blob: d164e60783be8b38a4e539b80c70c66a15c1bd47 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/mount.h>
15#include <linux/ctype.h>
16#include <linux/string.h>
17#include <linux/slab.h>
18#include <linux/interrupt.h>
19#include <linux/mutex.h>
20#include <linux/delay.h>
21#include <linux/atomic.h>
22#include <linux/blk-mq.h>
23#include <linux/mount.h>
24#include <linux/dax.h>
25
26#define DM_MSG_PREFIX "table"
27
28#define MAX_DEPTH 16
29#define NODE_SIZE L1_CACHE_BYTES
30#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
31#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32
33struct dm_table {
34 struct mapped_device *md;
35 enum dm_queue_mode type;
36
37 /* btree table */
38 unsigned int depth;
39 unsigned int counts[MAX_DEPTH]; /* in nodes */
40 sector_t *index[MAX_DEPTH];
41
42 unsigned int num_targets;
43 unsigned int num_allocated;
44 sector_t *highs;
45 struct dm_target *targets;
46
47 struct target_type *immutable_target_type;
48
49 bool integrity_supported:1;
50 bool singleton:1;
51 bool all_blk_mq:1;
52 unsigned integrity_added:1;
53
54 /*
55 * Indicates the rw permissions for the new logical
56 * device. This should be a combination of FMODE_READ
57 * and FMODE_WRITE.
58 */
59 fmode_t mode;
60
61 /* a list of devices used by this table */
62 struct list_head devices;
63
64 /* events get handed up using this callback */
65 void (*event_fn)(void *);
66 void *event_context;
67
68 struct dm_md_mempools *mempools;
69
70 struct list_head target_callbacks;
71};
72
73/*
74 * Similar to ceiling(log_size(n))
75 */
76static unsigned int int_log(unsigned int n, unsigned int base)
77{
78 int result = 0;
79
80 while (n > 1) {
81 n = dm_div_up(n, base);
82 result++;
83 }
84
85 return result;
86}
87
88/*
89 * Calculate the index of the child node of the n'th node k'th key.
90 */
91static inline unsigned int get_child(unsigned int n, unsigned int k)
92{
93 return (n * CHILDREN_PER_NODE) + k;
94}
95
96/*
97 * Return the n'th node of level l from table t.
98 */
99static inline sector_t *get_node(struct dm_table *t,
100 unsigned int l, unsigned int n)
101{
102 return t->index[l] + (n * KEYS_PER_NODE);
103}
104
105/*
106 * Return the highest key that you could lookup from the n'th
107 * node on level l of the btree.
108 */
109static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
110{
111 for (; l < t->depth - 1; l++)
112 n = get_child(n, CHILDREN_PER_NODE - 1);
113
114 if (n >= t->counts[l])
115 return (sector_t) - 1;
116
117 return get_node(t, l, n)[KEYS_PER_NODE - 1];
118}
119
120/*
121 * Fills in a level of the btree based on the highs of the level
122 * below it.
123 */
124static int setup_btree_index(unsigned int l, struct dm_table *t)
125{
126 unsigned int n, k;
127 sector_t *node;
128
129 for (n = 0U; n < t->counts[l]; n++) {
130 node = get_node(t, l, n);
131
132 for (k = 0U; k < KEYS_PER_NODE; k++)
133 node[k] = high(t, l + 1, get_child(n, k));
134 }
135
136 return 0;
137}
138
139void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
140{
141 unsigned long size;
142 void *addr;
143
144 /*
145 * Check that we're not going to overflow.
146 */
147 if (nmemb > (ULONG_MAX / elem_size))
148 return NULL;
149
150 size = nmemb * elem_size;
151 addr = vzalloc(size);
152
153 return addr;
154}
155EXPORT_SYMBOL(dm_vcalloc);
156
157/*
158 * highs, and targets are managed as dynamic arrays during a
159 * table load.
160 */
161static int alloc_targets(struct dm_table *t, unsigned int num)
162{
163 sector_t *n_highs;
164 struct dm_target *n_targets;
165
166 /*
167 * Allocate both the target array and offset array at once.
168 * Append an empty entry to catch sectors beyond the end of
169 * the device.
170 */
171 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
172 sizeof(sector_t));
173 if (!n_highs)
174 return -ENOMEM;
175
176 n_targets = (struct dm_target *) (n_highs + num);
177
178 memset(n_highs, -1, sizeof(*n_highs) * num);
179 vfree(t->highs);
180
181 t->num_allocated = num;
182 t->highs = n_highs;
183 t->targets = n_targets;
184
185 return 0;
186}
187
188int dm_table_create(struct dm_table **result, fmode_t mode,
189 unsigned num_targets, struct mapped_device *md)
190{
191 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
192
193 if (!t)
194 return -ENOMEM;
195
196 INIT_LIST_HEAD(&t->devices);
197 INIT_LIST_HEAD(&t->target_callbacks);
198
199 if (!num_targets)
200 num_targets = KEYS_PER_NODE;
201
202 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
203
204 if (!num_targets) {
205 kfree(t);
206 return -ENOMEM;
207 }
208
209 if (alloc_targets(t, num_targets)) {
210 kfree(t);
211 return -ENOMEM;
212 }
213
214 t->type = DM_TYPE_NONE;
215 t->mode = mode;
216 t->md = md;
217 *result = t;
218 return 0;
219}
220
221static void free_devices(struct list_head *devices, struct mapped_device *md)
222{
223 struct list_head *tmp, *next;
224
225 list_for_each_safe(tmp, next, devices) {
226 struct dm_dev_internal *dd =
227 list_entry(tmp, struct dm_dev_internal, list);
228 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
229 dm_device_name(md), dd->dm_dev->name);
230 dm_put_table_device(md, dd->dm_dev);
231 kfree(dd);
232 }
233}
234
235void dm_table_destroy(struct dm_table *t)
236{
237 unsigned int i;
238
239 if (!t)
240 return;
241
242 /* free the indexes */
243 if (t->depth >= 2)
244 vfree(t->index[t->depth - 2]);
245
246 /* free the targets */
247 for (i = 0; i < t->num_targets; i++) {
248 struct dm_target *tgt = t->targets + i;
249
250 if (tgt->type->dtr)
251 tgt->type->dtr(tgt);
252
253 dm_put_target_type(tgt->type);
254 }
255
256 vfree(t->highs);
257
258 /* free the device list */
259 free_devices(&t->devices, t->md);
260
261 dm_free_md_mempools(t->mempools);
262
263 kfree(t);
264}
265
266/*
267 * See if we've already got a device in the list.
268 */
269static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
270{
271 struct dm_dev_internal *dd;
272
273 list_for_each_entry (dd, l, list)
274 if (dd->dm_dev->bdev->bd_dev == dev)
275 return dd;
276
277 return NULL;
278}
279
280/*
281 * If possible, this checks an area of a destination device is invalid.
