 */
1927 if (b->keys.ops->is_extents)
1928 ret -= KEY_MAX_U64S;
1929
1930 return max(ret, 0L);
1931}
1932
1933static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
1934 struct keylist *insert_keys,
1935 struct bkey *replace_key)
1936{
1937 bool ret = false;
1938 int oldsize = bch_count_data(&b->keys);
1939
1940 while (!bch_keylist_empty(insert_keys)) {
1941 struct bkey *k = insert_keys->keys;
1942
1943 if (bkey_u64s(k) > insert_u64s_remaining(b))
1944 break;
1945
1946 if (bkey_cmp(k, &b->key) <= 0) {
1947 if (!b->level)
1948 bkey_put(b->c, k);
1949
1950 ret |= btree_insert_key(b, k, replace_key);
1951 bch_keylist_pop_front(insert_keys);
1952 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
1953 BKEY_PADDED(key) temp;
1954 bkey_copy(&temp.key, insert_keys->keys);
1955
1956 bch_cut_back(&b->key, &temp.key);
1957 bch_cut_front(&b->key, insert_keys->keys);
1958
1959 ret |= btree_insert_key(b, &temp.key, replace_key);
1960 break;
1961 } else {
1962 break;
1963 }
1964 }
1965
1966 if (!ret)
1967 op->insert_collision = true;
1968
1969 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
1970
1971 BUG_ON(bch_count_data(&b->keys) < oldsize);
1972 return ret;
1973}
1974
1975static int btree_split(struct btree *b, struct btree_op *op,
1976 struct keylist *insert_keys,
1977 struct bkey *replace_key)
1978{
1979 bool split;
1980 struct btree *n1, *n2 = NULL, *n3 = NULL;
1981 uint64_t start_time = local_clock();
1982 struct closure cl;
1983 struct keylist parent_keys;
1984
1985 closure_init_stack(&cl);
1986 bch_keylist_init(&parent_keys);
1987
1988 if (btree_check_reserve(b, op)) {
1989 if (!b->level)
1990 return -EINTR;
1991 else
1992 WARN(1, "insufficient reserve for split\n");
1993 }
1994
1995 n1 = btree_node_alloc_replacement(b, op);
1996 if (IS_ERR(n1))
1997 goto err;
1998
1999 split = set_blocks(btree_bset_first(n1),
2000 block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2001
2002 if (split) {
2003 unsigned keys = 0;
2004
2005 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2006
2007 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2008 if (IS_ERR(n2))
2009 goto err_free1;
2010
2011 if (!b->parent) {
2012 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2013 if (IS_ERR(n3))
2014 goto err_free2;
2015 }
2016
2017 mutex_lock(&n1->write_lock);
2018 mutex_lock(&n2->write_lock);
2019
2020 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2021
2022 /*
2023 * Has to be a linear search because we don't have an auxiliary
2024 * search tree yet
2025 */
2026
2027 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2028 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2029 keys));
2030
2031 bkey_copy_key(&n1->key,
2032 bset_bkey_idx(btree_bset_first(n1), keys));
2033 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2034
2035 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2036 btree_bset_first(n1)->keys = keys;
2037
2038 memcpy(btree_bset_first(n2)->start,
2039 bset_bkey_last(btree_bset_first(n1)),
2040 btree_bset_first(n2)->keys * sizeof(uint64_t));
2041
2042 bkey_copy_key(&n2->key, &b->key);
2043
2044 bch_keylist_add(&parent_keys, &n2->key);
2045 bch_btree_node_write(n2, &cl);
2046 mutex_unlock(&n2->write_lock);
2047 rw_unlock(true, n2);
2048 } else {
2049 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2050
2051 mutex_lock(&n1->write_lock);
2052 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2053 }
2054
2055 bch_keylist_add(&parent_keys, &n1->key);
2056 bch_btree_node_write(n1, &cl);
2057 mutex_unlock(&n1->write_lock);
2058
2059 if (n3) {
2060 /* Depth increases, make a new root */
2061 mutex_lock(&n3->write_lock);
2062 bkey_copy_key(&n3->key, &MAX_KEY);
2063 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2064 bch_btree_node_write(n3, &cl);
2065 mutex_unlock(&n3->write_lock);
2066
2067 closure_sync(&cl);
