blob: 29f8a632b42b2faecf35301397e5d3954d8f4c71 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "persistent-data/dm-btree.h"
9#include "persistent-data/dm-space-map.h"
10#include "persistent-data/dm-space-map-disk.h"
11#include "persistent-data/dm-transaction-manager.h"
12
13#include <linux/list.h>
14#include <linux/device-mapper.h>
15#include <linux/workqueue.h>
16
17/*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75#define DM_MSG_PREFIX "thin metadata"
76
77#define THIN_SUPERBLOCK_MAGIC 27022010
78#define THIN_SUPERBLOCK_LOCATION 0
79#define THIN_VERSION 2
80#define SECTOR_TO_BLOCK_SHIFT 3
81
82/*
83 * For btree insert:
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 * For btree remove:
87 * 2 for shadow spine +
88 * 4 for rebalance 3 child node
89 */
90#define THIN_MAX_CONCURRENT_LOCKS 6
91
92/* This should be plenty */
93#define SPACE_MAP_ROOT_SIZE 128
94
95/*
96 * Little endian on-disk superblock and device details.
97 */
98struct thin_disk_superblock {
99 __le32 csum; /* Checksum of superblock except for this field. */
100 __le32 flags;
101 __le64 blocknr; /* This block number, dm_block_t. */
102
103 __u8 uuid[16];
104 __le64 magic;
105 __le32 version;
106 __le32 time;
107
108 __le64 trans_id;
109
110 /*
111 * Root held by userspace transactions.
112 */
113 __le64 held_root;
114
115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118 /*
119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 */
121 __le64 data_mapping_root;
122
123 /*
124 * Device detail root mapping dev_id -> device_details
125 */
126 __le64 device_details_root;
127
128 __le32 data_block_size; /* In 512-byte sectors. */
129
130 __le32 metadata_block_size; /* In 512-byte sectors. */
131 __le64 metadata_nr_blocks;
132
133 __le32 compat_flags;
134 __le32 compat_ro_flags;
135 __le32 incompat_flags;
136} __packed;
137
138struct disk_device_details {
139 __le64 mapped_blocks;
140 __le64 transaction_id; /* When created. */
141 __le32 creation_time;
142 __le32 snapshotted_time;
143} __packed;
144
145struct dm_pool_metadata {
146 struct hlist_node hash;
147
148 struct block_device *bdev;
149 struct dm_block_manager *bm;
150 struct dm_space_map *metadata_sm;
151 struct dm_space_map *data_sm;
152 struct dm_transaction_manager *tm;
153 struct dm_transaction_manager *nb_tm;
154
155 /*
156 * Two-level btree.
157 * First level holds thin_dev_t.
158 * Second level holds mappings.
159 */
160 struct dm_btree_info info;
161
162 /*
163 * Non-blocking version of the above.
164 */
165 struct dm_btree_info nb_info;
166
167 /*
168 * Just the top level for deleting whole devices.
169 */
170 struct dm_btree_info tl_info;
171
172 /*
173 * Just the bottom level for creating new devices.
174 */
175 struct dm_btree_info bl_info;
176
177 /*
178 * Describes the device details btree.
179 */
180 struct dm_btree_info details_info;
181
182 struct rw_semaphore root_lock;
183 uint32_t time;
184 dm_block_t root;
185 dm_block_t details_root;
186 struct list_head thin_devices;
187 uint64_t trans_id;
188 unsigned long flags;
189 sector_t data_block_size;
190
191 /*
192 * We reserve a section of the metadata for commit overhead.
193 * All reported space does *not* include this.
194 */
195 dm_block_t metadata_reserve;
196
197 /*
198 * Set if a transaction has to be aborted but the attempt to roll back
199 * to the previous (good) transaction failed. The only pool metadata
200 * operation possible in this state is the closing of the device.
201 */
202 bool fail_io:1;
203
204 /*
205 * Reading the space map roots can fail, so we read it into these
206 * buffers before the superblock is locked and updated.
207 */
208 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
209 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
210};
211
212struct dm_thin_device {
213 struct list_head list;
214 struct dm_pool_metadata *pmd;
215 dm_thin_id id;
216
217 int open_count;
218 bool changed:1;
219 bool aborted_with_changes:1;
220 uint64_t mapped_blocks;
221 uint64_t transaction_id;
222 uint32_t creation_time;
223 uint32_t snapshotted_time;
224};
225
226/*----------------------------------------------------------------
227 * superblock validator
228 *--------------------------------------------------------------*/
229
230#define SUPERBLOCK_CSUM_XOR 160774
231
232static void sb_prepare_for_write(struct dm_block_validator *v,
233 struct dm_block *b,
234 size_t block_size)
235{
236 struct thin_disk_superblock *disk_super = dm_block_data(b);
237
238 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
239 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
240 block_size - sizeof(__le32),
241 SUPERBLOCK_CSUM_XOR));
242}
243
244static int sb_check(struct dm_block_validator *v,
245 struct dm_block *b,
246 size_t block_size)
247{
248 struct thin_disk_superblock *disk_super = dm_block_data(b);
249 __le32 csum_le;
250
251 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
252 DMERR("sb_check failed: blocknr %llu: "
253 "wanted %llu", le64_to_cpu(disk_super->blocknr),
254 (unsigned long long)dm_block_location(b));
255 return -ENOTBLK;
256 }
257
258 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
259 DMERR("sb_check failed: magic %llu: "
260 "wanted %llu", le64_to_cpu(disk_super->magic),
261 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
262 return -EILSEQ;
263 }
264
265 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
266 block_size - sizeof(__le32),
267 SUPERBLOCK_CSUM_XOR));
268 if (csum_le != disk_super->csum) {
269 DMERR("sb_check failed: csum %u: wanted %u",
270 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
271 return -EILSEQ;
272 }
273
274 return 0;
275}
276
277static struct dm_block_validator sb_validator = {
278 .name = "superblock",
279 .prepare_for_write = sb_prepare_for_write,
280 .check = sb_check
281};
282
283/*----------------------------------------------------------------
