rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) International Business Machines Corp., 2006 |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 12 | * the GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 17 | * |
| 18 | * Author: Artem Bityutskiy (Битюцкий Артём) |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | * The UBI Eraseblock Association (EBA) sub-system. |
| 23 | * |
| 24 | * This sub-system is responsible for I/O to/from logical eraseblock. |
| 25 | * |
| 26 | * Although in this implementation the EBA table is fully kept and managed in |
| 27 | * RAM, which assumes poor scalability, it might be (partially) maintained on |
| 28 | * flash in future implementations. |
| 29 | * |
| 30 | * The EBA sub-system implements per-logical eraseblock locking. Before |
| 31 | * accessing a logical eraseblock it is locked for reading or writing. The |
| 32 | * per-logical eraseblock locking is implemented by means of the lock tree. The |
| 33 | * lock tree is an RB-tree which refers all the currently locked logical |
| 34 | * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. |
| 35 | * They are indexed by (@vol_id, @lnum) pairs. |
| 36 | * |
| 37 | * EBA also maintains the global sequence counter which is incremented each |
| 38 | * time a logical eraseblock is mapped to a physical eraseblock and it is |
| 39 | * stored in the volume identifier header. This means that each VID header has |
| 40 | * a unique sequence number. The sequence number is only increased an we assume |
| 41 | * 64 bits is enough to never overflow. |
| 42 | */ |
| 43 | |
| 44 | #include <linux/slab.h> |
| 45 | #include <linux/crc32.h> |
| 46 | #include <linux/err.h> |
| 47 | #include "ubi.h" |
| 48 | |
| 49 | /* Number of physical eraseblocks reserved for atomic LEB change operation */ |
| 50 | #define EBA_RESERVED_PEBS 1 |
| 51 | |
| 52 | /** |
| 53 | * struct ubi_eba_entry - structure encoding a single LEB -> PEB association |
| 54 | * @pnum: the physical eraseblock number attached to the LEB |
| 55 | * |
| 56 | * This structure is encoding a LEB -> PEB association. Note that the LEB |
| 57 | * number is not stored here, because it is the index used to access the |
| 58 | * entries table. |
| 59 | */ |
| 60 | struct ubi_eba_entry { |
| 61 | int pnum; |
| 62 | }; |
| 63 | |
| 64 | /** |
| 65 | * struct ubi_eba_table - LEB -> PEB association information |
| 66 | * @entries: the LEB to PEB mapping (one entry per LEB). |
| 67 | * |
| 68 | * This structure is private to the EBA logic and should be kept here. |
| 69 | * It is encoding the LEB to PEB association table, and is subject to |
| 70 | * changes. |
| 71 | */ |
| 72 | struct ubi_eba_table { |
| 73 | struct ubi_eba_entry *entries; |
| 74 | }; |
| 75 | |
| 76 | /** |
| 77 | * next_sqnum - get next sequence number. |
| 78 | * @ubi: UBI device description object |
| 79 | * |
| 80 | * This function returns next sequence number to use, which is just the current |
| 81 | * global sequence counter value. It also increases the global sequence |
| 82 | * counter. |
| 83 | */ |
| 84 | unsigned long long ubi_next_sqnum(struct ubi_device *ubi) |
| 85 | { |
| 86 | unsigned long long sqnum; |
| 87 | |
| 88 | spin_lock(&ubi->ltree_lock); |
| 89 | sqnum = ubi->global_sqnum++; |
| 90 | spin_unlock(&ubi->ltree_lock); |
| 91 | |
| 92 | return sqnum; |
| 93 | } |
| 94 | |
| 95 | /** |
| 96 | * ubi_get_compat - get compatibility flags of a volume. |
| 97 | * @ubi: UBI device description object |
| 98 | * @vol_id: volume ID |
| 99 | * |
| 100 | * This function returns compatibility flags for an internal volume. User |
| 101 | * volumes have no compatibility flags, so %0 is returned. |
| 102 | */ |
| 103 | static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) |
| 104 | { |
| 105 | if (vol_id == UBI_LAYOUT_VOLUME_ID) |
| 106 | return UBI_LAYOUT_VOLUME_COMPAT; |
| 107 | return 0; |
| 108 | } |
| 109 | |
| 110 | /** |
| 111 | * ubi_eba_get_ldesc - get information about a LEB |
| 112 | * @vol: volume description object |
| 113 | * @lnum: logical eraseblock number |
| 114 | * @ldesc: the LEB descriptor to fill |
| 115 | * |
| 116 | * Used to query information about a specific LEB. |
| 117 | * It is currently only returning the physical position of the LEB, but will be |
| 118 | * extended to provide more information. |
| 119 | */ |
| 120 | void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum, |
| 121 | struct ubi_eba_leb_desc *ldesc) |
| 122 | { |
| 123 | ldesc->lnum = lnum; |
| 124 | ldesc->pnum = vol->eba_tbl->entries[lnum].pnum; |
| 125 | } |
| 126 | |
| 127 | /** |
| 128 | * ubi_eba_create_table - allocate a new EBA table and initialize it with all |
| 129 | * LEBs unmapped |
| 130 | * @vol: volume containing the EBA table to copy |
| 131 | * @nentries: number of entries in the table |
| 132 | * |
| 133 | * Allocate a new EBA table and initialize it with all LEBs unmapped. |
| 134 | * Returns a valid pointer if it succeed, an ERR_PTR() otherwise. |
| 135 | */ |
| 136 | struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol, |
| 137 | int nentries) |
| 138 | { |
| 139 | struct ubi_eba_table *tbl; |
| 140 | int err = -ENOMEM; |
| 141 | int i; |
| 142 | |
| 143 | tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); |
| 144 | if (!tbl) |
| 145 | return ERR_PTR(-ENOMEM); |
| 146 | |
| 147 | tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries), |
| 148 | GFP_KERNEL); |
| 149 | if (!tbl->entries) |
| 150 | goto err; |
| 151 | |
| 152 | for (i = 0; i < nentries; i++) |
| 153 | tbl->entries[i].pnum = UBI_LEB_UNMAPPED; |
| 154 | |
| 155 | return tbl; |
| 156 | |
| 157 | err: |
| 158 | kfree(tbl->entries); |
| 159 | kfree(tbl); |
| 160 | |
| 161 | return ERR_PTR(err); |
| 162 | } |
| 163 | |
| 164 | /** |
| 165 | * ubi_eba_destroy_table - destroy an EBA table |
| 166 | * @tbl: the table to destroy |
| 167 | * |
| 168 | * Destroy an EBA table. |
| 169 | */ |
| 170 | void ubi_eba_destroy_table(struct ubi_eba_table *tbl) |
| 171 | { |
| 172 | if (!tbl) |
| 173 | return; |
| 174 | |
| 175 | kfree(tbl->entries); |
| 176 | kfree(tbl); |
| 177 | } |
| 178 | |
| 179 | /** |
| 180 | * ubi_eba_copy_table - copy the EBA table attached to vol into another table |
| 181 | * @vol: volume containing the EBA table to copy |
| 182 | * @dst: destination |
| 183 | * @nentries: number of entries to copy |
| 184 | * |
| 185 | * Copy the EBA table stored in vol into the one pointed by dst. |
| 186 | */ |
| 187 | void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst, |
| 188 | int nentries) |
| 189 | { |
| 190 | struct ubi_eba_table *src; |
| 191 | int i; |
| 192 | |
| 193 | ubi_assert(dst && vol && vol->eba_tbl); |
| 194 | |
| 195 | src = vol->eba_tbl; |
| 196 | |
| 197 | for (i = 0; i < nentries; i++) |
| 198 | dst->entries[i].pnum = src->entries[i].pnum; |
| 199 | } |
| 200 | |
| 201 | /** |
| 202 | * ubi_eba_replace_table - assign a new EBA table to a volume |
| 203 | * @vol: volume containing the EBA table to copy |
| 204 | * @tbl: new EBA table |
| 205 | * |
| 206 | * Assign a new EBA table to the volume and release the old one. |
| 207 | */ |
| 208 | void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl) |
| 209 | { |
| 210 | ubi_eba_destroy_table(vol->eba_tbl); |
| 211 | vol->eba_tbl = tbl; |
| 212 | } |
| 213 | |
| 214 | /** |
| 215 | * ltree_lookup - look up the lock tree. |
| 216 | * @ubi: UBI device description object |
| 217 | * @vol_id: volume ID |
| 218 | * @lnum: logical eraseblock number |
| 219 | * |
| 220 | * This function returns a pointer to the corresponding &struct ubi_ltree_entry |
| 221 | * object if the logical eraseblock is locked and %NULL if it is not. |
