rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * tda18271c2dd: Driver for the TDA18271C2 tuner |
| 3 | * |
| 4 | * Copyright (C) 2010 Digital Devices GmbH |
| 5 | * |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU General Public License |
| 9 | * version 2 only, as published by the Free Software Foundation. |
| 10 | * |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * To obtain the license, point your browser to |
| 18 | * http://www.gnu.org/copyleft/gpl.html |
| 19 | */ |
| 20 | |
| 21 | #include <linux/kernel.h> |
| 22 | #include <linux/module.h> |
| 23 | #include <linux/moduleparam.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <linux/delay.h> |
| 26 | #include <linux/firmware.h> |
| 27 | #include <linux/i2c.h> |
| 28 | #include <asm/div64.h> |
| 29 | |
| 30 | #include "dvb_frontend.h" |
| 31 | #include "tda18271c2dd.h" |
| 32 | |
| 33 | /* Max transfer size done by I2C transfer functions */ |
| 34 | #define MAX_XFER_SIZE 64 |
| 35 | |
| 36 | struct SStandardParam { |
| 37 | s32 m_IFFrequency; |
| 38 | u32 m_BandWidth; |
| 39 | u8 m_EP3_4_0; |
| 40 | u8 m_EB22; |
| 41 | }; |
| 42 | |
| 43 | struct SMap { |
| 44 | u32 m_Frequency; |
| 45 | u8 m_Param; |
| 46 | }; |
| 47 | |
| 48 | struct SMapI { |
| 49 | u32 m_Frequency; |
| 50 | s32 m_Param; |
| 51 | }; |
| 52 | |
| 53 | struct SMap2 { |
| 54 | u32 m_Frequency; |
| 55 | u8 m_Param1; |
| 56 | u8 m_Param2; |
| 57 | }; |
| 58 | |
| 59 | struct SRFBandMap { |
| 60 | u32 m_RF_max; |
| 61 | u32 m_RF1_Default; |
| 62 | u32 m_RF2_Default; |
| 63 | u32 m_RF3_Default; |
| 64 | }; |
| 65 | |
| 66 | enum ERegister { |
| 67 | ID = 0, |
| 68 | TM, |
| 69 | PL, |
| 70 | EP1, EP2, EP3, EP4, EP5, |
| 71 | CPD, CD1, CD2, CD3, |
| 72 | MPD, MD1, MD2, MD3, |
| 73 | EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10, |
| 74 | EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20, |
| 75 | EB21, EB22, EB23, |
| 76 | NUM_REGS |
| 77 | }; |
| 78 | |
| 79 | struct tda_state { |
| 80 | struct i2c_adapter *i2c; |
| 81 | u8 adr; |
| 82 | |
| 83 | u32 m_Frequency; |
| 84 | u32 IF; |
| 85 | |
| 86 | u8 m_IFLevelAnalog; |
| 87 | u8 m_IFLevelDigital; |
| 88 | u8 m_IFLevelDVBC; |
| 89 | u8 m_IFLevelDVBT; |
| 90 | |
| 91 | u8 m_EP4; |
| 92 | u8 m_EP3_Standby; |
| 93 | |
| 94 | bool m_bMaster; |
| 95 | |
| 96 | s32 m_SettlingTime; |
| 97 | |
| 98 | u8 m_Regs[NUM_REGS]; |
| 99 | |
| 100 | /* Tracking filter settings for band 0..6 */ |
| 101 | u32 m_RF1[7]; |
| 102 | s32 m_RF_A1[7]; |
| 103 | s32 m_RF_B1[7]; |
| 104 | u32 m_RF2[7]; |
| 105 | s32 m_RF_A2[7]; |
| 106 | s32 m_RF_B2[7]; |
| 107 | u32 m_RF3[7]; |
| 108 | |
| 109 | u8 m_TMValue_RFCal; /* Calibration temperatur */ |
| 110 | |
| 111 | bool m_bFMInput; /* true to use Pin 8 for FM Radio */ |
| 112 | |
| 113 | }; |
| 114 | |
| 115 | static int PowerScan(struct tda_state *state, |
| 116 | u8 RFBand, u32 RF_in, |
| 117 | u32 *pRF_Out, bool *pbcal); |
| 118 | |
| 119 | static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len) |
| 120 | { |
| 121 | struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD, |
| 122 | .buf = data, .len = len} }; |
| 123 | return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1; |
| 124 | } |
| 125 | |
| 126 | static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len) |
| 127 | { |
| 128 | struct i2c_msg msg = {.addr = adr, .flags = 0, |
| 129 | .buf = data, .len = len}; |
| 130 | |
| 131 | if (i2c_transfer(adap, &msg, 1) != 1) { |
| 132 | printk(KERN_ERR "tda18271c2dd: i2c write error at addr %i\n", adr); |
| 133 | return -1; |
| 134 | } |
| 135 | return 0; |
| 136 | } |
| 137 | |
| 138 | static int WriteRegs(struct tda_state *state, |
| 139 | u8 SubAddr, u8 *Regs, u16 nRegs) |
| 140 | { |
| 141 | u8 data[MAX_XFER_SIZE]; |
| 142 | |
| 143 | if (1 + nRegs > sizeof(data)) { |
| 144 | printk(KERN_WARNING |
| 145 | "%s: i2c wr: len=%d is too big!\n", |
| 146 | KBUILD_MODNAME, nRegs); |
| 147 | return -EINVAL; |
| 148 | } |
| 149 | |
| 150 | data[0] = SubAddr; |
| 151 | memcpy(data + 1, Regs, nRegs); |
| 152 | return i2c_write(state->i2c, state->adr, data, nRegs + 1); |
| 153 | } |
| 154 | |
| 155 | static int WriteReg(struct tda_state *state, u8 SubAddr, u8 Reg) |
| 156 | { |
| 157 | u8 msg[2] = {SubAddr, Reg}; |
| 158 | |
| 159 | return i2c_write(state->i2c, state->adr, msg, 2); |
| 160 | } |
| 161 | |
| 162 | static int Read(struct tda_state *state, u8 * Regs) |
| 163 | { |
| 164 | return i2c_readn(state->i2c, state->adr, Regs, 16); |
| 165 | } |
| 166 | |
| 167 | static int ReadExtented(struct tda_state *state, u8 * Regs) |
| 168 | { |
| 169 | return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS); |
| 170 | } |
| 171 | |
| 172 | static int UpdateRegs(struct tda_state *state, u8 RegFrom, u8 RegTo) |
| 173 | { |
| 174 | return WriteRegs(state, RegFrom, |
| 175 | &state->m_Regs[RegFrom], RegTo-RegFrom+1); |
| 176 | } |
| 177 | static int UpdateReg(struct tda_state *state, u8 Reg) |
| 178 | { |
