blob: 45626b0eed643ce76c3ce6b36a4b83fdcd3c98be [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/types.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/list.h>
29#include <linux/kmod.h>
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/partitions.h>
32#include <linux/err.h>
33
34#include "mtdcore.h"
35
36/* Our partition linked list */
37static LIST_HEAD(mtd_partitions);
38static DEFINE_MUTEX(mtd_partitions_mutex);
39
40/**
41 * struct mtd_part - our partition node structure
42 *
43 * @mtd: struct holding partition details
44 * @parent: parent mtd - flash device or another partition
45 * @offset: partition offset relative to the *flash device*
46 */
47struct mtd_part {
48 struct mtd_info mtd;
49 struct mtd_info *parent;
50 uint64_t offset;
51 struct list_head list;
52};
53
54/*
55 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
56 * the pointer to that structure.
57 */
58static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
59{
60 return container_of(mtd, struct mtd_part, mtd);
61}
62
63
64/*
65 * MTD methods which simply translate the effective address and pass through
66 * to the _real_ device.
67 */
68
69static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
70 size_t *retlen, u_char *buf)
71{
72 struct mtd_part *part = mtd_to_part(mtd);
73 struct mtd_ecc_stats stats;
74 int res;
75
76 stats = part->parent->ecc_stats;
77 res = part->parent->_read(part->parent, from + part->offset, len,
78 retlen, buf);
79 if (unlikely(mtd_is_eccerr(res)))
80 mtd->ecc_stats.failed +=
81 part->parent->ecc_stats.failed - stats.failed;
82 else
83 mtd->ecc_stats.corrected +=
84 part->parent->ecc_stats.corrected - stats.corrected;
85 return res;
86}
87
88static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
89 size_t *retlen, void **virt, resource_size_t *phys)
90{
91 struct mtd_part *part = mtd_to_part(mtd);
92
93 return part->parent->_point(part->parent, from + part->offset, len,
94 retlen, virt, phys);
95}
96
97static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
98{
99 struct mtd_part *part = mtd_to_part(mtd);
100
101 return part->parent->_unpoint(part->parent, from + part->offset, len);
102}
103
104static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
105 unsigned long len,
106 unsigned long offset,
107 unsigned long flags)
108{
109 struct mtd_part *part = mtd_to_part(mtd);
110
111 offset += part->offset;
112 return part->parent->_get_unmapped_area(part->parent, len, offset,
113 flags);
114}
115
116static int part_read_oob(struct mtd_info *mtd, loff_t from,
117 struct mtd_oob_ops *ops)
118{
119 struct mtd_part *part = mtd_to_part(mtd);
120 int res;
121
122 if (from >= mtd->size)
123 return -EINVAL;
124 if (ops->datbuf && from + ops->len > mtd->size)
125 return -EINVAL;
126
127 /*
128 * If OOB is also requested, make sure that we do not read past the end
129 * of this partition.
130 */
131 if (ops->oobbuf) {
132 size_t len, pages;
133
134 len = mtd_oobavail(mtd, ops);
135 pages = mtd_div_by_ws(mtd->size, mtd);
136 pages -= mtd_div_by_ws(from, mtd);
137 if (ops->ooboffs + ops->ooblen > pages * len)
138 return -EINVAL;
139 }
140
141 res = part->parent->_read_oob(part->parent, from + part->offset, ops);
142 if (unlikely(res)) {
143 if (mtd_is_bitflip(res))
144 mtd->ecc_stats.corrected++;
145 if (mtd_is_eccerr(res))
146 mtd->ecc_stats.failed++;
147 }
148 return res;
149}
150
151static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
152 size_t len, size_t *retlen, u_char *buf)
153{
154 struct mtd_part *part = mtd_to_part(mtd);
155 return part->parent->_read_user_prot_reg(part->parent, from, len,
156 retlen, buf);
157}
158
159static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
160 size_t *retlen, struct otp_info *buf)
161{
162 struct mtd_part *part = mtd_to_part(mtd);
163 return part->parent->_get_user_prot_info(part->parent, len, retlen,
164 buf);
165}
166
167static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
168 size_t len, size_t *retlen, u_char *buf)
169{
170 struct mtd_part *part = mtd_to_part(mtd);
171 return part->parent->_read_fact_prot_reg(part->parent, from, len,
