blob: 10dcf4ff99a54fa1f5098febd6196a17d4b89a78 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17#include <linux/pci.h>
18
19#include <linux/kthread.h>
20#include <linux/interrupt.h>
21#include <linux/pm_runtime.h>
22
23#include "mei_dev.h"
24#include "hbm.h"
25
26#include "hw-me.h"
27#include "hw-me-regs.h"
28
29#include "mei-trace.h"
30
31/**
32 * mei_me_reg_read - Reads 32bit data from the mei device
33 *
34 * @hw: the me hardware structure
35 * @offset: offset from which to read the data
36 *
37 * Return: register value (u32)
38 */
39static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
40 unsigned long offset)
41{
42 return ioread32(hw->mem_addr + offset);
43}
44
45
46/**
47 * mei_me_reg_write - Writes 32bit data to the mei device
48 *
49 * @hw: the me hardware structure
50 * @offset: offset from which to write the data
51 * @value: register value to write (u32)
52 */
53static inline void mei_me_reg_write(const struct mei_me_hw *hw,
54 unsigned long offset, u32 value)
55{
56 iowrite32(value, hw->mem_addr + offset);
57}
58
59/**
60 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
61 * read window register
62 *
63 * @dev: the device structure
64 *
65 * Return: ME_CB_RW register value (u32)
66 */
67static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
68{
69 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
70}
71
72/**
73 * mei_me_hcbww_write - write 32bit data to the host circular buffer
74 *
75 * @dev: the device structure
76 * @data: 32bit data to be written to the host circular buffer
77 */
78static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
79{
80 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
81}
82
83/**
84 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
85 *
86 * @dev: the device structure
87 *
88 * Return: ME_CSR_HA register value (u32)
89 */
90static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
91{
92 u32 reg;
93
94 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
95 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
96
97 return reg;
98}
99
100/**
101 * mei_hcsr_read - Reads 32bit data from the host CSR
102 *
103 * @dev: the device structure
104 *
105 * Return: H_CSR register value (u32)
106 */
107static inline u32 mei_hcsr_read(const struct mei_device *dev)
108{
109 u32 reg;
110
111 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
112 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
113
114 return reg;
115}
116
117/**
118 * mei_hcsr_write - writes H_CSR register to the mei device
119 *
120 * @dev: the device structure
121 * @reg: new register value
122 */
123static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
124{
125 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
126 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
127}
128
129/**
130 * mei_hcsr_set - writes H_CSR register to the mei device,
131 * and ignores the H_IS bit for it is write-one-to-zero.
132 *
133 * @dev: the device structure
134 * @reg: new register value
135 */
136static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
137{
138 reg &= ~H_CSR_IS_MASK;
139 mei_hcsr_write(dev, reg);
140}
141
142/**
143 * mei_hcsr_set_hig - set host interrupt (set H_IG)
144 *
145 * @dev: the device structure
146 */
147static inline void mei_hcsr_set_hig(struct mei_device *dev)
148{
149 u32 hcsr;
150
151 hcsr = mei_hcsr_read(dev) | H_IG;
152 mei_hcsr_set(dev, hcsr);
153}
154
155/**
156 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
157 *
158 * @dev: the device structure
159 *
160 * Return: H_D0I3C register value (u32)
161 */
162static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
163{
164 u32 reg;
165
166 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
167 trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
168
169 return reg;
170}
171
172/**
173 * mei_me_d0i3c_write - writes H_D0I3C register to device
174 *
175 * @dev: the device structure
176 * @reg: new register value
177 */
178static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
179{
180 trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
181 mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
182}
183
184/**
185 * mei_me_fw_status - read fw status register from pci config space
186 *
187 * @dev: mei device
188 * @fw_status: fw status register values
189 *
190 * Return: 0 on success, error otherwise
191 */
192static int mei_me_fw_status(struct mei_device *dev,
193 struct mei_fw_status *fw_status)
194{
195 struct pci_dev *pdev = to_pci_dev(dev->dev);
196 struct mei_me_hw *hw = to_me_hw(dev);
197 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
198 int ret;
199 int i;
200
201 if (!fw_status)
202 return -EINVAL;
203
204 fw_status->count = fw_src->count;
205 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
206 ret = pci_read_config_dword(pdev, fw_src->status[i],
207 &fw_status->status[i]);
208 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
209 fw_src->status[i],
210 fw_status->status[i]);
211 if (ret)
212 return ret;
213 }
214
215 return 0;
216}
217
218/**
219 * mei_me_hw_config - configure hw dependent settings
220 *
221 * @dev: mei device
222 */
223static void mei_me_hw_config(struct mei_device *dev)
224{
225 struct pci_dev *pdev = to_pci_dev(dev->dev);
226 struct mei_me_hw *hw = to_me_hw(dev);
227 u32 hcsr, reg;
228
229 /* Doesn't change in runtime */
230 hcsr = mei_hcsr_read(dev);
231 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
232
233 reg = 0;
234 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
235 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
236 hw->d0i3_supported =
237 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
238
239 hw->pg_state = MEI_PG_OFF;
240 if (hw->d0i3_supported) {
241 reg = mei_me_d0i3c_read(dev);
242 if (reg & H_D0I3C_I3)
243 hw->pg_state = MEI_PG_ON;
244 }
245}
246
247/**
248 * mei_me_pg_state - translate internal pg state
249 * to the mei power gating state
250 *
251 * @dev: mei device
252 *
253 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
254 */
255static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
256{
257 struct mei_me_hw *hw = to_me_hw(dev);
258
259 return hw->pg_state;
260}
261
262static inline u32 me_intr_src(u32 hcsr)
263{
264 return hcsr & H_CSR_IS_MASK;
265}
266
267/**
268 * me_intr_disable - disables mei device interrupts
269 * using supplied hcsr register value.
