blob: 69b336d8c05a7187b1ec5007e69ddbf4c6695967 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10#include "bcache.h"
11#include "btree.h"
12#include "debug.h"
13#include "request.h"
14#include "writeback.h"
15
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
19#include <linux/backing-dev.h>
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD 95
24#define CUTOFF_CACHE_READA 90
25
26struct kmem_cache *bch_search_cache;
27
28static void bch_data_insert_start(struct closure *);
29
30static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
31{
32 return BDEV_CACHE_MODE(&dc->sb);
33}
34
35static bool verify(struct cached_dev *dc, struct bio *bio)
36{
37 return dc->verify;
38}
39
40static void bio_csum(struct bio *bio, struct bkey *k)
41{
42 struct bio_vec bv;
43 struct bvec_iter iter;
44 uint64_t csum = 0;
45
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
48 csum = bch_crc64_update(csum, d, bv.bv_len);
49 kunmap(bv.bv_page);
50 }
51
52 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
53}
54
55/* Insert data into cache */
56
57static void bch_data_insert_keys(struct closure *cl)
58{
59 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
60 atomic_t *journal_ref = NULL;
61 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
62 int ret;
63
64 /*
65 * If we're looping, might already be waiting on
66 * another journal write - can't wait on more than one journal write at
67 * a time
68 *
69 * XXX: this looks wrong
70 */
71#if 0
72 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
73 closure_sync(&s->cl);
74#endif
75
76 if (!op->replace)
77 journal_ref = bch_journal(op->c, &op->insert_keys,
78 op->flush_journal ? cl : NULL);
79
80 ret = bch_btree_insert(op->c, &op->insert_keys,
81 journal_ref, replace_key);
82 if (ret == -ESRCH) {
83 op->replace_collision = true;
84 } else if (ret) {
85 op->status = BLK_STS_RESOURCE;
86 op->insert_data_done = true;
87 }
88
89 if (journal_ref)
90 atomic_dec_bug(journal_ref);
91
92 if (!op->insert_data_done) {
93 continue_at(cl, bch_data_insert_start, op->wq);
94 return;
95 }
96
97 bch_keylist_free(&op->insert_keys);
98 closure_return(cl);
99}
100
101static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
102 struct cache_set *c)
103{
104 size_t oldsize = bch_keylist_nkeys(l);
105 size_t newsize = oldsize + u64s;
106
107 /*
108 * The journalling code doesn't handle the case where the keys to insert
109 * is bigger than an empty write: If we just return -ENOMEM here,
110 * bio_insert() and bio_invalidate() will insert the keys created so far
111 * and finish the rest when the keylist is empty.
112 */
113 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
114 return -ENOMEM;
115
116 return __bch_keylist_realloc(l, u64s);
117}
118
119static void bch_data_invalidate(struct closure *cl)
120{
121 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
122 struct bio *bio = op->bio;
123
124 pr_debug("invalidating %i sectors from %llu",
125 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
126
127 while (bio_sectors(bio)) {
128 unsigned sectors = min(bio_sectors(bio),
129 1U << (KEY_SIZE_BITS - 1));
130
131 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
132 goto out;
133
134 bio->bi_iter.bi_sector += sectors;
135 bio->bi_iter.bi_size -= sectors << 9;
136
137 bch_keylist_add(&op->insert_keys,
138 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
139 }
140
141 op->insert_data_done = true;
142 bio_put(bio);
143out:
144 continue_at(cl, bch_data_insert_keys, op->wq);
145}
146
147static void bch_data_insert_error(struct closure *cl)
148{
149 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
150
151 /*
152 * Our data write just errored, which means we've got a bunch of keys to
153 * insert that point to data that wasn't succesfully written.
154 *
155 * We don't have to insert those keys but we still have to invalidate
156 * that region of the cache - so, if we just strip off all the pointers
157 * from the keys we'll accomplish just that.
