blob: 8bf855c301f55f3d5b9fbfe346b4feddedaae1ea [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Driver for the ST STV0910 DVB-S/S2 demodulator.
3 *
4 * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
5 * Marcus Metzler <mocm@metzlerbros.de>
6 * developed for Digital Devices GmbH
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 only, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/moduleparam.h>
21#include <linux/init.h>
22#include <linux/delay.h>
23#include <linux/firmware.h>
24#include <linux/i2c.h>
25#include <asm/div64.h>
26
27#include "dvb_math.h"
28#include "dvb_frontend.h"
29#include "stv0910.h"
30#include "stv0910_regs.h"
31
32#define EXT_CLOCK 30000000
33#define TUNING_DELAY 200
34#define BER_SRC_S 0x20
35#define BER_SRC_S2 0x20
36
37static LIST_HEAD(stvlist);
38
39enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
40
41enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
42
43enum dvbs2_mod_cod {
44 DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
45 DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4,
46 DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10,
47 DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6,
48 DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
49 DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
50 DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
51 DVBS2_32APSK_9_10
52};
53
54enum fe_stv0910_mod_cod {
55 FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
56 FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
57 FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
58 FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
59 FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
60 FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
61 FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
62 FE_32APSK_910
63};
64
65enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
66
67static inline u32 muldiv32(u32 a, u32 b, u32 c)
68{
69 u64 tmp64;
70
71 tmp64 = (u64)a * (u64)b;
72 do_div(tmp64, c);
73
74 return (u32)tmp64;
75}
76
77struct stv_base {
78 struct list_head stvlist;
79
80 u8 adr;
81 struct i2c_adapter *i2c;
82 struct mutex i2c_lock; /* shared I2C access protect */
83 struct mutex reg_lock; /* shared register write protect */
84 int count;
85
86 u32 extclk;
87 u32 mclk;
88};
89
90struct stv {
91 struct stv_base *base;
92 struct dvb_frontend fe;
93 int nr;
94 u16 regoff;
95 u8 i2crpt;
96 u8 tscfgh;
97 u8 tsgeneral;
98 u8 tsspeed;
99 u8 single;
100 unsigned long tune_time;
101
102 s32 search_range;
103 u32 started;
104 u32 demod_lock_time;
105 enum receive_mode receive_mode;
106 u32 demod_timeout;
107 u32 fec_timeout;
108 u32 first_time_lock;
109 u8 demod_bits;
110 u32 symbol_rate;
111
112 u8 last_viterbi_rate;
113 enum fe_code_rate puncture_rate;
114 enum fe_stv0910_mod_cod mod_cod;
115 enum dvbs2_fectype fectype;
116 u32 pilots;
117 enum fe_stv0910_roll_off feroll_off;
118
119 int is_standard_broadcast;
120 int is_vcm;
121
122 u32 cur_scrambling_code;
123
124 u32 last_bernumerator;
125 u32 last_berdenominator;
126 u8 berscale;
127
128 u8 vth[6];
129};
130
131struct sinit_table {
132 u16 address;
133 u8 data;
134};
135
136struct slookup {
137 s16 value;
138 u32 reg_value;
139};
140
141static inline int i2c_write(struct i2c_adapter *adap, u8 adr,
142 u8 *data, int len)
143{
144 struct i2c_msg msg = {.addr = adr, .flags = 0,
145 .buf = data, .len = len};
146
147 if (i2c_transfer(adap, &msg, 1) != 1) {
148 dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
149 adr, (data[0] << 8) | data[1],
150 (len > 2 ? data[2] : 0));
151 return -EREMOTEIO;
152 }
153 return 0;
154}
155
156static int i2c_write_reg16(struct i2c_adapter *adap, u8 adr, u16 reg, u8 val)
157{
158 u8 msg[3] = {reg >> 8, reg & 0xff, val};
159
160 return i2c_write(adap, adr, msg, 3);
161}
162
163static int write_reg(struct stv *state, u16 reg, u8 val)
164{
165 return i2c_write_reg16(state->base->i2c, state->base->adr, reg, val);
166}
167
168static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
169 u16 reg, u8 *val, int count)
170{
171 u8 msg[2] = {reg >> 8, reg & 0xff};
172 struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
173 .buf = msg, .len = 2},
174 {.addr = adr, .flags = I2C_M_RD,
175 .buf = val, .len = count } };
176
177 if (i2c_transfer(adapter, msgs, 2) != 2) {
178 dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
179 adr, reg);
180 return -EREMOTEIO;
181 }
182 return 0;
183}
184
185static int read_reg(struct stv *state, u16 reg, u8 *val)
186{
187 return i2c_read_regs16(state->base->i2c, state->base->adr,
188 reg, val, 1);
189}
190
191static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
192{
193 return i2c_read_regs16(state->base->i2c, state->base->adr,
194 reg, val, len);
195}
196
197static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
198{
199 int status;
200 u8 tmp;
201
202 mutex_lock(&state->base->reg_lock);
203 status = read_reg(state, reg, &tmp);
204 if (!status)
205 status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
206 mutex_unlock(&state->base->reg_lock);
207 return status;
208}
209
210static const struct slookup s1_sn_lookup[] = {
211 { 0, 9242 }, /* C/N= 0dB */
212 { 5, 9105 }, /* C/N= 0.5dB */
213 { 10, 8950 }, /* C/N= 1.0dB */
214 { 15, 8780 }, /* C/N= 1.5dB */
215 { 20, 8566 }, /* C/N= 2.0dB */
216 { 25, 8366 }, /* C/N= 2.5dB */
217 { 30, 8146 }, /* C/N= 3.0dB */
218 { 35, 7908 }, /* C/N= 3.5dB */
219 { 40, 7666 }, /* C/N= 4.0dB */
220 { 45, 7405 }, /* C/N= 4.5dB */
221 { 50, 7136 }, /* C/N= 5.0dB */
222 { 55, 6861 }, /* C/N= 5.5dB */
223 { 60, 6576 }, /* C/N= 6.0dB */
224 { 65, 6330 }, /* C/N= 6.5dB */
225 { 70, 6048 }, /* C/N= 7.0dB */
226 { 75, 5768 }, /* C/N= 7.5dB */
227 { 80, 5492 }, /* C/N= 8.0dB */
228 { 85, 5224 }, /* C/N= 8.5dB */
229 { 90, 4959 }, /* C/N= 9.0dB */
230 { 95, 4709 }, /* C/N= 9.5dB */
231 { 100, 4467 }, /* C/N=10.0dB */
232 { 105, 4236 }, /* C/N=10.5dB */
233 { 110, 4013 }, /* C/N=11.0dB */