270 *
271 * @dev: the device structure
272 * @hcsr: supplied hcsr register value
273 */
274static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
275{
276 hcsr &= ~H_CSR_IE_MASK;
277 mei_hcsr_set(dev, hcsr);
278}
279
280/**
281 * mei_me_intr_clear - clear and stop interrupts
282 *
283 * @dev: the device structure
284 * @hcsr: supplied hcsr register value
285 */
286static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
287{
288 if (me_intr_src(hcsr))
289 mei_hcsr_write(dev, hcsr);
290}
291
292/**
293 * mei_me_intr_clear - clear and stop interrupts
294 *
295 * @dev: the device structure
296 */
297static void mei_me_intr_clear(struct mei_device *dev)
298{
299 u32 hcsr = mei_hcsr_read(dev);
300
301 me_intr_clear(dev, hcsr);
302}
303/**
304 * mei_me_intr_enable - enables mei device interrupts
305 *
306 * @dev: the device structure
307 */
308static void mei_me_intr_enable(struct mei_device *dev)
309{
310 u32 hcsr = mei_hcsr_read(dev);
311
312 hcsr |= H_CSR_IE_MASK;
313 mei_hcsr_set(dev, hcsr);
314}
315
316/**
317 * mei_me_intr_disable - disables mei device interrupts
318 *
319 * @dev: the device structure
320 */
321static void mei_me_intr_disable(struct mei_device *dev)
322{
323 u32 hcsr = mei_hcsr_read(dev);
324
325 me_intr_disable(dev, hcsr);
326}
327
328/**
329 * mei_me_synchronize_irq - wait for pending IRQ handlers
330 *
331 * @dev: the device structure
332 */
333static void mei_me_synchronize_irq(struct mei_device *dev)
334{
335 struct pci_dev *pdev = to_pci_dev(dev->dev);
336
337 synchronize_irq(pdev->irq);
338}
339
340/**
341 * mei_me_hw_reset_release - release device from the reset
342 *
343 * @dev: the device structure
344 */
345static void mei_me_hw_reset_release(struct mei_device *dev)
346{
347 u32 hcsr = mei_hcsr_read(dev);
348
349 hcsr |= H_IG;
350 hcsr &= ~H_RST;
351 mei_hcsr_set(dev, hcsr);
352
353 /* complete this write before we set host ready on another CPU */
354 mmiowb();
355}
356
357/**
358 * mei_me_host_set_ready - enable device
359 *
360 * @dev: mei device
361 */
362static void mei_me_host_set_ready(struct mei_device *dev)
363{
364 u32 hcsr = mei_hcsr_read(dev);
365
366 hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
367 mei_hcsr_set(dev, hcsr);
368}
369
370/**
371 * mei_me_host_is_ready - check whether the host has turned ready
372 *
373 * @dev: mei device
374 * Return: bool
375 */
376static bool mei_me_host_is_ready(struct mei_device *dev)
377{
378 u32 hcsr = mei_hcsr_read(dev);
379
380 return (hcsr & H_RDY) == H_RDY;
381}
382
383/**
384 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
385 *
386 * @dev: mei device
387 * Return: bool
388 */
389static bool mei_me_hw_is_ready(struct mei_device *dev)
390{
391 u32 mecsr = mei_me_mecsr_read(dev);
392
393 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
394}
395
396/**
397 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
398 *
399 * @dev: mei device
400 * Return: bool
401 */
402static bool mei_me_hw_is_resetting(struct mei_device *dev)
403{
404 u32 mecsr = mei_me_mecsr_read(dev);
405
406 return (mecsr & ME_RST_HRA) == ME_RST_HRA;
407}
408
409/**
410 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
411 * or timeout is reached
412 *
413 * @dev: mei device
414 * Return: 0 on success, error otherwise
415 */
416static int mei_me_hw_ready_wait(struct mei_device *dev)
417{
418 mutex_unlock(&dev->device_lock);
419 wait_event_timeout(dev->wait_hw_ready,
420 dev->recvd_hw_ready,
421 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
422 mutex_lock(&dev->device_lock);
423 if (!dev->recvd_hw_ready) {
424 dev_err(dev->dev, "wait hw ready failed\n");
425 return -ETIME;
426 }
427
428 mei_me_hw_reset_release(dev);
429 dev->recvd_hw_ready = false;
430 return 0;
431}
432
433/**
434 * mei_me_hw_start - hw start routine
435 *
436 * @dev: mei device
437 * Return: 0 on success, error otherwise
438 */
439static int mei_me_hw_start(struct mei_device *dev)
440{
441 int ret = mei_me_hw_ready_wait(dev);
442
443 if (ret)
444 return ret;
445 dev_dbg(dev->dev, "hw is ready\n");
446
447 mei_me_host_set_ready(dev);
448 return ret;
449}
450
451
452/**
453 * mei_hbuf_filled_slots - gets number of device filled buffer slots
454 *
455 * @dev: the device structure
456 *
457 * Return: number of filled slots
458 */
459static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
460{
461 u32 hcsr;
462 char read_ptr, write_ptr;
463
464 hcsr = mei_hcsr_read(dev);
465
466 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
467 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
468
469 return (unsigned char) (write_ptr - read_ptr);
470}
471
472/**
473 * mei_me_hbuf_is_empty - checks if host buffer is empty.