158 */
159
160 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
161
162 while (src != op->insert_keys.top) {
163 struct bkey *n = bkey_next(src);
164
165 SET_KEY_PTRS(src, 0);
166 memmove(dst, src, bkey_bytes(src));
167
168 dst = bkey_next(dst);
169 src = n;
170 }
171
172 op->insert_keys.top = dst;
173
174 bch_data_insert_keys(cl);
175}
176
177static void bch_data_insert_endio(struct bio *bio)
178{
179 struct closure *cl = bio->bi_private;
180 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
181
182 if (bio->bi_status) {
183 /* TODO: We could try to recover from this. */
184 if (op->writeback)
185 op->status = bio->bi_status;
186 else if (!op->replace)
187 set_closure_fn(cl, bch_data_insert_error, op->wq);
188 else
189 set_closure_fn(cl, NULL, NULL);
190 }
191
192 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
193}
194
195static void bch_data_insert_start(struct closure *cl)
196{
197 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
198 struct bio *bio = op->bio, *n;
199
200 if (op->bypass)
201 return bch_data_invalidate(cl);
202
203 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
204 wake_up_gc(op->c);
205
206 /*
207 * Journal writes are marked REQ_PREFLUSH; if the original write was a
208 * flush, it'll wait on the journal write.
209 */
210 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
211
212 do {
213 unsigned i;
214 struct bkey *k;
215 struct bio_set *split = op->c->bio_split;
216
217 /* 1 for the device pointer and 1 for the chksum */
218 if (bch_keylist_realloc(&op->insert_keys,
219 3 + (op->csum ? 1 : 0),
220 op->c)) {
221 continue_at(cl, bch_data_insert_keys, op->wq);
222 return;
223 }
224
225 k = op->insert_keys.top;
226 bkey_init(k);
227 SET_KEY_INODE(k, op->inode);
228 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
229
230 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
231 op->write_point, op->write_prio,
232 op->writeback))
233 goto err;
234
235 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
236
237 n->bi_end_io = bch_data_insert_endio;
238 n->bi_private = cl;
239
240 if (op->writeback) {
241 SET_KEY_DIRTY(k, true);
242
243 for (i = 0; i < KEY_PTRS(k); i++)
244 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
245 GC_MARK_DIRTY);
246 }
247
248 SET_KEY_CSUM(k, op->csum);
249 if (KEY_CSUM(k))
250 bio_csum(n, k);
251
252 trace_bcache_cache_insert(k);
253 bch_keylist_push(&op->insert_keys);
254
255 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
256 bch_submit_bbio(n, op->c, k, 0);
257 } while (n != bio);
258
259 op->insert_data_done = true;
260 continue_at(cl, bch_data_insert_keys, op->wq);
261 return;
262err:
263 /* bch_alloc_sectors() blocks if s->writeback = true */
264 BUG_ON(op->writeback);
265
266 /*
267 * But if it's not a writeback write we'd rather just bail out if
268 * there aren't any buckets ready to write to - it might take awhile and
269 * we might be starving btree writes for gc or something.
270 */
271
272 if (!op->replace) {
273 /*
274 * Writethrough write: We can't complete the write until we've
275 * updated the index. But we don't want to delay the write while
276 * we wait for buckets to be freed up, so just invalidate the
277 * rest of the write.
278 */
279 op->bypass = true;
280 return bch_data_invalidate(cl);
281 } else {
282 /*
283 * From a cache miss, we can just insert the keys for the data
284 * we have written or bail out if we didn't do anything.
285 */
286 op->insert_data_done = true;
287 bio_put(bio);
288
289 if (!bch_keylist_empty(&op->insert_keys))
290 continue_at(cl, bch_data_insert_keys, op->wq);
291 else
292 closure_return(cl);
293 }
294}
295
296/**
297 * bch_data_insert - stick some data in the cache
298 *
299 * This is the starting point for any data to end up in a cache device; it could
300 * be from a normal write, or a writeback write, or a write to a flash only
301 * volume - it's also used by the moving garbage collector to compact data in
302 * mostly empty buckets.
303 *
304 * It first writes the data to the cache, creating a list of keys to be inserted
305 * (if the data had to be fragmented there will be multiple keys); after the
306 * data is written it calls bch_journal, and after the keys have been added to
307 * the next journal write they're inserted into the btree.
308 *
309 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
310 * and op->inode is used for the key inode.
311 *
312 * If s->bypass is true, instead of inserting the data it invalidates the
313 * region of the cache represented by s->cache_bio and op->inode.