| 222 | * @ubi->ltree_lock has to be locked. |
| 223 | */ |
| 224 | static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, |
| 225 | int lnum) |
| 226 | { |
| 227 | struct rb_node *p; |
| 228 | |
| 229 | p = ubi->ltree.rb_node; |
| 230 | while (p) { |
| 231 | struct ubi_ltree_entry *le; |
| 232 | |
| 233 | le = rb_entry(p, struct ubi_ltree_entry, rb); |
| 234 | |
| 235 | if (vol_id < le->vol_id) |
| 236 | p = p->rb_left; |
| 237 | else if (vol_id > le->vol_id) |
| 238 | p = p->rb_right; |
| 239 | else { |
| 240 | if (lnum < le->lnum) |
| 241 | p = p->rb_left; |
| 242 | else if (lnum > le->lnum) |
| 243 | p = p->rb_right; |
| 244 | else |
| 245 | return le; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | return NULL; |
| 250 | } |
| 251 | |
| 252 | /** |
| 253 | * ltree_add_entry - add new entry to the lock tree. |
| 254 | * @ubi: UBI device description object |
| 255 | * @vol_id: volume ID |
| 256 | * @lnum: logical eraseblock number |
| 257 | * |
| 258 | * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the |
| 259 | * lock tree. If such entry is already there, its usage counter is increased. |
| 260 | * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation |
| 261 | * failed. |
| 262 | */ |
| 263 | static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, |
| 264 | int vol_id, int lnum) |
| 265 | { |
| 266 | struct ubi_ltree_entry *le, *le1, *le_free; |
| 267 | |
| 268 | le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); |
| 269 | if (!le) |
| 270 | return ERR_PTR(-ENOMEM); |
| 271 | |
| 272 | le->users = 0; |
| 273 | init_rwsem(&le->mutex); |
| 274 | le->vol_id = vol_id; |
| 275 | le->lnum = lnum; |
| 276 | |
| 277 | spin_lock(&ubi->ltree_lock); |
| 278 | le1 = ltree_lookup(ubi, vol_id, lnum); |
| 279 | |
| 280 | if (le1) { |
| 281 | /* |
| 282 | * This logical eraseblock is already locked. The newly |
| 283 | * allocated lock entry is not needed. |
| 284 | */ |
| 285 | le_free = le; |
| 286 | le = le1; |
| 287 | } else { |
| 288 | struct rb_node **p, *parent = NULL; |
| 289 | |
| 290 | /* |
| 291 | * No lock entry, add the newly allocated one to the |
| 292 | * @ubi->ltree RB-tree. |
| 293 | */ |
| 294 | le_free = NULL; |
| 295 | |
| 296 | p = &ubi->ltree.rb_node; |
| 297 | while (*p) { |
| 298 | parent = *p; |
| 299 | le1 = rb_entry(parent, struct ubi_ltree_entry, rb); |
| 300 | |
| 301 | if (vol_id < le1->vol_id) |
| 302 | p = &(*p)->rb_left; |
| 303 | else if (vol_id > le1->vol_id) |
| 304 | p = &(*p)->rb_right; |
| 305 | else { |
| 306 | ubi_assert(lnum != le1->lnum); |
| 307 | if (lnum < le1->lnum) |
| 308 | p = &(*p)->rb_left; |
| 309 | else |
| 310 | p = &(*p)->rb_right; |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | rb_link_node(&le->rb, parent, p); |
| 315 | rb_insert_color(&le->rb, &ubi->ltree); |
| 316 | } |
| 317 | le->users += 1; |
| 318 | spin_unlock(&ubi->ltree_lock); |
| 319 | |
| 320 | kfree(le_free); |
| 321 | return le; |
| 322 | } |
| 323 | |
| 324 | /** |
| 325 | * leb_read_lock - lock logical eraseblock for reading. |
| 326 | * @ubi: UBI device description object |
| 327 | * @vol_id: volume ID |
| 328 | * @lnum: logical eraseblock number |
| 329 | * |
| 330 | * This function locks a logical eraseblock for reading. Returns zero in case |
| 331 | * of success and a negative error code in case of failure. |
| 332 | */ |
| 333 | static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| 334 | { |
| 335 | struct ubi_ltree_entry *le; |
| 336 | |
| 337 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 338 | if (IS_ERR(le)) |
| 339 | return PTR_ERR(le); |
| 340 | down_read(&le->mutex); |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | /** |
| 345 | * leb_read_unlock - unlock logical eraseblock. |
| 346 | * @ubi: UBI device description object |
| 347 | * @vol_id: volume ID |
| 348 | * @lnum: logical eraseblock number |
| 349 | */ |
| 350 | static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| 351 | { |
| 352 | struct ubi_ltree_entry *le; |
| 353 | |
| 354 | spin_lock(&ubi->ltree_lock); |
| 355 | le = ltree_lookup(ubi, vol_id, lnum); |
| 356 | le->users -= 1; |
| 357 | ubi_assert(le->users >= 0); |
| 358 | up_read(&le->mutex); |
| 359 | if (le->users == 0) { |
| 360 | rb_erase(&le->rb, &ubi->ltree); |
| 361 | kfree(le); |
| 362 | } |
| 363 | spin_unlock(&ubi->ltree_lock); |
| 364 | } |
| 365 | |
| 366 | /** |
| 367 | * leb_write_lock - lock logical eraseblock for writing. |
| 368 | * @ubi: UBI device description object |
| 369 | * @vol_id: volume ID |
| 370 | * @lnum: logical eraseblock number |
| 371 | * |
| 372 | * This function locks a logical eraseblock for writing. Returns zero in case |
| 373 | * of success and a negative error code in case of failure. |
| 374 | */ |
| 375 | static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| 376 | { |
| 377 | struct ubi_ltree_entry *le; |
| 378 | |
| 379 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 380 | if (IS_ERR(le)) |
| 381 | return PTR_ERR(le); |
| 382 | down_write(&le->mutex); |
| 383 | return 0; |
| 384 | } |
| 385 | |
| 386 | /** |
| 387 | * leb_write_lock - lock logical eraseblock for writing. |
| 388 | * @ubi: UBI device description object |
| 389 | * @vol_id: volume ID |
| 390 | * @lnum: logical eraseblock number |
| 391 | * |
| 392 | * This function locks a logical eraseblock for writing if there is no |
| 393 | * contention and does nothing if there is contention. Returns %0 in case of |
| 394 | * success, %1 in case of contention, and and a negative error code in case of |
| 395 | * failure. |
| 396 | */ |
| 397 | static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) |
| 398 | { |
| 399 | struct ubi_ltree_entry *le; |
| 400 | |
| 401 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 402 | if (IS_ERR(le)) |
| 403 | return PTR_ERR(le); |
| 404 | if (down_write_trylock(&le->mutex)) |
| 405 | return 0; |
| 406 | |
| 407 | /* Contention, cancel */ |
| 408 | spin_lock(&ubi->ltree_lock); |
| 409 | le->users -= 1; |
| 410 | ubi_assert(le->users >= 0); |
| 411 | if (le->users == 0) { |
| 412 | rb_erase(&le->rb, &ubi->ltree); |
| 413 | kfree(le); |
| 414 | } |
| 415 | spin_unlock(&ubi->ltree_lock); |
| 416 | |
| 417 | return 1; |
| 418 | } |
| 419 | |
| 420 | /** |
| 421 | * leb_write_unlock - unlock logical eraseblock. |
| 422 | * @ubi: UBI device description object |
| 423 | * @vol_id: volume ID |
| 424 | * @lnum: logical eraseblock number |
| 425 | */ |
| 426 | static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| 427 | { |
| 428 | struct ubi_ltree_entry *le; |
| 429 | |
| 430 | spin_lock(&ubi->ltree_lock); |
| 431 | le = ltree_lookup(ubi, vol_id, lnum); |
| 432 | le->users -= 1; |
| 433 | ubi_assert(le->users >= 0); |
| 434 | up_write(&le->mutex); |
| 435 | if (le->users == 0) { |
| 436 | rb_erase(&le->rb, &ubi->ltree); |
| 437 | kfree(le); |
| 438 | } |
| 439 | spin_unlock(&ubi->ltree_lock); |
| 440 | } |
| 441 | |
| 442 | /** |
| 443 | * ubi_eba_is_mapped - check if a LEB is mapped. |
| 444 | * @vol: volume description object |
| 445 | * @lnum: logical eraseblock number |
| 446 | * |
| 447 | * This function returns true if the LEB is mapped, false otherwise. |
| 448 | */ |
| 449 | bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum) |
| 450 | { |
| 451 | return vol->eba_tbl->entries[lnum].pnum >= 0; |
| 452 | } |
| 453 | |
| 454 | /** |
| 455 | * ubi_eba_unmap_leb - un-map logical eraseblock. |
| 456 | * @ubi: UBI device description object |
| 457 | * @vol: volume description object |
| 458 | * @lnum: logical eraseblock number |
| 459 | * |
| 460 | * This function un-maps logical eraseblock @lnum and schedules corresponding |