| 179 | return WriteReg(state, Reg, state->m_Regs[Reg]); |
| 180 | } |
| 181 | |
| 182 | #include "tda18271c2dd_maps.h" |
| 183 | |
| 184 | static void reset(struct tda_state *state) |
| 185 | { |
| 186 | u32 ulIFLevelAnalog = 0; |
| 187 | u32 ulIFLevelDigital = 2; |
| 188 | u32 ulIFLevelDVBC = 7; |
| 189 | u32 ulIFLevelDVBT = 6; |
| 190 | u32 ulXTOut = 0; |
| 191 | u32 ulStandbyMode = 0x06; /* Send in stdb, but leave osc on */ |
| 192 | u32 ulSlave = 0; |
| 193 | u32 ulFMInput = 0; |
| 194 | u32 ulSettlingTime = 100; |
| 195 | |
| 196 | state->m_Frequency = 0; |
| 197 | state->m_SettlingTime = 100; |
| 198 | state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2; |
| 199 | state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2; |
| 200 | state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2; |
| 201 | state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2; |
| 202 | |
| 203 | state->m_EP4 = 0x20; |
| 204 | if (ulXTOut != 0) |
| 205 | state->m_EP4 |= 0x40; |
| 206 | |
| 207 | state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F; |
| 208 | state->m_bMaster = (ulSlave == 0); |
| 209 | |
| 210 | state->m_SettlingTime = ulSettlingTime; |
| 211 | |
| 212 | state->m_bFMInput = (ulFMInput == 2); |
| 213 | } |
| 214 | |
| 215 | static bool SearchMap1(struct SMap Map[], |
| 216 | u32 Frequency, u8 *pParam) |
| 217 | { |
| 218 | int i = 0; |
| 219 | |
| 220 | while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency)) |
| 221 | i += 1; |
| 222 | if (Map[i].m_Frequency == 0) |
| 223 | return false; |
| 224 | *pParam = Map[i].m_Param; |
| 225 | return true; |
| 226 | } |
| 227 | |
| 228 | static bool SearchMap2(struct SMapI Map[], |
| 229 | u32 Frequency, s32 *pParam) |
| 230 | { |
| 231 | int i = 0; |
| 232 | |
| 233 | while ((Map[i].m_Frequency != 0) && |
| 234 | (Frequency > Map[i].m_Frequency)) |
| 235 | i += 1; |
| 236 | if (Map[i].m_Frequency == 0) |
| 237 | return false; |
| 238 | *pParam = Map[i].m_Param; |
| 239 | return true; |
| 240 | } |
| 241 | |
| 242 | static bool SearchMap3(struct SMap2 Map[], u32 Frequency, |
| 243 | u8 *pParam1, u8 *pParam2) |
| 244 | { |
| 245 | int i = 0; |
| 246 | |
| 247 | while ((Map[i].m_Frequency != 0) && |
| 248 | (Frequency > Map[i].m_Frequency)) |
| 249 | i += 1; |
| 250 | if (Map[i].m_Frequency == 0) |
| 251 | return false; |
| 252 | *pParam1 = Map[i].m_Param1; |
| 253 | *pParam2 = Map[i].m_Param2; |
| 254 | return true; |
| 255 | } |
| 256 | |
| 257 | static bool SearchMap4(struct SRFBandMap Map[], |
| 258 | u32 Frequency, u8 *pRFBand) |
| 259 | { |
| 260 | int i = 0; |
| 261 | |
| 262 | while (i < 7 && (Frequency > Map[i].m_RF_max)) |
| 263 | i += 1; |
| 264 | if (i == 7) |
| 265 | return false; |
| 266 | *pRFBand = i; |
| 267 | return true; |
| 268 | } |
| 269 | |
| 270 | static int ThermometerRead(struct tda_state *state, u8 *pTM_Value) |
| 271 | { |
| 272 | int status = 0; |
| 273 | |
| 274 | do { |
| 275 | u8 Regs[16]; |
| 276 | state->m_Regs[TM] |= 0x10; |
| 277 | status = UpdateReg(state, TM); |
| 278 | if (status < 0) |
| 279 | break; |
| 280 | status = Read(state, Regs); |
| 281 | if (status < 0) |
| 282 | break; |
| 283 | if (((Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20) || |
| 284 | ((Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00)) { |
| 285 | state->m_Regs[TM] ^= 0x20; |
| 286 | status = UpdateReg(state, TM); |
| 287 | if (status < 0) |
| 288 | break; |
| 289 | msleep(10); |
| 290 | status = Read(state, Regs); |
| 291 | if (status < 0) |
| 292 | break; |
| 293 | } |
| 294 | *pTM_Value = (Regs[TM] & 0x20) |
| 295 | ? m_Thermometer_Map_2[Regs[TM] & 0x0F] |
| 296 | : m_Thermometer_Map_1[Regs[TM] & 0x0F] ; |
| 297 | state->m_Regs[TM] &= ~0x10; /* Thermometer off */ |
| 298 | status = UpdateReg(state, TM); |
| 299 | if (status < 0) |
| 300 | break; |
| 301 | state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 ????????? */ |
| 302 | status = UpdateReg(state, EP4); |
| 303 | if (status < 0) |
| 304 | break; |
| 305 | } while (0); |
| 306 | |
| 307 | return status; |
| 308 | } |
| 309 | |
| 310 | static int StandBy(struct tda_state *state) |
| 311 | { |
| 312 | int status = 0; |
| 313 | do { |
| 314 | state->m_Regs[EB12] &= ~0x20; /* PD_AGC1_Det = 0 */ |
| 315 | status = UpdateReg(state, EB12); |
| 316 | if (status < 0) |
| 317 | break; |
| 318 | state->m_Regs[EB18] &= ~0x83; /* AGC1_loop_off = 0, AGC1_Gain = 6 dB */ |
| 319 | status = UpdateReg(state, EB18); |
| 320 | if (status < 0) |
| 321 | break; |
| 322 | state->m_Regs[EB21] |= 0x03; /* AGC2_Gain = -6 dB */ |
| 323 | state->m_Regs[EP3] = state->m_EP3_Standby; |
| 324 | status = UpdateReg(state, EP3); |
| 325 | if (status < 0) |
| 326 | break; |
| 327 | state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LP_Fc[2] = 0 */ |
| 328 | status = UpdateRegs(state, EB21, EB23); |
| 329 | if (status < 0) |
| 330 | break; |
| 331 | } while (0); |
| 332 | return status; |
| 333 | } |
| 334 | |
