blob: 5e38ceb3600044756722867c601b2bbc59f66a5a [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10#include <linux/completion.h>
11#include <linux/err.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/key.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/mempool.h>
19#include <linux/slab.h>
20#include <linux/crypto.h>
21#include <linux/workqueue.h>
22#include <linux/kthread.h>
23#include <linux/backing-dev.h>
24#include <linux/atomic.h>
25#include <linux/scatterlist.h>
26#include <linux/rbtree.h>
27#include <linux/ctype.h>
28#include <asm/page.h>
29#include <asm/unaligned.h>
30#include <crypto/hash.h>
31#include <crypto/md5.h>
32#include <crypto/algapi.h>
33#include <crypto/skcipher.h>
34#include <crypto/aead.h>
35#include <crypto/authenc.h>
36#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37#include <keys/user-type.h>
38
39#include <linux/device-mapper.h>
40
41#define DM_MSG_PREFIX "crypt"
42
43/*
44 * context holding the current state of a multi-part conversion
45 */
46struct convert_context {
47 struct completion restart;
48 struct bio *bio_in;
49 struct bio *bio_out;
50 struct bvec_iter iter_in;
51 struct bvec_iter iter_out;
52 u64 cc_sector;
53 atomic_t cc_pending;
54 union {
55 struct skcipher_request *req;
56 struct aead_request *req_aead;
57 } r;
58
59};
60
61/*
62 * per bio private data
63 */
64struct dm_crypt_io {
65 struct crypt_config *cc;
66 struct bio *base_bio;
67 u8 *integrity_metadata;
68 bool integrity_metadata_from_pool;
69 struct work_struct work;
70
71 struct convert_context ctx;
72
73 atomic_t io_pending;
74 blk_status_t error;
75 sector_t sector;
76
77 struct rb_node rb_node;
78} CRYPTO_MINALIGN_ATTR;
79
80struct dm_crypt_request {
81 struct convert_context *ctx;
82 struct scatterlist sg_in[4];
83 struct scatterlist sg_out[4];
84 u64 iv_sector;
85};
86
87struct crypt_config;
88
89struct crypt_iv_operations {
90 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 const char *opts);
92 void (*dtr)(struct crypt_config *cc);
93 int (*init)(struct crypt_config *cc);
94 int (*wipe)(struct crypt_config *cc);
95 int (*generator)(struct crypt_config *cc, u8 *iv,
96 struct dm_crypt_request *dmreq);
97 int (*post)(struct crypt_config *cc, u8 *iv,
98 struct dm_crypt_request *dmreq);
99};
100
101struct iv_essiv_private {
102 struct crypto_ahash *hash_tfm;
103 u8 *salt;
104};
105
106struct iv_benbi_private {
107 int shift;
108};
109
110#define LMK_SEED_SIZE 64 /* hash + 0 */
111struct iv_lmk_private {
112 struct crypto_shash *hash_tfm;
113 u8 *seed;
114};
115
116#define TCW_WHITENING_SIZE 16
117struct iv_tcw_private {
118 struct crypto_shash *crc32_tfm;
119 u8 *iv_seed;
120 u8 *whitening;
121};
122
123/*
124 * Crypt: maps a linear range of a block device
125 * and encrypts / decrypts at the same time.
126 */
127enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
128 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
129
130enum cipher_flags {
131 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cihper */
132 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
133};
134
135/*
136 * The fields in here must be read only after initialization.
137 */
138struct crypt_config {
139 struct dm_dev *dev;
140 sector_t start;
141
142 /*
143 * pool for per bio private data, crypto requests,
144 * encryption requeusts/buffer pages and integrity tags
145 */
146 mempool_t *req_pool;
147 mempool_t *page_pool;
148 mempool_t *tag_pool;
149 unsigned tag_pool_max_sectors;
150
151 struct percpu_counter n_allocated_pages;
152
153 struct bio_set *bs;
154 struct mutex bio_alloc_lock;
155
156 struct workqueue_struct *io_queue;
157 struct workqueue_struct *crypt_queue;
158
159 struct task_struct *write_thread;
160 wait_queue_head_t write_thread_wait;
161 struct rb_root write_tree;
162
163 char *cipher;
164 char *cipher_string;
165 char *cipher_auth;
166 char *key_string;
167
168 const struct crypt_iv_operations *iv_gen_ops;
169 union {
170 struct iv_essiv_private essiv;
171 struct iv_benbi_private benbi;
172 struct iv_lmk_private lmk;
173 struct iv_tcw_private tcw;
174 } iv_gen_private;
175 u64 iv_offset;
176 unsigned int iv_size;
177 unsigned short int sector_size;
178 unsigned char sector_shift;
179
180 /* ESSIV: struct crypto_cipher *essiv_tfm */
181 void *iv_private;
182 union {
183 struct crypto_skcipher **tfms;
184 struct crypto_aead **tfms_aead;
185 } cipher_tfm;
186 unsigned tfms_count;
187 unsigned long cipher_flags;
188
189 /*
190 * Layout of each crypto request:
191 *
192 * struct skcipher_request
193 * context
194 * padding
195 * struct dm_crypt_request
196 * padding
197 * IV
198 *
199 * The padding is added so that dm_crypt_request and the IV are
200 * correctly aligned.
201 */
202 unsigned int dmreq_start;
203
204 unsigned int per_bio_data_size;
205
206 unsigned long flags;
207 unsigned int key_size;
208 unsigned int key_parts; /* independent parts in key buffer */
209 unsigned int key_extra_size; /* additional keys length */
210 unsigned int key_mac_size; /* MAC key size for authenc(...) */
211
212 unsigned int integrity_tag_size;
213 unsigned int integrity_iv_size;
214 unsigned int on_disk_tag_size;
215
216 u8 *authenc_key; /* space for keys in authenc() format (if used) */
217 u8 key[0];
218};
219
220#define MIN_IOS 64
221#define MAX_TAG_SIZE 480
222#define POOL_ENTRY_SIZE 512
223
224static DEFINE_SPINLOCK(dm_crypt_clients_lock);
225static unsigned dm_crypt_clients_n = 0;
226static volatile unsigned long dm_crypt_pages_per_client;
227#define DM_CRYPT_MEMORY_PERCENT 2
228#define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_PAGES * 16)
229
230static void clone_init(struct dm_crypt_io *, struct bio *);
231static void kcryptd_queue_crypt(struct dm_crypt_io *io);
232static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
233 struct scatterlist *sg);
234
235/*
236 * Use this to access cipher attributes that are independent of the key.
237 */
238static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
239{
240 return cc->cipher_tfm.tfms[0];
241}
242
243static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
244{
245 return cc->cipher_tfm.tfms_aead[0];
246}
247
248/*
249 * Different IV generation algorithms:
250 *
251 * plain: the initial vector is the 32-bit little-endian version of the sector
252 * number, padded with zeros if necessary.
253 *
254 * plain64: the initial vector is the 64-bit little-endian version of the sector
255 * number, padded with zeros if necessary.
256 *
257 * plain64be: the initial vector is the 64-bit big-endian version of the sector
258 * number, padded with zeros if necessary.
259 *
260 * essiv: "encrypted sector|salt initial vector", the sector number is
261 * encrypted with the bulk cipher using a salt as key. The salt
262 * should be derived from the bulk cipher's key via hashing.
263 *
264 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
265 * (needed for LRW-32-AES and possible other narrow block modes)
266 *
267 * null: the initial vector is always zero. Provides compatibility with
268 * obsolete loop_fish2 devices. Do not use for new devices.
269 *
270 * lmk: Compatible implementation of the block chaining mode used
271 * by the Loop-AES block device encryption system
272 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
273 * It operates on full 512 byte sectors and uses CBC
274 * with an IV derived from the sector number, the data and
275 * optionally extra IV seed.
276 * This means that after decryption the first block
277 * of sector must be tweaked according to decrypted data.
278 * Loop-AES can use three encryption schemes:
279 * version 1: is plain aes-cbc mode
280 * version 2: uses 64 multikey scheme with lmk IV generator
281 * version 3: the same as version 2 with additional IV seed
282 * (it uses 65 keys, last key is used as IV seed)
283 *
284 * tcw: Compatible implementation of the block chaining mode used
285 * by the TrueCrypt device encryption system (prior to version 4.1).
286 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
287 * It operates on full 512 byte sectors and uses CBC
288 * with an IV derived from initial key and the sector number.
289 * In addition, whitening value is applied on every sector, whitening
290 * is calculated from initial key, sector number and mixed using CRC32.
291 * Note that this encryption scheme is vulnerable to watermarking attacks
292 * and should be used for old compatible containers access only.