314 */
315void bch_data_insert(struct closure *cl)
316{
317 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
318
319 trace_bcache_write(op->c, op->inode, op->bio,
320 op->writeback, op->bypass);
321
322 bch_keylist_init(&op->insert_keys);
323 bio_get(op->bio);
324 bch_data_insert_start(cl);
325}
326
327/* Congested? */
328
329unsigned bch_get_congested(struct cache_set *c)
330{
331 int i;
332 long rand;
333
334 if (!c->congested_read_threshold_us &&
335 !c->congested_write_threshold_us)
336 return 0;
337
338 i = (local_clock_us() - c->congested_last_us) / 1024;
339 if (i < 0)
340 return 0;
341
342 i += atomic_read(&c->congested);
343 if (i >= 0)
344 return 0;
345
346 i += CONGESTED_MAX;
347
348 if (i > 0)
349 i = fract_exp_two(i, 6);
350
351 rand = get_random_int();
352 i -= bitmap_weight(&rand, BITS_PER_LONG);
353
354 return i > 0 ? i : 1;
355}
356
357static void add_sequential(struct task_struct *t)
358{
359 ewma_add(t->sequential_io_avg,
360 t->sequential_io, 8, 0);
361
362 t->sequential_io = 0;
363}
364
365static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
366{
367 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
368}
369
370static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
371{
372 struct cache_set *c = dc->disk.c;
373 unsigned mode = cache_mode(dc, bio);
374 unsigned sectors, congested = bch_get_congested(c);
375 struct task_struct *task = current;
376 struct io *i;
377
378 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
379 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
380 (bio_op(bio) == REQ_OP_DISCARD))
381 goto skip;
382
383 if (mode == CACHE_MODE_NONE ||
384 (mode == CACHE_MODE_WRITEAROUND &&
385 op_is_write(bio_op(bio))))
386 goto skip;
387
388 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
389 bio_sectors(bio) & (c->sb.block_size - 1)) {
390 pr_debug("skipping unaligned io");
391 goto skip;
392 }
393
394 if (bypass_torture_test(dc)) {
395 if ((get_random_int() & 3) == 3)
396 goto skip;
397 else
398 goto rescale;
399 }
400
401 if (!congested && !dc->sequential_cutoff)
402 goto rescale;
403
404 spin_lock(&dc->io_lock);
405
406 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
407 if (i->last == bio->bi_iter.bi_sector &&
408 time_before(jiffies, i->jiffies))
409 goto found;
410
411 i = list_first_entry(&dc->io_lru, struct io, lru);
412
413 add_sequential(task);
414 i->sequential = 0;
415found:
416 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
417 i->sequential += bio->bi_iter.bi_size;
418
419 i->last = bio_end_sector(bio);
420 i->jiffies = jiffies + msecs_to_jiffies(5000);
421 task->sequential_io = i->sequential;
422
423 hlist_del(&i->hash);
424 hlist_add_head(&i->hash, iohash(dc, i->last));
425 list_move_tail(&i->lru, &dc->io_lru);
426
427 spin_unlock(&dc->io_lock);
428
429 sectors = max(task->sequential_io,
430 task->sequential_io_avg) >> 9;
431
432 if (dc->sequential_cutoff &&
433 sectors >= dc->sequential_cutoff >> 9) {
434 trace_bcache_bypass_sequential(bio);
435 goto skip;
436 }
437
438 if (congested && sectors >= congested) {
439 trace_bcache_bypass_congested(bio);
440 goto skip;
441 }
442
443rescale:
444 bch_rescale_priorities(c, bio_sectors(bio));
445 return false;
446skip:
447 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
448 return true;
449}
450
451/* Cache lookup */
452
453struct search {
454 /* Stack frame for bio_complete */
455 struct closure cl;
456
457 struct bbio bio;
458 struct bio *orig_bio;
459 struct bio *cache_miss;
460 struct bcache_device *d;
461
462 unsigned insert_bio_sectors;
463 unsigned recoverable:1;
464 unsigned write:1;
465 unsigned read_dirty_data:1;
466 unsigned cache_missed:1;
467
468 unsigned long start_time;
469
470 struct btree_op op;
471 struct data_insert_op iop;
472};
473
474static void bch_cache_read_endio(struct bio *bio)
475{
476 struct bbio *b = container_of(bio, struct bbio, bio);
477 struct closure *cl = bio->bi_private;
478 struct search *s = container_of(cl, struct search, cl);
479
480 /*
481 * If the bucket was reused while our bio was in flight, we might have
482 * read the wrong data. Set s->error but not error so it doesn't get
483 * counted against the cache device, but we'll still reread the data
484 * from the backing device.