234 { 115, 3800 }, /* C/N=11.5dB */
235 { 120, 3598 }, /* C/N=12.0dB */
236 { 125, 3406 }, /* C/N=12.5dB */
237 { 130, 3225 }, /* C/N=13.0dB */
238 { 135, 3052 }, /* C/N=13.5dB */
239 { 140, 2889 }, /* C/N=14.0dB */
240 { 145, 2733 }, /* C/N=14.5dB */
241 { 150, 2587 }, /* C/N=15.0dB */
242 { 160, 2318 }, /* C/N=16.0dB */
243 { 170, 2077 }, /* C/N=17.0dB */
244 { 180, 1862 }, /* C/N=18.0dB */
245 { 190, 1670 }, /* C/N=19.0dB */
246 { 200, 1499 }, /* C/N=20.0dB */
247 { 210, 1347 }, /* C/N=21.0dB */
248 { 220, 1213 }, /* C/N=22.0dB */
249 { 230, 1095 }, /* C/N=23.0dB */
250 { 240, 992 }, /* C/N=24.0dB */
251 { 250, 900 }, /* C/N=25.0dB */
252 { 260, 826 }, /* C/N=26.0dB */
253 { 270, 758 }, /* C/N=27.0dB */
254 { 280, 702 }, /* C/N=28.0dB */
255 { 290, 653 }, /* C/N=29.0dB */
256 { 300, 613 }, /* C/N=30.0dB */
257 { 310, 579 }, /* C/N=31.0dB */
258 { 320, 550 }, /* C/N=32.0dB */
259 { 330, 526 }, /* C/N=33.0dB */
260 { 350, 490 }, /* C/N=33.0dB */
261 { 400, 445 }, /* C/N=40.0dB */
262 { 450, 430 }, /* C/N=45.0dB */
263 { 500, 426 }, /* C/N=50.0dB */
264 { 510, 425 } /* C/N=51.0dB */
265};
266
267static const struct slookup s2_sn_lookup[] = {
268 { -30, 13950 }, /* C/N=-2.5dB */
269 { -25, 13580 }, /* C/N=-2.5dB */
270 { -20, 13150 }, /* C/N=-2.0dB */
271 { -15, 12760 }, /* C/N=-1.5dB */
272 { -10, 12345 }, /* C/N=-1.0dB */
273 { -5, 11900 }, /* C/N=-0.5dB */
274 { 0, 11520 }, /* C/N= 0dB */
275 { 5, 11080 }, /* C/N= 0.5dB */
276 { 10, 10630 }, /* C/N= 1.0dB */
277 { 15, 10210 }, /* C/N= 1.5dB */
278 { 20, 9790 }, /* C/N= 2.0dB */
279 { 25, 9390 }, /* C/N= 2.5dB */
280 { 30, 8970 }, /* C/N= 3.0dB */
281 { 35, 8575 }, /* C/N= 3.5dB */
282 { 40, 8180 }, /* C/N= 4.0dB */
283 { 45, 7800 }, /* C/N= 4.5dB */
284 { 50, 7430 }, /* C/N= 5.0dB */
285 { 55, 7080 }, /* C/N= 5.5dB */
286 { 60, 6720 }, /* C/N= 6.0dB */
287 { 65, 6320 }, /* C/N= 6.5dB */
288 { 70, 6060 }, /* C/N= 7.0dB */
289 { 75, 5760 }, /* C/N= 7.5dB */
290 { 80, 5480 }, /* C/N= 8.0dB */
291 { 85, 5200 }, /* C/N= 8.5dB */
292 { 90, 4930 }, /* C/N= 9.0dB */
293 { 95, 4680 }, /* C/N= 9.5dB */
294 { 100, 4425 }, /* C/N=10.0dB */
295 { 105, 4210 }, /* C/N=10.5dB */
296 { 110, 3980 }, /* C/N=11.0dB */
297 { 115, 3765 }, /* C/N=11.5dB */
298 { 120, 3570 }, /* C/N=12.0dB */
299 { 125, 3315 }, /* C/N=12.5dB */
300 { 130, 3140 }, /* C/N=13.0dB */
301 { 135, 2980 }, /* C/N=13.5dB */
302 { 140, 2820 }, /* C/N=14.0dB */
303 { 145, 2670 }, /* C/N=14.5dB */
304 { 150, 2535 }, /* C/N=15.0dB */
305 { 160, 2270 }, /* C/N=16.0dB */
306 { 170, 2035 }, /* C/N=17.0dB */
307 { 180, 1825 }, /* C/N=18.0dB */
308 { 190, 1650 }, /* C/N=19.0dB */
309 { 200, 1485 }, /* C/N=20.0dB */
310 { 210, 1340 }, /* C/N=21.0dB */
311 { 220, 1212 }, /* C/N=22.0dB */
312 { 230, 1100 }, /* C/N=23.0dB */
313 { 240, 1000 }, /* C/N=24.0dB */
314 { 250, 910 }, /* C/N=25.0dB */
315 { 260, 836 }, /* C/N=26.0dB */
316 { 270, 772 }, /* C/N=27.0dB */
317 { 280, 718 }, /* C/N=28.0dB */
318 { 290, 671 }, /* C/N=29.0dB */
319 { 300, 635 }, /* C/N=30.0dB */
320 { 310, 602 }, /* C/N=31.0dB */
321 { 320, 575 }, /* C/N=32.0dB */
322 { 330, 550 }, /* C/N=33.0dB */
323 { 350, 517 }, /* C/N=35.0dB */
324 { 400, 480 }, /* C/N=40.0dB */
325 { 450, 466 }, /* C/N=45.0dB */
326 { 500, 464 }, /* C/N=50.0dB */
327 { 510, 463 }, /* C/N=51.0dB */
328};
329
330static const struct slookup padc_lookup[] = {
331 { 0, 118000 }, /* PADC= +0dBm */
332 { -100, 93600 }, /* PADC= -1dBm */
333 { -200, 74500 }, /* PADC= -2dBm */
334 { -300, 59100 }, /* PADC= -3dBm */
335 { -400, 47000 }, /* PADC= -4dBm */
336 { -500, 37300 }, /* PADC= -5dBm */
337 { -600, 29650 }, /* PADC= -6dBm */
338 { -700, 23520 }, /* PADC= -7dBm */
339 { -900, 14850 }, /* PADC= -9dBm */
340 { -1100, 9380 }, /* PADC=-11dBm */
341 { -1300, 5910 }, /* PADC=-13dBm */
342 { -1500, 3730 }, /* PADC=-15dBm */
343 { -1700, 2354 }, /* PADC=-17dBm */
344 { -1900, 1485 }, /* PADC=-19dBm */
345 { -2000, 1179 }, /* PADC=-20dBm */
346 { -2100, 1000 }, /* PADC=-21dBm */
347};
348
349/*********************************************************************
350 * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
351 *********************************************************************/
352static const u8 s2car_loop[] = {
353 /*
354 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
355 * 20MPon 20MPoff 30MPon 30MPoff
356 */
357
358 /* FE_QPSK_14 */
359 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B,
360 /* FE_QPSK_13 */
361 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B,
362 /* FE_QPSK_25 */
363 0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B,
364 /* FE_QPSK_12 */
365 0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
366 /* FE_QPSK_35 */
367 0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
368 /* FE_QPSK_23 */
369 0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
370 /* FE_QPSK_34 */
371 0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
372 /* FE_QPSK_45 */
373 0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
374 /* FE_QPSK_56 */
375 0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B,
376 /* FE_QPSK_89 */
377 0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B,
378 /* FE_QPSK_910 */
379 0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B,
380 /* FE_8PSK_35 */
381 0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27,
382 /* FE_8PSK_23 */
383 0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09,
384 /* FE_8PSK_34 */
385 0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A,
386 /* FE_8PSK_56 */
387 0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A,
388 /* FE_8PSK_89 */
389 0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A,
390 /* FE_8PSK_910 */
391 0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A,
392
393 /**********************************************************************
394 * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
395 **********************************************************************/