| 461 | * physical eraseblock for erasure. Returns zero in case of success and a |
| 462 | * negative error code in case of failure. |
| 463 | */ |
| 464 | int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, |
| 465 | int lnum) |
| 466 | { |
| 467 | int err, pnum, vol_id = vol->vol_id; |
| 468 | |
| 469 | if (ubi->ro_mode) |
| 470 | return -EROFS; |
| 471 | |
| 472 | err = leb_write_lock(ubi, vol_id, lnum); |
| 473 | if (err) |
| 474 | return err; |
| 475 | |
| 476 | pnum = vol->eba_tbl->entries[lnum].pnum; |
| 477 | if (pnum < 0) |
| 478 | /* This logical eraseblock is already unmapped */ |
| 479 | goto out_unlock; |
| 480 | |
| 481 | dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); |
| 482 | |
| 483 | down_read(&ubi->fm_eba_sem); |
| 484 | vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; |
| 485 | up_read(&ubi->fm_eba_sem); |
| 486 | err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); |
| 487 | |
| 488 | out_unlock: |
| 489 | leb_write_unlock(ubi, vol_id, lnum); |
| 490 | return err; |
| 491 | } |
| 492 | |
| 493 | #ifdef CONFIG_MTD_UBI_FASTMAP |
| 494 | /** |
| 495 | * check_mapping - check and fixup a mapping |
| 496 | * @ubi: UBI device description object |
| 497 | * @vol: volume description object |
| 498 | * @lnum: logical eraseblock number |
| 499 | * @pnum: physical eraseblock number |
| 500 | * |
| 501 | * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap |
| 502 | * operations, if such an operation is interrupted the mapping still looks |
| 503 | * good, but upon first read an ECC is reported to the upper layer. |
| 504 | * Normaly during the full-scan at attach time this is fixed, for Fastmap |
| 505 | * we have to deal with it while reading. |
| 506 | * If the PEB behind a LEB shows this symthom we change the mapping to |
| 507 | * %UBI_LEB_UNMAPPED and schedule the PEB for erasure. |
| 508 | * |
| 509 | * Returns 0 on success, negative error code in case of failure. |
| 510 | */ |
| 511 | static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| 512 | int *pnum) |
| 513 | { |
| 514 | int err; |
| 515 | struct ubi_vid_io_buf *vidb; |
| 516 | |
| 517 | if (!ubi->fast_attach) |
| 518 | return 0; |
| 519 | |
| 520 | if (!vol->checkmap || test_bit(lnum, vol->checkmap)) |
| 521 | return 0; |
| 522 | |
| 523 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| 524 | if (!vidb) |
| 525 | return -ENOMEM; |
| 526 | |
| 527 | err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0); |
| 528 | if (err > 0 && err != UBI_IO_BITFLIPS) { |
| 529 | int torture = 0; |
| 530 | |
| 531 | switch (err) { |
| 532 | case UBI_IO_FF: |
| 533 | case UBI_IO_FF_BITFLIPS: |
| 534 | case UBI_IO_BAD_HDR: |
| 535 | case UBI_IO_BAD_HDR_EBADMSG: |
| 536 | break; |
| 537 | default: |
| 538 | ubi_assert(0); |
| 539 | } |
| 540 | |
| 541 | if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS) |
| 542 | torture = 1; |
| 543 | |
| 544 | down_read(&ubi->fm_eba_sem); |
| 545 | vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; |
| 546 | up_read(&ubi->fm_eba_sem); |
| 547 | ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture); |
| 548 | |
| 549 | *pnum = UBI_LEB_UNMAPPED; |
| 550 | } else if (err < 0) { |
| 551 | ubi_err(ubi, "unable to read VID header back from PEB %i: %i", |
| 552 | *pnum, err); |
| 553 | |
| 554 | goto out_free; |
| 555 | } |
| 556 | |
| 557 | set_bit(lnum, vol->checkmap); |
| 558 | err = 0; |
| 559 | |
| 560 | out_free: |
| 561 | ubi_free_vid_buf(vidb); |
| 562 | |
| 563 | return err; |
| 564 | } |
| 565 | #else |
| 566 | static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| 567 | int *pnum) |
| 568 | { |
| 569 | return 0; |
| 570 | } |
| 571 | #endif |
| 572 | |
| 573 | /** |
| 574 | * ubi_eba_read_leb - read data. |
| 575 | * @ubi: UBI device description object |
| 576 | * @vol: volume description object |
| 577 | * @lnum: logical eraseblock number |
| 578 | * @buf: buffer to store the read data |
| 579 | * @offset: offset from where to read |
| 580 | * @len: how many bytes to read |
| 581 | * @check: data CRC check flag |
| 582 | * |
| 583 | * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF |
| 584 | * bytes. The @check flag only makes sense for static volumes and forces |
| 585 | * eraseblock data CRC checking. |
| 586 | * |
| 587 | * In case of success this function returns zero. In case of a static volume, |
| 588 | * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be |
| 589 | * returned for any volume type if an ECC error was detected by the MTD device |
| 590 | * driver. Other negative error cored may be returned in case of other errors. |
| 591 | */ |
| 592 | int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| 593 | void *buf, int offset, int len, int check) |
| 594 | { |
| 595 | int err, pnum, scrub = 0, vol_id = vol->vol_id; |
| 596 | struct ubi_vid_io_buf *vidb; |
| 597 | struct ubi_vid_hdr *vid_hdr; |
| 598 | uint32_t uninitialized_var(crc); |
| 599 | |
| 600 | err = leb_read_lock(ubi, vol_id, lnum); |
| 601 | if (err) |
| 602 | return err; |
| 603 | |
| 604 | pnum = vol->eba_tbl->entries[lnum].pnum; |
| 605 | if (pnum >= 0) { |
| 606 | err = check_mapping(ubi, vol, lnum, &pnum); |
| 607 | if (err < 0) |
| 608 | goto out_unlock; |
| 609 | } |
| 610 | |
| 611 | if (pnum == UBI_LEB_UNMAPPED) { |
| 612 | /* |
| 613 | * The logical eraseblock is not mapped, fill the whole buffer |
| 614 | * with 0xFF bytes. The exception is static volumes for which |
| 615 | * it is an error to read unmapped logical eraseblocks. |
| 616 | */ |
| 617 | dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", |
| 618 | len, offset, vol_id, lnum); |
| 619 | leb_read_unlock(ubi, vol_id, lnum); |
| 620 | ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); |
| 621 | memset(buf, 0xFF, len); |
| 622 | return 0; |
| 623 | } |
| 624 | |
| 625 | dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", |
| 626 | len, offset, vol_id, lnum, pnum); |
| 627 | |
| 628 | if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| 629 | check = 0; |
| 630 | |
| 631 | retry: |
| 632 | if (check) { |
| 633 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| 634 | if (!vidb) { |
| 635 | err = -ENOMEM; |
| 636 | goto out_unlock; |
| 637 | } |
| 638 | |
| 639 | vid_hdr = ubi_get_vid_hdr(vidb); |
| 640 | |
| 641 | err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); |
| 642 | if (err && err != UBI_IO_BITFLIPS) { |
| 643 | if (err > 0) { |
| 644 | /* |
| 645 | * The header is either absent or corrupted. |
| 646 | * The former case means there is a bug - |
| 647 | * switch to read-only mode just in case. |
| 648 | * The latter case means a real corruption - we |
| 649 | * may try to recover data. FIXME: but this is |
| 650 | * not implemented. |
| 651 | */ |
| 652 | if (err == UBI_IO_BAD_HDR_EBADMSG || |
| 653 | err == UBI_IO_BAD_HDR) { |
| 654 | ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", |
| 655 | pnum, vol_id, lnum); |
| 656 | err = -EBADMSG; |
| 657 | } else { |
| 658 | /* |
| 659 | * Ending up here in the non-Fastmap case |
| 660 | * is a clear bug as the VID header had to |
| 661 | * be present at scan time to have it referenced. |
| 662 | * With fastmap the story is more complicated. |
| 663 | * Fastmap has the mapping info without the need |
| 664 | * of a full scan. So the LEB could have been |
| 665 | * unmapped, Fastmap cannot know this and keeps |
| 666 | * the LEB referenced. |
| 667 | * This is valid and works as the layer above UBI |
| 668 | * has to do bookkeeping about used/referenced |
| 669 | * LEBs in any case. |
| 670 | */ |
| 671 | if (ubi->fast_attach) { |
| 672 | err = -EBADMSG; |
| 673 | } else { |
| 674 | err = -EINVAL; |
| 675 | ubi_ro_mode(ubi); |