485 */
486
487 if (bio->bi_status)
488 s->iop.status = bio->bi_status;
489 else if (!KEY_DIRTY(&b->key) &&
490 ptr_stale(s->iop.c, &b->key, 0)) {
491 atomic_long_inc(&s->iop.c->cache_read_races);
492 s->iop.status = BLK_STS_IOERR;
493 }
494
495 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
496}
497
498/*
499 * Read from a single key, handling the initial cache miss if the key starts in
500 * the middle of the bio
501 */
502static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
503{
504 struct search *s = container_of(op, struct search, op);
505 struct bio *n, *bio = &s->bio.bio;
506 struct bkey *bio_key;
507 unsigned ptr;
508
509 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
510 return MAP_CONTINUE;
511
512 if (KEY_INODE(k) != s->iop.inode ||
513 KEY_START(k) > bio->bi_iter.bi_sector) {
514 unsigned bio_sectors = bio_sectors(bio);
515 unsigned sectors = KEY_INODE(k) == s->iop.inode
516 ? min_t(uint64_t, INT_MAX,
517 KEY_START(k) - bio->bi_iter.bi_sector)
518 : INT_MAX;
519
520 int ret = s->d->cache_miss(b, s, bio, sectors);
521 if (ret != MAP_CONTINUE)
522 return ret;
523
524 /* if this was a complete miss we shouldn't get here */
525 BUG_ON(bio_sectors <= sectors);
526 }
527
528 if (!KEY_SIZE(k))
529 return MAP_CONTINUE;
530
531 /* XXX: figure out best pointer - for multiple cache devices */
532 ptr = 0;
533
534 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
535
536 if (KEY_DIRTY(k))
537 s->read_dirty_data = true;
538
539 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
540 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
541 GFP_NOIO, s->d->bio_split);
542
543 bio_key = &container_of(n, struct bbio, bio)->key;
544 bch_bkey_copy_single_ptr(bio_key, k, ptr);
545
546 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
547 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
548
549 n->bi_end_io = bch_cache_read_endio;
550 n->bi_private = &s->cl;
551
552 /*
553 * The bucket we're reading from might be reused while our bio
554 * is in flight, and we could then end up reading the wrong
555 * data.
556 *
557 * We guard against this by checking (in cache_read_endio()) if
558 * the pointer is stale again; if so, we treat it as an error
559 * and reread from the backing device (but we don't pass that
560 * error up anywhere).
561 */
562
563 __bch_submit_bbio(n, b->c);
564 return n == bio ? MAP_DONE : MAP_CONTINUE;
565}
566
567static void cache_lookup(struct closure *cl)
568{
569 struct search *s = container_of(cl, struct search, iop.cl);
570 struct bio *bio = &s->bio.bio;
571 struct cached_dev *dc;
572 int ret;
573
574 bch_btree_op_init(&s->op, -1);
575
576 ret = bch_btree_map_keys(&s->op, s->iop.c,
577 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
578 cache_lookup_fn, MAP_END_KEY);
579 if (ret == -EAGAIN) {
580 continue_at(cl, cache_lookup, bcache_wq);
581 return;
582 }
583
584 /*
585 * We might meet err when searching the btree, If that happens, we will
586 * get negative ret, in this scenario we should not recover data from
587 * backing device (when cache device is dirty) because we don't know
588 * whether bkeys the read request covered are all clean.
