blob: 7ca2b1aaa79d435886806639d1c493f5d0a79175 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2006 Red Hat GmbH
4 *
5 * This file is released under the GPL.
6 *
7 * Kcopyd provides a simple interface for copying an area of one
8 * block-device to one or more other block-devices, with an asynchronous
9 * completion notification.
10 */
11
12#include <linux/types.h>
13#include <linux/atomic.h>
14#include <linux/blkdev.h>
15#include <linux/fs.h>
16#include <linux/init.h>
17#include <linux/list.h>
18#include <linux/mempool.h>
19#include <linux/module.h>
20#include <linux/pagemap.h>
21#include <linux/slab.h>
22#include <linux/vmalloc.h>
23#include <linux/workqueue.h>
24#include <linux/mutex.h>
25#include <linux/delay.h>
26#include <linux/device-mapper.h>
27#include <linux/dm-kcopyd.h>
28
29#include "dm-core.h"
30
31#define SUB_JOB_SIZE 128
32#define SPLIT_COUNT 8
33#define MIN_JOBS 8
34#define RESERVE_PAGES (DIV_ROUND_UP(SUB_JOB_SIZE << SECTOR_SHIFT, PAGE_SIZE))
35
36/*-----------------------------------------------------------------
37 * Each kcopyd client has its own little pool of preallocated
38 * pages for kcopyd io.
39 *---------------------------------------------------------------*/
40struct dm_kcopyd_client {
41 struct page_list *pages;
42 unsigned nr_reserved_pages;
43 unsigned nr_free_pages;
44
45 struct dm_io_client *io_client;
46
47 wait_queue_head_t destroyq;
48 atomic_t nr_jobs;
49
50 mempool_t *job_pool;
51
52 struct workqueue_struct *kcopyd_wq;
53 struct work_struct kcopyd_work;
54
55 struct dm_kcopyd_throttle *throttle;
56
57/*
58 * We maintain four lists of jobs:
59 *
60 * i) jobs waiting for pages
61 * ii) jobs that have pages, and are waiting for the io to be issued.
62 * iii) jobs that don't need to do any IO and just run a callback
63 * iv) jobs that have completed.
64 *
65 * All four of these are protected by job_lock.
66 */
67 spinlock_t job_lock;
68 struct list_head callback_jobs;
69 struct list_head complete_jobs;
70 struct list_head io_jobs;
71 struct list_head pages_jobs;
72};
73
74static struct page_list zero_page_list;
75
76static DEFINE_SPINLOCK(throttle_spinlock);
77
78/*
79 * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
80 * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
81 * by 2.
82 */
83#define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ
84
85/*
86 * Sleep this number of milliseconds.
87 *
88 * The value was decided experimentally.
89 * Smaller values seem to cause an increased copy rate above the limit.
90 * The reason for this is unknown but possibly due to jiffies rounding errors
91 * or read/write cache inside the disk.
92 */
93#define SLEEP_MSEC 100
94
95/*
96 * Maximum number of sleep events. There is a theoretical livelock if more
97 * kcopyd clients do work simultaneously which this limit avoids.
98 */
99#define MAX_SLEEPS 10
100
101static void io_job_start(struct dm_kcopyd_throttle *t)
102{
103 unsigned throttle, now, difference;
104 int slept = 0, skew;
105
106 if (unlikely(!t))
107 return;
108
109try_again:
110 spin_lock_irq(&throttle_spinlock);
111
112 throttle = ACCESS_ONCE(t->throttle);
113
114 if (likely(throttle >= 100))
115 goto skip_limit;
116
117 now = jiffies;
118 difference = now - t->last_jiffies;
119 t->last_jiffies = now;
120 if (t->num_io_jobs)
121 t->io_period += difference;
122 t->total_period += difference;
123
124 /*
125 * Maintain sane values if we got a temporary overflow.