282 */
283static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
284 sector_t start, sector_t len, void *data)
285{
286 struct request_queue *q;
287 struct queue_limits *limits = data;
288 struct block_device *bdev = dev->bdev;
289 sector_t dev_size =
290 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
291 unsigned short logical_block_size_sectors =
292 limits->logical_block_size >> SECTOR_SHIFT;
293 char b[BDEVNAME_SIZE];
294
295 /*
296 * Some devices exist without request functions,
297 * such as loop devices not yet bound to backing files.
298 * Forbid the use of such devices.
299 */
300 q = bdev_get_queue(bdev);
301 if (!q || !q->make_request_fn) {
302 DMWARN("%s: %s is not yet initialised: "
303 "start=%llu, len=%llu, dev_size=%llu",
304 dm_device_name(ti->table->md), bdevname(bdev, b),
305 (unsigned long long)start,
306 (unsigned long long)len,
307 (unsigned long long)dev_size);
308 return 1;
309 }
310
311 if (!dev_size)
312 return 0;
313
314 if ((start >= dev_size) || (start + len > dev_size)) {
315 DMWARN("%s: %s too small for target: "
316 "start=%llu, len=%llu, dev_size=%llu",
317 dm_device_name(ti->table->md), bdevname(bdev, b),
318 (unsigned long long)start,
319 (unsigned long long)len,
320 (unsigned long long)dev_size);
321 return 1;
322 }
323
324 /*
325 * If the target is mapped to zoned block device(s), check
326 * that the zones are not partially mapped.
327 */
328 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
329 unsigned int zone_sectors = bdev_zone_sectors(bdev);
330
331 if (start & (zone_sectors - 1)) {
332 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
333 dm_device_name(ti->table->md),
334 (unsigned long long)start,
335 zone_sectors, bdevname(bdev, b));
336 return 1;
337 }
338
339 /*
340 * Note: The last zone of a zoned block device may be smaller
341 * than other zones. So for a target mapping the end of a
342 * zoned block device with such a zone, len would not be zone
343 * aligned. We do not allow such last smaller zone to be part
344 * of the mapping here to ensure that mappings with multiple
345 * devices do not end up with a smaller zone in the middle of
346 * the sector range.
347 */
348 if (len & (zone_sectors - 1)) {
349 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
350 dm_device_name(ti->table->md),
351 (unsigned long long)len,
352 zone_sectors, bdevname(bdev, b));
353 return 1;
354 }
355 }
356
357 if (logical_block_size_sectors <= 1)
358 return 0;
359
360 if (start & (logical_block_size_sectors - 1)) {
361 DMWARN("%s: start=%llu not aligned to h/w "
362 "logical block size %u of %s",
363 dm_device_name(ti->table->md),
364 (unsigned long long)start,
365 limits->logical_block_size, bdevname(bdev, b));
366 return 1;
367 }
368
369 if (len & (logical_block_size_sectors - 1)) {
370 DMWARN("%s: len=%llu not aligned to h/w "
371 "logical block size %u of %s",
372 dm_device_name(ti->table->md),
373 (unsigned long long)len,
374 limits->logical_block_size, bdevname(bdev, b));
375 return 1;
376 }
377
378 return 0;
379}
380
381/*
382 * This upgrades the mode on an already open dm_dev, being
383 * careful to leave things as they were if we fail to reopen the
384 * device and not to touch the existing bdev field in case
385 * it is accessed concurrently inside dm_table_any_congested().
386 */
387static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
388 struct mapped_device *md)
389{
390 int r;
391 struct dm_dev *old_dev, *new_dev;
392
393 old_dev = dd->dm_dev;
394
395 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
396 dd->dm_dev->mode | new_mode, &new_dev);
397 if (r)
398 return r;
399
400 dd->dm_dev = new_dev;
401 dm_put_table_device(md, old_dev);
402
403 return 0;
404}
405
406/*
407 * Convert the path to a device
408 */
409dev_t dm_get_dev_t(const char *path)
410{
411 dev_t dev;
412 struct block_device *bdev;
413
414 bdev = lookup_bdev(path);
415 if (IS_ERR(bdev))
416 dev = name_to_dev_t(path);
417 else {
418 dev = bdev->bd_dev;
419 bdput(bdev);
420 }
421
422 return dev;
423}
424EXPORT_SYMBOL_GPL(dm_get_dev_t);
425
426/*
427 * Add a device to the list, or just increment the usage count if
428 * it's already present.
429 */
430int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
431 struct dm_dev **result)
432{
433 int r;
434 dev_t dev;
435 struct dm_dev_internal *dd;
436 struct dm_table *t = ti->table;
437
438 BUG_ON(!t);
439
440 dev = dm_get_dev_t(path);
441 if (!dev)
442 return -ENODEV;
443
444 dd = find_device(&t->devices, dev);
445 if (!dd) {
446 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
447 if (!dd)
448 return -ENOMEM;
449
450 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
451 kfree(dd);
452 return r;
453 }
454
455 atomic_set(&dd->count, 0);
456 list_add(&dd->list, &t->devices);
457
458 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 r = upgrade_mode(dd, mode, t->md);
460 if (r)
461 return r;
462 }
463 atomic_inc(&dd->count);
464
465 *result = dd->dm_dev;
466 return 0;
467}
468EXPORT_SYMBOL(dm_get_device);
469
470static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 sector_t start, sector_t len, void *data)
472{
473 struct queue_limits *limits = data;
474 struct block_device *bdev = dev->bdev;
475 struct request_queue *q = bdev_get_queue(bdev);
476 char b[BDEVNAME_SIZE];
477
478 if (unlikely(!q)) {
479 DMWARN("%s: Cannot set limits for nonexistent device %s",
480 dm_device_name(ti->table->md), bdevname(bdev, b));
481 return 0;
482 }
483
484 if (bdev_stack_limits(limits, bdev, start) < 0)
485 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 "physical_block_size=%u, logical_block_size=%u, "
487 "alignment_offset=%u, start=%llu",
488 dm_device_name(ti->table->md), bdevname(bdev, b),
489 q->limits.physical_block_size,
490 q->limits.logical_block_size,
491 q->limits.alignment_offset,
492 (unsigned long long) start << SECTOR_SHIFT);
493
494 limits->zoned = blk_queue_zoned_model(q);
495
496 return 0;
497}
498
499/*
500 * Decrement a device's use count and remove it if necessary.
501 */
502void dm_put_device(struct dm_target *ti, struct dm_dev *d)
503{
504 int found = 0;
505 struct list_head *devices = &ti->table->devices;
506 struct dm_dev_internal *dd;
507
508 list_for_each_entry(dd, devices, list) {
509 if (dd->dm_dev == d) {
510 found = 1;
511 break;
512 }
513 }
514 if (!found) {
515 DMWARN("%s: device %s not in table devices list",
516 dm_device_name(ti->table->md), d->name);
517 return;
518 }
519 if (atomic_dec_and_test(&dd->count)) {
520 dm_put_table_device(ti->table->md, d);
521 list_del(&dd->list);
522 kfree(dd);
523 }
524}
525EXPORT_SYMBOL(dm_put_device);
526
527/*
528 * Checks to see if the target joins onto the end of the table.