| 676 | } |
| 677 | } |
| 678 | } |
| 679 | goto out_free; |
| 680 | } else if (err == UBI_IO_BITFLIPS) |
| 681 | scrub = 1; |
| 682 | |
| 683 | ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); |
| 684 | ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); |
| 685 | |
| 686 | crc = be32_to_cpu(vid_hdr->data_crc); |
| 687 | ubi_free_vid_buf(vidb); |
| 688 | } |
| 689 | |
| 690 | err = ubi_io_read_data(ubi, buf, pnum, offset, len); |
| 691 | if (err) { |
| 692 | if (err == UBI_IO_BITFLIPS) |
| 693 | scrub = 1; |
| 694 | else if (mtd_is_eccerr(err)) { |
| 695 | if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| 696 | goto out_unlock; |
| 697 | scrub = 1; |
| 698 | if (!check) { |
| 699 | ubi_msg(ubi, "force data checking"); |
| 700 | check = 1; |
| 701 | goto retry; |
| 702 | } |
| 703 | } else |
| 704 | goto out_unlock; |
| 705 | } |
| 706 | |
| 707 | if (check) { |
| 708 | uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); |
| 709 | if (crc1 != crc) { |
| 710 | ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", |
| 711 | crc1, crc); |
| 712 | err = -EBADMSG; |
| 713 | goto out_unlock; |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | if (scrub) |
| 718 | err = ubi_wl_scrub_peb(ubi, pnum); |
| 719 | |
| 720 | leb_read_unlock(ubi, vol_id, lnum); |
| 721 | return err; |
| 722 | |
| 723 | out_free: |
| 724 | ubi_free_vid_buf(vidb); |
| 725 | out_unlock: |
| 726 | leb_read_unlock(ubi, vol_id, lnum); |
| 727 | return err; |
| 728 | } |
| 729 | |
| 730 | /** |
| 731 | * ubi_eba_read_leb_sg - read data into a scatter gather list. |
| 732 | * @ubi: UBI device description object |
| 733 | * @vol: volume description object |
| 734 | * @lnum: logical eraseblock number |
| 735 | * @sgl: UBI scatter gather list to store the read data |
| 736 | * @offset: offset from where to read |
| 737 | * @len: how many bytes to read |
| 738 | * @check: data CRC check flag |
| 739 | * |
| 740 | * This function works exactly like ubi_eba_read_leb(). But instead of |
| 741 | * storing the read data into a buffer it writes to an UBI scatter gather |
| 742 | * list. |
| 743 | */ |
| 744 | int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, |
| 745 | struct ubi_sgl *sgl, int lnum, int offset, int len, |
| 746 | int check) |
| 747 | { |
| 748 | int to_read; |
| 749 | int ret; |
| 750 | struct scatterlist *sg; |
| 751 | |
| 752 | for (;;) { |
| 753 | ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); |
| 754 | sg = &sgl->sg[sgl->list_pos]; |
| 755 | if (len < sg->length - sgl->page_pos) |
| 756 | to_read = len; |
| 757 | else |
| 758 | to_read = sg->length - sgl->page_pos; |
| 759 | |
| 760 | ret = ubi_eba_read_leb(ubi, vol, lnum, |
| 761 | sg_virt(sg) + sgl->page_pos, offset, |
| 762 | to_read, check); |
| 763 | if (ret < 0) |
| 764 | return ret; |
| 765 | |
| 766 | offset += to_read; |
| 767 | len -= to_read; |
| 768 | if (!len) { |
| 769 | sgl->page_pos += to_read; |
| 770 | if (sgl->page_pos == sg->length) { |
| 771 | sgl->list_pos++; |
| 772 | sgl->page_pos = 0; |
| 773 | } |
| 774 | |
| 775 | break; |
| 776 | } |
| 777 | |
| 778 | sgl->list_pos++; |
| 779 | sgl->page_pos = 0; |
| 780 | } |
| 781 | |
| 782 | return ret; |
| 783 | } |
| 784 | |
| 785 | /** |
| 786 | * try_recover_peb - try to recover from write failure. |
| 787 | * @vol: volume description object |
| 788 | * @pnum: the physical eraseblock to recover |
| 789 | * @lnum: logical eraseblock number |
| 790 | * @buf: data which was not written because of the write failure |
| 791 | * @offset: offset of the failed write |
| 792 | * @len: how many bytes should have been written |
| 793 | * @vidb: VID buffer |
| 794 | * @retry: whether the caller should retry in case of failure |
| 795 | * |
| 796 | * This function is called in case of a write failure and moves all good data |
| 797 | * from the potentially bad physical eraseblock to a good physical eraseblock. |
| 798 | * This function also writes the data which was not written due to the failure. |
| 799 | * Returns 0 in case of success, and a negative error code in case of failure. |
| 800 | * In case of failure, the %retry parameter is set to false if this is a fatal |
| 801 | * error (retrying won't help), and true otherwise. |
| 802 | */ |
| 803 | static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum, |
| 804 | const void *buf, int offset, int len, |
| 805 | struct ubi_vid_io_buf *vidb, bool *retry) |
| 806 | { |
| 807 | struct ubi_device *ubi = vol->ubi; |
| 808 | struct ubi_vid_hdr *vid_hdr; |
| 809 | int new_pnum, err, vol_id = vol->vol_id, data_size; |
| 810 | uint32_t crc; |
| 811 | |
| 812 | *retry = false; |
| 813 | |
| 814 | new_pnum = ubi_wl_get_peb(ubi); |
| 815 | if (new_pnum < 0) { |
| 816 | err = new_pnum; |
| 817 | goto out_put; |
| 818 | } |
| 819 | |
| 820 | ubi_msg(ubi, "recover PEB %d, move data to PEB %d", |
| 821 | pnum, new_pnum); |
| 822 | |
| 823 | err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); |
| 824 | if (err && err != UBI_IO_BITFLIPS) { |
| 825 | if (err > 0) |
| 826 | err = -EIO; |
| 827 | goto out_put; |
| 828 | } |
| 829 | |
| 830 | vid_hdr = ubi_get_vid_hdr(vidb); |
| 831 | ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC); |
| 832 | |
| 833 | mutex_lock(&ubi->buf_mutex); |
| 834 | memset(ubi->peb_buf + offset, 0xFF, len); |
| 835 | |
| 836 | /* Read everything before the area where the write failure happened */ |
| 837 | if (offset > 0) { |
| 838 | err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); |
| 839 | if (err && err != UBI_IO_BITFLIPS) |
| 840 | goto out_unlock; |
| 841 | } |
| 842 | |
| 843 | *retry = true; |
| 844 | |
| 845 | memcpy(ubi->peb_buf + offset, buf, len); |
| 846 | |
| 847 | data_size = offset + len; |
| 848 | crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); |
| 849 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 850 | vid_hdr->copy_flag = 1; |
| 851 | vid_hdr->data_size = cpu_to_be32(data_size); |
| 852 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 853 | err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb); |
| 854 | if (err) |
| 855 | goto out_unlock; |
| 856 | |
| 857 | err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); |
| 858 | |
| 859 | out_unlock: |
| 860 | mutex_unlock(&ubi->buf_mutex); |
| 861 | |
| 862 | if (!err) |
| 863 | vol->eba_tbl->entries[lnum].pnum = new_pnum; |
| 864 | |
| 865 | out_put: |
| 866 | up_read(&ubi->fm_eba_sem); |
| 867 | |
| 868 | if (!err) { |
| 869 | ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); |
| 870 | ubi_msg(ubi, "data was successfully recovered"); |
| 871 | } else if (new_pnum >= 0) { |
| 872 | /* |
| 873 | * Bad luck? This physical eraseblock is bad too? Crud. Let's |
| 874 | * try to get another one. |
| 875 | */ |
| 876 | ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); |
| 877 | ubi_warn(ubi, "failed to write to PEB %d", new_pnum); |
| 878 | } |
| 879 | |
| 880 | return err; |
| 881 | } |
| 882 | |
| 883 | /** |
| 884 | * recover_peb - recover from write failure. |
| 885 | * @ubi: UBI device description object |
| 886 | * @pnum: the physical eraseblock to recover |
| 887 | * @vol_id: volume ID |
| 888 | * @lnum: logical eraseblock number |
| 889 | * @buf: data which was not written because of the write failure |
| 890 | * @offset: offset of the failed write |
| 891 | * @len: how many bytes should have been written |
| 892 | * |
| 893 | * This function is called in case of a write failure and moves all good data |
| 894 | * from the potentially bad physical eraseblock to a good physical eraseblock. |
| 895 | * This function also writes the data which was not written due to the failure. |