126 */
127 if (unlikely(t->io_period > t->total_period))
128 t->io_period = t->total_period;
129
130 if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
131 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
132 t->total_period >>= shift;
133 t->io_period >>= shift;
134 }
135
136 skew = t->io_period - throttle * t->total_period / 100;
137
138 if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
139 slept++;
140 spin_unlock_irq(&throttle_spinlock);
141 msleep(SLEEP_MSEC);
142 goto try_again;
143 }
144
145skip_limit:
146 t->num_io_jobs++;
147
148 spin_unlock_irq(&throttle_spinlock);
149}
150
151static void io_job_finish(struct dm_kcopyd_throttle *t)
152{
153 unsigned long flags;
154
155 if (unlikely(!t))
156 return;
157
158 spin_lock_irqsave(&throttle_spinlock, flags);
159
160 t->num_io_jobs--;
161
162 if (likely(ACCESS_ONCE(t->throttle) >= 100))
163 goto skip_limit;
164
165 if (!t->num_io_jobs) {
166 unsigned now, difference;
167
168 now = jiffies;
169 difference = now - t->last_jiffies;
170 t->last_jiffies = now;
171
172 t->io_period += difference;
173 t->total_period += difference;
174
175 /*
176 * Maintain sane values if we got a temporary overflow.
177 */
178 if (unlikely(t->io_period > t->total_period))
179 t->io_period = t->total_period;
180 }
181
182skip_limit:
183 spin_unlock_irqrestore(&throttle_spinlock, flags);
184}
185
186
187static void wake(struct dm_kcopyd_client *kc)
188{
189 queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
190}
191
192/*
193 * Obtain one page for the use of kcopyd.
194 */
195static struct page_list *alloc_pl(gfp_t gfp)
196{
197 struct page_list *pl;
198
199 pl = kmalloc(sizeof(*pl), gfp);
200 if (!pl)
201 return NULL;
202
203 pl->page = alloc_page(gfp);
204 if (!pl->page) {
205 kfree(pl);
206 return NULL;
207 }
208
209 return pl;
210}
211
212static void free_pl(struct page_list *pl)
213{
214 __free_page(pl->page);
215 kfree(pl);
216}
217
218/*
219 * Add the provided pages to a client's free page list, releasing
220 * back to the system any beyond the reserved_pages limit.
221 */
222static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
223{
224 struct page_list *next;
225
226 do {
227 next = pl->next;
228
229 if (kc->nr_free_pages >= kc->nr_reserved_pages)
230 free_pl(pl);
231 else {
232 pl->next = kc->pages;
233 kc->pages = pl;
234 kc->nr_free_pages++;
235 }
236
237 pl = next;
238 } while (pl);
239}
240
241static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
242 unsigned int nr, struct page_list **pages)
243{
244 struct page_list *pl;
245
246 *pages = NULL;
247
248 do {
249 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM);
250 if (unlikely(!pl)) {
251 /* Use reserved pages */
252 pl = kc->pages;
253 if (unlikely(!pl))
254 goto out_of_memory;
255 kc->pages = pl->next;
256 kc->nr_free_pages--;
257 }
258 pl->next = *pages;
259 *pages = pl;
260 } while (--nr);
261
262 return 0;
263
264out_of_memory:
265 if (*pages)
266 kcopyd_put_pages(kc, *pages);
267 return -ENOMEM;
268}
269
270/*
271 * These three functions resize the page pool.
272 */
273static void drop_pages(struct page_list *pl)
274{
275 struct page_list *next;
276
277 while (pl) {
278 next = pl->next;
279 free_pl(pl);
280 pl = next;
281 }
282}
283
284/*
285 * Allocate and reserve nr_pages for the use of a specific client.
286 */
287static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
288{
289 unsigned i;
290 struct page_list *pl = NULL, *next;
291
292 for (i = 0; i < nr_pages; i++) {
293 next = alloc_pl(GFP_KERNEL);
294 if (!next) {
295 if (pl)
296 drop_pages(pl);
297 return -ENOMEM;
298 }
299 next->next = pl;
300 pl = next;
301 }
302
303 kc->nr_reserved_pages += nr_pages;
304 kcopyd_put_pages(kc, pl);
305
306 return 0;
307}
308
309static void client_free_pages(struct dm_kcopyd_client *kc)
310{
311 BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
312 drop_pages(kc->pages);
313 kc->pages = NULL;
314 kc->nr_free_pages = kc->nr_reserved_pages = 0;
315}
316
317/*-----------------------------------------------------------------
318 * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
319 * for this reason we use a mempool to prevent the client from
320 * ever having to do io (which could cause a deadlock).
321 *---------------------------------------------------------------*/
322struct kcopyd_job {
323 struct dm_kcopyd_client *kc;
324 struct list_head list;
325 unsigned long flags;
326
327 /*
328 * Error state of the job.