293 *
294 * plumb: unimplemented, see:
295 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
296 */
297
298static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
299 struct dm_crypt_request *dmreq)
300{
301 memset(iv, 0, cc->iv_size);
302 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
303
304 return 0;
305}
306
307static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
308 struct dm_crypt_request *dmreq)
309{
310 memset(iv, 0, cc->iv_size);
311 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
312
313 return 0;
314}
315
316static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
317 struct dm_crypt_request *dmreq)
318{
319 memset(iv, 0, cc->iv_size);
320 /* iv_size is at least of size u64; usually it is 16 bytes */
321 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
322
323 return 0;
324}
325
326/* Initialise ESSIV - compute salt but no local memory allocations */
327static int crypt_iv_essiv_init(struct crypt_config *cc)
328{
329 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
330 AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
331 struct scatterlist sg;
332 struct crypto_cipher *essiv_tfm;
333 int err;
334
335 sg_init_one(&sg, cc->key, cc->key_size);
336 ahash_request_set_tfm(req, essiv->hash_tfm);
337 ahash_request_set_callback(req, 0, NULL, NULL);
338 ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
339
340 err = crypto_ahash_digest(req);
341 ahash_request_zero(req);
342 if (err)
343 return err;
344
345 essiv_tfm = cc->iv_private;
346
347 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
348 crypto_ahash_digestsize(essiv->hash_tfm));
349 if (err)
350 return err;
351
352 return 0;
353}
354
355/* Wipe salt and reset key derived from volume key */
356static int crypt_iv_essiv_wipe(struct crypt_config *cc)
357{
358 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
359 unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
360 struct crypto_cipher *essiv_tfm;
361 int r, err = 0;
362
363 memset(essiv->salt, 0, salt_size);
364
365 essiv_tfm = cc->iv_private;
366 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
367 if (r)
368 err = r;
369
370 return err;
371}
372
373/* Allocate the cipher for ESSIV */
374static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
375 struct dm_target *ti,
376 const u8 *salt,
377 unsigned int saltsize)
378{
379 struct crypto_cipher *essiv_tfm;
380 int err;
381
382 /* Setup the essiv_tfm with the given salt */
383 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
384 if (IS_ERR(essiv_tfm)) {
385 ti->error = "Error allocating crypto tfm for ESSIV";
386 return essiv_tfm;
387 }
388
389 if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
390 ti->error = "Block size of ESSIV cipher does "
391 "not match IV size of block cipher";
392 crypto_free_cipher(essiv_tfm);
393 return ERR_PTR(-EINVAL);
394 }
395
396 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
397 if (err) {
398 ti->error = "Failed to set key for ESSIV cipher";
399 crypto_free_cipher(essiv_tfm);
400 return ERR_PTR(err);
401 }
402
403 return essiv_tfm;
404}
405
406static void crypt_iv_essiv_dtr(struct crypt_config *cc)
407{
408 struct crypto_cipher *essiv_tfm;
409 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
410
411 crypto_free_ahash(essiv->hash_tfm);
412 essiv->hash_tfm = NULL;
413
414 kzfree(essiv->salt);
415 essiv->salt = NULL;
416
417 essiv_tfm = cc->iv_private;
418
419 if (essiv_tfm)
420 crypto_free_cipher(essiv_tfm);
421
422 cc->iv_private = NULL;
423}
424
425static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
426 const char *opts)
427{
428 struct crypto_cipher *essiv_tfm = NULL;
429 struct crypto_ahash *hash_tfm = NULL;
430 u8 *salt = NULL;
431 int err;
432
433 if (!opts) {
434 ti->error = "Digest algorithm missing for ESSIV mode";
435 return -EINVAL;
436 }
437
438 /* Allocate hash algorithm */
439 hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
440 if (IS_ERR(hash_tfm)) {
441 ti->error = "Error initializing ESSIV hash";
442 err = PTR_ERR(hash_tfm);
443 goto bad;
444 }
445
446 salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
447 if (!salt) {
448 ti->error = "Error kmallocing salt storage in ESSIV";
449 err = -ENOMEM;
450 goto bad;
451 }
452
453 cc->iv_gen_private.essiv.salt = salt;
454 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
455
456 essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
457 crypto_ahash_digestsize(hash_tfm));
458 if (IS_ERR(essiv_tfm)) {
459 crypt_iv_essiv_dtr(cc);
460 return PTR_ERR(essiv_tfm);
461 }
462 cc->iv_private = essiv_tfm;
463
464 return 0;
465
466bad:
467 if (hash_tfm && !IS_ERR(hash_tfm))
468 crypto_free_ahash(hash_tfm);
469 kfree(salt);
470 return err;
471}
472
473static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
474 struct dm_crypt_request *dmreq)
475{
476 struct crypto_cipher *essiv_tfm = cc->iv_private;
477
478 memset(iv, 0, cc->iv_size);
479 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
480 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
481
482 return 0;
483}
484
485static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
486 const char *opts)
487{
488 unsigned bs;
489 int log;
490
491 if (test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags))
492 bs = crypto_aead_blocksize(any_tfm_aead(cc));
493 else
494 bs = crypto_skcipher_blocksize(any_tfm(cc));
495 log = ilog2(bs);
496
497 /* we need to calculate how far we must shift the sector count
498 * to get the cipher block count, we use this shift in _gen */
499
500 if (1 << log != bs) {
501 ti->error = "cypher blocksize is not a power of 2";
502 return -EINVAL;
503 }
504
505 if (log > 9) {
506 ti->error = "cypher blocksize is > 512";
507 return -EINVAL;
508 }
509
510 cc->iv_gen_private.benbi.shift = 9 - log;
511
512 return 0;
513}
514
515static void crypt_iv_benbi_dtr(struct crypt_config *cc)
516{
517}
518
519static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
520 struct dm_crypt_request *dmreq)
521{
522 __be64 val;
523
524 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
525
526 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
527 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
528
529 return 0;
530}
531
532static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
533 struct dm_crypt_request *dmreq)
534{
535 memset(iv, 0, cc->iv_size);
536
537 return 0;
538}
539
540static void crypt_iv_lmk_dtr(struct crypt_config *cc)
541{
542 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
543
544 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
545 crypto_free_shash(lmk->hash_tfm);
546 lmk->hash_tfm = NULL;
547
548 kzfree(lmk->seed);
549 lmk->seed = NULL;
550}
551
552static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
553 const char *opts)
554{
555 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
556
557 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
558 ti->error = "Unsupported sector size for LMK";
559 return -EINVAL;
560 }
561
562 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
563 if (IS_ERR(lmk->hash_tfm)) {
564 ti->error = "Error initializing LMK hash";
565 return PTR_ERR(lmk->hash_tfm);
566 }
567
568 /* No seed in LMK version 2 */
569 if (cc->key_parts == cc->tfms_count) {
570 lmk->seed = NULL;
571 return 0;
572 }
573
574 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
575 if (!lmk->seed) {
576 crypt_iv_lmk_dtr(cc);
577 ti->error = "Error kmallocing seed storage in LMK";
578 return -ENOMEM;
579 }
580
581 return 0;
582}
583
584static int crypt_iv_lmk_init(struct crypt_config *cc)
585{
586 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
587 int subkey_size = cc->key_size / cc->key_parts;
588
589 /* LMK seed is on the position of LMK_KEYS + 1 key */
590 if (lmk->seed)
591 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
592 crypto_shash_digestsize(lmk->hash_tfm));
593
594 return 0;
595}
596
597static int crypt_iv_lmk_wipe(struct crypt_config *cc)
598{
599 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
600
601 if (lmk->seed)
602 memset(lmk->seed, 0, LMK_SEED_SIZE);
603
604 return 0;
605}
606
607static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
608 struct dm_crypt_request *dmreq,
609 u8 *data)
610{
611 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
612 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
613 struct md5_state md5state;
614 __le32 buf[4];
615 int i, r;
616
617 desc->tfm = lmk->hash_tfm;
618 desc->flags = 0;
619
620 r = crypto_shash_init(desc);
621 if (r)
622 return r;
623
624 if (lmk->seed) {
625 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
626 if (r)
627 return r;
628 }
629
630 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
631 r = crypto_shash_update(desc, data + 16, 16 * 31);
632 if (r)
633 return r;
634
635 /* Sector is cropped to 56 bits here */
636 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
637 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
638 buf[2] = cpu_to_le32(4024);
639 buf[3] = 0;
640 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
641 if (r)
642 return r;
643
644 /* No MD5 padding here */
645 r = crypto_shash_export(desc, &md5state);
646 if (r)
647 return r;
648
649 for (i = 0; i < MD5_HASH_WORDS; i++)
650 __cpu_to_le32s(&md5state.hash[i]);
651 memcpy(iv, &md5state.hash, cc->iv_size);
652
653 return 0;
654}
655
656static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
657 struct dm_crypt_request *dmreq)
658{
659 struct scatterlist *sg;
660 u8 *src;
661 int r = 0;
662
663 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
664 sg = crypt_get_sg_data(cc, dmreq->sg_in);
665 src = kmap_atomic(sg_page(sg));
666 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
667 kunmap_atomic(src);
668 } else
669 memset(iv, 0, cc->iv_size);
670
671 return r;
672}
673
674static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
675 struct dm_crypt_request *dmreq)
676{
677 struct scatterlist *sg;
678 u8 *dst;
679 int r;
680
681 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
682 return 0;
683
684 sg = crypt_get_sg_data(cc, dmreq->sg_out);
685 dst = kmap_atomic(sg_page(sg));
686 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
687
688 /* Tweak the first block of plaintext sector */
689 if (!r)
690 crypto_xor(dst + sg->offset, iv, cc->iv_size);
691
692 kunmap_atomic(dst);
693 return r;
694}
695
696static void crypt_iv_tcw_dtr(struct crypt_config *cc)
697{
698 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
699
700 kzfree(tcw->iv_seed);
701 tcw->iv_seed = NULL;
702 kzfree(tcw->whitening);
703 tcw->whitening = NULL;
704
705 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
706 crypto_free_shash(tcw->crc32_tfm);
707 tcw->crc32_tfm = NULL;
708}
709
710static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
711 const char *opts)
712{
713 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
714
715 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
716 ti->error = "Unsupported sector size for TCW";
717 return -EINVAL;
718 }
719
720 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
721 ti->error = "Wrong key size for TCW";
722 return -EINVAL;
723 }
724
725 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
726 if (IS_ERR(tcw->crc32_tfm)) {
727 ti->error = "Error initializing CRC32 in TCW";
728 return PTR_ERR(tcw->crc32_tfm);
729 }
730
731 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
732 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
733 if (!tcw->iv_seed || !tcw->whitening) {
734 crypt_iv_tcw_dtr(cc);
735 ti->error = "Error allocating seed storage in TCW";
736 return -ENOMEM;
737 }
738
739 return 0;
740}
741
742static int crypt_iv_tcw_init(struct crypt_config *cc)
743{
744 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
745 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
746
747 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
748 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
749 TCW_WHITENING_SIZE);
750
751 return 0;
752}
753
754static int crypt_iv_tcw_wipe(struct crypt_config *cc)
755{
756 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
757
758 memset(tcw->iv_seed, 0, cc->iv_size);
759 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
760
761 return 0;
762}
763
764static int crypt_iv_tcw_whitening(struct crypt_config *cc,
765 struct dm_crypt_request *dmreq,
766 u8 *data)
767{
768 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
769 __le64 sector = cpu_to_le64(dmreq->iv_sector);
770 u8 buf[TCW_WHITENING_SIZE];
771 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
772 int i, r;
773
774 /* xor whitening with sector number */
775 crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
776 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
777
778 /* calculate crc32 for every 32bit part and xor it */
779 desc->tfm = tcw->crc32_tfm;
780 desc->flags = 0;
781 for (i = 0; i < 4; i++) {
782 r = crypto_shash_init(desc);
783 if (r)
784 goto out;
785 r = crypto_shash_update(desc, &buf[i * 4], 4);
786 if (r)
787 goto out;
788 r = crypto_shash_final(desc, &buf[i * 4]);
789 if (r)
790 goto out;
791 }
792 crypto_xor(&buf[0], &buf[12], 4);
793 crypto_xor(&buf[4], &buf[8], 4);
794
795 /* apply whitening (8 bytes) to whole sector */
796 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
797 crypto_xor(data + i * 8, buf, 8);
798out:
799 memzero_explicit(buf, sizeof(buf));
800 return r;
801}
802
803static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
804 struct dm_crypt_request *dmreq)
805{
806 struct scatterlist *sg;
807 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
808 __le64 sector = cpu_to_le64(dmreq->iv_sector);
809 u8 *src;
810 int r = 0;
811
812 /* Remove whitening from ciphertext */
813 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
814 sg = crypt_get_sg_data(cc, dmreq->sg_in);
