blob: 280873b13e744126f922602de92dbde6f3870379 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
8#include "dm-bio-prison-v2.h"
9#include "dm-bio-record.h"
10#include "dm-cache-metadata.h"
11
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/init.h>
16#include <linux/mempool.h>
17#include <linux/module.h>
18#include <linux/rwsem.h>
19#include <linux/slab.h>
20#include <linux/vmalloc.h>
21
22#define DM_MSG_PREFIX "cache"
23
24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
26
27/*----------------------------------------------------------------*/
28
29/*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 * either direction
38 */
39
40/*----------------------------------------------------------------*/
41
42struct io_tracker {
43 spinlock_t lock;
44
45 /*
46 * Sectors of in-flight IO.
47 */
48 sector_t in_flight;
49
50 /*
51 * The time, in jiffies, when this device became idle (if it is
52 * indeed idle).
53 */
54 unsigned long idle_time;
55 unsigned long last_update_time;
56};
57
58static void iot_init(struct io_tracker *iot)
59{
60 spin_lock_init(&iot->lock);
61 iot->in_flight = 0ul;
62 iot->idle_time = 0ul;
63 iot->last_update_time = jiffies;
64}
65
66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67{
68 if (iot->in_flight)
69 return false;
70
71 return time_after(jiffies, iot->idle_time + jifs);
72}
73
74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75{
76 bool r;
77 unsigned long flags;
78
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
82
83 return r;
84}
85
86static void iot_io_begin(struct io_tracker *iot, sector_t len)
87{
88 unsigned long flags;
89
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
93}
94
95static void __iot_io_end(struct io_tracker *iot, sector_t len)
96{
97 if (!len)
98 return;
99
100 iot->in_flight -= len;
101 if (!iot->in_flight)
102 iot->idle_time = jiffies;
103}
104
105static void iot_io_end(struct io_tracker *iot, sector_t len)
106{
107 unsigned long flags;
108
109 spin_lock_irqsave(&iot->lock, flags);
110 __iot_io_end(iot, len);
111 spin_unlock_irqrestore(&iot->lock, flags);
112}
113
114/*----------------------------------------------------------------*/
115
116/*
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
119 */
120struct continuation {
121 struct work_struct ws;
122 blk_status_t input;
123};
124
125static inline void init_continuation(struct continuation *k,
126 void (*fn)(struct work_struct *))
127{
128 INIT_WORK(&k->ws, fn);
129 k->input = 0;
130}
131
132static inline void queue_continuation(struct workqueue_struct *wq,
133 struct continuation *k)
134{
135 queue_work(wq, &k->ws);
136}
137
138/*----------------------------------------------------------------*/
139
140/*
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
143 */
144struct batcher {
145 /*
146 * The operation that everyone is waiting for.
147 */
148 blk_status_t (*commit_op)(void *context);
149 void *commit_context;
150
151 /*
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
154 */
155 void (*issue_op)(struct bio *bio, void *context);
156 void *issue_context;
157
158 /*
159 * Queued work gets put on here after commit.
160 */
161 struct workqueue_struct *wq;
162
163 spinlock_t lock;
164 struct list_head work_items;
165 struct bio_list bios;
166 struct work_struct commit_work;
167
168 bool commit_scheduled;
169};
170
171static void __commit(struct work_struct *_ws)
172{
173 struct batcher *b = container_of(_ws, struct batcher, commit_work);
174 blk_status_t r;
175 unsigned long flags;
176 struct list_head work_items;
177 struct work_struct *ws, *tmp;
178 struct continuation *k;
179 struct bio *bio;
180 struct bio_list bios;
181
182 INIT_LIST_HEAD(&work_items);
183 bio_list_init(&bios);
184
185 /*
186 * We have to grab these before the commit_op to avoid a race
187 * condition.
188 */
189 spin_lock_irqsave(&b->lock, flags);
190 list_splice_init(&b->work_items, &work_items);
191 bio_list_merge(&bios, &b->bios);
192 bio_list_init(&b->bios);
193 b->commit_scheduled = false;
194 spin_unlock_irqrestore(&b->lock, flags);
195
196 r = b->commit_op(b->commit_context);
197
198 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 k = container_of(ws, struct continuation, ws);
200 k->input = r;
201 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 queue_work(b->wq, ws);
203 }
204
205 while ((bio = bio_list_pop(&bios))) {
206 if (r) {
207 bio->bi_status = r;
208 bio_endio(bio);
209 } else
210 b->issue_op(bio, b->issue_context);
211 }
212}
213
214static void batcher_init(struct batcher *b,
215 blk_status_t (*commit_op)(void *),
216 void *commit_context,
217 void (*issue_op)(struct bio *bio, void *),
218 void *issue_context,
219 struct workqueue_struct *wq)
220{
221 b->commit_op = commit_op;
222 b->commit_context = commit_context;
223 b->issue_op = issue_op;
224 b->issue_context = issue_context;
225 b->wq = wq;
226
227 spin_lock_init(&b->lock);
228 INIT_LIST_HEAD(&b->work_items);
229 bio_list_init(&b->bios);
230 INIT_WORK(&b->commit_work, __commit);
231 b->commit_scheduled = false;
232}
233
234static void async_commit(struct batcher *b)
235{
236 queue_work(b->wq, &b->commit_work);
237}
238
239static void continue_after_commit(struct batcher *b, struct continuation *k)
240{
241 unsigned long flags;
242 bool commit_scheduled;
243
244 spin_lock_irqsave(&b->lock, flags);
245 commit_scheduled = b->commit_scheduled;
246 list_add_tail(&k->ws.entry, &b->work_items);
247 spin_unlock_irqrestore(&b->lock, flags);
248
249 if (commit_scheduled)
250 async_commit(b);
251}
252
253/*
254 * Bios are errored if commit failed.
255 */
256static void issue_after_commit(struct batcher *b, struct bio *bio)
257{
258 unsigned long flags;
259 bool commit_scheduled;
260
261 spin_lock_irqsave(&b->lock, flags);
262 commit_scheduled = b->commit_scheduled;
263 bio_list_add(&b->bios, bio);
264 spin_unlock_irqrestore(&b->lock, flags);
265
266 if (commit_scheduled)
267 async_commit(b);
268}
269
270/*
271 * Call this if some urgent work is waiting for the commit to complete.
272 */
273static void schedule_commit(struct batcher *b)
274{
275 bool immediate;
276 unsigned long flags;
277
278 spin_lock_irqsave(&b->lock, flags);
279 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 b->commit_scheduled = true;
281 spin_unlock_irqrestore(&b->lock, flags);
282
283 if (immediate)
284 async_commit(b);
285}
286
287/*
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
291 */
292struct dm_hook_info {
293 bio_end_io_t *bi_end_io;
294};
295
296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 bio_end_io_t *bi_end_io, void *bi_private)
298{
299 h->bi_end_io = bio->bi_end_io;
300
301 bio->bi_end_io = bi_end_io;
302 bio->bi_private = bi_private;
303}
304
305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306{
307 bio->bi_end_io = h->bi_end_io;
308}
309
310/*----------------------------------------------------------------*/
311
312#define MIGRATION_POOL_SIZE 128
313#define COMMIT_PERIOD HZ
314#define MIGRATION_COUNT_WINDOW 10
315
316/*
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
319 */
320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
322
323enum cache_metadata_mode {
324 CM_WRITE, /* metadata may be changed */
325 CM_READ_ONLY, /* metadata may not be changed */
326 CM_FAIL
327};
328
329enum cache_io_mode {
330 /*
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
334 */
335 CM_IO_WRITEBACK,
336
337 /*
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
340 */
341 CM_IO_WRITETHROUGH,
342
343 /*
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
348 */
349 CM_IO_PASSTHROUGH
350};
351
352struct cache_features {
353 enum cache_metadata_mode mode;
354 enum cache_io_mode io_mode;
355 unsigned metadata_version;
356};
357
358struct cache_stats {
359 atomic_t read_hit;
360 atomic_t read_miss;
361 atomic_t write_hit;
362 atomic_t write_miss;
363 atomic_t demotion;
364 atomic_t promotion;
365 atomic_t writeback;
366 atomic_t copies_avoided;
367 atomic_t cache_cell_clash;
368 atomic_t commit_count;
369 atomic_t discard_count;
370};
371
372struct cache {
373 struct dm_target *ti;
374 struct dm_target_callbacks callbacks;
375
376 struct dm_cache_metadata *cmd;
377
378 /*
379 * Metadata is written to this device.
380 */
381 struct dm_dev *metadata_dev;
382
383 /*
384 * The slower of the two data devices. Typically a spindle.
385 */
386 struct dm_dev *origin_dev;
387
388 /*
389 * The faster of the two data devices. Typically an SSD.
390 */
391 struct dm_dev *cache_dev;
392
393 /*
394 * Size of the origin device in _complete_ blocks and native sectors.
395 */
396 dm_oblock_t origin_blocks;
397 sector_t origin_sectors;
398
399 /*
400 * Size of the cache device in blocks.
401 */
402 dm_cblock_t cache_size;
403
404 /*
405 * Fields for converting from sectors to blocks.
406 */
407 sector_t sectors_per_block;
408 int sectors_per_block_shift;
409
410 spinlock_t lock;
411 struct list_head deferred_cells;
412 struct bio_list deferred_bios;
413 sector_t migration_threshold;
414 wait_queue_head_t migration_wait;
415 atomic_t nr_allocated_migrations;
416
417 /*
418 * The number of in flight migrations that are performing
419 * background io. eg, promotion, writeback.
420 */
421 atomic_t nr_io_migrations;
422
423 struct rw_semaphore quiesce_lock;
424
425 /*
426 * cache_size entries, dirty if set
427 */
428 atomic_t nr_dirty;
429 unsigned long *dirty_bitset;
430
431 /*
432 * origin_blocks entries, discarded if set.
433 */
434 dm_dblock_t discard_nr_blocks;
435 unsigned long *discard_bitset;
436 uint32_t discard_block_size; /* a power of 2 times sectors per block */
437
438 /*
439 * Rather than reconstructing the table line for the status we just
440 * save it and regurgitate.
441 */
442 unsigned nr_ctr_args;
443 const char **ctr_args;
444
445 struct dm_kcopyd_client *copier;
446 struct workqueue_struct *wq;
447 struct work_struct deferred_bio_worker;
448 struct work_struct migration_worker;
449 struct delayed_work waker;
450 struct dm_bio_prison_v2 *prison;
451 struct bio_set *bs;
452
453 mempool_t *migration_pool;
454
455 struct dm_cache_policy *policy;
456 unsigned policy_nr_args;
457
458 bool need_tick_bio:1;
459 bool sized:1;
460 bool invalidate:1;
461 bool commit_requested:1;
462 bool loaded_mappings:1;
463 bool loaded_discards:1;
464
465 /*
466 * Cache features such as write-through.
467 */
468 struct cache_features features;
469
470 struct cache_stats stats;
471
472 /*
473 * Invalidation fields.