284 * Methods for the btree value types
285 *--------------------------------------------------------------*/
286
287static uint64_t pack_block_time(dm_block_t b, uint32_t t)
288{
289 return (b << 24) | t;
290}
291
292static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
293{
294 *b = v >> 24;
295 *t = v & ((1 << 24) - 1);
296}
297
298static void data_block_inc(void *context, const void *value_le)
299{
300 struct dm_space_map *sm = context;
301 __le64 v_le;
302 uint64_t b;
303 uint32_t t;
304
305 memcpy(&v_le, value_le, sizeof(v_le));
306 unpack_block_time(le64_to_cpu(v_le), &b, &t);
307 dm_sm_inc_block(sm, b);
308}
309
310static void data_block_dec(void *context, const void *value_le)
311{
312 struct dm_space_map *sm = context;
313 __le64 v_le;
314 uint64_t b;
315 uint32_t t;
316
317 memcpy(&v_le, value_le, sizeof(v_le));
318 unpack_block_time(le64_to_cpu(v_le), &b, &t);
319 dm_sm_dec_block(sm, b);
320}
321
322static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
323{
324 __le64 v1_le, v2_le;
325 uint64_t b1, b2;
326 uint32_t t;
327
328 memcpy(&v1_le, value1_le, sizeof(v1_le));
329 memcpy(&v2_le, value2_le, sizeof(v2_le));
330 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
331 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
332
333 return b1 == b2;
334}
335
336static void subtree_inc(void *context, const void *value)
337{
338 struct dm_btree_info *info = context;
339 __le64 root_le;
340 uint64_t root;
341
342 memcpy(&root_le, value, sizeof(root_le));
343 root = le64_to_cpu(root_le);
344 dm_tm_inc(info->tm, root);
345}
346
347static void subtree_dec(void *context, const void *value)
348{
349 struct dm_btree_info *info = context;
350 __le64 root_le;
351 uint64_t root;
352
353 memcpy(&root_le, value, sizeof(root_le));
354 root = le64_to_cpu(root_le);
355 if (dm_btree_del(info, root))
356 DMERR("btree delete failed");
357}
358
359static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
360{
361 __le64 v1_le, v2_le;
362 memcpy(&v1_le, value1_le, sizeof(v1_le));
363 memcpy(&v2_le, value2_le, sizeof(v2_le));
364
365 return v1_le == v2_le;
366}
367
368/*----------------------------------------------------------------*/
369
370static int superblock_lock_zero(struct dm_pool_metadata *pmd,
371 struct dm_block **sblock)
372{
373 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
374 &sb_validator, sblock);
375}
376
377static int superblock_lock(struct dm_pool_metadata *pmd,
378 struct dm_block **sblock)
379{
380 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
381 &sb_validator, sblock);
382}
383
384static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
385{
386 int r;
387 unsigned i;
388 struct dm_block *b;
389 __le64 *data_le, zero = cpu_to_le64(0);
390 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
391
392 /*
393 * We can't use a validator here - it may be all zeroes.
394 */
395 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
396 if (r)
397 return r;
398
399 data_le = dm_block_data(b);
400 *result = 1;
401 for (i = 0; i < block_size; i++) {
402 if (data_le[i] != zero) {
403 *result = 0;
404 break;
405 }
406 }
407
408 dm_bm_unlock(b);
409
410 return 0;
411}
412
413static void __setup_btree_details(struct dm_pool_metadata *pmd)
414{
415 pmd->info.tm = pmd->tm;
416 pmd->info.levels = 2;
417 pmd->info.value_type.context = pmd->data_sm;
418 pmd->info.value_type.size = sizeof(__le64);
419 pmd->info.value_type.inc = data_block_inc;
420 pmd->info.value_type.dec = data_block_dec;
421 pmd->info.value_type.equal = data_block_equal;
422
423 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
424 pmd->nb_info.tm = pmd->nb_tm;
425
426 pmd->tl_info.tm = pmd->tm;
427 pmd->tl_info.levels = 1;
428 pmd->tl_info.value_type.context = &pmd->bl_info;
429 pmd->tl_info.value_type.size = sizeof(__le64);
430 pmd->tl_info.value_type.inc = subtree_inc;
431 pmd->tl_info.value_type.dec = subtree_dec;
432 pmd->tl_info.value_type.equal = subtree_equal;
433
434 pmd->bl_info.tm = pmd->tm;
435 pmd->bl_info.levels = 1;
436 pmd->bl_info.value_type.context = pmd->data_sm;
437 pmd->bl_info.value_type.size = sizeof(__le64);
438 pmd->bl_info.value_type.inc = data_block_inc;
439 pmd->bl_info.value_type.dec = data_block_dec;
440 pmd->bl_info.value_type.equal = data_block_equal;
441
442 pmd->details_info.tm = pmd->tm;
443 pmd->details_info.levels = 1;
444 pmd->details_info.value_type.context = NULL;
445 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
446 pmd->details_info.value_type.inc = NULL;
447 pmd->details_info.value_type.dec = NULL;
448 pmd->details_info.value_type.equal = NULL;
449}
450
451static int save_sm_roots(struct dm_pool_metadata *pmd)
452{
453 int r;
454 size_t len;
455
456 r = dm_sm_root_size(pmd->metadata_sm, &len);
457 if (r < 0)
458 return r;
459
460 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
461 if (r < 0)
462 return r;
463
464 r = dm_sm_root_size(pmd->data_sm, &len);
465 if (r < 0)
466 return r;
467
468 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
469}
470
471static void copy_sm_roots(struct dm_pool_metadata *pmd,
472 struct thin_disk_superblock *disk)
473{
474 memcpy(&disk->metadata_space_map_root,
475 &pmd->metadata_space_map_root,
476 sizeof(pmd->metadata_space_map_root));
477
478 memcpy(&disk->data_space_map_root,
479 &pmd->data_space_map_root,
480 sizeof(pmd->data_space_map_root));
481}
482
483static int __write_initial_superblock(struct dm_pool_metadata *pmd)
484{
485 int r;
486 struct dm_block *sblock;
487 struct thin_disk_superblock *disk_super;
488 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
489
490 if (bdev_size > THIN_METADATA_MAX_SECTORS)
491 bdev_size = THIN_METADATA_MAX_SECTORS;
492
493 r = dm_sm_commit(pmd->data_sm);
494 if (r < 0)
495 return r;
496
497 r = dm_tm_pre_commit(pmd->tm);
498 if (r < 0)
499 return r;
500
501 r = save_sm_roots(pmd);
502 if (r < 0)