| 335 | static int CalcMainPLL(struct tda_state *state, u32 freq) |
| 336 | { |
| 337 | |
| 338 | u8 PostDiv; |
| 339 | u8 Div; |
| 340 | u64 OscFreq; |
| 341 | u32 MainDiv; |
| 342 | |
| 343 | if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) |
| 344 | return -EINVAL; |
| 345 | |
| 346 | OscFreq = (u64) freq * (u64) Div; |
| 347 | OscFreq *= (u64) 16384; |
| 348 | do_div(OscFreq, (u64)16000000); |
| 349 | MainDiv = OscFreq; |
| 350 | |
| 351 | state->m_Regs[MPD] = PostDiv & 0x77; |
| 352 | state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F); |
| 353 | state->m_Regs[MD2] = ((MainDiv >> 8) & 0xFF); |
| 354 | state->m_Regs[MD3] = (MainDiv & 0xFF); |
| 355 | |
| 356 | return UpdateRegs(state, MPD, MD3); |
| 357 | } |
| 358 | |
| 359 | static int CalcCalPLL(struct tda_state *state, u32 freq) |
| 360 | { |
| 361 | u8 PostDiv; |
| 362 | u8 Div; |
| 363 | u64 OscFreq; |
| 364 | u32 CalDiv; |
| 365 | |
| 366 | if (!SearchMap3(m_Cal_PLL_Map, freq, &PostDiv, &Div)) |
| 367 | return -EINVAL; |
| 368 | |
| 369 | OscFreq = (u64)freq * (u64)Div; |
| 370 | /* CalDiv = u32( OscFreq * 16384 / 16000000 ); */ |
| 371 | OscFreq *= (u64)16384; |
| 372 | do_div(OscFreq, (u64)16000000); |
| 373 | CalDiv = OscFreq; |
| 374 | |
| 375 | state->m_Regs[CPD] = PostDiv; |
| 376 | state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF); |
| 377 | state->m_Regs[CD2] = ((CalDiv >> 8) & 0xFF); |
| 378 | state->m_Regs[CD3] = (CalDiv & 0xFF); |
| 379 | |
| 380 | return UpdateRegs(state, CPD, CD3); |
| 381 | } |
| 382 | |
| 383 | static int CalibrateRF(struct tda_state *state, |
| 384 | u8 RFBand, u32 freq, s32 *pCprog) |
| 385 | { |
| 386 | int status = 0; |
| 387 | u8 Regs[NUM_REGS]; |
| 388 | do { |
| 389 | u8 BP_Filter = 0; |
| 390 | u8 GainTaper = 0; |
| 391 | u8 RFC_K = 0; |
| 392 | u8 RFC_M = 0; |
| 393 | |
| 394 | state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 */ |
| 395 | status = UpdateReg(state, EP4); |
| 396 | if (status < 0) |
| 397 | break; |
| 398 | state->m_Regs[EB18] |= 0x03; /* AGC1_Gain = 3 */ |
| 399 | status = UpdateReg(state, EB18); |
| 400 | if (status < 0) |
| 401 | break; |
| 402 | |
| 403 | /* Switching off LT (as datasheet says) causes calibration on C1 to fail */ |
| 404 | /* (Readout of Cprog is allways 255) */ |
| 405 | if (state->m_Regs[ID] != 0x83) /* C1: ID == 83, C2: ID == 84 */ |
| 406 | state->m_Regs[EP3] |= 0x40; /* SM_LT = 1 */ |
| 407 | |
| 408 | if (!(SearchMap1(m_BP_Filter_Map, freq, &BP_Filter) && |
| 409 | SearchMap1(m_GainTaper_Map, freq, &GainTaper) && |
| 410 | SearchMap3(m_KM_Map, freq, &RFC_K, &RFC_M))) |
| 411 | return -EINVAL; |
| 412 | |
| 413 | state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter; |
| 414 | state->m_Regs[EP2] = (RFBand << 5) | GainTaper; |
| 415 | |
| 416 | state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2); |
| 417 | |
| 418 | status = UpdateRegs(state, EP1, EP3); |
| 419 | if (status < 0) |
| 420 | break; |
| 421 | status = UpdateReg(state, EB13); |
| 422 | if (status < 0) |
| 423 | break; |
| 424 | |
| 425 | state->m_Regs[EB4] |= 0x20; /* LO_ForceSrce = 1 */ |
| 426 | status = UpdateReg(state, EB4); |
| 427 | if (status < 0) |
| 428 | break; |
| 429 | |
| 430 | state->m_Regs[EB7] |= 0x20; /* CAL_ForceSrce = 1 */ |
| 431 | status = UpdateReg(state, EB7); |
| 432 | if (status < 0) |
| 433 | break; |
| 434 | |
| 435 | state->m_Regs[EB14] = 0; /* RFC_Cprog = 0 */ |
| 436 | status = UpdateReg(state, EB14); |
| 437 | if (status < 0) |
| 438 | break; |
| 439 | |
| 440 | state->m_Regs[EB20] &= ~0x20; /* ForceLock = 0; */ |
| 441 | status = UpdateReg(state, EB20); |
| 442 | if (status < 0) |
| 443 | break; |
| 444 | |
| 445 | state->m_Regs[EP4] |= 0x03; /* CAL_Mode = 3 */ |
| 446 | status = UpdateRegs(state, EP4, EP5); |
| 447 | if (status < 0) |
| 448 | break; |
| 449 | |
| 450 | status = CalcCalPLL(state, freq); |
| 451 | if (status < 0) |
| 452 | break; |
| 453 | status = CalcMainPLL(state, freq + 1000000); |
| 454 | if (status < 0) |
| 455 | break; |
| 456 | |
| 457 | msleep(5); |
| 458 | status = UpdateReg(state, EP2); |
| 459 | if (status < 0) |
| 460 | break; |
| 461 | status = UpdateReg(state, EP1); |
| 462 | if (status < 0) |
| 463 | break; |
| 464 | status = UpdateReg(state, EP2); |
| 465 | if (status < 0) |
| 466 | break; |
| 467 | status = UpdateReg(state, EP1); |
| 468 | if (status < 0) |
| 469 | break; |
| 470 | |
| 471 | state->m_Regs[EB4] &= ~0x20; /* LO_ForceSrce = 0 */ |
| 472 | status = UpdateReg(state, EB4); |
| 473 | if (status < 0) |
| 474 | break; |
| 475 | |
| 476 | state->m_Regs[EB7] &= ~0x20; /* CAL_ForceSrce = 0 */ |
| 477 | status = UpdateReg(state, EB7); |
| 478 | if (status < 0) |
| 479 | break; |
| 480 | msleep(10); |
| 481 | |
| 482 | state->m_Regs[EB20] |= 0x20; /* ForceLock = 1; */ |
| 483 | status = UpdateReg(state, EB20); |
| 484 | if (status < 0) |
| 485 | break; |
| 486 | msleep(60); |
| 487 | |
| 488 | state->m_Regs[EP4] &= ~0x03; /* CAL_Mode = 0 */ |
