rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Driver for the ST STV0910 DVB-S/S2 demodulator. |
| 3 | * |
| 4 | * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de> |
| 5 | * Marcus Metzler <mocm@metzlerbros.de> |
| 6 | * developed for Digital Devices GmbH |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU General Public License |
| 10 | * version 2 only, as published by the Free Software Foundation. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | */ |
| 17 | |
| 18 | #include <linux/kernel.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/moduleparam.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/delay.h> |
| 23 | #include <linux/firmware.h> |
| 24 | #include <linux/i2c.h> |
| 25 | #include <asm/div64.h> |
| 26 | |
| 27 | #include "dvb_math.h" |
| 28 | #include "dvb_frontend.h" |
| 29 | #include "stv0910.h" |
| 30 | #include "stv0910_regs.h" |
| 31 | |
| 32 | #define EXT_CLOCK 30000000 |
| 33 | #define TUNING_DELAY 200 |
| 34 | #define BER_SRC_S 0x20 |
| 35 | #define BER_SRC_S2 0x20 |
| 36 | |
| 37 | static LIST_HEAD(stvlist); |
| 38 | |
| 39 | enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO }; |
| 40 | |
| 41 | enum dvbs2_fectype { DVBS2_64K, DVBS2_16K }; |
| 42 | |
| 43 | enum dvbs2_mod_cod { |
| 44 | DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5, |
| 45 | DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4, |
| 46 | DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10, |
| 47 | DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6, |
| 48 | DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4, |
| 49 | DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10, |
| 50 | DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9, |
| 51 | DVBS2_32APSK_9_10 |
| 52 | }; |
| 53 | |
| 54 | enum fe_stv0910_mod_cod { |
| 55 | FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25, |
| 56 | FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34, |
| 57 | FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910, |
| 58 | FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56, |
| 59 | FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34, |
| 60 | FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910, |
| 61 | FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89, |
| 62 | FE_32APSK_910 |
| 63 | }; |
| 64 | |
| 65 | enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 }; |
| 66 | |
| 67 | static inline u32 muldiv32(u32 a, u32 b, u32 c) |
| 68 | { |
| 69 | u64 tmp64; |
| 70 | |
| 71 | tmp64 = (u64)a * (u64)b; |
| 72 | do_div(tmp64, c); |
| 73 | |
| 74 | return (u32)tmp64; |
| 75 | } |
| 76 | |
| 77 | struct stv_base { |
| 78 | struct list_head stvlist; |
| 79 | |
| 80 | u8 adr; |
| 81 | struct i2c_adapter *i2c; |
| 82 | struct mutex i2c_lock; /* shared I2C access protect */ |
| 83 | struct mutex reg_lock; /* shared register write protect */ |
| 84 | int count; |
| 85 | |
| 86 | u32 extclk; |
| 87 | u32 mclk; |
| 88 | }; |
| 89 | |
| 90 | struct stv { |
| 91 | struct stv_base *base; |
| 92 | struct dvb_frontend fe; |
| 93 | int nr; |
| 94 | u16 regoff; |
| 95 | u8 i2crpt; |
| 96 | u8 tscfgh; |
| 97 | u8 tsgeneral; |
| 98 | u8 tsspeed; |
| 99 | u8 single; |
| 100 | unsigned long tune_time; |
| 101 | |
| 102 | s32 search_range; |
| 103 | u32 started; |
| 104 | u32 demod_lock_time; |
| 105 | enum receive_mode receive_mode; |
| 106 | u32 demod_timeout; |
| 107 | u32 fec_timeout; |
| 108 | u32 first_time_lock; |
| 109 | u8 demod_bits; |
| 110 | u32 symbol_rate; |
| 111 | |
| 112 | u8 last_viterbi_rate; |
| 113 | enum fe_code_rate puncture_rate; |
| 114 | enum fe_stv0910_mod_cod mod_cod; |
| 115 | enum dvbs2_fectype fectype; |
| 116 | u32 pilots; |
| 117 | enum fe_stv0910_roll_off feroll_off; |
| 118 | |
| 119 | int is_standard_broadcast; |
| 120 | int is_vcm; |
| 121 | |
| 122 | u32 cur_scrambling_code; |
| 123 | |
| 124 | u32 last_bernumerator; |
| 125 | u32 last_berdenominator; |
| 126 | u8 berscale; |
| 127 | |
| 128 | u8 vth[6]; |
| 129 | }; |
| 130 | |
| 131 | struct sinit_table { |
| 132 | u16 address; |
| 133 | u8 data; |
| 134 | }; |
| 135 | |
| 136 | struct slookup { |
| 137 | s16 value; |
| 138 | u32 reg_value; |
| 139 | }; |
| 140 | |
| 141 | static inline int i2c_write(struct i2c_adapter *adap, u8 adr, |
| 142 | u8 *data, int len) |
| 143 | { |
| 144 | struct i2c_msg msg = {.addr = adr, .flags = 0, |
| 145 | .buf = data, .len = len}; |
| 146 | |
| 147 | if (i2c_transfer(adap, &msg, 1) != 1) { |
| 148 | dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n", |
| 149 | adr, (data[0] << 8) | data[1], |
| 150 | (len > 2 ? data[2] : 0)); |
| 151 | return -EREMOTEIO; |
| 152 | } |
| 153 | return 0; |
| 154 | } |
| 155 | |
| 156 | static int i2c_write_reg16(struct i2c_adapter *adap, u8 adr, u16 reg, u8 val) |
| 157 | { |
| 158 | u8 msg[3] = {reg >> 8, reg & 0xff, val}; |
| 159 | |
| 160 | return i2c_write(adap, adr, msg, 3); |
| 161 | } |
| 162 | |
| 163 | static int write_reg(struct stv *state, u16 reg, u8 val) |
| 164 | { |
| 165 | return i2c_write_reg16(state->base->i2c, state->base->adr, reg, val); |
| 166 | } |
| 167 | |
| 168 | static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr, |
| 169 | u16 reg, u8 *val, int count) |
| 170 | { |
| 171 | u8 msg[2] = {reg >> 8, reg & 0xff}; |
| 172 | struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, |
| 173 | .buf = msg, .len = 2}, |
| 174 | {.addr = adr, .flags = I2C_M_RD, |
| 175 | .buf = val, .len = count } }; |
| 176 | |
| 177 | if (i2c_transfer(adapter, msgs, 2) != 2) { |
| 178 | dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n", |
| 179 | adr, reg); |
| 180 | return -EREMOTEIO; |
| 181 | } |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | static int read_reg(struct stv *state, u16 reg, u8 *val) |
| 186 | { |
| 187 | return i2c_read_regs16(state->base->i2c, state->base->adr, |
| 188 | reg, val, 1); |
| 189 | } |
| 190 | |
| 191 | static int read_regs(struct stv *state, u16 reg, u8 *val, int len) |
| 192 | { |
| 193 | return i2c_read_regs16(state->base->i2c, state->base->adr, |
| 194 | reg, val, len); |
| 195 | } |
| 196 | |
| 197 | static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val) |
| 198 | { |
| 199 | int status; |
| 200 | u8 tmp; |
| 201 | |
| 202 | mutex_lock(&state->base->reg_lock); |
| 203 | status = read_reg(state, reg, &tmp); |
| 204 | if (!status) |
| 205 | status = write_reg(state, reg, (tmp & ~mask) | (val & mask)); |
| 206 | mutex_unlock(&state->base->reg_lock); |
| 207 | return status; |
| 208 | } |
| 209 | |
| 210 | static const struct slookup s1_sn_lookup[] = { |
| 211 | { 0, 9242 }, /* C/N= 0dB */ |
| 212 | { 5, 9105 }, /* C/N= 0.5dB */ |
| 213 | { 10, 8950 }, /* C/N= 1.0dB */ |
| 214 | { 15, 8780 }, /* C/N= 1.5dB */ |
| 215 | { 20, 8566 }, /* C/N= 2.0dB */ |
| 216 | { 25, 8366 }, /* C/N= 2.5dB */ |
| 217 | { 30, 8146 }, /* C/N= 3.0dB */ |
| 218 | { 35, 7908 }, /* C/N= 3.5dB */ |
| 219 | { 40, 7666 }, /* C/N= 4.0dB */ |
| 220 | { 45, 7405 }, /* C/N= 4.5dB */ |
| 221 | { 50, 7136 }, /* C/N= 5.0dB */ |
| 222 | { 55, 6861 }, /* C/N= 5.5dB */ |
| 223 | { 60, 6576 }, /* C/N= 6.0dB */ |
| 224 | { 65, 6330 }, /* C/N= 6.5dB */ |
| 225 | { 70, 6048 }, /* C/N= 7.0dB */ |
| 226 | { 75, 5768 }, /* C/N= 7.5dB */ |
| 227 | { 80, 5492 }, /* C/N= 8.0dB */ |
| 228 | { 85, 5224 }, /* C/N= 8.5dB */ |
| 229 | { 90, 4959 }, /* C/N= 9.0dB */ |
| 230 | { 95, 4709 }, /* C/N= 9.5dB */ |
| 231 | { 100, 4467 }, /* C/N=10.0dB */ |
| 232 | { 105, 4236 }, /* C/N=10.5dB */ |
| 233 | { 110, 4013 }, /* C/N=11.0dB */ |
| 234 | { 115, 3800 }, /* C/N=11.5dB */ |
| 235 | { 120, 3598 }, /* C/N=12.0dB */ |
| 236 | { 125, 3406 }, /* C/N=12.5dB */ |
| 237 | { 130, 3225 }, /* C/N=13.0dB */ |
| 238 | { 135, 3052 }, /* C/N=13.5dB */ |
| 239 | { 140, 2889 }, /* C/N=14.0dB */ |
| 240 | { 145, 2733 }, /* C/N=14.5dB */ |
| 241 | { 150, 2587 }, /* C/N=15.0dB */ |
| 242 | { 160, 2318 }, /* C/N=16.0dB */ |
| 243 | { 170, 2077 }, /* C/N=17.0dB */ |
| 244 | { 180, 1862 }, /* C/N=18.0dB */ |
| 245 | { 190, 1670 }, /* C/N=19.0dB */ |
| 246 | { 200, 1499 }, /* C/N=20.0dB */ |
| 247 | { 210, 1347 }, /* C/N=21.0dB */ |
| 248 | { 220, 1213 }, /* C/N=22.0dB */ |
| 249 | { 230, 1095 }, /* C/N=23.0dB */ |
| 250 | { 240, 992 }, /* C/N=24.0dB */ |