503 return r;
504
505 r = superblock_lock_zero(pmd, &sblock);
506 if (r)
507 return r;
508
509 disk_super = dm_block_data(sblock);
510 disk_super->flags = 0;
511 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
512 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
513 disk_super->version = cpu_to_le32(THIN_VERSION);
514 disk_super->time = 0;
515 disk_super->trans_id = 0;
516 disk_super->held_root = 0;
517
518 copy_sm_roots(pmd, disk_super);
519
520 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
521 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
522 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
523 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
524 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
525
526 return dm_tm_commit(pmd->tm, sblock);
527}
528
529static int __format_metadata(struct dm_pool_metadata *pmd)
530{
531 int r;
532
533 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
534 &pmd->tm, &pmd->metadata_sm);
535 if (r < 0) {
536 DMERR("tm_create_with_sm failed");
537 return r;
538 }
539
540 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
541 if (IS_ERR(pmd->data_sm)) {
542 DMERR("sm_disk_create failed");
543 r = PTR_ERR(pmd->data_sm);
544 goto bad_cleanup_tm;
545 }
546
547 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
548 if (!pmd->nb_tm) {
549 DMERR("could not create non-blocking clone tm");
550 r = -ENOMEM;
551 goto bad_cleanup_data_sm;
552 }
553
554 __setup_btree_details(pmd);
555
556 r = dm_btree_empty(&pmd->info, &pmd->root);
557 if (r < 0)
558 goto bad_cleanup_nb_tm;
559
560 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
561 if (r < 0) {
562 DMERR("couldn't create devices root");
563 goto bad_cleanup_nb_tm;
564 }
565
566 r = __write_initial_superblock(pmd);
567 if (r)
568 goto bad_cleanup_nb_tm;
569
570 return 0;
571
572bad_cleanup_nb_tm:
573 dm_tm_destroy(pmd->nb_tm);
574bad_cleanup_data_sm:
575 dm_sm_destroy(pmd->data_sm);
576bad_cleanup_tm:
577 dm_tm_destroy(pmd->tm);
578 dm_sm_destroy(pmd->metadata_sm);
579
580 return r;
581}
582
583static int __check_incompat_features(struct thin_disk_superblock *disk_super,
584 struct dm_pool_metadata *pmd)
585{
586 uint32_t features;
587
588 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
589 if (features) {
590 DMERR("could not access metadata due to unsupported optional features (%lx).",
591 (unsigned long)features);
592 return -EINVAL;
593 }
594
595 /*
596 * Check for read-only metadata to skip the following RDWR checks.
597 */
598 if (get_disk_ro(pmd->bdev->bd_disk))
599 return 0;
600
601 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
602 if (features) {
603 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
604 (unsigned long)features);
605 return -EINVAL;
606 }
607
608 return 0;
609}
610
611static int __open_metadata(struct dm_pool_metadata *pmd)
612{
613 int r;
614 struct dm_block *sblock;
615 struct thin_disk_superblock *disk_super;
616
617 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
618 &sb_validator, &sblock);
619 if (r < 0) {
620 DMERR("couldn't read superblock");
621 return r;
622 }
623
624 disk_super = dm_block_data(sblock);
625
626 /* Verify the data block size hasn't changed */
627 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
628 DMERR("changing the data block size (from %u to %llu) is not supported",
629 le32_to_cpu(disk_super->data_block_size),
630 (unsigned long long)pmd->data_block_size);
631 r = -EINVAL;
632 goto bad_unlock_sblock;
633 }
634
635 r = __check_incompat_features(disk_super, pmd);
636 if (r < 0)
637 goto bad_unlock_sblock;
638
639 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
640 disk_super->metadata_space_map_root,
641 sizeof(disk_super->metadata_space_map_root),
642 &pmd->tm, &pmd->metadata_sm);
643 if (r < 0) {
644 DMERR("tm_open_with_sm failed");
645 goto bad_unlock_sblock;
646 }
647
648 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
649 sizeof(disk_super->data_space_map_root));
650 if (IS_ERR(pmd->data_sm)) {
651 DMERR("sm_disk_open failed");
652 r = PTR_ERR(pmd->data_sm);
653 goto bad_cleanup_tm;
654 }
655
656 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
657 if (!pmd->nb_tm) {
658 DMERR("could not create non-blocking clone tm");
659 r = -ENOMEM;
660 goto bad_cleanup_data_sm;
661 }
662
663 __setup_btree_details(pmd);
664 dm_bm_unlock(sblock);
665
666 return 0;
667
668bad_cleanup_data_sm:
669 dm_sm_destroy(pmd->data_sm);
670bad_cleanup_tm:
671 dm_tm_destroy(pmd->tm);
672 dm_sm_destroy(pmd->metadata_sm);
673bad_unlock_sblock:
674 dm_bm_unlock(sblock);
675
676 return r;
677}
678
679static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
680{
681 int r, unformatted;
682
683 r = __superblock_all_zeroes(pmd->bm, &unformatted);
684 if (r)
685 return r;
686
687 if (unformatted)
688 return format_device ? __format_metadata(pmd) : -EPERM;
689
690 return __open_metadata(pmd);
691}
692
693static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
694{
695 int r;
696
697 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
698 THIN_MAX_CONCURRENT_LOCKS);
699 if (IS_ERR(pmd->bm)) {
700 DMERR("could not create block manager");
701 r = PTR_ERR(pmd->bm);
702 pmd->bm = NULL;
703 return r;
704 }
705
706 r = __open_or_format_metadata(pmd, format_device);
707 if (r) {
708 dm_block_manager_destroy(pmd->bm);
709 pmd->bm = NULL;
710 }
711
712 return r;
713}
714
715static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
716{
717 dm_sm_destroy(pmd->data_sm);
718 dm_sm_destroy(pmd->metadata_sm);
719 dm_tm_destroy(pmd->nb_tm);
720 dm_tm_destroy(pmd->tm);
721 dm_block_manager_destroy(pmd->bm);
722}
723
724static int __begin_transaction(struct dm_pool_metadata *pmd)
725{
726 int r;
727 struct thin_disk_superblock *disk_super;
728 struct dm_block *sblock;
729
730 /*
731 * We re-read the superblock every time. Shouldn't need to do this
732 * really.