396
397 /*
398 * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
399 * 20MPoff 30MPon 30MPoff
400 */
401
402 /* FE_16APSK_23 */
403 0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A,
404 /* FE_16APSK_34 */
405 0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A,
406 /* FE_16APSK_45 */
407 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
408 /* FE_16APSK_56 */
409 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
410 /* FE_16APSK_89 */
411 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
412 /* FE_16APSK_910 */
413 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
414 /* FE_32APSK_34 */
415 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
416 /* FE_32APSK_45 */
417 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
418 /* FE_32APSK_56 */
419 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
420 /* FE_32APSK_89 */
421 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
422 /* FE_32APSK_910 */
423 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
424};
425
426static u8 get_optim_cloop(struct stv *state,
427 enum fe_stv0910_mod_cod mod_cod, u32 pilots)
428{
429 int i = 0;
430
431 if (mod_cod >= FE_32APSK_910)
432 i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
433 else if (mod_cod >= FE_QPSK_14)
434 i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
435
436 if (state->symbol_rate <= 3000000)
437 i += 0;
438 else if (state->symbol_rate <= 7000000)
439 i += 2;
440 else if (state->symbol_rate <= 15000000)
441 i += 4;
442 else if (state->symbol_rate <= 25000000)
443 i += 6;
444 else
445 i += 8;
446
447 if (!pilots)
448 i += 1;
449
450 return s2car_loop[i];
451}
452
453static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
454{
455 int status = 0;
456 u8 symb_freq0;
457 u8 symb_freq1;
458 u8 symb_freq2;
459 u8 symb_freq3;
460 u8 tim_offs0;
461 u8 tim_offs1;
462 u8 tim_offs2;
463 u32 symbol_rate;
464 s32 timing_offset;
465
466 *p_symbol_rate = 0;
467 if (!state->started)
468 return status;
469
470 read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
471 read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
472 read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
473 read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
474 read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
475 read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
476 read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
477
478 symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
479 ((u32)symb_freq1 << 8) | (u32)symb_freq0;
480 timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
481 (u32)tim_offs0;
482
483 if ((timing_offset & (1 << 23)) != 0)
484 timing_offset |= 0xFF000000; /* Sign extent */
485
486 symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
487 timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
488
489 *p_symbol_rate = symbol_rate + timing_offset;
490
491 return 0;
492}
493
494static int get_signal_parameters(struct stv *state)
495{
496 u8 tmp;
497
498 if (!state->started)
499 return -EINVAL;
500
501 if (state->receive_mode == RCVMODE_DVBS2) {
502 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
503 state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
504 state->pilots = (tmp & 0x01) != 0;
505 state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
506
507 } else if (state->receive_mode == RCVMODE_DVBS) {
508 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
509 state->puncture_rate = FEC_NONE;
510 switch (tmp & 0x1F) {
511 case 0x0d:
512 state->puncture_rate = FEC_1_2;
513 break;
514 case 0x12:
515 state->puncture_rate = FEC_2_3;
516 break;
517 case 0x15:
518 state->puncture_rate = FEC_3_4;
519 break;
520 case 0x18:
521 state->puncture_rate = FEC_5_6;
522 break;
523 case 0x1a:
524 state->puncture_rate = FEC_7_8;
525 break;
526 }
527 state->is_vcm = 0;
528 state->is_standard_broadcast = 1;
529 state->feroll_off = FE_SAT_35;
530 }
531 return 0;
532}
533
534static int tracking_optimization(struct stv *state)
535{
536 u32 symbol_rate = 0;
537 u8 tmp;
538
539 get_cur_symbol_rate(state, &symbol_rate);
540 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
541 tmp &= ~0xC0;
542
543 switch (state->receive_mode) {
544 case RCVMODE_DVBS:
545 tmp |= 0x40;
546 break;
547 case RCVMODE_DVBS2:
548 tmp |= 0x80;
549 break;
550 default:
551 tmp |= 0xC0;
552 break;
553 }
554 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
555
556 if (state->receive_mode == RCVMODE_DVBS2) {
557 /* Disable Reed-Solomon */
558 write_shared_reg(state,
559 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01,
560 0x03);
561
562 if (state->fectype == DVBS2_64K) {
563 u8 aclc = get_optim_cloop(state, state->mod_cod,
564 state->pilots);
565
566 if (state->mod_cod <= FE_QPSK_910) {
567 write_reg(state, RSTV0910_P2_ACLC2S2Q +
568 state->regoff, aclc);
569 } else if (state->mod_cod <= FE_8PSK_910) {
570 write_reg(state, RSTV0910_P2_ACLC2S2Q +
571 state->regoff, 0x2a);
572 write_reg(state, RSTV0910_P2_ACLC2S28 +
573 state->regoff, aclc);
574 } else if (state->mod_cod <= FE_16APSK_910) {
575 write_reg(state, RSTV0910_P2_ACLC2S2Q +
576 state->regoff, 0x2a);
577 write_reg(state, RSTV0910_P2_ACLC2S216A +
578 state->regoff, aclc);
579 } else if (state->mod_cod <= FE_32APSK_910) {
580 write_reg(state, RSTV0910_P2_ACLC2S2Q +
581 state->regoff, 0x2a);
582 write_reg(state, RSTV0910_P2_ACLC2S232A +
583 state->regoff, aclc);
584 }
585 }
586 }
587 return 0;
588}
589
590static s32 table_lookup(const struct slookup *table,
591 int table_size, u32 reg_value)
592{
593 s32 value;
594 int imin = 0;
595 int imax = table_size - 1;
596 int i;
597 s32 reg_diff;
598
599 /* Assumes Table[0].RegValue > Table[imax].RegValue */
600 if (reg_value >= table[0].reg_value) {
601 value = table[0].value;
602 } else if (reg_value <= table[imax].reg_value) {
603 value = table[imax].value;
604 } else {
605 while ((imax - imin) > 1) {
606 i = (imax + imin) / 2;
607 if ((table[imin].reg_value >= reg_value) &&