529 */
530static int adjoin(struct dm_table *table, struct dm_target *ti)
531{
532 struct dm_target *prev;
533
534 if (!table->num_targets)
535 return !ti->begin;
536
537 prev = &table->targets[table->num_targets - 1];
538 return (ti->begin == (prev->begin + prev->len));
539}
540
541/*
542 * Used to dynamically allocate the arg array.
543 *
544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545 * process messages even if some device is suspended. These messages have a
546 * small fixed number of arguments.
547 *
548 * On the other hand, dm-switch needs to process bulk data using messages and
549 * excessive use of GFP_NOIO could cause trouble.
550 */
551static char **realloc_argv(unsigned *size, char **old_argv)
552{
553 char **argv;
554 unsigned new_size;
555 gfp_t gfp;
556
557 if (*size) {
558 new_size = *size * 2;
559 gfp = GFP_KERNEL;
560 } else {
561 new_size = 8;
562 gfp = GFP_NOIO;
563 }
564 argv = kmalloc(new_size * sizeof(*argv), gfp);
565 if (argv) {
566 memcpy(argv, old_argv, *size * sizeof(*argv));
567 *size = new_size;
568 }
569
570 kfree(old_argv);
571 return argv;
572}
573
574/*
575 * Destructively splits up the argument list to pass to ctr.
576 */
577int dm_split_args(int *argc, char ***argvp, char *input)
578{
579 char *start, *end = input, *out, **argv = NULL;
580 unsigned array_size = 0;
581
582 *argc = 0;
583
584 if (!input) {
585 *argvp = NULL;
586 return 0;
587 }
588
589 argv = realloc_argv(&array_size, argv);
590 if (!argv)
591 return -ENOMEM;
592
593 while (1) {
594 /* Skip whitespace */
595 start = skip_spaces(end);
596
597 if (!*start)
598 break; /* success, we hit the end */
599
600 /* 'out' is used to remove any back-quotes */
601 end = out = start;
602 while (*end) {
603 /* Everything apart from '\0' can be quoted */
604 if (*end == '\\' && *(end + 1)) {
605 *out++ = *(end + 1);
606 end += 2;
607 continue;
608 }
609
610 if (isspace(*end))
611 break; /* end of token */
612
613 *out++ = *end++;
614 }
615
616 /* have we already filled the array ? */
617 if ((*argc + 1) > array_size) {
618 argv = realloc_argv(&array_size, argv);
619 if (!argv)
620 return -ENOMEM;
621 }
622
623 /* we know this is whitespace */
624 if (*end)
625 end++;
626
627 /* terminate the string and put it in the array */
628 *out = '\0';
629 argv[*argc] = start;
630 (*argc)++;
631 }
632
633 *argvp = argv;
634 return 0;
635}
636
637/*
638 * Impose necessary and sufficient conditions on a devices's table such
639 * that any incoming bio which respects its logical_block_size can be
640 * processed successfully. If it falls across the boundary between
641 * two or more targets, the size of each piece it gets split into must
642 * be compatible with the logical_block_size of the target processing it.
643 */
644static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 struct queue_limits *limits)
646{
647 /*
648 * This function uses arithmetic modulo the logical_block_size
649 * (in units of 512-byte sectors).
650 */
651 unsigned short device_logical_block_size_sects =
652 limits->logical_block_size >> SECTOR_SHIFT;
653
654 /*
655 * Offset of the start of the next table entry, mod logical_block_size.
656 */
657 unsigned short next_target_start = 0;
658
659 /*
660 * Given an aligned bio that extends beyond the end of a
661 * target, how many sectors must the next target handle?
662 */
663 unsigned short remaining = 0;
664
665 struct dm_target *uninitialized_var(ti);
666 struct queue_limits ti_limits;
667 unsigned i;
668
669 /*
670 * Check each entry in the table in turn.
671 */
672 for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 ti = dm_table_get_target(table, i);
674
675 blk_set_stacking_limits(&ti_limits);
676
677 /* combine all target devices' limits */
678 if (ti->type->iterate_devices)
679 ti->type->iterate_devices(ti, dm_set_device_limits,
680 &ti_limits);
681
682 /*
683 * If the remaining sectors fall entirely within this
684 * table entry are they compatible with its logical_block_size?
685 */
686 if (remaining < ti->len &&
687 remaining & ((ti_limits.logical_block_size >>
688 SECTOR_SHIFT) - 1))
689 break; /* Error */
690
691 next_target_start =
692 (unsigned short) ((next_target_start + ti->len) &
693 (device_logical_block_size_sects - 1));
694 remaining = next_target_start ?
695 device_logical_block_size_sects - next_target_start : 0;
696 }
697
698 if (remaining) {
699 DMWARN("%s: table line %u (start sect %llu len %llu) "
700 "not aligned to h/w logical block size %u",
701 dm_device_name(table->md), i,
702 (unsigned long long) ti->begin,
703 (unsigned long long) ti->len,
704 limits->logical_block_size);
705 return -EINVAL;
706 }
707
708 return 0;
709}
710
711int dm_table_add_target(struct dm_table *t, const char *type,
712 sector_t start, sector_t len, char *params)
713{
714 int r = -EINVAL, argc;
715 char **argv;
716 struct dm_target *tgt;
717
718 if (t->singleton) {
719 DMERR("%s: target type %s must appear alone in table",
720 dm_device_name(t->md), t->targets->type->name);
721 return -EINVAL;
722 }
723
724 BUG_ON(t->num_targets >= t->num_allocated);
725
726 tgt = t->targets + t->num_targets;
727 memset(tgt, 0, sizeof(*tgt));
728
729 if (!len) {
730 DMERR("%s: zero-length target", dm_device_name(t->md));
731 return -EINVAL;
732 }
733
734 tgt->type = dm_get_target_type(type);
735 if (!tgt->type) {
736 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 return -EINVAL;
738 }
739
740 if (dm_target_needs_singleton(tgt->type)) {
741 if (t->num_targets) {
742 tgt->error = "singleton target type must appear alone in table";
743 goto bad;
744 }
745 t->singleton = true;
746 }
747
748 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 tgt->error = "target type may not be included in a read-only table";
750 goto bad;
751 }
752
753 if (t->immutable_target_type) {
754 if (t->immutable_target_type != tgt->type) {
755 tgt->error = "immutable target type cannot be mixed with other target types";
756 goto bad;
757 }
758 } else if (dm_target_is_immutable(tgt->type)) {
759 if (t->num_targets) {
760 tgt->error = "immutable target type cannot be mixed with other target types";
761 goto bad;
762 }
763 t->immutable_target_type = tgt->type;
764 }
765
766 if (dm_target_has_integrity(tgt->type))
767 t->integrity_added = 1;
768
769 tgt->table = t;
770 tgt->begin = start;
771 tgt->len = len;
772 tgt->error = "Unknown error";
773
774 /*
775 * Does this target adjoin the previous one ?