733 */
734 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
735 &sb_validator, &sblock);
736 if (r)
737 return r;
738
739 disk_super = dm_block_data(sblock);
740 pmd->time = le32_to_cpu(disk_super->time);
741 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
742 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
743 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
744 pmd->flags = le32_to_cpu(disk_super->flags);
745 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
746
747 dm_bm_unlock(sblock);
748 return 0;
749}
750
751static int __write_changed_details(struct dm_pool_metadata *pmd)
752{
753 int r;
754 struct dm_thin_device *td, *tmp;
755 struct disk_device_details details;
756 uint64_t key;
757
758 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
759 if (!td->changed)
760 continue;
761
762 key = td->id;
763
764 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
765 details.transaction_id = cpu_to_le64(td->transaction_id);
766 details.creation_time = cpu_to_le32(td->creation_time);
767 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
768 __dm_bless_for_disk(&details);
769
770 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
771 &key, &details, &pmd->details_root);
772 if (r)
773 return r;
774
775 if (td->open_count)
776 td->changed = 0;
777 else {
778 list_del(&td->list);
779 kfree(td);
780 }
781 }
782
783 return 0;
784}
785
786static int __commit_transaction(struct dm_pool_metadata *pmd)
787{
788 int r;
789 size_t metadata_len, data_len;
790 struct thin_disk_superblock *disk_super;
791 struct dm_block *sblock;
792
793 /*
794 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
795 */
796 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
797
798 r = __write_changed_details(pmd);
799 if (r < 0)
800 return r;
801
802 r = dm_sm_commit(pmd->data_sm);
803 if (r < 0)
804 return r;
805
806 r = dm_tm_pre_commit(pmd->tm);
807 if (r < 0)
808 return r;
809
810 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
811 if (r < 0)
812 return r;
813
814 r = dm_sm_root_size(pmd->data_sm, &data_len);
815 if (r < 0)
816 return r;
817
818 r = save_sm_roots(pmd);
819 if (r < 0)
820 return r;
821
822 r = superblock_lock(pmd, &sblock);
823 if (r)
824 return r;
825
826 disk_super = dm_block_data(sblock);
827 disk_super->time = cpu_to_le32(pmd->time);
828 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
829 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
830 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
831 disk_super->flags = cpu_to_le32(pmd->flags);
832
833 copy_sm_roots(pmd, disk_super);
834
835 return dm_tm_commit(pmd->tm, sblock);
836}
837
838static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
839{
840 int r;
841 dm_block_t total;
842 dm_block_t max_blocks = 4096; /* 16M */
843
844 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
845 if (r) {
846 DMERR("could not get size of metadata device");
847 pmd->metadata_reserve = max_blocks;
848 } else
849 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
850}
851
852struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
853 sector_t data_block_size,
854 bool format_device)
855{
856 int r;
857 struct dm_pool_metadata *pmd;
858
859 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
860 if (!pmd) {
861 DMERR("could not allocate metadata struct");
862 return ERR_PTR(-ENOMEM);
863 }
864
865 init_rwsem(&pmd->root_lock);
866 pmd->time = 0;
867 INIT_LIST_HEAD(&pmd->thin_devices);
868 pmd->fail_io = false;
869 pmd->bdev = bdev;
870 pmd->data_block_size = data_block_size;
871
872 r = __create_persistent_data_objects(pmd, format_device);
873 if (r) {
874 kfree(pmd);
875 return ERR_PTR(r);
876 }
877
878 r = __begin_transaction(pmd);
879 if (r < 0) {
880 if (dm_pool_metadata_close(pmd) < 0)
881 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
882 return ERR_PTR(r);
883 }
884
885 __set_metadata_reserve(pmd);
886
887 return pmd;
888}
889
890int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
891{
892 int r;
893 unsigned open_devices = 0;
894 struct dm_thin_device *td, *tmp;
895
896 down_read(&pmd->root_lock);
897 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
898 if (td->open_count)
899 open_devices++;
900 else {
901 list_del(&td->list);
902 kfree(td);
903 }
904 }
905 up_read(&pmd->root_lock);
906
907 if (open_devices) {
908 DMERR("attempt to close pmd when %u device(s) are still open",
909 open_devices);
910 return -EBUSY;
911 }
912
913 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
914 r = __commit_transaction(pmd);
915 if (r < 0)
916 DMWARN("%s: __commit_transaction() failed, error = %d",
917 __func__, r);
918 }
919
920 if (!pmd->fail_io)
921 __destroy_persistent_data_objects(pmd);
922
923 kfree(pmd);
924 return 0;
925}
926
927/*
928 * __open_device: Returns @td corresponding to device with id @dev,
929 * creating it if @create is set and incrementing @td->open_count.
930 * On failure, @td is undefined.
931 */
932static int __open_device(struct dm_pool_metadata *pmd,
933 dm_thin_id dev, int create,
934 struct dm_thin_device **td)
935{
936 int r, changed = 0;
937 struct dm_thin_device *td2;
938 uint64_t key = dev;
939 struct disk_device_details details_le;
940
941 /*
942 * If the device is already open, return it.
943 */
944 list_for_each_entry(td2, &pmd->thin_devices, list)
945 if (td2->id == dev) {
946 /*
947 * May not create an already-open device.
948 */
949 if (create)
950 return -EEXIST;
951
952 td2->open_count++;
953 *td = td2;
954 return 0;
955 }
956
957 /*
958 * Check the device exists.
959 */
960 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
961 &key, &details_le);
962 if (r) {
963 if (r != -ENODATA || !create)
964 return r;
965
966 /*
967 * Create new device.
968 */
969 changed = 1;
970 details_le.mapped_blocks = 0;
971 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
972 details_le.creation_time = cpu_to_le32(pmd->time);
973 details_le.snapshotted_time = cpu_to_le32(pmd->time);
974 }
975
976 *td = kmalloc(sizeof(**td), GFP_NOIO);
977 if (!*td)
978 return -ENOMEM;
979
980 (*td)->pmd = pmd;
981 (*td)->id = dev;
982 (*td)->open_count = 1;
983 (*td)->changed = changed;
984 (*td)->aborted_with_changes = false;
985 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
986 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
987 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
988 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
989
990 list_add(&(*td)->list, &pmd->thin_devices);
991
992 return 0;
993}
994
995static void __close_device(struct dm_thin_device *td)
996{
997 --td->open_count;
998}
999
1000static int __create_thin(struct dm_pool_metadata *pmd,
1001 dm_thin_id dev)
1002{
1003 int r;
1004 dm_block_t dev_root;
1005 uint64_t key = dev;
1006 struct disk_device_details details_le;
1007 struct dm_thin_device *td;
1008 __le64 value;
1009
1010 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1011 &key, &details_le);
1012 if (!r)
1013 return -EEXIST;
1014
1015 /*
1016 * Create an empty btree for the mappings.
1017 */
1018 r = dm_btree_empty(&pmd->bl_info, &dev_root);
1019 if (r)
1020 return r;
1021
1022 /*
1023 * Insert it into the main mapping tree.