| 251 | { 250, 900 }, /* C/N=25.0dB */ |
| 252 | { 260, 826 }, /* C/N=26.0dB */ |
| 253 | { 270, 758 }, /* C/N=27.0dB */ |
| 254 | { 280, 702 }, /* C/N=28.0dB */ |
| 255 | { 290, 653 }, /* C/N=29.0dB */ |
| 256 | { 300, 613 }, /* C/N=30.0dB */ |
| 257 | { 310, 579 }, /* C/N=31.0dB */ |
| 258 | { 320, 550 }, /* C/N=32.0dB */ |
| 259 | { 330, 526 }, /* C/N=33.0dB */ |
| 260 | { 350, 490 }, /* C/N=33.0dB */ |
| 261 | { 400, 445 }, /* C/N=40.0dB */ |
| 262 | { 450, 430 }, /* C/N=45.0dB */ |
| 263 | { 500, 426 }, /* C/N=50.0dB */ |
| 264 | { 510, 425 } /* C/N=51.0dB */ |
| 265 | }; |
| 266 | |
| 267 | static const struct slookup s2_sn_lookup[] = { |
| 268 | { -30, 13950 }, /* C/N=-2.5dB */ |
| 269 | { -25, 13580 }, /* C/N=-2.5dB */ |
| 270 | { -20, 13150 }, /* C/N=-2.0dB */ |
| 271 | { -15, 12760 }, /* C/N=-1.5dB */ |
| 272 | { -10, 12345 }, /* C/N=-1.0dB */ |
| 273 | { -5, 11900 }, /* C/N=-0.5dB */ |
| 274 | { 0, 11520 }, /* C/N= 0dB */ |
| 275 | { 5, 11080 }, /* C/N= 0.5dB */ |
| 276 | { 10, 10630 }, /* C/N= 1.0dB */ |
| 277 | { 15, 10210 }, /* C/N= 1.5dB */ |
| 278 | { 20, 9790 }, /* C/N= 2.0dB */ |
| 279 | { 25, 9390 }, /* C/N= 2.5dB */ |
| 280 | { 30, 8970 }, /* C/N= 3.0dB */ |
| 281 | { 35, 8575 }, /* C/N= 3.5dB */ |
| 282 | { 40, 8180 }, /* C/N= 4.0dB */ |
| 283 | { 45, 7800 }, /* C/N= 4.5dB */ |
| 284 | { 50, 7430 }, /* C/N= 5.0dB */ |
| 285 | { 55, 7080 }, /* C/N= 5.5dB */ |
| 286 | { 60, 6720 }, /* C/N= 6.0dB */ |
| 287 | { 65, 6320 }, /* C/N= 6.5dB */ |
| 288 | { 70, 6060 }, /* C/N= 7.0dB */ |
| 289 | { 75, 5760 }, /* C/N= 7.5dB */ |
| 290 | { 80, 5480 }, /* C/N= 8.0dB */ |
| 291 | { 85, 5200 }, /* C/N= 8.5dB */ |
| 292 | { 90, 4930 }, /* C/N= 9.0dB */ |
| 293 | { 95, 4680 }, /* C/N= 9.5dB */ |
| 294 | { 100, 4425 }, /* C/N=10.0dB */ |
| 295 | { 105, 4210 }, /* C/N=10.5dB */ |
| 296 | { 110, 3980 }, /* C/N=11.0dB */ |
| 297 | { 115, 3765 }, /* C/N=11.5dB */ |
| 298 | { 120, 3570 }, /* C/N=12.0dB */ |
| 299 | { 125, 3315 }, /* C/N=12.5dB */ |
| 300 | { 130, 3140 }, /* C/N=13.0dB */ |
| 301 | { 135, 2980 }, /* C/N=13.5dB */ |
| 302 | { 140, 2820 }, /* C/N=14.0dB */ |
| 303 | { 145, 2670 }, /* C/N=14.5dB */ |
| 304 | { 150, 2535 }, /* C/N=15.0dB */ |
| 305 | { 160, 2270 }, /* C/N=16.0dB */ |
| 306 | { 170, 2035 }, /* C/N=17.0dB */ |
| 307 | { 180, 1825 }, /* C/N=18.0dB */ |
| 308 | { 190, 1650 }, /* C/N=19.0dB */ |
| 309 | { 200, 1485 }, /* C/N=20.0dB */ |
| 310 | { 210, 1340 }, /* C/N=21.0dB */ |
| 311 | { 220, 1212 }, /* C/N=22.0dB */ |
| 312 | { 230, 1100 }, /* C/N=23.0dB */ |
| 313 | { 240, 1000 }, /* C/N=24.0dB */ |
| 314 | { 250, 910 }, /* C/N=25.0dB */ |
| 315 | { 260, 836 }, /* C/N=26.0dB */ |
| 316 | { 270, 772 }, /* C/N=27.0dB */ |
| 317 | { 280, 718 }, /* C/N=28.0dB */ |
| 318 | { 290, 671 }, /* C/N=29.0dB */ |
| 319 | { 300, 635 }, /* C/N=30.0dB */ |
| 320 | { 310, 602 }, /* C/N=31.0dB */ |
| 321 | { 320, 575 }, /* C/N=32.0dB */ |
| 322 | { 330, 550 }, /* C/N=33.0dB */ |
| 323 | { 350, 517 }, /* C/N=35.0dB */ |
| 324 | { 400, 480 }, /* C/N=40.0dB */ |
| 325 | { 450, 466 }, /* C/N=45.0dB */ |
| 326 | { 500, 464 }, /* C/N=50.0dB */ |
| 327 | { 510, 463 }, /* C/N=51.0dB */ |
| 328 | }; |
| 329 | |
| 330 | static const struct slookup padc_lookup[] = { |
| 331 | { 0, 118000 }, /* PADC= +0dBm */ |
| 332 | { -100, 93600 }, /* PADC= -1dBm */ |
| 333 | { -200, 74500 }, /* PADC= -2dBm */ |
| 334 | { -300, 59100 }, /* PADC= -3dBm */ |
| 335 | { -400, 47000 }, /* PADC= -4dBm */ |
| 336 | { -500, 37300 }, /* PADC= -5dBm */ |
| 337 | { -600, 29650 }, /* PADC= -6dBm */ |
| 338 | { -700, 23520 }, /* PADC= -7dBm */ |
| 339 | { -900, 14850 }, /* PADC= -9dBm */ |
| 340 | { -1100, 9380 }, /* PADC=-11dBm */ |
| 341 | { -1300, 5910 }, /* PADC=-13dBm */ |
| 342 | { -1500, 3730 }, /* PADC=-15dBm */ |
| 343 | { -1700, 2354 }, /* PADC=-17dBm */ |
| 344 | { -1900, 1485 }, /* PADC=-19dBm */ |
| 345 | { -2000, 1179 }, /* PADC=-20dBm */ |
| 346 | { -2100, 1000 }, /* PADC=-21dBm */ |
| 347 | }; |
| 348 | |
| 349 | /********************************************************************* |
| 350 | * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame |
| 351 | *********************************************************************/ |
| 352 | static const u8 s2car_loop[] = { |
| 353 | /* |
| 354 | * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff |
| 355 | * 20MPon 20MPoff 30MPon 30MPoff |
| 356 | */ |
| 357 | |
| 358 | /* FE_QPSK_14 */ |
| 359 | 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B, |
| 360 | /* FE_QPSK_13 */ |
| 361 | 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B, |
| 362 | /* FE_QPSK_25 */ |
| 363 | 0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B, |
| 364 | /* FE_QPSK_12 */ |
| 365 | 0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, |
| 366 | /* FE_QPSK_35 */ |
| 367 | 0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, |
| 368 | /* FE_QPSK_23 */ |
| 369 | 0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, |
| 370 | /* FE_QPSK_34 */ |
| 371 | 0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B, |
| 372 | /* FE_QPSK_45 */ |
| 373 | 0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B, |
| 374 | /* FE_QPSK_56 */ |
| 375 | 0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B, |
| 376 | /* FE_QPSK_89 */ |
| 377 | 0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B, |
| 378 | /* FE_QPSK_910 */ |
| 379 | 0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B, |
| 380 | /* FE_8PSK_35 */ |
| 381 | 0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27, |
| 382 | /* FE_8PSK_23 */ |
| 383 | 0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09, |
| 384 | /* FE_8PSK_34 */ |
| 385 | 0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A, |
| 386 | /* FE_8PSK_56 */ |
| 387 | 0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A, |
| 388 | /* FE_8PSK_89 */ |
| 389 | 0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A, |
| 390 | /* FE_8PSK_910 */ |
| 391 | 0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A, |
| 392 | |
| 393 | /********************************************************************** |
| 394 | * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame |
| 395 | **********************************************************************/ |
| 396 | |
| 397 | /* |
| 398 | * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon |
| 399 | * 20MPoff 30MPon 30MPoff |
| 400 | */ |
| 401 | |
| 402 | /* FE_16APSK_23 */ |
| 403 | 0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A, |
| 404 | /* FE_16APSK_34 */ |
| 405 | 0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A, |
| 406 | /* FE_16APSK_45 */ |
| 407 | 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A, |
| 408 | /* FE_16APSK_56 */ |
| 409 | 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A, |
| 410 | /* FE_16APSK_89 */ |
| 411 | 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A, |
| 412 | /* FE_16APSK_910 */ |
| 413 | 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A, |
| 414 | /* FE_32APSK_34 */ |
| 415 | 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, |
| 416 | /* FE_32APSK_45 */ |
| 417 | 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, |
| 418 | /* FE_32APSK_56 */ |
| 419 | 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, |
| 420 | /* FE_32APSK_89 */ |
| 421 | 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, |
| 422 | /* FE_32APSK_910 */ |
| 423 | 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, |
| 424 | }; |
| 425 | |
| 426 | static u8 get_optim_cloop(struct stv *state, |
| 427 | enum fe_stv0910_mod_cod mod_cod, u32 pilots) |
| 428 | { |
| 429 | int i = 0; |
| 430 | |
| 431 | if (mod_cod >= FE_32APSK_910) |
| 432 | i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10; |
| 433 | else if (mod_cod >= FE_QPSK_14) |
| 434 | i = ((int)mod_cod - (int)FE_QPSK_14) * 10; |
| 435 | |
| 436 | if (state->symbol_rate <= 3000000) |
| 437 | i += 0; |
| 438 | else if (state->symbol_rate <= 7000000) |
| 439 | i += 2; |
| 440 | else if (state->symbol_rate <= 15000000) |
| 441 | i += 4; |
| 442 | else if (state->symbol_rate <= 25000000) |
| 443 | i += 6; |
| 444 | else |
| 445 | i += 8; |
| 446 | |
| 447 | if (!pilots) |
| 448 | i += 1; |
| 449 | |
| 450 | return s2car_loop[i]; |
| 451 | } |
| 452 | |