776 */
777 if (!adjoin(t, tgt)) {
778 tgt->error = "Gap in table";
779 goto bad;
780 }
781
782 r = dm_split_args(&argc, &argv, params);
783 if (r) {
784 tgt->error = "couldn't split parameters (insufficient memory)";
785 goto bad;
786 }
787
788 r = tgt->type->ctr(tgt, argc, argv);
789 kfree(argv);
790 if (r)
791 goto bad;
792
793 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
794
795 if (!tgt->num_discard_bios && tgt->discards_supported)
796 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 dm_device_name(t->md), type);
798
799 return 0;
800
801 bad:
802 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 dm_put_target_type(tgt->type);
804 return r;
805}
806
807/*
808 * Target argument parsing helpers.
809 */
810static int validate_next_arg(const struct dm_arg *arg,
811 struct dm_arg_set *arg_set,
812 unsigned *value, char **error, unsigned grouped)
813{
814 const char *arg_str = dm_shift_arg(arg_set);
815 char dummy;
816
817 if (!arg_str ||
818 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 (*value < arg->min) ||
820 (*value > arg->max) ||
821 (grouped && arg_set->argc < *value)) {
822 *error = arg->error;
823 return -EINVAL;
824 }
825
826 return 0;
827}
828
829int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 unsigned *value, char **error)
831{
832 return validate_next_arg(arg, arg_set, value, error, 0);
833}
834EXPORT_SYMBOL(dm_read_arg);
835
836int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 unsigned *value, char **error)
838{
839 return validate_next_arg(arg, arg_set, value, error, 1);
840}
841EXPORT_SYMBOL(dm_read_arg_group);
842
843const char *dm_shift_arg(struct dm_arg_set *as)
844{
845 char *r;
846
847 if (as->argc) {
848 as->argc--;
849 r = *as->argv;
850 as->argv++;
851 return r;
852 }
853
854 return NULL;
855}
856EXPORT_SYMBOL(dm_shift_arg);
857
858void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
859{
860 BUG_ON(as->argc < num_args);
861 as->argc -= num_args;
862 as->argv += num_args;
863}
864EXPORT_SYMBOL(dm_consume_args);
865
866static bool __table_type_bio_based(enum dm_queue_mode table_type)
867{
868 return (table_type == DM_TYPE_BIO_BASED ||
869 table_type == DM_TYPE_DAX_BIO_BASED);
870}
871
872static bool __table_type_request_based(enum dm_queue_mode table_type)
873{
874 return (table_type == DM_TYPE_REQUEST_BASED ||
875 table_type == DM_TYPE_MQ_REQUEST_BASED);
876}
877
878void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
879{
880 t->type = type;
881}
882EXPORT_SYMBOL_GPL(dm_table_set_type);
883
884static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
885 sector_t start, sector_t len, void *data)
886{
887 return bdev_dax_supported(dev->bdev, PAGE_SIZE);
888}
889
890static bool dm_table_supports_dax(struct dm_table *t)
891{
892 struct dm_target *ti;
893 unsigned i;
894
895 /* Ensure that all targets support DAX. */
896 for (i = 0; i < dm_table_get_num_targets(t); i++) {
897 ti = dm_table_get_target(t, i);
898
899 if (!ti->type->direct_access)
900 return false;
901
902 if (!ti->type->iterate_devices ||
903 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
904 return false;
905 }
906
907 return true;
908}
909
910static int dm_table_determine_type(struct dm_table *t)
911{
912 unsigned i;
913 unsigned bio_based = 0, request_based = 0, hybrid = 0;
914 unsigned sq_count = 0, mq_count = 0;
915 struct dm_target *tgt;
916 struct dm_dev_internal *dd;
917 struct list_head *devices = dm_table_get_devices(t);
918 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
919
920 if (t->type != DM_TYPE_NONE) {
921 /* target already set the table's type */
922 if (t->type == DM_TYPE_BIO_BASED)
923 return 0;
924 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
925 goto verify_rq_based;
926 }
927
928 for (i = 0; i < t->num_targets; i++) {
929 tgt = t->targets + i;
930 if (dm_target_hybrid(tgt))
931 hybrid = 1;
932 else if (dm_target_request_based(tgt))
933 request_based = 1;
934 else
935 bio_based = 1;
936
937 if (bio_based && request_based) {
938 DMWARN("Inconsistent table: different target types"
939 " can't be mixed up");
940 return -EINVAL;
941 }
942 }
943
944 if (hybrid && !bio_based && !request_based) {
945 /*
946 * The targets can work either way.
947 * Determine the type from the live device.
948 * Default to bio-based if device is new.
949 */
950 if (__table_type_request_based(live_md_type))
951 request_based = 1;
952 else
953 bio_based = 1;
954 }
955
956 if (bio_based) {
957 /* We must use this table as bio-based */
958 t->type = DM_TYPE_BIO_BASED;
959 if (dm_table_supports_dax(t) ||
960 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
961 t->type = DM_TYPE_DAX_BIO_BASED;
962 return 0;
963 }
964
965 BUG_ON(!request_based); /* No targets in this table */
966
967 /*
968 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
969 * having a compatible target use dm_table_set_type.
970 */
971 t->type = DM_TYPE_REQUEST_BASED;
972
973verify_rq_based:
974 /*
975 * Request-based dm supports only tables that have a single target now.
976 * To support multiple targets, request splitting support is needed,
977 * and that needs lots of changes in the block-layer.
978 * (e.g. request completion process for partial completion.)
