blob: 05ad5ed145a3a98efb54b0c1176ec545a10501a9 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/slab.h>
22#include <linux/netdevice.h>
23#include <linux/if_arp.h>
24#include <linux/workqueue.h>
25#include <linux/can.h>
26#include <linux/can/dev.h>
27#include <linux/can/skb.h>
28#include <linux/can/netlink.h>
29#include <linux/can/led.h>
30#include <net/rtnetlink.h>
31
32#define MOD_DESC "CAN device driver interface"
33
34MODULE_DESCRIPTION(MOD_DESC);
35MODULE_LICENSE("GPL v2");
36MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
37
38/* CAN DLC to real data length conversion helpers */
39
40static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
41 8, 12, 16, 20, 24, 32, 48, 64};
42
43/* get data length from can_dlc with sanitized can_dlc */
44u8 can_dlc2len(u8 can_dlc)
45{
46 return dlc2len[can_dlc & 0x0F];
47}
48EXPORT_SYMBOL_GPL(can_dlc2len);
49
50static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
51 9, 9, 9, 9, /* 9 - 12 */
52 10, 10, 10, 10, /* 13 - 16 */
53 11, 11, 11, 11, /* 17 - 20 */
54 12, 12, 12, 12, /* 21 - 24 */
55 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
57 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
58 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
59 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
60
61/* map the sanitized data length to an appropriate data length code */
62u8 can_len2dlc(u8 len)
63{
64 if (unlikely(len > 64))
65 return 0xF;
66
67 return len2dlc[len];
68}
69EXPORT_SYMBOL_GPL(can_len2dlc);
70
71#ifdef CONFIG_CAN_CALC_BITTIMING
72#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
73#define CAN_CALC_SYNC_SEG 1
74
75/*
76 * Bit-timing calculation derived from:
77 *
78 * Code based on LinCAN sources and H8S2638 project
79 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
80 * Copyright 2005 Stanislav Marek
81 * email: pisa@cmp.felk.cvut.cz
82 *
83 * Calculates proper bit-timing parameters for a specified bit-rate
84 * and sample-point, which can then be used to set the bit-timing
85 * registers of the CAN controller. You can find more information
86 * in the header file linux/can/netlink.h.
87 */
88static int can_update_sample_point(const struct can_bittiming_const *btc,
89 unsigned int sample_point_nominal, unsigned int tseg,
90 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
91 unsigned int *sample_point_error_ptr)
92{
93 unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
94 unsigned int sample_point, best_sample_point = 0;
95 unsigned int tseg1, tseg2;
96 int i;
97
98 for (i = 0; i <= 1; i++) {
99 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
100 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
101 tseg1 = tseg - tseg2;
102 if (tseg1 > btc->tseg1_max) {
103 tseg1 = btc->tseg1_max;
104 tseg2 = tseg - tseg1;
105 }
106
107 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
108 sample_point_error = abs(sample_point_nominal - sample_point);
109
110 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
111 best_sample_point = sample_point;
112 best_sample_point_error = sample_point_error;
113 *tseg1_ptr = tseg1;
114 *tseg2_ptr = tseg2;
115 }
116 }
117
118 if (sample_point_error_ptr)
119 *sample_point_error_ptr = best_sample_point_error;
120
121 return best_sample_point;
122}
123
124static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
125 const struct can_bittiming_const *btc)
126{
127 struct can_priv *priv = netdev_priv(dev);
128 unsigned int bitrate; /* current bitrate */
129 unsigned int bitrate_error; /* difference between current and nominal value */
130 unsigned int best_bitrate_error = UINT_MAX;
131 unsigned int sample_point_error; /* difference between current and nominal value */
132 unsigned int best_sample_point_error = UINT_MAX;
133 unsigned int sample_point_nominal; /* nominal sample point */
134 unsigned int best_tseg = 0; /* current best value for tseg */
135 unsigned int best_brp = 0; /* current best value for brp */
136 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
137 u64 v64;
138
139 /* Use CiA recommended sample points */
140 if (bt->sample_point) {
141 sample_point_nominal = bt->sample_point;
142 } else {
143 if (bt->bitrate > 800000)
144 sample_point_nominal = 750;
145 else if (bt->bitrate > 500000)
146 sample_point_nominal = 800;
147 else
148 sample_point_nominal = 875;
149 }
150
151 /* tseg even = round down, odd = round up */
152 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
153 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
154 tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
155
156 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