172 retlen, buf);
173}
174
175static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
176 size_t *retlen, struct otp_info *buf)
177{
178 struct mtd_part *part = mtd_to_part(mtd);
179 return part->parent->_get_fact_prot_info(part->parent, len, retlen,
180 buf);
181}
182
183static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
184 size_t *retlen, const u_char *buf)
185{
186 struct mtd_part *part = mtd_to_part(mtd);
187 return part->parent->_write(part->parent, to + part->offset, len,
188 retlen, buf);
189}
190
191static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
192 size_t *retlen, const u_char *buf)
193{
194 struct mtd_part *part = mtd_to_part(mtd);
195 return part->parent->_panic_write(part->parent, to + part->offset, len,
196 retlen, buf);
197}
198
199static int part_write_oob(struct mtd_info *mtd, loff_t to,
200 struct mtd_oob_ops *ops)
201{
202 struct mtd_part *part = mtd_to_part(mtd);
203
204 if (to >= mtd->size)
205 return -EINVAL;
206 if (ops->datbuf && to + ops->len > mtd->size)
207 return -EINVAL;
208 return part->parent->_write_oob(part->parent, to + part->offset, ops);
209}
210
211static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
212 size_t len, size_t *retlen, u_char *buf)
213{
214 struct mtd_part *part = mtd_to_part(mtd);
215 return part->parent->_write_user_prot_reg(part->parent, from, len,
216 retlen, buf);
217}
218
219static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
220 size_t len)
221{
222 struct mtd_part *part = mtd_to_part(mtd);
223 return part->parent->_lock_user_prot_reg(part->parent, from, len);
224}
225
226static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
227 unsigned long count, loff_t to, size_t *retlen)
228{
229 struct mtd_part *part = mtd_to_part(mtd);
230 return part->parent->_writev(part->parent, vecs, count,
231 to + part->offset, retlen);
232}
233
234static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
235{
236 struct mtd_part *part = mtd_to_part(mtd);
237 int ret;
238
239 instr->addr += part->offset;
240 ret = part->parent->_erase(part->parent, instr);
241 if (ret) {
242 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
243 instr->fail_addr -= part->offset;
244 instr->addr -= part->offset;
245 }
246 return ret;
247}
248
249void mtd_erase_callback(struct erase_info *instr)
250{
251 if (instr->mtd->_erase == part_erase) {
252 struct mtd_part *part = mtd_to_part(instr->mtd);
253
254 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
255 instr->fail_addr -= part->offset;
256 instr->addr -= part->offset;
257 }
258 if (instr->callback)
259 instr->callback(instr);
260}
261EXPORT_SYMBOL_GPL(mtd_erase_callback);
262
263static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
264{
265 struct mtd_part *part = mtd_to_part(mtd);
266 return part->parent->_lock(part->parent, ofs + part->offset, len);
267}
268
269static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
270{
271 struct mtd_part *part = mtd_to_part(mtd);
272 return part->parent->_unlock(part->parent, ofs + part->offset, len);
273}
274
275static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
276{
277 struct mtd_part *part = mtd_to_part(mtd);
278 return part->parent->_is_locked(part->parent, ofs + part->offset, len);
279}
280
281static void part_sync(struct mtd_info *mtd)
282{
283 struct mtd_part *part = mtd_to_part(mtd);
284 part->parent->_sync(part->parent);
285}
286
287static int part_suspend(struct mtd_info *mtd)
288{
289 struct mtd_part *part = mtd_to_part(mtd);
290 return part->parent->_suspend(part->parent);
291}
292
293static void part_resume(struct mtd_info *mtd)
294{
295 struct mtd_part *part = mtd_to_part(mtd);
296 part->parent->_resume(part->parent);
297}
298
299static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
300{
301 struct mtd_part *part = mtd_to_part(mtd);
302 ofs += part->offset;
303 return part->parent->_block_isreserved(part->parent, ofs);
304}
305
306static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
307{
308 struct mtd_part *part = mtd_to_part(mtd);
309 ofs += part->offset;
310 return part->parent->_block_isbad(part->parent, ofs);