474 */
475 spinlock_t invalidation_lock;
476 struct list_head invalidation_requests;
477
478 struct io_tracker tracker;
479
480 struct work_struct commit_ws;
481 struct batcher committer;
482
483 struct rw_semaphore background_work_lock;
484};
485
486struct per_bio_data {
487 bool tick:1;
488 unsigned req_nr:2;
489 struct dm_bio_prison_cell_v2 *cell;
490 struct dm_hook_info hook_info;
491 sector_t len;
492};
493
494struct dm_cache_migration {
495 struct continuation k;
496 struct cache *cache;
497
498 struct policy_work *op;
499 struct bio *overwrite_bio;
500 struct dm_bio_prison_cell_v2 *cell;
501
502 dm_cblock_t invalidate_cblock;
503 dm_oblock_t invalidate_oblock;
504};
505
506/*----------------------------------------------------------------*/
507
508static bool writethrough_mode(struct cache *cache)
509{
510 return cache->features.io_mode == CM_IO_WRITETHROUGH;
511}
512
513static bool writeback_mode(struct cache *cache)
514{
515 return cache->features.io_mode == CM_IO_WRITEBACK;
516}
517
518static inline bool passthrough_mode(struct cache *cache)
519{
520 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
521}
522
523/*----------------------------------------------------------------*/
524
525static void wake_deferred_bio_worker(struct cache *cache)
526{
527 queue_work(cache->wq, &cache->deferred_bio_worker);
528}
529
530static void wake_migration_worker(struct cache *cache)
531{
532 if (passthrough_mode(cache))
533 return;
534
535 queue_work(cache->wq, &cache->migration_worker);
536}
537
538/*----------------------------------------------------------------*/
539
540static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
541{
542 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
543}
544
545static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
546{
547 dm_bio_prison_free_cell_v2(cache->prison, cell);
548}
549
550static struct dm_cache_migration *alloc_migration(struct cache *cache)
551{
552 struct dm_cache_migration *mg;
553
554 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
555 if (mg) {
556 mg->cache = cache;
557 atomic_inc(&mg->cache->nr_allocated_migrations);
558 }
559
560 return mg;
561}
562
563static void free_migration(struct dm_cache_migration *mg)
564{
565 struct cache *cache = mg->cache;
566
567 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
568 wake_up(&cache->migration_wait);
569
570 mempool_free(mg, cache->migration_pool);
571}
572
573/*----------------------------------------------------------------*/
574
575static inline dm_oblock_t oblock_succ(dm_oblock_t b)
576{
577 return to_oblock(from_oblock(b) + 1ull);
578}
579
580static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
581{
582 key->virtual = 0;
583 key->dev = 0;
584 key->block_begin = from_oblock(begin);
585 key->block_end = from_oblock(end);
586}
587
588/*
589 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
590 * level 1 which prevents *both* READs and WRITEs.
591 */
592#define WRITE_LOCK_LEVEL 0
593#define READ_WRITE_LOCK_LEVEL 1
594
595static unsigned lock_level(struct bio *bio)
596{
597 return bio_data_dir(bio) == WRITE ?
598 WRITE_LOCK_LEVEL :
599 READ_WRITE_LOCK_LEVEL;
600}
601
602/*----------------------------------------------------------------
603 * Per bio data
604 *--------------------------------------------------------------*/
605
606static size_t get_per_bio_data_size(struct cache *cache)
607{
608 return sizeof(struct per_bio_data);
609}
610
611static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
612{
613 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
614 BUG_ON(!pb);
615 return pb;
616}
617
618static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
619{
620 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
621
622 pb->tick = false;
623 pb->req_nr = dm_bio_get_target_bio_nr(bio);
624 pb->cell = NULL;
625 pb->len = 0;
626
627 return pb;
628}
629
630/*----------------------------------------------------------------*/
631
632static void defer_bio(struct cache *cache, struct bio *bio)
633{
634 unsigned long flags;
635
636 spin_lock_irqsave(&cache->lock, flags);
637 bio_list_add(&cache->deferred_bios, bio);
638 spin_unlock_irqrestore(&cache->lock, flags);
639
640 wake_deferred_bio_worker(cache);
641}
642
643static void defer_bios(struct cache *cache, struct bio_list *bios)
644{
645 unsigned long flags;
646
647 spin_lock_irqsave(&cache->lock, flags);
648 bio_list_merge(&cache->deferred_bios, bios);
649 bio_list_init(bios);
650 spin_unlock_irqrestore(&cache->lock, flags);
651
652 wake_deferred_bio_worker(cache);
653}
654
655/*----------------------------------------------------------------*/
656
657static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
658{
659 bool r;
660 size_t pb_size;
661 struct per_bio_data *pb;
662 struct dm_cell_key_v2 key;
663 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
664 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
665
666 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
667 if (!cell_prealloc) {
668 defer_bio(cache, bio);
669 return false;
670 }
671
672 build_key(oblock, end, &key);
673 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
674 if (!r) {
675 /*
676 * Failed to get the lock.
677 */
678 free_prison_cell(cache, cell_prealloc);
679 return r;
680 }
681
682 if (cell != cell_prealloc)
683 free_prison_cell(cache, cell_prealloc);
684
685 pb_size = get_per_bio_data_size(cache);
686 pb = get_per_bio_data(bio, pb_size);
687 pb->cell = cell;
688
689 return r;
690}
691
692/*----------------------------------------------------------------*/
693
694static bool is_dirty(struct cache *cache, dm_cblock_t b)
695{
696 return test_bit(from_cblock(b), cache->dirty_bitset);
697}
698
699static void set_dirty(struct cache *cache, dm_cblock_t cblock)
700{
701 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
702 atomic_inc(&cache->nr_dirty);
703 policy_set_dirty(cache->policy, cblock);
704 }
705}
706
707/*
708 * These two are called when setting after migrations to force the policy
709 * and dirty bitset to be in sync.
710 */
711static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
712{
713 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
714 atomic_inc(&cache->nr_dirty);
715 policy_set_dirty(cache->policy, cblock);
716}
717
718static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
719{
720 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
721 if (atomic_dec_return(&cache->nr_dirty) == 0)
722 dm_table_event(cache->ti->table);
723 }
724
725 policy_clear_dirty(cache->policy, cblock);
726}
727
728/*----------------------------------------------------------------*/
729
730static bool block_size_is_power_of_two(struct cache *cache)
731{
732 return cache->sectors_per_block_shift >= 0;
733}
734
735/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
736#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
737__always_inline
738#endif
739static dm_block_t block_div(dm_block_t b, uint32_t n)
740{
741 do_div(b, n);
742
743 return b;
744}
745
746static dm_block_t oblocks_per_dblock(struct cache *cache)
747{
748 dm_block_t oblocks = cache->discard_block_size;
749
750 if (block_size_is_power_of_two(cache))
751 oblocks >>= cache->sectors_per_block_shift;
752 else
753 oblocks = block_div(oblocks, cache->sectors_per_block);
754
755 return oblocks;
756}
757
758static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
759{
760 return to_dblock(block_div(from_oblock(oblock),
761 oblocks_per_dblock(cache)));
762}
763
764static void set_discard(struct cache *cache, dm_dblock_t b)
765{
766 unsigned long flags;
767
768 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
769 atomic_inc(&cache->stats.discard_count);
770
771 spin_lock_irqsave(&cache->lock, flags);
772 set_bit(from_dblock(b), cache->discard_bitset);
773 spin_unlock_irqrestore(&cache->lock, flags);
774}
775
776static void clear_discard(struct cache *cache, dm_dblock_t b)
777{
778 unsigned long flags;
779
780 spin_lock_irqsave(&cache->lock, flags);
781 clear_bit(from_dblock(b), cache->discard_bitset);
782 spin_unlock_irqrestore(&cache->lock, flags);
783}
784
785static bool is_discarded(struct cache *cache, dm_dblock_t b)
786{
787 int r;
788 unsigned long flags;
789
790 spin_lock_irqsave(&cache->lock, flags);
791 r = test_bit(from_dblock(b), cache->discard_bitset);
792 spin_unlock_irqrestore(&cache->lock, flags);
793
794 return r;
795}
796
797static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
798{
799 int r;
800 unsigned long flags;
801
802 spin_lock_irqsave(&cache->lock, flags);
803 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
804 cache->discard_bitset);
805 spin_unlock_irqrestore(&cache->lock, flags);
806
807 return r;
808}
809
810/*----------------------------------------------------------------
811 * Remapping
812 *--------------------------------------------------------------*/
813static void remap_to_origin(struct cache *cache, struct bio *bio)
814{
815 bio_set_dev(bio, cache->origin_dev->bdev);
816}
817
818static void remap_to_cache(struct cache *cache, struct bio *bio,
819 dm_cblock_t cblock)
820{
821 sector_t bi_sector = bio->bi_iter.bi_sector;
822 sector_t block = from_cblock(cblock);
823
824 bio_set_dev(bio, cache->cache_dev->bdev);
825 if (!block_size_is_power_of_two(cache))
826 bio->bi_iter.bi_sector =
827 (block * cache->sectors_per_block) +
828 sector_div(bi_sector, cache->sectors_per_block);
829 else
830 bio->bi_iter.bi_sector =
831 (block << cache->sectors_per_block_shift) |
832 (bi_sector & (cache->sectors_per_block - 1));
833}
834
835static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
836{
837 unsigned long flags;
838 size_t pb_data_size = get_per_bio_data_size(cache);
839 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
840
841 spin_lock_irqsave(&cache->lock, flags);
842 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
843 bio_op(bio) != REQ_OP_DISCARD) {
844 pb->tick = true;
845 cache->need_tick_bio = false;
846 }
847 spin_unlock_irqrestore(&cache->lock, flags);
848}
849
850static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
851 dm_oblock_t oblock, bool bio_has_pbd)
852{
853 if (bio_has_pbd)
854 check_if_tick_bio_needed(cache, bio);
855 remap_to_origin(cache, bio);
856 if (bio_data_dir(bio) == WRITE)
857 clear_discard(cache, oblock_to_dblock(cache, oblock));
858}
859
860static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
861 dm_oblock_t oblock)
862{
863 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
864 __remap_to_origin_clear_discard(cache, bio, oblock, true);
865}
866
867static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
868 dm_oblock_t oblock, dm_cblock_t cblock)
869{
870 check_if_tick_bio_needed(cache, bio);
871 remap_to_cache(cache, bio, cblock);
872 if (bio_data_dir(bio) == WRITE) {
873 set_dirty(cache, cblock);
874 clear_discard(cache, oblock_to_dblock(cache, oblock));
875 }
876}
877
878static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
879{
880 sector_t block_nr = bio->bi_iter.bi_sector;
881
882 if (!block_size_is_power_of_two(cache))
883 (void) sector_div(block_nr, cache->sectors_per_block);
884 else
885 block_nr >>= cache->sectors_per_block_shift;
886
887 return to_oblock(block_nr);
888}
889
890static bool accountable_bio(struct cache *cache, struct bio *bio)
891{
892 return bio_op(bio) != REQ_OP_DISCARD;
893}
894
895static void accounted_begin(struct cache *cache, struct bio *bio)
896{
897 size_t pb_data_size = get_per_bio_data_size(cache);
898 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
899
900 if (accountable_bio(cache, bio)) {
901 pb->len = bio_sectors(bio);
902 iot_io_begin(&cache->tracker, pb->len);
903 }
904}
905
906static void accounted_complete(struct cache *cache, struct bio *bio)
907{
908 size_t pb_data_size = get_per_bio_data_size(cache);
909 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
910
911 iot_io_end(&cache->tracker, pb->len);
912}
913
914static void accounted_request(struct cache *cache, struct bio *bio)
915{
916 accounted_begin(cache, bio);
917 generic_make_request(bio);
918}
919
920static void issue_op(struct bio *bio, void *context)
921{
922 struct cache *cache = context;
923 accounted_request(cache, bio);
924}
925
926/*
927 * When running in writethrough mode we need to send writes to clean blocks
928 * to both the cache and origin devices. Clone the bio and send them in parallel.