815 src = kmap_atomic(sg_page(sg));
816 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
817 kunmap_atomic(src);
818 }
819
820 /* Calculate IV */
821 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
822 if (cc->iv_size > 8)
823 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
824 cc->iv_size - 8);
825
826 return r;
827}
828
829static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
830 struct dm_crypt_request *dmreq)
831{
832 struct scatterlist *sg;
833 u8 *dst;
834 int r;
835
836 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
837 return 0;
838
839 /* Apply whitening on ciphertext */
840 sg = crypt_get_sg_data(cc, dmreq->sg_out);
841 dst = kmap_atomic(sg_page(sg));
842 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
843 kunmap_atomic(dst);
844
845 return r;
846}
847
848static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
849 struct dm_crypt_request *dmreq)
850{
851 /* Used only for writes, there must be an additional space to store IV */
852 get_random_bytes(iv, cc->iv_size);
853 return 0;
854}
855
856static const struct crypt_iv_operations crypt_iv_plain_ops = {
857 .generator = crypt_iv_plain_gen
858};
859
860static const struct crypt_iv_operations crypt_iv_plain64_ops = {
861 .generator = crypt_iv_plain64_gen
862};
863
864static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
865 .generator = crypt_iv_plain64be_gen
866};
867
868static const struct crypt_iv_operations crypt_iv_essiv_ops = {
869 .ctr = crypt_iv_essiv_ctr,
870 .dtr = crypt_iv_essiv_dtr,
871 .init = crypt_iv_essiv_init,
872 .wipe = crypt_iv_essiv_wipe,
873 .generator = crypt_iv_essiv_gen
874};
875
876static const struct crypt_iv_operations crypt_iv_benbi_ops = {
877 .ctr = crypt_iv_benbi_ctr,
878 .dtr = crypt_iv_benbi_dtr,
879 .generator = crypt_iv_benbi_gen
880};
881
882static const struct crypt_iv_operations crypt_iv_null_ops = {
883 .generator = crypt_iv_null_gen
884};
885
886static const struct crypt_iv_operations crypt_iv_lmk_ops = {
887 .ctr = crypt_iv_lmk_ctr,
888 .dtr = crypt_iv_lmk_dtr,
889 .init = crypt_iv_lmk_init,
890 .wipe = crypt_iv_lmk_wipe,
891 .generator = crypt_iv_lmk_gen,
892 .post = crypt_iv_lmk_post
893};
894
895static const struct crypt_iv_operations crypt_iv_tcw_ops = {
896 .ctr = crypt_iv_tcw_ctr,
897 .dtr = crypt_iv_tcw_dtr,
898 .init = crypt_iv_tcw_init,
899 .wipe = crypt_iv_tcw_wipe,
900 .generator = crypt_iv_tcw_gen,
901 .post = crypt_iv_tcw_post
902};
903
904static struct crypt_iv_operations crypt_iv_random_ops = {
905 .generator = crypt_iv_random_gen
906};
907
908/*
909 * Integrity extensions
910 */
911static bool crypt_integrity_aead(struct crypt_config *cc)
912{
913 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
914}
915
916static bool crypt_integrity_hmac(struct crypt_config *cc)
917{
918 return crypt_integrity_aead(cc) && cc->key_mac_size;
919}
920
921/* Get sg containing data */
922static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
923 struct scatterlist *sg)
924{
925 if (unlikely(crypt_integrity_aead(cc)))
926 return &sg[2];
927
928 return sg;
929}
930
931static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
932{
933 struct bio_integrity_payload *bip;
934 unsigned int tag_len;
935 int ret;
936
937 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
938 return 0;
939
940 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
941 if (IS_ERR(bip))
942 return PTR_ERR(bip);
943
944 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
945
946 bip->bip_iter.bi_size = tag_len;
947 bip->bip_iter.bi_sector = io->cc->start + io->sector;
948
949 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
950 tag_len, offset_in_page(io->integrity_metadata));
951 if (unlikely(ret != tag_len))
952 return -ENOMEM;
953
954 return 0;
955}
956
957static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
958{
959#ifdef CONFIG_BLK_DEV_INTEGRITY
960 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
961
962 /* From now we require underlying device with our integrity profile */
963 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
964 ti->error = "Integrity profile not supported.";
965 return -EINVAL;
966 }
967
968 if (bi->tag_size != cc->on_disk_tag_size ||
969 bi->tuple_size != cc->on_disk_tag_size) {
970 ti->error = "Integrity profile tag size mismatch.";
971 return -EINVAL;
972 }
973 if (1 << bi->interval_exp != cc->sector_size) {
974 ti->error = "Integrity profile sector size mismatch.";
975 return -EINVAL;
976 }
977
978 if (crypt_integrity_aead(cc)) {
979 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
980 DMINFO("Integrity AEAD, tag size %u, IV size %u.",
981 cc->integrity_tag_size, cc->integrity_iv_size);
982
983 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
984 ti->error = "Integrity AEAD auth tag size is not supported.";
985 return -EINVAL;
986 }
987 } else if (cc->integrity_iv_size)
988 DMINFO("Additional per-sector space %u bytes for IV.",
989 cc->integrity_iv_size);
990
991 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
992 ti->error = "Not enough space for integrity tag in the profile.";
993 return -EINVAL;
994 }
995
996 return 0;
997#else
998 ti->error = "Integrity profile not supported.";
999 return -EINVAL;
1000#endif
1001}
1002
1003static void crypt_convert_init(struct crypt_config *cc,
1004 struct convert_context *ctx,
1005 struct bio *bio_out, struct bio *bio_in,
1006 sector_t sector)
1007{
1008 ctx->bio_in = bio_in;
1009 ctx->bio_out = bio_out;
1010 if (bio_in)
1011 ctx->iter_in = bio_in->bi_iter;
1012 if (bio_out)
1013 ctx->iter_out = bio_out->bi_iter;
1014 ctx->cc_sector = sector + cc->iv_offset;
1015 init_completion(&ctx->restart);
1016}
1017
1018static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1019 void *req)
1020{
1021 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1022}
1023
1024static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1025{
1026 return (void *)((char *)dmreq - cc->dmreq_start);
1027}
1028
1029static u8 *iv_of_dmreq(struct crypt_config *cc,
1030 struct dm_crypt_request *dmreq)
1031{
1032 if (crypt_integrity_aead(cc))
1033 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1034 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1035 else
1036 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1037 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1038}
1039
1040static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1041 struct dm_crypt_request *dmreq)
1042{
1043 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1044}
1045
1046static uint64_t *org_sector_of_dmreq(struct crypt_config *cc,
1047 struct dm_crypt_request *dmreq)
1048{
1049 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1050 return (uint64_t*) ptr;
1051}
1052
1053static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1054 struct dm_crypt_request *dmreq)
1055{
1056 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1057 cc->iv_size + sizeof(uint64_t);
1058 return (unsigned int*)ptr;
1059}
1060
1061static void *tag_from_dmreq(struct crypt_config *cc,
1062 struct dm_crypt_request *dmreq)
1063{
1064 struct convert_context *ctx = dmreq->ctx;
1065 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1066
1067 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1068 cc->on_disk_tag_size];
1069}
1070
1071static void *iv_tag_from_dmreq(struct crypt_config *cc,
1072 struct dm_crypt_request *dmreq)
1073{
1074 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1075}
1076
1077static int crypt_convert_block_aead(struct crypt_config *cc,
1078 struct convert_context *ctx,
1079 struct aead_request *req,
1080 unsigned int tag_offset)
1081{
1082 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1083 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1084 struct dm_crypt_request *dmreq;
1085 u8 *iv, *org_iv, *tag_iv, *tag;
1086 uint64_t *sector;
1087 int r = 0;
1088
1089 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1090
1091 /* Reject unexpected unaligned bio. */
1092 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1093 return -EIO;
1094
1095 dmreq = dmreq_of_req(cc, req);
1096 dmreq->iv_sector = ctx->cc_sector;
1097 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1098 dmreq->iv_sector >>= cc->sector_shift;
1099 dmreq->ctx = ctx;
1100
1101 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1102
1103 sector = org_sector_of_dmreq(cc, dmreq);
1104 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1105
1106 iv = iv_of_dmreq(cc, dmreq);
1107 org_iv = org_iv_of_dmreq(cc, dmreq);
1108 tag = tag_from_dmreq(cc, dmreq);
1109 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1110
1111 /* AEAD request:
1112 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1113 * | (authenticated) | (auth+encryption) | |
1114 * | sector_LE | IV | sector in/out | tag in/out |
1115 */
1116 sg_init_table(dmreq->sg_in, 4);
1117 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1118 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1119 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1120 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1121
1122 sg_init_table(dmreq->sg_out, 4);
1123 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1124 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1125 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1126 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1127
1128 if (cc->iv_gen_ops) {
1129 /* For READs use IV stored in integrity metadata */
1130 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1131 memcpy(org_iv, tag_iv, cc->iv_size);
1132 } else {
1133 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1134 if (r < 0)
1135 return r;
1136 /* Store generated IV in integrity metadata */
1137 if (cc->integrity_iv_size)
1138 memcpy(tag_iv, org_iv, cc->iv_size);
1139 }
1140 /* Working copy of IV, to be modified in crypto API */
1141 memcpy(iv, org_iv, cc->iv_size);
1142 }
1143
1144 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1145 if (bio_data_dir(ctx->bio_in) == WRITE) {
1146 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1147 cc->sector_size, iv);
1148 r = crypto_aead_encrypt(req);
1149 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1150 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1151 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1152 } else {
1153 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1154 cc->sector_size + cc->integrity_tag_size, iv);
1155 r = crypto_aead_decrypt(req);
1156 }
1157
1158 if (r == -EBADMSG)
1159 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1160 (unsigned long long)le64_to_cpu(*sector));
1161
1162 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1163 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1164
1165 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1166 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1167
1168 return r;
1169}
1170
1171static int crypt_convert_block_skcipher(struct crypt_config *cc,
1172 struct convert_context *ctx,
1173 struct skcipher_request *req,
1174 unsigned int tag_offset)
1175{
1176 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1177 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1178 struct scatterlist *sg_in, *sg_out;
1179 struct dm_crypt_request *dmreq;
1180 u8 *iv, *org_iv, *tag_iv;
1181 uint64_t *sector;
1182 int r = 0;
1183
1184 /* Reject unexpected unaligned bio. */
1185 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1186 return -EIO;
1187
1188 dmreq = dmreq_of_req(cc, req);
1189 dmreq->iv_sector = ctx->cc_sector;
1190 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1191 dmreq->iv_sector >>= cc->sector_shift;
1192 dmreq->ctx = ctx;
1193
1194 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1195
1196 iv = iv_of_dmreq(cc, dmreq);
1197 org_iv = org_iv_of_dmreq(cc, dmreq);
1198 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1199
1200 sector = org_sector_of_dmreq(cc, dmreq);
1201 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1202
1203 /* For skcipher we use only the first sg item */
1204 sg_in = &dmreq->sg_in[0];
1205 sg_out = &dmreq->sg_out[0];
1206
1207 sg_init_table(sg_in, 1);
1208 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1209
1210 sg_init_table(sg_out, 1);
1211 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1212
1213 if (cc->iv_gen_ops) {
1214 /* For READs use IV stored in integrity metadata */
1215 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1216 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1217 } else {
1218 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1219 if (r < 0)
1220 return r;
1221 /* Store generated IV in integrity metadata */
1222 if (cc->integrity_iv_size)
1223 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1224 }
1225 /* Working copy of IV, to be modified in crypto API */
1226 memcpy(iv, org_iv, cc->iv_size);
1227 }
1228
1229 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1230
1231 if (bio_data_dir(ctx->bio_in) == WRITE)
1232 r = crypto_skcipher_encrypt(req);
1233 else
1234 r = crypto_skcipher_decrypt(req);
1235
1236 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1237 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1238
1239 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1240 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1241
1242 return r;
1243}
1244
1245static void kcryptd_async_done(struct crypto_async_request *async_req,
1246 int error);
1247
1248static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1249 struct convert_context *ctx)
1250{
1251 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1252
1253 if (!ctx->r.req)
1254 ctx->r.req = mempool_alloc(cc->req_pool, GFP_NOIO);
1255
1256 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1257
1258 /*
1259 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1260 * requests if driver request queue is full.