| 453 | static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate) |
| 454 | { |
| 455 | int status = 0; |
| 456 | u8 symb_freq0; |
| 457 | u8 symb_freq1; |
| 458 | u8 symb_freq2; |
| 459 | u8 symb_freq3; |
| 460 | u8 tim_offs0; |
| 461 | u8 tim_offs1; |
| 462 | u8 tim_offs2; |
| 463 | u32 symbol_rate; |
| 464 | s32 timing_offset; |
| 465 | |
| 466 | *p_symbol_rate = 0; |
| 467 | if (!state->started) |
| 468 | return status; |
| 469 | |
| 470 | read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3); |
| 471 | read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2); |
| 472 | read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1); |
| 473 | read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0); |
| 474 | read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2); |
| 475 | read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1); |
| 476 | read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0); |
| 477 | |
| 478 | symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) | |
| 479 | ((u32)symb_freq1 << 8) | (u32)symb_freq0; |
| 480 | timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) | |
| 481 | (u32)tim_offs0; |
| 482 | |
| 483 | if ((timing_offset & (1 << 23)) != 0) |
| 484 | timing_offset |= 0xFF000000; /* Sign extent */ |
| 485 | |
| 486 | symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32); |
| 487 | timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29); |
| 488 | |
| 489 | *p_symbol_rate = symbol_rate + timing_offset; |
| 490 | |
| 491 | return 0; |
| 492 | } |
| 493 | |
| 494 | static int get_signal_parameters(struct stv *state) |
| 495 | { |
| 496 | u8 tmp; |
| 497 | |
| 498 | if (!state->started) |
| 499 | return -EINVAL; |
| 500 | |
| 501 | if (state->receive_mode == RCVMODE_DVBS2) { |
| 502 | read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp); |
| 503 | state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2); |
| 504 | state->pilots = (tmp & 0x01) != 0; |
| 505 | state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1); |
| 506 | |
| 507 | } else if (state->receive_mode == RCVMODE_DVBS) { |
| 508 | read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp); |
| 509 | state->puncture_rate = FEC_NONE; |
| 510 | switch (tmp & 0x1F) { |
| 511 | case 0x0d: |
| 512 | state->puncture_rate = FEC_1_2; |
| 513 | break; |
| 514 | case 0x12: |
| 515 | state->puncture_rate = FEC_2_3; |
| 516 | break; |
| 517 | case 0x15: |
| 518 | state->puncture_rate = FEC_3_4; |
| 519 | break; |
| 520 | case 0x18: |
| 521 | state->puncture_rate = FEC_5_6; |
| 522 | break; |
| 523 | case 0x1a: |
| 524 | state->puncture_rate = FEC_7_8; |
| 525 | break; |
| 526 | } |
| 527 | state->is_vcm = 0; |
| 528 | state->is_standard_broadcast = 1; |
| 529 | state->feroll_off = FE_SAT_35; |
| 530 | } |
| 531 | return 0; |
| 532 | } |
| 533 | |
| 534 | static int tracking_optimization(struct stv *state) |
| 535 | { |
| 536 | u32 symbol_rate = 0; |
| 537 | u8 tmp; |
| 538 | |
| 539 | get_cur_symbol_rate(state, &symbol_rate); |
| 540 | read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp); |
| 541 | tmp &= ~0xC0; |
| 542 | |
| 543 | switch (state->receive_mode) { |
| 544 | case RCVMODE_DVBS: |
| 545 | tmp |= 0x40; |
| 546 | break; |
| 547 | case RCVMODE_DVBS2: |
| 548 | tmp |= 0x80; |
| 549 | break; |
| 550 | default: |
| 551 | tmp |= 0xC0; |
| 552 | break; |
| 553 | } |
| 554 | write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp); |
| 555 | |
| 556 | if (state->receive_mode == RCVMODE_DVBS2) { |
| 557 | /* Disable Reed-Solomon */ |
| 558 | write_shared_reg(state, |
| 559 | RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, |
| 560 | 0x03); |
| 561 | |
| 562 | if (state->fectype == DVBS2_64K) { |
| 563 | u8 aclc = get_optim_cloop(state, state->mod_cod, |
| 564 | state->pilots); |
| 565 | |
| 566 | if (state->mod_cod <= FE_QPSK_910) { |
| 567 | write_reg(state, RSTV0910_P2_ACLC2S2Q + |
| 568 | state->regoff, aclc); |
| 569 | } else if (state->mod_cod <= FE_8PSK_910) { |
| 570 | write_reg(state, RSTV0910_P2_ACLC2S2Q + |
| 571 | state->regoff, 0x2a); |
| 572 | write_reg(state, RSTV0910_P2_ACLC2S28 + |
| 573 | state->regoff, aclc); |
| 574 | } else if (state->mod_cod <= FE_16APSK_910) { |
| 575 | write_reg(state, RSTV0910_P2_ACLC2S2Q + |
| 576 | state->regoff, 0x2a); |
| 577 | write_reg(state, RSTV0910_P2_ACLC2S216A + |
| 578 | state->regoff, aclc); |
| 579 | } else if (state->mod_cod <= FE_32APSK_910) { |
| 580 | write_reg(state, RSTV0910_P2_ACLC2S2Q + |
| 581 | state->regoff, 0x2a); |
| 582 | write_reg(state, RSTV0910_P2_ACLC2S232A + |
| 583 | state->regoff, aclc); |
| 584 | } |
| 585 | } |
| 586 | } |
| 587 | return 0; |
| 588 | } |
| 589 | |
| 590 | static s32 table_lookup(const struct slookup *table, |
| 591 | int table_size, u32 reg_value) |
| 592 | { |
| 593 | s32 value; |
| 594 | int imin = 0; |
| 595 | int imax = table_size - 1; |
| 596 | int i; |
| 597 | s32 reg_diff; |
| 598 | |
| 599 | /* Assumes Table[0].RegValue > Table[imax].RegValue */ |
| 600 | if (reg_value >= table[0].reg_value) { |
| 601 | value = table[0].value; |
| 602 | } else if (reg_value <= table[imax].reg_value) { |
| 603 | value = table[imax].value; |
| 604 | } else { |
| 605 | while ((imax - imin) > 1) { |
| 606 | i = (imax + imin) / 2; |
| 607 | if ((table[imin].reg_value >= reg_value) && |
| 608 | (reg_value >= table[i].reg_value)) |
| 609 | imax = i; |
| 610 | else |
| 611 | imin = i; |
| 612 | } |
| 613 | |
| 614 | reg_diff = table[imax].reg_value - table[imin].reg_value; |
| 615 | value = table[imin].value; |
| 616 | if (reg_diff != 0) |
| 617 | value += ((s32)(reg_value - table[imin].reg_value) * |
| 618 | (s32)(table[imax].value |
| 619 | - table[imin].value)) |
| 620 | / (reg_diff); |
| 621 | } |
| 622 | |
| 623 | return value; |
| 624 | } |
| 625 | |
| 626 | static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise) |
| 627 | { |
| 628 | u8 data0; |
| 629 | u8 data1; |
| 630 | u16 data; |
| 631 | int n_lookup; |
| 632 | const struct slookup *lookup; |
| 633 | |
| 634 | *signal_to_noise = 0; |
| 635 | |
| 636 | if (!state->started) |
| 637 | return -EINVAL; |
| 638 | |
| 639 | if (state->receive_mode == RCVMODE_DVBS2) { |
| 640 | read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff, |
| 641 | &data1); |
| 642 | read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff, |
| 643 | &data0); |
| 644 | n_lookup = ARRAY_SIZE(s2_sn_lookup); |
| 645 | lookup = s2_sn_lookup; |
| 646 | } else { |
| 647 | read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff, |
| 648 | &data1); |
| 649 | read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff, |
| 650 | &data0); |
| 651 | n_lookup = ARRAY_SIZE(s1_sn_lookup); |
| 652 | lookup = s1_sn_lookup; |
| 653 | } |
| 654 | data = (((u16)data1) << 8) | (u16)data0; |
| 655 | *signal_to_noise = table_lookup(lookup, n_lookup, data); |
| 656 | return 0; |
| 657 | } |
| 658 | |
| 659 | static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator, |
| 660 | u32 *berdenominator) |
| 661 | { |
| 662 | u8 regs[3]; |
| 663 | |
| 664 | int status = read_regs(state, |
| 665 | RSTV0910_P2_ERRCNT12 + state->regoff, |
| 666 | regs, 3); |
| 667 | |
| 668 | if (status) |
| 669 | return -EINVAL; |
| 670 | |
| 671 | if ((regs[0] & 0x80) == 0) { |
| 672 | state->last_berdenominator = 1 << ((state->berscale * 2) + |
| 673 | 10 + 3); |
| 674 | state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) | |
| 675 | ((u32)regs[1] << 8) | regs[2]; |
| 676 | if (state->last_bernumerator < 256 && state->berscale < 6) { |
| 677 | state->berscale += 1; |
| 678 | status = write_reg(state, RSTV0910_P2_ERRCTRL1 + |
| 679 | state->regoff, |
| 680 | 0x20 | state->berscale); |
| 681 | } else if (state->last_bernumerator > 1024 && |
| 682 | state->berscale > 2) { |
| 683 | state->berscale -= 1; |
| 684 | status = write_reg(state, RSTV0910_P2_ERRCTRL1 + |
| 685 | state->regoff, 0x20 | |
| 686 | state->berscale); |
| 687 | } |
| 688 | } |
| 689 | *bernumerator = state->last_bernumerator; |
| 690 | *berdenominator = state->last_berdenominator; |
| 691 | return 0; |
| 692 | } |
| 693 | |
| 694 | static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype) |
| 695 | { |
| 696 | static const u32 nbch[][2] = { |
| 697 | { 0, 0}, /* DUMMY_PLF */ |