929 */
930static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
931 dm_oblock_t oblock, dm_cblock_t cblock)
932{
933 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, cache->bs);
934
935 BUG_ON(!origin_bio);
936
937 bio_chain(origin_bio, bio);
938 /*
939 * Passing false to __remap_to_origin_clear_discard() skips
940 * all code that might use per_bio_data (since clone doesn't have it)
941 */
942 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
943 submit_bio(origin_bio);
944
945 remap_to_cache(cache, bio, cblock);
946}
947
948/*----------------------------------------------------------------
949 * Failure modes
950 *--------------------------------------------------------------*/
951static enum cache_metadata_mode get_cache_mode(struct cache *cache)
952{
953 return cache->features.mode;
954}
955
956static const char *cache_device_name(struct cache *cache)
957{
958 return dm_device_name(dm_table_get_md(cache->ti->table));
959}
960
961static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
962{
963 const char *descs[] = {
964 "write",
965 "read-only",
966 "fail"
967 };
968
969 dm_table_event(cache->ti->table);
970 DMINFO("%s: switching cache to %s mode",
971 cache_device_name(cache), descs[(int)mode]);
972}
973
974static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
975{
976 bool needs_check;
977 enum cache_metadata_mode old_mode = get_cache_mode(cache);
978
979 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
980 DMERR("%s: unable to read needs_check flag, setting failure mode.",
981 cache_device_name(cache));
982 new_mode = CM_FAIL;
983 }
984
985 if (new_mode == CM_WRITE && needs_check) {
986 DMERR("%s: unable to switch cache to write mode until repaired.",
987 cache_device_name(cache));
988 if (old_mode != new_mode)
989 new_mode = old_mode;
990 else
991 new_mode = CM_READ_ONLY;
992 }
993
994 /* Never move out of fail mode */
995 if (old_mode == CM_FAIL)
996 new_mode = CM_FAIL;
997
998 switch (new_mode) {
999 case CM_FAIL:
1000 case CM_READ_ONLY:
1001 dm_cache_metadata_set_read_only(cache->cmd);
1002 break;
1003
1004 case CM_WRITE:
1005 dm_cache_metadata_set_read_write(cache->cmd);
1006 break;
1007 }
1008
1009 cache->features.mode = new_mode;
1010
1011 if (new_mode != old_mode)
1012 notify_mode_switch(cache, new_mode);
1013}
1014
1015static void abort_transaction(struct cache *cache)
1016{
1017 const char *dev_name = cache_device_name(cache);
1018
1019 if (get_cache_mode(cache) >= CM_READ_ONLY)
1020 return;
1021
1022 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1023 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1024 set_cache_mode(cache, CM_FAIL);
1025 }
1026
1027 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1028 if (dm_cache_metadata_abort(cache->cmd)) {
1029 DMERR("%s: failed to abort metadata transaction", dev_name);
1030 set_cache_mode(cache, CM_FAIL);
1031 }
1032}
1033
1034static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1035{
1036 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1037 cache_device_name(cache), op, r);
1038 abort_transaction(cache);
1039 set_cache_mode(cache, CM_READ_ONLY);
1040}
1041
1042/*----------------------------------------------------------------*/
1043
1044static void load_stats(struct cache *cache)
1045{
1046 struct dm_cache_statistics stats;
1047
1048 dm_cache_metadata_get_stats(cache->cmd, &stats);
1049 atomic_set(&cache->stats.read_hit, stats.read_hits);
1050 atomic_set(&cache->stats.read_miss, stats.read_misses);
1051 atomic_set(&cache->stats.write_hit, stats.write_hits);
1052 atomic_set(&cache->stats.write_miss, stats.write_misses);
1053}
1054
1055static void save_stats(struct cache *cache)
1056{
1057 struct dm_cache_statistics stats;
1058
1059 if (get_cache_mode(cache) >= CM_READ_ONLY)
1060 return;
1061
1062 stats.read_hits = atomic_read(&cache->stats.read_hit);
1063 stats.read_misses = atomic_read(&cache->stats.read_miss);
1064 stats.write_hits = atomic_read(&cache->stats.write_hit);
1065 stats.write_misses = atomic_read(&cache->stats.write_miss);
1066
1067 dm_cache_metadata_set_stats(cache->cmd, &stats);
1068}
1069
1070static void update_stats(struct cache_stats *stats, enum policy_operation op)
1071{
1072 switch (op) {
1073 case POLICY_PROMOTE:
1074 atomic_inc(&stats->promotion);
1075 break;
1076
1077 case POLICY_DEMOTE:
1078 atomic_inc(&stats->demotion);
1079 break;
1080
1081 case POLICY_WRITEBACK:
1082 atomic_inc(&stats->writeback);
1083 break;
1084 }
1085}
1086
1087/*----------------------------------------------------------------
1088 * Migration processing
1089 *
1090 * Migration covers moving data from the origin device to the cache, or
1091 * vice versa.
1092 *--------------------------------------------------------------*/
1093
1094static void inc_io_migrations(struct cache *cache)
1095{
1096 atomic_inc(&cache->nr_io_migrations);
1097}
1098
1099static void dec_io_migrations(struct cache *cache)
1100{
1101 atomic_dec(&cache->nr_io_migrations);
1102}
1103
1104static bool discard_or_flush(struct bio *bio)
1105{
1106 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1107}
1108
1109static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1110 dm_dblock_t *b, dm_dblock_t *e)
1111{
1112 sector_t sb = bio->bi_iter.bi_sector;
1113 sector_t se = bio_end_sector(bio);
1114
1115 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1116
1117 if (se - sb < cache->discard_block_size)
1118 *e = *b;
1119 else
1120 *e = to_dblock(block_div(se, cache->discard_block_size));
1121}
1122
1123/*----------------------------------------------------------------*/
1124
1125static void prevent_background_work(struct cache *cache)
1126{
1127 lockdep_off();
1128 down_write(&cache->background_work_lock);
1129 lockdep_on();
1130}
1131
1132static void allow_background_work(struct cache *cache)
1133{
1134 lockdep_off();
1135 up_write(&cache->background_work_lock);
1136 lockdep_on();
1137}
1138
1139static bool background_work_begin(struct cache *cache)
1140{
1141 bool r;
1142
1143 lockdep_off();
1144 r = down_read_trylock(&cache->background_work_lock);
1145 lockdep_on();
1146
1147 return r;
1148}
1149
1150static void background_work_end(struct cache *cache)
1151{
1152 lockdep_off();
1153 up_read(&cache->background_work_lock);
1154 lockdep_on();
1155}
1156
1157/*----------------------------------------------------------------*/
1158
1159static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1160{
1161 return (bio_data_dir(bio) == WRITE) &&
1162 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1163}
1164
1165static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1166{
1167 return writeback_mode(cache) &&
1168 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1169}
1170
1171static void quiesce(struct dm_cache_migration *mg,
1172 void (*continuation)(struct work_struct *))
1173{
1174 init_continuation(&mg->k, continuation);
1175 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1176}
1177
1178static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1179{
1180 struct continuation *k = container_of(ws, struct continuation, ws);
1181 return container_of(k, struct dm_cache_migration, k);
1182}
1183
1184static void copy_complete(int read_err, unsigned long write_err, void *context)
1185{
1186 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1187
1188 if (read_err || write_err)
1189 mg->k.input = BLK_STS_IOERR;
1190
1191 queue_continuation(mg->cache->wq, &mg->k);
1192}
1193
1194static int copy(struct dm_cache_migration *mg, bool promote)
1195{
1196 int r;
1197 struct dm_io_region o_region, c_region;
1198 struct cache *cache = mg->cache;
1199
1200 o_region.bdev = cache->origin_dev->bdev;
1201 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1202 o_region.count = cache->sectors_per_block;
1203
1204 c_region.bdev = cache->cache_dev->bdev;
1205 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1206 c_region.count = cache->sectors_per_block;
1207
1208 if (promote)
1209 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1210 else
1211 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1212
1213 return r;
1214}
1215
1216static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1217{
1218 size_t pb_data_size = get_per_bio_data_size(cache);
1219 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1220
1221 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1222 free_prison_cell(cache, pb->cell);
1223 pb->cell = NULL;
1224}
1225
1226static void overwrite_endio(struct bio *bio)
1227{
1228 struct dm_cache_migration *mg = bio->bi_private;
1229 struct cache *cache = mg->cache;
1230 size_t pb_data_size = get_per_bio_data_size(cache);
1231 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1232
1233 dm_unhook_bio(&pb->hook_info, bio);
1234
1235 if (bio->bi_status)
1236 mg->k.input = bio->bi_status;
1237
1238 queue_continuation(mg->cache->wq, &mg->k);
1239}
1240
1241static void overwrite(struct dm_cache_migration *mg,
1242 void (*continuation)(struct work_struct *))
1243{
1244 struct bio *bio = mg->overwrite_bio;
1245 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1246 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1247
1248 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1249
1250 /*
1251 * The overwrite bio is part of the copy operation, as such it does
1252 * not set/clear discard or dirty flags.
1253 */
1254 if (mg->op->op == POLICY_PROMOTE)
1255 remap_to_cache(mg->cache, bio, mg->op->cblock);
1256 else
1257 remap_to_origin(mg->cache, bio);
1258
1259 init_continuation(&mg->k, continuation);
1260 accounted_request(mg->cache, bio);
1261}
1262
1263/*
1264 * Migration steps:
1265 *
1266 * 1) exclusive lock preventing WRITEs
1267 * 2) quiesce
1268 * 3) copy or issue overwrite bio
1269 * 4) upgrade to exclusive lock preventing READs and WRITEs
1270 * 5) quiesce
1271 * 6) update metadata and commit
1272 * 7) unlock
1273 */
1274static void mg_complete(struct dm_cache_migration *mg, bool success)
1275{
1276 struct bio_list bios;
1277 struct cache *cache = mg->cache;
1278 struct policy_work *op = mg->op;
1279 dm_cblock_t cblock = op->cblock;
1280
1281 if (success)
1282 update_stats(&cache->stats, op->op);
1283
1284 switch (op->op) {
1285 case POLICY_PROMOTE:
1286 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1287 policy_complete_background_work(cache->policy, op, success);
1288
1289 if (mg->overwrite_bio) {
1290 if (success)
1291 force_set_dirty(cache, cblock);
1292 else if (mg->k.input)
1293 mg->overwrite_bio->bi_status = mg->k.input;
1294 else
1295 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1296 bio_endio(mg->overwrite_bio);
1297 } else {
1298 if (success)
1299 force_clear_dirty(cache, cblock);
1300 dec_io_migrations(cache);
1301 }
1302 break;
1303
1304 case POLICY_DEMOTE:
1305 /*
1306 * We clear dirty here to update the nr_dirty counter.
1307 */
1308 if (success)
1309 force_clear_dirty(cache, cblock);
1310 policy_complete_background_work(cache->policy, op, success);
1311 dec_io_migrations(cache);
1312 break;
1313
1314 case POLICY_WRITEBACK:
1315 if (success)
1316 force_clear_dirty(cache, cblock);
1317 policy_complete_background_work(cache->policy, op, success);
1318 dec_io_migrations(cache);
1319 break;
1320 }
1321
1322 bio_list_init(&bios);
1323 if (mg->cell) {
1324 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1325 free_prison_cell(cache, mg->cell);
1326 }
1327
1328 free_migration(mg);
1329 defer_bios(cache, &bios);
1330 wake_migration_worker(cache);
1331
1332 background_work_end(cache);
1333}
1334
1335static void mg_success(struct work_struct *ws)
1336{
1337 struct dm_cache_migration *mg = ws_to_mg(ws);
1338 mg_complete(mg, mg->k.input == 0);
1339}
1340
1341static void mg_update_metadata(struct work_struct *ws)
1342{
1343 int r;
1344 struct dm_cache_migration *mg = ws_to_mg(ws);
1345 struct cache *cache = mg->cache;
1346 struct policy_work *op = mg->op;
1347
1348 switch (op->op) {
1349 case POLICY_PROMOTE:
1350 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1351 if (r) {
1352 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1353 cache_device_name(cache));
1354 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1355
1356 mg_complete(mg, false);
1357 return;
1358 }
1359 mg_complete(mg, true);
1360 break;
1361
1362 case POLICY_DEMOTE:
1363 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1364 if (r) {
1365 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1366 cache_device_name(cache));
1367 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1368
1369 mg_complete(mg, false);
1370 return;
1371 }
1372
1373 /*
1374 * It would be nice if we only had to commit when a REQ_FLUSH
1375 * comes through. But there's one scenario that we have to
1376 * look out for:
1377 *
1378 * - vblock x in a cache block
1379 * - domotion occurs
1380 * - cache block gets reallocated and over written
1381 * - crash
1382 *
1383 * When we recover, because there was no commit the cache will
1384 * rollback to having the data for vblock x in the cache block.