329 */
330 int read_err;
331 unsigned long write_err;
332
333 /*
334 * Either READ or WRITE
335 */
336 int rw;
337 struct dm_io_region source;
338
339 /*
340 * The destinations for the transfer.
341 */
342 unsigned int num_dests;
343 struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
344
345 struct page_list *pages;
346
347 /*
348 * Set this to ensure you are notified when the job has
349 * completed. 'context' is for callback to use.
350 */
351 dm_kcopyd_notify_fn fn;
352 void *context;
353
354 /*
355 * These fields are only used if the job has been split
356 * into more manageable parts.
357 */
358 struct mutex lock;
359 atomic_t sub_jobs;
360 sector_t progress;
361 sector_t write_offset;
362
363 struct kcopyd_job *master_job;
364};
365
366static struct kmem_cache *_job_cache;
367
368int __init dm_kcopyd_init(void)
369{
370 _job_cache = kmem_cache_create("kcopyd_job",
371 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
372 __alignof__(struct kcopyd_job), 0, NULL);
373 if (!_job_cache)
374 return -ENOMEM;
375
376 zero_page_list.next = &zero_page_list;
377 zero_page_list.page = ZERO_PAGE(0);
378
379 return 0;
380}
381
382void dm_kcopyd_exit(void)
383{
384 kmem_cache_destroy(_job_cache);
385 _job_cache = NULL;
386}
387
388/*
389 * Functions to push and pop a job onto the head of a given job
390 * list.
391 */
392static struct kcopyd_job *pop_io_job(struct list_head *jobs,
393 struct dm_kcopyd_client *kc)
394{
395 struct kcopyd_job *job;
396
397 /*
398 * For I/O jobs, pop any read, any write without sequential write
399 * constraint and sequential writes that are at the right position.
400 */
401 list_for_each_entry(job, jobs, list) {
402 if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
403 list_del(&job->list);
404 return job;
405 }
406
407 if (job->write_offset == job->master_job->write_offset) {
408 job->master_job->write_offset += job->source.count;
409 list_del(&job->list);
410 return job;
411 }
412 }
413
414 return NULL;
415}
416
417static struct kcopyd_job *pop(struct list_head *jobs,
418 struct dm_kcopyd_client *kc)
419{
420 struct kcopyd_job *job = NULL;
421 unsigned long flags;
422
423 spin_lock_irqsave(&kc->job_lock, flags);
424
425 if (!list_empty(jobs)) {
426 if (jobs == &kc->io_jobs)
427 job = pop_io_job(jobs, kc);
428 else {
429 job = list_entry(jobs->next, struct kcopyd_job, list);
430 list_del(&job->list);
431 }
432 }
433 spin_unlock_irqrestore(&kc->job_lock, flags);
434
435 return job;
436}
437
438static void push(struct list_head *jobs, struct kcopyd_job *job)
439{
440 unsigned long flags;
441 struct dm_kcopyd_client *kc = job->kc;
442
443 spin_lock_irqsave(&kc->job_lock, flags);
444 list_add_tail(&job->list, jobs);
445 spin_unlock_irqrestore(&kc->job_lock, flags);
446}
447
448
449static void push_head(struct list_head *jobs, struct kcopyd_job *job)
450{
451 unsigned long flags;
452 struct dm_kcopyd_client *kc = job->kc;
453
454 spin_lock_irqsave(&kc->job_lock, flags);
455 list_add(&job->list, jobs);
456 spin_unlock_irqrestore(&kc->job_lock, flags);
457}
458
459/*
460 * These three functions process 1 item from the corresponding
461 * job list.
462 *
463 * They return:
464 * < 0: error
465 * 0: success
466 * > 0: can't process yet.
467 */
468static int run_complete_job(struct kcopyd_job *job)
469{
470 void *context = job->context;
471 int read_err = job->read_err;
472 unsigned long write_err = job->write_err;
473 dm_kcopyd_notify_fn fn = job->fn;
474 struct dm_kcopyd_client *kc = job->kc;
475
476 if (job->pages && job->pages != &zero_page_list)
477 kcopyd_put_pages(kc, job->pages);
478 /*
479 * If this is the master job, the sub jobs have already
480 * completed so we can free everything.