| 698 | {16200, 3240}, /* QPSK_1_4, */ |
| 699 | {21600, 5400}, /* QPSK_1_3, */ |
| 700 | {25920, 6480}, /* QPSK_2_5, */ |
| 701 | {32400, 7200}, /* QPSK_1_2, */ |
| 702 | {38880, 9720}, /* QPSK_3_5, */ |
| 703 | {43200, 10800}, /* QPSK_2_3, */ |
| 704 | {48600, 11880}, /* QPSK_3_4, */ |
| 705 | {51840, 12600}, /* QPSK_4_5, */ |
| 706 | {54000, 13320}, /* QPSK_5_6, */ |
| 707 | {57600, 14400}, /* QPSK_8_9, */ |
| 708 | {58320, 16000}, /* QPSK_9_10, */ |
| 709 | {43200, 9720}, /* 8PSK_3_5, */ |
| 710 | {48600, 10800}, /* 8PSK_2_3, */ |
| 711 | {51840, 11880}, /* 8PSK_3_4, */ |
| 712 | {54000, 13320}, /* 8PSK_5_6, */ |
| 713 | {57600, 14400}, /* 8PSK_8_9, */ |
| 714 | {58320, 16000}, /* 8PSK_9_10, */ |
| 715 | {43200, 10800}, /* 16APSK_2_3, */ |
| 716 | {48600, 11880}, /* 16APSK_3_4, */ |
| 717 | {51840, 12600}, /* 16APSK_4_5, */ |
| 718 | {54000, 13320}, /* 16APSK_5_6, */ |
| 719 | {57600, 14400}, /* 16APSK_8_9, */ |
| 720 | {58320, 16000}, /* 16APSK_9_10 */ |
| 721 | {48600, 11880}, /* 32APSK_3_4, */ |
| 722 | {51840, 12600}, /* 32APSK_4_5, */ |
| 723 | {54000, 13320}, /* 32APSK_5_6, */ |
| 724 | {57600, 14400}, /* 32APSK_8_9, */ |
| 725 | {58320, 16000}, /* 32APSK_9_10 */ |
| 726 | }; |
| 727 | |
| 728 | if (mod_cod >= DVBS2_QPSK_1_4 && |
| 729 | mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K) |
| 730 | return nbch[mod_cod][fectype]; |
| 731 | return 64800; |
| 732 | } |
| 733 | |
| 734 | static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator, |
| 735 | u32 *berdenominator) |
| 736 | { |
| 737 | u8 regs[3]; |
| 738 | |
| 739 | int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff, |
| 740 | regs, 3); |
| 741 | |
| 742 | if (status) |
| 743 | return -EINVAL; |
| 744 | |
| 745 | if ((regs[0] & 0x80) == 0) { |
| 746 | state->last_berdenominator = |
| 747 | dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod, |
| 748 | state->fectype) << |
| 749 | (state->berscale * 2); |
| 750 | state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) | |
| 751 | ((u32)regs[1] << 8) | regs[2]; |
| 752 | if (state->last_bernumerator < 256 && state->berscale < 6) { |
| 753 | state->berscale += 1; |
| 754 | write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, |
| 755 | 0x20 | state->berscale); |
| 756 | } else if (state->last_bernumerator > 1024 && |
| 757 | state->berscale > 2) { |
| 758 | state->berscale -= 1; |
| 759 | write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, |
| 760 | 0x20 | state->berscale); |
| 761 | } |
| 762 | } |
| 763 | *bernumerator = state->last_bernumerator; |
| 764 | *berdenominator = state->last_berdenominator; |
| 765 | return status; |
| 766 | } |
| 767 | |
| 768 | static int get_bit_error_rate(struct stv *state, u32 *bernumerator, |
| 769 | u32 *berdenominator) |
| 770 | { |
| 771 | *bernumerator = 0; |
| 772 | *berdenominator = 1; |
| 773 | |
| 774 | switch (state->receive_mode) { |
| 775 | case RCVMODE_DVBS: |
| 776 | return get_bit_error_rate_s(state, |
| 777 | bernumerator, berdenominator); |
| 778 | case RCVMODE_DVBS2: |
| 779 | return get_bit_error_rate_s2(state, |
| 780 | bernumerator, berdenominator); |
| 781 | default: |
| 782 | break; |
| 783 | } |
| 784 | return 0; |
| 785 | } |
| 786 | |
| 787 | static int set_mclock(struct stv *state, u32 master_clock) |
| 788 | { |
| 789 | u32 idf = 1; |
| 790 | u32 odf = 4; |
| 791 | u32 quartz = state->base->extclk / 1000000; |
| 792 | u32 fphi = master_clock / 1000000; |
| 793 | u32 ndiv = (fphi * odf * idf) / quartz; |
| 794 | u32 cp = 7; |
| 795 | u32 fvco; |
| 796 | |
| 797 | if (ndiv >= 7 && ndiv <= 71) |
| 798 | cp = 7; |
| 799 | else if (ndiv >= 72 && ndiv <= 79) |
| 800 | cp = 8; |
| 801 | else if (ndiv >= 80 && ndiv <= 87) |
| 802 | cp = 9; |
| 803 | else if (ndiv >= 88 && ndiv <= 95) |
| 804 | cp = 10; |
| 805 | else if (ndiv >= 96 && ndiv <= 103) |
| 806 | cp = 11; |
| 807 | else if (ndiv >= 104 && ndiv <= 111) |
| 808 | cp = 12; |
| 809 | else if (ndiv >= 112 && ndiv <= 119) |
| 810 | cp = 13; |
| 811 | else if (ndiv >= 120 && ndiv <= 127) |
| 812 | cp = 14; |
| 813 | else if (ndiv >= 128 && ndiv <= 135) |
| 814 | cp = 15; |
| 815 | else if (ndiv >= 136 && ndiv <= 143) |
| 816 | cp = 16; |
| 817 | else if (ndiv >= 144 && ndiv <= 151) |
| 818 | cp = 17; |
| 819 | else if (ndiv >= 152 && ndiv <= 159) |
| 820 | cp = 18; |
| 821 | else if (ndiv >= 160 && ndiv <= 167) |
| 822 | cp = 19; |
| 823 | else if (ndiv >= 168 && ndiv <= 175) |
| 824 | cp = 20; |
| 825 | else if (ndiv >= 176 && ndiv <= 183) |
| 826 | cp = 21; |
| 827 | else if (ndiv >= 184 && ndiv <= 191) |
| 828 | cp = 22; |
| 829 | else if (ndiv >= 192 && ndiv <= 199) |
| 830 | cp = 23; |
| 831 | else if (ndiv >= 200 && ndiv <= 207) |
| 832 | cp = 24; |
| 833 | else if (ndiv >= 208 && ndiv <= 215) |
| 834 | cp = 25; |
| 835 | else if (ndiv >= 216 && ndiv <= 223) |
| 836 | cp = 26; |
| 837 | else if (ndiv >= 224 && ndiv <= 225) |
| 838 | cp = 27; |
| 839 | |
| 840 | write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf); |
| 841 | write_reg(state, RSTV0910_NCOARSE2, odf); |
| 842 | write_reg(state, RSTV0910_NCOARSE1, ndiv); |
| 843 | |
| 844 | fvco = (quartz * 2 * ndiv) / idf; |
| 845 | state->base->mclk = fvco / (2 * odf) * 1000000; |
| 846 | |
| 847 | return 0; |
| 848 | } |
| 849 | |
| 850 | static int stop(struct stv *state) |
| 851 | { |
| 852 | if (state->started) { |
| 853 | u8 tmp; |
| 854 | |
| 855 | write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, |
| 856 | state->tscfgh | 0x01); |
| 857 | read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp); |
| 858 | tmp &= ~0x01; /* release reset DVBS2 packet delin */ |
| 859 | write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp); |
| 860 | /* Blind optim*/ |
| 861 | write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B); |
| 862 | /* Stop the demod */ |
| 863 | write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c); |
| 864 | state->started = 0; |
| 865 | } |
| 866 | state->receive_mode = RCVMODE_NONE; |
| 867 | return 0; |
| 868 | } |
| 869 | |
| 870 | static int init_search_param(struct stv *state) |
| 871 | { |
| 872 | u8 tmp; |
| 873 | |
| 874 | read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp); |
| 875 | tmp |= 0x20; /* Filter_en (no effect if SIS=non-MIS */ |
| 876 | write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp); |
| 877 | |
| 878 | read_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, &tmp); |
| 879 | tmp &= ~0x02; /* frame mode = 0 */ |
| 880 | write_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, tmp); |
| 881 | |
| 882 | write_reg(state, RSTV0910_P2_UPLCCST0 + state->regoff, 0xe0); |
| 883 | write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0x00); |
| 884 | |
| 885 | read_reg(state, RSTV0910_P2_TSSTATEM + state->regoff, &tmp); |
| 886 | tmp &= ~0x01; /* nosync = 0, in case next signal is standard TS */ |
| 887 | write_reg(state, RSTV0910_P2_TSSTATEM + state->regoff, tmp); |
| 888 | |
| 889 | read_reg(state, RSTV0910_P2_TSCFGL + state->regoff, &tmp); |
| 890 | tmp &= ~0x04; /* embindvb = 0 */ |
| 891 | write_reg(state, RSTV0910_P2_TSCFGL + state->regoff, tmp); |
| 892 | |
| 893 | read_reg(state, RSTV0910_P2_TSINSDELH + state->regoff, &tmp); |
| 894 | tmp &= ~0x80; /* syncbyte = 0 */ |
| 895 | write_reg(state, RSTV0910_P2_TSINSDELH + state->regoff, tmp); |
| 896 | |
| 897 | read_reg(state, RSTV0910_P2_TSINSDELM + state->regoff, &tmp); |
| 898 | tmp &= ~0x08; /* token = 0 */ |
| 899 | write_reg(state, RSTV0910_P2_TSINSDELM + state->regoff, tmp); |
| 900 | |
| 901 | read_reg(state, RSTV0910_P2_TSDLYSET2 + state->regoff, &tmp); |
| 902 | tmp &= ~0x30; /* hysteresis threshold = 0 */ |
| 903 | write_reg(state, RSTV0910_P2_TSDLYSET2 + state->regoff, tmp); |
| 904 | |
| 905 | read_reg(state, RSTV0910_P2_PDELCTRL0 + state->regoff, &tmp); |
| 906 | tmp = (tmp & ~0x30) | 0x10; /* isi obs mode = 1, observe min ISI */ |
| 907 | write_reg(state, RSTV0910_P2_PDELCTRL0 + state->regoff, tmp); |
| 908 | |
| 909 | return 0; |
| 910 | } |
| 911 | |
| 912 | static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate) |
| 913 | { |
| 914 | switch (rate) { |
| 915 | case FEC_1_2: |
| 916 | return write_reg(state, |
| 917 | RSTV0910_P2_PRVIT + state->regoff, 0x01); |
| 918 | case FEC_2_3: |
