rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Procedures for creating, accessing and interpreting the device tree. |
| 3 | * |
| 4 | * Paul Mackerras August 1996. |
| 5 | * Copyright (C) 1996-2005 Paul Mackerras. |
| 6 | * |
| 7 | * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. |
| 8 | * {engebret|bergner}@us.ibm.com |
| 9 | * |
| 10 | * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net |
| 11 | * |
| 12 | * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and |
| 13 | * Grant Likely. |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or |
| 16 | * modify it under the terms of the GNU General Public License |
| 17 | * as published by the Free Software Foundation; either version |
| 18 | * 2 of the License, or (at your option) any later version. |
| 19 | */ |
| 20 | |
| 21 | #define pr_fmt(fmt) "OF: " fmt |
| 22 | |
| 23 | #include <linux/console.h> |
| 24 | #include <linux/ctype.h> |
| 25 | #include <linux/cpu.h> |
| 26 | #include <linux/module.h> |
| 27 | #include <linux/of.h> |
| 28 | #include <linux/of_device.h> |
| 29 | #include <linux/of_graph.h> |
| 30 | #include <linux/spinlock.h> |
| 31 | #include <linux/slab.h> |
| 32 | #include <linux/string.h> |
| 33 | #include <linux/proc_fs.h> |
| 34 | |
| 35 | #include "of_private.h" |
| 36 | |
| 37 | LIST_HEAD(aliases_lookup); |
| 38 | |
| 39 | struct device_node *of_root; |
| 40 | EXPORT_SYMBOL(of_root); |
| 41 | struct device_node *of_chosen; |
| 42 | struct device_node *of_aliases; |
| 43 | struct device_node *of_stdout; |
| 44 | static const char *of_stdout_options; |
| 45 | |
| 46 | struct kset *of_kset; |
| 47 | |
| 48 | /* |
| 49 | * Used to protect the of_aliases, to hold off addition of nodes to sysfs. |
| 50 | * This mutex must be held whenever modifications are being made to the |
| 51 | * device tree. The of_{attach,detach}_node() and |
| 52 | * of_{add,remove,update}_property() helpers make sure this happens. |
| 53 | */ |
| 54 | DEFINE_MUTEX(of_mutex); |
| 55 | |
| 56 | /* use when traversing tree through the child, sibling, |
| 57 | * or parent members of struct device_node. |
| 58 | */ |
| 59 | DEFINE_RAW_SPINLOCK(devtree_lock); |
| 60 | |
| 61 | int of_n_addr_cells(struct device_node *np) |
| 62 | { |
| 63 | u32 cells; |
| 64 | |
| 65 | do { |
| 66 | if (np->parent) |
| 67 | np = np->parent; |
| 68 | if (!of_property_read_u32(np, "#address-cells", &cells)) |
| 69 | return cells; |
| 70 | } while (np->parent); |
| 71 | /* No #address-cells property for the root node */ |
| 72 | return OF_ROOT_NODE_ADDR_CELLS_DEFAULT; |
| 73 | } |
| 74 | EXPORT_SYMBOL(of_n_addr_cells); |
| 75 | |
| 76 | int of_n_size_cells(struct device_node *np) |
| 77 | { |
| 78 | u32 cells; |
| 79 | |
| 80 | do { |
| 81 | if (np->parent) |
| 82 | np = np->parent; |
| 83 | if (!of_property_read_u32(np, "#size-cells", &cells)) |
| 84 | return cells; |
| 85 | } while (np->parent); |
| 86 | /* No #size-cells property for the root node */ |
| 87 | return OF_ROOT_NODE_SIZE_CELLS_DEFAULT; |
| 88 | } |
| 89 | EXPORT_SYMBOL(of_n_size_cells); |
| 90 | |
| 91 | #ifdef CONFIG_NUMA |
| 92 | int __weak of_node_to_nid(struct device_node *np) |
| 93 | { |
| 94 | return NUMA_NO_NODE; |
| 95 | } |
| 96 | #endif |
| 97 | |
| 98 | #ifndef CONFIG_OF_DYNAMIC |
| 99 | static void of_node_release(struct kobject *kobj) |
| 100 | { |
| 101 | /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */ |
| 102 | } |
| 103 | #endif /* CONFIG_OF_DYNAMIC */ |
| 104 | |
| 105 | struct kobj_type of_node_ktype = { |
| 106 | .release = of_node_release, |
| 107 | }; |
| 108 | |
| 109 | static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj, |
| 110 | struct bin_attribute *bin_attr, char *buf, |
| 111 | loff_t offset, size_t count) |
| 112 | { |
| 113 | struct property *pp = container_of(bin_attr, struct property, attr); |
| 114 | return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length); |
| 115 | } |
| 116 | |
| 117 | /* always return newly allocated name, caller must free after use */ |
| 118 | static const char *safe_name(struct kobject *kobj, const char *orig_name) |
| 119 | { |
| 120 | const char *name = orig_name; |
| 121 | struct kernfs_node *kn; |
| 122 | int i = 0; |
| 123 | |
| 124 | /* don't be a hero. After 16 tries give up */ |