2068 bch_btree_set_root(n3);
2069 rw_unlock(true, n3);
2070 } else if (!b->parent) {
2071 /* Root filled up but didn't need to be split */
2072 closure_sync(&cl);
2073 bch_btree_set_root(n1);
2074 } else {
2075 /* Split a non root node */
2076 closure_sync(&cl);
2077 make_btree_freeing_key(b, parent_keys.top);
2078 bch_keylist_push(&parent_keys);
2079
2080 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2081 BUG_ON(!bch_keylist_empty(&parent_keys));
2082 }
2083
2084 btree_node_free(b);
2085 rw_unlock(true, n1);
2086
2087 bch_time_stats_update(&b->c->btree_split_time, start_time);
2088
2089 return 0;
2090err_free2:
2091 bkey_put(b->c, &n2->key);
2092 btree_node_free(n2);
2093 rw_unlock(true, n2);
2094err_free1:
2095 bkey_put(b->c, &n1->key);
2096 btree_node_free(n1);
2097 rw_unlock(true, n1);
2098err:
2099 WARN(1, "bcache: btree split failed (level %u)", b->level);
2100
2101 if (n3 == ERR_PTR(-EAGAIN) ||
2102 n2 == ERR_PTR(-EAGAIN) ||
2103 n1 == ERR_PTR(-EAGAIN))
2104 return -EAGAIN;
2105
2106 return -ENOMEM;
2107}
2108
2109static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2110 struct keylist *insert_keys,
2111 atomic_t *journal_ref,
2112 struct bkey *replace_key)
2113{
2114 struct closure cl;
2115
2116 BUG_ON(b->level && replace_key);
2117
2118 closure_init_stack(&cl);
2119
2120 mutex_lock(&b->write_lock);
2121
2122 if (write_block(b) != btree_bset_last(b) &&
2123 b->keys.last_set_unwritten)
2124 bch_btree_init_next(b); /* just wrote a set */
2125
2126 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2127 mutex_unlock(&b->write_lock);
2128 goto split;
2129 }
2130
2131 BUG_ON(write_block(b) != btree_bset_last(b));
2132
2133 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2134 if (!b->level)
2135 bch_btree_leaf_dirty(b, journal_ref);
2136 else
2137 bch_btree_node_write(b, &cl);
2138 }
2139
2140 mutex_unlock(&b->write_lock);
2141
2142 /* wait for btree node write if necessary, after unlock */
2143 closure_sync(&cl);
2144
2145 return 0;
2146split:
2147 if (current->bio_list) {
2148 op->lock = b->c->root->level + 1;
2149 return -EAGAIN;
2150 } else if (op->lock <= b->c->root->level) {
2151 op->lock = b->c->root->level + 1;
2152 return -EINTR;
2153 } else {
2154 /* Invalidated all iterators */
2155 int ret = btree_split(b, op, insert_keys, replace_key);
2156
2157 if (bch_keylist_empty(insert_keys))
2158 return 0;
2159 else if (!ret)
2160 return -EINTR;
2161 return ret;
2162 }
2163}
2164
2165int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2166 struct bkey *check_key)
2167{
2168 int ret = -EINTR;
2169 uint64_t btree_ptr = b->key.ptr[0];
2170 unsigned long seq = b->seq;
2171 struct keylist insert;
2172 bool upgrade = op->lock == -1;
2173
2174 bch_keylist_init(&insert);
2175
2176 if (upgrade) {
2177 rw_unlock(false, b);
2178 rw_lock(true, b, b->level);
2179
2180 if (b->key.ptr[0] != btree_ptr ||
2181 b->seq != seq + 1) {
2182 op->lock = b->level;
2183 goto out;
2184 }
2185 }
2186
2187 SET_KEY_PTRS(check_key, 1);
2188 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2189
2190 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2191
2192 bch_keylist_add(&insert, check_key);
2193
2194 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2195
2196 BUG_ON(!ret && !bch_keylist_empty(&insert));
2197out:
2198 if (upgrade)
2199 downgrade_write(&b->lock);
2200 return ret;
2201}
2202
2203struct btree_insert_op {
2204 struct btree_op op;
2205 struct keylist *keys;
2206 atomic_t *journal_ref;
2207 struct bkey *replace_key;
2208};
2209
2210static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2211{
2212 struct btree_insert_op *op = container_of(b_op,
2213 struct btree_insert_op, op);
2214
2215 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2216 op->journal_ref, op->replace_key);
2217 if (ret && !bch_keylist_empty(op->keys))
2218 return ret;
2219 else