1385 * But the cache block has since been overwritten, so it'll end
1386 * up pointing to data that was never in 'x' during the history
1387 * of the device.
1388 *
1389 * To avoid this issue we require a commit as part of the
1390 * demotion operation.
1391 */
1392 init_continuation(&mg->k, mg_success);
1393 continue_after_commit(&cache->committer, &mg->k);
1394 schedule_commit(&cache->committer);
1395 break;
1396
1397 case POLICY_WRITEBACK:
1398 mg_complete(mg, true);
1399 break;
1400 }
1401}
1402
1403static void mg_update_metadata_after_copy(struct work_struct *ws)
1404{
1405 struct dm_cache_migration *mg = ws_to_mg(ws);
1406
1407 /*
1408 * Did the copy succeed?
1409 */
1410 if (mg->k.input)
1411 mg_complete(mg, false);
1412 else
1413 mg_update_metadata(ws);
1414}
1415
1416static void mg_upgrade_lock(struct work_struct *ws)
1417{
1418 int r;
1419 struct dm_cache_migration *mg = ws_to_mg(ws);
1420
1421 /*
1422 * Did the copy succeed?
1423 */
1424 if (mg->k.input)
1425 mg_complete(mg, false);
1426
1427 else {
1428 /*
1429 * Now we want the lock to prevent both reads and writes.
1430 */
1431 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1432 READ_WRITE_LOCK_LEVEL);
1433 if (r < 0)
1434 mg_complete(mg, false);
1435
1436 else if (r)
1437 quiesce(mg, mg_update_metadata);
1438
1439 else
1440 mg_update_metadata(ws);
1441 }
1442}
1443
1444static void mg_full_copy(struct work_struct *ws)
1445{
1446 struct dm_cache_migration *mg = ws_to_mg(ws);
1447 struct cache *cache = mg->cache;
1448 struct policy_work *op = mg->op;
1449 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1450
1451 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1452 is_discarded_oblock(cache, op->oblock)) {
1453 mg_upgrade_lock(ws);
1454 return;
1455 }
1456
1457 init_continuation(&mg->k, mg_upgrade_lock);
1458
1459 if (copy(mg, is_policy_promote)) {
1460 DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1461 mg->k.input = BLK_STS_IOERR;
1462 mg_complete(mg, false);
1463 }
1464}
1465
1466static void mg_copy(struct work_struct *ws)
1467{
1468 struct dm_cache_migration *mg = ws_to_mg(ws);
1469
1470 if (mg->overwrite_bio) {
1471 /*
1472 * No exclusive lock was held when we last checked if the bio
1473 * was optimisable. So we have to check again in case things
1474 * have changed (eg, the block may no longer be discarded).
1475 */
1476 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1477 /*
1478 * Fallback to a real full copy after doing some tidying up.
1479 */
1480 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1481 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1482 mg->overwrite_bio = NULL;
1483 inc_io_migrations(mg->cache);
1484 mg_full_copy(ws);
1485 return;
1486 }
1487
1488 /*
1489 * It's safe to do this here, even though it's new data
1490 * because all IO has been locked out of the block.
1491 *
1492 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1493 * so _not_ using mg_upgrade_lock() as continutation.
1494 */
1495 overwrite(mg, mg_update_metadata_after_copy);
1496
1497 } else
1498 mg_full_copy(ws);
1499}
1500
1501static int mg_lock_writes(struct dm_cache_migration *mg)
1502{
1503 int r;
1504 struct dm_cell_key_v2 key;
1505 struct cache *cache = mg->cache;
1506 struct dm_bio_prison_cell_v2 *prealloc;
1507
1508 prealloc = alloc_prison_cell(cache);
1509 if (!prealloc) {
1510 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1511 mg_complete(mg, false);
1512 return -ENOMEM;
1513 }
1514
1515 /*
1516 * Prevent writes to the block, but allow reads to continue.
1517 * Unless we're using an overwrite bio, in which case we lock
1518 * everything.
1519 */
1520 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1521 r = dm_cell_lock_v2(cache->prison, &key,
1522 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1523 prealloc, &mg->cell);
1524 if (r < 0) {
1525 free_prison_cell(cache, prealloc);
1526 mg_complete(mg, false);
1527 return r;
1528 }
1529
1530 if (mg->cell != prealloc)
1531 free_prison_cell(cache, prealloc);
1532
1533 if (r == 0)
1534 mg_copy(&mg->k.ws);
1535 else
1536 quiesce(mg, mg_copy);
1537
1538 return 0;
1539}
1540
1541static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1542{
1543 struct dm_cache_migration *mg;
1544
1545 if (!background_work_begin(cache)) {
1546 policy_complete_background_work(cache->policy, op, false);
1547 return -EPERM;
1548 }
1549
1550 mg = alloc_migration(cache);
1551 if (!mg) {
1552 policy_complete_background_work(cache->policy, op, false);
1553 background_work_end(cache);
1554 return -ENOMEM;
1555 }
1556
1557 memset(mg, 0, sizeof(*mg));
1558
1559 mg->cache = cache;
1560 mg->op = op;
1561 mg->overwrite_bio = bio;
1562
1563 if (!bio)
1564 inc_io_migrations(cache);
1565
1566 return mg_lock_writes(mg);
1567}
1568
1569/*----------------------------------------------------------------
1570 * invalidation processing
1571 *--------------------------------------------------------------*/
1572
1573static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1574{
1575 struct bio_list bios;
1576 struct cache *cache = mg->cache;
1577
1578 bio_list_init(&bios);
1579 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1580 free_prison_cell(cache, mg->cell);
1581
1582 if (!success && mg->overwrite_bio)
1583 bio_io_error(mg->overwrite_bio);
1584
1585 free_migration(mg);
1586 defer_bios(cache, &bios);
1587
1588 background_work_end(cache);
1589}
1590
1591static void invalidate_completed(struct work_struct *ws)
1592{
1593 struct dm_cache_migration *mg = ws_to_mg(ws);
1594 invalidate_complete(mg, !mg->k.input);
1595}
1596
1597static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1598{
1599 int r = policy_invalidate_mapping(cache->policy, cblock);
1600 if (!r) {
1601 r = dm_cache_remove_mapping(cache->cmd, cblock);
1602 if (r) {
1603 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1604 cache_device_name(cache));
1605 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1606 }
1607
1608 } else if (r == -ENODATA) {
1609 /*
1610 * Harmless, already unmapped.
1611 */
1612 r = 0;
1613
1614 } else
1615 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1616
1617 return r;
1618}
1619
1620static void invalidate_remove(struct work_struct *ws)
1621{
1622 int r;
1623 struct dm_cache_migration *mg = ws_to_mg(ws);
1624 struct cache *cache = mg->cache;
1625
1626 r = invalidate_cblock(cache, mg->invalidate_cblock);
1627 if (r) {
1628 invalidate_complete(mg, false);
1629 return;
1630 }
1631
1632 init_continuation(&mg->k, invalidate_completed);
1633 continue_after_commit(&cache->committer, &mg->k);
1634 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1635 mg->overwrite_bio = NULL;
1636 schedule_commit(&cache->committer);
1637}
1638
1639static int invalidate_lock(struct dm_cache_migration *mg)
1640{
1641 int r;
1642 struct dm_cell_key_v2 key;
1643 struct cache *cache = mg->cache;
1644 struct dm_bio_prison_cell_v2 *prealloc;
1645
1646 prealloc = alloc_prison_cell(cache);
1647 if (!prealloc) {
1648 invalidate_complete(mg, false);
1649 return -ENOMEM;
1650 }
1651
1652 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1653 r = dm_cell_lock_v2(cache->prison, &key,
1654 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1655 if (r < 0) {
1656 free_prison_cell(cache, prealloc);
1657 invalidate_complete(mg, false);
1658 return r;
1659 }
1660
1661 if (mg->cell != prealloc)
1662 free_prison_cell(cache, prealloc);
1663
1664 if (r)
1665 quiesce(mg, invalidate_remove);
1666
1667 else {
1668 /*
1669 * We can't call invalidate_remove() directly here because we
1670 * might still be in request context.
1671 */
1672 init_continuation(&mg->k, invalidate_remove);
1673 queue_work(cache->wq, &mg->k.ws);
1674 }
1675
1676 return 0;
1677}
1678
1679static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1680 dm_oblock_t oblock, struct bio *bio)
1681{
1682 struct dm_cache_migration *mg;
1683
1684 if (!background_work_begin(cache))
1685 return -EPERM;
1686
1687 mg = alloc_migration(cache);
1688 if (!mg) {
1689 background_work_end(cache);
1690 return -ENOMEM;
1691 }
1692
1693 memset(mg, 0, sizeof(*mg));
1694
1695 mg->cache = cache;
1696 mg->overwrite_bio = bio;
1697 mg->invalidate_cblock = cblock;
1698 mg->invalidate_oblock = oblock;
1699
1700 return invalidate_lock(mg);
1701}
1702
1703/*----------------------------------------------------------------
1704 * bio processing
1705 *--------------------------------------------------------------*/
1706
1707enum busy {
1708 IDLE,
1709 BUSY
1710};
1711
1712static enum busy spare_migration_bandwidth(struct cache *cache)
1713{
1714 bool idle = iot_idle_for(&cache->tracker, HZ);
1715 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1716 cache->sectors_per_block;
1717
1718 if (idle && current_volume <= cache->migration_threshold)
1719 return IDLE;
1720 else
1721 return BUSY;
1722}
1723
1724static void inc_hit_counter(struct cache *cache, struct bio *bio)
1725{
1726 atomic_inc(bio_data_dir(bio) == READ ?
1727 &cache->stats.read_hit : &cache->stats.write_hit);
1728}
1729
1730static void inc_miss_counter(struct cache *cache, struct bio *bio)
1731{
1732 atomic_inc(bio_data_dir(bio) == READ ?
1733 &cache->stats.read_miss : &cache->stats.write_miss);
1734}
1735
1736/*----------------------------------------------------------------*/
1737
1738static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1739 bool *commit_needed)
1740{
1741 int r, data_dir;
1742 bool rb, background_queued;
1743 dm_cblock_t cblock;
1744 size_t pb_data_size = get_per_bio_data_size(cache);
1745 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1746
1747 *commit_needed = false;
1748
1749 rb = bio_detain_shared(cache, block, bio);
1750 if (!rb) {
1751 /*
1752 * An exclusive lock is held for this block, so we have to
1753 * wait. We set the commit_needed flag so the current
1754 * transaction will be committed asap, allowing this lock
1755 * to be dropped.
1756 */
1757 *commit_needed = true;
1758 return DM_MAPIO_SUBMITTED;
1759 }
1760
1761 data_dir = bio_data_dir(bio);
1762
1763 if (optimisable_bio(cache, bio, block)) {
1764 struct policy_work *op = NULL;
1765
1766 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1767 if (unlikely(r && r != -ENOENT)) {
1768 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1769 cache_device_name(cache), r);
1770 bio_io_error(bio);
1771 return DM_MAPIO_SUBMITTED;
1772 }
1773
1774 if (r == -ENOENT && op) {
1775 bio_drop_shared_lock(cache, bio);
1776 BUG_ON(op->op != POLICY_PROMOTE);
1777 mg_start(cache, op, bio);
1778 return DM_MAPIO_SUBMITTED;
1779 }
1780 } else {
1781 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1782 if (unlikely(r && r != -ENOENT)) {
1783 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1784 cache_device_name(cache), r);
1785 bio_io_error(bio);
1786 return DM_MAPIO_SUBMITTED;
1787 }
1788
1789 if (background_queued)
1790 wake_migration_worker(cache);
1791 }
1792
1793 if (r == -ENOENT) {
1794 /*
1795 * Miss.
1796 */
1797 inc_miss_counter(cache, bio);
1798 if (pb->req_nr == 0) {
1799 accounted_begin(cache, bio);
1800 remap_to_origin_clear_discard(cache, bio, block);
1801
1802 } else {
1803 /*
1804 * This is a duplicate writethrough io that is no
1805 * longer needed because the block has been demoted.