608 (reg_value >= table[i].reg_value))
609 imax = i;
610 else
611 imin = i;
612 }
613
614 reg_diff = table[imax].reg_value - table[imin].reg_value;
615 value = table[imin].value;
616 if (reg_diff != 0)
617 value += ((s32)(reg_value - table[imin].reg_value) *
618 (s32)(table[imax].value
619 - table[imin].value))
620 / (reg_diff);
621 }
622
623 return value;
624}
625
626static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
627{
628 u8 data0;
629 u8 data1;
630 u16 data;
631 int n_lookup;
632 const struct slookup *lookup;
633
634 *signal_to_noise = 0;
635
636 if (!state->started)
637 return -EINVAL;
638
639 if (state->receive_mode == RCVMODE_DVBS2) {
640 read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff,
641 &data1);
642 read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff,
643 &data0);
644 n_lookup = ARRAY_SIZE(s2_sn_lookup);
645 lookup = s2_sn_lookup;
646 } else {
647 read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff,
648 &data1);
649 read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff,
650 &data0);
651 n_lookup = ARRAY_SIZE(s1_sn_lookup);
652 lookup = s1_sn_lookup;
653 }
654 data = (((u16)data1) << 8) | (u16)data0;
655 *signal_to_noise = table_lookup(lookup, n_lookup, data);
656 return 0;
657}
658
659static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
660 u32 *berdenominator)
661{
662 u8 regs[3];
663
664 int status = read_regs(state,
665 RSTV0910_P2_ERRCNT12 + state->regoff,
666 regs, 3);
667
668 if (status)
669 return -EINVAL;
670
671 if ((regs[0] & 0x80) == 0) {
672 state->last_berdenominator = 1 << ((state->berscale * 2) +
673 10 + 3);
674 state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
675 ((u32)regs[1] << 8) | regs[2];
676 if (state->last_bernumerator < 256 && state->berscale < 6) {
677 state->berscale += 1;
678 status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
679 state->regoff,
680 0x20 | state->berscale);
681 } else if (state->last_bernumerator > 1024 &&
682 state->berscale > 2) {
683 state->berscale -= 1;
684 status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
685 state->regoff, 0x20 |
686 state->berscale);
687 }
688 }
689 *bernumerator = state->last_bernumerator;
690 *berdenominator = state->last_berdenominator;
691 return 0;
692}
693
694static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
695{
696 static const u32 nbch[][2] = {
697 { 0, 0}, /* DUMMY_PLF */
698 {16200, 3240}, /* QPSK_1_4, */
699 {21600, 5400}, /* QPSK_1_3, */
700 {25920, 6480}, /* QPSK_2_5, */
701 {32400, 7200}, /* QPSK_1_2, */
702 {38880, 9720}, /* QPSK_3_5, */
703 {43200, 10800}, /* QPSK_2_3, */
704 {48600, 11880}, /* QPSK_3_4, */
705 {51840, 12600}, /* QPSK_4_5, */
706 {54000, 13320}, /* QPSK_5_6, */
707 {57600, 14400}, /* QPSK_8_9, */
708 {58320, 16000}, /* QPSK_9_10, */
709 {43200, 9720}, /* 8PSK_3_5, */
710 {48600, 10800}, /* 8PSK_2_3, */
711 {51840, 11880}, /* 8PSK_3_4, */
712 {54000, 13320}, /* 8PSK_5_6, */
713 {57600, 14400}, /* 8PSK_8_9, */
714 {58320, 16000}, /* 8PSK_9_10, */
715 {43200, 10800}, /* 16APSK_2_3, */
716 {48600, 11880}, /* 16APSK_3_4, */
717 {51840, 12600}, /* 16APSK_4_5, */
718 {54000, 13320}, /* 16APSK_5_6, */
719 {57600, 14400}, /* 16APSK_8_9, */
720 {58320, 16000}, /* 16APSK_9_10 */
721 {48600, 11880}, /* 32APSK_3_4, */
722 {51840, 12600}, /* 32APSK_4_5, */
723 {54000, 13320}, /* 32APSK_5_6, */
724 {57600, 14400}, /* 32APSK_8_9, */
725 {58320, 16000}, /* 32APSK_9_10 */
726 };
727
728 if (mod_cod >= DVBS2_QPSK_1_4 &&
729 mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
730 return nbch[mod_cod][fectype];
731 return 64800;
732}
733
734static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
735 u32 *berdenominator)
736{
737 u8 regs[3];
738
739 int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
740 regs, 3);
741
742 if (status)
743 return -EINVAL;
744
745 if ((regs[0] & 0x80) == 0) {
746 state->last_berdenominator =
747 dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
748 state->fectype) <<
749 (state->berscale * 2);
750 state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
751 ((u32)regs[1] << 8) | regs[2];
752 if (state->last_bernumerator < 256 && state->berscale < 6) {
753 state->berscale += 1;
754 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
755 0x20 | state->berscale);
756 } else if (state->last_bernumerator > 1024 &&
757 state->berscale > 2) {
758 state->berscale -= 1;
759 write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
760 0x20 | state->berscale);
761 }
762 }
763 *bernumerator = state->last_bernumerator;
764 *berdenominator = state->last_berdenominator;
765 return status;
766}
767
768static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
769 u32 *berdenominator)
770{
771 *bernumerator = 0;
772 *berdenominator = 1;
773
774 switch (state->receive_mode) {
775 case RCVMODE_DVBS:
776 return get_bit_error_rate_s(state,
777 bernumerator, berdenominator);
778 case RCVMODE_DVBS2:
779 return get_bit_error_rate_s2(state,
780 bernumerator, berdenominator);
781 default:
782 break;
783 }
784 return 0;
785}
786
787static int set_mclock(struct stv *state, u32 master_clock)
788{
789 u32 idf = 1;
790 u32 odf = 4;
791 u32 quartz = state->base->extclk / 1000000;
792 u32 fphi = master_clock / 1000000;
793 u32 ndiv = (fphi * odf * idf) / quartz;
794 u32 cp = 7;
795 u32 fvco;
796
797 if (ndiv >= 7 && ndiv <= 71)
798 cp = 7;
799 else if (ndiv >= 72 && ndiv <= 79)
800 cp = 8;
801 else if (ndiv >= 80 && ndiv <= 87)
802 cp = 9;
803 else if (ndiv >= 88 && ndiv <= 95)
804 cp = 10;
805 else if (ndiv >= 96 && ndiv <= 103)
806 cp = 11;
807 else if (ndiv >= 104 && ndiv <= 111)
808 cp = 12;
809 else if (ndiv >= 112 && ndiv <= 119)
810 cp = 13;
811 else if (ndiv >= 120 && ndiv <= 127)
812 cp = 14;
813 else if (ndiv >= 128 && ndiv <= 135)
814 cp = 15;
815 else if (ndiv >= 136 && ndiv <= 143)
816 cp = 16;
817 else if (ndiv >= 144 && ndiv <= 151)
818 cp = 17;
819 else if (ndiv >= 152 && ndiv <= 159)
820 cp = 18;