| 919 | return write_reg(state, |
| 920 | RSTV0910_P2_PRVIT + state->regoff, 0x02); |
| 921 | case FEC_3_4: |
| 922 | return write_reg(state, |
| 923 | RSTV0910_P2_PRVIT + state->regoff, 0x04); |
| 924 | case FEC_5_6: |
| 925 | return write_reg(state, |
| 926 | RSTV0910_P2_PRVIT + state->regoff, 0x08); |
| 927 | case FEC_7_8: |
| 928 | return write_reg(state, |
| 929 | RSTV0910_P2_PRVIT + state->regoff, 0x20); |
| 930 | case FEC_NONE: |
| 931 | default: |
| 932 | return write_reg(state, |
| 933 | RSTV0910_P2_PRVIT + state->regoff, 0x2f); |
| 934 | } |
| 935 | } |
| 936 | |
| 937 | static int set_vth_default(struct stv *state) |
| 938 | { |
| 939 | state->vth[0] = 0xd7; |
| 940 | state->vth[1] = 0x85; |
| 941 | state->vth[2] = 0x58; |
| 942 | state->vth[3] = 0x3a; |
| 943 | state->vth[4] = 0x34; |
| 944 | state->vth[5] = 0x28; |
| 945 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]); |
| 946 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]); |
| 947 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]); |
| 948 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]); |
| 949 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]); |
| 950 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]); |
| 951 | return 0; |
| 952 | } |
| 953 | |
| 954 | static int set_vth(struct stv *state) |
| 955 | { |
| 956 | static const struct slookup vthlookup_table[] = { |
| 957 | {250, 8780}, /* C/N= 1.5dB */ |
| 958 | {100, 7405}, /* C/N= 4.5dB */ |
| 959 | {40, 6330}, /* C/N= 6.5dB */ |
| 960 | {12, 5224}, /* C/N= 8.5dB */ |
| 961 | {5, 4236} /* C/N=10.5dB */ |
| 962 | }; |
| 963 | |
| 964 | int i; |
| 965 | u8 tmp[2]; |
| 966 | int status = read_regs(state, |
| 967 | RSTV0910_P2_NNOSDATAT1 + state->regoff, |
| 968 | tmp, 2); |
| 969 | u16 reg_value = (tmp[0] << 8) | tmp[1]; |
| 970 | s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table), |
| 971 | reg_value); |
| 972 | |
| 973 | for (i = 0; i < 6; i += 1) |
| 974 | if (state->vth[i] > vth) |
| 975 | state->vth[i] = vth; |
| 976 | |
| 977 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]); |
| 978 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]); |
| 979 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]); |
| 980 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]); |
| 981 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]); |
| 982 | write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]); |
| 983 | return status; |
| 984 | } |
| 985 | |
| 986 | static int start(struct stv *state, struct dtv_frontend_properties *p) |
| 987 | { |
| 988 | s32 freq; |
| 989 | u8 reg_dmdcfgmd; |
| 990 | u16 symb; |
| 991 | u32 scrambling_code = 1; |
| 992 | |
| 993 | if (p->symbol_rate < 100000 || p->symbol_rate > 70000000) |
| 994 | return -EINVAL; |
| 995 | |
| 996 | state->receive_mode = RCVMODE_NONE; |
| 997 | state->demod_lock_time = 0; |
| 998 | |
| 999 | /* Demod Stop */ |
| 1000 | if (state->started) |
| 1001 | write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C); |
| 1002 | |
| 1003 | init_search_param(state); |
| 1004 | |
| 1005 | if (p->stream_id != NO_STREAM_ID_FILTER) { |
| 1006 | /* |
| 1007 | * Backwards compatibility to "crazy" API. |
| 1008 | * PRBS X root cannot be 0, so this should always work. |
| 1009 | */ |
| 1010 | if (p->stream_id & 0xffffff00) |
| 1011 | scrambling_code = p->stream_id >> 8; |
| 1012 | write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff, |
| 1013 | p->stream_id & 0xff); |
| 1014 | write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, |
| 1015 | 0xff); |
| 1016 | } |
| 1017 | |
| 1018 | if (scrambling_code != state->cur_scrambling_code) { |
| 1019 | write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff, |
| 1020 | scrambling_code & 0xff); |
| 1021 | write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff, |
| 1022 | (scrambling_code >> 8) & 0xff); |
| 1023 | write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff, |
| 1024 | (scrambling_code >> 16) & 0x0f); |
| 1025 | state->cur_scrambling_code = scrambling_code; |
| 1026 | } |
| 1027 | |
| 1028 | if (p->symbol_rate <= 1000000) { /* SR <=1Msps */ |
| 1029 | state->demod_timeout = 3000; |
| 1030 | state->fec_timeout = 2000; |
| 1031 | } else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */ |
| 1032 | state->demod_timeout = 2500; |
| 1033 | state->fec_timeout = 1300; |
| 1034 | } else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */ |
| 1035 | state->demod_timeout = 1000; |
| 1036 | state->fec_timeout = 650; |
| 1037 | } else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */ |
| 1038 | state->demod_timeout = 700; |
| 1039 | state->fec_timeout = 350; |
| 1040 | } else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */ |
| 1041 | state->demod_timeout = 400; |
| 1042 | state->fec_timeout = 200; |
| 1043 | } else { /* SR >=20Msps */ |
| 1044 | state->demod_timeout = 300; |
| 1045 | state->fec_timeout = 200; |
| 1046 | } |
| 1047 | |
| 1048 | /* Set the Init Symbol rate */ |
| 1049 | symb = muldiv32(p->symbol_rate, 65536, state->base->mclk); |
| 1050 | write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff, |
| 1051 | ((symb >> 8) & 0x7F)); |
| 1052 | write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF)); |
| 1053 | |
| 1054 | state->demod_bits |= 0x80; |
| 1055 | write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits); |
| 1056 | |
| 1057 | /* FE_STV0910_SetSearchStandard */ |
| 1058 | read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, ®_dmdcfgmd); |
| 1059 | write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, |
| 1060 | reg_dmdcfgmd |= 0xC0); |
| 1061 | |
| 1062 | write_shared_reg(state, |
| 1063 | RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00); |
| 1064 | |
| 1065 | /* Disable DSS */ |
| 1066 | write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00); |
| 1067 | write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F); |
| 1068 | |
| 1069 | enable_puncture_rate(state, FEC_NONE); |
| 1070 | |
| 1071 | /* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */ |
| 1072 | write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B); |
| 1073 | write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A); |
| 1074 | write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84); |
| 1075 | write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84); |
| 1076 | write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C); |
| 1077 | write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79); |
| 1078 | |
| 1079 | write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29); |
| 1080 | write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09); |
| 1081 | write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84); |
| 1082 | write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84); |
| 1083 | |
| 1084 | /* |
| 1085 | * Reset CAR3, bug DVBS2->DVBS1 lock |
| 1086 | * Note: The bit is only pulsed -> no lock on shared register needed |
| 1087 | */ |
| 1088 | write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08); |
| 1089 | write_reg(state, RSTV0910_TSTRES0, 0); |
| 1090 | |
| 1091 | set_vth_default(state); |
| 1092 | /* Reset demod */ |
| 1093 | write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F); |
| 1094 | |
| 1095 | write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46); |
| 1096 | |
| 1097 | if (p->symbol_rate <= 5000000) |
| 1098 | freq = (state->search_range / 2000) + 80; |
| 1099 | else |
| 1100 | freq = (state->search_range / 2000) + 1600; |
| 1101 | freq = (freq << 16) / (state->base->mclk / 1000); |
| 1102 | |
| 1103 | write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff, |
| 1104 | (freq >> 8) & 0xff); |
| 1105 | write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff)); |
| 1106 | /* CFR Low Setting */ |
| 1107 | freq = -freq; |
| 1108 | write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff, |
| 1109 | (freq >> 8) & 0xff); |
| 1110 | write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff)); |
| 1111 | |
| 1112 | /* init the demod frequency offset to 0 */ |
| 1113 | write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0); |
| 1114 | write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0); |
| 1115 | |
| 1116 | write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F); |