| 489 | state->m_Regs[EP3] &= ~0x40; /* SM_LT = 0 */ |
| 490 | state->m_Regs[EB18] &= ~0x03; /* AGC1_Gain = 0 */ |
| 491 | status = UpdateReg(state, EB18); |
| 492 | if (status < 0) |
| 493 | break; |
| 494 | status = UpdateRegs(state, EP3, EP4); |
| 495 | if (status < 0) |
| 496 | break; |
| 497 | status = UpdateReg(state, EP1); |
| 498 | if (status < 0) |
| 499 | break; |
| 500 | |
| 501 | status = ReadExtented(state, Regs); |
| 502 | if (status < 0) |
| 503 | break; |
| 504 | |
| 505 | *pCprog = Regs[EB14]; |
| 506 | |
| 507 | } while (0); |
| 508 | return status; |
| 509 | } |
| 510 | |
| 511 | static int RFTrackingFiltersInit(struct tda_state *state, |
| 512 | u8 RFBand) |
| 513 | { |
| 514 | int status = 0; |
| 515 | |
| 516 | u32 RF1 = m_RF_Band_Map[RFBand].m_RF1_Default; |
| 517 | u32 RF2 = m_RF_Band_Map[RFBand].m_RF2_Default; |
| 518 | u32 RF3 = m_RF_Band_Map[RFBand].m_RF3_Default; |
| 519 | bool bcal = false; |
| 520 | |
| 521 | s32 Cprog_cal1 = 0; |
| 522 | s32 Cprog_table1 = 0; |
| 523 | s32 Cprog_cal2 = 0; |
| 524 | s32 Cprog_table2 = 0; |
| 525 | s32 Cprog_cal3 = 0; |
| 526 | s32 Cprog_table3 = 0; |
| 527 | |
| 528 | state->m_RF_A1[RFBand] = 0; |
| 529 | state->m_RF_B1[RFBand] = 0; |
| 530 | state->m_RF_A2[RFBand] = 0; |
| 531 | state->m_RF_B2[RFBand] = 0; |
| 532 | |
| 533 | do { |
| 534 | status = PowerScan(state, RFBand, RF1, &RF1, &bcal); |
| 535 | if (status < 0) |
| 536 | break; |
| 537 | if (bcal) { |
| 538 | status = CalibrateRF(state, RFBand, RF1, &Cprog_cal1); |
| 539 | if (status < 0) |
| 540 | break; |
| 541 | } |
| 542 | SearchMap2(m_RF_Cal_Map, RF1, &Cprog_table1); |
| 543 | if (!bcal) |
| 544 | Cprog_cal1 = Cprog_table1; |
| 545 | state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1; |
| 546 | /* state->m_RF_A1[RF_Band] = ???? */ |
| 547 | |
| 548 | if (RF2 == 0) |
| 549 | break; |
| 550 | |
| 551 | status = PowerScan(state, RFBand, RF2, &RF2, &bcal); |
| 552 | if (status < 0) |
| 553 | break; |
| 554 | if (bcal) { |
| 555 | status = CalibrateRF(state, RFBand, RF2, &Cprog_cal2); |
| 556 | if (status < 0) |
| 557 | break; |
| 558 | } |
| 559 | SearchMap2(m_RF_Cal_Map, RF2, &Cprog_table2); |
| 560 | if (!bcal) |
| 561 | Cprog_cal2 = Cprog_table2; |
| 562 | |
| 563 | state->m_RF_A1[RFBand] = |
| 564 | (Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) / |
| 565 | ((s32)(RF2) - (s32)(RF1)); |
| 566 | |
| 567 | if (RF3 == 0) |
| 568 | break; |
| 569 | |
| 570 | status = PowerScan(state, RFBand, RF3, &RF3, &bcal); |
| 571 | if (status < 0) |
| 572 | break; |
| 573 | if (bcal) { |
| 574 | status = CalibrateRF(state, RFBand, RF3, &Cprog_cal3); |
| 575 | if (status < 0) |
| 576 | break; |
| 577 | } |
| 578 | SearchMap2(m_RF_Cal_Map, RF3, &Cprog_table3); |
| 579 | if (!bcal) |
| 580 | Cprog_cal3 = Cprog_table3; |
| 581 | state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3) - (s32)(RF2)); |
| 582 | state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2; |
| 583 | |
| 584 | } while (0); |
| 585 | |
| 586 | state->m_RF1[RFBand] = RF1; |
| 587 | state->m_RF2[RFBand] = RF2; |
| 588 | state->m_RF3[RFBand] = RF3; |
| 589 | |
| 590 | #if 0 |
| 591 | printk(KERN_ERR "tda18271c2dd: %s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __func__, |
| 592 | RFBand, RF1, state->m_RF_A1[RFBand], state->m_RF_B1[RFBand], RF2, |
| 593 | state->m_RF_A2[RFBand], state->m_RF_B2[RFBand], RF3); |
| 594 | #endif |
| 595 | |
| 596 | return status; |
| 597 | } |
| 598 | |
| 599 | static int PowerScan(struct tda_state *state, |
| 600 | u8 RFBand, u32 RF_in, u32 *pRF_Out, bool *pbcal) |
| 601 | { |
| 602 | int status = 0; |
| 603 | do { |
| 604 | u8 Gain_Taper = 0; |
| 605 | s32 RFC_Cprog = 0; |
| 606 | u8 CID_Target = 0; |
| 607 | u8 CountLimit = 0; |
| 608 | u32 freq_MainPLL; |
| 609 | u8 Regs[NUM_REGS]; |
| 610 | u8 CID_Gain; |
| 611 | s32 Count = 0; |
| 612 | int sign = 1; |
| 613 | bool wait = false; |
| 614 | |
| 615 | if (!(SearchMap2(m_RF_Cal_Map, RF_in, &RFC_Cprog) && |
| 616 | SearchMap1(m_GainTaper_Map, RF_in, &Gain_Taper) && |
| 617 | SearchMap3(m_CID_Target_Map, RF_in, &CID_Target, &CountLimit))) { |
| 618 | |
| 619 | printk(KERN_ERR "tda18271c2dd: %s Search map failed\n", __func__); |
| 620 | return -EINVAL; |
| 621 | } |
| 622 | |
| 623 | state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper; |
| 624 | state->m_Regs[EB14] = (RFC_Cprog); |
| 625 | status = UpdateReg(state, EP2); |
| 626 | if (status < 0) |
| 627 | break; |
| 628 | status = UpdateReg(state, EB14); |
| 629 | if (status < 0) |
| 630 | break; |
| 631 | |
| 632 | freq_MainPLL = RF_in + 1000000; |
| 633 | status = CalcMainPLL(state, freq_MainPLL); |
| 634 | if (status < 0) |
| 635 | break; |
| 636 | msleep(5); |
| 637 | state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1; /* CAL_mode = 1 */ |
| 638 | status = UpdateReg(state, EP4); |
| 639 | if (status < 0) |
| 640 | break; |
| 641 | status = UpdateReg(state, EP2); /* Launch power measurement */ |