474 *
475 * @dev: the device structure
476 *
477 * Return: true if empty, false - otherwise.
478 */
479static bool mei_me_hbuf_is_empty(struct mei_device *dev)
480{
481 return mei_hbuf_filled_slots(dev) == 0;
482}
483
484/**
485 * mei_me_hbuf_empty_slots - counts write empty slots.
486 *
487 * @dev: the device structure
488 *
489 * Return: -EOVERFLOW if overflow, otherwise empty slots count
490 */
491static int mei_me_hbuf_empty_slots(struct mei_device *dev)
492{
493 unsigned char filled_slots, empty_slots;
494
495 filled_slots = mei_hbuf_filled_slots(dev);
496 empty_slots = dev->hbuf_depth - filled_slots;
497
498 /* check for overflow */
499 if (filled_slots > dev->hbuf_depth)
500 return -EOVERFLOW;
501
502 return empty_slots;
503}
504
505/**
506 * mei_me_hbuf_max_len - returns size of hw buffer.
507 *
508 * @dev: the device structure
509 *
510 * Return: size of hw buffer in bytes
511 */
512static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
513{
514 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
515}
516
517
518/**
519 * mei_me_hbuf_write - writes a message to host hw buffer.
520 *
521 * @dev: the device structure
522 * @header: mei HECI header of message
523 * @buf: message payload will be written
524 *
525 * Return: -EIO if write has failed
526 */
527static int mei_me_hbuf_write(struct mei_device *dev,
528 struct mei_msg_hdr *header,
529 const unsigned char *buf)
530{
531 unsigned long rem;
532 unsigned long length = header->length;
533 u32 *reg_buf = (u32 *)buf;
534 u32 dw_cnt;
535 int i;
536 int empty_slots;
537
538 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
539
540 empty_slots = mei_hbuf_empty_slots(dev);
541 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
542
543 dw_cnt = mei_data2slots(length);
544 if (empty_slots < 0 || dw_cnt > empty_slots)
545 return -EMSGSIZE;
546
547 mei_me_hcbww_write(dev, *((u32 *) header));
548
549 for (i = 0; i < length / 4; i++)
550 mei_me_hcbww_write(dev, reg_buf[i]);
551
552 rem = length & 0x3;
553 if (rem > 0) {
554 u32 reg = 0;
555
556 memcpy(&reg, &buf[length - rem], rem);
557 mei_me_hcbww_write(dev, reg);
558 }
559
560 mei_hcsr_set_hig(dev);
561 if (!mei_me_hw_is_ready(dev))
562 return -EIO;
563
564 return 0;
565}
566
567/**
568 * mei_me_count_full_read_slots - counts read full slots.
569 *
570 * @dev: the device structure
571 *
572 * Return: -EOVERFLOW if overflow, otherwise filled slots count
573 */
574static int mei_me_count_full_read_slots(struct mei_device *dev)
575{
576 u32 me_csr;
577 char read_ptr, write_ptr;
578 unsigned char buffer_depth, filled_slots;
579
580 me_csr = mei_me_mecsr_read(dev);
581 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
582 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
583 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
584 filled_slots = (unsigned char) (write_ptr - read_ptr);
585
586 /* check for overflow */
587 if (filled_slots > buffer_depth)
588 return -EOVERFLOW;
589
590 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
591 return (int)filled_slots;
592}
593
594/**
595 * mei_me_read_slots - reads a message from mei device.