311}
312
313static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
314{
315 struct mtd_part *part = mtd_to_part(mtd);
316 int res;
317
318 ofs += part->offset;
319 res = part->parent->_block_markbad(part->parent, ofs);
320 if (!res)
321 mtd->ecc_stats.badblocks++;
322 return res;
323}
324
325static int part_get_device(struct mtd_info *mtd)
326{
327 struct mtd_part *part = mtd_to_part(mtd);
328 return part->parent->_get_device(part->parent);
329}
330
331static void part_put_device(struct mtd_info *mtd)
332{
333 struct mtd_part *part = mtd_to_part(mtd);
334 part->parent->_put_device(part->parent);
335}
336
337static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
338 struct mtd_oob_region *oobregion)
339{
340 struct mtd_part *part = mtd_to_part(mtd);
341
342 return mtd_ooblayout_ecc(part->parent, section, oobregion);
343}
344
345static int part_ooblayout_free(struct mtd_info *mtd, int section,
346 struct mtd_oob_region *oobregion)
347{
348 struct mtd_part *part = mtd_to_part(mtd);
349
350 return mtd_ooblayout_free(part->parent, section, oobregion);
351}
352
353static const struct mtd_ooblayout_ops part_ooblayout_ops = {
354 .ecc = part_ooblayout_ecc,
355 .free = part_ooblayout_free,
356};
357
358static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
359{
360 struct mtd_part *part = mtd_to_part(mtd);
361
362 return part->parent->_max_bad_blocks(part->parent,
363 ofs + part->offset, len);
364}
365
366static inline void free_partition(struct mtd_part *p)
367{
368 kfree(p->mtd.name);
369 kfree(p);
370}
371
372/**
373 * mtd_parse_part - parse MTD partition looking for subpartitions
374 *
375 * @slave: part that is supposed to be a container and should be parsed
376 * @types: NULL-terminated array with names of partition parsers to try
377 *
378 * Some partitions are kind of containers with extra subpartitions (volumes).
379 * There can be various formats of such containers. This function tries to use
380 * specified parsers to analyze given partition and registers found
381 * subpartitions on success.
382 */
383static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
384{
385 struct mtd_partitions parsed;
386 int err;
387
388 err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
389 if (err)
390 return err;
391 else if (!parsed.nr_parts)
392 return -ENOENT;
393
394 err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
395
396 mtd_part_parser_cleanup(&parsed);
397
398 return err;
399}
400
401static struct mtd_part *allocate_partition(struct mtd_info *parent,
402 const struct mtd_partition *part, int partno,
403 uint64_t cur_offset)
404{
405 int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
406 parent->erasesize;
407 struct mtd_part *slave;
408 u32 remainder;
409 char *name;
410 u64 tmp;
411
412 /* allocate the partition structure */
413 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
414 name = kstrdup(part->name, GFP_KERNEL);
415 if (!name || !slave) {
416 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
417 parent->name);
418 kfree(name);
419 kfree(slave);
420 return ERR_PTR(-ENOMEM);
421 }
422
423 /* set up the MTD object for this partition */
424 slave->mtd.type = parent->type;
425 slave->mtd.flags = parent->flags & ~part->mask_flags;
426 slave->mtd.size = part->size;
427 slave->mtd.writesize = parent->writesize;
428 slave->mtd.writebufsize = parent->writebufsize;
429 slave->mtd.oobsize = parent->oobsize;
430 slave->mtd.oobavail = parent->oobavail;
431 slave->mtd.subpage_sft = parent->subpage_sft;
432 slave->mtd.pairing = parent->pairing;
433
434 slave->mtd.name = name;
435 slave->mtd.owner = parent->owner;
436
437 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
438 * concern for showing the same data in multiple partitions.
439 * However, it is very useful to have the master node present,
440 * so the MTD_PARTITIONED_MASTER option allows that. The master
441 * will have device nodes etc only if this is set, so make the
442 * parent conditional on that option. Note, this is a way to
443 * distinguish between the master and the partition in sysfs.