| 642 | if (status < 0) |
| 643 | break; |
| 644 | status = ReadExtented(state, Regs); |
| 645 | if (status < 0) |
| 646 | break; |
| 647 | CID_Gain = Regs[EB10] & 0x3F; |
| 648 | state->m_Regs[ID] = Regs[ID]; /* Chip version, (needed for C1 workarround in CalibrateRF) */ |
| 649 | |
| 650 | *pRF_Out = RF_in; |
| 651 | |
| 652 | while (CID_Gain < CID_Target) { |
| 653 | freq_MainPLL = RF_in + sign * Count + 1000000; |
| 654 | status = CalcMainPLL(state, freq_MainPLL); |
| 655 | if (status < 0) |
| 656 | break; |
| 657 | msleep(wait ? 5 : 1); |
| 658 | wait = false; |
| 659 | status = UpdateReg(state, EP2); /* Launch power measurement */ |
| 660 | if (status < 0) |
| 661 | break; |
| 662 | status = ReadExtented(state, Regs); |
| 663 | if (status < 0) |
| 664 | break; |
| 665 | CID_Gain = Regs[EB10] & 0x3F; |
| 666 | Count += 200000; |
| 667 | |
| 668 | if (Count < CountLimit * 100000) |
| 669 | continue; |
| 670 | if (sign < 0) |
| 671 | break; |
| 672 | |
| 673 | sign = -sign; |
| 674 | Count = 200000; |
| 675 | wait = true; |
| 676 | } |
| 677 | status = status; |
| 678 | if (status < 0) |
| 679 | break; |
| 680 | if (CID_Gain >= CID_Target) { |
| 681 | *pbcal = true; |
| 682 | *pRF_Out = freq_MainPLL - 1000000; |
| 683 | } else |
| 684 | *pbcal = false; |
| 685 | } while (0); |
| 686 | |
| 687 | return status; |
| 688 | } |
| 689 | |
| 690 | static int PowerScanInit(struct tda_state *state) |
| 691 | { |
| 692 | int status = 0; |
| 693 | do { |
| 694 | state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12; |
| 695 | state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); /* If level = 0, Cal mode = 0 */ |
| 696 | status = UpdateRegs(state, EP3, EP4); |
| 697 | if (status < 0) |
| 698 | break; |
| 699 | state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03); /* AGC 1 Gain = 0 */ |
| 700 | status = UpdateReg(state, EB18); |
| 701 | if (status < 0) |
| 702 | break; |
| 703 | state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03); /* AGC 2 Gain = 0 (Datasheet = 3) */ |
| 704 | state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06); /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ |
| 705 | status = UpdateRegs(state, EB21, EB23); |
| 706 | if (status < 0) |
| 707 | break; |
| 708 | } while (0); |
| 709 | return status; |
| 710 | } |
| 711 | |
| 712 | static int CalcRFFilterCurve(struct tda_state *state) |
| 713 | { |
| 714 | int status = 0; |
| 715 | do { |
| 716 | msleep(200); /* Temperature stabilisation */ |
| 717 | status = PowerScanInit(state); |
| 718 | if (status < 0) |
| 719 | break; |
| 720 | status = RFTrackingFiltersInit(state, 0); |
| 721 | if (status < 0) |
| 722 | break; |
| 723 | status = RFTrackingFiltersInit(state, 1); |
| 724 | if (status < 0) |
| 725 | break; |
| 726 | status = RFTrackingFiltersInit(state, 2); |
| 727 | if (status < 0) |
| 728 | break; |
| 729 | status = RFTrackingFiltersInit(state, 3); |
| 730 | if (status < 0) |
| 731 | break; |
| 732 | status = RFTrackingFiltersInit(state, 4); |
| 733 | if (status < 0) |
| 734 | break; |
| 735 | status = RFTrackingFiltersInit(state, 5); |
| 736 | if (status < 0) |
| 737 | break; |
| 738 | status = RFTrackingFiltersInit(state, 6); |
| 739 | if (status < 0) |
| 740 | break; |
| 741 | status = ThermometerRead(state, &state->m_TMValue_RFCal); /* also switches off Cal mode !!! */ |
| 742 | if (status < 0) |
| 743 | break; |
| 744 | } while (0); |
| 745 | |
| 746 | return status; |
| 747 | } |
| 748 | |
| 749 | static int FixedContentsI2CUpdate(struct tda_state *state) |
| 750 | { |
| 751 | static u8 InitRegs[] = { |
| 752 | 0x08, 0x80, 0xC6, |
| 753 | 0xDF, 0x16, 0x60, 0x80, |
| 754 | 0x80, 0x00, 0x00, 0x00, |
| 755 | 0x00, 0x00, 0x00, 0x00, |
| 756 | 0xFC, 0x01, 0x84, 0x41, |
| 757 | 0x01, 0x84, 0x40, 0x07, |
| 758 | 0x00, 0x00, 0x96, 0x3F, |
| 759 | 0xC1, 0x00, 0x8F, 0x00, |
| 760 | 0x00, 0x8C, 0x00, 0x20, |
| 761 | 0xB3, 0x48, 0xB0, |
| 762 | }; |
| 763 | int status = 0; |
| 764 | memcpy(&state->m_Regs[TM], InitRegs, EB23 - TM + 1); |
| 765 | do { |
| 766 | status = UpdateRegs(state, TM, EB23); |
| 767 | if (status < 0) |
| 768 | break; |
| 769 | |
| 770 | /* AGC1 gain setup */ |
| 771 | state->m_Regs[EB17] = 0x00; |
| 772 | status = UpdateReg(state, EB17); |
| 773 | if (status < 0) |
| 774 | break; |
| 775 | state->m_Regs[EB17] = 0x03; |
| 776 | status = UpdateReg(state, EB17); |
| 777 | if (status < 0) |
| 778 | break; |
| 779 | state->m_Regs[EB17] = 0x43; |
| 780 | status = UpdateReg(state, EB17); |
| 781 | if (status < 0) |
| 782 | break; |
| 783 | state->m_Regs[EB17] = 0x4C; |
| 784 | status = UpdateReg(state, EB17); |
| 785 | if (status < 0) |
| 786 | break; |
| 787 | |
| 788 | /* IRC Cal Low band */ |
| 789 | state->m_Regs[EP3] = 0x1F; |
| 790 | state->m_Regs[EP4] = 0x66; |
| 791 | state->m_Regs[EP5] = 0x81; |
| 792 | state->m_Regs[CPD] = 0xCC; |
| 793 | state->m_Regs[CD1] = 0x6C; |
| 794 | state->m_Regs[CD2] = 0x00; |
| 795 | state->m_Regs[CD3] = 0x00; |