481 */
482 if (job->master_job == job)
483 mempool_free(job, kc->job_pool);
484 fn(read_err, write_err, context);
485
486 if (atomic_dec_and_test(&kc->nr_jobs))
487 wake_up(&kc->destroyq);
488
489 cond_resched();
490
491 return 0;
492}
493
494static void complete_io(unsigned long error, void *context)
495{
496 struct kcopyd_job *job = (struct kcopyd_job *) context;
497 struct dm_kcopyd_client *kc = job->kc;
498
499 io_job_finish(kc->throttle);
500
501 if (error) {
502 if (op_is_write(job->rw))
503 job->write_err |= error;
504 else
505 job->read_err = 1;
506
507 if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
508 push(&kc->complete_jobs, job);
509 wake(kc);
510 return;
511 }
512 }
513
514 if (op_is_write(job->rw))
515 push(&kc->complete_jobs, job);
516
517 else {
518 job->rw = WRITE;
519 push(&kc->io_jobs, job);
520 }
521
522 wake(kc);
523}
524
525/*
526 * Request io on as many buffer heads as we can currently get for
527 * a particular job.
528 */
529static int run_io_job(struct kcopyd_job *job)
530{
531 int r;
532 struct dm_io_request io_req = {
533 .bi_op = job->rw,
534 .bi_op_flags = 0,
535 .mem.type = DM_IO_PAGE_LIST,
536 .mem.ptr.pl = job->pages,
537 .mem.offset = 0,
538 .notify.fn = complete_io,
539 .notify.context = job,
540 .client = job->kc->io_client,
541 };
542
543 /*
544 * If we need to write sequentially and some reads or writes failed,
545 * no point in continuing.
546 */
547 if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
548 job->master_job->write_err) {
549 job->write_err = job->master_job->write_err;
550 return -EIO;
551 }
552
553 io_job_start(job->kc->throttle);
554
555 if (job->rw == READ)
556 r = dm_io(&io_req, 1, &job->source, NULL);
557 else
558 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
559
560 return r;
561}
562
563static int run_pages_job(struct kcopyd_job *job)
564{
565 int r;
566 unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
567
568 r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
569 if (!r) {
570 /* this job is ready for io */
571 push(&job->kc->io_jobs, job);
572 return 0;
573 }
574
575 if (r == -ENOMEM)
576 /* can't complete now */
577 return 1;
578
579 return r;
580}
581
582/*
583 * Run through a list for as long as possible. Returns the count
584 * of successful jobs.
585 */
586static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
587 int (*fn) (struct kcopyd_job *))
588{
589 struct kcopyd_job *job;
590 int r, count = 0;
591
592 while ((job = pop(jobs, kc))) {
593
594 r = fn(job);
595
596 if (r < 0) {
597 /* error this rogue job */
598 if (op_is_write(job->rw))
599 job->write_err = (unsigned long) -1L;
600 else
601 job->read_err = 1;
602 push(&kc->complete_jobs, job);
603 wake(kc);
604 break;
605 }
606
607 if (r > 0) {
608 /*
609 * We couldn't service this job ATM, so
610 * push this job back onto the list.
611 */
612 push_head(jobs, job);
613 break;
614 }
615
616 count++;
617 }
618
619 return count;
620}
621
622/*
623 * kcopyd does this every time it's woken up.
624 */
625static void do_work(struct work_struct *work)
626{
627 struct dm_kcopyd_client *kc = container_of(work,
628 struct dm_kcopyd_client, kcopyd_work);
629 struct blk_plug plug;
630 unsigned long flags;
631
632 /*
633 * The order that these are called is *very* important.
634 * complete jobs can free some pages for pages jobs.
635 * Pages jobs when successful will jump onto the io jobs
636 * list. io jobs call wake when they complete and it all
637 * starts again.
638 */
639 spin_lock_irqsave(&kc->job_lock, flags);
640 list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
641 spin_unlock_irqrestore(&kc->job_lock, flags);
642
643 blk_start_plug(&plug);
644 process_jobs(&kc->complete_jobs, kc, run_complete_job);
645 process_jobs(&kc->pages_jobs, kc, run_pages_job);
646 process_jobs(&kc->io_jobs, kc, run_io_job);
647 blk_finish_plug(&plug);
648}
649
650/*
651 * If we are copying a small region we just dispatch a single job
652 * to do the copy, otherwise the io has to be split up into many
653 * jobs.