| 1117 | /* Trigger acq */ |
| 1118 | write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15); |
| 1119 | |
| 1120 | state->demod_lock_time += TUNING_DELAY; |
| 1121 | state->started = 1; |
| 1122 | |
| 1123 | return 0; |
| 1124 | } |
| 1125 | |
| 1126 | static int init_diseqc(struct stv *state) |
| 1127 | { |
| 1128 | u16 offs = state->nr ? 0x40 : 0; /* Address offset */ |
| 1129 | u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32)); |
| 1130 | |
| 1131 | /* Disable receiver */ |
| 1132 | write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00); |
| 1133 | write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */ |
| 1134 | write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */ |
| 1135 | write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq); |
| 1136 | return 0; |
| 1137 | } |
| 1138 | |
| 1139 | static int probe(struct stv *state) |
| 1140 | { |
| 1141 | u8 id; |
| 1142 | |
| 1143 | state->receive_mode = RCVMODE_NONE; |
| 1144 | state->started = 0; |
| 1145 | |
| 1146 | if (read_reg(state, RSTV0910_MID, &id) < 0) |
| 1147 | return -ENODEV; |
| 1148 | |
| 1149 | if (id != 0x51) |
| 1150 | return -EINVAL; |
| 1151 | |
| 1152 | /* Configure the I2C repeater to off */ |
| 1153 | write_reg(state, RSTV0910_P1_I2CRPT, 0x24); |
| 1154 | /* Configure the I2C repeater to off */ |
| 1155 | write_reg(state, RSTV0910_P2_I2CRPT, 0x24); |
| 1156 | /* Set the I2C to oversampling ratio */ |
| 1157 | write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */ |
| 1158 | |
| 1159 | write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */ |
| 1160 | write_reg(state, RSTV0910_PADCFG, 0x05); /* RFAGC Pads Dev = 05 */ |
| 1161 | write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */ |
| 1162 | write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */ |
| 1163 | write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */ |
| 1164 | |
| 1165 | if (state->single) |
| 1166 | write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */ |
| 1167 | else |
| 1168 | write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */ |
| 1169 | |
| 1170 | write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */ |
| 1171 | write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */ |
| 1172 | |
| 1173 | write_reg(state, RSTV0910_P1_CAR3CFG, 0x02); |
| 1174 | write_reg(state, RSTV0910_P2_CAR3CFG, 0x02); |
| 1175 | write_reg(state, RSTV0910_P1_DMDCFG4, 0x04); |
| 1176 | write_reg(state, RSTV0910_P2_DMDCFG4, 0x04); |
| 1177 | |
| 1178 | write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */ |
| 1179 | write_reg(state, RSTV0910_TSTRES0, 0x00); |
| 1180 | |
| 1181 | write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00); |
| 1182 | write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00); |
| 1183 | |
| 1184 | write_reg(state, RSTV0910_P1_TMGCFG2, 0x80); |
| 1185 | write_reg(state, RSTV0910_P2_TMGCFG2, 0x80); |
| 1186 | |
| 1187 | set_mclock(state, 135000000); |
| 1188 | |
| 1189 | /* TS output */ |
| 1190 | write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01); |
| 1191 | write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh); |
| 1192 | write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */ |
| 1193 | write_reg(state, RSTV0910_P1_TSCFGL, 0x20); |
| 1194 | |
| 1195 | /* Speed = 67.5 MHz */ |
| 1196 | write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed); |
| 1197 | |
| 1198 | write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01); |
| 1199 | write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh); |
| 1200 | write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */ |
| 1201 | write_reg(state, RSTV0910_P2_TSCFGL, 0x20); |
| 1202 | |
| 1203 | /* Speed = 67.5 MHz */ |
| 1204 | write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed); |
| 1205 | |
| 1206 | /* Reset stream merger */ |
| 1207 | write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01); |
| 1208 | write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01); |
| 1209 | write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh); |
| 1210 | write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh); |
| 1211 | |
| 1212 | write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt); |
| 1213 | write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt); |
| 1214 | |
| 1215 | init_diseqc(state); |
| 1216 | return 0; |
| 1217 | } |
| 1218 | |
| 1219 | static int gate_ctrl(struct dvb_frontend *fe, int enable) |
| 1220 | { |
| 1221 | struct stv *state = fe->demodulator_priv; |
| 1222 | u8 i2crpt = state->i2crpt & ~0x86; |
| 1223 | |
| 1224 | /* |
| 1225 | * mutex_lock note: Concurrent I2C gate bus accesses must be |
| 1226 | * prevented (STV0910 = dual demod on a single IC with a single I2C |
| 1227 | * gate/bus, and two tuners attached), similar to most (if not all) |
| 1228 | * other I2C host interfaces/busses. |
| 1229 | * |
| 1230 | * enable=1 (open I2C gate) will grab the lock |
| 1231 | * enable=0 (close I2C gate) releases the lock |
| 1232 | */ |
| 1233 | |
| 1234 | if (enable) { |
| 1235 | mutex_lock(&state->base->i2c_lock); |
| 1236 | i2crpt |= 0x80; |
| 1237 | } else { |
| 1238 | i2crpt |= 0x02; |
| 1239 | } |
| 1240 | |
| 1241 | if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT : |
| 1242 | RSTV0910_P1_I2CRPT, i2crpt) < 0) { |
| 1243 | /* don't hold the I2C bus lock on failure */ |
| 1244 | mutex_unlock(&state->base->i2c_lock); |
| 1245 | dev_err(&state->base->i2c->dev, |
| 1246 | "%s() write_reg failure (enable=%d)\n", |
| 1247 | __func__, enable); |
| 1248 | return -EIO; |
| 1249 | } |
| 1250 | |
| 1251 | state->i2crpt = i2crpt; |
| 1252 | |
| 1253 | if (!enable) |
| 1254 | mutex_unlock(&state->base->i2c_lock); |
| 1255 | return 0; |
| 1256 | } |
| 1257 | |
| 1258 | static void release(struct dvb_frontend *fe) |
| 1259 | { |
| 1260 | struct stv *state = fe->demodulator_priv; |
| 1261 | |
| 1262 | state->base->count--; |
| 1263 | if (state->base->count == 0) { |
| 1264 | list_del(&state->base->stvlist); |
| 1265 | kfree(state->base); |
| 1266 | } |
| 1267 | kfree(state); |
| 1268 | } |
| 1269 | |
| 1270 | static int set_parameters(struct dvb_frontend *fe) |
| 1271 | { |
| 1272 | int stat = 0; |
| 1273 | struct stv *state = fe->demodulator_priv; |
| 1274 | u32 iffreq; |
| 1275 | struct dtv_frontend_properties *p = &fe->dtv_property_cache; |
| 1276 | |
| 1277 | stop(state); |
| 1278 | if (fe->ops.tuner_ops.set_params) |
| 1279 | fe->ops.tuner_ops.set_params(fe); |
| 1280 | if (fe->ops.tuner_ops.get_if_frequency) |
| 1281 | fe->ops.tuner_ops.get_if_frequency(fe, &iffreq); |
| 1282 | state->symbol_rate = p->symbol_rate; |
| 1283 | stat = start(state, p); |
| 1284 | return stat; |
| 1285 | } |
| 1286 | |
| 1287 | static int manage_matype_info(struct stv *state) |
| 1288 | { |
| 1289 | if (!state->started) |
| 1290 | return -EINVAL; |
| 1291 | if (state->receive_mode == RCVMODE_DVBS2) { |
| 1292 | u8 bbheader[2]; |
| 1293 | |
| 1294 | read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff, |
| 1295 | bbheader, 2); |
| 1296 | state->feroll_off = |
| 1297 | (enum fe_stv0910_roll_off)(bbheader[0] & 0x03); |
| 1298 | state->is_vcm = (bbheader[0] & 0x10) == 0; |
| 1299 | state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0; |
| 1300 | } else if (state->receive_mode == RCVMODE_DVBS) { |
| 1301 | state->is_vcm = 0; |
| 1302 | state->is_standard_broadcast = 1; |
| 1303 | state->feroll_off = FE_SAT_35; |
| 1304 | } |
| 1305 | return 0; |
| 1306 | } |
| 1307 | |
| 1308 | static int read_snr(struct dvb_frontend *fe) |
| 1309 | { |
| 1310 | struct stv *state = fe->demodulator_priv; |
| 1311 | struct dtv_frontend_properties *p = &fe->dtv_property_cache; |
| 1312 | s32 snrval; |
| 1313 | |
| 1314 | if (!get_signal_to_noise(state, &snrval)) { |
| 1315 | p->cnr.stat[0].scale = FE_SCALE_DECIBEL; |
| 1316 | p->cnr.stat[0].uvalue = 100 * snrval; /* fix scale */ |
| 1317 | } else { |
| 1318 | p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1319 | } |
| 1320 | |
| 1321 | return 0; |
| 1322 | } |
| 1323 | |
| 1324 | static int read_ber(struct dvb_frontend *fe) |
| 1325 | { |
| 1326 | struct stv *state = fe->demodulator_priv; |
| 1327 | struct dtv_frontend_properties *p = &fe->dtv_property_cache; |