444 */
445 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
446 &parent->dev :
447 parent->dev.parent;
448 slave->mtd.dev.of_node = part->of_node;
449
450 slave->mtd._read = part_read;
451 slave->mtd._write = part_write;
452
453 if (parent->_panic_write)
454 slave->mtd._panic_write = part_panic_write;
455
456 if (parent->_point && parent->_unpoint) {
457 slave->mtd._point = part_point;
458 slave->mtd._unpoint = part_unpoint;
459 }
460
461 if (parent->_get_unmapped_area)
462 slave->mtd._get_unmapped_area = part_get_unmapped_area;
463 if (parent->_read_oob)
464 slave->mtd._read_oob = part_read_oob;
465 if (parent->_write_oob)
466 slave->mtd._write_oob = part_write_oob;
467 if (parent->_read_user_prot_reg)
468 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
469 if (parent->_read_fact_prot_reg)
470 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
471 if (parent->_write_user_prot_reg)
472 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
473 if (parent->_lock_user_prot_reg)
474 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
475 if (parent->_get_user_prot_info)
476 slave->mtd._get_user_prot_info = part_get_user_prot_info;
477 if (parent->_get_fact_prot_info)
478 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
479 if (parent->_sync)
480 slave->mtd._sync = part_sync;
481 if (!partno && !parent->dev.class && parent->_suspend &&
482 parent->_resume) {
483 slave->mtd._suspend = part_suspend;
484 slave->mtd._resume = part_resume;
485 }
486 if (parent->_writev)
487 slave->mtd._writev = part_writev;
488 if (parent->_lock)
489 slave->mtd._lock = part_lock;
490 if (parent->_unlock)
491 slave->mtd._unlock = part_unlock;
492 if (parent->_is_locked)
493 slave->mtd._is_locked = part_is_locked;
494 if (parent->_block_isreserved)
495 slave->mtd._block_isreserved = part_block_isreserved;
496 if (parent->_block_isbad)
497 slave->mtd._block_isbad = part_block_isbad;
498 if (parent->_block_markbad)
499 slave->mtd._block_markbad = part_block_markbad;
500 if (parent->_max_bad_blocks)
501 slave->mtd._max_bad_blocks = part_max_bad_blocks;
502
503 if (parent->_get_device)
504 slave->mtd._get_device = part_get_device;
505 if (parent->_put_device)
506 slave->mtd._put_device = part_put_device;
507
508 slave->mtd._erase = part_erase;
509 slave->parent = parent;
510 slave->offset = part->offset;
511
512 if (slave->offset == MTDPART_OFS_APPEND)
513 slave->offset = cur_offset;
514 if (slave->offset == MTDPART_OFS_NXTBLK) {
515 tmp = cur_offset;
516 slave->offset = cur_offset;
517 remainder = do_div(tmp, wr_alignment);
518 if (remainder) {
519 slave->offset += wr_alignment - remainder;
520 printk(KERN_NOTICE "Moving partition %d: "
521 "0x%012llx -> 0x%012llx\n", partno,
522 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
523 }
524 }
525 if (slave->offset == MTDPART_OFS_RETAIN) {
526 slave->offset = cur_offset;
527 if (parent->size - slave->offset >= slave->mtd.size) {
528 slave->mtd.size = parent->size - slave->offset
529 - slave->mtd.size;
530 } else {
531 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
532 part->name, parent->size - slave->offset,
533 slave->mtd.size);
534 /* register to preserve ordering */
535 goto out_register;
536 }
537 }
538 if (slave->mtd.size == MTDPART_SIZ_FULL)
539 slave->mtd.size = parent->size - slave->offset;
540
541 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
542 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
543
544 /* let's do some sanity checks */
545 if (slave->offset >= parent->size) {
546 /* let's register it anyway to preserve ordering */
547 slave->offset = 0;
548 slave->mtd.size = 0;
549 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
550 part->name);
551 goto out_register;
552 }
553 if (slave->offset + slave->mtd.size > parent->size) {
554 slave->mtd.size = parent->size - slave->offset;
555 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
556 part->name, parent->name, (unsigned long long)slave->mtd.size);
557 }
558 if (parent->numeraseregions > 1) {
559 /* Deal with variable erase size stuff */
560 int i, max = parent->numeraseregions;
561 u64 end = slave->offset + slave->mtd.size;
562 struct mtd_erase_region_info *regions = parent->eraseregions;
563
564 /* Find the first erase regions which is part of this
565 * partition. */
566 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
567 ;
568 /* The loop searched for the region _behind_ the first one */
569 if (i > 0)
570 i--;
571
572 /* Pick biggest erasesize */
573 for (; i < max && regions[i].offset < end; i++) {
574 if (slave->mtd.erasesize < regions[i].erasesize) {
575 slave->mtd.erasesize = regions[i].erasesize;
576 }
577 }
578 BUG_ON(slave->mtd.erasesize == 0);
579 } else {
580 /* Single erase size */
581 slave->mtd.erasesize = parent->erasesize;
582 }
583
584 /*
585 * Slave erasesize might differ from the master one if the master
586 * exposes several regions with different erasesize. Adjust
587 * wr_alignment accordingly.