821 else if (ndiv >= 160 && ndiv <= 167)
822 cp = 19;
823 else if (ndiv >= 168 && ndiv <= 175)
824 cp = 20;
825 else if (ndiv >= 176 && ndiv <= 183)
826 cp = 21;
827 else if (ndiv >= 184 && ndiv <= 191)
828 cp = 22;
829 else if (ndiv >= 192 && ndiv <= 199)
830 cp = 23;
831 else if (ndiv >= 200 && ndiv <= 207)
832 cp = 24;
833 else if (ndiv >= 208 && ndiv <= 215)
834 cp = 25;
835 else if (ndiv >= 216 && ndiv <= 223)
836 cp = 26;
837 else if (ndiv >= 224 && ndiv <= 225)
838 cp = 27;
839
840 write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
841 write_reg(state, RSTV0910_NCOARSE2, odf);
842 write_reg(state, RSTV0910_NCOARSE1, ndiv);
843
844 fvco = (quartz * 2 * ndiv) / idf;
845 state->base->mclk = fvco / (2 * odf) * 1000000;
846
847 return 0;
848}
849
850static int stop(struct stv *state)
851{
852 if (state->started) {
853 u8 tmp;
854
855 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
856 state->tscfgh | 0x01);
857 read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
858 tmp &= ~0x01; /* release reset DVBS2 packet delin */
859 write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
860 /* Blind optim*/
861 write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
862 /* Stop the demod */
863 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
864 state->started = 0;
865 }
866 state->receive_mode = RCVMODE_NONE;
867 return 0;
868}
869
870static int init_search_param(struct stv *state)
871{
872 u8 tmp;
873
874 read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
875 tmp |= 0x20; /* Filter_en (no effect if SIS=non-MIS */
876 write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
877
878 read_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, &tmp);
879 tmp &= ~0x02; /* frame mode = 0 */
880 write_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, tmp);
881
882 write_reg(state, RSTV0910_P2_UPLCCST0 + state->regoff, 0xe0);
883 write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0x00);
884
885 read_reg(state, RSTV0910_P2_TSSTATEM + state->regoff, &tmp);
886 tmp &= ~0x01; /* nosync = 0, in case next signal is standard TS */
887 write_reg(state, RSTV0910_P2_TSSTATEM + state->regoff, tmp);
888
889 read_reg(state, RSTV0910_P2_TSCFGL + state->regoff, &tmp);
890 tmp &= ~0x04; /* embindvb = 0 */
891 write_reg(state, RSTV0910_P2_TSCFGL + state->regoff, tmp);
892
893 read_reg(state, RSTV0910_P2_TSINSDELH + state->regoff, &tmp);
894 tmp &= ~0x80; /* syncbyte = 0 */
895 write_reg(state, RSTV0910_P2_TSINSDELH + state->regoff, tmp);
896
897 read_reg(state, RSTV0910_P2_TSINSDELM + state->regoff, &tmp);
898 tmp &= ~0x08; /* token = 0 */
899 write_reg(state, RSTV0910_P2_TSINSDELM + state->regoff, tmp);
900
901 read_reg(state, RSTV0910_P2_TSDLYSET2 + state->regoff, &tmp);
902 tmp &= ~0x30; /* hysteresis threshold = 0 */
903 write_reg(state, RSTV0910_P2_TSDLYSET2 + state->regoff, tmp);
904
905 read_reg(state, RSTV0910_P2_PDELCTRL0 + state->regoff, &tmp);
906 tmp = (tmp & ~0x30) | 0x10; /* isi obs mode = 1, observe min ISI */
907 write_reg(state, RSTV0910_P2_PDELCTRL0 + state->regoff, tmp);
908
909 return 0;
910}
911
912static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
913{
914 switch (rate) {
915 case FEC_1_2:
916 return write_reg(state,
917 RSTV0910_P2_PRVIT + state->regoff, 0x01);
918 case FEC_2_3:
919 return write_reg(state,
920 RSTV0910_P2_PRVIT + state->regoff, 0x02);
921 case FEC_3_4:
922 return write_reg(state,
923 RSTV0910_P2_PRVIT + state->regoff, 0x04);
924 case FEC_5_6:
925 return write_reg(state,
926 RSTV0910_P2_PRVIT + state->regoff, 0x08);
927 case FEC_7_8:
928 return write_reg(state,
929 RSTV0910_P2_PRVIT + state->regoff, 0x20);
930 case FEC_NONE:
931 default:
932 return write_reg(state,
933 RSTV0910_P2_PRVIT + state->regoff, 0x2f);
934 }
935}
936
937static int set_vth_default(struct stv *state)
938{
939 state->vth[0] = 0xd7;
940 state->vth[1] = 0x85;
941 state->vth[2] = 0x58;
942 state->vth[3] = 0x3a;
943 state->vth[4] = 0x34;
944 state->vth[5] = 0x28;
945 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
946 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
947 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
948 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
949 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
950 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
951 return 0;
952}
953
954static int set_vth(struct stv *state)
955{
956 static const struct slookup vthlookup_table[] = {
957 {250, 8780}, /* C/N= 1.5dB */
958 {100, 7405}, /* C/N= 4.5dB */
959 {40, 6330}, /* C/N= 6.5dB */
960 {12, 5224}, /* C/N= 8.5dB */
961 {5, 4236} /* C/N=10.5dB */
962 };
963
964 int i;
965 u8 tmp[2];
966 int status = read_regs(state,
967 RSTV0910_P2_NNOSDATAT1 + state->regoff,
968 tmp, 2);
969 u16 reg_value = (tmp[0] << 8) | tmp[1];
970 s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table),
971 reg_value);
972
973 for (i = 0; i < 6; i += 1)
974 if (state->vth[i] > vth)
975 state->vth[i] = vth;
976
977 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
978 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
979 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
980 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
981 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
982 write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
983 return status;
984}
985
986static int start(struct stv *state, struct dtv_frontend_properties *p)
987{
988 s32 freq;
989 u8 reg_dmdcfgmd;
990 u16 symb;
991 u32 scrambling_code = 1;
992
993 if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
994 return -EINVAL;
995
996 state->receive_mode = RCVMODE_NONE;
997 state->demod_lock_time = 0;
998
999 /* Demod Stop */
1000 if (state->started)
1001 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
1002
1003 init_search_param(state);
1004
1005 if (p->stream_id != NO_STREAM_ID_FILTER) {
1006 /*
1007 * Backwards compatibility to "crazy" API.
1008 * PRBS X root cannot be 0, so this should always work.