1261 */
1262 skcipher_request_set_callback(ctx->r.req,
1263 CRYPTO_TFM_REQ_MAY_BACKLOG,
1264 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1265}
1266
1267static void crypt_alloc_req_aead(struct crypt_config *cc,
1268 struct convert_context *ctx)
1269{
1270 if (!ctx->r.req_aead)
1271 ctx->r.req_aead = mempool_alloc(cc->req_pool, GFP_NOIO);
1272
1273 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1274
1275 /*
1276 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1277 * requests if driver request queue is full.
1278 */
1279 aead_request_set_callback(ctx->r.req_aead,
1280 CRYPTO_TFM_REQ_MAY_BACKLOG,
1281 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1282}
1283
1284static void crypt_alloc_req(struct crypt_config *cc,
1285 struct convert_context *ctx)
1286{
1287 if (crypt_integrity_aead(cc))
1288 crypt_alloc_req_aead(cc, ctx);
1289 else
1290 crypt_alloc_req_skcipher(cc, ctx);
1291}
1292
1293static void crypt_free_req_skcipher(struct crypt_config *cc,
1294 struct skcipher_request *req, struct bio *base_bio)
1295{
1296 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1297
1298 if ((struct skcipher_request *)(io + 1) != req)
1299 mempool_free(req, cc->req_pool);
1300}
1301
1302static void crypt_free_req_aead(struct crypt_config *cc,
1303 struct aead_request *req, struct bio *base_bio)
1304{
1305 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1306
1307 if ((struct aead_request *)(io + 1) != req)
1308 mempool_free(req, cc->req_pool);
1309}
1310
1311static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1312{
1313 if (crypt_integrity_aead(cc))
1314 crypt_free_req_aead(cc, req, base_bio);
1315 else
1316 crypt_free_req_skcipher(cc, req, base_bio);
1317}
1318
1319/*
1320 * Encrypt / decrypt data from one bio to another one (can be the same one)
1321 */
1322static blk_status_t crypt_convert(struct crypt_config *cc,
1323 struct convert_context *ctx)
1324{
1325 unsigned int tag_offset = 0;
1326 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1327 int r;
1328
1329 atomic_set(&ctx->cc_pending, 1);
1330
1331 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1332
1333 crypt_alloc_req(cc, ctx);
1334 atomic_inc(&ctx->cc_pending);
1335
1336 if (crypt_integrity_aead(cc))
1337 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1338 else
1339 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1340
1341 switch (r) {
1342 /*
1343 * The request was queued by a crypto driver
1344 * but the driver request queue is full, let's wait.
1345 */
1346 case -EBUSY:
1347 wait_for_completion(&ctx->restart);
1348 reinit_completion(&ctx->restart);
1349 /* fall through */
1350 /*
1351 * The request is queued and processed asynchronously,
1352 * completion function kcryptd_async_done() will be called.
1353 */
1354 case -EINPROGRESS:
1355 ctx->r.req = NULL;
1356 ctx->cc_sector += sector_step;
1357 tag_offset++;
1358 continue;
1359 /*
1360 * The request was already processed (synchronously).
1361 */
1362 case 0:
1363 atomic_dec(&ctx->cc_pending);
1364 ctx->cc_sector += sector_step;
1365 tag_offset++;
1366 cond_resched();
1367 continue;
1368 /*
1369 * There was a data integrity error.
1370 */
1371 case -EBADMSG:
1372 atomic_dec(&ctx->cc_pending);
1373 return BLK_STS_PROTECTION;
1374 /*
1375 * There was an error while processing the request.
1376 */
1377 default:
1378 atomic_dec(&ctx->cc_pending);
1379 return BLK_STS_IOERR;
1380 }
1381 }
1382
1383 return 0;
1384}
1385
1386static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1387
1388/*
1389 * Generate a new unfragmented bio with the given size
1390 * This should never violate the device limitations (but only because
1391 * max_segment_size is being constrained to PAGE_SIZE).
1392 *
1393 * This function may be called concurrently. If we allocate from the mempool
1394 * concurrently, there is a possibility of deadlock. For example, if we have
1395 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1396 * the mempool concurrently, it may deadlock in a situation where both processes
1397 * have allocated 128 pages and the mempool is exhausted.
1398 *
1399 * In order to avoid this scenario we allocate the pages under a mutex.
1400 *
1401 * In order to not degrade performance with excessive locking, we try
1402 * non-blocking allocations without a mutex first but on failure we fallback
1403 * to blocking allocations with a mutex.
1404 */
1405static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1406{
1407 struct crypt_config *cc = io->cc;
1408 struct bio *clone;
1409 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1410 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1411 unsigned i, len, remaining_size;
1412 struct page *page;
1413
1414retry:
1415 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1416 mutex_lock(&cc->bio_alloc_lock);
1417
1418 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1419 if (!clone)
1420 goto out;
1421
1422 clone_init(io, clone);
1423
1424 remaining_size = size;
1425
1426 for (i = 0; i < nr_iovecs; i++) {
1427 page = mempool_alloc(cc->page_pool, gfp_mask);
1428 if (!page) {
1429 crypt_free_buffer_pages(cc, clone);
1430 bio_put(clone);
1431 gfp_mask |= __GFP_DIRECT_RECLAIM;
1432 goto retry;
1433 }
1434
1435 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1436
1437 bio_add_page(clone, page, len, 0);
1438
1439 remaining_size -= len;
1440 }
1441
1442 /* Allocate space for integrity tags */
1443 if (dm_crypt_integrity_io_alloc(io, clone)) {
1444 crypt_free_buffer_pages(cc, clone);
1445 bio_put(clone);
1446 clone = NULL;
1447 }
1448out:
1449 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1450 mutex_unlock(&cc->bio_alloc_lock);
1451
1452 return clone;
1453}
1454
1455static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1456{
1457 unsigned int i;
1458 struct bio_vec *bv;
1459
1460 bio_for_each_segment_all(bv, clone, i) {
1461 BUG_ON(!bv->bv_page);
1462 mempool_free(bv->bv_page, cc->page_pool);
1463 bv->bv_page = NULL;
1464 }
1465}
1466
1467static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1468 struct bio *bio, sector_t sector)
1469{
1470 io->cc = cc;
1471 io->base_bio = bio;
1472 io->sector = sector;
1473 io->error = 0;
1474 io->ctx.r.req = NULL;
1475 io->integrity_metadata = NULL;
1476 io->integrity_metadata_from_pool = false;
1477 atomic_set(&io->io_pending, 0);
1478}
1479
1480static void crypt_inc_pending(struct dm_crypt_io *io)
1481{
1482 atomic_inc(&io->io_pending);
1483}
1484
1485/*
1486 * One of the bios was finished. Check for completion of
1487 * the whole request and correctly clean up the buffer.
1488 */
1489static void crypt_dec_pending(struct dm_crypt_io *io)
1490{
1491 struct crypt_config *cc = io->cc;
1492 struct bio *base_bio = io->base_bio;
1493 blk_status_t error = io->error;
1494
1495 if (!atomic_dec_and_test(&io->io_pending))
1496 return;
1497
1498 if (io->ctx.r.req)
1499 crypt_free_req(cc, io->ctx.r.req, base_bio);
1500
1501 if (unlikely(io->integrity_metadata_from_pool))
1502 mempool_free(io->integrity_metadata, io->cc->tag_pool);
1503 else
1504 kfree(io->integrity_metadata);
1505
1506 base_bio->bi_status = error;
1507 bio_endio(base_bio);
1508}
1509
1510/*
1511 * kcryptd/kcryptd_io:
1512 *
1513 * Needed because it would be very unwise to do decryption in an
1514 * interrupt context.
1515 *
1516 * kcryptd performs the actual encryption or decryption.
1517 *
1518 * kcryptd_io performs the IO submission.
1519 *
1520 * They must be separated as otherwise the final stages could be
1521 * starved by new requests which can block in the first stages due
1522 * to memory allocation.
1523 *
1524 * The work is done per CPU global for all dm-crypt instances.
1525 * They should not depend on each other and do not block.
1526 */
1527static void crypt_endio(struct bio *clone)
1528{
1529 struct dm_crypt_io *io = clone->bi_private;
1530 struct crypt_config *cc = io->cc;
1531 unsigned rw = bio_data_dir(clone);
1532 blk_status_t error;
1533
1534 /*
1535 * free the processed pages
1536 */
1537 if (rw == WRITE)
1538 crypt_free_buffer_pages(cc, clone);
1539
1540 error = clone->bi_status;
1541 bio_put(clone);
1542
1543 if (rw == READ && !error) {
1544 kcryptd_queue_crypt(io);
1545 return;
1546 }
1547
1548 if (unlikely(error))
1549 io->error = error;
1550
1551 crypt_dec_pending(io);
1552}
1553
1554static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1555{
1556 struct crypt_config *cc = io->cc;
1557
1558 clone->bi_private = io;
1559 clone->bi_end_io = crypt_endio;
1560 bio_set_dev(clone, cc->dev->bdev);
1561 clone->bi_opf = io->base_bio->bi_opf;
1562}
1563
1564static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1565{
1566 struct crypt_config *cc = io->cc;
1567 struct bio *clone;
1568
1569 /*
1570 * We need the original biovec array in order to decrypt
1571 * the whole bio data *afterwards* -- thanks to immutable
1572 * biovecs we don't need to worry about the block layer
1573 * modifying the biovec array; so leverage bio_clone_fast().