596 *
597 * @dev: the device structure
598 * @buffer: message buffer will be written
599 * @buffer_length: message size will be read
600 *
601 * Return: always 0
602 */
603static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
604 unsigned long buffer_length)
605{
606 u32 *reg_buf = (u32 *)buffer;
607
608 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
609 *reg_buf++ = mei_me_mecbrw_read(dev);
610
611 if (buffer_length > 0) {
612 u32 reg = mei_me_mecbrw_read(dev);
613
614 memcpy(reg_buf, &reg, buffer_length);
615 }
616
617 mei_hcsr_set_hig(dev);
618 return 0;
619}
620
621/**
622 * mei_me_pg_set - write pg enter register
623 *
624 * @dev: the device structure
625 */
626static void mei_me_pg_set(struct mei_device *dev)
627{
628 struct mei_me_hw *hw = to_me_hw(dev);
629 u32 reg;
630
631 reg = mei_me_reg_read(hw, H_HPG_CSR);
632 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
633
634 reg |= H_HPG_CSR_PGI;
635
636 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
637 mei_me_reg_write(hw, H_HPG_CSR, reg);
638}
639
640/**
641 * mei_me_pg_unset - write pg exit register
642 *
643 * @dev: the device structure
644 */
645static void mei_me_pg_unset(struct mei_device *dev)
646{
647 struct mei_me_hw *hw = to_me_hw(dev);
648 u32 reg;
649
650 reg = mei_me_reg_read(hw, H_HPG_CSR);
651 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
652
653 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
654
655 reg |= H_HPG_CSR_PGIHEXR;
656
657 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
658 mei_me_reg_write(hw, H_HPG_CSR, reg);
659}
660
661/**
662 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
663 *
664 * @dev: the device structure
665 *
666 * Return: 0 on success an error code otherwise
667 */
668static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
669{
670 struct mei_me_hw *hw = to_me_hw(dev);
671 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
672 int ret;
673
674 dev->pg_event = MEI_PG_EVENT_WAIT;
675
676 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
677 if (ret)
678 return ret;
679
680 mutex_unlock(&dev->device_lock);
681 wait_event_timeout(dev->wait_pg,
682 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
683 mutex_lock(&dev->device_lock);
684
685 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
686 mei_me_pg_set(dev);
687 ret = 0;
688 } else {
689 ret = -ETIME;
690 }
691
692 dev->pg_event = MEI_PG_EVENT_IDLE;
693 hw->pg_state = MEI_PG_ON;
694
695 return ret;
696}
697
698/**
699 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
700 *
701 * @dev: the device structure
702 *
703 * Return: 0 on success an error code otherwise
704 */
705static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
706{
707 struct mei_me_hw *hw = to_me_hw(dev);
708 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
709 int ret;
710
711 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
712 goto reply;
713
714 dev->pg_event = MEI_PG_EVENT_WAIT;
715
716 mei_me_pg_unset(dev);
717
718 mutex_unlock(&dev->device_lock);
719 wait_event_timeout(dev->wait_pg,
720 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
721 mutex_lock(&dev->device_lock);
722
723reply:
724 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
725 ret = -ETIME;
726 goto out;
727 }
728
729 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
730 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
731 if (ret)
732 return ret;
733
734 mutex_unlock(&dev->device_lock);
735 wait_event_timeout(dev->wait_pg,
736 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
737 mutex_lock(&dev->device_lock);
738
739 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
740 ret = 0;
741 else
742 ret = -ETIME;
743
744out:
745 dev->pg_event = MEI_PG_EVENT_IDLE;
746 hw->pg_state = MEI_PG_OFF;
747
748 return ret;
749}
750
751/**
752 * mei_me_pg_in_transition - is device now in pg transition
753 *
754 * @dev: the device structure
755 *
756 * Return: true if in pg transition, false otherwise
757 */
758static bool mei_me_pg_in_transition(struct mei_device *dev)
759{
760 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
761 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
762}
763
764/**
765 * mei_me_pg_is_enabled - detect if PG is supported by HW
766 *
767 * @dev: the device structure
768 *
769 * Return: true is pg supported, false otherwise
770 */
771static bool mei_me_pg_is_enabled(struct mei_device *dev)
772{
773 struct mei_me_hw *hw = to_me_hw(dev);
774 u32 reg = mei_me_mecsr_read(dev);
775
776 if (hw->d0i3_supported)
777 return true;
778
779 if ((reg & ME_PGIC_HRA) == 0)
780 goto notsupported;
781
782 if (!dev->hbm_f_pg_supported)
783 goto notsupported;
784
785 return true;
786
787notsupported:
788 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
789 hw->d0i3_supported,
790 !!(reg & ME_PGIC_HRA),
791 dev->version.major_version,
792 dev->version.minor_version,
793 HBM_MAJOR_VERSION_PGI,
794 HBM_MINOR_VERSION_PGI);
795
796 return false;
797}
798
799/**
800 * mei_me_d0i3_set - write d0i3 register bit on mei device.