1009 */
1010 if (p->stream_id & 0xffffff00)
1011 scrambling_code = p->stream_id >> 8;
1012 write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff,
1013 p->stream_id & 0xff);
1014 write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff,
1015 0xff);
1016 }
1017
1018 if (scrambling_code != state->cur_scrambling_code) {
1019 write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
1020 scrambling_code & 0xff);
1021 write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
1022 (scrambling_code >> 8) & 0xff);
1023 write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
1024 (scrambling_code >> 16) & 0x0f);
1025 state->cur_scrambling_code = scrambling_code;
1026 }
1027
1028 if (p->symbol_rate <= 1000000) { /* SR <=1Msps */
1029 state->demod_timeout = 3000;
1030 state->fec_timeout = 2000;
1031 } else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */
1032 state->demod_timeout = 2500;
1033 state->fec_timeout = 1300;
1034 } else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */
1035 state->demod_timeout = 1000;
1036 state->fec_timeout = 650;
1037 } else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */
1038 state->demod_timeout = 700;
1039 state->fec_timeout = 350;
1040 } else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */
1041 state->demod_timeout = 400;
1042 state->fec_timeout = 200;
1043 } else { /* SR >=20Msps */
1044 state->demod_timeout = 300;
1045 state->fec_timeout = 200;
1046 }
1047
1048 /* Set the Init Symbol rate */
1049 symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
1050 write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
1051 ((symb >> 8) & 0x7F));
1052 write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
1053
1054 state->demod_bits |= 0x80;
1055 write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits);
1056
1057 /* FE_STV0910_SetSearchStandard */
1058 read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &reg_dmdcfgmd);
1059 write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
1060 reg_dmdcfgmd |= 0xC0);
1061
1062 write_shared_reg(state,
1063 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
1064
1065 /* Disable DSS */
1066 write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00);
1067 write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
1068
1069 enable_puncture_rate(state, FEC_NONE);
1070
1071 /* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */
1072 write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
1073 write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
1074 write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
1075 write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
1076 write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
1077 write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
1078
1079 write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
1080 write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
1081 write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
1082 write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
1083
1084 /*
1085 * Reset CAR3, bug DVBS2->DVBS1 lock
1086 * Note: The bit is only pulsed -> no lock on shared register needed
1087 */
1088 write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
1089 write_reg(state, RSTV0910_TSTRES0, 0);
1090
1091 set_vth_default(state);
1092 /* Reset demod */
1093 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1094
1095 write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
1096
1097 if (p->symbol_rate <= 5000000)
1098 freq = (state->search_range / 2000) + 80;
1099 else
1100 freq = (state->search_range / 2000) + 1600;
1101 freq = (freq << 16) / (state->base->mclk / 1000);
1102
1103 write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
1104 (freq >> 8) & 0xff);
1105 write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
1106 /* CFR Low Setting */
1107 freq = -freq;
1108 write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
1109 (freq >> 8) & 0xff);
1110 write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
1111
1112 /* init the demod frequency offset to 0 */
1113 write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
1114 write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
1115
1116 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1117 /* Trigger acq */
1118 write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
1119
1120 state->demod_lock_time += TUNING_DELAY;
1121 state->started = 1;
1122
1123 return 0;
1124}
1125
1126static int init_diseqc(struct stv *state)
1127{
1128 u16 offs = state->nr ? 0x40 : 0; /* Address offset */
1129 u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
1130
1131 /* Disable receiver */
1132 write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
1133 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
1134 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
1135 write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
1136 return 0;
1137}
1138
1139static int probe(struct stv *state)
1140{
1141 u8 id;
1142
1143 state->receive_mode = RCVMODE_NONE;
1144 state->started = 0;
1145
1146 if (read_reg(state, RSTV0910_MID, &id) < 0)
1147 return -ENODEV;
1148
1149 if (id != 0x51)
1150 return -EINVAL;
1151
1152 /* Configure the I2C repeater to off */
1153 write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
1154 /* Configure the I2C repeater to off */
1155 write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
1156 /* Set the I2C to oversampling ratio */
1157 write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
1158
1159 write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */
1160 write_reg(state, RSTV0910_PADCFG, 0x05); /* RFAGC Pads Dev = 05 */
1161 write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */
1162 write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
1163 write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */
1164
1165 if (state->single)
1166 write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
1167 else
1168 write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
1169
1170 write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
1171 write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
1172
1173 write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
1174 write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
1175 write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
1176 write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
1177
1178 write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
1179 write_reg(state, RSTV0910_TSTRES0, 0x00);
1180
1181 write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
1182 write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
1183
1184 write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
1185 write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
1186
1187 set_mclock(state, 135000000);
1188
1189 /* TS output */
1190 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1191 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1192 write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */
1193 write_reg(state, RSTV0910_P1_TSCFGL, 0x20);
1194
1195 /* Speed = 67.5 MHz */
1196 write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed);
1197
1198 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1199 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1200 write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */
1201 write_reg(state, RSTV0910_P2_TSCFGL, 0x20);
1202
1203 /* Speed = 67.5 MHz */
1204 write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed);
1205
1206 /* Reset stream merger */
1207 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1208 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1209 write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1210 write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1211
1212 write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
1213 write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
1214
1215 init_diseqc(state);
1216 return 0;
1217}
1218
1219static int gate_ctrl(struct dvb_frontend *fe, int enable)
1220{
1221 struct stv *state = fe->demodulator_priv;
1222 u8 i2crpt = state->i2crpt & ~0x86;
1223
1224 /*
1225 * mutex_lock note: Concurrent I2C gate bus accesses must be
1226 * prevented (STV0910 = dual demod on a single IC with a single I2C
1227 * gate/bus, and two tuners attached), similar to most (if not all)
1228 * other I2C host interfaces/busses.
1229 *
1230 * enable=1 (open I2C gate) will grab the lock
1231 * enable=0 (close I2C gate) releases the lock
1232 */
1233
1234 if (enable) {
1235 mutex_lock(&state->base->i2c_lock);
1236 i2crpt |= 0x80;
1237 } else {
1238 i2crpt |= 0x02;
1239 }
1240
1241 if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
1242 RSTV0910_P1_I2CRPT, i2crpt) < 0) {
1243 /* don't hold the I2C bus lock on failure */
1244 mutex_unlock(&state->base->i2c_lock);
1245 dev_err(&state->base->i2c->dev,
1246 "%s() write_reg failure (enable=%d)\n",
1247 __func__, enable);
1248 return -EIO;
1249 }
1250
1251 state->i2crpt = i2crpt;
1252
1253 if (!enable)
1254 mutex_unlock(&state->base->i2c_lock);
1255 return 0;
1256}
1257
1258static void release(struct dvb_frontend *fe)
1259{
1260 struct stv *state = fe->demodulator_priv;
1261
1262 state->base->count--;
1263 if (state->base->count == 0) {
1264 list_del(&state->base->stvlist);
1265 kfree(state->base);
1266 }
1267 kfree(state);
1268}
1269
1270static int set_parameters(struct dvb_frontend *fe)
1271{
1272 int stat = 0;
1273 struct stv *state = fe->demodulator_priv;
1274 u32 iffreq;
1275 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1276
1277 stop(state);
1278 if (fe->ops.tuner_ops.set_params)
1279 fe->ops.tuner_ops.set_params(fe);
1280 if (fe->ops.tuner_ops.get_if_frequency)
1281 fe->ops.tuner_ops.get_if_frequency(fe, &iffreq);
1282 state->symbol_rate = p->symbol_rate;
1283 stat = start(state, p);
1284 return stat;
1285}
1286
1287static int manage_matype_info(struct stv *state)
1288{
1289 if (!state->started)
1290 return -EINVAL;
1291 if (state->receive_mode == RCVMODE_DVBS2) {
1292 u8 bbheader[2];
1293
1294 read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
1295 bbheader, 2);
1296 state->feroll_off =
1297 (enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
1298 state->is_vcm = (bbheader[0] & 0x10) == 0;
1299 state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
1300 } else if (state->receive_mode == RCVMODE_DVBS) {
1301 state->is_vcm = 0;
1302 state->is_standard_broadcast = 1;
1303 state->feroll_off = FE_SAT_35;
1304 }
1305 return 0;
1306}
1307
1308static int read_snr(struct dvb_frontend *fe)
1309{
1310 struct stv *state = fe->demodulator_priv;
1311 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1312 s32 snrval;
1313
1314 if (!get_signal_to_noise(state, &snrval)) {
1315 p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1316 p->cnr.stat[0].uvalue = 100 * snrval; /* fix scale */
1317 } else {
1318 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1319 }
1320
1321 return 0;
1322}
1323
1324static int read_ber(struct dvb_frontend *fe)
1325{
1326 struct stv *state = fe->demodulator_priv;
1327 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1328 u32 n, d;
1329
1330 get_bit_error_rate(state, &n, &d);
1331
1332 p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1333 p->pre_bit_error.stat[0].uvalue = n;
1334 p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1335 p->pre_bit_count.stat[0].uvalue = d;
1336
1337 return 0;
1338}
1339
1340static void read_signal_strength(struct dvb_frontend *fe)
1341{
1342 struct stv *state = fe->demodulator_priv;
1343 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1344 u8 reg[2];
1345 u16 agc;
1346 s32 padc, power = 0;
1347 int i;
1348
1349 read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
1350
1351 agc = (((u32)reg[0]) << 8) | reg[1];
1352
1353 for (i = 0; i < 5; i += 1) {
1354 read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
1355 power += (u32)reg[0] * (u32)reg[0]
1356 + (u32)reg[1] * (u32)reg[1];
1357 usleep_range(3000, 4000);
1358 }
1359 power /= 5;
1360
1361 padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352;
1362
1363 p->strength.stat[0].scale = FE_SCALE_DECIBEL;
1364 p->strength.stat[0].svalue = (padc - agc);
1365}
1366
1367static int read_status(struct dvb_frontend *fe, enum fe_status *status)
1368{
1369 struct stv *state = fe->demodulator_priv;
1370 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1371 u8 dmd_state = 0;
1372 u8 dstatus = 0;
1373 enum receive_mode cur_receive_mode = RCVMODE_NONE;
1374 u32 feclock = 0;
1375
1376 *status = 0;
1377
1378 read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
1379
1380 if (dmd_state & 0x40) {
1381 read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus);
1382 if (dstatus & 0x08)
1383 cur_receive_mode = (dmd_state & 0x20) ?