979 */
980 if (t->num_targets > 1) {
981 DMWARN("Request-based dm doesn't support multiple targets yet");
982 return -EINVAL;
983 }
984
985 if (list_empty(devices)) {
986 int srcu_idx;
987 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
988
989 /* inherit live table's type and all_blk_mq */
990 if (live_table) {
991 t->type = live_table->type;
992 t->all_blk_mq = live_table->all_blk_mq;
993 }
994 dm_put_live_table(t->md, srcu_idx);
995 return 0;
996 }
997
998 /* Non-request-stackable devices can't be used for request-based dm */
999 list_for_each_entry(dd, devices, list) {
1000 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1001
1002 if (!blk_queue_stackable(q)) {
1003 DMERR("table load rejected: including"
1004 " non-request-stackable devices");
1005 return -EINVAL;
1006 }
1007
1008 if (q->mq_ops)
1009 mq_count++;
1010 else
1011 sq_count++;
1012 }
1013 if (sq_count && mq_count) {
1014 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1015 return -EINVAL;
1016 }
1017 t->all_blk_mq = mq_count > 0;
1018
1019 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
1020 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1021 return -EINVAL;
1022 }
1023
1024 return 0;
1025}
1026
1027enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1028{
1029 return t->type;
1030}
1031
1032struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1033{
1034 return t->immutable_target_type;
1035}
1036
1037struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1038{
1039 /* Immutable target is implicitly a singleton */
1040 if (t->num_targets > 1 ||
1041 !dm_target_is_immutable(t->targets[0].type))
1042 return NULL;
1043
1044 return t->targets;
1045}
1046
1047struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1048{
1049 struct dm_target *ti;
1050 unsigned i;
1051
1052 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1053 ti = dm_table_get_target(t, i);
1054 if (dm_target_is_wildcard(ti->type))
1055 return ti;
1056 }
1057
1058 return NULL;
1059}
1060
1061bool dm_table_bio_based(struct dm_table *t)
1062{
1063 return __table_type_bio_based(dm_table_get_type(t));
1064}
1065
1066bool dm_table_request_based(struct dm_table *t)
1067{
1068 return __table_type_request_based(dm_table_get_type(t));
1069}
1070
1071bool dm_table_all_blk_mq_devices(struct dm_table *t)
1072{
1073 return t->all_blk_mq;
1074}
1075
1076static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1077{
1078 enum dm_queue_mode type = dm_table_get_type(t);
1079 unsigned per_io_data_size = 0;
1080 struct dm_target *tgt;
1081 unsigned i;
1082
1083 if (unlikely(type == DM_TYPE_NONE)) {
1084 DMWARN("no table type is set, can't allocate mempools");
1085 return -EINVAL;
1086 }
1087
1088 if (__table_type_bio_based(type))
1089 for (i = 0; i < t->num_targets; i++) {
1090 tgt = t->targets + i;
1091 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1092 }
1093
1094 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1095 if (!t->mempools)
1096 return -ENOMEM;
1097
1098 return 0;
1099}
1100
1101void dm_table_free_md_mempools(struct dm_table *t)
1102{
1103 dm_free_md_mempools(t->mempools);
1104 t->mempools = NULL;
1105}
1106
1107struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1108{
1109 return t->mempools;
1110}
1111
1112static int setup_indexes(struct dm_table *t)
1113{
1114 int i;
1115 unsigned int total = 0;
1116 sector_t *indexes;
1117
1118 /* allocate the space for *all* the indexes */
1119 for (i = t->depth - 2; i >= 0; i--) {
1120 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1121 total += t->counts[i];
1122 }
1123
1124 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1125 if (!indexes)
1126 return -ENOMEM;
1127
1128 /* set up internal nodes, bottom-up */
1129 for (i = t->depth - 2; i >= 0; i--) {
1130 t->index[i] = indexes;
1131 indexes += (KEYS_PER_NODE * t->counts[i]);
1132 setup_btree_index(i, t);
1133 }
1134
1135 return 0;
1136}
1137
1138/*
1139 * Builds the btree to index the map.
1140 */
1141static int dm_table_build_index(struct dm_table *t)
1142{
1143 int r = 0;
1144 unsigned int leaf_nodes;
1145
1146 /* how many indexes will the btree have ? */
1147 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1148 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1149
1150 /* leaf layer has already been set up */
1151 t->counts[t->depth - 1] = leaf_nodes;
1152 t->index[t->depth - 1] = t->highs;
1153
1154 if (t->depth >= 2)
1155 r = setup_indexes(t);
1156
1157 return r;
1158}
1159
1160static bool integrity_profile_exists(struct gendisk *disk)
1161{
1162 return !!blk_get_integrity(disk);
1163}
1164
1165/*
1166 * Get a disk whose integrity profile reflects the table's profile.
1167 * Returns NULL if integrity support was inconsistent or unavailable.
1168 */
1169static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1170{
1171 struct list_head *devices = dm_table_get_devices(t);
1172 struct dm_dev_internal *dd = NULL;
1173 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1174 unsigned i;
1175
1176 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1177 struct dm_target *ti = dm_table_get_target(t, i);
1178 if (!dm_target_passes_integrity(ti->type))
1179 goto no_integrity;
1180 }
1181
1182 list_for_each_entry(dd, devices, list) {
1183 template_disk = dd->dm_dev->bdev->bd_disk;
1184 if (!integrity_profile_exists(template_disk))
1185 goto no_integrity;
1186 else if (prev_disk &&
1187 blk_integrity_compare(prev_disk, template_disk) < 0)
1188 goto no_integrity;
1189 prev_disk = template_disk;
1190 }
1191
1192 return template_disk;
1193
1194no_integrity:
1195 if (prev_disk)
1196 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1197 dm_device_name(t->md),
1198 prev_disk->disk_name,
1199 template_disk->disk_name);
1200 return NULL;
1201}
1202
1203/*
1204 * Register the mapped device for blk_integrity support if the
1205 * underlying devices have an integrity profile. But all devices may
1206 * not have matching profiles (checking all devices isn't reliable
1207 * during table load because this table may use other DM device(s) which
1208 * must be resumed before they will have an initialized integity
1209 * profile). Consequently, stacked DM devices force a 2 stage integrity
1210 * profile validation: First pass during table load, final pass during
1211 * resume.
1212 */
1213static int dm_table_register_integrity(struct dm_table *t)
1214{
1215 struct mapped_device *md = t->md;
1216 struct gendisk *template_disk = NULL;
1217
1218 /* If target handles integrity itself do not register it here. */
1219 if (t->integrity_added)
1220 return 0;
1221
1222 template_disk = dm_table_get_integrity_disk(t);
1223 if (!template_disk)
1224 return 0;
1225
1226 if (!integrity_profile_exists(dm_disk(md))) {
1227 t->integrity_supported = true;
1228 /*
1229 * Register integrity profile during table load; we can do
1230 * this because the final profile must match during resume.
1231 */
1232 blk_integrity_register(dm_disk(md),
1233 blk_get_integrity(template_disk));
1234 return 0;
1235 }
1236
1237 /*
1238 * If DM device already has an initialized integrity
1239 * profile the new profile should not conflict.
1240 */
1241 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1242 DMWARN("%s: conflict with existing integrity profile: "
1243 "%s profile mismatch",
1244 dm_device_name(t->md),
1245 template_disk->disk_name);
1246 return 1;
1247 }
1248
1249 /* Preserve existing integrity profile */
1250 t->integrity_supported = true;
1251 return 0;
1252}
1253
1254/*
1255 * Prepares the table for use by building the indices,
1256 * setting the type, and allocating mempools.
1257 */
1258int dm_table_complete(struct dm_table *t)
1259{
1260 int r;
1261
1262 r = dm_table_determine_type(t);
1263 if (r) {
1264 DMERR("unable to determine table type");
1265 return r;
1266 }
1267
1268 r = dm_table_build_index(t);
1269 if (r) {
1270 DMERR("unable to build btrees");
1271 return r;
1272 }
1273
1274 r = dm_table_register_integrity(t);
1275 if (r) {
1276 DMERR("could not register integrity profile.");
1277 return r;
1278 }
1279
1280 r = dm_table_alloc_md_mempools(t, t->md);
1281 if (r)
1282 DMERR("unable to allocate mempools");
1283
1284 return r;
1285}
1286
1287static DEFINE_MUTEX(_event_lock);
1288void dm_table_event_callback(struct dm_table *t,
1289 void (*fn)(void *), void *context)
1290{
1291 mutex_lock(&_event_lock);
1292 t->event_fn = fn;
1293 t->event_context = context;
1294 mutex_unlock(&_event_lock);
1295}
1296
1297void dm_table_event(struct dm_table *t)
1298{
1299 /*
1300 * You can no longer call dm_table_event() from interrupt
1301 * context, use a bottom half instead.