157 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
158
159 /* choose brp step which is possible in system */
160 brp = (brp / btc->brp_inc) * btc->brp_inc;
161 if ((brp < btc->brp_min) || (brp > btc->brp_max))
162 continue;
163
164 bitrate = priv->clock.freq / (brp * tsegall);
165 bitrate_error = abs(bt->bitrate - bitrate);
166
167 /* tseg brp biterror */
168 if (bitrate_error > best_bitrate_error)
169 continue;
170
171 /* reset sample point error if we have a better bitrate */
172 if (bitrate_error < best_bitrate_error)
173 best_sample_point_error = UINT_MAX;
174
175 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
176 if (sample_point_error > best_sample_point_error)
177 continue;
178
179 best_sample_point_error = sample_point_error;
180 best_bitrate_error = bitrate_error;
181 best_tseg = tseg / 2;
182 best_brp = brp;
183
184 if (bitrate_error == 0 && sample_point_error == 0)
185 break;
186 }
187
188 if (best_bitrate_error) {
189 /* Error in one-tenth of a percent */
190 v64 = (u64)best_bitrate_error * 1000;
191 do_div(v64, bt->bitrate);
192 bitrate_error = (u32)v64;
193 if (bitrate_error > CAN_CALC_MAX_ERROR) {
194 netdev_err(dev,
195 "bitrate error %d.%d%% too high\n",
196 bitrate_error / 10, bitrate_error % 10);
197 return -EDOM;
198 }
199 netdev_warn(dev, "bitrate error %d.%d%%\n",
200 bitrate_error / 10, bitrate_error % 10);
201 }
202
203 /* real sample point */
204 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
205 &tseg1, &tseg2, NULL);
206
207 v64 = (u64)best_brp * 1000 * 1000 * 1000;
208 do_div(v64, priv->clock.freq);
209 bt->tq = (u32)v64;
210 bt->prop_seg = tseg1 / 2;
211 bt->phase_seg1 = tseg1 - bt->prop_seg;
212 bt->phase_seg2 = tseg2;
213
214 /* check for sjw user settings */
215 if (!bt->sjw || !btc->sjw_max) {
216 bt->sjw = 1;
217 } else {
218 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
219 if (bt->sjw > btc->sjw_max)
220 bt->sjw = btc->sjw_max;
221 /* bt->sjw must not be higher than tseg2 */
222 if (tseg2 < bt->sjw)
223 bt->sjw = tseg2;
224 }
225
226 bt->brp = best_brp;
227
228 /* real bitrate */
229 bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
230
231 return 0;
232}
233#else /* !CONFIG_CAN_CALC_BITTIMING */
234static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
235 const struct can_bittiming_const *btc)
236{
237 netdev_err(dev, "bit-timing calculation not available\n");
238 return -EINVAL;
239}
240#endif /* CONFIG_CAN_CALC_BITTIMING */
241
242/*
243 * Checks the validity of the specified bit-timing parameters prop_seg,
244 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
245 * prescaler value brp. You can find more information in the header
246 * file linux/can/netlink.h.
247 */
248static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
249 const struct can_bittiming_const *btc)
250{
251 struct can_priv *priv = netdev_priv(dev);
252 int tseg1, alltseg;
253 u64 brp64;
254
255 tseg1 = bt->prop_seg + bt->phase_seg1;
256 if (!bt->sjw)
257 bt->sjw = 1;
258 if (bt->sjw > btc->sjw_max ||
259 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
260 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
261 return -ERANGE;
262
263 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
264 if (btc->brp_inc > 1)
265 do_div(brp64, btc->brp_inc);
266 brp64 += 500000000UL - 1;
267 do_div(brp64, 1000000000UL); /* the practicable BRP */
268 if (btc->brp_inc > 1)
269 brp64 *= btc->brp_inc;
270 bt->brp = (u32)brp64;
271
272 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
273 return -EINVAL;
274
275 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
276 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
277 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
278
279 return 0;
280}
281
282/* Checks the validity of predefined bitrate settings */
283static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
284 const u32 *bitrate_const,
285 const unsigned int bitrate_const_cnt)
286{
287 struct can_priv *priv = netdev_priv(dev);
288 unsigned int i;
289
290 for (i = 0; i < bitrate_const_cnt; i++) {
291 if (bt->bitrate == bitrate_const[i])
292 break;
293 }
294
295 if (i >= priv->bitrate_const_cnt)
296 return -EINVAL;
297
298 return 0;
299}
300
301static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
302 const struct can_bittiming_const *btc,
303 const u32 *bitrate_const,
304 const unsigned int bitrate_const_cnt)
305{
306 int err;
307
308 /*
309 * Depending on the given can_bittiming parameter structure the CAN
310 * timing parameters are calculated based on the provided bitrate OR
311 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
312 * provided directly which are then checked and fixed up.