| 125 | while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) { |
| 126 | sysfs_put(kn); |
| 127 | if (name != orig_name) |
| 128 | kfree(name); |
| 129 | name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i); |
| 130 | } |
| 131 | |
| 132 | if (name == orig_name) { |
| 133 | name = kstrdup(orig_name, GFP_KERNEL); |
| 134 | } else { |
| 135 | pr_warn("Duplicate name in %s, renamed to \"%s\"\n", |
| 136 | kobject_name(kobj), name); |
| 137 | } |
| 138 | return name; |
| 139 | } |
| 140 | |
| 141 | int __of_add_property_sysfs(struct device_node *np, struct property *pp) |
| 142 | { |
| 143 | int rc; |
| 144 | |
| 145 | /* Important: Don't leak passwords */ |
| 146 | bool secure = strncmp(pp->name, "security-", 9) == 0; |
| 147 | |
| 148 | if (!IS_ENABLED(CONFIG_SYSFS)) |
| 149 | return 0; |
| 150 | |
| 151 | if (!of_kset || !of_node_is_attached(np)) |
| 152 | return 0; |
| 153 | |
| 154 | sysfs_bin_attr_init(&pp->attr); |
| 155 | pp->attr.attr.name = safe_name(&np->kobj, pp->name); |
| 156 | pp->attr.attr.mode = secure ? 0400 : 0444; |
| 157 | pp->attr.size = secure ? 0 : pp->length; |
| 158 | pp->attr.read = of_node_property_read; |
| 159 | |
| 160 | rc = sysfs_create_bin_file(&np->kobj, &pp->attr); |
| 161 | WARN(rc, "error adding attribute %s to node %pOF\n", pp->name, np); |
| 162 | return rc; |
| 163 | } |
| 164 | |
| 165 | int __of_attach_node_sysfs(struct device_node *np) |
| 166 | { |
| 167 | const char *name; |
| 168 | struct kobject *parent; |
| 169 | struct property *pp; |
| 170 | int rc; |
| 171 | |
| 172 | if (!of_kset) |
| 173 | return 0; |
| 174 | |
| 175 | np->kobj.kset = of_kset; |
| 176 | if (!np->parent) { |
| 177 | /* Nodes without parents are new top level trees */ |
| 178 | name = safe_name(&of_kset->kobj, "base"); |
| 179 | parent = NULL; |
| 180 | } else { |
| 181 | name = safe_name(&np->parent->kobj, kbasename(np->full_name)); |
| 182 | parent = &np->parent->kobj; |
| 183 | } |
| 184 | if (!name) |
| 185 | return -ENOMEM; |
| 186 | rc = kobject_add(&np->kobj, parent, "%s", name); |
| 187 | kfree(name); |
| 188 | if (rc) |
| 189 | return rc; |
| 190 | |
| 191 | for_each_property_of_node(np, pp) |
| 192 | __of_add_property_sysfs(np, pp); |
| 193 | |
| 194 | return 0; |
| 195 | } |
| 196 | |
| 197 | void __init of_core_init(void) |
| 198 | { |
| 199 | struct device_node *np; |
| 200 | |
| 201 | /* Create the kset, and register existing nodes */ |
| 202 | mutex_lock(&of_mutex); |
| 203 | of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj); |
| 204 | if (!of_kset) { |
| 205 | mutex_unlock(&of_mutex); |
| 206 | pr_err("failed to register existing nodes\n"); |
| 207 | return; |
| 208 | } |
| 209 | for_each_of_allnodes(np) |
| 210 | __of_attach_node_sysfs(np); |
| 211 | mutex_unlock(&of_mutex); |
| 212 | |
| 213 | /* Symlink in /proc as required by userspace ABI */ |
| 214 | if (of_root) |
| 215 | proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base"); |
| 216 | } |
| 217 | |
| 218 | static struct property *__of_find_property(const struct device_node *np, |
| 219 | const char *name, int *lenp) |
| 220 | { |
| 221 | struct property *pp; |
| 222 | |
| 223 | if (!np) |
| 224 | return NULL; |
| 225 | |
| 226 | for (pp = np->properties; pp; pp = pp->next) { |
| 227 | if (of_prop_cmp(pp->name, name) == 0) { |
| 228 | if (lenp) |
| 229 | *lenp = pp->length; |
| 230 | break; |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | return pp; |
| 235 | } |
| 236 | |
| 237 | struct property *of_find_property(const struct device_node *np, |
| 238 | const char *name, |
| 239 | int *lenp) |
| 240 | { |
| 241 | struct property *pp; |
| 242 | unsigned long flags; |
| 243 | |
| 244 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 245 | pp = __of_find_property(np, name, lenp); |
| 246 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 247 | |
| 248 | return pp; |
| 249 | } |
| 250 | EXPORT_SYMBOL(of_find_property); |
| 251 | |
| 252 | struct device_node *__of_find_all_nodes(struct device_node *prev) |
| 253 | { |
| 254 | struct device_node *np; |
| 255 | if (!prev) { |
| 256 | np = of_root; |
| 257 | } else if (prev->child) { |
| 258 | np = prev->child; |
| 259 | } else { |
| 260 | /* Walk back up looking for a sibling, or the end of the structure */ |