1024 */
1025 value = cpu_to_le64(dev_root);
1026 __dm_bless_for_disk(&value);
1027 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1028 if (r) {
1029 dm_btree_del(&pmd->bl_info, dev_root);
1030 return r;
1031 }
1032
1033 r = __open_device(pmd, dev, 1, &td);
1034 if (r) {
1035 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1036 dm_btree_del(&pmd->bl_info, dev_root);
1037 return r;
1038 }
1039 __close_device(td);
1040
1041 return r;
1042}
1043
1044int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1045{
1046 int r = -EINVAL;
1047
1048 down_write(&pmd->root_lock);
1049 if (!pmd->fail_io)
1050 r = __create_thin(pmd, dev);
1051 up_write(&pmd->root_lock);
1052
1053 return r;
1054}
1055
1056static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1057 struct dm_thin_device *snap,
1058 dm_thin_id origin, uint32_t time)
1059{
1060 int r;
1061 struct dm_thin_device *td;
1062
1063 r = __open_device(pmd, origin, 0, &td);
1064 if (r)
1065 return r;
1066
1067 td->changed = 1;
1068 td->snapshotted_time = time;
1069
1070 snap->mapped_blocks = td->mapped_blocks;
1071 snap->snapshotted_time = time;
1072 __close_device(td);
1073
1074 return 0;
1075}
1076
1077static int __create_snap(struct dm_pool_metadata *pmd,
1078 dm_thin_id dev, dm_thin_id origin)
1079{
1080 int r;
1081 dm_block_t origin_root;
1082 uint64_t key = origin, dev_key = dev;
1083 struct dm_thin_device *td;
1084 struct disk_device_details details_le;
1085 __le64 value;
1086
1087 /* check this device is unused */
1088 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1089 &dev_key, &details_le);
1090 if (!r)
1091 return -EEXIST;
1092
1093 /* find the mapping tree for the origin */
1094 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1095 if (r)
1096 return r;
1097 origin_root = le64_to_cpu(value);
1098
1099 /* clone the origin, an inc will do */
1100 dm_tm_inc(pmd->tm, origin_root);
1101
1102 /* insert into the main mapping tree */
1103 value = cpu_to_le64(origin_root);
1104 __dm_bless_for_disk(&value);
1105 key = dev;
1106 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1107 if (r) {
1108 dm_tm_dec(pmd->tm, origin_root);
1109 return r;
1110 }
1111
1112 pmd->time++;
1113
1114 r = __open_device(pmd, dev, 1, &td);
1115 if (r)
1116 goto bad;
1117
1118 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1119 __close_device(td);
1120
1121 if (r)
1122 goto bad;
1123
1124 return 0;
1125
1126bad:
1127 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1128 dm_btree_remove(&pmd->details_info, pmd->details_root,
1129 &key, &pmd->details_root);
1130 return r;
1131}
1132
1133int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1134 dm_thin_id dev,
1135 dm_thin_id origin)
1136{
1137 int r = -EINVAL;
1138
1139 down_write(&pmd->root_lock);
1140 if (!pmd->fail_io)
1141 r = __create_snap(pmd, dev, origin);
1142 up_write(&pmd->root_lock);
1143
1144 return r;
1145}
1146
1147static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1148{
1149 int r;
1150 uint64_t key = dev;
1151 struct dm_thin_device *td;
1152
1153 /* TODO: failure should mark the transaction invalid */
1154 r = __open_device(pmd, dev, 0, &td);
1155 if (r)
1156 return r;
1157
1158 if (td->open_count > 1) {
1159 __close_device(td);
1160 return -EBUSY;
1161 }
1162
1163 list_del(&td->list);
1164 kfree(td);
1165 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1166 &key, &pmd->details_root);
1167 if (r)
1168 return r;
1169
1170 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1171 if (r)
1172 return r;
1173
1174 return 0;
1175}
1176
1177int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1178 dm_thin_id dev)
1179{
1180 int r = -EINVAL;
1181
1182 down_write(&pmd->root_lock);
1183 if (!pmd->fail_io)
1184 r = __delete_device(pmd, dev);
1185 up_write(&pmd->root_lock);
1186
1187 return r;
1188}
1189
1190int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1191 uint64_t current_id,
1192 uint64_t new_id)
1193{
1194 int r = -EINVAL;
1195
1196 down_write(&pmd->root_lock);
1197
1198 if (pmd->fail_io)
1199 goto out;
1200
1201 if (pmd->trans_id != current_id) {
1202 DMERR("mismatched transaction id");
1203 goto out;
1204 }
1205
1206 pmd->trans_id = new_id;
1207 r = 0;
1208
1209out:
1210 up_write(&pmd->root_lock);
1211
1212 return r;
1213}
1214
1215int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1216 uint64_t *result)
1217{
1218 int r = -EINVAL;
1219
1220 down_read(&pmd->root_lock);
1221 if (!pmd->fail_io) {
1222 *result = pmd->trans_id;
1223 r = 0;
1224 }
1225 up_read(&pmd->root_lock);
1226
1227 return r;
1228}
1229
1230static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1231{
1232 int r, inc;
1233 struct thin_disk_superblock *disk_super;
1234 struct dm_block *copy, *sblock;
1235 dm_block_t held_root;
1236
1237 /*
1238 * We commit to ensure the btree roots which we increment in a
1239 * moment are up to date.
1240 */
1241 __commit_transaction(pmd);
1242
1243 /*
1244 * Copy the superblock.
1245 */
1246 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1247 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1248 &sb_validator, &copy, &inc);
1249 if (r)
1250 return r;
1251
1252 BUG_ON(!inc);
1253
1254 held_root = dm_block_location(copy);
1255 disk_super = dm_block_data(copy);
1256
1257 if (le64_to_cpu(disk_super->held_root)) {
1258 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1259
1260 dm_tm_dec(pmd->tm, held_root);
1261 dm_tm_unlock(pmd->tm, copy);
1262 return -EBUSY;
1263 }
1264
1265 /*
1266 * Wipe the spacemap since we're not publishing this.
1267 */
1268 memset(&disk_super->data_space_map_root, 0,
1269 sizeof(disk_super->data_space_map_root));
1270 memset(&disk_super->metadata_space_map_root, 0,
1271 sizeof(disk_super->metadata_space_map_root));
1272
1273 /*
1274 * Increment the data structures that need to be preserved.
1275 */
1276 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1277 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1278 dm_tm_unlock(pmd->tm, copy);
1279
1280 /*
1281 * Write the held root into the superblock.