1574 */
1575 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1576 if (!clone)
1577 return 1;
1578
1579 crypt_inc_pending(io);
1580
1581 clone_init(io, clone);
1582 clone->bi_iter.bi_sector = cc->start + io->sector;
1583
1584 if (dm_crypt_integrity_io_alloc(io, clone)) {
1585 crypt_dec_pending(io);
1586 bio_put(clone);
1587 return 1;
1588 }
1589
1590 generic_make_request(clone);
1591 return 0;
1592}
1593
1594static void kcryptd_io_read_work(struct work_struct *work)
1595{
1596 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1597
1598 crypt_inc_pending(io);
1599 if (kcryptd_io_read(io, GFP_NOIO))
1600 io->error = BLK_STS_RESOURCE;
1601 crypt_dec_pending(io);
1602}
1603
1604static void kcryptd_queue_read(struct dm_crypt_io *io)
1605{
1606 struct crypt_config *cc = io->cc;
1607
1608 INIT_WORK(&io->work, kcryptd_io_read_work);
1609 queue_work(cc->io_queue, &io->work);
1610}
1611
1612static void kcryptd_io_write(struct dm_crypt_io *io)
1613{
1614 struct bio *clone = io->ctx.bio_out;
1615
1616 generic_make_request(clone);
1617}
1618
1619#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1620
1621static int dmcrypt_write(void *data)
1622{
1623 struct crypt_config *cc = data;
1624 struct dm_crypt_io *io;
1625
1626 while (1) {
1627 struct rb_root write_tree;
1628 struct blk_plug plug;
1629
1630 DECLARE_WAITQUEUE(wait, current);
1631
1632 spin_lock_irq(&cc->write_thread_wait.lock);
1633continue_locked:
1634
1635 if (!RB_EMPTY_ROOT(&cc->write_tree))
1636 goto pop_from_list;
1637
1638 set_current_state(TASK_INTERRUPTIBLE);
1639 __add_wait_queue(&cc->write_thread_wait, &wait);
1640
1641 spin_unlock_irq(&cc->write_thread_wait.lock);
1642
1643 if (unlikely(kthread_should_stop())) {
1644 set_current_state(TASK_RUNNING);
1645 remove_wait_queue(&cc->write_thread_wait, &wait);
1646 break;
1647 }
1648
1649 schedule();
1650
1651 set_current_state(TASK_RUNNING);
1652 spin_lock_irq(&cc->write_thread_wait.lock);
1653 __remove_wait_queue(&cc->write_thread_wait, &wait);
1654 goto continue_locked;
1655
1656pop_from_list:
1657 write_tree = cc->write_tree;
1658 cc->write_tree = RB_ROOT;
1659 spin_unlock_irq(&cc->write_thread_wait.lock);
1660
1661 BUG_ON(rb_parent(write_tree.rb_node));
1662
1663 /*
1664 * Note: we cannot walk the tree here with rb_next because
1665 * the structures may be freed when kcryptd_io_write is called.
1666 */
1667 blk_start_plug(&plug);
1668 do {
1669 io = crypt_io_from_node(rb_first(&write_tree));
1670 rb_erase(&io->rb_node, &write_tree);
1671 kcryptd_io_write(io);
1672 } while (!RB_EMPTY_ROOT(&write_tree));
1673 blk_finish_plug(&plug);
1674 }
1675 return 0;
1676}
1677
1678static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1679{
1680 struct bio *clone = io->ctx.bio_out;
1681 struct crypt_config *cc = io->cc;
1682 unsigned long flags;
1683 sector_t sector;
1684 struct rb_node **rbp, *parent;
1685
1686 if (unlikely(io->error)) {
1687 crypt_free_buffer_pages(cc, clone);
1688 bio_put(clone);
1689 crypt_dec_pending(io);
1690 return;
1691 }
1692
1693 /* crypt_convert should have filled the clone bio */
1694 BUG_ON(io->ctx.iter_out.bi_size);
1695
1696 clone->bi_iter.bi_sector = cc->start + io->sector;
1697
1698 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1699 generic_make_request(clone);
1700 return;
1701 }
1702
1703 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1704 rbp = &cc->write_tree.rb_node;
1705 parent = NULL;
1706 sector = io->sector;
1707 while (*rbp) {
1708 parent = *rbp;
1709 if (sector < crypt_io_from_node(parent)->sector)
1710 rbp = &(*rbp)->rb_left;
1711 else
1712 rbp = &(*rbp)->rb_right;
1713 }
1714 rb_link_node(&io->rb_node, parent, rbp);
1715 rb_insert_color(&io->rb_node, &cc->write_tree);
1716
1717 wake_up_locked(&cc->write_thread_wait);
1718 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1719}
1720
1721static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1722{
1723 struct crypt_config *cc = io->cc;
1724 struct bio *clone;
1725 int crypt_finished;
1726 sector_t sector = io->sector;
1727 blk_status_t r;
1728
1729 /*
1730 * Prevent io from disappearing until this function completes.
1731 */
1732 crypt_inc_pending(io);
1733 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1734
1735 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1736 if (unlikely(!clone)) {
1737 io->error = BLK_STS_IOERR;
1738 goto dec;
1739 }
1740
1741 io->ctx.bio_out = clone;
1742 io->ctx.iter_out = clone->bi_iter;
1743
1744 sector += bio_sectors(clone);
1745
1746 crypt_inc_pending(io);
1747 r = crypt_convert(cc, &io->ctx);
1748 if (r)
1749 io->error = r;
1750 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1751
1752 /* Encryption was already finished, submit io now */
1753 if (crypt_finished) {
1754 kcryptd_crypt_write_io_submit(io, 0);
1755 io->sector = sector;
1756 }
1757
1758dec:
1759 crypt_dec_pending(io);
1760}
1761
1762static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1763{
1764 crypt_dec_pending(io);
1765}
1766
1767static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1768{
1769 struct crypt_config *cc = io->cc;
1770 blk_status_t r;
1771
1772 crypt_inc_pending(io);
1773
1774 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1775 io->sector);
1776
1777 r = crypt_convert(cc, &io->ctx);
1778 if (r)
1779 io->error = r;
1780
1781 if (atomic_dec_and_test(&io->ctx.cc_pending))
1782 kcryptd_crypt_read_done(io);
1783
1784 crypt_dec_pending(io);
1785}
1786
1787static void kcryptd_async_done(struct crypto_async_request *async_req,
1788 int error)
1789{
1790 struct dm_crypt_request *dmreq = async_req->data;
1791 struct convert_context *ctx = dmreq->ctx;
1792 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1793 struct crypt_config *cc = io->cc;
1794
1795 /*
1796 * A request from crypto driver backlog is going to be processed now,
1797 * finish the completion and continue in crypt_convert().
1798 * (Callback will be called for the second time for this request.)
1799 */
1800 if (error == -EINPROGRESS) {
1801 complete(&ctx->restart);
1802 return;
1803 }
1804
1805 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1806 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1807
1808 if (error == -EBADMSG) {
1809 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1810 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1811 io->error = BLK_STS_PROTECTION;
1812 } else if (error < 0)
1813 io->error = BLK_STS_IOERR;
1814
1815 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1816
1817 if (!atomic_dec_and_test(&ctx->cc_pending))
1818 return;
1819
1820 if (bio_data_dir(io->base_bio) == READ)
1821 kcryptd_crypt_read_done(io);
1822 else
1823 kcryptd_crypt_write_io_submit(io, 1);
1824}
1825
1826static void kcryptd_crypt(struct work_struct *work)
1827{
1828 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1829
1830 if (bio_data_dir(io->base_bio) == READ)
1831 kcryptd_crypt_read_convert(io);
1832 else
1833 kcryptd_crypt_write_convert(io);
1834}
1835
1836static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1837{
1838 struct crypt_config *cc = io->cc;
1839
1840 INIT_WORK(&io->work, kcryptd_crypt);
1841 queue_work(cc->crypt_queue, &io->work);
1842}
1843
1844static void crypt_free_tfms_aead(struct crypt_config *cc)
1845{
1846 if (!cc->cipher_tfm.tfms_aead)
1847 return;
1848
1849 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1850 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1851 cc->cipher_tfm.tfms_aead[0] = NULL;
1852 }
1853
1854 kfree(cc->cipher_tfm.tfms_aead);
1855 cc->cipher_tfm.tfms_aead = NULL;
1856}
1857
1858static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1859{
1860 unsigned i;
1861
1862 if (!cc->cipher_tfm.tfms)
1863 return;
1864
1865 for (i = 0; i < cc->tfms_count; i++)
1866 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1867 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1868 cc->cipher_tfm.tfms[i] = NULL;
1869 }
1870
1871 kfree(cc->cipher_tfm.tfms);
1872 cc->cipher_tfm.tfms = NULL;
1873}
1874
1875static void crypt_free_tfms(struct crypt_config *cc)
1876{
1877 if (crypt_integrity_aead(cc))
1878 crypt_free_tfms_aead(cc);
1879 else
1880 crypt_free_tfms_skcipher(cc);
1881}
1882
1883static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1884{
1885 unsigned i;
1886 int err;
1887
1888 cc->cipher_tfm.tfms = kzalloc(cc->tfms_count *
1889 sizeof(struct crypto_skcipher *), GFP_KERNEL);
1890 if (!cc->cipher_tfm.tfms)
1891 return -ENOMEM;
1892
1893 for (i = 0; i < cc->tfms_count; i++) {
1894 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1895 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1896 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1897 crypt_free_tfms(cc);
1898 return err;
1899 }
1900 }
1901
1902 return 0;
1903}
1904
1905static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1906{
1907 int err;
1908
1909 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1910 if (!cc->cipher_tfm.tfms)
1911 return -ENOMEM;
1912
1913 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1914 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1915 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1916 crypt_free_tfms(cc);
1917 return err;
1918 }
1919
1920 return 0;
1921}
1922
1923static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1924{
1925 if (crypt_integrity_aead(cc))
1926 return crypt_alloc_tfms_aead(cc, ciphermode);
1927 else
1928 return crypt_alloc_tfms_skcipher(cc, ciphermode);
1929}
1930
1931static unsigned crypt_subkey_size(struct crypt_config *cc)
1932{
1933 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1934}
1935
1936static unsigned crypt_authenckey_size(struct crypt_config *cc)
1937{
1938 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
1939}
1940
1941/*
1942 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1943 * the key must be for some reason in special format.
1944 * This funcion converts cc->key to this special format.