| 796 | state->m_Regs[MPD] = 0xC5; |
| 797 | state->m_Regs[MD1] = 0x77; |
| 798 | state->m_Regs[MD2] = 0x08; |
| 799 | state->m_Regs[MD3] = 0x00; |
| 800 | status = UpdateRegs(state, EP2, MD3); /* diff between sw and datasheet (ep3-md3) */ |
| 801 | if (status < 0) |
| 802 | break; |
| 803 | |
| 804 | #if 0 |
| 805 | state->m_Regs[EB4] = 0x61; /* missing in sw */ |
| 806 | status = UpdateReg(state, EB4); |
| 807 | if (status < 0) |
| 808 | break; |
| 809 | msleep(1); |
| 810 | state->m_Regs[EB4] = 0x41; |
| 811 | status = UpdateReg(state, EB4); |
| 812 | if (status < 0) |
| 813 | break; |
| 814 | #endif |
| 815 | |
| 816 | msleep(5); |
| 817 | status = UpdateReg(state, EP1); |
| 818 | if (status < 0) |
| 819 | break; |
| 820 | msleep(5); |
| 821 | |
| 822 | state->m_Regs[EP5] = 0x85; |
| 823 | state->m_Regs[CPD] = 0xCB; |
| 824 | state->m_Regs[CD1] = 0x66; |
| 825 | state->m_Regs[CD2] = 0x70; |
| 826 | status = UpdateRegs(state, EP3, CD3); |
| 827 | if (status < 0) |
| 828 | break; |
| 829 | msleep(5); |
| 830 | status = UpdateReg(state, EP2); |
| 831 | if (status < 0) |
| 832 | break; |
| 833 | msleep(30); |
| 834 | |
| 835 | /* IRC Cal mid band */ |
| 836 | state->m_Regs[EP5] = 0x82; |
| 837 | state->m_Regs[CPD] = 0xA8; |
| 838 | state->m_Regs[CD2] = 0x00; |
| 839 | state->m_Regs[MPD] = 0xA1; /* Datasheet = 0xA9 */ |
| 840 | state->m_Regs[MD1] = 0x73; |
| 841 | state->m_Regs[MD2] = 0x1A; |
| 842 | status = UpdateRegs(state, EP3, MD3); |
| 843 | if (status < 0) |
| 844 | break; |
| 845 | |
| 846 | msleep(5); |
| 847 | status = UpdateReg(state, EP1); |
| 848 | if (status < 0) |
| 849 | break; |
| 850 | msleep(5); |
| 851 | |
| 852 | state->m_Regs[EP5] = 0x86; |
| 853 | state->m_Regs[CPD] = 0xA8; |
| 854 | state->m_Regs[CD1] = 0x66; |
| 855 | state->m_Regs[CD2] = 0xA0; |
| 856 | status = UpdateRegs(state, EP3, CD3); |
| 857 | if (status < 0) |
| 858 | break; |
| 859 | msleep(5); |
| 860 | status = UpdateReg(state, EP2); |
| 861 | if (status < 0) |
| 862 | break; |
| 863 | msleep(30); |
| 864 | |
| 865 | /* IRC Cal high band */ |
| 866 | state->m_Regs[EP5] = 0x83; |
| 867 | state->m_Regs[CPD] = 0x98; |
| 868 | state->m_Regs[CD1] = 0x65; |
| 869 | state->m_Regs[CD2] = 0x00; |
| 870 | state->m_Regs[MPD] = 0x91; /* Datasheet = 0x91 */ |
| 871 | state->m_Regs[MD1] = 0x71; |
| 872 | state->m_Regs[MD2] = 0xCD; |
| 873 | status = UpdateRegs(state, EP3, MD3); |
| 874 | if (status < 0) |
| 875 | break; |
| 876 | msleep(5); |
| 877 | status = UpdateReg(state, EP1); |
| 878 | if (status < 0) |
| 879 | break; |
| 880 | msleep(5); |
| 881 | state->m_Regs[EP5] = 0x87; |
| 882 | state->m_Regs[CD1] = 0x65; |
| 883 | state->m_Regs[CD2] = 0x50; |
| 884 | status = UpdateRegs(state, EP3, CD3); |
| 885 | if (status < 0) |
| 886 | break; |
| 887 | msleep(5); |
| 888 | status = UpdateReg(state, EP2); |
| 889 | if (status < 0) |
| 890 | break; |
| 891 | msleep(30); |
| 892 | |
| 893 | /* Back to normal */ |
| 894 | state->m_Regs[EP4] = 0x64; |
| 895 | status = UpdateReg(state, EP4); |
| 896 | if (status < 0) |
| 897 | break; |
| 898 | status = UpdateReg(state, EP1); |
| 899 | if (status < 0) |
| 900 | break; |
| 901 | |
| 902 | } while (0); |
| 903 | return status; |
| 904 | } |
| 905 | |
| 906 | static int InitCal(struct tda_state *state) |
| 907 | { |
| 908 | int status = 0; |
| 909 | |
| 910 | do { |
| 911 | status = FixedContentsI2CUpdate(state); |
| 912 | if (status < 0) |
| 913 | break; |
| 914 | status = CalcRFFilterCurve(state); |
| 915 | if (status < 0) |
| 916 | break; |
| 917 | status = StandBy(state); |
| 918 | if (status < 0) |
| 919 | break; |
| 920 | /* m_bInitDone = true; */ |
| 921 | } while (0); |
| 922 | return status; |
| 923 | }; |
| 924 | |
| 925 | static int RFTrackingFiltersCorrection(struct tda_state *state, |
| 926 | u32 Frequency) |
| 927 | { |
| 928 | int status = 0; |
| 929 | s32 Cprog_table; |
| 930 | u8 RFBand; |
| 931 | u8 dCoverdT; |
| 932 | |
| 933 | if (!SearchMap2(m_RF_Cal_Map, Frequency, &Cprog_table) || |
| 934 | !SearchMap4(m_RF_Band_Map, Frequency, &RFBand) || |
| 935 | !SearchMap1(m_RF_Cal_DC_Over_DT_Map, Frequency, &dCoverdT)) |
| 936 | |
| 937 | return -EINVAL; |
| 938 | |
| 939 | do { |
| 940 | u8 TMValue_Current; |
| 941 | u32 RF1 = state->m_RF1[RFBand]; |
| 942 | u32 RF2 = state->m_RF1[RFBand]; |
| 943 | u32 RF3 = state->m_RF1[RFBand]; |
| 944 | s32 RF_A1 = state->m_RF_A1[RFBand]; |
| 945 | s32 RF_B1 = state->m_RF_B1[RFBand]; |
| 946 | s32 RF_A2 = state->m_RF_A2[RFBand]; |
| 947 | s32 RF_B2 = state->m_RF_B2[RFBand]; |
| 948 | s32 Capprox = 0; |
| 949 | int TComp; |
| 950 | |
| 951 | state->m_Regs[EP3] &= ~0xE0; /* Power up */ |
| 952 | status = UpdateReg(state, EP3); |
| 953 | if (status < 0) |
| 954 | break; |
| 955 | |
| 956 | status = ThermometerRead(state, &TMValue_Current); |
| 957 | if (status < 0) |
| 958 | break; |
| 959 | |
| 960 | if (RF3 == 0 || Frequency < RF2) |
| 961 | Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table; |