588 */
589 if (!(slave->mtd.flags & MTD_NO_ERASE))
590 wr_alignment = slave->mtd.erasesize;
591
592 tmp = slave->offset;
593 remainder = do_div(tmp, wr_alignment);
594 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
595 /* Doesn't start on a boundary of major erase size */
596 /* FIXME: Let it be writable if it is on a boundary of
597 * _minor_ erase size though */
598 slave->mtd.flags &= ~MTD_WRITEABLE;
599 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
600 part->name);
601 }
602
603 tmp = slave->mtd.size;
604 remainder = do_div(tmp, wr_alignment);
605 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
606 slave->mtd.flags &= ~MTD_WRITEABLE;
607 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
608 part->name);
609 }
610
611 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
612 slave->mtd.ecc_step_size = parent->ecc_step_size;
613 slave->mtd.ecc_strength = parent->ecc_strength;
614 slave->mtd.bitflip_threshold = parent->bitflip_threshold;
615
616 if (parent->_block_isbad) {
617 uint64_t offs = 0;
618
619 while (offs < slave->mtd.size) {
620 if (mtd_block_isreserved(parent, offs + slave->offset))
621 slave->mtd.ecc_stats.bbtblocks++;
622 else if (mtd_block_isbad(parent, offs + slave->offset))
623 slave->mtd.ecc_stats.badblocks++;
624 offs += slave->mtd.erasesize;
625 }
626 }
627
628out_register:
629 return slave;
630}
631
632static ssize_t mtd_partition_offset_show(struct device *dev,
633 struct device_attribute *attr, char *buf)
634{
635 struct mtd_info *mtd = dev_get_drvdata(dev);
636 struct mtd_part *part = mtd_to_part(mtd);
637 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
638}
639
640static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
641
642static const struct attribute *mtd_partition_attrs[] = {
643 &dev_attr_offset.attr,
644 NULL
645};
646
647static int mtd_add_partition_attrs(struct mtd_part *new)
648{
649 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
650 if (ret)
651 printk(KERN_WARNING
652 "mtd: failed to create partition attrs, err=%d\n", ret);
653 return ret;
654}
655
656int mtd_add_partition(struct mtd_info *parent, const char *name,
657 long long offset, long long length)
658{
659 struct mtd_partition part;
660 struct mtd_part *new;
661 int ret = 0;
662
663 /* the direct offset is expected */
664 if (offset == MTDPART_OFS_APPEND ||
665 offset == MTDPART_OFS_NXTBLK)
666 return -EINVAL;
667
668 if (length == MTDPART_SIZ_FULL)
669 length = parent->size - offset;
670
671 if (length <= 0)
672 return -EINVAL;
673
674 memset(&part, 0, sizeof(part));
675 part.name = name;
676 part.size = length;
677 part.offset = offset;
678
679 new = allocate_partition(parent, &part, -1, offset);
680 if (IS_ERR(new))
681 return PTR_ERR(new);
682
683 mutex_lock(&mtd_partitions_mutex);
684 list_add(&new->list, &mtd_partitions);
685 mutex_unlock(&mtd_partitions_mutex);
686
687 ret = add_mtd_device(&new->mtd);
688 if (ret)
689 goto err_remove_part;
690
691 mtd_add_partition_attrs(new);
692
693 return 0;
694
695err_remove_part:
696 mutex_lock(&mtd_partitions_mutex);
697 list_del(&new->list);
698 mutex_unlock(&mtd_partitions_mutex);
699
700 free_partition(new);
701
702 return ret;
703}
704EXPORT_SYMBOL_GPL(mtd_add_partition);
705
706/**
707 * __mtd_del_partition - delete MTD partition
708 *
709 * @priv: internal MTD struct for partition to be deleted
710 *
711 * This function must be called with the partitions mutex locked.