1945 */
1946static void crypt_copy_authenckey(char *p, const void *key,
1947 unsigned enckeylen, unsigned authkeylen)
1948{
1949 struct crypto_authenc_key_param *param;
1950 struct rtattr *rta;
1951
1952 rta = (struct rtattr *)p;
1953 param = RTA_DATA(rta);
1954 param->enckeylen = cpu_to_be32(enckeylen);
1955 rta->rta_len = RTA_LENGTH(sizeof(*param));
1956 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
1957 p += RTA_SPACE(sizeof(*param));
1958 memcpy(p, key + enckeylen, authkeylen);
1959 p += authkeylen;
1960 memcpy(p, key, enckeylen);
1961}
1962
1963static int crypt_setkey(struct crypt_config *cc)
1964{
1965 unsigned subkey_size;
1966 int err = 0, i, r;
1967
1968 /* Ignore extra keys (which are used for IV etc) */
1969 subkey_size = crypt_subkey_size(cc);
1970
1971 if (crypt_integrity_hmac(cc)) {
1972 if (subkey_size < cc->key_mac_size)
1973 return -EINVAL;
1974
1975 crypt_copy_authenckey(cc->authenc_key, cc->key,
1976 subkey_size - cc->key_mac_size,
1977 cc->key_mac_size);
1978 }
1979
1980 for (i = 0; i < cc->tfms_count; i++) {
1981 if (crypt_integrity_hmac(cc))
1982 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1983 cc->authenc_key, crypt_authenckey_size(cc));
1984 else if (crypt_integrity_aead(cc))
1985 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
1986 cc->key + (i * subkey_size),
1987 subkey_size);
1988 else
1989 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
1990 cc->key + (i * subkey_size),
1991 subkey_size);
1992 if (r)
1993 err = r;
1994 }
1995
1996 if (crypt_integrity_hmac(cc))
1997 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
1998
1999 return err;
2000}
2001
2002#ifdef CONFIG_KEYS
2003
2004static bool contains_whitespace(const char *str)
2005{
2006 while (*str)
2007 if (isspace(*str++))
2008 return true;
2009 return false;
2010}
2011
2012static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2013{
2014 char *new_key_string, *key_desc;
2015 int ret;
2016 struct key *key;
2017 const struct user_key_payload *ukp;
2018
2019 /*
2020 * Reject key_string with whitespace. dm core currently lacks code for
2021 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2022 */
2023 if (contains_whitespace(key_string)) {
2024 DMERR("whitespace chars not allowed in key string");
2025 return -EINVAL;
2026 }
2027
2028 /* look for next ':' separating key_type from key_description */
2029 key_desc = strpbrk(key_string, ":");
2030 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2031 return -EINVAL;
2032
2033 if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2034 strncmp(key_string, "user:", key_desc - key_string + 1))
2035 return -EINVAL;
2036
2037 new_key_string = kstrdup(key_string, GFP_KERNEL);
2038 if (!new_key_string)
2039 return -ENOMEM;
2040
2041 key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2042 key_desc + 1, NULL);
2043 if (IS_ERR(key)) {
2044 kzfree(new_key_string);
2045 return PTR_ERR(key);
2046 }
2047
2048 down_read(&key->sem);
2049
2050 ukp = user_key_payload_locked(key);
2051 if (!ukp) {
2052 up_read(&key->sem);
2053 key_put(key);
2054 kzfree(new_key_string);
2055 return -EKEYREVOKED;
2056 }
2057
2058 if (cc->key_size != ukp->datalen) {
2059 up_read(&key->sem);
2060 key_put(key);
2061 kzfree(new_key_string);
2062 return -EINVAL;
2063 }
2064
2065 memcpy(cc->key, ukp->data, cc->key_size);
2066
2067 up_read(&key->sem);
2068 key_put(key);
2069
2070 /* clear the flag since following operations may invalidate previously valid key */
2071 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2072
2073 ret = crypt_setkey(cc);
2074
2075 if (!ret) {
2076 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2077 kzfree(cc->key_string);
2078 cc->key_string = new_key_string;
2079 } else
2080 kzfree(new_key_string);
2081
2082 return ret;
2083}
2084
2085static int get_key_size(char **key_string)
2086{
2087 char *colon, dummy;
2088 int ret;
2089
2090 if (*key_string[0] != ':')
2091 return strlen(*key_string) >> 1;
2092
2093 /* look for next ':' in key string */
2094 colon = strpbrk(*key_string + 1, ":");
2095 if (!colon)
2096 return -EINVAL;
2097
2098 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2099 return -EINVAL;
2100
2101 *key_string = colon;
2102
2103 /* remaining key string should be :<logon|user>:<key_desc> */
2104
2105 return ret;
2106}
2107
2108#else
2109
2110static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2111{
2112 return -EINVAL;
2113}
2114
2115static int get_key_size(char **key_string)
2116{
2117 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2118}
2119
2120#endif
2121
2122static int crypt_set_key(struct crypt_config *cc, char *key)
2123{
2124 int r = -EINVAL;
2125 int key_string_len = strlen(key);
2126
2127 /* Hyphen (which gives a key_size of zero) means there is no key. */
2128 if (!cc->key_size && strcmp(key, "-"))
2129 goto out;
2130
2131 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2132 if (key[0] == ':') {
2133 r = crypt_set_keyring_key(cc, key + 1);
2134 goto out;
2135 }
2136
2137 /* clear the flag since following operations may invalidate previously valid key */
2138 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2139
2140 /* wipe references to any kernel keyring key */
2141 kzfree(cc->key_string);
2142 cc->key_string = NULL;
2143
2144 /* Decode key from its hex representation. */
2145 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2146 goto out;
2147
2148 r = crypt_setkey(cc);
2149 if (!r)
2150 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2151
2152out:
2153 /* Hex key string not needed after here, so wipe it. */
2154 memset(key, '0', key_string_len);
2155
2156 return r;
2157}
2158
2159static int crypt_wipe_key(struct crypt_config *cc)
2160{
2161 int r;
2162
2163 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2164 get_random_bytes(&cc->key, cc->key_size);
2165 kzfree(cc->key_string);
2166 cc->key_string = NULL;
2167 r = crypt_setkey(cc);
2168 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2169
2170 return r;
2171}
2172
2173static void crypt_calculate_pages_per_client(void)
2174{
2175 unsigned long pages = (totalram_pages - totalhigh_pages) * DM_CRYPT_MEMORY_PERCENT / 100;
2176
2177 if (!dm_crypt_clients_n)
2178 return;
2179
2180 pages /= dm_crypt_clients_n;
2181 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2182 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2183 dm_crypt_pages_per_client = pages;
2184}
2185
2186static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2187{
2188 struct crypt_config *cc = pool_data;
2189 struct page *page;
2190
2191 if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2192 likely(gfp_mask & __GFP_NORETRY))
2193 return NULL;
2194
2195 page = alloc_page(gfp_mask);
2196 if (likely(page != NULL))
2197 percpu_counter_add(&cc->n_allocated_pages, 1);
2198
2199 return page;
2200}
2201
2202static void crypt_page_free(void *page, void *pool_data)
2203{
2204 struct crypt_config *cc = pool_data;
2205
2206 __free_page(page);
2207 percpu_counter_sub(&cc->n_allocated_pages, 1);
2208}
2209
2210static void crypt_dtr(struct dm_target *ti)
2211{
2212 struct crypt_config *cc = ti->private;
2213
2214 ti->private = NULL;
2215
2216 if (!cc)
2217 return;
2218
2219 if (cc->write_thread)
2220 kthread_stop(cc->write_thread);
2221
2222 if (cc->io_queue)
2223 destroy_workqueue(cc->io_queue);
2224 if (cc->crypt_queue)
2225 destroy_workqueue(cc->crypt_queue);
2226
2227 crypt_free_tfms(cc);
2228
2229 if (cc->bs)
2230 bioset_free(cc->bs);
2231
2232 mempool_destroy(cc->page_pool);
2233 mempool_destroy(cc->req_pool);
2234 mempool_destroy(cc->tag_pool);
2235
2236 if (cc->page_pool)
2237 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2238 percpu_counter_destroy(&cc->n_allocated_pages);
2239
2240 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2241 cc->iv_gen_ops->dtr(cc);
2242
2243 if (cc->dev)
2244 dm_put_device(ti, cc->dev);
2245
2246 kzfree(cc->cipher);
2247 kzfree(cc->cipher_string);
2248 kzfree(cc->key_string);
2249 kzfree(cc->cipher_auth);
2250 kzfree(cc->authenc_key);
2251
2252 /* Must zero key material before freeing */
2253 kzfree(cc);
2254
2255 spin_lock(&dm_crypt_clients_lock);
2256 WARN_ON(!dm_crypt_clients_n);
2257 dm_crypt_clients_n--;
2258 crypt_calculate_pages_per_client();
2259 spin_unlock(&dm_crypt_clients_lock);
2260}
2261
2262static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2263{
2264 struct crypt_config *cc = ti->private;
2265
2266 if (crypt_integrity_aead(cc))
2267 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2268 else
2269 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2270
2271 if (cc->iv_size)
2272 /* at least a 64 bit sector number should fit in our buffer */
2273 cc->iv_size = max(cc->iv_size,
2274 (unsigned int)(sizeof(u64) / sizeof(u8)));
2275 else if (ivmode) {
2276 DMWARN("Selected cipher does not support IVs");
2277 ivmode = NULL;
2278 }
2279
2280 /* Choose ivmode, see comments at iv code. */
2281 if (ivmode == NULL)
2282 cc->iv_gen_ops = NULL;
2283 else if (strcmp(ivmode, "plain") == 0)
2284 cc->iv_gen_ops = &crypt_iv_plain_ops;
2285 else if (strcmp(ivmode, "plain64") == 0)
2286 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2287 else if (strcmp(ivmode, "plain64be") == 0)
2288 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2289 else if (strcmp(ivmode, "essiv") == 0)
2290 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2291 else if (strcmp(ivmode, "benbi") == 0)
2292 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2293 else if (strcmp(ivmode, "null") == 0)
2294 cc->iv_gen_ops = &crypt_iv_null_ops;
2295 else if (strcmp(ivmode, "lmk") == 0) {
2296 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2297 /*
2298 * Version 2 and 3 is recognised according
2299 * to length of provided multi-key string.
2300 * If present (version 3), last key is used as IV seed.
2301 * All keys (including IV seed) are always the same size.
2302 */
2303 if (cc->key_size % cc->key_parts) {
2304 cc->key_parts++;
2305 cc->key_extra_size = cc->key_size / cc->key_parts;
2306 }
2307 } else if (strcmp(ivmode, "tcw") == 0) {
2308 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2309 cc->key_parts += 2; /* IV + whitening */
2310 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2311 } else if (strcmp(ivmode, "random") == 0) {
2312 cc->iv_gen_ops = &crypt_iv_random_ops;
2313 /* Need storage space in integrity fields. */
2314 cc->integrity_iv_size = cc->iv_size;
2315 } else {
2316 ti->error = "Invalid IV mode";
2317 return -EINVAL;
2318 }
2319
2320 return 0;
2321}
2322
2323/*
2324 * Workaround to parse cipher algorithm from crypto API spec.
2325 * The cc->cipher is currently used only in ESSIV.
2326 * This should be probably done by crypto-api calls (once available...)
2327 */
2328static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2329{
2330 const char *alg_name = NULL;
2331 char *start, *end;
2332
2333 if (crypt_integrity_aead(cc)) {
2334 alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2335 if (!alg_name)
2336 return -EINVAL;
2337 if (crypt_integrity_hmac(cc)) {
2338 alg_name = strchr(alg_name, ',');
2339 if (!alg_name)
2340 return -EINVAL;
2341 }
2342 alg_name++;
2343 } else {
2344 alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2345 if (!alg_name)
2346 return -EINVAL;
2347 }
2348
2349 start = strchr(alg_name, '(');
2350 end = strchr(alg_name, ')');
2351
2352 if (!start && !end) {
2353 cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2354 return cc->cipher ? 0 : -ENOMEM;
2355 }
2356
2357 if (!start || !end || ++start >= end)
2358 return -EINVAL;
2359
2360 cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2361 if (!cc->cipher)
2362 return -ENOMEM;
2363
2364 strncpy(cc->cipher, start, end - start);
2365
2366 return 0;
2367}
2368
2369/*
2370 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2371 * The HMAC is needed to calculate tag size (HMAC digest size).