313 */
314 if (!bt->tq && bt->bitrate && btc)
315 err = can_calc_bittiming(dev, bt, btc);
316 else if (bt->tq && !bt->bitrate && btc)
317 err = can_fixup_bittiming(dev, bt, btc);
318 else if (!bt->tq && bt->bitrate && bitrate_const)
319 err = can_validate_bitrate(dev, bt, bitrate_const,
320 bitrate_const_cnt);
321 else
322 err = -EINVAL;
323
324 return err;
325}
326
327static void can_update_state_error_stats(struct net_device *dev,
328 enum can_state new_state)
329{
330 struct can_priv *priv = netdev_priv(dev);
331
332 if (new_state <= priv->state)
333 return;
334
335 switch (new_state) {
336 case CAN_STATE_ERROR_WARNING:
337 priv->can_stats.error_warning++;
338 break;
339 case CAN_STATE_ERROR_PASSIVE:
340 priv->can_stats.error_passive++;
341 break;
342 case CAN_STATE_BUS_OFF:
343 priv->can_stats.bus_off++;
344 break;
345 default:
346 break;
347 }
348}
349
350static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
351{
352 switch (state) {
353 case CAN_STATE_ERROR_ACTIVE:
354 return CAN_ERR_CRTL_ACTIVE;
355 case CAN_STATE_ERROR_WARNING:
356 return CAN_ERR_CRTL_TX_WARNING;
357 case CAN_STATE_ERROR_PASSIVE:
358 return CAN_ERR_CRTL_TX_PASSIVE;
359 default:
360 return 0;
361 }
362}
363
364static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
365{
366 switch (state) {
367 case CAN_STATE_ERROR_ACTIVE:
368 return CAN_ERR_CRTL_ACTIVE;
369 case CAN_STATE_ERROR_WARNING:
370 return CAN_ERR_CRTL_RX_WARNING;
371 case CAN_STATE_ERROR_PASSIVE:
372 return CAN_ERR_CRTL_RX_PASSIVE;
373 default:
374 return 0;
375 }
376}
377
378void can_change_state(struct net_device *dev, struct can_frame *cf,
379 enum can_state tx_state, enum can_state rx_state)
380{
381 struct can_priv *priv = netdev_priv(dev);
382 enum can_state new_state = max(tx_state, rx_state);
383
384 if (unlikely(new_state == priv->state)) {
385 netdev_warn(dev, "%s: oops, state did not change", __func__);
386 return;
387 }
388
389 netdev_dbg(dev, "New error state: %d\n", new_state);
390
391 can_update_state_error_stats(dev, new_state);
392 priv->state = new_state;
393
394 if (!cf)
395 return;
396
397 if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
398 cf->can_id |= CAN_ERR_BUSOFF;
399 return;
400 }
401
402 cf->can_id |= CAN_ERR_CRTL;
403 cf->data[1] |= tx_state >= rx_state ?
404 can_tx_state_to_frame(dev, tx_state) : 0;
405 cf->data[1] |= tx_state <= rx_state ?
406 can_rx_state_to_frame(dev, rx_state) : 0;
407}
408EXPORT_SYMBOL_GPL(can_change_state);
409
410/*
411 * Local echo of CAN messages
412 *
413 * CAN network devices *should* support a local echo functionality
414 * (see Documentation/networking/can.txt). To test the handling of CAN
415 * interfaces that do not support the local echo both driver types are
416 * implemented. In the case that the driver does not support the echo
417 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
418 * to perform the echo as a fallback solution.
419 */
420static void can_flush_echo_skb(struct net_device *dev)
421{
422 struct can_priv *priv = netdev_priv(dev);
423 struct net_device_stats *stats = &dev->stats;
424 int i;
425
426 for (i = 0; i < priv->echo_skb_max; i++) {
427 if (priv->echo_skb[i]) {
428 kfree_skb(priv->echo_skb[i]);
429 priv->echo_skb[i] = NULL;
430 stats->tx_dropped++;
431 stats->tx_aborted_errors++;
432 }
433 }
434}
435
436/*
437 * Put the skb on the stack to be looped backed locally lateron
438 *
439 * The function is typically called in the start_xmit function
440 * of the device driver. The driver must protect access to
441 * priv->echo_skb, if necessary.