2220 return MAP_DONE;
2221}
2222
2223int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2224 atomic_t *journal_ref, struct bkey *replace_key)
2225{
2226 struct btree_insert_op op;
2227 int ret = 0;
2228
2229 BUG_ON(current->bio_list);
2230 BUG_ON(bch_keylist_empty(keys));
2231
2232 bch_btree_op_init(&op.op, 0);
2233 op.keys = keys;
2234 op.journal_ref = journal_ref;
2235 op.replace_key = replace_key;
2236
2237 while (!ret && !bch_keylist_empty(keys)) {
2238 op.op.lock = 0;
2239 ret = bch_btree_map_leaf_nodes(&op.op, c,
2240 &START_KEY(keys->keys),
2241 btree_insert_fn);
2242 }
2243
2244 if (ret) {
2245 struct bkey *k;
2246
2247 pr_err("error %i", ret);
2248
2249 while ((k = bch_keylist_pop(keys)))
2250 bkey_put(c, k);
2251 } else if (op.op.insert_collision)
2252 ret = -ESRCH;
2253
2254 return ret;
2255}
2256
2257void bch_btree_set_root(struct btree *b)
2258{
2259 unsigned i;
2260 struct closure cl;
2261
2262 closure_init_stack(&cl);
2263
2264 trace_bcache_btree_set_root(b);
2265
2266 BUG_ON(!b->written);
2267
2268 for (i = 0; i < KEY_PTRS(&b->key); i++)
2269 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2270
2271 mutex_lock(&b->c->bucket_lock);
2272 list_del_init(&b->list);
2273 mutex_unlock(&b->c->bucket_lock);
2274
2275 b->c->root = b;
2276
2277 bch_journal_meta(b->c, &cl);
2278 closure_sync(&cl);
2279}
2280
2281/* Map across nodes or keys */
2282
2283static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2284 struct bkey *from,
2285 btree_map_nodes_fn *fn, int flags)
2286{
2287 int ret = MAP_CONTINUE;
2288
2289 if (b->level) {
2290 struct bkey *k;
2291 struct btree_iter iter;
2292
2293 bch_btree_iter_init(&b->keys, &iter, from);
2294
2295 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2296 bch_ptr_bad))) {
2297 ret = btree(map_nodes_recurse, k, b,
2298 op, from, fn, flags);
2299 from = NULL;
2300
2301 if (ret != MAP_CONTINUE)
2302 return ret;
2303 }
2304 }
2305
2306 if (!b->level || flags == MAP_ALL_NODES)
2307 ret = fn(op, b);
2308
2309 return ret;
2310}
2311
2312int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2313 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2314{
2315 return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2316}
2317
2318static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2319 struct bkey *from, btree_map_keys_fn *fn,
2320 int flags)
2321{
2322 int ret = MAP_CONTINUE;
2323 struct bkey *k;
2324 struct btree_iter iter;
2325
2326 bch_btree_iter_init(&b->keys, &iter, from);
2327
2328 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2329 ret = !b->level
2330 ? fn(op, b, k)
2331 : btree(map_keys_recurse, k, b, op, from, fn, flags);
2332 from = NULL;
2333
2334 if (ret != MAP_CONTINUE)
2335 return ret;
2336 }
2337
2338 if (!b->level && (flags & MAP_END_KEY))
2339 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2340 KEY_OFFSET(&b->key), 0));
2341
2342 return ret;
2343}
2344
2345int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2346 struct bkey *from, btree_map_keys_fn *fn, int flags)
2347{
2348 return btree_root(map_keys_recurse, c, op, from, fn, flags);
2349}
2350
2351/* Keybuf code */
2352
2353static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2354{
2355 /* Overlapping keys compare equal */
2356 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2357 return -1;
2358 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2359 return 1;
2360 return 0;
2361}
2362
2363static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2364 struct keybuf_key *r)
2365{
2366 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2367}
2368
2369struct refill {
2370 struct btree_op op;
2371 unsigned nr_found;
2372 struct keybuf *buf;
2373 struct bkey *end;
2374 keybuf_pred_fn *pred;
2375};
2376
2377static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2378 struct bkey *k)
2379{