1384 RCVMODE_DVBS : RCVMODE_DVBS2;
1385 }
1386 if (cur_receive_mode == RCVMODE_NONE) {
1387 set_vth(state);
1388
1389 /* reset signal statistics */
1390 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1391 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1392 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1393 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1394
1395 return 0;
1396 }
1397
1398 *status |= (FE_HAS_SIGNAL
1399 | FE_HAS_CARRIER
1400 | FE_HAS_VITERBI
1401 | FE_HAS_SYNC);
1402
1403 if (state->receive_mode == RCVMODE_NONE) {
1404 state->receive_mode = cur_receive_mode;
1405 state->demod_lock_time = jiffies;
1406 state->first_time_lock = 1;
1407
1408 get_signal_parameters(state);
1409 tracking_optimization(state);
1410
1411 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1412 state->tscfgh);
1413 usleep_range(3000, 4000);
1414 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1415 state->tscfgh | 0x01);
1416 write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1417 state->tscfgh);
1418 }
1419 if (dmd_state & 0x40) {
1420 if (state->receive_mode == RCVMODE_DVBS2) {
1421 u8 pdelstatus;
1422
1423 read_reg(state,
1424 RSTV0910_P2_PDELSTATUS1 + state->regoff,
1425 &pdelstatus);
1426 feclock = (pdelstatus & 0x02) != 0;
1427 } else {
1428 u8 vstatus;
1429
1430 read_reg(state,
1431 RSTV0910_P2_VSTATUSVIT + state->regoff,
1432 &vstatus);
1433 feclock = (vstatus & 0x08) != 0;
1434 }
1435 }
1436
1437 if (feclock) {
1438 *status |= FE_HAS_LOCK;
1439
1440 if (state->first_time_lock) {
1441 u8 tmp;
1442
1443 state->first_time_lock = 0;
1444
1445 manage_matype_info(state);
1446
1447 if (state->receive_mode == RCVMODE_DVBS2) {
1448 /*
1449 * FSTV0910_P2_MANUALSX_ROLLOFF,
1450 * FSTV0910_P2_MANUALS2_ROLLOFF = 0
1451 */
1452 state->demod_bits &= ~0x84;
1453 write_reg(state,
1454 RSTV0910_P2_DEMOD + state->regoff,
1455 state->demod_bits);
1456 read_reg(state,
1457 RSTV0910_P2_PDELCTRL2 + state->regoff,
1458 &tmp);
1459 /* reset DVBS2 packet delinator error counter */
1460 tmp |= 0x40;
1461 write_reg(state,
1462 RSTV0910_P2_PDELCTRL2 + state->regoff,
1463 tmp);
1464 /* reset DVBS2 packet delinator error counter */
1465 tmp &= ~0x40;
1466 write_reg(state,
1467 RSTV0910_P2_PDELCTRL2 + state->regoff,
1468 tmp);
1469
1470 state->berscale = 2;
1471 state->last_bernumerator = 0;
1472 state->last_berdenominator = 1;
1473 /* force to PRE BCH Rate */
1474 write_reg(state,
1475 RSTV0910_P2_ERRCTRL1 + state->regoff,
1476 BER_SRC_S2 | state->berscale);
1477 } else {
1478 state->berscale = 2;
1479 state->last_bernumerator = 0;
1480 state->last_berdenominator = 1;
1481 /* force to PRE RS Rate */
1482 write_reg(state,
1483 RSTV0910_P2_ERRCTRL1 + state->regoff,
1484 BER_SRC_S | state->berscale);
1485 }
1486 /* Reset the Total packet counter */
1487 write_reg(state,
1488 RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
1489 /*
1490 * Reset the packet Error counter2 (and Set it to
1491 * infinit error count mode)
1492 */
1493 write_reg(state,
1494 RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
1495
1496 set_vth_default(state);
1497 if (state->receive_mode == RCVMODE_DVBS)
1498 enable_puncture_rate(state,
1499 state->puncture_rate);
1500 }
1501 }
1502
1503 /* read signal statistics */
1504
1505 /* read signal strength */
1506 read_signal_strength(fe);
1507
1508 /* read carrier/noise on FE_HAS_CARRIER */
1509 if (*status & FE_HAS_CARRIER)
1510 read_snr(fe);
1511 else
1512 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1513
1514 /* read ber */
1515 if (*status & FE_HAS_VITERBI) {
1516 read_ber(fe);
1517 } else {
1518 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1519 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1520 }
1521
1522 return 0;
1523}
1524
1525static int get_frontend(struct dvb_frontend *fe,
1526 struct dtv_frontend_properties *p)
1527{
1528 struct stv *state = fe->demodulator_priv;
1529 u8 tmp;
1530
1531 if (state->receive_mode == RCVMODE_DVBS2) {
1532 u32 mc;
1533 const enum fe_modulation modcod2mod[0x20] = {
1534 QPSK, QPSK, QPSK, QPSK,
1535 QPSK, QPSK, QPSK, QPSK,
1536 QPSK, QPSK, QPSK, QPSK,
1537 PSK_8, PSK_8, PSK_8, PSK_8,
1538 PSK_8, PSK_8, APSK_16, APSK_16,
1539 APSK_16, APSK_16, APSK_16, APSK_16,
1540 APSK_32, APSK_32, APSK_32, APSK_32,
1541 APSK_32,
1542 };
1543 const enum fe_code_rate modcod2fec[0x20] = {
1544 FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5,
1545 FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
1546 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1547 FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
1548 FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
1549 FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1550 FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
1551 FEC_9_10
1552 };
1553 read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
1554 mc = ((tmp & 0x7c) >> 2);
1555 p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
1556 p->modulation = modcod2mod[mc];
1557 p->fec_inner = modcod2fec[mc];
1558 } else if (state->receive_mode == RCVMODE_DVBS) {
1559 read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
1560 switch (tmp & 0x1F) {
1561 case 0x0d:
1562 p->fec_inner = FEC_1_2;
1563 break;
1564 case 0x12:
1565 p->fec_inner = FEC_2_3;
1566 break;
1567 case 0x15:
1568 p->fec_inner = FEC_3_4;
1569 break;
1570 case 0x18:
1571 p->fec_inner = FEC_5_6;
1572 break;
1573 case 0x1a:
1574 p->fec_inner = FEC_7_8;
1575 break;
1576 default:
1577 p->fec_inner = FEC_NONE;
1578 break;
1579 }
1580 p->rolloff = ROLLOFF_35;
1581 }
1582
1583 return 0;
1584}
1585
1586static int tune(struct dvb_frontend *fe, bool re_tune,
1587 unsigned int mode_flags,
1588 unsigned int *delay, enum fe_status *status)
1589{
1590 struct stv *state = fe->demodulator_priv;
1591 int r;
1592
1593 if (re_tune) {
1594 r = set_parameters(fe);
1595 if (r)
1596 return r;
1597 state->tune_time = jiffies;