801 *
802 * @dev: the device structure
803 * @intr: ask for interrupt
804 *
805 * Return: D0I3C register value
806 */
807static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
808{
809 u32 reg = mei_me_d0i3c_read(dev);
810
811 reg |= H_D0I3C_I3;
812 if (intr)
813 reg |= H_D0I3C_IR;
814 else
815 reg &= ~H_D0I3C_IR;
816 mei_me_d0i3c_write(dev, reg);
817 /* read it to ensure HW consistency */
818 reg = mei_me_d0i3c_read(dev);
819 return reg;
820}
821
822/**
823 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
824 *
825 * @dev: the device structure
826 *
827 * Return: D0I3C register value
828 */
829static u32 mei_me_d0i3_unset(struct mei_device *dev)
830{
831 u32 reg = mei_me_d0i3c_read(dev);
832
833 reg &= ~H_D0I3C_I3;
834 reg |= H_D0I3C_IR;
835 mei_me_d0i3c_write(dev, reg);
836 /* read it to ensure HW consistency */
837 reg = mei_me_d0i3c_read(dev);
838 return reg;
839}
840
841/**
842 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
843 *
844 * @dev: the device structure
845 *
846 * Return: 0 on success an error code otherwise
847 */
848static int mei_me_d0i3_enter_sync(struct mei_device *dev)
849{
850 struct mei_me_hw *hw = to_me_hw(dev);
851 unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
852 unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
853 int ret;
854 u32 reg;
855
856 reg = mei_me_d0i3c_read(dev);
857 if (reg & H_D0I3C_I3) {
858 /* we are in d0i3, nothing to do */
859 dev_dbg(dev->dev, "d0i3 set not needed\n");
860 ret = 0;
861 goto on;
862 }
863
864 /* PGI entry procedure */
865 dev->pg_event = MEI_PG_EVENT_WAIT;
866
867 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
868 if (ret)
869 /* FIXME: should we reset here? */
870 goto out;
871
872 mutex_unlock(&dev->device_lock);
873 wait_event_timeout(dev->wait_pg,
874 dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
875 mutex_lock(&dev->device_lock);
876
877 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
878 ret = -ETIME;
879 goto out;
880 }
881 /* end PGI entry procedure */
882
883 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
884
885 reg = mei_me_d0i3_set(dev, true);
886 if (!(reg & H_D0I3C_CIP)) {
887 dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
888 ret = 0;
889 goto on;
890 }
891
892 mutex_unlock(&dev->device_lock);
893 wait_event_timeout(dev->wait_pg,
894 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
895 mutex_lock(&dev->device_lock);
896
897 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
898 reg = mei_me_d0i3c_read(dev);
899 if (!(reg & H_D0I3C_I3)) {
900 ret = -ETIME;
901 goto out;
902 }
903 }
904
905 ret = 0;
906on:
907 hw->pg_state = MEI_PG_ON;
908out:
909 dev->pg_event = MEI_PG_EVENT_IDLE;
910 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
911 return ret;
912}
913
914/**
915 * mei_me_d0i3_enter - perform d0i3 entry procedure
916 * no hbm PG handshake
917 * no waiting for confirmation; runs with interrupts
918 * disabled
919 *
920 * @dev: the device structure
921 *
922 * Return: 0 on success an error code otherwise
923 */
924static int mei_me_d0i3_enter(struct mei_device *dev)
925{
926 struct mei_me_hw *hw = to_me_hw(dev);
927 u32 reg;
928
929 reg = mei_me_d0i3c_read(dev);
930 if (reg & H_D0I3C_I3) {
931 /* we are in d0i3, nothing to do */
932 dev_dbg(dev->dev, "already d0i3 : set not needed\n");
933 goto on;
934 }
935
936 mei_me_d0i3_set(dev, false);
937on:
938 hw->pg_state = MEI_PG_ON;
939 dev->pg_event = MEI_PG_EVENT_IDLE;
940 dev_dbg(dev->dev, "d0i3 enter\n");
941 return 0;
942}
943
944/**
945 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
946 *
947 * @dev: the device structure
948 *
949 * Return: 0 on success an error code otherwise
950 */
951static int mei_me_d0i3_exit_sync(struct mei_device *dev)
952{
953 struct mei_me_hw *hw = to_me_hw(dev);
954 unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
955 int ret;
956 u32 reg;
957
958 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
959
960 reg = mei_me_d0i3c_read(dev);
961 if (!(reg & H_D0I3C_I3)) {
962 /* we are not in d0i3, nothing to do */
963 dev_dbg(dev->dev, "d0i3 exit not needed\n");
964 ret = 0;
965 goto off;
966 }
967
968 reg = mei_me_d0i3_unset(dev);
969 if (!(reg & H_D0I3C_CIP)) {
970 dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
971 ret = 0;
972 goto off;
973 }
974
975 mutex_unlock(&dev->device_lock);
976 wait_event_timeout(dev->wait_pg,
977 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
978 mutex_lock(&dev->device_lock);
979
980 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
981 reg = mei_me_d0i3c_read(dev);