442 */
443void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
444 unsigned int idx)
445{
446 struct can_priv *priv = netdev_priv(dev);
447
448 BUG_ON(idx >= priv->echo_skb_max);
449
450 /* check flag whether this packet has to be looped back */
451 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
452 (skb->protocol != htons(ETH_P_CAN) &&
453 skb->protocol != htons(ETH_P_CANFD))) {
454 kfree_skb(skb);
455 return;
456 }
457
458 if (!priv->echo_skb[idx]) {
459
460 skb = can_create_echo_skb(skb);
461 if (!skb)
462 return;
463
464 /* make settings for echo to reduce code in irq context */
465 skb->pkt_type = PACKET_BROADCAST;
466 skb->ip_summed = CHECKSUM_UNNECESSARY;
467 skb->dev = dev;
468
469 /* save this skb for tx interrupt echo handling */
470 priv->echo_skb[idx] = skb;
471 } else {
472 /* locking problem with netif_stop_queue() ?? */
473 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
474 kfree_skb(skb);
475 }
476}
477EXPORT_SYMBOL_GPL(can_put_echo_skb);
478
479struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
480{
481 struct can_priv *priv = netdev_priv(dev);
482
483 if (idx >= priv->echo_skb_max) {
484 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
485 __func__, idx, priv->echo_skb_max);
486 return NULL;
487 }
488
489 if (priv->echo_skb[idx]) {
490 /* Using "struct canfd_frame::len" for the frame
491 * length is supported on both CAN and CANFD frames.
492 */
493 struct sk_buff *skb = priv->echo_skb[idx];
494 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
495 u8 len = cf->len;
496
497 *len_ptr = len;
498 priv->echo_skb[idx] = NULL;
499
500 return skb;
501 }
502
503 return NULL;
504}
505
506/*
507 * Get the skb from the stack and loop it back locally
508 *
509 * The function is typically called when the TX done interrupt
510 * is handled in the device driver. The driver must protect
511 * access to priv->echo_skb, if necessary.
512 */
513unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
514{
515 struct sk_buff *skb;
516 u8 len;
517
518 skb = __can_get_echo_skb(dev, idx, &len);
519 if (!skb)
520 return 0;
521
522 netif_rx(skb);
523
524 return len;
525}
526EXPORT_SYMBOL_GPL(can_get_echo_skb);
527
528/*
529 * Remove the skb from the stack and free it.
530 *
531 * The function is typically called when TX failed.
532 */
533void can_free_echo_skb(struct net_device *dev, unsigned int idx)
534{
535 struct can_priv *priv = netdev_priv(dev);
536
537 BUG_ON(idx >= priv->echo_skb_max);
538
539 if (priv->echo_skb[idx]) {
540 dev_kfree_skb_any(priv->echo_skb[idx]);
541 priv->echo_skb[idx] = NULL;
542 }
543}
544EXPORT_SYMBOL_GPL(can_free_echo_skb);
545
546/*
547 * CAN device restart for bus-off recovery
548 */
549static void can_restart(struct net_device *dev)
550{
551 struct can_priv *priv = netdev_priv(dev);
552 struct net_device_stats *stats = &dev->stats;
553 struct sk_buff *skb;
554 struct can_frame *cf;
555 int err;
556
557 BUG_ON(netif_carrier_ok(dev));
558
559 /*
560 * No synchronization needed because the device is bus-off and
561 * no messages can come in or go out.
562 */
563 can_flush_echo_skb(dev);
564
565 /* send restart message upstream */
566 skb = alloc_can_err_skb(dev, &cf);
567 if (skb == NULL) {
568 err = -ENOMEM;
569 goto restart;
570 }
571 cf->can_id |= CAN_ERR_RESTARTED;
572
573 netif_rx(skb);
574
575 stats->rx_packets++;
576 stats->rx_bytes += cf->can_dlc;
577
578restart:
579 netdev_dbg(dev, "restarted\n");
580 priv->can_stats.restarts++;
581
582 /* Now restart the device */
583 err = priv->do_set_mode(dev, CAN_MODE_START);
584
585 netif_carrier_on(dev);
586 if (err)
587 netdev_err(dev, "Error %d during restart", err);
588}
589
590static void can_restart_work(struct work_struct *work)
591{
592 struct delayed_work *dwork = to_delayed_work(work);
593 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
594
595 can_restart(priv->dev);
596}
597
598int can_restart_now(struct net_device *dev)
599{
600 struct can_priv *priv = netdev_priv(dev);
601
602 /*
603 * A manual restart is only permitted if automatic restart is
604 * disabled and the device is in the bus-off state
605 */
606 if (priv->restart_ms)
607 return -EINVAL;
608 if (priv->state != CAN_STATE_BUS_OFF)
609 return -EBUSY;
610
611 cancel_delayed_work_sync(&priv->restart_work);
612 can_restart(dev);
613
614 return 0;
615}
616
617/*
618 * CAN bus-off
619 *
620 * This functions should be called when the device goes bus-off to
621 * tell the netif layer that no more packets can be sent or received.
622 * If enabled, a timer is started to trigger bus-off recovery.