| 962 | else |
| 963 | Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table; |
| 964 | |
| 965 | TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000; |
| 966 | |
| 967 | Capprox += TComp; |
| 968 | |
| 969 | if (Capprox < 0) |
| 970 | Capprox = 0; |
| 971 | else if (Capprox > 255) |
| 972 | Capprox = 255; |
| 973 | |
| 974 | |
| 975 | /* TODO Temperature compensation. There is defenitely a scale factor */ |
| 976 | /* missing in the datasheet, so leave it out for now. */ |
| 977 | state->m_Regs[EB14] = Capprox; |
| 978 | |
| 979 | status = UpdateReg(state, EB14); |
| 980 | if (status < 0) |
| 981 | break; |
| 982 | |
| 983 | } while (0); |
| 984 | return status; |
| 985 | } |
| 986 | |
| 987 | static int ChannelConfiguration(struct tda_state *state, |
| 988 | u32 Frequency, int Standard) |
| 989 | { |
| 990 | |
| 991 | s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency; |
| 992 | int status = 0; |
| 993 | |
| 994 | u8 BP_Filter = 0; |
| 995 | u8 RF_Band = 0; |
| 996 | u8 GainTaper = 0; |
| 997 | u8 IR_Meas = 0; |
| 998 | |
| 999 | state->IF = IntermediateFrequency; |
| 1000 | /* printk("tda18271c2dd: %s Freq = %d Standard = %d IF = %d\n", __func__, Frequency, Standard, IntermediateFrequency); */ |
| 1001 | /* get values from tables */ |
| 1002 | |
| 1003 | if (!(SearchMap1(m_BP_Filter_Map, Frequency, &BP_Filter) && |
| 1004 | SearchMap1(m_GainTaper_Map, Frequency, &GainTaper) && |
| 1005 | SearchMap1(m_IR_Meas_Map, Frequency, &IR_Meas) && |
| 1006 | SearchMap4(m_RF_Band_Map, Frequency, &RF_Band))) { |
| 1007 | |
| 1008 | printk(KERN_ERR "tda18271c2dd: %s SearchMap failed\n", __func__); |
| 1009 | return -EINVAL; |
| 1010 | } |
| 1011 | |
| 1012 | do { |
| 1013 | state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0; |
| 1014 | state->m_Regs[EP3] &= ~0x04; /* switch RFAGC to high speed mode */ |
| 1015 | |
| 1016 | /* m_EP4 default for XToutOn, CAL_Mode (0) */ |
| 1017 | state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax) ? state->m_IFLevelDigital : state->m_IFLevelAnalog); |
| 1018 | /* state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; */ |
| 1019 | if (Standard <= HF_AnalogMax) |
| 1020 | state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog; |
| 1021 | else if (Standard <= HF_ATSC) |
| 1022 | state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT; |
| 1023 | else if (Standard <= HF_DVBC) |
| 1024 | state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC; |
| 1025 | else |
| 1026 | state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; |
| 1027 | |
| 1028 | if ((Standard == HF_FM_Radio) && state->m_bFMInput) |
| 1029 | state->m_Regs[EP4] |= 0x80; |
| 1030 | |
| 1031 | state->m_Regs[MPD] &= ~0x80; |
| 1032 | if (Standard > HF_AnalogMax) |
| 1033 | state->m_Regs[MPD] |= 0x80; /* Add IF_notch for digital */ |
| 1034 | |
| 1035 | state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22; |
| 1036 | |
| 1037 | /* Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM ) */ |
| 1038 | if (Standard == HF_FM_Radio) |
| 1039 | state->m_Regs[EB23] |= 0x06; /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ |
| 1040 | else |
| 1041 | state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LPFc[2] = 0 */ |
| 1042 | |
| 1043 | status = UpdateRegs(state, EB22, EB23); |
| 1044 | if (status < 0) |
| 1045 | break; |
| 1046 | |
| 1047 | state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter; /* Dis_Power_level = 1, Filter */ |
| 1048 | state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas; |
| 1049 | state->m_Regs[EP2] = (RF_Band << 5) | GainTaper; |
| 1050 | |
| 1051 | state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) | |
| 1052 | (state->m_bMaster ? 0x04 : 0x00); /* CALVCO_FortLOn = MS */ |
| 1053 | /* AGC1_always_master = 0 */ |
| 1054 | /* AGC_firstn = 0 */ |
| 1055 | status = UpdateReg(state, EB1); |
| 1056 | if (status < 0) |
| 1057 | break; |
| 1058 | |
| 1059 | if (state->m_bMaster) { |
| 1060 | status = CalcMainPLL(state, Frequency + IntermediateFrequency); |
| 1061 | if (status < 0) |
| 1062 | break; |
| 1063 | status = UpdateRegs(state, TM, EP5); |
| 1064 | if (status < 0) |
| 1065 | break; |
| 1066 | state->m_Regs[EB4] |= 0x20; /* LO_forceSrce = 1 */ |
| 1067 | status = UpdateReg(state, EB4); |
| 1068 | if (status < 0) |
| 1069 | break; |
| 1070 | msleep(1); |
| 1071 | state->m_Regs[EB4] &= ~0x20; /* LO_forceSrce = 0 */ |
| 1072 | status = UpdateReg(state, EB4); |
| 1073 | if (status < 0) |
| 1074 | break; |
| 1075 | } else { |
| 1076 | u8 PostDiv = 0; |
| 1077 | u8 Div; |
| 1078 | status = CalcCalPLL(state, Frequency + IntermediateFrequency); |
| 1079 | if (status < 0) |
| 1080 | break; |
| 1081 | |
| 1082 | SearchMap3(m_Cal_PLL_Map, Frequency + IntermediateFrequency, &PostDiv, &Div); |
| 1083 | state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77); |
| 1084 | status = UpdateReg(state, MPD); |
| 1085 | if (status < 0) |
| 1086 | break; |