| 896 | * Returns 0 in case of success, and a negative error code in case of failure. |
| 897 | * This function tries %UBI_IO_RETRIES before giving up. |
| 898 | */ |
| 899 | static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, |
| 900 | const void *buf, int offset, int len) |
| 901 | { |
| 902 | int err, idx = vol_id2idx(ubi, vol_id), tries; |
| 903 | struct ubi_volume *vol = ubi->volumes[idx]; |
| 904 | struct ubi_vid_io_buf *vidb; |
| 905 | |
| 906 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| 907 | if (!vidb) |
| 908 | return -ENOMEM; |
| 909 | |
| 910 | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { |
| 911 | bool retry; |
| 912 | |
| 913 | err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb, |
| 914 | &retry); |
| 915 | if (!err || !retry) |
| 916 | break; |
| 917 | |
| 918 | ubi_msg(ubi, "try again"); |
| 919 | } |
| 920 | |
| 921 | ubi_free_vid_buf(vidb); |
| 922 | |
| 923 | return err; |
| 924 | } |
| 925 | |
| 926 | /** |
| 927 | * try_write_vid_and_data - try to write VID header and data to a new PEB. |
| 928 | * @vol: volume description object |
| 929 | * @lnum: logical eraseblock number |
| 930 | * @vidb: the VID buffer to write |
| 931 | * @buf: buffer containing the data |
| 932 | * @offset: where to start writing data |
| 933 | * @len: how many bytes should be written |
| 934 | * |
| 935 | * This function tries to write VID header and data belonging to logical |
| 936 | * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero |
| 937 | * in case of success and a negative error code in case of failure. |
| 938 | * In case of error, it is possible that something was still written to the |
| 939 | * flash media, but may be some garbage. |
| 940 | */ |
| 941 | static int try_write_vid_and_data(struct ubi_volume *vol, int lnum, |
| 942 | struct ubi_vid_io_buf *vidb, const void *buf, |
| 943 | int offset, int len) |
| 944 | { |
| 945 | struct ubi_device *ubi = vol->ubi; |
| 946 | int pnum, opnum, err, vol_id = vol->vol_id; |
| 947 | |
| 948 | pnum = ubi_wl_get_peb(ubi); |
| 949 | if (pnum < 0) { |
| 950 | err = pnum; |
| 951 | goto out_put; |
| 952 | } |
| 953 | |
| 954 | opnum = vol->eba_tbl->entries[lnum].pnum; |
| 955 | |
| 956 | dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", |
| 957 | len, offset, vol_id, lnum, pnum); |
| 958 | |
| 959 | err = ubi_io_write_vid_hdr(ubi, pnum, vidb); |
| 960 | if (err) { |
| 961 | ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", |
| 962 | vol_id, lnum, pnum); |
| 963 | goto out_put; |
| 964 | } |
| 965 | |
| 966 | if (len) { |
| 967 | err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| 968 | if (err) { |
| 969 | ubi_warn(ubi, |
| 970 | "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", |
| 971 | len, offset, vol_id, lnum, pnum); |
| 972 | goto out_put; |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | vol->eba_tbl->entries[lnum].pnum = pnum; |
| 977 | |
| 978 | out_put: |
| 979 | up_read(&ubi->fm_eba_sem); |
| 980 | |
| 981 | if (err && pnum >= 0) |
| 982 | err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); |
| 983 | else if (!err && opnum >= 0) |
| 984 | err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0); |
| 985 | |
| 986 | return err; |
| 987 | } |
| 988 | |
| 989 | /** |
| 990 | * ubi_eba_write_leb - write data to dynamic volume. |
| 991 | * @ubi: UBI device description object |
| 992 | * @vol: volume description object |
| 993 | * @lnum: logical eraseblock number |
| 994 | * @buf: the data to write |
| 995 | * @offset: offset within the logical eraseblock where to write |
| 996 | * @len: how many bytes to write |
| 997 | * |
| 998 | * This function writes data to logical eraseblock @lnum of a dynamic volume |
| 999 | * @vol. Returns zero in case of success and a negative error code in case |
| 1000 | * of failure. In case of error, it is possible that something was still |
| 1001 | * written to the flash media, but may be some garbage. |
| 1002 | * This function retries %UBI_IO_RETRIES times before giving up. |
| 1003 | */ |
| 1004 | int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| 1005 | const void *buf, int offset, int len) |
| 1006 | { |
| 1007 | int err, pnum, tries, vol_id = vol->vol_id; |
| 1008 | struct ubi_vid_io_buf *vidb; |
| 1009 | struct ubi_vid_hdr *vid_hdr; |
| 1010 | |
| 1011 | if (ubi->ro_mode) |
| 1012 | return -EROFS; |
| 1013 | |
| 1014 | err = leb_write_lock(ubi, vol_id, lnum); |
| 1015 | if (err) |
| 1016 | return err; |
| 1017 | |
| 1018 | pnum = vol->eba_tbl->entries[lnum].pnum; |
| 1019 | if (pnum >= 0) { |
| 1020 | err = check_mapping(ubi, vol, lnum, &pnum); |
| 1021 | if (err < 0) |
| 1022 | goto out; |
| 1023 | } |
| 1024 | |
| 1025 | if (pnum >= 0) { |
| 1026 | dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", |
| 1027 | len, offset, vol_id, lnum, pnum); |
| 1028 | |
| 1029 | err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| 1030 | if (err) { |
| 1031 | ubi_warn(ubi, "failed to write data to PEB %d", pnum); |
| 1032 | if (err == -EIO && ubi->bad_allowed) |
| 1033 | err = recover_peb(ubi, pnum, vol_id, lnum, buf, |
| 1034 | offset, len); |
| 1035 | } |
| 1036 | |
| 1037 | goto out; |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * The logical eraseblock is not mapped. We have to get a free physical |
| 1042 | * eraseblock and write the volume identifier header there first. |
| 1043 | */ |
| 1044 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| 1045 | if (!vidb) { |
| 1046 | leb_write_unlock(ubi, vol_id, lnum); |
| 1047 | return -ENOMEM; |
| 1048 | } |
| 1049 | |
| 1050 | vid_hdr = ubi_get_vid_hdr(vidb); |
| 1051 | |
| 1052 | vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| 1053 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1054 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 1055 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 1056 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 1057 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 1058 | |
| 1059 | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { |
| 1060 | err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len); |
| 1061 | if (err != -EIO || !ubi->bad_allowed) |
| 1062 | break; |
| 1063 | |
| 1064 | /* |
| 1065 | * Fortunately, this is the first write operation to this |
| 1066 | * physical eraseblock, so just put it and request a new one. |
| 1067 | * We assume that if this physical eraseblock went bad, the |
| 1068 | * erase code will handle that. |
| 1069 | */ |
| 1070 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1071 | ubi_msg(ubi, "try another PEB"); |
| 1072 | } |
| 1073 | |
| 1074 | ubi_free_vid_buf(vidb); |
| 1075 | |
| 1076 | out: |
| 1077 | if (err) |
| 1078 | ubi_ro_mode(ubi); |
| 1079 | |
| 1080 | leb_write_unlock(ubi, vol_id, lnum); |
| 1081 | |
| 1082 | return err; |
| 1083 | } |
| 1084 | |
| 1085 | /** |
| 1086 | * ubi_eba_write_leb_st - write data to static volume. |
| 1087 | * @ubi: UBI device description object |
| 1088 | * @vol: volume description object |
| 1089 | * @lnum: logical eraseblock number |
| 1090 | * @buf: data to write |
| 1091 | * @len: how many bytes to write |
| 1092 | * @used_ebs: how many logical eraseblocks will this volume contain |
| 1093 | * |
| 1094 | * This function writes data to logical eraseblock @lnum of static volume |
| 1095 | * @vol. The @used_ebs argument should contain total number of logical |
| 1096 | * eraseblock in this static volume. |
| 1097 | * |
| 1098 | * When writing to the last logical eraseblock, the @len argument doesn't have |
| 1099 | * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent |
| 1100 | * to the real data size, although the @buf buffer has to contain the |