623 */
624void can_bus_off(struct net_device *dev)
625{
626 struct can_priv *priv = netdev_priv(dev);
627
628 netdev_info(dev, "bus-off\n");
629
630 netif_carrier_off(dev);
631
632 if (priv->restart_ms)
633 schedule_delayed_work(&priv->restart_work,
634 msecs_to_jiffies(priv->restart_ms));
635}
636EXPORT_SYMBOL_GPL(can_bus_off);
637
638static void can_setup(struct net_device *dev)
639{
640 dev->type = ARPHRD_CAN;
641 dev->mtu = CAN_MTU;
642 dev->hard_header_len = 0;
643 dev->addr_len = 0;
644 dev->tx_queue_len = 10;
645
646 /* New-style flags. */
647 dev->flags = IFF_NOARP;
648 dev->features = NETIF_F_HW_CSUM;
649}
650
651struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
652{
653 struct sk_buff *skb;
654
655 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
656 sizeof(struct can_frame));
657 if (unlikely(!skb))
658 return NULL;
659
660 skb->protocol = htons(ETH_P_CAN);
661 skb->pkt_type = PACKET_BROADCAST;
662 skb->ip_summed = CHECKSUM_UNNECESSARY;
663
664 skb_reset_mac_header(skb);
665 skb_reset_network_header(skb);
666 skb_reset_transport_header(skb);
667
668 can_skb_reserve(skb);
669 can_skb_prv(skb)->ifindex = dev->ifindex;
670 can_skb_prv(skb)->skbcnt = 0;
671
672 *cf = skb_put(skb, sizeof(struct can_frame));
673 memset(*cf, 0, sizeof(struct can_frame));
674
675 return skb;
676}
677EXPORT_SYMBOL_GPL(alloc_can_skb);
678
679struct sk_buff *alloc_canfd_skb(struct net_device *dev,
680 struct canfd_frame **cfd)
681{
682 struct sk_buff *skb;
683
684 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
685 sizeof(struct canfd_frame));
686 if (unlikely(!skb))
687 return NULL;
688
689 skb->protocol = htons(ETH_P_CANFD);
690 skb->pkt_type = PACKET_BROADCAST;
691 skb->ip_summed = CHECKSUM_UNNECESSARY;
692
693 skb_reset_mac_header(skb);
694 skb_reset_network_header(skb);
695 skb_reset_transport_header(skb);
696
697 can_skb_reserve(skb);
698 can_skb_prv(skb)->ifindex = dev->ifindex;
699 can_skb_prv(skb)->skbcnt = 0;
700
701 *cfd = skb_put(skb, sizeof(struct canfd_frame));
702 memset(*cfd, 0, sizeof(struct canfd_frame));
703
704 return skb;
705}
706EXPORT_SYMBOL_GPL(alloc_canfd_skb);
707
708struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
709{
710 struct sk_buff *skb;
711
712 skb = alloc_can_skb(dev, cf);
713 if (unlikely(!skb))
714 return NULL;
715
716 (*cf)->can_id = CAN_ERR_FLAG;
717 (*cf)->can_dlc = CAN_ERR_DLC;
718
719 return skb;
720}
721EXPORT_SYMBOL_GPL(alloc_can_err_skb);
722
723/*
724 * Allocate and setup space for the CAN network device
725 */
726struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
727{
728 struct net_device *dev;
729 struct can_priv *priv;
730 int size;
731
732 if (echo_skb_max)
733 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
734 echo_skb_max * sizeof(struct sk_buff *);
735 else
736 size = sizeof_priv;
737
738 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
739 if (!dev)
740 return NULL;
741
742 priv = netdev_priv(dev);
743 priv->dev = dev;
744
745 if (echo_skb_max) {
746 priv->echo_skb_max = echo_skb_max;
747 priv->echo_skb = (void *)priv +
748 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
749 }
750
751 priv->state = CAN_STATE_STOPPED;
752
753 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
754
755 return dev;
756}
757EXPORT_SYMBOL_GPL(alloc_candev);
758
759/*
760 * Free space of the CAN network device
761 */
762void free_candev(struct net_device *dev)
763{
764 free_netdev(dev);
765}
766EXPORT_SYMBOL_GPL(free_candev);
767
768/*
769 * changing MTU and control mode for CAN/CANFD devices
770 */
771int can_change_mtu(struct net_device *dev, int new_mtu)
772{
773 struct can_priv *priv = netdev_priv(dev);
774
775 /* Do not allow changing the MTU while running */
776 if (dev->flags & IFF_UP)
777 return -EBUSY;
778
779 /* allow change of MTU according to the CANFD ability of the device */
780 switch (new_mtu) {
781 case CAN_MTU:
782 /* 'CANFD-only' controllers can not switch to CAN_MTU */
783 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
784 return -EINVAL;
785
786 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
787 break;
788
789 case CANFD_MTU:
790 /* check for potential CANFD ability */
791 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
792 !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
793 return -EINVAL;
794
795 priv->ctrlmode |= CAN_CTRLMODE_FD;
796 break;
797
798 default:
799 return -EINVAL;
800 }
801
802 dev->mtu = new_mtu;
803 return 0;
804}
805EXPORT_SYMBOL_GPL(can_change_mtu);
806
807/*
808 * Common open function when the device gets opened.