| 1087 | status = UpdateRegs(state, TM, EP5); |
| 1088 | if (status < 0) |
| 1089 | break; |
| 1090 | |
| 1091 | state->m_Regs[EB7] |= 0x20; /* CAL_forceSrce = 1 */ |
| 1092 | status = UpdateReg(state, EB7); |
| 1093 | if (status < 0) |
| 1094 | break; |
| 1095 | msleep(1); |
| 1096 | state->m_Regs[EB7] &= ~0x20; /* CAL_forceSrce = 0 */ |
| 1097 | status = UpdateReg(state, EB7); |
| 1098 | if (status < 0) |
| 1099 | break; |
| 1100 | } |
| 1101 | msleep(20); |
| 1102 | if (Standard != HF_FM_Radio) |
| 1103 | state->m_Regs[EP3] |= 0x04; /* RFAGC to normal mode */ |
| 1104 | status = UpdateReg(state, EP3); |
| 1105 | if (status < 0) |
| 1106 | break; |
| 1107 | |
| 1108 | } while (0); |
| 1109 | return status; |
| 1110 | } |
| 1111 | |
| 1112 | static int sleep(struct dvb_frontend *fe) |
| 1113 | { |
| 1114 | struct tda_state *state = fe->tuner_priv; |
| 1115 | |
| 1116 | StandBy(state); |
| 1117 | return 0; |
| 1118 | } |
| 1119 | |
| 1120 | static int init(struct dvb_frontend *fe) |
| 1121 | { |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
| 1125 | static void release(struct dvb_frontend *fe) |
| 1126 | { |
| 1127 | kfree(fe->tuner_priv); |
| 1128 | fe->tuner_priv = NULL; |
| 1129 | } |
| 1130 | |
| 1131 | |
| 1132 | static int set_params(struct dvb_frontend *fe) |
| 1133 | { |
| 1134 | struct tda_state *state = fe->tuner_priv; |
| 1135 | int status = 0; |
| 1136 | int Standard; |
| 1137 | u32 bw = fe->dtv_property_cache.bandwidth_hz; |
| 1138 | u32 delsys = fe->dtv_property_cache.delivery_system; |
| 1139 | |
| 1140 | state->m_Frequency = fe->dtv_property_cache.frequency; |
| 1141 | |
| 1142 | switch (delsys) { |
| 1143 | case SYS_DVBT: |
| 1144 | case SYS_DVBT2: |
| 1145 | switch (bw) { |
| 1146 | case 6000000: |
| 1147 | Standard = HF_DVBT_6MHZ; |
| 1148 | break; |
| 1149 | case 7000000: |
| 1150 | Standard = HF_DVBT_7MHZ; |
| 1151 | break; |
| 1152 | case 8000000: |
| 1153 | Standard = HF_DVBT_8MHZ; |
| 1154 | break; |
| 1155 | default: |
| 1156 | return -EINVAL; |
| 1157 | } |
| 1158 | case SYS_DVBC_ANNEX_A: |
| 1159 | case SYS_DVBC_ANNEX_C: |
| 1160 | if (bw <= 6000000) |
| 1161 | Standard = HF_DVBC_6MHZ; |
| 1162 | else if (bw <= 7000000) |
| 1163 | Standard = HF_DVBC_7MHZ; |
| 1164 | else |
| 1165 | Standard = HF_DVBC_8MHZ; |
| 1166 | break; |
| 1167 | default: |
| 1168 | return -EINVAL; |
| 1169 | } |
| 1170 | do { |
| 1171 | status = RFTrackingFiltersCorrection(state, state->m_Frequency); |
| 1172 | if (status < 0) |
| 1173 | break; |
| 1174 | status = ChannelConfiguration(state, state->m_Frequency, |
| 1175 | Standard); |
| 1176 | if (status < 0) |
| 1177 | break; |
| 1178 | |
| 1179 | msleep(state->m_SettlingTime); /* Allow AGC's to settle down */ |
| 1180 | } while (0); |
| 1181 | return status; |
| 1182 | } |
| 1183 | |
| 1184 | #if 0 |
| 1185 | static int GetSignalStrength(s32 *pSignalStrength, u32 RFAgc, u32 IFAgc) |
| 1186 | { |
| 1187 | if (IFAgc < 500) { |
| 1188 | /* Scale this from 0 to 50000 */ |
| 1189 | *pSignalStrength = IFAgc * 100; |
| 1190 | } else { |
| 1191 | /* Scale range 500-1500 to 50000-80000 */ |
| 1192 | *pSignalStrength = 50000 + (IFAgc - 500) * 30; |
| 1193 | } |
| 1194 | |
| 1195 | return 0; |
| 1196 | } |
| 1197 | #endif |
| 1198 | |
| 1199 | static int get_if_frequency(struct dvb_frontend *fe, u32 *frequency) |
| 1200 | { |
| 1201 | struct tda_state *state = fe->tuner_priv; |
| 1202 | |
| 1203 | *frequency = state->IF; |
| 1204 | return 0; |
| 1205 | } |
| 1206 | |
| 1207 | static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) |
| 1208 | { |
| 1209 | /* struct tda_state *state = fe->tuner_priv; */ |
| 1210 | /* *bandwidth = priv->bandwidth; */ |
| 1211 | return 0; |
| 1212 | } |
| 1213 | |
| 1214 | |
| 1215 | static const struct dvb_tuner_ops tuner_ops = { |
| 1216 | .info = { |
| 1217 | .name = "NXP TDA18271C2D", |
| 1218 | .frequency_min = 47125000, |
| 1219 | .frequency_max = 865000000, |
| 1220 | .frequency_step = 62500 |
| 1221 | }, |
| 1222 | .init = init, |
| 1223 | .sleep = sleep, |
| 1224 | .set_params = set_params, |
| 1225 | .release = release, |
| 1226 | .get_if_frequency = get_if_frequency, |
| 1227 | .get_bandwidth = get_bandwidth, |
| 1228 | }; |
| 1229 | |
| 1230 | struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe, |
| 1231 | struct i2c_adapter *i2c, u8 adr) |
| 1232 | { |
| 1233 | struct tda_state *state; |
| 1234 | |
| 1235 | state = kzalloc(sizeof(struct tda_state), GFP_KERNEL); |
| 1236 | if (!state) |
| 1237 | return NULL; |
| 1238 | |
| 1239 | fe->tuner_priv = state; |
| 1240 | state->adr = adr; |
| 1241 | state->i2c = i2c; |
| 1242 | memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops)); |
| 1243 | reset(state); |
| 1244 | InitCal(state); |
| 1245 | |
| 1246 | return fe; |
| 1247 | } |
| 1248 | EXPORT_SYMBOL_GPL(tda18271c2dd_attach); |
| 1249 | |
| 1250 | MODULE_DESCRIPTION("TDA18271C2 driver"); |
| 1251 | MODULE_AUTHOR("DD"); |
| 1252 | MODULE_LICENSE("GPL"); |