654 */
655static void dispatch_job(struct kcopyd_job *job)
656{
657 struct dm_kcopyd_client *kc = job->kc;
658 atomic_inc(&kc->nr_jobs);
659 if (unlikely(!job->source.count))
660 push(&kc->callback_jobs, job);
661 else if (job->pages == &zero_page_list)
662 push(&kc->io_jobs, job);
663 else
664 push(&kc->pages_jobs, job);
665 wake(kc);
666}
667
668static void segment_complete(int read_err, unsigned long write_err,
669 void *context)
670{
671 /* FIXME: tidy this function */
672 sector_t progress = 0;
673 sector_t count = 0;
674 struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
675 struct kcopyd_job *job = sub_job->master_job;
676 struct dm_kcopyd_client *kc = job->kc;
677
678 mutex_lock(&job->lock);
679
680 /* update the error */
681 if (read_err)
682 job->read_err = 1;
683
684 if (write_err)
685 job->write_err |= write_err;
686
687 /*
688 * Only dispatch more work if there hasn't been an error.
689 */
690 if ((!job->read_err && !job->write_err) ||
691 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
692 /* get the next chunk of work */
693 progress = job->progress;
694 count = job->source.count - progress;
695 if (count) {
696 if (count > SUB_JOB_SIZE)
697 count = SUB_JOB_SIZE;
698
699 job->progress += count;
700 }
701 }
702 mutex_unlock(&job->lock);
703
704 if (count) {
705 int i;
706
707 *sub_job = *job;
708 sub_job->write_offset = progress;
709 sub_job->source.sector += progress;
710 sub_job->source.count = count;
711
712 for (i = 0; i < job->num_dests; i++) {
713 sub_job->dests[i].sector += progress;
714 sub_job->dests[i].count = count;
715 }
716
717 sub_job->fn = segment_complete;
718 sub_job->context = sub_job;
719 dispatch_job(sub_job);
720
721 } else if (atomic_dec_and_test(&job->sub_jobs)) {
722
723 /*
724 * Queue the completion callback to the kcopyd thread.
725 *
726 * Some callers assume that all the completions are called
727 * from a single thread and don't race with each other.
728 *
729 * We must not call the callback directly here because this
730 * code may not be executing in the thread.
731 */
732 push(&kc->complete_jobs, job);
733 wake(kc);
734 }
735}
736
737/*
738 * Create some sub jobs to share the work between them.
739 */
740static void split_job(struct kcopyd_job *master_job)
741{
742 int i;
743
744 atomic_inc(&master_job->kc->nr_jobs);
745
746 atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
747 for (i = 0; i < SPLIT_COUNT; i++) {
748 master_job[i + 1].master_job = master_job;
749 segment_complete(0, 0u, &master_job[i + 1]);
750 }
751}
752
753int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
754 unsigned int num_dests, struct dm_io_region *dests,
755 unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
756{
757 struct kcopyd_job *job;
758 int i;
759
760 /*
761 * Allocate an array of jobs consisting of one master job
762 * followed by SPLIT_COUNT sub jobs.
763 */
764 job = mempool_alloc(kc->job_pool, GFP_NOIO);
765
766 /*
767 * set up for the read.
768 */
769 job->kc = kc;
770 job->flags = flags;
771 job->read_err = 0;
772 job->write_err = 0;
773
774 job->num_dests = num_dests;
775 memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
776
777 /*
778 * If one of the destination is a host-managed zoned block device,
779 * we need to write sequentially. If one of the destination is a
780 * host-aware device, then leave it to the caller to choose what to do.
781 */
782 if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
783 for (i = 0; i < job->num_dests; i++) {
784 if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
785 set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags);
786 break;
787 }
788 }
789 }
790
791 /*
792 * If we need to write sequentially, errors cannot be ignored.
793 */
794 if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
795 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags))
796 clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags);
797
798 if (from) {
799 job->source = *from;
800 job->pages = NULL;
801 job->rw = READ;
802 } else {
803 memset(&job->source, 0, sizeof job->source);
804 job->source.count = job->dests[0].count;
805 job->pages = &zero_page_list;
806
807 /*
808 * Use WRITE ZEROES to optimize zeroing if all dests support it.