1282 */
1283 r = superblock_lock(pmd, &sblock);
1284 if (r) {
1285 dm_tm_dec(pmd->tm, held_root);
1286 return r;
1287 }
1288
1289 disk_super = dm_block_data(sblock);
1290 disk_super->held_root = cpu_to_le64(held_root);
1291 dm_bm_unlock(sblock);
1292 return 0;
1293}
1294
1295int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1296{
1297 int r = -EINVAL;
1298
1299 down_write(&pmd->root_lock);
1300 if (!pmd->fail_io)
1301 r = __reserve_metadata_snap(pmd);
1302 up_write(&pmd->root_lock);
1303
1304 return r;
1305}
1306
1307static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1308{
1309 int r;
1310 struct thin_disk_superblock *disk_super;
1311 struct dm_block *sblock, *copy;
1312 dm_block_t held_root;
1313
1314 r = superblock_lock(pmd, &sblock);
1315 if (r)
1316 return r;
1317
1318 disk_super = dm_block_data(sblock);
1319 held_root = le64_to_cpu(disk_super->held_root);
1320 disk_super->held_root = cpu_to_le64(0);
1321
1322 dm_bm_unlock(sblock);
1323
1324 if (!held_root) {
1325 DMWARN("No pool metadata snapshot found: nothing to release.");
1326 return -EINVAL;
1327 }
1328
1329 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1330 if (r)
1331 return r;
1332
1333 disk_super = dm_block_data(copy);
1334 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1335 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1336 dm_sm_dec_block(pmd->metadata_sm, held_root);
1337
1338 dm_tm_unlock(pmd->tm, copy);
1339
1340 return 0;
1341}
1342
1343int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1344{
1345 int r = -EINVAL;
1346
1347 down_write(&pmd->root_lock);
1348 if (!pmd->fail_io)
1349 r = __release_metadata_snap(pmd);
1350 up_write(&pmd->root_lock);
1351
1352 return r;
1353}
1354
1355static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1356 dm_block_t *result)
1357{
1358 int r;
1359 struct thin_disk_superblock *disk_super;
1360 struct dm_block *sblock;
1361
1362 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1363 &sb_validator, &sblock);
1364 if (r)
1365 return r;
1366
1367 disk_super = dm_block_data(sblock);
1368 *result = le64_to_cpu(disk_super->held_root);
1369
1370 dm_bm_unlock(sblock);
1371
1372 return 0;
1373}
1374
1375int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1376 dm_block_t *result)
1377{
1378 int r = -EINVAL;
1379
1380 down_read(&pmd->root_lock);
1381 if (!pmd->fail_io)
1382 r = __get_metadata_snap(pmd, result);
1383 up_read(&pmd->root_lock);
1384
1385 return r;
1386}
1387
1388int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1389 struct dm_thin_device **td)
1390{
1391 int r = -EINVAL;
1392
1393 down_write(&pmd->root_lock);
1394 if (!pmd->fail_io)
1395 r = __open_device(pmd, dev, 0, td);
1396 up_write(&pmd->root_lock);
1397
1398 return r;
1399}
1400
1401int dm_pool_close_thin_device(struct dm_thin_device *td)
1402{
1403 down_write(&td->pmd->root_lock);
1404 __close_device(td);
1405 up_write(&td->pmd->root_lock);
1406
1407 return 0;
1408}
1409
1410dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1411{
1412 return td->id;
1413}
1414
1415/*
1416 * Check whether @time (of block creation) is older than @td's last snapshot.
1417 * If so then the associated block is shared with the last snapshot device.
1418 * Any block on a device created *after* the device last got snapshotted is
1419 * necessarily not shared.
1420 */
1421static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1422{
1423 return td->snapshotted_time > time;
1424}
1425
1426static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1427 struct dm_thin_lookup_result *result)
1428{
1429 uint64_t block_time = 0;
1430 dm_block_t exception_block;
1431 uint32_t exception_time;
1432
1433 block_time = le64_to_cpu(value);
1434 unpack_block_time(block_time, &exception_block, &exception_time);
1435 result->block = exception_block;
1436 result->shared = __snapshotted_since(td, exception_time);
1437}
1438
1439static int __find_block(struct dm_thin_device *td, dm_block_t block,
1440 int can_issue_io, struct dm_thin_lookup_result *result)
1441{
1442 int r;
1443 __le64 value;
1444 struct dm_pool_metadata *pmd = td->pmd;
1445 dm_block_t keys[2] = { td->id, block };
1446 struct dm_btree_info *info;
1447
1448 if (can_issue_io) {
1449 info = &pmd->info;
1450 } else
1451 info = &pmd->nb_info;
1452
1453 r = dm_btree_lookup(info, pmd->root, keys, &value);
1454 if (!r)
1455 unpack_lookup_result(td, value, result);
1456
1457 return r;
1458}
1459
1460int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1461 int can_issue_io, struct dm_thin_lookup_result *result)
1462{
1463 int r;
1464 struct dm_pool_metadata *pmd = td->pmd;
1465
1466 down_read(&pmd->root_lock);
1467 if (pmd->fail_io) {
1468 up_read(&pmd->root_lock);
1469 return -EINVAL;
1470 }
1471
1472 r = __find_block(td, block, can_issue_io, result);
1473
1474 up_read(&pmd->root_lock);
1475 return r;
1476}
1477
1478static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1479 dm_block_t *vblock,
1480 struct dm_thin_lookup_result *result)
1481{
1482 int r;
1483 __le64 value;
1484 struct dm_pool_metadata *pmd = td->pmd;
1485 dm_block_t keys[2] = { td->id, block };
1486
1487 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1488 if (!r)
1489 unpack_lookup_result(td, value, result);
1490
1491 return r;
1492}
1493
1494static int __find_mapped_range(struct dm_thin_device *td,
1495 dm_block_t begin, dm_block_t end,
1496 dm_block_t *thin_begin, dm_block_t *thin_end,
1497 dm_block_t *pool_begin, bool *maybe_shared)
1498{
1499 int r;
1500 dm_block_t pool_end;
1501 struct dm_thin_lookup_result lookup;
1502
1503 if (end < begin)
1504 return -ENODATA;
1505
1506 r = __find_next_mapped_block(td, begin, &begin, &lookup);
1507 if (r)
1508 return r;
1509
1510 if (begin >= end)
1511 return -ENODATA;
1512
1513 *thin_begin = begin;
1514 *pool_begin = lookup.block;
1515 *maybe_shared = lookup.shared;
1516
1517 begin++;
1518 pool_end = *pool_begin + 1;
1519 while (begin != end) {
1520 r = __find_block(td, begin, true, &lookup);
1521 if (r) {
1522 if (r == -ENODATA)
1523 break;
1524 else
1525 return r;
1526 }