2372 * This should be probably done by crypto-api calls (once available...)
2373 */
2374static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2375{
2376 char *start, *end, *mac_alg = NULL;
2377 struct crypto_ahash *mac;
2378
2379 if (!strstarts(cipher_api, "authenc("))
2380 return 0;
2381
2382 start = strchr(cipher_api, '(');
2383 end = strchr(cipher_api, ',');
2384 if (!start || !end || ++start > end)
2385 return -EINVAL;
2386
2387 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2388 if (!mac_alg)
2389 return -ENOMEM;
2390 strncpy(mac_alg, start, end - start);
2391
2392 mac = crypto_alloc_ahash(mac_alg, 0, 0);
2393 kfree(mac_alg);
2394
2395 if (IS_ERR(mac))
2396 return PTR_ERR(mac);
2397
2398 cc->key_mac_size = crypto_ahash_digestsize(mac);
2399 crypto_free_ahash(mac);
2400
2401 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2402 if (!cc->authenc_key)
2403 return -ENOMEM;
2404
2405 return 0;
2406}
2407
2408static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2409 char **ivmode, char **ivopts)
2410{
2411 struct crypt_config *cc = ti->private;
2412 char *tmp, *cipher_api;
2413 int ret = -EINVAL;
2414
2415 cc->tfms_count = 1;
2416
2417 /*
2418 * New format (capi: prefix)
2419 * capi:cipher_api_spec-iv:ivopts
2420 */
2421 tmp = &cipher_in[strlen("capi:")];
2422
2423 /* Separate IV options if present, it can contain another '-' in hash name */
2424 *ivopts = strrchr(tmp, ':');
2425 if (*ivopts) {
2426 **ivopts = '\0';
2427 (*ivopts)++;
2428 }
2429 /* Parse IV mode */
2430 *ivmode = strrchr(tmp, '-');
2431 if (*ivmode) {
2432 **ivmode = '\0';
2433 (*ivmode)++;
2434 }
2435 /* The rest is crypto API spec */
2436 cipher_api = tmp;
2437
2438 if (*ivmode && !strcmp(*ivmode, "lmk"))
2439 cc->tfms_count = 64;
2440
2441 cc->key_parts = cc->tfms_count;
2442
2443 /* Allocate cipher */
2444 ret = crypt_alloc_tfms(cc, cipher_api);
2445 if (ret < 0) {
2446 ti->error = "Error allocating crypto tfm";
2447 return ret;
2448 }
2449
2450 /* Alloc AEAD, can be used only in new format. */
2451 if (crypt_integrity_aead(cc)) {
2452 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2453 if (ret < 0) {
2454 ti->error = "Invalid AEAD cipher spec";
2455 return -ENOMEM;
2456 }
2457 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2458 } else
2459 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2460
2461 ret = crypt_ctr_blkdev_cipher(cc);
2462 if (ret < 0) {
2463 ti->error = "Cannot allocate cipher string";
2464 return -ENOMEM;
2465 }
2466
2467 return 0;
2468}
2469
2470static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2471 char **ivmode, char **ivopts)
2472{
2473 struct crypt_config *cc = ti->private;
2474 char *tmp, *cipher, *chainmode, *keycount;
2475 char *cipher_api = NULL;
2476 int ret = -EINVAL;
2477 char dummy;
2478
2479 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2480 ti->error = "Bad cipher specification";
2481 return -EINVAL;
2482 }
2483
2484 /*
2485 * Legacy dm-crypt cipher specification
2486 * cipher[:keycount]-mode-iv:ivopts
2487 */
2488 tmp = cipher_in;
2489 keycount = strsep(&tmp, "-");
2490 cipher = strsep(&keycount, ":");
2491
2492 if (!keycount)
2493 cc->tfms_count = 1;
2494 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2495 !is_power_of_2(cc->tfms_count)) {
2496 ti->error = "Bad cipher key count specification";
2497 return -EINVAL;
2498 }
2499 cc->key_parts = cc->tfms_count;
2500
2501 cc->cipher = kstrdup(cipher, GFP_KERNEL);
2502 if (!cc->cipher)
2503 goto bad_mem;
2504
2505 chainmode = strsep(&tmp, "-");
2506 *ivmode = strsep(&tmp, ":");
2507 *ivopts = tmp;
2508
2509 /*
2510 * For compatibility with the original dm-crypt mapping format, if
2511 * only the cipher name is supplied, use cbc-plain.
2512 */
2513 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2514 chainmode = "cbc";
2515 *ivmode = "plain";
2516 }
2517
2518 if (strcmp(chainmode, "ecb") && !*ivmode) {
2519 ti->error = "IV mechanism required";
2520 return -EINVAL;
2521 }
2522
2523 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2524 if (!cipher_api)
2525 goto bad_mem;
2526
2527 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2528 "%s(%s)", chainmode, cipher);
2529 if (ret < 0) {
2530 kfree(cipher_api);
2531 goto bad_mem;
2532 }
2533
2534 /* Allocate cipher */
2535 ret = crypt_alloc_tfms(cc, cipher_api);
2536 if (ret < 0) {
2537 ti->error = "Error allocating crypto tfm";
2538 kfree(cipher_api);
2539 return ret;
2540 }
2541 kfree(cipher_api);
2542
2543 return 0;
2544bad_mem:
2545 ti->error = "Cannot allocate cipher strings";
2546 return -ENOMEM;
2547}
2548
2549static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2550{
2551 struct crypt_config *cc = ti->private;
2552 char *ivmode = NULL, *ivopts = NULL;
2553 int ret;
2554
2555 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2556 if (!cc->cipher_string) {
2557 ti->error = "Cannot allocate cipher strings";
2558 return -ENOMEM;
2559 }
2560
2561 if (strstarts(cipher_in, "capi:"))
2562 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2563 else
2564 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2565 if (ret)
2566 return ret;
2567
2568 /* Initialize IV */
2569 ret = crypt_ctr_ivmode(ti, ivmode);
2570 if (ret < 0)
2571 return ret;
2572
2573 /* Initialize and set key */
2574 ret = crypt_set_key(cc, key);
2575 if (ret < 0) {
2576 ti->error = "Error decoding and setting key";
2577 return ret;
2578 }
2579
2580 /* Allocate IV */
2581 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2582 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2583 if (ret < 0) {
2584 ti->error = "Error creating IV";
2585 return ret;
2586 }
2587 }
2588
2589 /* Initialize IV (set keys for ESSIV etc) */
2590 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2591 ret = cc->iv_gen_ops->init(cc);
2592 if (ret < 0) {
2593 ti->error = "Error initialising IV";
2594 return ret;
2595 }
2596 }
2597
2598 /* wipe the kernel key payload copy */
2599 if (cc->key_string)
2600 memset(cc->key, 0, cc->key_size * sizeof(u8));
2601
2602 return ret;
2603}
2604
2605static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2606{
2607 struct crypt_config *cc = ti->private;
2608 struct dm_arg_set as;
2609 static const struct dm_arg _args[] = {
2610 {0, 6, "Invalid number of feature args"},
2611 };
2612 unsigned int opt_params, val;
2613 const char *opt_string, *sval;
2614 char dummy;
2615 int ret;
2616
2617 /* Optional parameters */
2618 as.argc = argc;
2619 as.argv = argv;
2620
2621 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2622 if (ret)
2623 return ret;
2624
2625 while (opt_params--) {
2626 opt_string = dm_shift_arg(&as);
2627 if (!opt_string) {
2628 ti->error = "Not enough feature arguments";
2629 return -EINVAL;
2630 }
2631
2632 if (!strcasecmp(opt_string, "allow_discards"))
2633 ti->num_discard_bios = 1;
2634
2635 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2636 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2637
2638 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2639 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2640 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2641 if (val == 0 || val > MAX_TAG_SIZE) {
2642 ti->error = "Invalid integrity arguments";
2643 return -EINVAL;
2644 }
2645 cc->on_disk_tag_size = val;
2646 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2647 if (!strcasecmp(sval, "aead")) {
2648 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2649 } else if (strcasecmp(sval, "none")) {
2650 ti->error = "Unknown integrity profile";
2651 return -EINVAL;
2652 }
2653
2654 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2655 if (!cc->cipher_auth)
2656 return -ENOMEM;
2657 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2658 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2659 cc->sector_size > 4096 ||
2660 (cc->sector_size & (cc->sector_size - 1))) {
2661 ti->error = "Invalid feature value for sector_size";
2662 return -EINVAL;
2663 }
2664 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2665 ti->error = "Device size is not multiple of sector_size feature";
2666 return -EINVAL;
2667 }
2668 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2669 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
2670 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2671 else {
2672 ti->error = "Invalid feature arguments";
2673 return -EINVAL;
2674 }
2675 }
2676
2677 return 0;
2678}
2679
2680/*
2681 * Construct an encryption mapping:
2682 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2683 */
2684static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2685{
2686 struct crypt_config *cc;
2687 int key_size;
2688 unsigned int align_mask;
2689 unsigned long long tmpll;
2690 int ret;
2691 size_t iv_size_padding, additional_req_size;
2692 char dummy;
2693
2694 if (argc < 5) {
2695 ti->error = "Not enough arguments";
2696 return -EINVAL;
2697 }
2698
2699 key_size = get_key_size(&argv[1]);
2700 if (key_size < 0) {
2701 ti->error = "Cannot parse key size";
2702 return -EINVAL;
2703 }
2704
2705 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
2706 if (!cc) {
2707 ti->error = "Cannot allocate encryption context";
2708 return -ENOMEM;
2709 }
2710 cc->key_size = key_size;
2711 cc->sector_size = (1 << SECTOR_SHIFT);
2712 cc->sector_shift = 0;
2713
2714 ti->private = cc;
2715
2716 spin_lock(&dm_crypt_clients_lock);
2717 dm_crypt_clients_n++;
2718 crypt_calculate_pages_per_client();
2719 spin_unlock(&dm_crypt_clients_lock);
2720
2721 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2722 if (ret < 0)
2723 goto bad;
2724
2725 /* Optional parameters need to be read before cipher constructor */
2726 if (argc > 5) {
2727 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2728 if (ret)
2729 goto bad;
2730 }
2731
2732 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2733 if (ret < 0)
2734 goto bad;
2735
2736 if (crypt_integrity_aead(cc)) {
2737 cc->dmreq_start = sizeof(struct aead_request);
2738 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2739 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2740 } else {
2741 cc->dmreq_start = sizeof(struct skcipher_request);
2742 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2743 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2744 }
2745 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2746
2747 if (align_mask < CRYPTO_MINALIGN) {
2748 /* Allocate the padding exactly */
2749 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2750 & align_mask;
2751 } else {
2752 /*
2753 * If the cipher requires greater alignment than kmalloc
2754 * alignment, we don't know the exact position of the
2755 * initialization vector. We must assume worst case.