1806 */
1807 bio_endio(bio);
1808 return DM_MAPIO_SUBMITTED;
1809 }
1810 } else {
1811 /*
1812 * Hit.
1813 */
1814 inc_hit_counter(cache, bio);
1815
1816 /*
1817 * Passthrough always maps to the origin, invalidating any
1818 * cache blocks that are written to.
1819 */
1820 if (passthrough_mode(cache)) {
1821 if (bio_data_dir(bio) == WRITE) {
1822 bio_drop_shared_lock(cache, bio);
1823 atomic_inc(&cache->stats.demotion);
1824 invalidate_start(cache, cblock, block, bio);
1825 } else
1826 remap_to_origin_clear_discard(cache, bio, block);
1827
1828 } else {
1829 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1830 !is_dirty(cache, cblock)) {
1831 remap_to_origin_and_cache(cache, bio, block, cblock);
1832 accounted_begin(cache, bio);
1833 } else
1834 remap_to_cache_dirty(cache, bio, block, cblock);
1835 }
1836 }
1837
1838 /*
1839 * dm core turns FUA requests into a separate payload and FLUSH req.
1840 */
1841 if (bio->bi_opf & REQ_FUA) {
1842 /*
1843 * issue_after_commit will call accounted_begin a second time. So
1844 * we call accounted_complete() to avoid double accounting.
1845 */
1846 accounted_complete(cache, bio);
1847 issue_after_commit(&cache->committer, bio);
1848 *commit_needed = true;
1849 return DM_MAPIO_SUBMITTED;
1850 }
1851
1852 return DM_MAPIO_REMAPPED;
1853}
1854
1855static bool process_bio(struct cache *cache, struct bio *bio)
1856{
1857 bool commit_needed;
1858
1859 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1860 generic_make_request(bio);
1861
1862 return commit_needed;
1863}
1864
1865/*
1866 * A non-zero return indicates read_only or fail_io mode.
1867 */
1868static int commit(struct cache *cache, bool clean_shutdown)
1869{
1870 int r;
1871
1872 if (get_cache_mode(cache) >= CM_READ_ONLY)
1873 return -EINVAL;
1874
1875 atomic_inc(&cache->stats.commit_count);
1876 r = dm_cache_commit(cache->cmd, clean_shutdown);
1877 if (r)
1878 metadata_operation_failed(cache, "dm_cache_commit", r);
1879
1880 return r;
1881}
1882
1883/*
1884 * Used by the batcher.
1885 */
1886static blk_status_t commit_op(void *context)
1887{
1888 struct cache *cache = context;
1889
1890 if (dm_cache_changed_this_transaction(cache->cmd))
1891 return errno_to_blk_status(commit(cache, false));
1892
1893 return 0;
1894}
1895
1896/*----------------------------------------------------------------*/
1897
1898static bool process_flush_bio(struct cache *cache, struct bio *bio)
1899{
1900 size_t pb_data_size = get_per_bio_data_size(cache);
1901 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1902
1903 if (!pb->req_nr)
1904 remap_to_origin(cache, bio);
1905 else
1906 remap_to_cache(cache, bio, 0);
1907
1908 issue_after_commit(&cache->committer, bio);
1909 return true;
1910}
1911
1912static bool process_discard_bio(struct cache *cache, struct bio *bio)
1913{
1914 dm_dblock_t b, e;
1915
1916 // FIXME: do we need to lock the region? Or can we just assume the
1917 // user wont be so foolish as to issue discard concurrently with
1918 // other IO?
1919 calc_discard_block_range(cache, bio, &b, &e);
1920 while (b != e) {
1921 set_discard(cache, b);
1922 b = to_dblock(from_dblock(b) + 1);
1923 }
1924
1925 bio_endio(bio);
1926
1927 return false;
1928}
1929
1930static void process_deferred_bios(struct work_struct *ws)
1931{
1932 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1933
1934 unsigned long flags;
1935 bool commit_needed = false;
1936 struct bio_list bios;
1937 struct bio *bio;
1938
1939 bio_list_init(&bios);
1940
1941 spin_lock_irqsave(&cache->lock, flags);
1942 bio_list_merge(&bios, &cache->deferred_bios);
1943 bio_list_init(&cache->deferred_bios);
1944 spin_unlock_irqrestore(&cache->lock, flags);
1945
1946 while ((bio = bio_list_pop(&bios))) {
1947 if (bio->bi_opf & REQ_PREFLUSH)
1948 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1949
1950 else if (bio_op(bio) == REQ_OP_DISCARD)
1951 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1952
1953 else
1954 commit_needed = process_bio(cache, bio) || commit_needed;
1955 }
1956
1957 if (commit_needed)
1958 schedule_commit(&cache->committer);
1959}
1960
1961/*----------------------------------------------------------------
1962 * Main worker loop
1963 *--------------------------------------------------------------*/
1964
1965static void requeue_deferred_bios(struct cache *cache)
1966{
1967 struct bio *bio;
1968 struct bio_list bios;
1969
1970 bio_list_init(&bios);
1971 bio_list_merge(&bios, &cache->deferred_bios);
1972 bio_list_init(&cache->deferred_bios);
1973
1974 while ((bio = bio_list_pop(&bios))) {
1975 bio->bi_status = BLK_STS_DM_REQUEUE;
1976 bio_endio(bio);
1977 }
1978}
1979
1980/*
1981 * We want to commit periodically so that not too much
1982 * unwritten metadata builds up.
1983 */
1984static void do_waker(struct work_struct *ws)
1985{
1986 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1987
1988 policy_tick(cache->policy, true);
1989 wake_migration_worker(cache);
1990 schedule_commit(&cache->committer);
1991 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1992}
1993
1994static void check_migrations(struct work_struct *ws)
1995{
1996 int r;
1997 struct policy_work *op;
1998 struct cache *cache = container_of(ws, struct cache, migration_worker);
1999 enum busy b;
2000
2001 for (;;) {
2002 b = spare_migration_bandwidth(cache);
2003
2004 r = policy_get_background_work(cache->policy, b == IDLE, &op);
2005 if (r == -ENODATA)
2006 break;
2007
2008 if (r) {
2009 DMERR_LIMIT("%s: policy_background_work failed",
2010 cache_device_name(cache));
2011 break;
2012 }
2013
2014 r = mg_start(cache, op, NULL);
2015 if (r)
2016 break;
2017 }
2018}
2019
2020/*----------------------------------------------------------------
2021 * Target methods
2022 *--------------------------------------------------------------*/
2023
2024/*
2025 * This function gets called on the error paths of the constructor, so we
2026 * have to cope with a partially initialised struct.
2027 */
2028static void destroy(struct cache *cache)
2029{
2030 unsigned i;
2031
2032 mempool_destroy(cache->migration_pool);
2033
2034 if (cache->prison)
2035 dm_bio_prison_destroy_v2(cache->prison);
2036
2037 if (cache->wq)
2038 destroy_workqueue(cache->wq);
2039
2040 if (cache->dirty_bitset)
2041 free_bitset(cache->dirty_bitset);
2042
2043 if (cache->discard_bitset)
2044 free_bitset(cache->discard_bitset);
2045
2046 if (cache->copier)
2047 dm_kcopyd_client_destroy(cache->copier);
2048
2049 if (cache->cmd)
2050 dm_cache_metadata_close(cache->cmd);
2051
2052 if (cache->metadata_dev)
2053 dm_put_device(cache->ti, cache->metadata_dev);
2054
2055 if (cache->origin_dev)
2056 dm_put_device(cache->ti, cache->origin_dev);
2057
2058 if (cache->cache_dev)
2059 dm_put_device(cache->ti, cache->cache_dev);
2060
2061 if (cache->policy)
2062 dm_cache_policy_destroy(cache->policy);
2063
2064 for (i = 0; i < cache->nr_ctr_args ; i++)
2065 kfree(cache->ctr_args[i]);
2066 kfree(cache->ctr_args);
2067
2068 if (cache->bs)
2069 bioset_free(cache->bs);
2070
2071 kfree(cache);
2072}
2073
2074static void cache_dtr(struct dm_target *ti)
2075{
2076 struct cache *cache = ti->private;
2077
2078 destroy(cache);
2079}
2080
2081static sector_t get_dev_size(struct dm_dev *dev)
2082{
2083 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2084}
2085
2086/*----------------------------------------------------------------*/
2087
2088/*
2089 * Construct a cache device mapping.
2090 *
2091 * cache <metadata dev> <cache dev> <origin dev> <block size>
2092 * <#feature args> [<feature arg>]*
2093 * <policy> <#policy args> [<policy arg>]*
2094 *
2095 * metadata dev : fast device holding the persistent metadata
2096 * cache dev : fast device holding cached data blocks
2097 * origin dev : slow device holding original data blocks
2098 * block size : cache unit size in sectors
2099 *
2100 * #feature args : number of feature arguments passed
2101 * feature args : writethrough. (The default is writeback.)
2102 *
2103 * policy : the replacement policy to use
2104 * #policy args : an even number of policy arguments corresponding
2105 * to key/value pairs passed to the policy
2106 * policy args : key/value pairs passed to the policy
2107 * E.g. 'sequential_threshold 1024'
2108 * See cache-policies.txt for details.
2109 *
2110 * Optional feature arguments are:
2111 * writethrough : write through caching that prohibits cache block
2112 * content from being different from origin block content.
2113 * Without this argument, the default behaviour is to write
2114 * back cache block contents later for performance reasons,
2115 * so they may differ from the corresponding origin blocks.