| 1101 | * alignment. In all other cases, @len has to be aligned. |
| 1102 | * |
| 1103 | * It is prohibited to write more than once to logical eraseblocks of static |
| 1104 | * volumes. This function returns zero in case of success and a negative error |
| 1105 | * code in case of failure. |
| 1106 | */ |
| 1107 | int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, |
| 1108 | int lnum, const void *buf, int len, int used_ebs) |
| 1109 | { |
| 1110 | int err, tries, data_size = len, vol_id = vol->vol_id; |
| 1111 | struct ubi_vid_io_buf *vidb; |
| 1112 | struct ubi_vid_hdr *vid_hdr; |
| 1113 | uint32_t crc; |
| 1114 | |
| 1115 | if (ubi->ro_mode) |
| 1116 | return -EROFS; |
| 1117 | |
| 1118 | if (lnum == used_ebs - 1) |
| 1119 | /* If this is the last LEB @len may be unaligned */ |
| 1120 | len = ALIGN(data_size, ubi->min_io_size); |
| 1121 | else |
| 1122 | ubi_assert(!(len & (ubi->min_io_size - 1))); |
| 1123 | |
| 1124 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| 1125 | if (!vidb) |
| 1126 | return -ENOMEM; |
| 1127 | |
| 1128 | vid_hdr = ubi_get_vid_hdr(vidb); |
| 1129 | |
| 1130 | err = leb_write_lock(ubi, vol_id, lnum); |
| 1131 | if (err) |
| 1132 | goto out; |
| 1133 | |
| 1134 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1135 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 1136 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 1137 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 1138 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 1139 | |
| 1140 | crc = crc32(UBI_CRC32_INIT, buf, data_size); |
| 1141 | vid_hdr->vol_type = UBI_VID_STATIC; |
| 1142 | vid_hdr->data_size = cpu_to_be32(data_size); |
| 1143 | vid_hdr->used_ebs = cpu_to_be32(used_ebs); |
| 1144 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 1145 | |
| 1146 | ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0); |
| 1147 | |
| 1148 | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { |
| 1149 | err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); |
| 1150 | if (err != -EIO || !ubi->bad_allowed) |
| 1151 | break; |
| 1152 | |
| 1153 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1154 | ubi_msg(ubi, "try another PEB"); |
| 1155 | } |
| 1156 | |
| 1157 | if (err) |
| 1158 | ubi_ro_mode(ubi); |
| 1159 | |
| 1160 | leb_write_unlock(ubi, vol_id, lnum); |
| 1161 | |
| 1162 | out: |
| 1163 | ubi_free_vid_buf(vidb); |
| 1164 | |
| 1165 | return err; |
| 1166 | } |
| 1167 | |
| 1168 | /* |
| 1169 | * ubi_eba_atomic_leb_change - change logical eraseblock atomically. |
| 1170 | * @ubi: UBI device description object |
| 1171 | * @vol: volume description object |
| 1172 | * @lnum: logical eraseblock number |
| 1173 | * @buf: data to write |
| 1174 | * @len: how many bytes to write |
| 1175 | * |
| 1176 | * This function changes the contents of a logical eraseblock atomically. @buf |
| 1177 | * has to contain new logical eraseblock data, and @len - the length of the |
| 1178 | * data, which has to be aligned. This function guarantees that in case of an |
| 1179 | * unclean reboot the old contents is preserved. Returns zero in case of |
| 1180 | * success and a negative error code in case of failure. |
| 1181 | * |
| 1182 | * UBI reserves one LEB for the "atomic LEB change" operation, so only one |
| 1183 | * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. |
| 1184 | */ |
| 1185 | int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, |
| 1186 | int lnum, const void *buf, int len) |
| 1187 | { |
| 1188 | int err, tries, vol_id = vol->vol_id; |
| 1189 | struct ubi_vid_io_buf *vidb; |
| 1190 | struct ubi_vid_hdr *vid_hdr; |
| 1191 | uint32_t crc; |
| 1192 | |
| 1193 | if (ubi->ro_mode) |
| 1194 | return -EROFS; |
| 1195 | |
| 1196 | if (len == 0) { |
| 1197 | /* |
| 1198 | * Special case when data length is zero. In this case the LEB |
| 1199 | * has to be unmapped and mapped somewhere else. |
| 1200 | */ |
| 1201 | err = ubi_eba_unmap_leb(ubi, vol, lnum); |
| 1202 | if (err) |
| 1203 | return err; |
| 1204 | return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); |
| 1205 | } |
| 1206 | |
| 1207 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); |
| 1208 | if (!vidb) |
| 1209 | return -ENOMEM; |
| 1210 | |
| 1211 | vid_hdr = ubi_get_vid_hdr(vidb); |
| 1212 | |
| 1213 | mutex_lock(&ubi->alc_mutex); |
| 1214 | err = leb_write_lock(ubi, vol_id, lnum); |
| 1215 | if (err) |
| 1216 | goto out_mutex; |
| 1217 | |
| 1218 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1219 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 1220 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 1221 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 1222 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 1223 | |
| 1224 | crc = crc32(UBI_CRC32_INIT, buf, len); |
| 1225 | vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| 1226 | vid_hdr->data_size = cpu_to_be32(len); |
| 1227 | vid_hdr->copy_flag = 1; |
| 1228 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 1229 | |
| 1230 | dbg_eba("change LEB %d:%d", vol_id, lnum); |
| 1231 | |
| 1232 | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { |
| 1233 | err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); |
| 1234 | if (err != -EIO || !ubi->bad_allowed) |
| 1235 | break; |
| 1236 | |
| 1237 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1238 | ubi_msg(ubi, "try another PEB"); |
| 1239 | } |
| 1240 | |
| 1241 | /* |
| 1242 | * This flash device does not admit of bad eraseblocks or |
| 1243 | * something nasty and unexpected happened. Switch to read-only |
| 1244 | * mode just in case. |
| 1245 | */ |
| 1246 | if (err) |
| 1247 | ubi_ro_mode(ubi); |
| 1248 | |
| 1249 | leb_write_unlock(ubi, vol_id, lnum); |
| 1250 | |
| 1251 | out_mutex: |
| 1252 | mutex_unlock(&ubi->alc_mutex); |
| 1253 | ubi_free_vid_buf(vidb); |
| 1254 | return err; |
| 1255 | } |
| 1256 | |
| 1257 | /** |
| 1258 | * is_error_sane - check whether a read error is sane. |
| 1259 | * @err: code of the error happened during reading |
| 1260 | * |
| 1261 | * This is a helper function for 'ubi_eba_copy_leb()' which is called when we |
| 1262 | * cannot read data from the target PEB (an error @err happened). If the error |
| 1263 | * code is sane, then we treat this error as non-fatal. Otherwise the error is |
| 1264 | * fatal and UBI will be switched to R/O mode later. |
| 1265 | * |
| 1266 | * The idea is that we try not to switch to R/O mode if the read error is |
| 1267 | * something which suggests there was a real read problem. E.g., %-EIO. Or a |
| 1268 | * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O |
| 1269 | * mode, simply because we do not know what happened at the MTD level, and we |
| 1270 | * cannot handle this. E.g., the underlying driver may have become crazy, and |
| 1271 | * it is safer to switch to R/O mode to preserve the data. |
| 1272 | * |
| 1273 | * And bear in mind, this is about reading from the target PEB, i.e. the PEB |
| 1274 | * which we have just written. |
| 1275 | */ |
| 1276 | static int is_error_sane(int err) |
| 1277 | { |
| 1278 | if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || |
| 1279 | err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) |
| 1280 | return 0; |
| 1281 | return 1; |
| 1282 | } |
| 1283 | |
| 1284 | /** |
| 1285 | * ubi_eba_copy_leb - copy logical eraseblock. |
| 1286 | * @ubi: UBI device description object |
| 1287 | * @from: physical eraseblock number from where to copy |
| 1288 | * @to: physical eraseblock number where to copy |
| 1289 | * @vid_hdr: VID header of the @from physical eraseblock |
| 1290 | * |