589 *
590 * And after that happened, s->iop.status is still its initial value
591 * before we submit s->bio.bio
592 */
593 if (ret < 0) {
594 BUG_ON(ret == -EINTR);
595 if (s->d && s->d->c &&
596 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
597 dc = container_of(s->d, struct cached_dev, disk);
598 if (dc && atomic_read(&dc->has_dirty))
599 s->recoverable = false;
600 }
601 if (!s->iop.status)
602 s->iop.status = BLK_STS_IOERR;
603 }
604
605 closure_return(cl);
606}
607
608/* Common code for the make_request functions */
609
610static void request_endio(struct bio *bio)
611{
612 struct closure *cl = bio->bi_private;
613
614 if (bio->bi_status) {
615 struct search *s = container_of(cl, struct search, cl);
616 s->iop.status = bio->bi_status;
617 /* Only cache read errors are recoverable */
618 s->recoverable = false;
619 }
620
621 bio_put(bio);
622 closure_put(cl);
623}
624
625static void bio_complete(struct search *s)
626{
627 if (s->orig_bio) {
628 struct request_queue *q = s->orig_bio->bi_disk->queue;
629 generic_end_io_acct(q, bio_data_dir(s->orig_bio),
630 &s->d->disk->part0, s->start_time);
631
632 trace_bcache_request_end(s->d, s->orig_bio);
633 s->orig_bio->bi_status = s->iop.status;
634 bio_endio(s->orig_bio);
635 s->orig_bio = NULL;
636 }
637}
638
639static void do_bio_hook(struct search *s, struct bio *orig_bio)
640{
641 struct bio *bio = &s->bio.bio;
642
643 bio_init(bio, NULL, 0);
644 __bio_clone_fast(bio, orig_bio);
645 bio->bi_end_io = request_endio;
646 bio->bi_private = &s->cl;
647
648 bio_cnt_set(bio, 3);
649}
650
651static void search_free(struct closure *cl)
652{
653 struct search *s = container_of(cl, struct search, cl);
654
655 if (s->iop.bio)
656 bio_put(s->iop.bio);
657
658 bio_complete(s);
659 closure_debug_destroy(cl);
660 mempool_free(s, s->d->c->search);
661}
662
663static inline struct search *search_alloc(struct bio *bio,
664 struct bcache_device *d)
665{
666 struct search *s;
667
668 s = mempool_alloc(d->c->search, GFP_NOIO);
669
670 closure_init(&s->cl, NULL);
671 do_bio_hook(s, bio);
672
673 s->orig_bio = bio;
674 s->cache_miss = NULL;
675 s->cache_missed = 0;
676 s->d = d;
677 s->recoverable = 1;
678 s->write = op_is_write(bio_op(bio));
679 s->read_dirty_data = 0;
680 s->start_time = jiffies;
681
682 s->iop.c = d->c;
683 s->iop.bio = NULL;
684 s->iop.inode = d->id;
685 s->iop.write_point = hash_long((unsigned long) current, 16);
686 s->iop.write_prio = 0;
687 s->iop.status = 0;
688 s->iop.flags = 0;
689 s->iop.flush_journal = op_is_flush(bio->bi_opf);
690 s->iop.wq = bcache_wq;
691
692 return s;
693}
694
695/* Cached devices */
696
697static void cached_dev_bio_complete(struct closure *cl)
698{
699 struct search *s = container_of(cl, struct search, cl);
700 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
701
702 search_free(cl);
703 cached_dev_put(dc);
704}
705
706/* Process reads */
707
708static void cached_dev_cache_miss_done(struct closure *cl)
709{
710 struct search *s = container_of(cl, struct search, cl);
711
712 if (s->iop.replace_collision)
713 bch_mark_cache_miss_collision(s->iop.c, s->d);
714
715 if (s->iop.bio)
716 bio_free_pages(s->iop.bio);
717
718 cached_dev_bio_complete(cl);
719}
720
721static void cached_dev_read_error(struct closure *cl)
722{
723 struct search *s = container_of(cl, struct search, cl);
724 struct bio *bio = &s->bio.bio;
725
726 /*
727 * If read request hit dirty data (s->read_dirty_data is true),
728 * then recovery a failed read request from cached device may
729 * get a stale data back. So read failure recovery is only
730 * permitted when read request hit clean data in cache device,
731 * or when cache read race happened.
732 */
733 if (s->recoverable && !s->read_dirty_data) {
734 /* Retry from the backing device: */
735 trace_bcache_read_retry(s->orig_bio);
736
737 s->iop.status = 0;
738 do_bio_hook(s, s->orig_bio);
739
740 /* XXX: invalidate cache */
741
742 closure_bio_submit(bio, cl);
743 }
744
745 continue_at(cl, cached_dev_cache_miss_done, NULL);
746}
747
748static void cached_dev_read_done(struct closure *cl)
749{
750 struct search *s = container_of(cl, struct search, cl);
751 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
752
753 /*
754 * We had a cache miss; cache_bio now contains data ready to be inserted
755 * into the cache.