2116 */
2117struct cache_args {
2118 struct dm_target *ti;
2119
2120 struct dm_dev *metadata_dev;
2121
2122 struct dm_dev *cache_dev;
2123 sector_t cache_sectors;
2124
2125 struct dm_dev *origin_dev;
2126 sector_t origin_sectors;
2127
2128 uint32_t block_size;
2129
2130 const char *policy_name;
2131 int policy_argc;
2132 const char **policy_argv;
2133
2134 struct cache_features features;
2135};
2136
2137static void destroy_cache_args(struct cache_args *ca)
2138{
2139 if (ca->metadata_dev)
2140 dm_put_device(ca->ti, ca->metadata_dev);
2141
2142 if (ca->cache_dev)
2143 dm_put_device(ca->ti, ca->cache_dev);
2144
2145 if (ca->origin_dev)
2146 dm_put_device(ca->ti, ca->origin_dev);
2147
2148 kfree(ca);
2149}
2150
2151static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2152{
2153 if (!as->argc) {
2154 *error = "Insufficient args";
2155 return false;
2156 }
2157
2158 return true;
2159}
2160
2161static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2162 char **error)
2163{
2164 int r;
2165 sector_t metadata_dev_size;
2166 char b[BDEVNAME_SIZE];
2167
2168 if (!at_least_one_arg(as, error))
2169 return -EINVAL;
2170
2171 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2172 &ca->metadata_dev);
2173 if (r) {
2174 *error = "Error opening metadata device";
2175 return r;
2176 }
2177
2178 metadata_dev_size = get_dev_size(ca->metadata_dev);
2179 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2180 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2181 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2182
2183 return 0;
2184}
2185
2186static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2187 char **error)
2188{
2189 int r;
2190
2191 if (!at_least_one_arg(as, error))
2192 return -EINVAL;
2193
2194 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2195 &ca->cache_dev);
2196 if (r) {
2197 *error = "Error opening cache device";
2198 return r;
2199 }
2200 ca->cache_sectors = get_dev_size(ca->cache_dev);
2201
2202 return 0;
2203}
2204
2205static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2206 char **error)
2207{
2208 int r;
2209
2210 if (!at_least_one_arg(as, error))
2211 return -EINVAL;
2212
2213 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2214 &ca->origin_dev);
2215 if (r) {
2216 *error = "Error opening origin device";
2217 return r;
2218 }
2219
2220 ca->origin_sectors = get_dev_size(ca->origin_dev);
2221 if (ca->ti->len > ca->origin_sectors) {
2222 *error = "Device size larger than cached device";
2223 return -EINVAL;
2224 }
2225
2226 return 0;
2227}
2228
2229static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2230 char **error)
2231{
2232 unsigned long block_size;
2233
2234 if (!at_least_one_arg(as, error))
2235 return -EINVAL;
2236
2237 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2238 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2239 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2240 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2241 *error = "Invalid data block size";
2242 return -EINVAL;
2243 }
2244
2245 if (block_size > ca->cache_sectors) {
2246 *error = "Data block size is larger than the cache device";
2247 return -EINVAL;
2248 }
2249
2250 ca->block_size = block_size;
2251
2252 return 0;
2253}
2254
2255static void init_features(struct cache_features *cf)
2256{
2257 cf->mode = CM_WRITE;
2258 cf->io_mode = CM_IO_WRITEBACK;
2259 cf->metadata_version = 1;
2260}
2261
2262static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2263 char **error)
2264{
2265 static const struct dm_arg _args[] = {
2266 {0, 2, "Invalid number of cache feature arguments"},
2267 };
2268
2269 int r, mode_ctr = 0;
2270 unsigned argc;
2271 const char *arg;
2272 struct cache_features *cf = &ca->features;
2273
2274 init_features(cf);
2275
2276 r = dm_read_arg_group(_args, as, &argc, error);
2277 if (r)
2278 return -EINVAL;
2279
2280 while (argc--) {
2281 arg = dm_shift_arg(as);
2282
2283 if (!strcasecmp(arg, "writeback")) {
2284 cf->io_mode = CM_IO_WRITEBACK;
2285 mode_ctr++;
2286 }
2287
2288 else if (!strcasecmp(arg, "writethrough")) {
2289 cf->io_mode = CM_IO_WRITETHROUGH;
2290 mode_ctr++;
2291 }
2292
2293 else if (!strcasecmp(arg, "passthrough")) {
2294 cf->io_mode = CM_IO_PASSTHROUGH;
2295 mode_ctr++;
2296 }
2297
2298 else if (!strcasecmp(arg, "metadata2"))
2299 cf->metadata_version = 2;
2300
2301 else {
2302 *error = "Unrecognised cache feature requested";
2303 return -EINVAL;
2304 }
2305 }
2306
2307 if (mode_ctr > 1) {
2308 *error = "Duplicate cache io_mode features requested";
2309 return -EINVAL;
2310 }
2311
2312 return 0;
2313}
2314
2315static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2316 char **error)
2317{
2318 static const struct dm_arg _args[] = {
2319 {0, 1024, "Invalid number of policy arguments"},
2320 };
2321
2322 int r;
2323
2324 if (!at_least_one_arg(as, error))
2325 return -EINVAL;
2326
2327 ca->policy_name = dm_shift_arg(as);
2328
2329 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2330 if (r)
2331 return -EINVAL;
2332
2333 ca->policy_argv = (const char **)as->argv;
2334 dm_consume_args(as, ca->policy_argc);
2335
2336 return 0;
2337}
2338
2339static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2340 char **error)
2341{
2342 int r;
2343 struct dm_arg_set as;
2344
2345 as.argc = argc;
2346 as.argv = argv;
2347
2348 r = parse_metadata_dev(ca, &as, error);
2349 if (r)
2350 return r;
2351
2352 r = parse_cache_dev(ca, &as, error);
2353 if (r)
2354 return r;
2355
2356 r = parse_origin_dev(ca, &as, error);
2357 if (r)
2358 return r;
2359
2360 r = parse_block_size(ca, &as, error);
2361 if (r)
2362 return r;
2363
2364 r = parse_features(ca, &as, error);
2365 if (r)
2366 return r;
2367
2368 r = parse_policy(ca, &as, error);
2369 if (r)
2370 return r;
2371
2372 return 0;
2373}
2374
2375/*----------------------------------------------------------------*/
2376
2377static struct kmem_cache *migration_cache;
2378
2379#define NOT_CORE_OPTION 1
2380
2381static int process_config_option(struct cache *cache, const char *key, const char *value)
2382{
2383 unsigned long tmp;
2384
2385 if (!strcasecmp(key, "migration_threshold")) {
2386 if (kstrtoul(value, 10, &tmp))
2387 return -EINVAL;
2388
2389 cache->migration_threshold = tmp;
2390 return 0;
2391 }
2392
2393 return NOT_CORE_OPTION;
2394}
2395
2396static int set_config_value(struct cache *cache, const char *key, const char *value)
2397{
2398 int r = process_config_option(cache, key, value);
2399
2400 if (r == NOT_CORE_OPTION)
2401 r = policy_set_config_value(cache->policy, key, value);
2402
2403 if (r)
2404 DMWARN("bad config value for %s: %s", key, value);
2405
2406 return r;
2407}
2408
2409static int set_config_values(struct cache *cache, int argc, const char **argv)
2410{
2411 int r = 0;
2412
2413 if (argc & 1) {
2414 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2415 return -EINVAL;
2416 }
2417
2418 while (argc) {
2419 r = set_config_value(cache, argv[0], argv[1]);
2420 if (r)
2421 break;
2422
2423 argc -= 2;
2424 argv += 2;
2425 }
2426
2427 return r;
2428}
2429
2430static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2431 char **error)
2432{
2433 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2434 cache->cache_size,
2435 cache->origin_sectors,
2436 cache->sectors_per_block);
2437 if (IS_ERR(p)) {
2438 *error = "Error creating cache's policy";
2439 return PTR_ERR(p);
2440 }
2441 cache->policy = p;
2442 BUG_ON(!cache->policy);
2443
2444 return 0;
2445}
2446
2447/*
2448 * We want the discard block size to be at least the size of the cache
2449 * block size and have no more than 2^14 discard blocks across the origin.
2450 */
2451#define MAX_DISCARD_BLOCKS (1 << 14)
2452
2453static bool too_many_discard_blocks(sector_t discard_block_size,
2454 sector_t origin_size)
2455{
2456 (void) sector_div(origin_size, discard_block_size);
2457
2458 return origin_size > MAX_DISCARD_BLOCKS;
2459}
2460
2461static sector_t calculate_discard_block_size(sector_t cache_block_size,
2462 sector_t origin_size)
2463{
2464 sector_t discard_block_size = cache_block_size;
2465
2466 if (origin_size)
2467 while (too_many_discard_blocks(discard_block_size, origin_size))
2468 discard_block_size *= 2;
2469
2470 return discard_block_size;
2471}
2472
2473static void set_cache_size(struct cache *cache, dm_cblock_t size)
2474{
2475 dm_block_t nr_blocks = from_cblock(size);
2476
2477 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2478 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2479 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2480 "Please consider increasing the cache block size to reduce the overall cache block count.",
2481 (unsigned long long) nr_blocks);
2482
2483 cache->cache_size = size;
2484}
2485
2486static int is_congested(struct dm_dev *dev, int bdi_bits)
2487{
2488 struct request_queue *q = bdev_get_queue(dev->bdev);
2489 return bdi_congested(q->backing_dev_info, bdi_bits);
2490}
2491
2492static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2493{
2494 struct cache *cache = container_of(cb, struct cache, callbacks);
2495
2496 return is_congested(cache->origin_dev, bdi_bits) ||
2497 is_congested(cache->cache_dev, bdi_bits);
2498}
2499
2500#define DEFAULT_MIGRATION_THRESHOLD 2048
2501
2502static int cache_create(struct cache_args *ca, struct cache **result)
2503{
2504 int r = 0;
2505 char **error = &ca->ti->error;
2506 struct cache *cache;
2507 struct dm_target *ti = ca->ti;
2508 dm_block_t origin_blocks;
2509 struct dm_cache_metadata *cmd;
2510 bool may_format = ca->features.mode == CM_WRITE;
2511
2512 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2513 if (!cache)
2514 return -ENOMEM;
2515
2516 cache->ti = ca->ti;
2517 ti->private = cache;
2518 ti->num_flush_bios = 2;
2519 ti->flush_supported = true;
2520
2521 ti->num_discard_bios = 1;
2522 ti->discards_supported = true;
2523 ti->split_discard_bios = false;
2524
2525 cache->features = ca->features;
2526 ti->per_io_data_size = get_per_bio_data_size(cache);
2527
2528 if (writethrough_mode(cache)) {
2529 /* Create bioset for writethrough bios issued to origin */
2530 cache->bs = bioset_create(BIO_POOL_SIZE, 0, 0);
2531 if (!cache->bs)
2532 goto bad;
2533 }
2534
2535 cache->callbacks.congested_fn = cache_is_congested;
2536 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2537
2538 cache->metadata_dev = ca->metadata_dev;
2539 cache->origin_dev = ca->origin_dev;
2540 cache->cache_dev = ca->cache_dev;
2541
2542 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2543
2544 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2545 origin_blocks = block_div(origin_blocks, ca->block_size);
2546 cache->origin_blocks = to_oblock(origin_blocks);
2547
2548 cache->sectors_per_block = ca->block_size;
2549 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2550 r = -EINVAL;
2551 goto bad;
2552 }
2553
2554 if (ca->block_size & (ca->block_size - 1)) {
2555 dm_block_t cache_size = ca->cache_sectors;
2556
2557 cache->sectors_per_block_shift = -1;
2558 cache_size = block_div(cache_size, ca->block_size);
2559 set_cache_size(cache, to_cblock(cache_size));
2560 } else {
2561 cache->sectors_per_block_shift = __ffs(ca->block_size);
2562 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2563 }
2564
2565 r = create_cache_policy(cache, ca, error);
2566 if (r)
2567 goto bad;
2568
2569 cache->policy_nr_args = ca->policy_argc;
2570 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2571
2572 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2573 if (r) {
2574 *error = "Error setting cache policy's config values";
2575 goto bad;
2576 }
2577
2578 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2579 ca->block_size, may_format,
2580 dm_cache_policy_get_hint_size(cache->policy),
2581 ca->features.metadata_version);
2582 if (IS_ERR(cmd)) {
2583 *error = "Error creating metadata object";
2584 r = PTR_ERR(cmd);
2585 goto bad;
2586 }
2587 cache->cmd = cmd;
2588 set_cache_mode(cache, CM_WRITE);
2589 if (get_cache_mode(cache) != CM_WRITE) {
2590 *error = "Unable to get write access to metadata, please check/repair metadata.";
2591 r = -EINVAL;
2592 goto bad;
2593 }
2594
2595 if (passthrough_mode(cache)) {
2596 bool all_clean;
2597
2598 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2599 if (r) {
2600 *error = "dm_cache_metadata_all_clean() failed";
2601 goto bad;
2602 }
2603
2604 if (!all_clean) {
2605 *error = "Cannot enter passthrough mode unless all blocks are clean";
2606 r = -EINVAL;
2607 goto bad;
2608 }
2609
2610 policy_allow_migrations(cache->policy, false);
2611 }
2612
2613 spin_lock_init(&cache->lock);
2614 INIT_LIST_HEAD(&cache->deferred_cells);