1302 */
1303 BUG_ON(in_interrupt());
1304
1305 mutex_lock(&_event_lock);
1306 if (t->event_fn)
1307 t->event_fn(t->event_context);
1308 mutex_unlock(&_event_lock);
1309}
1310EXPORT_SYMBOL(dm_table_event);
1311
1312inline sector_t dm_table_get_size(struct dm_table *t)
1313{
1314 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1315}
1316EXPORT_SYMBOL(dm_table_get_size);
1317
1318struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1319{
1320 if (index >= t->num_targets)
1321 return NULL;
1322
1323 return t->targets + index;
1324}
1325
1326/*
1327 * Search the btree for the correct target.
1328 *
1329 * Caller should check returned pointer with dm_target_is_valid()
1330 * to trap I/O beyond end of device.
1331 */
1332struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1333{
1334 unsigned int l, n = 0, k = 0;
1335 sector_t *node;
1336
1337 if (unlikely(sector >= dm_table_get_size(t)))
1338 return &t->targets[t->num_targets];
1339
1340 for (l = 0; l < t->depth; l++) {
1341 n = get_child(n, k);
1342 node = get_node(t, l, n);
1343
1344 for (k = 0; k < KEYS_PER_NODE; k++)
1345 if (node[k] >= sector)
1346 break;
1347 }
1348
1349 return &t->targets[(KEYS_PER_NODE * n) + k];
1350}
1351
1352static int count_device(struct dm_target *ti, struct dm_dev *dev,
1353 sector_t start, sector_t len, void *data)
1354{
1355 unsigned *num_devices = data;
1356
1357 (*num_devices)++;
1358
1359 return 0;
1360}
1361
1362/*
1363 * Check whether a table has no data devices attached using each
1364 * target's iterate_devices method.
1365 * Returns false if the result is unknown because a target doesn't
1366 * support iterate_devices.
1367 */
1368bool dm_table_has_no_data_devices(struct dm_table *table)
1369{
1370 struct dm_target *ti;
1371 unsigned i, num_devices;
1372
1373 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1374 ti = dm_table_get_target(table, i);
1375
1376 if (!ti->type->iterate_devices)
1377 return false;
1378
1379 num_devices = 0;
1380 ti->type->iterate_devices(ti, count_device, &num_devices);
1381 if (num_devices)
1382 return false;
1383 }
1384
1385 return true;
1386}
1387
1388static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1389 sector_t start, sector_t len, void *data)
1390{
1391 struct request_queue *q = bdev_get_queue(dev->bdev);
1392 enum blk_zoned_model *zoned_model = data;
1393
1394 return q && blk_queue_zoned_model(q) == *zoned_model;
1395}
1396
1397static bool dm_table_supports_zoned_model(struct dm_table *t,
1398 enum blk_zoned_model zoned_model)
1399{
1400 struct dm_target *ti;
1401 unsigned i;
1402
1403 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1404 ti = dm_table_get_target(t, i);
1405
1406 if (zoned_model == BLK_ZONED_HM &&
1407 !dm_target_supports_zoned_hm(ti->type))
1408 return false;
1409
1410 if (!ti->type->iterate_devices ||
1411 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1412 return false;
1413 }
1414
1415 return true;
1416}
1417
1418static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1419 sector_t start, sector_t len, void *data)
1420{
1421 struct request_queue *q = bdev_get_queue(dev->bdev);
1422 unsigned int *zone_sectors = data;
1423
1424 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1425}
1426
1427static bool dm_table_matches_zone_sectors(struct dm_table *t,
1428 unsigned int zone_sectors)
1429{
1430 struct dm_target *ti;
1431 unsigned i;
1432
1433 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1434 ti = dm_table_get_target(t, i);
1435
1436 if (!ti->type->iterate_devices ||
1437 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1438 return false;
1439 }
1440
1441 return true;
1442}
1443
1444static int validate_hardware_zoned_model(struct dm_table *table,
1445 enum blk_zoned_model zoned_model,
1446 unsigned int zone_sectors)
1447{
1448 if (zoned_model == BLK_ZONED_NONE)
1449 return 0;
1450
1451 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1452 DMERR("%s: zoned model is not consistent across all devices",
1453 dm_device_name(table->md));
1454 return -EINVAL;
1455 }
1456
1457 /* Check zone size validity and compatibility */
1458 if (!zone_sectors || !is_power_of_2(zone_sectors))
1459 return -EINVAL;
1460
1461 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1462 DMERR("%s: zone sectors is not consistent across all devices",
1463 dm_device_name(table->md));
1464 return -EINVAL;
1465 }
1466
1467 return 0;
1468}
1469
1470/*
1471 * Establish the new table's queue_limits and validate them.
1472 */
1473int dm_calculate_queue_limits(struct dm_table *table,
1474 struct queue_limits *limits)
1475{
1476 struct dm_target *ti;
1477 struct queue_limits ti_limits;
1478 unsigned i;
1479 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1480 unsigned int zone_sectors = 0;
1481
1482 blk_set_stacking_limits(limits);
1483
1484 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1485 blk_set_stacking_limits(&ti_limits);
1486
1487 ti = dm_table_get_target(table, i);
1488
1489 if (!ti->type->iterate_devices)
1490 goto combine_limits;
1491
1492 /*
1493 * Combine queue limits of all the devices this target uses.
1494 */
1495 ti->type->iterate_devices(ti, dm_set_device_limits,
1496 &ti_limits);
1497
1498 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1499 /*
1500 * After stacking all limits, validate all devices
1501 * in table support this zoned model and zone sectors.
1502 */
1503 zoned_model = ti_limits.zoned;
1504 zone_sectors = ti_limits.chunk_sectors;
1505 }
1506
1507 /* Set I/O hints portion of queue limits */
1508 if (ti->type->io_hints)
1509 ti->type->io_hints(ti, &ti_limits);
1510
1511 /*
1512 * Check each device area is consistent with the target's
1513 * overall queue limits.
1514 */
1515 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1516 &ti_limits))
1517 return -EINVAL;
1518
1519combine_limits:
1520 /*
1521 * Merge this target's queue limits into the overall limits
1522 * for the table.
1523 */
1524 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1525 DMWARN("%s: adding target device "
1526 "(start sect %llu len %llu) "
1527 "caused an alignment inconsistency",
1528 dm_device_name(table->md),
1529 (unsigned long long) ti->begin,
1530 (unsigned long long) ti->len);
1531
1532 /*
1533 * FIXME: this should likely be moved to blk_stack_limits(), would
1534 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1535 */
1536 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1537 /*
1538 * By default, the stacked limits zoned model is set to
1539 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1540 * this model using the first target model reported
1541 * that is not BLK_ZONED_NONE. This will be either the
1542 * first target device zoned model or the model reported
1543 * by the target .io_hints.
1544 */
1545 limits->zoned = ti_limits.zoned;
1546 }
1547 }
1548
1549 /*
1550 * Verify that the zoned model and zone sectors, as determined before
1551 * any .io_hints override, are the same across all devices in the table.