| 1328 | u32 n, d; |
| 1329 | |
| 1330 | get_bit_error_rate(state, &n, &d); |
| 1331 | |
| 1332 | p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; |
| 1333 | p->pre_bit_error.stat[0].uvalue = n; |
| 1334 | p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; |
| 1335 | p->pre_bit_count.stat[0].uvalue = d; |
| 1336 | |
| 1337 | return 0; |
| 1338 | } |
| 1339 | |
| 1340 | static void read_signal_strength(struct dvb_frontend *fe) |
| 1341 | { |
| 1342 | struct stv *state = fe->demodulator_priv; |
| 1343 | struct dtv_frontend_properties *p = &state->fe.dtv_property_cache; |
| 1344 | u8 reg[2]; |
| 1345 | u16 agc; |
| 1346 | s32 padc, power = 0; |
| 1347 | int i; |
| 1348 | |
| 1349 | read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2); |
| 1350 | |
| 1351 | agc = (((u32)reg[0]) << 8) | reg[1]; |
| 1352 | |
| 1353 | for (i = 0; i < 5; i += 1) { |
| 1354 | read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2); |
| 1355 | power += (u32)reg[0] * (u32)reg[0] |
| 1356 | + (u32)reg[1] * (u32)reg[1]; |
| 1357 | usleep_range(3000, 4000); |
| 1358 | } |
| 1359 | power /= 5; |
| 1360 | |
| 1361 | padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352; |
| 1362 | |
| 1363 | p->strength.stat[0].scale = FE_SCALE_DECIBEL; |
| 1364 | p->strength.stat[0].svalue = (padc - agc); |
| 1365 | } |
| 1366 | |
| 1367 | static int read_status(struct dvb_frontend *fe, enum fe_status *status) |
| 1368 | { |
| 1369 | struct stv *state = fe->demodulator_priv; |
| 1370 | struct dtv_frontend_properties *p = &fe->dtv_property_cache; |
| 1371 | u8 dmd_state = 0; |
| 1372 | u8 dstatus = 0; |
| 1373 | enum receive_mode cur_receive_mode = RCVMODE_NONE; |
| 1374 | u32 feclock = 0; |
| 1375 | |
| 1376 | *status = 0; |
| 1377 | |
| 1378 | read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state); |
| 1379 | |
| 1380 | if (dmd_state & 0x40) { |
| 1381 | read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus); |
| 1382 | if (dstatus & 0x08) |
| 1383 | cur_receive_mode = (dmd_state & 0x20) ? |
| 1384 | RCVMODE_DVBS : RCVMODE_DVBS2; |
| 1385 | } |
| 1386 | if (cur_receive_mode == RCVMODE_NONE) { |
| 1387 | set_vth(state); |
| 1388 | |
| 1389 | /* reset signal statistics */ |
| 1390 | p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1391 | p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1392 | p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1393 | p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1394 | |
| 1395 | return 0; |
| 1396 | } |
| 1397 | |
| 1398 | *status |= (FE_HAS_SIGNAL |
| 1399 | | FE_HAS_CARRIER |
| 1400 | | FE_HAS_VITERBI |
| 1401 | | FE_HAS_SYNC); |
| 1402 | |
| 1403 | if (state->receive_mode == RCVMODE_NONE) { |
| 1404 | state->receive_mode = cur_receive_mode; |
| 1405 | state->demod_lock_time = jiffies; |
| 1406 | state->first_time_lock = 1; |
| 1407 | |
| 1408 | get_signal_parameters(state); |
| 1409 | tracking_optimization(state); |
| 1410 | |
| 1411 | write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, |
| 1412 | state->tscfgh); |
| 1413 | usleep_range(3000, 4000); |
| 1414 | write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, |
| 1415 | state->tscfgh | 0x01); |
| 1416 | write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, |
| 1417 | state->tscfgh); |
| 1418 | } |
| 1419 | if (dmd_state & 0x40) { |
| 1420 | if (state->receive_mode == RCVMODE_DVBS2) { |
| 1421 | u8 pdelstatus; |
| 1422 | |
| 1423 | read_reg(state, |
| 1424 | RSTV0910_P2_PDELSTATUS1 + state->regoff, |
| 1425 | &pdelstatus); |
| 1426 | feclock = (pdelstatus & 0x02) != 0; |
| 1427 | } else { |
| 1428 | u8 vstatus; |
| 1429 | |
| 1430 | read_reg(state, |
| 1431 | RSTV0910_P2_VSTATUSVIT + state->regoff, |
| 1432 | &vstatus); |
| 1433 | feclock = (vstatus & 0x08) != 0; |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | if (feclock) { |
| 1438 | *status |= FE_HAS_LOCK; |
| 1439 | |
| 1440 | if (state->first_time_lock) { |
| 1441 | u8 tmp; |
| 1442 | |
| 1443 | state->first_time_lock = 0; |
| 1444 | |
| 1445 | manage_matype_info(state); |
| 1446 | |
| 1447 | if (state->receive_mode == RCVMODE_DVBS2) { |
| 1448 | /* |
| 1449 | * FSTV0910_P2_MANUALSX_ROLLOFF, |
| 1450 | * FSTV0910_P2_MANUALS2_ROLLOFF = 0 |
| 1451 | */ |
| 1452 | state->demod_bits &= ~0x84; |
| 1453 | write_reg(state, |
| 1454 | RSTV0910_P2_DEMOD + state->regoff, |
| 1455 | state->demod_bits); |
| 1456 | read_reg(state, |
| 1457 | RSTV0910_P2_PDELCTRL2 + state->regoff, |
| 1458 | &tmp); |
| 1459 | /* reset DVBS2 packet delinator error counter */ |
| 1460 | tmp |= 0x40; |
| 1461 | write_reg(state, |
| 1462 | RSTV0910_P2_PDELCTRL2 + state->regoff, |
| 1463 | tmp); |
| 1464 | /* reset DVBS2 packet delinator error counter */ |
| 1465 | tmp &= ~0x40; |
| 1466 | write_reg(state, |
| 1467 | RSTV0910_P2_PDELCTRL2 + state->regoff, |
| 1468 | tmp); |
| 1469 | |
| 1470 | state->berscale = 2; |
| 1471 | state->last_bernumerator = 0; |
| 1472 | state->last_berdenominator = 1; |
| 1473 | /* force to PRE BCH Rate */ |
| 1474 | write_reg(state, |
| 1475 | RSTV0910_P2_ERRCTRL1 + state->regoff, |
| 1476 | BER_SRC_S2 | state->berscale); |
| 1477 | } else { |
| 1478 | state->berscale = 2; |
| 1479 | state->last_bernumerator = 0; |
| 1480 | state->last_berdenominator = 1; |
| 1481 | /* force to PRE RS Rate */ |
| 1482 | write_reg(state, |
| 1483 | RSTV0910_P2_ERRCTRL1 + state->regoff, |
| 1484 | BER_SRC_S | state->berscale); |
| 1485 | } |
| 1486 | /* Reset the Total packet counter */ |
| 1487 | write_reg(state, |
| 1488 | RSTV0910_P2_FBERCPT4 + state->regoff, 0x00); |
| 1489 | /* |
| 1490 | * Reset the packet Error counter2 (and Set it to |
| 1491 | * infinit error count mode) |
| 1492 | */ |
| 1493 | write_reg(state, |
| 1494 | RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1); |
| 1495 | |
| 1496 | set_vth_default(state); |
| 1497 | if (state->receive_mode == RCVMODE_DVBS) |
| 1498 | enable_puncture_rate(state, |
| 1499 | state->puncture_rate); |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | /* read signal statistics */ |
| 1504 | |
| 1505 | /* read signal strength */ |
| 1506 | read_signal_strength(fe); |
| 1507 | |
| 1508 | /* read carrier/noise on FE_HAS_CARRIER */ |
| 1509 | if (*status & FE_HAS_CARRIER) |
| 1510 | read_snr(fe); |
| 1511 | else |
| 1512 | p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1513 | |
| 1514 | /* read ber */ |
| 1515 | if (*status & FE_HAS_VITERBI) { |
| 1516 | read_ber(fe); |
| 1517 | } else { |
| 1518 | p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1519 | p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1520 | } |
| 1521 | |
| 1522 | return 0; |
| 1523 | } |
| 1524 | |
| 1525 | static int get_frontend(struct dvb_frontend *fe, |
| 1526 | struct dtv_frontend_properties *p) |
| 1527 | { |
| 1528 | struct stv *state = fe->demodulator_priv; |
| 1529 | u8 tmp; |
| 1530 | |
| 1531 | if (state->receive_mode == RCVMODE_DVBS2) { |
| 1532 | u32 mc; |
| 1533 | const enum fe_modulation modcod2mod[0x20] = { |
| 1534 | QPSK, QPSK, QPSK, QPSK, |
| 1535 | QPSK, QPSK, QPSK, QPSK, |
| 1536 | QPSK, QPSK, QPSK, QPSK, |
| 1537 | PSK_8, PSK_8, PSK_8, PSK_8, |
| 1538 | PSK_8, PSK_8, APSK_16, APSK_16, |
| 1539 | APSK_16, APSK_16, APSK_16, APSK_16, |
| 1540 | APSK_32, APSK_32, APSK_32, APSK_32, |
| 1541 | APSK_32, |
| 1542 | }; |
| 1543 | const enum fe_code_rate modcod2fec[0x20] = { |
| 1544 | FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5, |
| 1545 | FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4, |
| 1546 | FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, |
| 1547 | FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6, |
| 1548 | FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4, |
| 1549 | FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, |
| 1550 | FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9, |
| 1551 | FEC_9_10 |
| 1552 | }; |
| 1553 | read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp); |
| 1554 | mc = ((tmp & 0x7c) >> 2); |
| 1555 | p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF; |
| 1556 | p->modulation = modcod2mod[mc]; |
| 1557 | p->fec_inner = modcod2fec[mc]; |
| 1558 | } else if (state->receive_mode == RCVMODE_DVBS) { |
| 1559 | read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp); |