| 1291 | * This function copies logical eraseblock from physical eraseblock @from to |
| 1292 | * physical eraseblock @to. The @vid_hdr buffer may be changed by this |
| 1293 | * function. Returns: |
| 1294 | * o %0 in case of success; |
| 1295 | * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; |
| 1296 | * o a negative error code in case of failure. |
| 1297 | */ |
| 1298 | int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, |
| 1299 | struct ubi_vid_io_buf *vidb) |
| 1300 | { |
| 1301 | int err, vol_id, lnum, data_size, aldata_size, idx; |
| 1302 | struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); |
| 1303 | struct ubi_volume *vol; |
| 1304 | uint32_t crc; |
| 1305 | |
| 1306 | ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem)); |
| 1307 | |
| 1308 | vol_id = be32_to_cpu(vid_hdr->vol_id); |
| 1309 | lnum = be32_to_cpu(vid_hdr->lnum); |
| 1310 | |
| 1311 | dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); |
| 1312 | |
| 1313 | if (vid_hdr->vol_type == UBI_VID_STATIC) { |
| 1314 | data_size = be32_to_cpu(vid_hdr->data_size); |
| 1315 | aldata_size = ALIGN(data_size, ubi->min_io_size); |
| 1316 | } else |
| 1317 | data_size = aldata_size = |
| 1318 | ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); |
| 1319 | |
| 1320 | idx = vol_id2idx(ubi, vol_id); |
| 1321 | spin_lock(&ubi->volumes_lock); |
| 1322 | /* |
| 1323 | * Note, we may race with volume deletion, which means that the volume |
| 1324 | * this logical eraseblock belongs to might be being deleted. Since the |
| 1325 | * volume deletion un-maps all the volume's logical eraseblocks, it will |
| 1326 | * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. |
| 1327 | */ |
| 1328 | vol = ubi->volumes[idx]; |
| 1329 | spin_unlock(&ubi->volumes_lock); |
| 1330 | if (!vol) { |
| 1331 | /* No need to do further work, cancel */ |
| 1332 | dbg_wl("volume %d is being removed, cancel", vol_id); |
| 1333 | return MOVE_CANCEL_RACE; |
| 1334 | } |
| 1335 | |
| 1336 | /* |
| 1337 | * We do not want anybody to write to this logical eraseblock while we |
| 1338 | * are moving it, so lock it. |
| 1339 | * |
| 1340 | * Note, we are using non-waiting locking here, because we cannot sleep |
| 1341 | * on the LEB, since it may cause deadlocks. Indeed, imagine a task is |
| 1342 | * unmapping the LEB which is mapped to the PEB we are going to move |
| 1343 | * (@from). This task locks the LEB and goes sleep in the |
| 1344 | * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are |
| 1345 | * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the |
| 1346 | * LEB is already locked, we just do not move it and return |
| 1347 | * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because |
| 1348 | * we do not know the reasons of the contention - it may be just a |
| 1349 | * normal I/O on this LEB, so we want to re-try. |
| 1350 | */ |
| 1351 | err = leb_write_trylock(ubi, vol_id, lnum); |
| 1352 | if (err) { |
| 1353 | dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); |
| 1354 | return MOVE_RETRY; |
| 1355 | } |
| 1356 | |
| 1357 | /* |
| 1358 | * The LEB might have been put meanwhile, and the task which put it is |
| 1359 | * probably waiting on @ubi->move_mutex. No need to continue the work, |
| 1360 | * cancel it. |
| 1361 | */ |
| 1362 | if (vol->eba_tbl->entries[lnum].pnum != from) { |
| 1363 | dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", |
| 1364 | vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum); |
| 1365 | err = MOVE_CANCEL_RACE; |
| 1366 | goto out_unlock_leb; |
| 1367 | } |
| 1368 | |
| 1369 | /* |
| 1370 | * OK, now the LEB is locked and we can safely start moving it. Since |
| 1371 | * this function utilizes the @ubi->peb_buf buffer which is shared |
| 1372 | * with some other functions - we lock the buffer by taking the |
| 1373 | * @ubi->buf_mutex. |
| 1374 | */ |
| 1375 | mutex_lock(&ubi->buf_mutex); |
| 1376 | dbg_wl("read %d bytes of data", aldata_size); |
| 1377 | err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); |
| 1378 | if (err && err != UBI_IO_BITFLIPS) { |
| 1379 | ubi_warn(ubi, "error %d while reading data from PEB %d", |
| 1380 | err, from); |
| 1381 | err = MOVE_SOURCE_RD_ERR; |
| 1382 | goto out_unlock_buf; |
| 1383 | } |
| 1384 | |
| 1385 | /* |
| 1386 | * Now we have got to calculate how much data we have to copy. In |
| 1387 | * case of a static volume it is fairly easy - the VID header contains |
| 1388 | * the data size. In case of a dynamic volume it is more difficult - we |
| 1389 | * have to read the contents, cut 0xFF bytes from the end and copy only |
| 1390 | * the first part. We must do this to avoid writing 0xFF bytes as it |
| 1391 | * may have some side-effects. And not only this. It is important not |
| 1392 | * to include those 0xFFs to CRC because later the they may be filled |
| 1393 | * by data. |
| 1394 | */ |
| 1395 | if (vid_hdr->vol_type == UBI_VID_DYNAMIC) |
| 1396 | aldata_size = data_size = |
| 1397 | ubi_calc_data_len(ubi, ubi->peb_buf, data_size); |
| 1398 | |
| 1399 | cond_resched(); |
| 1400 | crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); |
| 1401 | cond_resched(); |
| 1402 | |
| 1403 | /* |
| 1404 | * It may turn out to be that the whole @from physical eraseblock |
| 1405 | * contains only 0xFF bytes. Then we have to only write the VID header |
| 1406 | * and do not write any data. This also means we should not set |
| 1407 | * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. |
| 1408 | */ |
| 1409 | if (data_size > 0) { |
| 1410 | vid_hdr->copy_flag = 1; |
| 1411 | vid_hdr->data_size = cpu_to_be32(data_size); |
| 1412 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 1413 | } |
| 1414 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1415 | |
| 1416 | err = ubi_io_write_vid_hdr(ubi, to, vidb); |
| 1417 | if (err) { |
| 1418 | if (err == -EIO) |
| 1419 | err = MOVE_TARGET_WR_ERR; |
| 1420 | goto out_unlock_buf; |
| 1421 | } |
| 1422 | |
| 1423 | cond_resched(); |
| 1424 | |
| 1425 | /* Read the VID header back and check if it was written correctly */ |
| 1426 | err = ubi_io_read_vid_hdr(ubi, to, vidb, 1); |
| 1427 | if (err) { |
| 1428 | if (err != UBI_IO_BITFLIPS) { |
| 1429 | ubi_warn(ubi, "error %d while reading VID header back from PEB %d", |
| 1430 | err, to); |
| 1431 | if (is_error_sane(err)) |
| 1432 | err = MOVE_TARGET_RD_ERR; |
| 1433 | } else |
| 1434 | err = MOVE_TARGET_BITFLIPS; |
| 1435 | goto out_unlock_buf; |
| 1436 | } |
| 1437 | |
| 1438 | if (data_size > 0) { |
| 1439 | err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); |
| 1440 | if (err) { |
| 1441 | if (err == -EIO) |
| 1442 | err = MOVE_TARGET_WR_ERR; |
| 1443 | goto out_unlock_buf; |
| 1444 | } |
| 1445 | |
| 1446 | cond_resched(); |
| 1447 | } |
| 1448 | |
| 1449 | ubi_assert(vol->eba_tbl->entries[lnum].pnum == from); |
| 1450 | vol->eba_tbl->entries[lnum].pnum = to; |
| 1451 | |
| 1452 | out_unlock_buf: |
| 1453 | mutex_unlock(&ubi->buf_mutex); |
| 1454 | out_unlock_leb: |
| 1455 | leb_write_unlock(ubi, vol_id, lnum); |
| 1456 | return err; |
| 1457 | } |
| 1458 | |
| 1459 | /** |
| 1460 | * print_rsvd_warning - warn about not having enough reserved PEBs. |
| 1461 | * @ubi: UBI device description object |
| 1462 | * |
| 1463 | * This is a helper function for 'ubi_eba_init()' which is called when UBI |
| 1464 | * cannot reserve enough PEBs for bad block handling. This function makes a |
| 1465 | * decision whether we have to print a warning or not. The algorithm is as |
| 1466 | * follows: |
| 1467 | * o if this is a new UBI image, then just print the warning |
| 1468 | * o if this is an UBI image which has already been used for some time, print |