756 *
757 * First, we copy the data we just read from cache_bio's bounce buffers
758 * to the buffers the original bio pointed to:
759 */
760
761 if (s->iop.bio) {
762 bio_reset(s->iop.bio);
763 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
764 bio_copy_dev(s->iop.bio, s->cache_miss);
765 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
766 bch_bio_map(s->iop.bio, NULL);
767
768 bio_copy_data(s->cache_miss, s->iop.bio);
769
770 bio_put(s->cache_miss);
771 s->cache_miss = NULL;
772 }
773
774 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
775 bch_data_verify(dc, s->orig_bio);
776
777 bio_complete(s);
778
779 if (s->iop.bio &&
780 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
781 BUG_ON(!s->iop.replace);
782 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
783 }
784
785 continue_at(cl, cached_dev_cache_miss_done, NULL);
786}
787
788static void cached_dev_read_done_bh(struct closure *cl)
789{
790 struct search *s = container_of(cl, struct search, cl);
791 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
792
793 bch_mark_cache_accounting(s->iop.c, s->d,
794 !s->cache_missed, s->iop.bypass);
795 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
796
797 if (s->iop.status)
798 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
799 else if (s->iop.bio || verify(dc, &s->bio.bio))
800 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
801 else
802 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
803}
804
805static int cached_dev_cache_miss(struct btree *b, struct search *s,
806 struct bio *bio, unsigned sectors)
807{
808 int ret = MAP_CONTINUE;
809 unsigned reada = 0;
810 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
811 struct bio *miss, *cache_bio;
812
813 s->cache_missed = 1;
814
815 if (s->cache_miss || s->iop.bypass) {
816 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
817 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
818 goto out_submit;
819 }
820
821 if (!(bio->bi_opf & REQ_RAHEAD) &&
822 !(bio->bi_opf & REQ_META) &&
823 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
824 reada = min_t(sector_t, dc->readahead >> 9,
825 get_capacity(bio->bi_disk) - bio_end_sector(bio));
826
827 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
828
829 s->iop.replace_key = KEY(s->iop.inode,
830 bio->bi_iter.bi_sector + s->insert_bio_sectors,
831 s->insert_bio_sectors);
832
833 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
834 if (ret)
835 return ret;
836
837 s->iop.replace = true;
838
839 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
840
841 /* btree_search_recurse()'s btree iterator is no good anymore */
842 ret = miss == bio ? MAP_DONE : -EINTR;
843
844 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
845 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
846 dc->disk.bio_split);
847 if (!cache_bio)
848 goto out_submit;
849
850 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
851 bio_copy_dev(cache_bio, miss);
852 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
853
854 cache_bio->bi_end_io = request_endio;
855 cache_bio->bi_private = &s->cl;
856
857 bch_bio_map(cache_bio, NULL);
858 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
859 goto out_put;
860
861 if (reada)
862 bch_mark_cache_readahead(s->iop.c, s->d);
863
864 s->cache_miss = miss;
865 s->iop.bio = cache_bio;
866 bio_get(cache_bio);
867 closure_bio_submit(cache_bio, &s->cl);
868
869 return ret;
870out_put:
871 bio_put(cache_bio);
872out_submit:
873 miss->bi_end_io = request_endio;
874 miss->bi_private = &s->cl;
875 closure_bio_submit(miss, &s->cl);
876 return ret;
877}
878
879static void cached_dev_read(struct cached_dev *dc, struct search *s)
880{
881 struct closure *cl = &s->cl;
882
883 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
884 continue_at(cl, cached_dev_read_done_bh, NULL);
885}
886
887/* Process writes */
888
889static void cached_dev_write_complete(struct closure *cl)
890{
891 struct search *s = container_of(cl, struct search, cl);
892 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
893
894 up_read_non_owner(&dc->writeback_lock);
895 cached_dev_bio_complete(cl);
896}
897
898static void cached_dev_write(struct cached_dev *dc, struct search *s)
899{
900 struct closure *cl = &s->cl;
901 struct bio *bio = &s->bio.bio;
902 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
903 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
904
905 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
906
907 down_read_non_owner(&dc->writeback_lock);
908 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
909 /*
910 * We overlap with some dirty data undergoing background
911 * writeback, force this write to writeback
912 */
913 s->iop.bypass = false;
914 s->iop.writeback = true;
915 }
916
917 /*
918 * Discards aren't _required_ to do anything, so skipping if
919 * check_overlapping returned true is ok
920 *
921 * But check_overlapping drops dirty keys for which io hasn't started,
922 * so we still want to call it.