982 if (reg & H_D0I3C_I3) {
983 ret = -ETIME;
984 goto out;
985 }
986 }
987
988 ret = 0;
989off:
990 hw->pg_state = MEI_PG_OFF;
991out:
992 dev->pg_event = MEI_PG_EVENT_IDLE;
993
994 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
995 return ret;
996}
997
998/**
999 * mei_me_pg_legacy_intr - perform legacy pg processing
1000 * in interrupt thread handler
1001 *
1002 * @dev: the device structure
1003 */
1004static void mei_me_pg_legacy_intr(struct mei_device *dev)
1005{
1006 struct mei_me_hw *hw = to_me_hw(dev);
1007
1008 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1009 return;
1010
1011 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1012 hw->pg_state = MEI_PG_OFF;
1013 if (waitqueue_active(&dev->wait_pg))
1014 wake_up(&dev->wait_pg);
1015}
1016
1017/**
1018 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1019 *
1020 * @dev: the device structure
1021 * @intr_source: interrupt source
1022 */
1023static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1024{
1025 struct mei_me_hw *hw = to_me_hw(dev);
1026
1027 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1028 (intr_source & H_D0I3C_IS)) {
1029 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1030 if (hw->pg_state == MEI_PG_ON) {
1031 hw->pg_state = MEI_PG_OFF;
1032 if (dev->hbm_state != MEI_HBM_IDLE) {
1033 /*
1034 * force H_RDY because it could be
1035 * wiped off during PG
1036 */
1037 dev_dbg(dev->dev, "d0i3 set host ready\n");
1038 mei_me_host_set_ready(dev);
1039 }
1040 } else {
1041 hw->pg_state = MEI_PG_ON;
1042 }
1043
1044 wake_up(&dev->wait_pg);
1045 }
1046
1047 if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1048 /*
1049 * HW sent some data and we are in D0i3, so
1050 * we got here because of HW initiated exit from D0i3.
1051 * Start runtime pm resume sequence to exit low power state.
1052 */
1053 dev_dbg(dev->dev, "d0i3 want resume\n");
1054 mei_hbm_pg_resume(dev);
1055 }
1056}
1057
1058/**
1059 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1060 *
1061 * @dev: the device structure
1062 * @intr_source: interrupt source
1063 */
1064static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1065{
1066 struct mei_me_hw *hw = to_me_hw(dev);
1067
1068 if (hw->d0i3_supported)
1069 mei_me_d0i3_intr(dev, intr_source);
1070 else
1071 mei_me_pg_legacy_intr(dev);
1072}
1073
1074/**
1075 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1076 *
1077 * @dev: the device structure
1078 *
1079 * Return: 0 on success an error code otherwise
1080 */
1081int mei_me_pg_enter_sync(struct mei_device *dev)
1082{
1083 struct mei_me_hw *hw = to_me_hw(dev);
1084
1085 if (hw->d0i3_supported)
1086 return mei_me_d0i3_enter_sync(dev);
1087 else
1088 return mei_me_pg_legacy_enter_sync(dev);
1089}
1090
1091/**
1092 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1093 *
1094 * @dev: the device structure
1095 *
1096 * Return: 0 on success an error code otherwise
1097 */
1098int mei_me_pg_exit_sync(struct mei_device *dev)
1099{
1100 struct mei_me_hw *hw = to_me_hw(dev);
1101
1102 if (hw->d0i3_supported)
1103 return mei_me_d0i3_exit_sync(dev);
1104 else
1105 return mei_me_pg_legacy_exit_sync(dev);
1106}
1107
1108/**
1109 * mei_me_hw_reset - resets fw via mei csr register.
1110 *
1111 * @dev: the device structure
1112 * @intr_enable: if interrupt should be enabled after reset.
1113 *
1114 * Return: 0 on success an error code otherwise
1115 */
1116static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1117{
1118 struct mei_me_hw *hw = to_me_hw(dev);
1119 int ret;
1120 u32 hcsr;
1121
1122 if (intr_enable) {
1123 mei_me_intr_enable(dev);
1124 if (hw->d0i3_supported) {
1125 ret = mei_me_d0i3_exit_sync(dev);
1126 if (ret)
1127 return ret;
1128 }
1129 }
1130
1131 pm_runtime_set_active(dev->dev);
1132
1133 hcsr = mei_hcsr_read(dev);
1134 /* H_RST may be found lit before reset is started,
1135 * for example if preceding reset flow hasn't completed.
1136 * In that case asserting H_RST will be ignored, therefore
1137 * we need to clean H_RST bit to start a successful reset sequence.
1138 */
1139 if ((hcsr & H_RST) == H_RST) {
1140 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1141 hcsr &= ~H_RST;
1142 mei_hcsr_set(dev, hcsr);
1143 hcsr = mei_hcsr_read(dev);
1144 }
1145
1146 hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1147
1148 if (!intr_enable)
1149 hcsr &= ~H_CSR_IE_MASK;
1150
1151 dev->recvd_hw_ready = false;
1152 mei_hcsr_write(dev, hcsr);
1153
1154 /*
1155 * Host reads the H_CSR once to ensure that the
1156 * posted write to H_CSR completes.