1527
1528 if ((lookup.block != pool_end) ||
1529 (lookup.shared != *maybe_shared))
1530 break;
1531
1532 pool_end++;
1533 begin++;
1534 }
1535
1536 *thin_end = begin;
1537 return 0;
1538}
1539
1540int dm_thin_find_mapped_range(struct dm_thin_device *td,
1541 dm_block_t begin, dm_block_t end,
1542 dm_block_t *thin_begin, dm_block_t *thin_end,
1543 dm_block_t *pool_begin, bool *maybe_shared)
1544{
1545 int r = -EINVAL;
1546 struct dm_pool_metadata *pmd = td->pmd;
1547
1548 down_read(&pmd->root_lock);
1549 if (!pmd->fail_io) {
1550 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1551 pool_begin, maybe_shared);
1552 }
1553 up_read(&pmd->root_lock);
1554
1555 return r;
1556}
1557
1558static int __insert(struct dm_thin_device *td, dm_block_t block,
1559 dm_block_t data_block)
1560{
1561 int r, inserted;
1562 __le64 value;
1563 struct dm_pool_metadata *pmd = td->pmd;
1564 dm_block_t keys[2] = { td->id, block };
1565
1566 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1567 __dm_bless_for_disk(&value);
1568
1569 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1570 &pmd->root, &inserted);
1571 if (r)
1572 return r;
1573
1574 td->changed = 1;
1575 if (inserted)
1576 td->mapped_blocks++;
1577
1578 return 0;
1579}
1580
1581int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1582 dm_block_t data_block)
1583{
1584 int r = -EINVAL;
1585
1586 down_write(&td->pmd->root_lock);
1587 if (!td->pmd->fail_io)
1588 r = __insert(td, block, data_block);
1589 up_write(&td->pmd->root_lock);
1590
1591 return r;
1592}
1593
1594static int __remove(struct dm_thin_device *td, dm_block_t block)
1595{
1596 int r;
1597 struct dm_pool_metadata *pmd = td->pmd;
1598 dm_block_t keys[2] = { td->id, block };
1599
1600 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1601 if (r)
1602 return r;
1603
1604 td->mapped_blocks--;
1605 td->changed = 1;
1606
1607 return 0;
1608}
1609
1610static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1611{
1612 int r;
1613 unsigned count, total_count = 0;
1614 struct dm_pool_metadata *pmd = td->pmd;
1615 dm_block_t keys[1] = { td->id };
1616 __le64 value;
1617 dm_block_t mapping_root;
1618
1619 /*
1620 * Find the mapping tree
1621 */
1622 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1623 if (r)
1624 return r;
1625
1626 /*
1627 * Remove from the mapping tree, taking care to inc the
1628 * ref count so it doesn't get deleted.
1629 */
1630 mapping_root = le64_to_cpu(value);
1631 dm_tm_inc(pmd->tm, mapping_root);
1632 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1633 if (r)
1634 return r;
1635
1636 /*
1637 * Remove leaves stops at the first unmapped entry, so we have to
1638 * loop round finding mapped ranges.
1639 */
1640 while (begin < end) {
1641 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1642 if (r == -ENODATA)
1643 break;
1644
1645 if (r)
1646 return r;
1647
1648 if (begin >= end)
1649 break;
1650
1651 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1652 if (r)
1653 return r;
1654
1655 total_count += count;
1656 }
1657
1658 td->mapped_blocks -= total_count;
1659 td->changed = 1;
1660
1661 /*
1662 * Reinsert the mapping tree.
1663 */
1664 value = cpu_to_le64(mapping_root);
1665 __dm_bless_for_disk(&value);
1666 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1667}
1668
1669int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1670{
1671 int r = -EINVAL;
1672
1673 down_write(&td->pmd->root_lock);
1674 if (!td->pmd->fail_io)
1675 r = __remove(td, block);
1676 up_write(&td->pmd->root_lock);
1677
1678 return r;
1679}
1680
1681int dm_thin_remove_range(struct dm_thin_device *td,
1682 dm_block_t begin, dm_block_t end)
1683{
1684 int r = -EINVAL;
1685
1686 down_write(&td->pmd->root_lock);
1687 if (!td->pmd->fail_io)
1688 r = __remove_range(td, begin, end);
1689 up_write(&td->pmd->root_lock);
1690
1691 return r;
1692}
1693
1694int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1695{
1696 int r;
1697 uint32_t ref_count;
1698
1699 down_read(&pmd->root_lock);
1700 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1701 if (!r)
1702 *result = (ref_count > 1);
1703 up_read(&pmd->root_lock);
1704
1705 return r;
1706}
1707
1708int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1709{
1710 int r = 0;
1711
1712 down_write(&pmd->root_lock);
1713 for (; b != e; b++) {
1714 r = dm_sm_inc_block(pmd->data_sm, b);
1715 if (r)
1716 break;
1717 }
1718 up_write(&pmd->root_lock);
1719
1720 return r;
1721}
1722
1723int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1724{
1725 int r = 0;
1726
1727 down_write(&pmd->root_lock);
1728 for (; b != e; b++) {
1729 r = dm_sm_dec_block(pmd->data_sm, b);
1730 if (r)
1731 break;
1732 }
1733 up_write(&pmd->root_lock);
1734
1735 return r;
1736}
1737
1738bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1739{
1740 int r;
1741
1742 down_read(&td->pmd->root_lock);
1743 r = td->changed;
1744 up_read(&td->pmd->root_lock);
1745
1746 return r;
1747}
1748
1749bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1750{
1751 bool r = false;
1752 struct dm_thin_device *td, *tmp;
1753
1754 down_read(&pmd->root_lock);
1755 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1756 if (td->changed) {
1757 r = td->changed;
1758 break;
1759 }
1760 }
1761 up_read(&pmd->root_lock);
1762
1763 return r;
1764}
1765
1766bool dm_thin_aborted_changes(struct dm_thin_device *td)
1767{
1768 bool r;
1769
1770 down_read(&td->pmd->root_lock);
1771 r = td->aborted_with_changes;
1772 up_read(&td->pmd->root_lock);
1773
1774 return r;
1775}
1776
1777int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1778{
1779 int r = -EINVAL;
1780
1781 down_write(&pmd->root_lock);
1782 if (!pmd->fail_io)
1783 r = dm_sm_new_block(pmd->data_sm, result);
1784 up_write(&pmd->root_lock);
1785
1786 return r;
1787}
1788
1789int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1790{
1791 int r = -EINVAL;
1792
1793 down_write(&pmd->root_lock);
1794 if (pmd->fail_io)
1795 goto out;
1796
1797 r = __commit_transaction(pmd);
1798 if (r <= 0)
1799 goto out;
1800
1801 /*
1802 * Open the next transaction.