809 *
810 * This function should be called in the open function of the device
811 * driver.
812 */
813int open_candev(struct net_device *dev)
814{
815 struct can_priv *priv = netdev_priv(dev);
816
817 if (!priv->bittiming.bitrate) {
818 netdev_err(dev, "bit-timing not yet defined\n");
819 return -EINVAL;
820 }
821
822 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
823 if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
824 (!priv->data_bittiming.bitrate ||
825 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
826 netdev_err(dev, "incorrect/missing data bit-timing\n");
827 return -EINVAL;
828 }
829
830 /* Switch carrier on if device was stopped while in bus-off state */
831 if (!netif_carrier_ok(dev))
832 netif_carrier_on(dev);
833
834 return 0;
835}
836EXPORT_SYMBOL_GPL(open_candev);
837
838/*
839 * Common close function for cleanup before the device gets closed.
840 *
841 * This function should be called in the close function of the device
842 * driver.
843 */
844void close_candev(struct net_device *dev)
845{
846 struct can_priv *priv = netdev_priv(dev);
847
848 cancel_delayed_work_sync(&priv->restart_work);
849 can_flush_echo_skb(dev);
850}
851EXPORT_SYMBOL_GPL(close_candev);
852
853/*
854 * CAN netlink interface
855 */
856static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
857 [IFLA_CAN_STATE] = { .type = NLA_U32 },
858 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
859 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
860 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
861 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
862 [IFLA_CAN_BITTIMING_CONST]
863 = { .len = sizeof(struct can_bittiming_const) },
864 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
865 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
866 [IFLA_CAN_DATA_BITTIMING]
867 = { .len = sizeof(struct can_bittiming) },
868 [IFLA_CAN_DATA_BITTIMING_CONST]
869 = { .len = sizeof(struct can_bittiming_const) },
870 [IFLA_CAN_TERMINATION] = { .type = NLA_U16 },
871};
872
873static int can_validate(struct nlattr *tb[], struct nlattr *data[],
874 struct netlink_ext_ack *extack)
875{
876 bool is_can_fd = false;
877
878 /* Make sure that valid CAN FD configurations always consist of
879 * - nominal/arbitration bittiming
880 * - data bittiming
881 * - control mode with CAN_CTRLMODE_FD set
882 */
883
884 if (!data)
885 return 0;
886
887 if (data[IFLA_CAN_CTRLMODE]) {
888 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
889
890 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
891 }
892
893 if (is_can_fd) {
894 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
895 return -EOPNOTSUPP;
896 }
897
898 if (data[IFLA_CAN_DATA_BITTIMING]) {
899 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
900 return -EOPNOTSUPP;
901 }
902
903 return 0;
904}
905
906static int can_changelink(struct net_device *dev, struct nlattr *tb[],
907 struct nlattr *data[],
908 struct netlink_ext_ack *extack)
909{
910 struct can_priv *priv = netdev_priv(dev);
911 int err;
912
913 /* We need synchronization with dev->stop() */
914 ASSERT_RTNL();
915
916 if (data[IFLA_CAN_BITTIMING]) {
917 struct can_bittiming bt;
918
919 /* Do not allow changing bittiming while running */
920 if (dev->flags & IFF_UP)
921 return -EBUSY;
922
923 /* Calculate bittiming parameters based on
924 * bittiming_const if set, otherwise pass bitrate
925 * directly via do_set_bitrate(). Bail out if neither
926 * is given.