1552 * - this is especially relevant if .io_hints is emulating a disk-managed
1553 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1554 * BUT...
1555 */
1556 if (limits->zoned != BLK_ZONED_NONE) {
1557 /*
1558 * ...IF the above limits stacking determined a zoned model
1559 * validate that all of the table's devices conform to it.
1560 */
1561 zoned_model = limits->zoned;
1562 zone_sectors = limits->chunk_sectors;
1563 }
1564 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1565 return -EINVAL;
1566
1567 return validate_hardware_logical_block_alignment(table, limits);
1568}
1569
1570/*
1571 * Verify that all devices have an integrity profile that matches the
1572 * DM device's registered integrity profile. If the profiles don't
1573 * match then unregister the DM device's integrity profile.
1574 */
1575static void dm_table_verify_integrity(struct dm_table *t)
1576{
1577 struct gendisk *template_disk = NULL;
1578
1579 if (t->integrity_added)
1580 return;
1581
1582 if (t->integrity_supported) {
1583 /*
1584 * Verify that the original integrity profile
1585 * matches all the devices in this table.
1586 */
1587 template_disk = dm_table_get_integrity_disk(t);
1588 if (template_disk &&
1589 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1590 return;
1591 }
1592
1593 if (integrity_profile_exists(dm_disk(t->md))) {
1594 DMWARN("%s: unable to establish an integrity profile",
1595 dm_device_name(t->md));
1596 blk_integrity_unregister(dm_disk(t->md));
1597 }
1598}
1599
1600static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1601 sector_t start, sector_t len, void *data)
1602{
1603 unsigned long flush = (unsigned long) data;
1604 struct request_queue *q = bdev_get_queue(dev->bdev);
1605
1606 return q && (q->queue_flags & flush);
1607}
1608
1609static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1610{
1611 struct dm_target *ti;
1612 unsigned i;
1613
1614 /*
1615 * Require at least one underlying device to support flushes.
1616 * t->devices includes internal dm devices such as mirror logs
1617 * so we need to use iterate_devices here, which targets
1618 * supporting flushes must provide.
1619 */
1620 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1621 ti = dm_table_get_target(t, i);
1622
1623 if (!ti->num_flush_bios)
1624 continue;
1625
1626 if (ti->flush_supported)
1627 return true;
1628
1629 if (ti->type->iterate_devices &&
1630 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1631 return true;
1632 }
1633
1634 return false;
1635}
1636
1637static int device_dax_write_cache_enabled(struct dm_target *ti,
1638 struct dm_dev *dev, sector_t start,
1639 sector_t len, void *data)
1640{
1641 struct dax_device *dax_dev = dev->dax_dev;
1642
1643 if (!dax_dev)
1644 return false;
1645
1646 if (dax_write_cache_enabled(dax_dev))
1647 return true;
1648 return false;
1649}
1650
1651static int dm_table_supports_dax_write_cache(struct dm_table *t)
1652{
1653 struct dm_target *ti;
1654 unsigned i;
1655
1656 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1657 ti = dm_table_get_target(t, i);
1658
1659 if (ti->type->iterate_devices &&
1660 ti->type->iterate_devices(ti,
1661 device_dax_write_cache_enabled, NULL))
1662 return true;
1663 }
1664
1665 return false;
1666}
1667
1668static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1669 sector_t start, sector_t len, void *data)
1670{
1671 struct request_queue *q = bdev_get_queue(dev->bdev);
1672
1673 return q && blk_queue_nonrot(q);
1674}
1675
1676static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1677 sector_t start, sector_t len, void *data)
1678{
1679 struct request_queue *q = bdev_get_queue(dev->bdev);
1680
1681 return q && !blk_queue_add_random(q);
1682}
1683
1684static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1685 sector_t start, sector_t len, void *data)
1686{
1687 struct request_queue *q = bdev_get_queue(dev->bdev);
1688
1689 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1690}
1691
1692static bool dm_table_all_devices_attribute(struct dm_table *t,
1693 iterate_devices_callout_fn func)
1694{
1695 struct dm_target *ti;
1696 unsigned i;
1697
1698 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1699 ti = dm_table_get_target(t, i);
1700
1701 if (!ti->type->iterate_devices ||
1702 !ti->type->iterate_devices(ti, func, NULL))
1703 return false;
1704 }
1705
1706 return true;
1707}
1708
1709static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1710 sector_t start, sector_t len, void *data)
1711{
1712 struct request_queue *q = bdev_get_queue(dev->bdev);
1713
1714 return q && !q->limits.max_write_same_sectors;
1715}
1716
1717static bool dm_table_supports_write_same(struct dm_table *t)
1718{
1719 struct dm_target *ti;
1720 unsigned i;
1721
1722 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1723 ti = dm_table_get_target(t, i);
1724
1725 if (!ti->num_write_same_bios)
1726 return false;
1727
1728 if (!ti->type->iterate_devices ||
1729 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1730 return false;
1731 }
1732
1733 return true;
1734}
1735
1736static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1737 sector_t start, sector_t len, void *data)
1738{
1739 struct request_queue *q = bdev_get_queue(dev->bdev);
1740
1741 return q && !q->limits.max_write_zeroes_sectors;
1742}
1743
1744static bool dm_table_supports_write_zeroes(struct dm_table *t)
1745{
1746 struct dm_target *ti;
1747 unsigned i = 0;
1748
1749 while (i < dm_table_get_num_targets(t)) {
1750 ti = dm_table_get_target(t, i++);
1751
1752 if (!ti->num_write_zeroes_bios)
1753 return false;
1754
1755 if (!ti->type->iterate_devices ||
1756 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1757 return false;
1758 }
1759
1760 return true;
1761}
1762
1763static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1764 sector_t start, sector_t len, void *data)
1765{
1766 struct request_queue *q = bdev_get_queue(dev->bdev);
1767
1768 return q && !blk_queue_discard(q);
1769}
1770
1771static bool dm_table_supports_discards(struct dm_table *t)
1772{
1773 struct dm_target *ti;
1774 unsigned i;
1775
1776 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1777 ti = dm_table_get_target(t, i);
1778
1779 if (!ti->num_discard_bios)
1780 return false;
1781
1782 /*
1783 * Either the target provides discard support (as implied by setting
1784 * 'discards_supported') or it relies on _all_ data devices having
1785 * discard support.
1786 */
1787 if (!ti->discards_supported &&
1788 (!ti->type->iterate_devices ||
1789 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1790 return false;
1791 }
1792
1793 return true;
1794}
1795
1796static int device_requires_stable_pages(struct dm_target *ti,
1797 struct dm_dev *dev, sector_t start,
1798 sector_t len, void *data)
1799{
1800 struct request_queue *q = bdev_get_queue(dev->bdev);
1801
1802 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1803}
1804
1805/*
1806 * If any underlying device requires stable pages, a table must require
1807 * them as well. Only targets that support iterate_devices are considered:
1808 * don't want error, zero, etc to require stable pages.