1598 }
1599
1600 r = read_status(fe, status);
1601 if (r)
1602 return r;
1603
1604 if (*status & FE_HAS_LOCK)
1605 return 0;
1606 *delay = HZ;
1607
1608 return 0;
1609}
1610
1611static int get_algo(struct dvb_frontend *fe)
1612{
1613 return DVBFE_ALGO_HW;
1614}
1615
1616static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1617{
1618 struct stv *state = fe->demodulator_priv;
1619 u16 offs = state->nr ? 0x40 : 0;
1620
1621 switch (tone) {
1622 case SEC_TONE_ON:
1623 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
1624 case SEC_TONE_OFF:
1625 return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
1626 default:
1627 break;
1628 }
1629 return -EINVAL;
1630}
1631
1632static int wait_dis(struct stv *state, u8 flag, u8 val)
1633{
1634 int i;
1635 u8 stat;
1636 u16 offs = state->nr ? 0x40 : 0;
1637
1638 for (i = 0; i < 10; i++) {
1639 read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
1640 if ((stat & flag) == val)
1641 return 0;
1642 usleep_range(10000, 11000);
1643 }
1644 return -ETIMEDOUT;
1645}
1646
1647static int send_master_cmd(struct dvb_frontend *fe,
1648 struct dvb_diseqc_master_cmd *cmd)
1649{
1650 struct stv *state = fe->demodulator_priv;
1651 u16 offs = state->nr ? 0x40 : 0;
1652 int i;
1653
1654 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E);
1655 for (i = 0; i < cmd->msg_len; i++) {
1656 wait_dis(state, 0x40, 0x00);
1657 write_reg(state, RSTV0910_P1_DISTXFIFO + offs, cmd->msg[i]);
1658 }
1659 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A);
1660 wait_dis(state, 0x20, 0x20);
1661 return 0;
1662}
1663
1664static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst)
1665{
1666 struct stv *state = fe->demodulator_priv;
1667 u16 offs = state->nr ? 0x40 : 0;
1668 u8 value;
1669
1670 if (burst == SEC_MINI_A) {
1671 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3F);
1672 value = 0x00;
1673 } else {
1674 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E);
1675 value = 0xFF;
1676 }
1677 wait_dis(state, 0x40, 0x00);
1678 write_reg(state, RSTV0910_P1_DISTXFIFO + offs, value);
1679 write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A);
1680 wait_dis(state, 0x20, 0x20);
1681
1682 return 0;
1683}
1684
1685static int sleep(struct dvb_frontend *fe)
1686{
1687 struct stv *state = fe->demodulator_priv;
1688
1689 stop(state);
1690 return 0;
1691}
1692
1693static const struct dvb_frontend_ops stv0910_ops = {
1694 .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1695 .info = {
1696 .name = "ST STV0910",
1697 .frequency_min = 950000,
1698 .frequency_max = 2150000,
1699 .frequency_stepsize = 0,
1700 .frequency_tolerance = 0,
1701 .symbol_rate_min = 100000,
1702 .symbol_rate_max = 70000000,
1703 .caps = FE_CAN_INVERSION_AUTO |
1704 FE_CAN_FEC_AUTO |
1705 FE_CAN_QPSK |
1706 FE_CAN_2G_MODULATION |
1707 FE_CAN_MULTISTREAM
1708 },
1709 .sleep = sleep,
1710 .release = release,
1711 .i2c_gate_ctrl = gate_ctrl,
1712 .set_frontend = set_parameters,
1713 .get_frontend_algo = get_algo,
1714 .get_frontend = get_frontend,
1715 .tune = tune,
1716 .read_status = read_status,
1717 .set_tone = set_tone,
1718
1719 .diseqc_send_master_cmd = send_master_cmd,
1720 .diseqc_send_burst = send_burst,
1721};
1722
1723static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
1724{
1725 struct stv_base *p;
1726
1727 list_for_each_entry(p, &stvlist, stvlist)
1728 if (p->i2c == i2c && p->adr == adr)
1729 return p;
1730 return NULL;
1731}
1732
1733static void stv0910_init_stats(struct stv *state)
1734{
1735 struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1736
1737 p->strength.len = 1;
1738 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1739 p->cnr.len = 1;
1740 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1741 p->pre_bit_error.len = 1;
1742 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1743 p->pre_bit_count.len = 1;
1744 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1745}
1746
1747struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
1748 struct stv0910_cfg *cfg,
1749 int nr)
1750{
1751 struct stv *state;
1752 struct stv_base *base;
1753
1754 state = kzalloc(sizeof(*state), GFP_KERNEL);
1755 if (!state)
1756 return NULL;
1757
1758 state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
1759 state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
1760 state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
1761 state->tsspeed = 0x28;
1762 state->nr = nr;
1763 state->regoff = state->nr ? 0 : 0x200;
1764 state->search_range = 16000000;
1765 state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */
1766 state->receive_mode = RCVMODE_NONE;
1767 state->cur_scrambling_code = (~0U);
1768 state->single = cfg->single ? 1 : 0;
1769
1770 base = match_base(i2c, cfg->adr);
1771 if (base) {
1772 base->count++;
1773 state->base = base;
1774 } else {
1775 base = kzalloc(sizeof(*base), GFP_KERNEL);
1776 if (!base)
1777 goto fail;
1778 base->i2c = i2c;
1779 base->adr = cfg->adr;
1780 base->count = 1;
1781 base->extclk = cfg->clk ? cfg->clk : 30000000;
1782
1783 mutex_init(&base->i2c_lock);
1784 mutex_init(&base->reg_lock);
1785 state->base = base;
1786 if (probe(state) < 0) {
1787 dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
1788 cfg->adr, dev_name(&i2c->dev));
1789 kfree(base);
1790 goto fail;
1791 }
1792 list_add(&base->stvlist, &stvlist);
1793 }
1794 state->fe.ops = stv0910_ops;
1795 state->fe.demodulator_priv = state;
1796 state->nr = nr;
1797
1798 dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
1799 state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
1800
1801 stv0910_init_stats(state);
1802
1803 return &state->fe;
1804
1805fail:
1806 kfree(state);
1807 return NULL;
1808}
1809EXPORT_SYMBOL_GPL(stv0910_attach);
1810
1811MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver");
1812MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel");
1813MODULE_LICENSE("GPL");