927 */
928 if (!priv->bittiming_const && !priv->do_set_bittiming)
929 return -EOPNOTSUPP;
930
931 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
932 err = can_get_bittiming(dev, &bt,
933 priv->bittiming_const,
934 priv->bitrate_const,
935 priv->bitrate_const_cnt);
936 if (err)
937 return err;
938 memcpy(&priv->bittiming, &bt, sizeof(bt));
939
940 if (priv->do_set_bittiming) {
941 /* Finally, set the bit-timing registers */
942 err = priv->do_set_bittiming(dev);
943 if (err)
944 return err;
945 }
946 }
947
948 if (data[IFLA_CAN_CTRLMODE]) {
949 struct can_ctrlmode *cm;
950 u32 ctrlstatic;
951 u32 maskedflags;
952
953 /* Do not allow changing controller mode while running */
954 if (dev->flags & IFF_UP)
955 return -EBUSY;
956 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
957 ctrlstatic = priv->ctrlmode_static;
958 maskedflags = cm->flags & cm->mask;
959
960 /* check whether provided bits are allowed to be passed */
961 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
962 return -EOPNOTSUPP;
963
964 /* do not check for static fd-non-iso if 'fd' is disabled */
965 if (!(maskedflags & CAN_CTRLMODE_FD))
966 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
967
968 /* make sure static options are provided by configuration */
969 if ((maskedflags & ctrlstatic) != ctrlstatic)
970 return -EOPNOTSUPP;
971
972 /* clear bits to be modified and copy the flag values */
973 priv->ctrlmode &= ~cm->mask;
974 priv->ctrlmode |= maskedflags;
975
976 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
977 if (priv->ctrlmode & CAN_CTRLMODE_FD)
978 dev->mtu = CANFD_MTU;
979 else
980 dev->mtu = CAN_MTU;
981 }
982
983 if (data[IFLA_CAN_RESTART_MS]) {
984 /* Do not allow changing restart delay while running */
985 if (dev->flags & IFF_UP)
986 return -EBUSY;
987 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
988 }
989
990 if (data[IFLA_CAN_RESTART]) {
991 /* Do not allow a restart while not running */
992 if (!(dev->flags & IFF_UP))
993 return -EINVAL;
994 err = can_restart_now(dev);
995 if (err)
996 return err;
997 }
998
999 if (data[IFLA_CAN_DATA_BITTIMING]) {
1000 struct can_bittiming dbt;
1001
1002 /* Do not allow changing bittiming while running */
1003 if (dev->flags & IFF_UP)
1004 return -EBUSY;
1005
1006 /* Calculate bittiming parameters based on
1007 * data_bittiming_const if set, otherwise pass bitrate
1008 * directly via do_set_bitrate(). Bail out if neither
1009 * is given.
1010 */
1011 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1012 return -EOPNOTSUPP;
1013
1014 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1015 sizeof(dbt));
1016 err = can_get_bittiming(dev, &dbt,
1017 priv->data_bittiming_const,
1018 priv->data_bitrate_const,
1019 priv->data_bitrate_const_cnt);
1020 if (err)
1021 return err;
1022 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1023
1024 if (priv->do_set_data_bittiming) {
1025 /* Finally, set the bit-timing registers */
1026 err = priv->do_set_data_bittiming(dev);
1027 if (err)
1028 return err;
1029 }
1030 }
1031
1032 if (data[IFLA_CAN_TERMINATION]) {
1033 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1034 const unsigned int num_term = priv->termination_const_cnt;
1035 unsigned int i;
1036
1037 if (!priv->do_set_termination)
1038 return -EOPNOTSUPP;
1039
1040 /* check whether given value is supported by the interface */
1041 for (i = 0; i < num_term; i++) {
1042 if (termval == priv->termination_const[i])
1043 break;
1044 }
1045 if (i >= num_term)
1046 return -EINVAL;
1047
1048 /* Finally, set the termination value */
1049 err = priv->do_set_termination(dev, termval);
1050 if (err)
1051 return err;
1052
1053 priv->termination = termval;
1054 }
1055
1056 return 0;
1057}
1058
1059static size_t can_get_size(const struct net_device *dev)
1060{
1061 struct can_priv *priv = netdev_priv(dev);
1062 size_t size = 0;
1063
1064 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
1065 size += nla_total_size(sizeof(struct can_bittiming));
1066 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
1067 size += nla_total_size(sizeof(struct can_bittiming_const));
1068 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
1069 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
1070 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
1071 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
1072 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
1073 size += nla_total_size(sizeof(struct can_berr_counter));
1074 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
1075 size += nla_total_size(sizeof(struct can_bittiming));
1076 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
1077 size += nla_total_size(sizeof(struct can_bittiming_const));
1078 if (priv->termination_const) {
1079 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */
1080 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */
1081 priv->termination_const_cnt);
1082 }
1083 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */
1084 size += nla_total_size(sizeof(*priv->bitrate_const) *
1085 priv->bitrate_const_cnt);
1086 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */
1087 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1088 priv->data_bitrate_const_cnt);
1089
1090 return size;
1091}
1092
1093static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1094{
1095 struct can_priv *priv = netdev_priv(dev);
1096 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1097 struct can_berr_counter bec;
1098 enum can_state state = priv->state;
1099
1100 if (priv->do_get_state)
1101 priv->do_get_state(dev, &state);
1102
1103 if ((priv->bittiming.bitrate &&
1104 nla_put(skb, IFLA_CAN_BITTIMING,
1105 sizeof(priv->bittiming), &priv->bittiming)) ||
1106
1107 (priv->bittiming_const &&
1108 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1109 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1110
1111 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1112 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1113 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1114 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1115
1116 (priv->do_get_berr_counter &&
1117 !priv->do_get_berr_counter(dev, &bec) &&
1118 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1119
1120 (priv->data_bittiming.bitrate &&
1121 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1122 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1123
1124 (priv->data_bittiming_const &&
1125 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1126 sizeof(*priv->data_bittiming_const),
1127 priv->data_bittiming_const)) ||
1128
1129 (priv->termination_const &&
1130 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1131 nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1132 sizeof(*priv->termination_const) *
1133 priv->termination_const_cnt,
1134 priv->termination_const))) ||
1135
1136 (priv->bitrate_const &&
1137 nla_put(skb, IFLA_CAN_BITRATE_CONST,
1138 sizeof(*priv->bitrate_const) *
1139 priv->bitrate_const_cnt,
1140 priv->bitrate_const)) ||
1141
1142 (priv->data_bitrate_const &&
1143 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1144 sizeof(*priv->data_bitrate_const) *
1145 priv->data_bitrate_const_cnt,
1146 priv->data_bitrate_const))
1147 )
1148
1149 return -EMSGSIZE;
1150
1151 return 0;
1152}
1153
1154static size_t can_get_xstats_size(const struct net_device *dev)
1155{
1156 return sizeof(struct can_device_stats);
1157}
1158
1159static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1160{
1161 struct can_priv *priv = netdev_priv(dev);
1162
1163 if (nla_put(skb, IFLA_INFO_XSTATS,
1164 sizeof(priv->can_stats), &priv->can_stats))
1165 goto nla_put_failure;
1166 return 0;
1167
1168nla_put_failure:
1169 return -EMSGSIZE;
1170}
1171
1172static int can_newlink(struct net *src_net, struct net_device *dev,
1173 struct nlattr *tb[], struct nlattr *data[],
1174 struct netlink_ext_ack *extack)
1175{
1176 return -EOPNOTSUPP;
1177}
1178
1179static void can_dellink(struct net_device *dev, struct list_head *head)
1180{
1181 return;
1182}
1183
1184static struct rtnl_link_ops can_link_ops __read_mostly = {
1185 .kind = "can",
1186 .maxtype = IFLA_CAN_MAX,
1187 .policy = can_policy,
1188 .setup = can_setup,
1189 .validate = can_validate,
1190 .newlink = can_newlink,
1191 .changelink = can_changelink,
1192 .dellink = can_dellink,
1193 .get_size = can_get_size,
1194 .fill_info = can_fill_info,
1195 .get_xstats_size = can_get_xstats_size,
1196 .fill_xstats = can_fill_xstats,
1197};
1198
1199/*
1200 * Register the CAN network device
1201 */
1202int register_candev(struct net_device *dev)
1203{
1204 struct can_priv *priv = netdev_priv(dev);
1205
1206 /* Ensure termination_const, termination_const_cnt and
1207 * do_set_termination consistency. All must be either set or
1208 * unset.
1209 */
1210 if ((!priv->termination_const != !priv->termination_const_cnt) ||
1211 (!priv->termination_const != !priv->do_set_termination))
1212 return -EINVAL;
1213
1214 if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1215 return -EINVAL;
1216
1217 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1218 return -EINVAL;
1219
1220 dev->rtnl_link_ops = &can_link_ops;
1221 netif_carrier_off(dev);
1222
1223 return register_netdev(dev);
1224}
1225EXPORT_SYMBOL_GPL(register_candev);
1226
1227/*
1228 * Unregister the CAN network device
1229 */
1230void unregister_candev(struct net_device *dev)
1231{
1232 unregister_netdev(dev);
1233}
1234EXPORT_SYMBOL_GPL(unregister_candev);
1235
1236/*
1237 * Test if a network device is a candev based device
1238 * and return the can_priv* if so.
1239 */
1240struct can_priv *safe_candev_priv(struct net_device *dev)
1241{
1242 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1243 return NULL;
1244
1245 return netdev_priv(dev);
1246}
1247EXPORT_SYMBOL_GPL(safe_candev_priv);
1248
1249static __init int can_dev_init(void)
1250{
1251 int err;
1252
1253 can_led_notifier_init();
1254
1255 err = rtnl_link_register(&can_link_ops);
1256 if (!err)
1257 printk(KERN_INFO MOD_DESC "\n");
1258
1259 return err;
1260}
1261module_init(can_dev_init);
1262
1263static __exit void can_dev_exit(void)
1264{
1265 rtnl_link_unregister(&can_link_ops);
1266
1267 can_led_notifier_exit();
1268}
1269module_exit(can_dev_exit);
1270
1271MODULE_ALIAS_RTNL_LINK("can");