2615 bio_list_init(&cache->deferred_bios);
2616 atomic_set(&cache->nr_allocated_migrations, 0);
2617 atomic_set(&cache->nr_io_migrations, 0);
2618 init_waitqueue_head(&cache->migration_wait);
2619
2620 r = -ENOMEM;
2621 atomic_set(&cache->nr_dirty, 0);
2622 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2623 if (!cache->dirty_bitset) {
2624 *error = "could not allocate dirty bitset";
2625 goto bad;
2626 }
2627 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2628
2629 cache->discard_block_size =
2630 calculate_discard_block_size(cache->sectors_per_block,
2631 cache->origin_sectors);
2632 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2633 cache->discard_block_size));
2634 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2635 if (!cache->discard_bitset) {
2636 *error = "could not allocate discard bitset";
2637 goto bad;
2638 }
2639 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2640
2641 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2642 if (IS_ERR(cache->copier)) {
2643 *error = "could not create kcopyd client";
2644 r = PTR_ERR(cache->copier);
2645 goto bad;
2646 }
2647
2648 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2649 if (!cache->wq) {
2650 *error = "could not create workqueue for metadata object";
2651 goto bad;
2652 }
2653 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2654 INIT_WORK(&cache->migration_worker, check_migrations);
2655 INIT_DELAYED_WORK(&cache->waker, do_waker);
2656
2657 cache->prison = dm_bio_prison_create_v2(cache->wq);
2658 if (!cache->prison) {
2659 *error = "could not create bio prison";
2660 goto bad;
2661 }
2662
2663 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2664 migration_cache);
2665 if (!cache->migration_pool) {
2666 *error = "Error creating cache's migration mempool";
2667 goto bad;
2668 }
2669
2670 cache->need_tick_bio = true;
2671 cache->sized = false;
2672 cache->invalidate = false;
2673 cache->commit_requested = false;
2674 cache->loaded_mappings = false;
2675 cache->loaded_discards = false;
2676
2677 load_stats(cache);
2678
2679 atomic_set(&cache->stats.demotion, 0);
2680 atomic_set(&cache->stats.promotion, 0);
2681 atomic_set(&cache->stats.copies_avoided, 0);
2682 atomic_set(&cache->stats.cache_cell_clash, 0);
2683 atomic_set(&cache->stats.commit_count, 0);
2684 atomic_set(&cache->stats.discard_count, 0);
2685
2686 spin_lock_init(&cache->invalidation_lock);
2687 INIT_LIST_HEAD(&cache->invalidation_requests);
2688
2689 batcher_init(&cache->committer, commit_op, cache,
2690 issue_op, cache, cache->wq);
2691 iot_init(&cache->tracker);
2692
2693 init_rwsem(&cache->background_work_lock);
2694 prevent_background_work(cache);
2695
2696 *result = cache;
2697 return 0;
2698bad:
2699 destroy(cache);
2700 return r;
2701}
2702
2703static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2704{
2705 unsigned i;
2706 const char **copy;
2707
2708 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2709 if (!copy)
2710 return -ENOMEM;
2711 for (i = 0; i < argc; i++) {
2712 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2713 if (!copy[i]) {
2714 while (i--)
2715 kfree(copy[i]);
2716 kfree(copy);
2717 return -ENOMEM;
2718 }
2719 }
2720
2721 cache->nr_ctr_args = argc;
2722 cache->ctr_args = copy;
2723
2724 return 0;
2725}
2726
2727static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2728{
2729 int r = -EINVAL;
2730 struct cache_args *ca;
2731 struct cache *cache = NULL;
2732
2733 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2734 if (!ca) {
2735 ti->error = "Error allocating memory for cache";
2736 return -ENOMEM;
2737 }
2738 ca->ti = ti;
2739
2740 r = parse_cache_args(ca, argc, argv, &ti->error);
2741 if (r)
2742 goto out;
2743
2744 r = cache_create(ca, &cache);
2745 if (r)
2746 goto out;
2747
2748 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2749 if (r) {
2750 destroy(cache);
2751 goto out;
2752 }
2753
2754 ti->private = cache;
2755out:
2756 destroy_cache_args(ca);
2757 return r;
2758}
2759
2760/*----------------------------------------------------------------*/
2761
2762static int cache_map(struct dm_target *ti, struct bio *bio)
2763{
2764 struct cache *cache = ti->private;
2765
2766 int r;
2767 bool commit_needed;
2768 dm_oblock_t block = get_bio_block(cache, bio);
2769 size_t pb_data_size = get_per_bio_data_size(cache);
2770
2771 init_per_bio_data(bio, pb_data_size);
2772 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2773 /*
2774 * This can only occur if the io goes to a partial block at
2775 * the end of the origin device. We don't cache these.
2776 * Just remap to the origin and carry on.
2777 */
2778 remap_to_origin(cache, bio);
2779 accounted_begin(cache, bio);
2780 return DM_MAPIO_REMAPPED;
2781 }
2782
2783 if (discard_or_flush(bio)) {
2784 defer_bio(cache, bio);
2785 return DM_MAPIO_SUBMITTED;
2786 }
2787
2788 r = map_bio(cache, bio, block, &commit_needed);
2789 if (commit_needed)
2790 schedule_commit(&cache->committer);
2791
2792 return r;
2793}
2794
2795static int cache_end_io(struct dm_target *ti, struct bio *bio,
2796 blk_status_t *error)
2797{
2798 struct cache *cache = ti->private;
2799 unsigned long flags;
2800 size_t pb_data_size = get_per_bio_data_size(cache);
2801 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2802
2803 if (pb->tick) {
2804 policy_tick(cache->policy, false);
2805
2806 spin_lock_irqsave(&cache->lock, flags);
2807 cache->need_tick_bio = true;
2808 spin_unlock_irqrestore(&cache->lock, flags);
2809 }
2810
2811 bio_drop_shared_lock(cache, bio);
2812 accounted_complete(cache, bio);
2813
2814 return DM_ENDIO_DONE;
2815}
2816
2817static int write_dirty_bitset(struct cache *cache)
2818{
2819 int r;
2820
2821 if (get_cache_mode(cache) >= CM_READ_ONLY)
2822 return -EINVAL;
2823
2824 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2825 if (r)
2826 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2827
2828 return r;
2829}
2830
2831static int write_discard_bitset(struct cache *cache)
2832{
2833 unsigned i, r;
2834
2835 if (get_cache_mode(cache) >= CM_READ_ONLY)
2836 return -EINVAL;
2837
2838 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2839 cache->discard_nr_blocks);
2840 if (r) {
2841 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2842 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2843 return r;
2844 }
2845
2846 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2847 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2848 is_discarded(cache, to_dblock(i)));
2849 if (r) {
2850 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2851 return r;
2852 }
2853 }
2854
2855 return 0;
2856}
2857
2858static int write_hints(struct cache *cache)
2859{
2860 int r;
2861
2862 if (get_cache_mode(cache) >= CM_READ_ONLY)
2863 return -EINVAL;
2864
2865 r = dm_cache_write_hints(cache->cmd, cache->policy);
2866 if (r) {
2867 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2868 return r;
2869 }
2870
2871 return 0;
2872}
2873
2874/*
2875 * returns true on success
2876 */
2877static bool sync_metadata(struct cache *cache)
2878{
2879 int r1, r2, r3, r4;
2880
2881 r1 = write_dirty_bitset(cache);
2882 if (r1)
2883 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2884
2885 r2 = write_discard_bitset(cache);
2886 if (r2)
2887 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2888
2889 save_stats(cache);
2890
2891 r3 = write_hints(cache);
2892 if (r3)
2893 DMERR("%s: could not write hints", cache_device_name(cache));
2894
2895 /*
2896 * If writing the above metadata failed, we still commit, but don't
2897 * set the clean shutdown flag. This will effectively force every
2898 * dirty bit to be set on reload.
2899 */
2900 r4 = commit(cache, !r1 && !r2 && !r3);
2901 if (r4)
2902 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2903
2904 return !r1 && !r2 && !r3 && !r4;
2905}
2906
2907static void cache_postsuspend(struct dm_target *ti)
2908{
2909 struct cache *cache = ti->private;
2910
2911 prevent_background_work(cache);
2912 BUG_ON(atomic_read(&cache->nr_io_migrations));
2913
2914 cancel_delayed_work_sync(&cache->waker);
2915 drain_workqueue(cache->wq);
2916 WARN_ON(cache->tracker.in_flight);
2917
2918 /*
2919 * If it's a flush suspend there won't be any deferred bios, so this
2920 * call is harmless.
2921 */
2922 requeue_deferred_bios(cache);
2923
2924 if (get_cache_mode(cache) == CM_WRITE)
2925 (void) sync_metadata(cache);
2926}
2927
2928static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2929 bool dirty, uint32_t hint, bool hint_valid)
2930{
2931 int r;
2932 struct cache *cache = context;
2933
2934 if (dirty) {
2935 set_bit(from_cblock(cblock), cache->dirty_bitset);
2936 atomic_inc(&cache->nr_dirty);
2937 } else
2938 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2939
2940 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2941 if (r)
2942 return r;
2943
2944 return 0;
2945}
2946
2947/*
2948 * The discard block size in the on disk metadata is not
2949 * neccessarily the same as we're currently using. So we have to
2950 * be careful to only set the discarded attribute if we know it
2951 * covers a complete block of the new size.
2952 */
2953struct discard_load_info {
2954 struct cache *cache;
2955
2956 /*
2957 * These blocks are sized using the on disk dblock size, rather
2958 * than the current one.
2959 */
2960 dm_block_t block_size;
2961 dm_block_t discard_begin, discard_end;
2962};
2963
2964static void discard_load_info_init(struct cache *cache,
2965 struct discard_load_info *li)
2966{
2967 li->cache = cache;
2968 li->discard_begin = li->discard_end = 0;
2969}
2970
2971static void set_discard_range(struct discard_load_info *li)
2972{
2973 sector_t b, e;
2974
2975 if (li->discard_begin == li->discard_end)
2976 return;
2977
2978 /*
2979 * Convert to sectors.
2980 */
2981 b = li->discard_begin * li->block_size;
2982 e = li->discard_end * li->block_size;
2983
2984 /*
2985 * Then convert back to the current dblock size.
2986 */
2987 b = dm_sector_div_up(b, li->cache->discard_block_size);
2988 sector_div(e, li->cache->discard_block_size);
2989
2990 /*
2991 * The origin may have shrunk, so we need to check we're still in
2992 * bounds.
2993 */
2994 if (e > from_dblock(li->cache->discard_nr_blocks))
2995 e = from_dblock(li->cache->discard_nr_blocks);
2996
2997 for (; b < e; b++)
2998 set_discard(li->cache, to_dblock(b));
2999}
3000
3001static int load_discard(void *context, sector_t discard_block_size,
3002 dm_dblock_t dblock, bool discard)
3003{
3004 struct discard_load_info *li = context;
3005
3006 li->block_size = discard_block_size;
3007
3008 if (discard) {
3009 if (from_dblock(dblock) == li->discard_end)
3010 /*
3011 * We're already in a discard range, just extend it.
3012 */
3013 li->discard_end = li->discard_end + 1ULL;
3014
3015 else {
3016 /*
3017 * Emit the old range and start a new one.
3018 */
3019 set_discard_range(li);
3020 li->discard_begin = from_dblock(dblock);
3021 li->discard_end = li->discard_begin + 1ULL;
3022 }
3023 } else {
3024 set_discard_range(li);
3025 li->discard_begin = li->discard_end = 0;
3026 }
3027
3028 return 0;
3029}
3030
3031static dm_cblock_t get_cache_dev_size(struct cache *cache)
3032{
3033 sector_t size = get_dev_size(cache->cache_dev);
3034 (void) sector_div(size, cache->sectors_per_block);
3035 return to_cblock(size);
3036}
3037
3038static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3039{
3040 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
3041 if (cache->sized) {
3042 DMERR("%s: unable to extend cache due to missing cache table reload",
3043 cache_device_name(cache));
3044 return false;
3045 }
3046 }
3047
3048 /*
3049 * We can't drop a dirty block when shrinking the cache.
3050 */
3051 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3052 new_size = to_cblock(from_cblock(new_size) + 1);
3053 if (is_dirty(cache, new_size)) {
3054 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3055 cache_device_name(cache),
3056 (unsigned long long) from_cblock(new_size));
3057 return false;
3058 }
3059 }
3060
3061 return true;
3062}
3063
3064static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3065{
3066 int r;
3067
3068 r = dm_cache_resize(cache->cmd, new_size);
3069 if (r) {
3070 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3071 metadata_operation_failed(cache, "dm_cache_resize", r);
3072 return r;
3073 }
3074
3075 set_cache_size(cache, new_size);
3076
3077 return 0;
3078}
3079
3080static int cache_preresume(struct dm_target *ti)
3081{
3082 int r = 0;
3083 struct cache *cache = ti->private;
3084 dm_cblock_t csize = get_cache_dev_size(cache);
3085
3086 /*
3087 * Check to see if the cache has resized.