809 */
810 job->rw = REQ_OP_WRITE_ZEROES;
811 for (i = 0; i < job->num_dests; i++)
812 if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
813 job->rw = WRITE;
814 break;
815 }
816 }
817
818 job->fn = fn;
819 job->context = context;
820 job->master_job = job;
821 job->write_offset = 0;
822
823 if (job->source.count <= SUB_JOB_SIZE)
824 dispatch_job(job);
825 else {
826 mutex_init(&job->lock);
827 job->progress = 0;
828 split_job(job);
829 }
830
831 return 0;
832}
833EXPORT_SYMBOL(dm_kcopyd_copy);
834
835int dm_kcopyd_zero(struct dm_kcopyd_client *kc,
836 unsigned num_dests, struct dm_io_region *dests,
837 unsigned flags, dm_kcopyd_notify_fn fn, void *context)
838{
839 return dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
840}
841EXPORT_SYMBOL(dm_kcopyd_zero);
842
843void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
844 dm_kcopyd_notify_fn fn, void *context)
845{
846 struct kcopyd_job *job;
847
848 job = mempool_alloc(kc->job_pool, GFP_NOIO);
849
850 memset(job, 0, sizeof(struct kcopyd_job));
851 job->kc = kc;
852 job->fn = fn;
853 job->context = context;
854 job->master_job = job;
855
856 atomic_inc(&kc->nr_jobs);
857
858 return job;
859}
860EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
861
862void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
863{
864 struct kcopyd_job *job = j;
865 struct dm_kcopyd_client *kc = job->kc;
866
867 job->read_err = read_err;
868 job->write_err = write_err;
869
870 push(&kc->callback_jobs, job);
871 wake(kc);
872}
873EXPORT_SYMBOL(dm_kcopyd_do_callback);
874
875/*
876 * Cancels a kcopyd job, eg. someone might be deactivating a
877 * mirror.
878 */
879#if 0
880int kcopyd_cancel(struct kcopyd_job *job, int block)
881{
882 /* FIXME: finish */
883 return -1;
884}
885#endif /* 0 */
886
887/*-----------------------------------------------------------------
888 * Client setup
889 *---------------------------------------------------------------*/
890struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
891{
892 int r = -ENOMEM;
893 struct dm_kcopyd_client *kc;
894
895 kc = kzalloc(sizeof(*kc), GFP_KERNEL);
896 if (!kc)
897 return ERR_PTR(-ENOMEM);
898
899 spin_lock_init(&kc->job_lock);
900 INIT_LIST_HEAD(&kc->callback_jobs);
901 INIT_LIST_HEAD(&kc->complete_jobs);
902 INIT_LIST_HEAD(&kc->io_jobs);
903 INIT_LIST_HEAD(&kc->pages_jobs);
904 kc->throttle = throttle;
905
906 kc->job_pool = mempool_create_slab_pool(MIN_JOBS, _job_cache);
907 if (!kc->job_pool)
908 goto bad_slab;
909
910 INIT_WORK(&kc->kcopyd_work, do_work);
911 kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
912 if (!kc->kcopyd_wq)
913 goto bad_workqueue;
914
915 kc->pages = NULL;
916 kc->nr_reserved_pages = kc->nr_free_pages = 0;
917 r = client_reserve_pages(kc, RESERVE_PAGES);
918 if (r)
919 goto bad_client_pages;
920
921 kc->io_client = dm_io_client_create();
922 if (IS_ERR(kc->io_client)) {
923 r = PTR_ERR(kc->io_client);
924 goto bad_io_client;
925 }
926
927 init_waitqueue_head(&kc->destroyq);
928 atomic_set(&kc->nr_jobs, 0);
929
930 return kc;
931
932bad_io_client:
933 client_free_pages(kc);
934bad_client_pages:
935 destroy_workqueue(kc->kcopyd_wq);
936bad_workqueue:
937 mempool_destroy(kc->job_pool);
938bad_slab:
939 kfree(kc);
940
941 return ERR_PTR(r);
942}
943EXPORT_SYMBOL(dm_kcopyd_client_create);
944
945void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
946{
947 /* Wait for completion of all jobs submitted by this client. */
948 wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
949
950 BUG_ON(!list_empty(&kc->callback_jobs));
951 BUG_ON(!list_empty(&kc->complete_jobs));
952 BUG_ON(!list_empty(&kc->io_jobs));
953 BUG_ON(!list_empty(&kc->pages_jobs));
954 destroy_workqueue(kc->kcopyd_wq);
955 dm_io_client_destroy(kc->io_client);
956 client_free_pages(kc);
957 mempool_destroy(kc->job_pool);
958 kfree(kc);
959}
960EXPORT_SYMBOL(dm_kcopyd_client_destroy);