1157 */
1158 hcsr = mei_hcsr_read(dev);
1159
1160 if ((hcsr & H_RST) == 0)
1161 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1162
1163 if ((hcsr & H_RDY) == H_RDY)
1164 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1165
1166 if (!intr_enable) {
1167 mei_me_hw_reset_release(dev);
1168 if (hw->d0i3_supported) {
1169 ret = mei_me_d0i3_enter(dev);
1170 if (ret)
1171 return ret;
1172 }
1173 }
1174 return 0;
1175}
1176
1177/**
1178 * mei_me_irq_quick_handler - The ISR of the MEI device
1179 *
1180 * @irq: The irq number
1181 * @dev_id: pointer to the device structure
1182 *
1183 * Return: irqreturn_t
1184 */
1185irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1186{
1187 struct mei_device *dev = (struct mei_device *)dev_id;
1188 u32 hcsr;
1189
1190 hcsr = mei_hcsr_read(dev);
1191 if (!me_intr_src(hcsr))
1192 return IRQ_NONE;
1193
1194 dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1195
1196 /* disable interrupts on device */
1197 me_intr_disable(dev, hcsr);
1198 return IRQ_WAKE_THREAD;
1199}
1200
1201/**
1202 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1203 * processing.
1204 *
1205 * @irq: The irq number
1206 * @dev_id: pointer to the device structure
1207 *
1208 * Return: irqreturn_t
1209 *
1210 */
1211irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1212{
1213 struct mei_device *dev = (struct mei_device *) dev_id;
1214 struct list_head cmpl_list;
1215 s32 slots;
1216 u32 hcsr;
1217 int rets = 0;
1218
1219 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1220 /* initialize our complete list */
1221 mutex_lock(&dev->device_lock);
1222
1223 hcsr = mei_hcsr_read(dev);
1224 me_intr_clear(dev, hcsr);
1225
1226 INIT_LIST_HEAD(&cmpl_list);
1227
1228 /* check if ME wants a reset */
1229 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1230 dev_warn(dev->dev, "FW not ready: resetting.\n");
1231 schedule_work(&dev->reset_work);
1232 goto end;
1233 }
1234
1235 if (mei_me_hw_is_resetting(dev))
1236 mei_hcsr_set_hig(dev);
1237
1238 mei_me_pg_intr(dev, me_intr_src(hcsr));
1239
1240 /* check if we need to start the dev */
1241 if (!mei_host_is_ready(dev)) {
1242 if (mei_hw_is_ready(dev)) {
1243 dev_dbg(dev->dev, "we need to start the dev.\n");
1244 dev->recvd_hw_ready = true;
1245 wake_up(&dev->wait_hw_ready);
1246 } else {
1247 dev_dbg(dev->dev, "Spurious Interrupt\n");
1248 }
1249 goto end;
1250 }
1251 /* check slots available for reading */
1252 slots = mei_count_full_read_slots(dev);
1253 while (slots > 0) {
1254 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1255 rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1256 /* There is a race between ME write and interrupt delivery:
1257 * Not all data is always available immediately after the
1258 * interrupt, so try to read again on the next interrupt.
1259 */
1260 if (rets == -ENODATA)
1261 break;
1262
1263 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1264 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1265 rets);
1266 schedule_work(&dev->reset_work);
1267 goto end;
1268 }
1269 }
1270
1271 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1272
1273 /*
1274 * During PG handshake only allowed write is the replay to the
1275 * PG exit message, so block calling write function
1276 * if the pg event is in PG handshake
1277 */
1278 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1279 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1280 rets = mei_irq_write_handler(dev, &cmpl_list);
1281 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1282 }
1283
1284 mei_irq_compl_handler(dev, &cmpl_list);
1285
1286end:
1287 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1288 mei_me_intr_enable(dev);
1289 mutex_unlock(&dev->device_lock);
1290 return IRQ_HANDLED;
1291}
1292
1293static const struct mei_hw_ops mei_me_hw_ops = {
1294
1295 .fw_status = mei_me_fw_status,
1296 .pg_state = mei_me_pg_state,
1297
1298 .host_is_ready = mei_me_host_is_ready,
1299
1300 .hw_is_ready = mei_me_hw_is_ready,
1301 .hw_reset = mei_me_hw_reset,
1302 .hw_config = mei_me_hw_config,
1303 .hw_start = mei_me_hw_start,
1304
1305 .pg_in_transition = mei_me_pg_in_transition,
1306 .pg_is_enabled = mei_me_pg_is_enabled,
1307
1308 .intr_clear = mei_me_intr_clear,
1309 .intr_enable = mei_me_intr_enable,
1310 .intr_disable = mei_me_intr_disable,