| 1469 | * a warning only if we can reserve less than 10% of the expected amount of |
| 1470 | * the reserved PEB. |
| 1471 | * |
| 1472 | * The idea is that when UBI is used, PEBs become bad, and the reserved pool |
| 1473 | * of PEBs becomes smaller, which is normal and we do not want to scare users |
| 1474 | * with a warning every time they attach the MTD device. This was an issue |
| 1475 | * reported by real users. |
| 1476 | */ |
| 1477 | static void print_rsvd_warning(struct ubi_device *ubi, |
| 1478 | struct ubi_attach_info *ai) |
| 1479 | { |
| 1480 | /* |
| 1481 | * The 1 << 18 (256KiB) number is picked randomly, just a reasonably |
| 1482 | * large number to distinguish between newly flashed and used images. |
| 1483 | */ |
| 1484 | if (ai->max_sqnum > (1 << 18)) { |
| 1485 | int min = ubi->beb_rsvd_level / 10; |
| 1486 | |
| 1487 | if (!min) |
| 1488 | min = 1; |
| 1489 | if (ubi->beb_rsvd_pebs > min) |
| 1490 | return; |
| 1491 | } |
| 1492 | |
| 1493 | ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", |
| 1494 | ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); |
| 1495 | if (ubi->corr_peb_count) |
| 1496 | ubi_warn(ubi, "%d PEBs are corrupted and not used", |
| 1497 | ubi->corr_peb_count); |
| 1498 | } |
| 1499 | |
| 1500 | /** |
| 1501 | * self_check_eba - run a self check on the EBA table constructed by fastmap. |
| 1502 | * @ubi: UBI device description object |
| 1503 | * @ai_fastmap: UBI attach info object created by fastmap |
| 1504 | * @ai_scan: UBI attach info object created by scanning |
| 1505 | * |
| 1506 | * Returns < 0 in case of an internal error, 0 otherwise. |
| 1507 | * If a bad EBA table entry was found it will be printed out and |
| 1508 | * ubi_assert() triggers. |
| 1509 | */ |
| 1510 | int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, |
| 1511 | struct ubi_attach_info *ai_scan) |
| 1512 | { |
| 1513 | int i, j, num_volumes, ret = 0; |
| 1514 | int **scan_eba, **fm_eba; |
| 1515 | struct ubi_ainf_volume *av; |
| 1516 | struct ubi_volume *vol; |
| 1517 | struct ubi_ainf_peb *aeb; |
| 1518 | struct rb_node *rb; |
| 1519 | |
| 1520 | num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| 1521 | |
| 1522 | scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL); |
| 1523 | if (!scan_eba) |
| 1524 | return -ENOMEM; |
| 1525 | |
| 1526 | fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL); |
| 1527 | if (!fm_eba) { |
| 1528 | kfree(scan_eba); |
| 1529 | return -ENOMEM; |
| 1530 | } |
| 1531 | |
| 1532 | for (i = 0; i < num_volumes; i++) { |
| 1533 | vol = ubi->volumes[i]; |
| 1534 | if (!vol) |
| 1535 | continue; |
| 1536 | |
| 1537 | scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba), |
| 1538 | GFP_KERNEL); |
| 1539 | if (!scan_eba[i]) { |
| 1540 | ret = -ENOMEM; |
| 1541 | goto out_free; |
| 1542 | } |
| 1543 | |
| 1544 | fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba), |
| 1545 | GFP_KERNEL); |
| 1546 | if (!fm_eba[i]) { |
| 1547 | ret = -ENOMEM; |
| 1548 | goto out_free; |
| 1549 | } |
| 1550 | |
| 1551 | for (j = 0; j < vol->reserved_pebs; j++) |
| 1552 | scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; |
| 1553 | |
| 1554 | av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); |
| 1555 | if (!av) |
| 1556 | continue; |
| 1557 | |
| 1558 | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) |
| 1559 | scan_eba[i][aeb->lnum] = aeb->pnum; |
| 1560 | |
| 1561 | av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); |
| 1562 | if (!av) |
| 1563 | continue; |
| 1564 | |
| 1565 | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) |
| 1566 | fm_eba[i][aeb->lnum] = aeb->pnum; |
| 1567 | |
| 1568 | for (j = 0; j < vol->reserved_pebs; j++) { |
| 1569 | if (scan_eba[i][j] != fm_eba[i][j]) { |
| 1570 | if (scan_eba[i][j] == UBI_LEB_UNMAPPED || |
| 1571 | fm_eba[i][j] == UBI_LEB_UNMAPPED) |
| 1572 | continue; |
| 1573 | |
| 1574 | ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", |
| 1575 | vol->vol_id, j, fm_eba[i][j], |
| 1576 | scan_eba[i][j]); |
| 1577 | ubi_assert(0); |
| 1578 | } |
| 1579 | } |
| 1580 | } |
| 1581 | |
| 1582 | out_free: |
| 1583 | for (i = 0; i < num_volumes; i++) { |
| 1584 | if (!ubi->volumes[i]) |
| 1585 | continue; |
| 1586 | |
| 1587 | kfree(scan_eba[i]); |
| 1588 | kfree(fm_eba[i]); |
| 1589 | } |
| 1590 | |
| 1591 | kfree(scan_eba); |
| 1592 | kfree(fm_eba); |
| 1593 | return ret; |
| 1594 | } |
| 1595 | |
| 1596 | /** |
| 1597 | * ubi_eba_init - initialize the EBA sub-system using attaching information. |
| 1598 | * @ubi: UBI device description object |
| 1599 | * @ai: attaching information |
| 1600 | * |
| 1601 | * This function returns zero in case of success and a negative error code in |
| 1602 | * case of failure. |
| 1603 | */ |
| 1604 | int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) |
| 1605 | { |
| 1606 | int i, err, num_volumes; |
| 1607 | struct ubi_ainf_volume *av; |
| 1608 | struct ubi_volume *vol; |
| 1609 | struct ubi_ainf_peb *aeb; |
| 1610 | struct rb_node *rb; |
| 1611 | |
| 1612 | dbg_eba("initialize EBA sub-system"); |
| 1613 | |
| 1614 | spin_lock_init(&ubi->ltree_lock); |
| 1615 | mutex_init(&ubi->alc_mutex); |
| 1616 | ubi->ltree = RB_ROOT; |
| 1617 | |
| 1618 | ubi->global_sqnum = ai->max_sqnum + 1; |
| 1619 | num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| 1620 | |
| 1621 | for (i = 0; i < num_volumes; i++) { |
| 1622 | struct ubi_eba_table *tbl; |
| 1623 | |
| 1624 | vol = ubi->volumes[i]; |
| 1625 | if (!vol) |
| 1626 | continue; |
| 1627 | |
| 1628 | cond_resched(); |
| 1629 | |
| 1630 | tbl = ubi_eba_create_table(vol, vol->reserved_pebs); |
| 1631 | if (IS_ERR(tbl)) { |
| 1632 | err = PTR_ERR(tbl); |
| 1633 | goto out_free; |
| 1634 | } |
| 1635 | |
| 1636 | ubi_eba_replace_table(vol, tbl); |
| 1637 | |
| 1638 | av = ubi_find_av(ai, idx2vol_id(ubi, i)); |
| 1639 | if (!av) |
| 1640 | continue; |
| 1641 | |
| 1642 | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { |
| 1643 | if (aeb->lnum >= vol->reserved_pebs) { |
| 1644 | /* |
| 1645 | * This may happen in case of an unclean reboot |
| 1646 | * during re-size. |
| 1647 | */ |
| 1648 | ubi_move_aeb_to_list(av, aeb, &ai->erase); |
| 1649 | } else { |
| 1650 | struct ubi_eba_entry *entry; |
| 1651 | |
| 1652 | entry = &vol->eba_tbl->entries[aeb->lnum]; |
| 1653 | entry->pnum = aeb->pnum; |
| 1654 | } |
| 1655 | } |
| 1656 | } |
| 1657 | |
| 1658 | if (ubi->avail_pebs < EBA_RESERVED_PEBS) { |
| 1659 | ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", |
| 1660 | ubi->avail_pebs, EBA_RESERVED_PEBS); |
| 1661 | if (ubi->corr_peb_count) |
| 1662 | ubi_err(ubi, "%d PEBs are corrupted and not used", |
| 1663 | ubi->corr_peb_count); |
| 1664 | err = -ENOSPC; |
| 1665 | goto out_free; |
| 1666 | } |
| 1667 | ubi->avail_pebs -= EBA_RESERVED_PEBS; |
| 1668 | ubi->rsvd_pebs += EBA_RESERVED_PEBS; |
| 1669 | |
| 1670 | if (ubi->bad_allowed) { |
| 1671 | ubi_calculate_reserved(ubi); |
| 1672 | |
| 1673 | if (ubi->avail_pebs < ubi->beb_rsvd_level) { |
| 1674 | /* No enough free physical eraseblocks */ |
| 1675 | ubi->beb_rsvd_pebs = ubi->avail_pebs; |
| 1676 | print_rsvd_warning(ubi, ai); |
| 1677 | } else |
| 1678 | ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; |
| 1679 | |
| 1680 | ubi->avail_pebs -= ubi->beb_rsvd_pebs; |
| 1681 | ubi->rsvd_pebs += ubi->beb_rsvd_pebs; |
| 1682 | } |
| 1683 | |
| 1684 | dbg_eba("EBA sub-system is initialized"); |
| 1685 | return 0; |
| 1686 | |
| 1687 | out_free: |
| 1688 | for (i = 0; i < num_volumes; i++) { |
| 1689 | if (!ubi->volumes[i]) |
| 1690 | continue; |
| 1691 | ubi_eba_replace_table(ubi->volumes[i], NULL); |
| 1692 | } |
| 1693 | return err; |
| 1694 | } |