3088 */
3089 if (!cache->sized) {
3090 r = resize_cache_dev(cache, csize);
3091 if (r)
3092 return r;
3093
3094 cache->sized = true;
3095
3096 } else if (csize != cache->cache_size) {
3097 if (!can_resize(cache, csize))
3098 return -EINVAL;
3099
3100 r = resize_cache_dev(cache, csize);
3101 if (r)
3102 return r;
3103 }
3104
3105 if (!cache->loaded_mappings) {
3106 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3107 load_mapping, cache);
3108 if (r) {
3109 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3110 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3111 return r;
3112 }
3113
3114 cache->loaded_mappings = true;
3115 }
3116
3117 if (!cache->loaded_discards) {
3118 struct discard_load_info li;
3119
3120 /*
3121 * The discard bitset could have been resized, or the
3122 * discard block size changed. To be safe we start by
3123 * setting every dblock to not discarded.
3124 */
3125 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3126
3127 discard_load_info_init(cache, &li);
3128 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3129 if (r) {
3130 DMERR("%s: could not load origin discards", cache_device_name(cache));
3131 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3132 return r;
3133 }
3134 set_discard_range(&li);
3135
3136 cache->loaded_discards = true;
3137 }
3138
3139 return r;
3140}
3141
3142static void cache_resume(struct dm_target *ti)
3143{
3144 struct cache *cache = ti->private;
3145
3146 cache->need_tick_bio = true;
3147 allow_background_work(cache);
3148 do_waker(&cache->waker.work);
3149}
3150
3151/*
3152 * Status format:
3153 *
3154 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3155 * <cache block size> <#used cache blocks>/<#total cache blocks>
3156 * <#read hits> <#read misses> <#write hits> <#write misses>
3157 * <#demotions> <#promotions> <#dirty>
3158 * <#features> <features>*
3159 * <#core args> <core args>
3160 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3161 */
3162static void cache_status(struct dm_target *ti, status_type_t type,
3163 unsigned status_flags, char *result, unsigned maxlen)
3164{
3165 int r = 0;
3166 unsigned i;
3167 ssize_t sz = 0;
3168 dm_block_t nr_free_blocks_metadata = 0;
3169 dm_block_t nr_blocks_metadata = 0;
3170 char buf[BDEVNAME_SIZE];
3171 struct cache *cache = ti->private;
3172 dm_cblock_t residency;
3173 bool needs_check;
3174
3175 switch (type) {
3176 case STATUSTYPE_INFO:
3177 if (get_cache_mode(cache) == CM_FAIL) {
3178 DMEMIT("Fail");
3179 break;
3180 }
3181
3182 /* Commit to ensure statistics aren't out-of-date */
3183 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3184 (void) commit(cache, false);
3185
3186 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3187 if (r) {
3188 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3189 cache_device_name(cache), r);
3190 goto err;
3191 }
3192
3193 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3194 if (r) {
3195 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3196 cache_device_name(cache), r);
3197 goto err;
3198 }
3199
3200 residency = policy_residency(cache->policy);
3201
3202 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3203 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3204 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3205 (unsigned long long)nr_blocks_metadata,
3206 (unsigned long long)cache->sectors_per_block,
3207 (unsigned long long) from_cblock(residency),
3208 (unsigned long long) from_cblock(cache->cache_size),
3209 (unsigned) atomic_read(&cache->stats.read_hit),
3210 (unsigned) atomic_read(&cache->stats.read_miss),
3211 (unsigned) atomic_read(&cache->stats.write_hit),
3212 (unsigned) atomic_read(&cache->stats.write_miss),
3213 (unsigned) atomic_read(&cache->stats.demotion),
3214 (unsigned) atomic_read(&cache->stats.promotion),
3215 (unsigned long) atomic_read(&cache->nr_dirty));
3216
3217 if (cache->features.metadata_version == 2)
3218 DMEMIT("2 metadata2 ");
3219 else
3220 DMEMIT("1 ");
3221
3222 if (writethrough_mode(cache))
3223 DMEMIT("writethrough ");
3224
3225 else if (passthrough_mode(cache))
3226 DMEMIT("passthrough ");
3227
3228 else if (writeback_mode(cache))
3229 DMEMIT("writeback ");
3230
3231 else {
3232 DMERR("%s: internal error: unknown io mode: %d",
3233 cache_device_name(cache), (int) cache->features.io_mode);
3234 goto err;
3235 }
3236
3237 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3238
3239 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3240 if (sz < maxlen) {
3241 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3242 if (r)
3243 DMERR("%s: policy_emit_config_values returned %d",
3244 cache_device_name(cache), r);
3245 }
3246
3247 if (get_cache_mode(cache) == CM_READ_ONLY)
3248 DMEMIT("ro ");
3249 else
3250 DMEMIT("rw ");
3251
3252 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3253
3254 if (r || needs_check)
3255 DMEMIT("needs_check ");
3256 else
3257 DMEMIT("- ");
3258
3259 break;
3260
3261 case STATUSTYPE_TABLE:
3262 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3263 DMEMIT("%s ", buf);
3264 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3265 DMEMIT("%s ", buf);
3266 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3267 DMEMIT("%s", buf);
3268
3269 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3270 DMEMIT(" %s", cache->ctr_args[i]);
3271 if (cache->nr_ctr_args)
3272 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3273 }
3274
3275 return;
3276
3277err:
3278 DMEMIT("Error");
3279}
3280
3281/*
3282 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3283 * the one-past-the-end value.
3284 */
3285struct cblock_range {
3286 dm_cblock_t begin;
3287 dm_cblock_t end;
3288};
3289
3290/*
3291 * A cache block range can take two forms:
3292 *
3293 * i) A single cblock, eg. '3456'
3294 * ii) A begin and end cblock with a dash between, eg. 123-234
3295 */
3296static int parse_cblock_range(struct cache *cache, const char *str,
3297 struct cblock_range *result)
3298{
3299 char dummy;
3300 uint64_t b, e;
3301 int r;
3302
3303 /*
3304 * Try and parse form (ii) first.
3305 */
3306 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3307 if (r < 0)
3308 return r;
3309
3310 if (r == 2) {
3311 result->begin = to_cblock(b);
3312 result->end = to_cblock(e);
3313 return 0;
3314 }
3315
3316 /*
3317 * That didn't work, try form (i).
3318 */
3319 r = sscanf(str, "%llu%c", &b, &dummy);
3320 if (r < 0)
3321 return r;
3322
3323 if (r == 1) {
3324 result->begin = to_cblock(b);
3325 result->end = to_cblock(from_cblock(result->begin) + 1u);
3326 return 0;
3327 }
3328
3329 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3330 return -EINVAL;
3331}
3332
3333static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3334{
3335 uint64_t b = from_cblock(range->begin);
3336 uint64_t e = from_cblock(range->end);
3337 uint64_t n = from_cblock(cache->cache_size);
3338
3339 if (b >= n) {
3340 DMERR("%s: begin cblock out of range: %llu >= %llu",
3341 cache_device_name(cache), b, n);
3342 return -EINVAL;
3343 }
3344
3345 if (e > n) {
3346 DMERR("%s: end cblock out of range: %llu > %llu",
3347 cache_device_name(cache), e, n);
3348 return -EINVAL;
3349 }
3350
3351 if (b >= e) {
3352 DMERR("%s: invalid cblock range: %llu >= %llu",
3353 cache_device_name(cache), b, e);
3354 return -EINVAL;
3355 }
3356
3357 return 0;
3358}
3359
3360static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3361{
3362 return to_cblock(from_cblock(b) + 1);
3363}
3364
3365static int request_invalidation(struct cache *cache, struct cblock_range *range)
3366{
3367 int r = 0;
3368
3369 /*
3370 * We don't need to do any locking here because we know we're in
3371 * passthrough mode. There's is potential for a race between an
3372 * invalidation triggered by an io and an invalidation message. This
3373 * is harmless, we must not worry if the policy call fails.
3374 */
3375 while (range->begin != range->end) {
3376 r = invalidate_cblock(cache, range->begin);
3377 if (r)
3378 return r;
3379
3380 range->begin = cblock_succ(range->begin);
3381 }
3382
3383 cache->commit_requested = true;
3384 return r;
3385}
3386
3387static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3388 const char **cblock_ranges)
3389{
3390 int r = 0;
3391 unsigned i;
3392 struct cblock_range range;
3393
3394 if (!passthrough_mode(cache)) {
3395 DMERR("%s: cache has to be in passthrough mode for invalidation",
3396 cache_device_name(cache));
3397 return -EPERM;
3398 }
3399
3400 for (i = 0; i < count; i++) {
3401 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3402 if (r)
3403 break;
3404
3405 r = validate_cblock_range(cache, &range);
3406 if (r)
3407 break;
3408
3409 /*
3410 * Pass begin and end origin blocks to the worker and wake it.
3411 */
3412 r = request_invalidation(cache, &range);
3413 if (r)
3414 break;
3415 }
3416
3417 return r;
3418}
3419
3420/*
3421 * Supports
3422 * "<key> <value>"
3423 * and
3424 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3425 *
3426 * The key migration_threshold is supported by the cache target core.
3427 */
3428static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3429{
3430 struct cache *cache = ti->private;
3431
3432 if (!argc)
3433 return -EINVAL;
3434
3435 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3436 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3437 cache_device_name(cache));
3438 return -EOPNOTSUPP;
3439 }
3440
3441 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3442 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3443
3444 if (argc != 2)
3445 return -EINVAL;
3446
3447 return set_config_value(cache, argv[0], argv[1]);
3448}
3449
3450static int cache_iterate_devices(struct dm_target *ti,
3451 iterate_devices_callout_fn fn, void *data)
3452{
3453 int r = 0;
3454 struct cache *cache = ti->private;
3455
3456 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3457 if (!r)
3458 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3459
3460 return r;
3461}
3462
3463static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3464{
3465 /*
3466 * FIXME: these limits may be incompatible with the cache device
3467 */
3468 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3469 cache->origin_sectors);
3470 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3471}
3472
3473static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3474{
3475 struct cache *cache = ti->private;
3476 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3477
3478 /*
3479 * If the system-determined stacked limits are compatible with the
3480 * cache's blocksize (io_opt is a factor) do not override them.
3481 */
3482 if (io_opt_sectors < cache->sectors_per_block ||
3483 do_div(io_opt_sectors, cache->sectors_per_block)) {
3484 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3485 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3486 }
3487 set_discard_limits(cache, limits);
3488}
3489
3490/*----------------------------------------------------------------*/
3491
3492static struct target_type cache_target = {
3493 .name = "cache",
3494 .version = {2, 0, 0},
3495 .module = THIS_MODULE,
3496 .ctr = cache_ctr,
3497 .dtr = cache_dtr,
3498 .map = cache_map,
3499 .end_io = cache_end_io,
3500 .postsuspend = cache_postsuspend,
3501 .preresume = cache_preresume,
3502 .resume = cache_resume,
3503 .status = cache_status,
3504 .message = cache_message,
3505 .iterate_devices = cache_iterate_devices,
3506 .io_hints = cache_io_hints,
3507};
3508
3509static int __init dm_cache_init(void)
3510{
3511 int r;
3512
3513 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3514 if (!migration_cache)
3515 return -ENOMEM;
3516
3517 r = dm_register_target(&cache_target);
3518 if (r) {
3519 DMERR("cache target registration failed: %d", r);
3520 kmem_cache_destroy(migration_cache);
3521 return r;
3522 }
3523
3524 return 0;
3525}
3526
3527static void __exit dm_cache_exit(void)
3528{
3529 dm_unregister_target(&cache_target);
3530 kmem_cache_destroy(migration_cache);
3531}
3532
3533module_init(dm_cache_init);
3534module_exit(dm_cache_exit);
3535
3536MODULE_DESCRIPTION(DM_NAME " cache target");
3537MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3538MODULE_LICENSE("GPL");