712 */
713static int __mtd_del_partition(struct mtd_part *priv)
714{
715 struct mtd_part *child, *next;
716 int err;
717
718 list_for_each_entry_safe(child, next, &mtd_partitions, list) {
719 if (child->parent == &priv->mtd) {
720 err = __mtd_del_partition(child);
721 if (err)
722 return err;
723 }
724 }
725
726 sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
727
728 err = del_mtd_device(&priv->mtd);
729 if (err)
730 return err;
731
732 list_del(&priv->list);
733 free_partition(priv);
734
735 return 0;
736}
737
738/*
739 * This function unregisters and destroy all slave MTD objects which are
740 * attached to the given MTD object.
741 */
742int del_mtd_partitions(struct mtd_info *mtd)
743{
744 struct mtd_part *slave, *next;
745 int ret, err = 0;
746
747 mutex_lock(&mtd_partitions_mutex);
748 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
749 if (slave->parent == mtd) {
750 ret = __mtd_del_partition(slave);
751 if (ret < 0)
752 err = ret;
753 }
754 mutex_unlock(&mtd_partitions_mutex);
755
756 return err;
757}
758
759int mtd_del_partition(struct mtd_info *mtd, int partno)
760{
761 struct mtd_part *slave, *next;
762 int ret = -EINVAL;
763
764 mutex_lock(&mtd_partitions_mutex);
765 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
766 if ((slave->parent == mtd) &&
767 (slave->mtd.index == partno)) {
768 ret = __mtd_del_partition(slave);
769 break;
770 }
771 mutex_unlock(&mtd_partitions_mutex);
772
773 return ret;
774}
775EXPORT_SYMBOL_GPL(mtd_del_partition);
776
777/*
778 * This function, given a master MTD object and a partition table, creates
779 * and registers slave MTD objects which are bound to the master according to
780 * the partition definitions.
781 *
782 * For historical reasons, this function's caller only registers the master
783 * if the MTD_PARTITIONED_MASTER config option is set.
784 */
785
786int add_mtd_partitions(struct mtd_info *master,
787 const struct mtd_partition *parts,
788 int nbparts)
789{
790 struct mtd_part *slave;
791 uint64_t cur_offset = 0;
792 int i, ret;
793
794 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
795
796 for (i = 0; i < nbparts; i++) {
797 slave = allocate_partition(master, parts + i, i, cur_offset);
798 if (IS_ERR(slave)) {
799 ret = PTR_ERR(slave);
800 goto err_del_partitions;
801 }
802
803 mutex_lock(&mtd_partitions_mutex);
804 list_add(&slave->list, &mtd_partitions);
805 mutex_unlock(&mtd_partitions_mutex);
806
807 ret = add_mtd_device(&slave->mtd);
808 if (ret) {
809 mutex_lock(&mtd_partitions_mutex);
810 list_del(&slave->list);
811 mutex_unlock(&mtd_partitions_mutex);
812
813 free_partition(slave);
814 goto err_del_partitions;
815 }
816
817 mtd_add_partition_attrs(slave);
818 if (parts[i].types)
819 mtd_parse_part(slave, parts[i].types);
820
821 cur_offset = slave->offset + slave->mtd.size;
822 }
823
824 return 0;
825
826err_del_partitions:
827 del_mtd_partitions(master);
828
829 return ret;
830}
831
832static DEFINE_SPINLOCK(part_parser_lock);
833static LIST_HEAD(part_parsers);
834
835static struct mtd_part_parser *mtd_part_parser_get(const char *name)
836{
837 struct mtd_part_parser *p, *ret = NULL;
838
839 spin_lock(&part_parser_lock);
840
841 list_for_each_entry(p, &part_parsers, list)
842 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
843 ret = p;
844 break;
845 }
846
847 spin_unlock(&part_parser_lock);
848
849 return ret;
850}
851
852static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
853{
854 module_put(p->owner);
855}
856
857/*
858 * Many partition parsers just expected the core to kfree() all their data in
859 * one chunk. Do that by default.
860 */
861static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
862 int nr_parts)
863{
864 kfree(pparts);
865}
866
867int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
868{
869 p->owner = owner;
870
871 if (!p->cleanup)
872 p->cleanup = &mtd_part_parser_cleanup_default;
873
874 spin_lock(&part_parser_lock);
875 list_add(&p->list, &part_parsers);
876 spin_unlock(&part_parser_lock);
877
878 return 0;
879}
880EXPORT_SYMBOL_GPL(__register_mtd_parser);
881
882void deregister_mtd_parser(struct mtd_part_parser *p)
883{
884 spin_lock(&part_parser_lock);
885 list_del(&p->list);
886 spin_unlock(&part_parser_lock);
887}
888EXPORT_SYMBOL_GPL(deregister_mtd_parser);
889
890/*
891 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
892 * are changing this array!