923 */
924 if (bio_op(bio) == REQ_OP_DISCARD)
925 s->iop.bypass = true;
926
927 if (should_writeback(dc, s->orig_bio,
928 cache_mode(dc, bio),
929 s->iop.bypass)) {
930 s->iop.bypass = false;
931 s->iop.writeback = true;
932 }
933
934 if (s->iop.bypass) {
935 s->iop.bio = s->orig_bio;
936 bio_get(s->iop.bio);
937
938 if ((bio_op(bio) != REQ_OP_DISCARD) ||
939 blk_queue_discard(bdev_get_queue(dc->bdev)))
940 closure_bio_submit(bio, cl);
941 } else if (s->iop.writeback) {
942 bch_writeback_add(dc);
943 s->iop.bio = bio;
944
945 if (bio->bi_opf & REQ_PREFLUSH) {
946 /* Also need to send a flush to the backing device */
947 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
948 dc->disk.bio_split);
949
950 bio_copy_dev(flush, bio);
951 flush->bi_end_io = request_endio;
952 flush->bi_private = cl;
953 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
954
955 closure_bio_submit(flush, cl);
956 }
957 } else {
958 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
959
960 closure_bio_submit(bio, cl);
961 }
962
963 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
964 continue_at(cl, cached_dev_write_complete, NULL);
965}
966
967static void cached_dev_nodata(struct closure *cl)
968{
969 struct search *s = container_of(cl, struct search, cl);
970 struct bio *bio = &s->bio.bio;
971
972 if (s->iop.flush_journal)
973 bch_journal_meta(s->iop.c, cl);
974
975 /* If it's a flush, we send the flush to the backing device too */
976 closure_bio_submit(bio, cl);
977
978 continue_at(cl, cached_dev_bio_complete, NULL);
979}
980
981/* Cached devices - read & write stuff */
982
983static blk_qc_t cached_dev_make_request(struct request_queue *q,
984 struct bio *bio)
985{
986 struct search *s;
987 struct bcache_device *d = bio->bi_disk->private_data;
988 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
989 int rw = bio_data_dir(bio);
990
991 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
992
993 bio_set_dev(bio, dc->bdev);
994 bio->bi_iter.bi_sector += dc->sb.data_offset;
995
996 if (cached_dev_get(dc)) {
997 s = search_alloc(bio, d);
998 trace_bcache_request_start(s->d, bio);
999
1000 if (!bio->bi_iter.bi_size) {
1001 /*
1002 * can't call bch_journal_meta from under
1003 * generic_make_request
1004 */
1005 continue_at_nobarrier(&s->cl,
1006 cached_dev_nodata,
1007 bcache_wq);
1008 } else {
1009 s->iop.bypass = check_should_bypass(dc, bio);
1010
1011 if (rw)
1012 cached_dev_write(dc, s);
1013 else
1014 cached_dev_read(dc, s);
1015 }
1016 } else {
1017 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1018 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1019 bio_endio(bio);
1020 else
1021 generic_make_request(bio);
1022 }
1023
1024 return BLK_QC_T_NONE;
1025}
1026
1027static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1028 unsigned int cmd, unsigned long arg)
1029{
1030 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1031 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1032}
1033
1034static int cached_dev_congested(void *data, int bits)
1035{
1036 struct bcache_device *d = data;
1037 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1038 struct request_queue *q = bdev_get_queue(dc->bdev);
1039 int ret = 0;
1040
1041 if (bdi_congested(q->backing_dev_info, bits))
1042 return 1;
1043
1044 if (cached_dev_get(dc)) {
1045 unsigned i;
1046 struct cache *ca;
1047
1048 for_each_cache(ca, d->c, i) {
1049 q = bdev_get_queue(ca->bdev);