| 1560 | switch (tmp & 0x1F) { |
| 1561 | case 0x0d: |
| 1562 | p->fec_inner = FEC_1_2; |
| 1563 | break; |
| 1564 | case 0x12: |
| 1565 | p->fec_inner = FEC_2_3; |
| 1566 | break; |
| 1567 | case 0x15: |
| 1568 | p->fec_inner = FEC_3_4; |
| 1569 | break; |
| 1570 | case 0x18: |
| 1571 | p->fec_inner = FEC_5_6; |
| 1572 | break; |
| 1573 | case 0x1a: |
| 1574 | p->fec_inner = FEC_7_8; |
| 1575 | break; |
| 1576 | default: |
| 1577 | p->fec_inner = FEC_NONE; |
| 1578 | break; |
| 1579 | } |
| 1580 | p->rolloff = ROLLOFF_35; |
| 1581 | } |
| 1582 | |
| 1583 | return 0; |
| 1584 | } |
| 1585 | |
| 1586 | static int tune(struct dvb_frontend *fe, bool re_tune, |
| 1587 | unsigned int mode_flags, |
| 1588 | unsigned int *delay, enum fe_status *status) |
| 1589 | { |
| 1590 | struct stv *state = fe->demodulator_priv; |
| 1591 | int r; |
| 1592 | |
| 1593 | if (re_tune) { |
| 1594 | r = set_parameters(fe); |
| 1595 | if (r) |
| 1596 | return r; |
| 1597 | state->tune_time = jiffies; |
| 1598 | } |
| 1599 | |
| 1600 | r = read_status(fe, status); |
| 1601 | if (r) |
| 1602 | return r; |
| 1603 | |
| 1604 | if (*status & FE_HAS_LOCK) |
| 1605 | return 0; |
| 1606 | *delay = HZ; |
| 1607 | |
| 1608 | return 0; |
| 1609 | } |
| 1610 | |
| 1611 | static int get_algo(struct dvb_frontend *fe) |
| 1612 | { |
| 1613 | return DVBFE_ALGO_HW; |
| 1614 | } |
| 1615 | |
| 1616 | static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) |
| 1617 | { |
| 1618 | struct stv *state = fe->demodulator_priv; |
| 1619 | u16 offs = state->nr ? 0x40 : 0; |
| 1620 | |
| 1621 | switch (tone) { |
| 1622 | case SEC_TONE_ON: |
| 1623 | return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38); |
| 1624 | case SEC_TONE_OFF: |
| 1625 | return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a); |
| 1626 | default: |
| 1627 | break; |
| 1628 | } |
| 1629 | return -EINVAL; |
| 1630 | } |
| 1631 | |
| 1632 | static int wait_dis(struct stv *state, u8 flag, u8 val) |
| 1633 | { |
| 1634 | int i; |
| 1635 | u8 stat; |
| 1636 | u16 offs = state->nr ? 0x40 : 0; |
| 1637 | |
| 1638 | for (i = 0; i < 10; i++) { |
| 1639 | read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat); |
| 1640 | if ((stat & flag) == val) |
| 1641 | return 0; |
| 1642 | usleep_range(10000, 11000); |
| 1643 | } |
| 1644 | return -ETIMEDOUT; |
| 1645 | } |
| 1646 | |
| 1647 | static int send_master_cmd(struct dvb_frontend *fe, |
| 1648 | struct dvb_diseqc_master_cmd *cmd) |
| 1649 | { |
| 1650 | struct stv *state = fe->demodulator_priv; |
| 1651 | u16 offs = state->nr ? 0x40 : 0; |
| 1652 | int i; |
| 1653 | |
| 1654 | write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E); |
| 1655 | for (i = 0; i < cmd->msg_len; i++) { |
| 1656 | wait_dis(state, 0x40, 0x00); |
| 1657 | write_reg(state, RSTV0910_P1_DISTXFIFO + offs, cmd->msg[i]); |
| 1658 | } |
| 1659 | write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); |
| 1660 | wait_dis(state, 0x20, 0x20); |
| 1661 | return 0; |
| 1662 | } |
| 1663 | |
| 1664 | static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst) |
| 1665 | { |
| 1666 | struct stv *state = fe->demodulator_priv; |
| 1667 | u16 offs = state->nr ? 0x40 : 0; |
| 1668 | u8 value; |
| 1669 | |
| 1670 | if (burst == SEC_MINI_A) { |
| 1671 | write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3F); |
| 1672 | value = 0x00; |
| 1673 | } else { |
| 1674 | write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E); |
| 1675 | value = 0xFF; |
| 1676 | } |
| 1677 | wait_dis(state, 0x40, 0x00); |
| 1678 | write_reg(state, RSTV0910_P1_DISTXFIFO + offs, value); |
| 1679 | write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); |
| 1680 | wait_dis(state, 0x20, 0x20); |
| 1681 | |
| 1682 | return 0; |
| 1683 | } |
| 1684 | |
| 1685 | static int sleep(struct dvb_frontend *fe) |
| 1686 | { |
| 1687 | struct stv *state = fe->demodulator_priv; |
| 1688 | |
| 1689 | stop(state); |
| 1690 | return 0; |
| 1691 | } |
| 1692 | |
| 1693 | static const struct dvb_frontend_ops stv0910_ops = { |
| 1694 | .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS }, |
| 1695 | .info = { |
| 1696 | .name = "ST STV0910", |
| 1697 | .frequency_min = 950000, |
| 1698 | .frequency_max = 2150000, |
| 1699 | .frequency_stepsize = 0, |
| 1700 | .frequency_tolerance = 0, |
| 1701 | .symbol_rate_min = 100000, |
| 1702 | .symbol_rate_max = 70000000, |
| 1703 | .caps = FE_CAN_INVERSION_AUTO | |
| 1704 | FE_CAN_FEC_AUTO | |
| 1705 | FE_CAN_QPSK | |
| 1706 | FE_CAN_2G_MODULATION | |
| 1707 | FE_CAN_MULTISTREAM |
| 1708 | }, |
| 1709 | .sleep = sleep, |
| 1710 | .release = release, |
| 1711 | .i2c_gate_ctrl = gate_ctrl, |
| 1712 | .set_frontend = set_parameters, |
| 1713 | .get_frontend_algo = get_algo, |
| 1714 | .get_frontend = get_frontend, |
| 1715 | .tune = tune, |
| 1716 | .read_status = read_status, |
| 1717 | .set_tone = set_tone, |
| 1718 | |
| 1719 | .diseqc_send_master_cmd = send_master_cmd, |
| 1720 | .diseqc_send_burst = send_burst, |
| 1721 | }; |
| 1722 | |
| 1723 | static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr) |
| 1724 | { |
| 1725 | struct stv_base *p; |
| 1726 | |
| 1727 | list_for_each_entry(p, &stvlist, stvlist) |
| 1728 | if (p->i2c == i2c && p->adr == adr) |
| 1729 | return p; |
| 1730 | return NULL; |
| 1731 | } |
| 1732 | |
| 1733 | static void stv0910_init_stats(struct stv *state) |
| 1734 | { |
| 1735 | struct dtv_frontend_properties *p = &state->fe.dtv_property_cache; |
| 1736 | |
| 1737 | p->strength.len = 1; |
| 1738 | p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1739 | p->cnr.len = 1; |
| 1740 | p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1741 | p->pre_bit_error.len = 1; |
| 1742 | p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1743 | p->pre_bit_count.len = 1; |
| 1744 | p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| 1745 | } |
| 1746 | |
| 1747 | struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c, |
| 1748 | struct stv0910_cfg *cfg, |
| 1749 | int nr) |
| 1750 | { |
| 1751 | struct stv *state; |
| 1752 | struct stv_base *base; |
| 1753 | |
| 1754 | state = kzalloc(sizeof(*state), GFP_KERNEL); |
| 1755 | if (!state) |
| 1756 | return NULL; |
| 1757 | |
| 1758 | state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40); |
| 1759 | state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00; |
| 1760 | state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4); |
| 1761 | state->tsspeed = 0x28; |
| 1762 | state->nr = nr; |
| 1763 | state->regoff = state->nr ? 0 : 0x200; |
| 1764 | state->search_range = 16000000; |
| 1765 | state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */ |
| 1766 | state->receive_mode = RCVMODE_NONE; |
| 1767 | state->cur_scrambling_code = (~0U); |
| 1768 | state->single = cfg->single ? 1 : 0; |
| 1769 | |
| 1770 | base = match_base(i2c, cfg->adr); |
| 1771 | if (base) { |
| 1772 | base->count++; |
| 1773 | state->base = base; |
| 1774 | } else { |
| 1775 | base = kzalloc(sizeof(*base), GFP_KERNEL); |
| 1776 | if (!base) |
| 1777 | goto fail; |
| 1778 | base->i2c = i2c; |
| 1779 | base->adr = cfg->adr; |
| 1780 | base->count = 1; |
| 1781 | base->extclk = cfg->clk ? cfg->clk : 30000000; |
| 1782 | |
| 1783 | mutex_init(&base->i2c_lock); |
| 1784 | mutex_init(&base->reg_lock); |
| 1785 | state->base = base; |
| 1786 | if (probe(state) < 0) { |
| 1787 | dev_info(&i2c->dev, "No demod found at adr %02X on %s\n", |
| 1788 | cfg->adr, dev_name(&i2c->dev)); |
| 1789 | kfree(base); |
| 1790 | goto fail; |
| 1791 | } |
| 1792 | list_add(&base->stvlist, &stvlist); |
| 1793 | } |
| 1794 | state->fe.ops = stv0910_ops; |
| 1795 | state->fe.demodulator_priv = state; |
| 1796 | state->nr = nr; |
| 1797 | |
| 1798 | dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n", |
| 1799 | state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev)); |
| 1800 | |
| 1801 | stv0910_init_stats(state); |
| 1802 | |
| 1803 | return &state->fe; |
| 1804 | |
| 1805 | fail: |
| 1806 | kfree(state); |
| 1807 | return NULL; |
| 1808 | } |
| 1809 | EXPORT_SYMBOL_GPL(stv0910_attach); |
| 1810 | |
| 1811 | MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver"); |
| 1812 | MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel"); |
| 1813 | MODULE_LICENSE("GPL"); |