2380 struct refill *refill = container_of(op, struct refill, op);
2381 struct keybuf *buf = refill->buf;
2382 int ret = MAP_CONTINUE;
2383
2384 if (bkey_cmp(k, refill->end) > 0) {
2385 ret = MAP_DONE;
2386 goto out;
2387 }
2388
2389 if (!KEY_SIZE(k)) /* end key */
2390 goto out;
2391
2392 if (refill->pred(buf, k)) {
2393 struct keybuf_key *w;
2394
2395 spin_lock(&buf->lock);
2396
2397 w = array_alloc(&buf->freelist);
2398 if (!w) {
2399 spin_unlock(&buf->lock);
2400 return MAP_DONE;
2401 }
2402
2403 w->private = NULL;
2404 bkey_copy(&w->key, k);
2405
2406 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2407 array_free(&buf->freelist, w);
2408 else
2409 refill->nr_found++;
2410
2411 if (array_freelist_empty(&buf->freelist))
2412 ret = MAP_DONE;
2413
2414 spin_unlock(&buf->lock);
2415 }
2416out:
2417 buf->last_scanned = *k;
2418 return ret;
2419}
2420
2421void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2422 struct bkey *end, keybuf_pred_fn *pred)
2423{
2424 struct bkey start = buf->last_scanned;
2425 struct refill refill;
2426
2427 cond_resched();
2428
2429 bch_btree_op_init(&refill.op, -1);
2430 refill.nr_found = 0;
2431 refill.buf = buf;
2432 refill.end = end;
2433 refill.pred = pred;
2434
2435 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2436 refill_keybuf_fn, MAP_END_KEY);
2437
2438 trace_bcache_keyscan(refill.nr_found,
2439 KEY_INODE(&start), KEY_OFFSET(&start),
2440 KEY_INODE(&buf->last_scanned),
2441 KEY_OFFSET(&buf->last_scanned));
2442
2443 spin_lock(&buf->lock);
2444
2445 if (!RB_EMPTY_ROOT(&buf->keys)) {
2446 struct keybuf_key *w;
2447 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2448 buf->start = START_KEY(&w->key);
2449
2450 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2451 buf->end = w->key;
2452 } else {
2453 buf->start = MAX_KEY;
2454 buf->end = MAX_KEY;
2455 }
2456
2457 spin_unlock(&buf->lock);
2458}
2459
2460static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2461{
2462 rb_erase(&w->node, &buf->keys);
2463 array_free(&buf->freelist, w);
2464}
2465
2466void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2467{
2468 spin_lock(&buf->lock);
2469 __bch_keybuf_del(buf, w);
2470 spin_unlock(&buf->lock);
2471}
2472
2473bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2474 struct bkey *end)
2475{
2476 bool ret = false;
2477 struct keybuf_key *p, *w, s;
2478 s.key = *start;
2479
2480 if (bkey_cmp(end, &buf->start) <= 0 ||
2481 bkey_cmp(start, &buf->end) >= 0)
2482 return false;
2483
2484 spin_lock(&buf->lock);
2485 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2486
2487 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2488 p = w;
2489 w = RB_NEXT(w, node);
2490
2491 if (p->private)
2492 ret = true;
2493 else
2494 __bch_keybuf_del(buf, p);
2495 }
2496
2497 spin_unlock(&buf->lock);
2498 return ret;
2499}
2500
2501struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2502{
2503 struct keybuf_key *w;
2504 spin_lock(&buf->lock);
2505
2506 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2507
2508 while (w && w->private)
2509 w = RB_NEXT(w, node);
2510
2511 if (w)
2512 w->private = ERR_PTR(-EINTR);
2513
2514 spin_unlock(&buf->lock);
2515 return w;
2516}
2517
2518struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2519 struct keybuf *buf,
2520 struct bkey *end,
2521 keybuf_pred_fn *pred)
2522{
2523 struct keybuf_key *ret;
2524
2525 while (1) {
2526 ret = bch_keybuf_next(buf);
2527 if (ret)
2528 break;
2529
2530 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2531 pr_debug("scan finished");
2532 break;
2533 }
2534
2535 bch_refill_keybuf(c, buf, end, pred);
2536 }
2537
2538 return ret;
2539}
2540
2541void bch_keybuf_init(struct keybuf *buf)
2542{
2543 buf->last_scanned = MAX_KEY;
2544 buf->keys = RB_ROOT;
2545
2546 spin_lock_init(&buf->lock);
2547 array_allocator_init(&buf->freelist);
2548}