2756 */
2757 iv_size_padding = align_mask;
2758 }
2759
2760 ret = -ENOMEM;
2761
2762 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2763 additional_req_size = sizeof(struct dm_crypt_request) +
2764 iv_size_padding + cc->iv_size +
2765 cc->iv_size +
2766 sizeof(uint64_t) +
2767 sizeof(unsigned int);
2768
2769 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + additional_req_size);
2770 if (!cc->req_pool) {
2771 ti->error = "Cannot allocate crypt request mempool";
2772 goto bad;
2773 }
2774
2775 cc->per_bio_data_size = ti->per_io_data_size =
2776 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2777 ARCH_KMALLOC_MINALIGN);
2778
2779 cc->page_pool = mempool_create(BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2780 if (!cc->page_pool) {
2781 ti->error = "Cannot allocate page mempool";
2782 goto bad;
2783 }
2784
2785 cc->bs = bioset_create(MIN_IOS, 0, (BIOSET_NEED_BVECS |
2786 BIOSET_NEED_RESCUER));
2787 if (!cc->bs) {
2788 ti->error = "Cannot allocate crypt bioset";
2789 goto bad;
2790 }
2791
2792 mutex_init(&cc->bio_alloc_lock);
2793
2794 ret = -EINVAL;
2795 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2796 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2797 ti->error = "Invalid iv_offset sector";
2798 goto bad;
2799 }
2800 cc->iv_offset = tmpll;
2801
2802 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2803 if (ret) {
2804 ti->error = "Device lookup failed";
2805 goto bad;
2806 }
2807
2808 ret = -EINVAL;
2809 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
2810 ti->error = "Invalid device sector";
2811 goto bad;
2812 }
2813 cc->start = tmpll;
2814
2815 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2816 ret = crypt_integrity_ctr(cc, ti);
2817 if (ret)
2818 goto bad;
2819
2820 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2821 if (!cc->tag_pool_max_sectors)
2822 cc->tag_pool_max_sectors = 1;
2823
2824 cc->tag_pool = mempool_create_kmalloc_pool(MIN_IOS,
2825 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2826 if (!cc->tag_pool) {
2827 ti->error = "Cannot allocate integrity tags mempool";
2828 ret = -ENOMEM;
2829 goto bad;
2830 }
2831
2832 cc->tag_pool_max_sectors <<= cc->sector_shift;
2833 }
2834
2835 ret = -ENOMEM;
2836 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2837 if (!cc->io_queue) {
2838 ti->error = "Couldn't create kcryptd io queue";
2839 goto bad;
2840 }
2841
2842 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2843 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
2844 else
2845 cc->crypt_queue = alloc_workqueue("kcryptd",
2846 WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2847 num_online_cpus());
2848 if (!cc->crypt_queue) {
2849 ti->error = "Couldn't create kcryptd queue";
2850 goto bad;
2851 }
2852
2853 init_waitqueue_head(&cc->write_thread_wait);
2854 cc->write_tree = RB_ROOT;
2855
2856 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
2857 if (IS_ERR(cc->write_thread)) {
2858 ret = PTR_ERR(cc->write_thread);
2859 cc->write_thread = NULL;
2860 ti->error = "Couldn't spawn write thread";
2861 goto bad;
2862 }
2863 wake_up_process(cc->write_thread);
2864
2865 ti->num_flush_bios = 1;
2866
2867 return 0;
2868
2869bad:
2870 crypt_dtr(ti);
2871 return ret;
2872}
2873
2874static int crypt_map(struct dm_target *ti, struct bio *bio)
2875{
2876 struct dm_crypt_io *io;
2877 struct crypt_config *cc = ti->private;
2878
2879 /*
2880 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2881 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2882 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2883 */
2884 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2885 bio_op(bio) == REQ_OP_DISCARD)) {
2886 bio_set_dev(bio, cc->dev->bdev);
2887 if (bio_sectors(bio))
2888 bio->bi_iter.bi_sector = cc->start +
2889 dm_target_offset(ti, bio->bi_iter.bi_sector);
2890 return DM_MAPIO_REMAPPED;
2891 }
2892
2893 /*
2894 * Check if bio is too large, split as needed.
2895 */
2896 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2897 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2898 dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2899
2900 /*
2901 * Ensure that bio is a multiple of internal sector encryption size
2902 * and is aligned to this size as defined in IO hints.
2903 */
2904 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2905 return DM_MAPIO_KILL;
2906
2907 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2908 return DM_MAPIO_KILL;
2909
2910 io = dm_per_bio_data(bio, cc->per_bio_data_size);
2911 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2912
2913 if (cc->on_disk_tag_size) {
2914 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2915
2916 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2917 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
2918 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
2919 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
2920 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
2921 io->integrity_metadata = mempool_alloc(cc->tag_pool, GFP_NOIO);
2922 io->integrity_metadata_from_pool = true;
2923 }
2924 }
2925
2926 if (crypt_integrity_aead(cc))
2927 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
2928 else
2929 io->ctx.r.req = (struct skcipher_request *)(io + 1);
2930
2931 if (bio_data_dir(io->base_bio) == READ) {
2932 if (kcryptd_io_read(io, GFP_NOWAIT))
2933 kcryptd_queue_read(io);
2934 } else
2935 kcryptd_queue_crypt(io);
2936
2937 return DM_MAPIO_SUBMITTED;
2938}
2939
2940static void crypt_status(struct dm_target *ti, status_type_t type,
2941 unsigned status_flags, char *result, unsigned maxlen)
2942{
2943 struct crypt_config *cc = ti->private;
2944 unsigned i, sz = 0;
2945 int num_feature_args = 0;
2946
2947 switch (type) {
2948 case STATUSTYPE_INFO:
2949 result[0] = '\0';
2950 break;
2951
2952 case STATUSTYPE_TABLE:
2953 DMEMIT("%s ", cc->cipher_string);
2954
2955 if (cc->key_size > 0) {
2956 if (cc->key_string)
2957 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
2958 else
2959 for (i = 0; i < cc->key_size; i++)
2960 DMEMIT("%02x", cc->key[i]);
2961 } else
2962 DMEMIT("-");
2963
2964 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
2965 cc->dev->name, (unsigned long long)cc->start);
2966
2967 num_feature_args += !!ti->num_discard_bios;
2968 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2969 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2970 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
2971 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2972 if (cc->on_disk_tag_size)
2973 num_feature_args++;
2974 if (num_feature_args) {
2975 DMEMIT(" %d", num_feature_args);
2976 if (ti->num_discard_bios)
2977 DMEMIT(" allow_discards");
2978 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2979 DMEMIT(" same_cpu_crypt");
2980 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
2981 DMEMIT(" submit_from_crypt_cpus");
2982 if (cc->on_disk_tag_size)
2983 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
2984 if (cc->sector_size != (1 << SECTOR_SHIFT))
2985 DMEMIT(" sector_size:%d", cc->sector_size);
2986 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
2987 DMEMIT(" iv_large_sectors");
2988 }
2989
2990 break;
2991 }
2992}
2993
2994static void crypt_postsuspend(struct dm_target *ti)
2995{
2996 struct crypt_config *cc = ti->private;
2997
2998 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2999}
3000
3001static int crypt_preresume(struct dm_target *ti)
3002{
3003 struct crypt_config *cc = ti->private;
3004
3005 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3006 DMERR("aborting resume - crypt key is not set.");
3007 return -EAGAIN;
3008 }
3009
3010 return 0;
3011}
3012
3013static void crypt_resume(struct dm_target *ti)
3014{
3015 struct crypt_config *cc = ti->private;
3016
3017 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3018}
3019
3020/* Message interface
3021 * key set <key>
3022 * key wipe
3023 */
3024static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
3025{
3026 struct crypt_config *cc = ti->private;
3027 int key_size, ret = -EINVAL;
3028
3029 if (argc < 2)
3030 goto error;
3031
3032 if (!strcasecmp(argv[0], "key")) {
3033 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3034 DMWARN("not suspended during key manipulation.");
3035 return -EINVAL;
3036 }
3037 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3038 /* The key size may not be changed. */
3039 key_size = get_key_size(&argv[2]);
3040 if (key_size < 0 || cc->key_size != key_size) {
3041 memset(argv[2], '0', strlen(argv[2]));
3042 return -EINVAL;
3043 }
3044
3045 ret = crypt_set_key(cc, argv[2]);
3046 if (ret)
3047 return ret;
3048 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3049 ret = cc->iv_gen_ops->init(cc);
3050 /* wipe the kernel key payload copy */
3051 if (cc->key_string)
3052 memset(cc->key, 0, cc->key_size * sizeof(u8));
3053 return ret;
3054 }
3055 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
3056 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
3057 ret = cc->iv_gen_ops->wipe(cc);
3058 if (ret)
3059 return ret;
3060 }
3061 return crypt_wipe_key(cc);
3062 }
3063 }
3064
3065error:
3066 DMWARN("unrecognised message received.");
3067 return -EINVAL;
3068}
3069
3070static int crypt_iterate_devices(struct dm_target *ti,
3071 iterate_devices_callout_fn fn, void *data)
3072{
3073 struct crypt_config *cc = ti->private;
3074
3075 return fn(ti, cc->dev, cc->start, ti->len, data);
3076}
3077
3078static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3079{
3080 struct crypt_config *cc = ti->private;
3081
3082 /*
3083 * Unfortunate constraint that is required to avoid the potential
3084 * for exceeding underlying device's max_segments limits -- due to
3085 * crypt_alloc_buffer() possibly allocating pages for the encryption
3086 * bio that are not as physically contiguous as the original bio.
3087 */
3088 limits->max_segment_size = PAGE_SIZE;
3089
3090 limits->logical_block_size =
3091 max_t(unsigned, limits->logical_block_size, cc->sector_size);
3092 limits->physical_block_size =
3093 max_t(unsigned, limits->physical_block_size, cc->sector_size);
3094 limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3095}
3096
3097static struct target_type crypt_target = {
3098 .name = "crypt",
3099 .version = {1, 18, 1},
3100 .module = THIS_MODULE,
3101 .ctr = crypt_ctr,
3102 .dtr = crypt_dtr,
3103 .map = crypt_map,
3104 .status = crypt_status,
3105 .postsuspend = crypt_postsuspend,
3106 .preresume = crypt_preresume,
3107 .resume = crypt_resume,
3108 .message = crypt_message,
3109 .iterate_devices = crypt_iterate_devices,
3110 .io_hints = crypt_io_hints,
3111};
3112
3113static int __init dm_crypt_init(void)
3114{
3115 int r;
3116
3117 r = dm_register_target(&crypt_target);
3118 if (r < 0)
3119 DMERR("register failed %d", r);
3120
3121 return r;
3122}
3123
3124static void __exit dm_crypt_exit(void)
3125{
3126 dm_unregister_target(&crypt_target);
3127}
3128
3129module_init(dm_crypt_init);
3130module_exit(dm_crypt_exit);
3131
3132MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3133MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3134MODULE_LICENSE("GPL");