1809 */
1810static bool dm_table_requires_stable_pages(struct dm_table *t)
1811{
1812 struct dm_target *ti;
1813 unsigned i;
1814
1815 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1816 ti = dm_table_get_target(t, i);
1817
1818 if (ti->type->iterate_devices &&
1819 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1820 return true;
1821 }
1822
1823 return false;
1824}
1825
1826void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1827 struct queue_limits *limits)
1828{
1829 bool wc = false, fua = false;
1830
1831 /*
1832 * Copy table's limits to the DM device's request_queue
1833 */
1834 q->limits = *limits;
1835
1836 if (!dm_table_supports_discards(t))
1837 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1838 else
1839 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1840
1841 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1842 wc = true;
1843 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1844 fua = true;
1845 }
1846 blk_queue_write_cache(q, wc, fua);
1847
1848 if (dm_table_supports_dax(t))
1849 queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
1850 else
1851 queue_flag_clear_unlocked(QUEUE_FLAG_DAX, q);
1852
1853 if (dm_table_supports_dax_write_cache(t))
1854 dax_write_cache(t->md->dax_dev, true);
1855
1856 /* Ensure that all underlying devices are non-rotational. */
1857 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1858 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1859 else
1860 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1861
1862 if (!dm_table_supports_write_same(t))
1863 q->limits.max_write_same_sectors = 0;
1864 if (!dm_table_supports_write_zeroes(t))
1865 q->limits.max_write_zeroes_sectors = 0;
1866
1867 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1868 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1869 else
1870 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1871
1872 dm_table_verify_integrity(t);
1873
1874 /*
1875 * Some devices don't use blk_integrity but still want stable pages
1876 * because they do their own checksumming.
1877 */
1878 if (dm_table_requires_stable_pages(t))
1879 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1880 else
1881 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1882
1883 /*
1884 * Determine whether or not this queue's I/O timings contribute
1885 * to the entropy pool, Only request-based targets use this.
1886 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1887 * have it set.
1888 */
1889 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1890 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1891
1892 /*
1893 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1894 * visible to other CPUs because, once the flag is set, incoming bios
1895 * are processed by request-based dm, which refers to the queue
1896 * settings.
1897 * Until the flag set, bios are passed to bio-based dm and queued to
1898 * md->deferred where queue settings are not needed yet.
1899 * Those bios are passed to request-based dm at the resume time.
1900 */
1901 smp_mb();
1902 if (dm_table_request_based(t))
1903 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1904}
1905
1906unsigned int dm_table_get_num_targets(struct dm_table *t)
1907{
1908 return t->num_targets;
1909}
1910
1911struct list_head *dm_table_get_devices(struct dm_table *t)
1912{
1913 return &t->devices;
1914}
1915
1916fmode_t dm_table_get_mode(struct dm_table *t)
1917{
1918 return t->mode;
1919}
1920EXPORT_SYMBOL(dm_table_get_mode);
1921
1922enum suspend_mode {
1923 PRESUSPEND,
1924 PRESUSPEND_UNDO,
1925 POSTSUSPEND,
1926};
1927
1928static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1929{
1930 int i = t->num_targets;
1931 struct dm_target *ti = t->targets;
1932
1933 lockdep_assert_held(&t->md->suspend_lock);
1934
1935 while (i--) {
1936 switch (mode) {
1937 case PRESUSPEND:
1938 if (ti->type->presuspend)
1939 ti->type->presuspend(ti);
1940 break;
1941 case PRESUSPEND_UNDO:
1942 if (ti->type->presuspend_undo)
1943 ti->type->presuspend_undo(ti);
1944 break;
1945 case POSTSUSPEND:
1946 if (ti->type->postsuspend)
1947 ti->type->postsuspend(ti);
1948 break;
1949 }
1950 ti++;
1951 }
1952}
1953
1954void dm_table_presuspend_targets(struct dm_table *t)
1955{
1956 if (!t)
1957 return;
1958
1959 suspend_targets(t, PRESUSPEND);
1960}
1961
1962void dm_table_presuspend_undo_targets(struct dm_table *t)
1963{
1964 if (!t)
1965 return;
1966
1967 suspend_targets(t, PRESUSPEND_UNDO);
1968}
1969
1970void dm_table_postsuspend_targets(struct dm_table *t)
1971{
1972 if (!t)
1973 return;
1974
1975 suspend_targets(t, POSTSUSPEND);
1976}
1977
1978int dm_table_resume_targets(struct dm_table *t)
1979{
1980 int i, r = 0;
1981
1982 lockdep_assert_held(&t->md->suspend_lock);
1983
1984 for (i = 0; i < t->num_targets; i++) {
1985 struct dm_target *ti = t->targets + i;
1986
1987 if (!ti->type->preresume)
1988 continue;
1989
1990 r = ti->type->preresume(ti);
1991 if (r) {
1992 DMERR("%s: %s: preresume failed, error = %d",
1993 dm_device_name(t->md), ti->type->name, r);
1994 return r;
1995 }
1996 }
1997
1998 for (i = 0; i < t->num_targets; i++) {
1999 struct dm_target *ti = t->targets + i;
2000
2001 if (ti->type->resume)
2002 ti->type->resume(ti);
2003 }
2004
2005 return 0;
2006}
2007
2008void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2009{
2010 list_add(&cb->list, &t->target_callbacks);
2011}
2012EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2013
2014int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2015{
2016 struct dm_dev_internal *dd;
2017 struct list_head *devices = dm_table_get_devices(t);
2018 struct dm_target_callbacks *cb;
2019 int r = 0;
2020
2021 list_for_each_entry(dd, devices, list) {
2022 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2023 char b[BDEVNAME_SIZE];
2024
2025 if (likely(q))
2026 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2027 else
2028 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2029 dm_device_name(t->md),
2030 bdevname(dd->dm_dev->bdev, b));
2031 }
2032
2033 list_for_each_entry(cb, &t->target_callbacks, list)
2034 if (cb->congested_fn)
2035 r |= cb->congested_fn(cb, bdi_bits);
2036
2037 return r;
2038}
2039
2040struct mapped_device *dm_table_get_md(struct dm_table *t)
2041{
2042 return t->md;
2043}
2044EXPORT_SYMBOL(dm_table_get_md);
2045
2046void dm_table_run_md_queue_async(struct dm_table *t)
2047{
2048 struct mapped_device *md;
2049 struct request_queue *queue;
2050 unsigned long flags;
2051
2052 if (!dm_table_request_based(t))
2053 return;
2054
2055 md = dm_table_get_md(t);
2056 queue = dm_get_md_queue(md);
2057 if (queue) {
2058 if (queue->mq_ops)
2059 blk_mq_run_hw_queues(queue, true);
2060 else {
2061 spin_lock_irqsave(queue->queue_lock, flags);
2062 blk_run_queue_async(queue);
2063 spin_unlock_irqrestore(queue->queue_lock, flags);
2064 }
2065 }
2066}
2067EXPORT_SYMBOL(dm_table_run_md_queue_async);
2068