1050 ret |= bdi_congested(q->backing_dev_info, bits);
1051 }
1052
1053 cached_dev_put(dc);
1054 }
1055
1056 return ret;
1057}
1058
1059void bch_cached_dev_request_init(struct cached_dev *dc)
1060{
1061 struct gendisk *g = dc->disk.disk;
1062
1063 g->queue->make_request_fn = cached_dev_make_request;
1064 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1065 dc->disk.cache_miss = cached_dev_cache_miss;
1066 dc->disk.ioctl = cached_dev_ioctl;
1067}
1068
1069/* Flash backed devices */
1070
1071static int flash_dev_cache_miss(struct btree *b, struct search *s,
1072 struct bio *bio, unsigned sectors)
1073{
1074 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1075
1076 swap(bio->bi_iter.bi_size, bytes);
1077 zero_fill_bio(bio);
1078 swap(bio->bi_iter.bi_size, bytes);
1079
1080 bio_advance(bio, bytes);
1081
1082 if (!bio->bi_iter.bi_size)
1083 return MAP_DONE;
1084
1085 return MAP_CONTINUE;
1086}
1087
1088static void flash_dev_nodata(struct closure *cl)
1089{
1090 struct search *s = container_of(cl, struct search, cl);
1091
1092 if (s->iop.flush_journal)
1093 bch_journal_meta(s->iop.c, cl);
1094
1095 continue_at(cl, search_free, NULL);
1096}
1097
1098static blk_qc_t flash_dev_make_request(struct request_queue *q,
1099 struct bio *bio)
1100{
1101 struct search *s;
1102 struct closure *cl;
1103 struct bcache_device *d = bio->bi_disk->private_data;
1104 int rw = bio_data_dir(bio);
1105
1106 generic_start_io_acct(q, rw, bio_sectors(bio), &d->disk->part0);
1107
1108 s = search_alloc(bio, d);
1109 cl = &s->cl;
1110 bio = &s->bio.bio;
1111
1112 trace_bcache_request_start(s->d, bio);
1113
1114 if (!bio->bi_iter.bi_size) {
1115 /*
1116 * can't call bch_journal_meta from under
1117 * generic_make_request
1118 */
1119 continue_at_nobarrier(&s->cl,
1120 flash_dev_nodata,
1121 bcache_wq);
1122 return BLK_QC_T_NONE;
1123 } else if (rw) {
1124 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1125 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1126 &KEY(d->id, bio_end_sector(bio), 0));
1127
1128 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1129 s->iop.writeback = true;
1130 s->iop.bio = bio;
1131
1132 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1133 } else {
1134 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1135 }
1136
1137 continue_at(cl, search_free, NULL);
1138 return BLK_QC_T_NONE;
1139}
1140
1141static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1142 unsigned int cmd, unsigned long arg)
1143{
1144 return -ENOTTY;
1145}
1146
1147static int flash_dev_congested(void *data, int bits)
1148{
1149 struct bcache_device *d = data;
1150 struct request_queue *q;
1151 struct cache *ca;
1152 unsigned i;
1153 int ret = 0;
1154
1155 for_each_cache(ca, d->c, i) {
1156 q = bdev_get_queue(ca->bdev);
1157 ret |= bdi_congested(q->backing_dev_info, bits);
1158 }
1159
1160 return ret;
1161}
1162
1163void bch_flash_dev_request_init(struct bcache_device *d)
1164{
1165 struct gendisk *g = d->disk;
1166
1167 g->queue->make_request_fn = flash_dev_make_request;
1168 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1169 d->cache_miss = flash_dev_cache_miss;
1170 d->ioctl = flash_dev_ioctl;
1171}
1172
1173void bch_request_exit(void)
1174{
1175 if (bch_search_cache)
1176 kmem_cache_destroy(bch_search_cache);
1177}
1178
1179int __init bch_request_init(void)
1180{
1181 bch_search_cache = KMEM_CACHE(search, 0);
1182 if (!bch_search_cache)
1183 return -ENOMEM;
1184
1185 return 0;
1186}