893 */
894static const char * const default_mtd_part_types[] = {
895 "cmdlinepart",
896 "ofpart",
897 NULL
898};
899
900static int mtd_part_do_parse(struct mtd_part_parser *parser,
901 struct mtd_info *master,
902 struct mtd_partitions *pparts,
903 struct mtd_part_parser_data *data)
904{
905 int ret;
906
907 ret = (*parser->parse_fn)(master, &pparts->parts, data);
908 pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
909 if (ret <= 0)
910 return ret;
911
912 pr_notice("%d %s partitions found on MTD device %s\n", ret,
913 parser->name, master->name);
914
915 pparts->nr_parts = ret;
916 pparts->parser = parser;
917
918 return ret;
919}
920
921/**
922 * parse_mtd_partitions - parse MTD partitions
923 * @master: the master partition (describes whole MTD device)
924 * @types: names of partition parsers to try or %NULL
925 * @pparts: info about partitions found is returned here
926 * @data: MTD partition parser-specific data
927 *
928 * This function tries to find partition on MTD device @master. It uses MTD
929 * partition parsers, specified in @types. However, if @types is %NULL, then
930 * the default list of parsers is used. The default list contains only the
931 * "cmdlinepart" and "ofpart" parsers ATM.
932 * Note: If there are more then one parser in @types, the kernel only takes the
933 * partitions parsed out by the first parser.
934 *
935 * This function may return:
936 * o a negative error code in case of failure
937 * o zero otherwise, and @pparts will describe the partitions, number of
938 * partitions, and the parser which parsed them. Caller must release
939 * resources with mtd_part_parser_cleanup() when finished with the returned
940 * data.
941 */
942int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
943 struct mtd_partitions *pparts,
944 struct mtd_part_parser_data *data)
945{
946 struct mtd_part_parser *parser;
947 int ret, err = 0;
948
949 if (!types)
950 types = default_mtd_part_types;
951
952 for ( ; *types; types++) {
953 pr_debug("%s: parsing partitions %s\n", master->name, *types);
954 parser = mtd_part_parser_get(*types);
955 if (!parser && !request_module("%s", *types))
956 parser = mtd_part_parser_get(*types);
957 pr_debug("%s: got parser %s\n", master->name,
958 parser ? parser->name : NULL);
959 if (!parser)
960 continue;
961 ret = mtd_part_do_parse(parser, master, pparts, data);
962 /* Found partitions! */
963 if (ret > 0)
964 return 0;
965 mtd_part_parser_put(parser);
966 /*
967 * Stash the first error we see; only report it if no parser
968 * succeeds
969 */
970 if (ret < 0 && !err)
971 err = ret;
972 }
973 return err;
974}
975
976void mtd_part_parser_cleanup(struct mtd_partitions *parts)
977{
978 const struct mtd_part_parser *parser;
979
980 if (!parts)
981 return;
982
983 parser = parts->parser;
984 if (parser) {
985 if (parser->cleanup)
986 parser->cleanup(parts->parts, parts->nr_parts);
987
988 mtd_part_parser_put(parser);
989 }
990}
991
992int mtd_is_partition(const struct mtd_info *mtd)
993{
994 struct mtd_part *part;
995 int ispart = 0;
996
997 mutex_lock(&mtd_partitions_mutex);
998 list_for_each_entry(part, &mtd_partitions, list)
999 if (&part->mtd == mtd) {
1000 ispart = 1;
1001 break;
1002 }
1003 mutex_unlock(&mtd_partitions_mutex);
1004
1005 return ispart;
1006}
1007EXPORT_SYMBOL_GPL(mtd_is_partition);
1008
1009/* Returns the size of the entire flash chip */
1010uint64_t mtd_get_device_size(const struct mtd_info *mtd)
1011{
1012 if (!mtd_is_partition(mtd))
1013 return mtd->size;
1014
1015 return mtd_get_device_size(mtd_to_part(mtd)->parent);
1016}
1017EXPORT_SYMBOL_GPL(mtd_get_device_size);