1311 .synchronize_irq = mei_me_synchronize_irq,
1312
1313 .hbuf_free_slots = mei_me_hbuf_empty_slots,
1314 .hbuf_is_ready = mei_me_hbuf_is_empty,
1315 .hbuf_max_len = mei_me_hbuf_max_len,
1316
1317 .write = mei_me_hbuf_write,
1318
1319 .rdbuf_full_slots = mei_me_count_full_read_slots,
1320 .read_hdr = mei_me_mecbrw_read,
1321 .read = mei_me_read_slots
1322};
1323
1324static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1325{
1326 u32 reg;
1327
1328 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1329 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1330 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1331 return (reg & 0x600) == 0x200;
1332}
1333
1334#define MEI_CFG_FW_NM \
1335 .quirk_probe = mei_me_fw_type_nm
1336
1337static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1338{
1339 u32 reg;
1340 unsigned int devfn;
1341
1342 /*
1343 * Read ME FW Status register to check for SPS Firmware
1344 * The SPS FW is only signaled in pci function 0
1345 */
1346 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1347 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1348 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1349 /* if bits [19:16] = 15, running SPS Firmware */
1350 return (reg & 0xf0000) == 0xf0000;
1351}
1352
1353#define MEI_CFG_FW_SPS \
1354 .quirk_probe = mei_me_fw_type_sps
1355
1356
1357#define MEI_CFG_ICH_HFS \
1358 .fw_status.count = 0
1359
1360#define MEI_CFG_ICH10_HFS \
1361 .fw_status.count = 1, \
1362 .fw_status.status[0] = PCI_CFG_HFS_1
1363
1364#define MEI_CFG_PCH_HFS \
1365 .fw_status.count = 2, \
1366 .fw_status.status[0] = PCI_CFG_HFS_1, \
1367 .fw_status.status[1] = PCI_CFG_HFS_2
1368
1369#define MEI_CFG_PCH8_HFS \
1370 .fw_status.count = 6, \
1371 .fw_status.status[0] = PCI_CFG_HFS_1, \
1372 .fw_status.status[1] = PCI_CFG_HFS_2, \
1373 .fw_status.status[2] = PCI_CFG_HFS_3, \
1374 .fw_status.status[3] = PCI_CFG_HFS_4, \
1375 .fw_status.status[4] = PCI_CFG_HFS_5, \
1376 .fw_status.status[5] = PCI_CFG_HFS_6
1377
1378/* ICH Legacy devices */
1379static const struct mei_cfg mei_me_ich_cfg = {
1380 MEI_CFG_ICH_HFS,
1381};
1382
1383/* ICH devices */
1384static const struct mei_cfg mei_me_ich10_cfg = {
1385 MEI_CFG_ICH10_HFS,
1386};
1387
1388/* PCH devices */
1389static const struct mei_cfg mei_me_pch_cfg = {
1390 MEI_CFG_PCH_HFS,
1391};
1392
1393/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1394static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1395 MEI_CFG_PCH_HFS,
1396 MEI_CFG_FW_NM,
1397};
1398
1399/* PCH8 Lynx Point and newer devices */
1400static const struct mei_cfg mei_me_pch8_cfg = {
1401 MEI_CFG_PCH8_HFS,
1402};
1403
1404/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1405static const struct mei_cfg mei_me_pch8_sps_cfg = {
1406 MEI_CFG_PCH8_HFS,
1407 MEI_CFG_FW_SPS,
1408};
1409
1410/*
1411 * mei_cfg_list - A list of platform platform specific configurations.
1412 * Note: has to be synchronized with enum mei_cfg_idx.
1413 */
1414static const struct mei_cfg *const mei_cfg_list[] = {
1415 [MEI_ME_UNDEF_CFG] = NULL,
1416 [MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
1417 [MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
1418 [MEI_ME_PCH_CFG] = &mei_me_pch_cfg,
1419 [MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
1420 [MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
1421 [MEI_ME_PCH8_SPS_CFG] = &mei_me_pch8_sps_cfg,
1422};
1423
1424const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
1425{
1426 BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
1427
1428 if (idx >= MEI_ME_NUM_CFG)
1429 return NULL;
1430
1431 return mei_cfg_list[idx];
1432};
1433
1434/**
1435 * mei_me_dev_init - allocates and initializes the mei device structure
1436 *
1437 * @pdev: The pci device structure
1438 * @cfg: per device generation config
1439 *
1440 * Return: The mei_device pointer on success, NULL on failure.
1441 */
1442struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1443 const struct mei_cfg *cfg)
1444{
1445 struct mei_device *dev;
1446 struct mei_me_hw *hw;
1447
1448 dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1449 sizeof(struct mei_me_hw), GFP_KERNEL);
1450 if (!dev)
1451 return NULL;
1452 hw = to_me_hw(dev);
1453
1454 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1455 hw->cfg = cfg;
1456 return dev;
1457}
1458