1803 */
1804 r = __begin_transaction(pmd);
1805out:
1806 up_write(&pmd->root_lock);
1807 return r;
1808}
1809
1810static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1811{
1812 struct dm_thin_device *td;
1813
1814 list_for_each_entry(td, &pmd->thin_devices, list)
1815 td->aborted_with_changes = td->changed;
1816}
1817
1818int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1819{
1820 int r = -EINVAL;
1821
1822 down_write(&pmd->root_lock);
1823 if (pmd->fail_io)
1824 goto out;
1825
1826 __set_abort_with_changes_flags(pmd);
1827 __destroy_persistent_data_objects(pmd);
1828 r = __create_persistent_data_objects(pmd, false);
1829 if (r)
1830 pmd->fail_io = true;
1831
1832out:
1833 up_write(&pmd->root_lock);
1834
1835 return r;
1836}
1837
1838int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1839{
1840 int r = -EINVAL;
1841
1842 down_read(&pmd->root_lock);
1843 if (!pmd->fail_io)
1844 r = dm_sm_get_nr_free(pmd->data_sm, result);
1845 up_read(&pmd->root_lock);
1846
1847 return r;
1848}
1849
1850int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1851 dm_block_t *result)
1852{
1853 int r = -EINVAL;
1854
1855 down_read(&pmd->root_lock);
1856 if (!pmd->fail_io)
1857 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1858
1859 if (!r) {
1860 if (*result < pmd->metadata_reserve)
1861 *result = 0;
1862 else
1863 *result -= pmd->metadata_reserve;
1864 }
1865 up_read(&pmd->root_lock);
1866
1867 return r;
1868}
1869
1870int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1871 dm_block_t *result)
1872{
1873 int r = -EINVAL;
1874
1875 down_read(&pmd->root_lock);
1876 if (!pmd->fail_io)
1877 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1878 up_read(&pmd->root_lock);
1879
1880 return r;
1881}
1882
1883int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1884{
1885 int r = -EINVAL;
1886
1887 down_read(&pmd->root_lock);
1888 if (!pmd->fail_io)
1889 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1890 up_read(&pmd->root_lock);
1891
1892 return r;
1893}
1894
1895int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1896{
1897 int r = -EINVAL;
1898 struct dm_pool_metadata *pmd = td->pmd;
1899
1900 down_read(&pmd->root_lock);
1901 if (!pmd->fail_io) {
1902 *result = td->mapped_blocks;
1903 r = 0;
1904 }
1905 up_read(&pmd->root_lock);
1906
1907 return r;
1908}
1909
1910static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1911{
1912 int r;
1913 __le64 value_le;
1914 dm_block_t thin_root;
1915 struct dm_pool_metadata *pmd = td->pmd;
1916
1917 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1918 if (r)
1919 return r;
1920
1921 thin_root = le64_to_cpu(value_le);
1922
1923 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1924}
1925
1926int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1927 dm_block_t *result)
1928{
1929 int r = -EINVAL;
1930 struct dm_pool_metadata *pmd = td->pmd;
1931
1932 down_read(&pmd->root_lock);
1933 if (!pmd->fail_io)
1934 r = __highest_block(td, result);
1935 up_read(&pmd->root_lock);
1936
1937 return r;
1938}
1939
1940static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1941{
1942 int r;
1943 dm_block_t old_count;
1944
1945 r = dm_sm_get_nr_blocks(sm, &old_count);
1946 if (r)
1947 return r;
1948
1949 if (new_count == old_count)
1950 return 0;
1951
1952 if (new_count < old_count) {
1953 DMERR("cannot reduce size of space map");
1954 return -EINVAL;
1955 }
1956
1957 return dm_sm_extend(sm, new_count - old_count);
1958}
1959
1960int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1961{
1962 int r = -EINVAL;
1963
1964 down_write(&pmd->root_lock);
1965 if (!pmd->fail_io)
1966 r = __resize_space_map(pmd->data_sm, new_count);
1967 up_write(&pmd->root_lock);
1968
1969 return r;
1970}
1971
1972int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1973{
1974 int r = -EINVAL;
1975
1976 down_write(&pmd->root_lock);
1977 if (!pmd->fail_io) {
1978 r = __resize_space_map(pmd->metadata_sm, new_count);
1979 if (!r)
1980 __set_metadata_reserve(pmd);
1981 }
1982 up_write(&pmd->root_lock);
1983
1984 return r;
1985}
1986
1987void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1988{
1989 down_write(&pmd->root_lock);
1990 dm_bm_set_read_only(pmd->bm);
1991 up_write(&pmd->root_lock);
1992}
1993
1994void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1995{
1996 down_write(&pmd->root_lock);
1997 dm_bm_set_read_write(pmd->bm);
1998 up_write(&pmd->root_lock);
1999}
2000
2001int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2002 dm_block_t threshold,
2003 dm_sm_threshold_fn fn,
2004 void *context)
2005{
2006 int r;
2007
2008 down_write(&pmd->root_lock);
2009 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2010 up_write(&pmd->root_lock);
2011
2012 return r;
2013}
2014
2015int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2016{
2017 int r;
2018 struct dm_block *sblock;
2019 struct thin_disk_superblock *disk_super;
2020
2021 down_write(&pmd->root_lock);
2022 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2023
2024 r = superblock_lock(pmd, &sblock);
2025 if (r) {
2026 DMERR("couldn't read superblock");
2027 goto out;
2028 }
2029
2030 disk_super = dm_block_data(sblock);
2031 disk_super->flags = cpu_to_le32(pmd->flags);
2032
2033 dm_bm_unlock(sblock);
2034out:
2035 up_write(&pmd->root_lock);
2036 return r;
2037}
2038
2039bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2040{
2041 bool needs_check;
2042
2043 down_read(&pmd->root_lock);
2044 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2045 up_read(&pmd->root_lock);
2046
2047 return needs_check;
2048}
2049
2050void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2051{
2052 down_read(&pmd->root_lock);
2053 if (!pmd->fail_io)
2054 dm_tm_issue_prefetches(pmd->tm);
2055 up_read(&pmd->root_lock);
2056}