| 261 | np = prev; |
| 262 | while (np->parent && !np->sibling) |
| 263 | np = np->parent; |
| 264 | np = np->sibling; /* Might be null at the end of the tree */ |
| 265 | } |
| 266 | return np; |
| 267 | } |
| 268 | |
| 269 | /** |
| 270 | * of_find_all_nodes - Get next node in global list |
| 271 | * @prev: Previous node or NULL to start iteration |
| 272 | * of_node_put() will be called on it |
| 273 | * |
| 274 | * Returns a node pointer with refcount incremented, use |
| 275 | * of_node_put() on it when done. |
| 276 | */ |
| 277 | struct device_node *of_find_all_nodes(struct device_node *prev) |
| 278 | { |
| 279 | struct device_node *np; |
| 280 | unsigned long flags; |
| 281 | |
| 282 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 283 | np = __of_find_all_nodes(prev); |
| 284 | of_node_get(np); |
| 285 | of_node_put(prev); |
| 286 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 287 | return np; |
| 288 | } |
| 289 | EXPORT_SYMBOL(of_find_all_nodes); |
| 290 | |
| 291 | /* |
| 292 | * Find a property with a given name for a given node |
| 293 | * and return the value. |
| 294 | */ |
| 295 | const void *__of_get_property(const struct device_node *np, |
| 296 | const char *name, int *lenp) |
| 297 | { |
| 298 | struct property *pp = __of_find_property(np, name, lenp); |
| 299 | |
| 300 | return pp ? pp->value : NULL; |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * Find a property with a given name for a given node |
| 305 | * and return the value. |
| 306 | */ |
| 307 | const void *of_get_property(const struct device_node *np, const char *name, |
| 308 | int *lenp) |
| 309 | { |
| 310 | struct property *pp = of_find_property(np, name, lenp); |
| 311 | |
| 312 | return pp ? pp->value : NULL; |
| 313 | } |
| 314 | EXPORT_SYMBOL(of_get_property); |
| 315 | |
| 316 | /* |
| 317 | * arch_match_cpu_phys_id - Match the given logical CPU and physical id |
| 318 | * |
| 319 | * @cpu: logical cpu index of a core/thread |
| 320 | * @phys_id: physical identifier of a core/thread |
| 321 | * |
| 322 | * CPU logical to physical index mapping is architecture specific. |
| 323 | * However this __weak function provides a default match of physical |
| 324 | * id to logical cpu index. phys_id provided here is usually values read |
| 325 | * from the device tree which must match the hardware internal registers. |
| 326 | * |
| 327 | * Returns true if the physical identifier and the logical cpu index |
| 328 | * correspond to the same core/thread, false otherwise. |
| 329 | */ |
| 330 | bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id) |
| 331 | { |
| 332 | return (u32)phys_id == cpu; |
| 333 | } |
| 334 | |
| 335 | /** |
| 336 | * Checks if the given "prop_name" property holds the physical id of the |
| 337 | * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not |
| 338 | * NULL, local thread number within the core is returned in it. |
| 339 | */ |
| 340 | static bool __of_find_n_match_cpu_property(struct device_node *cpun, |
| 341 | const char *prop_name, int cpu, unsigned int *thread) |
| 342 | { |
| 343 | const __be32 *cell; |
| 344 | int ac, prop_len, tid; |
| 345 | u64 hwid; |
| 346 | |
| 347 | ac = of_n_addr_cells(cpun); |
| 348 | cell = of_get_property(cpun, prop_name, &prop_len); |
| 349 | if (!cell || !ac) |
| 350 | return false; |
| 351 | prop_len /= sizeof(*cell) * ac; |
| 352 | for (tid = 0; tid < prop_len; tid++) { |
| 353 | hwid = of_read_number(cell, ac); |
| 354 | if (arch_match_cpu_phys_id(cpu, hwid)) { |
| 355 | if (thread) |
| 356 | *thread = tid; |
| 357 | return true; |
| 358 | } |
| 359 | cell += ac; |
| 360 | } |
| 361 | return false; |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * arch_find_n_match_cpu_physical_id - See if the given device node is |
| 366 | * for the cpu corresponding to logical cpu 'cpu'. Return true if so, |
| 367 | * else false. If 'thread' is non-NULL, the local thread number within the |
| 368 | * core is returned in it. |
| 369 | */ |
| 370 | bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun, |
| 371 | int cpu, unsigned int *thread) |
| 372 | { |
| 373 | /* Check for non-standard "ibm,ppc-interrupt-server#s" property |
| 374 | * for thread ids on PowerPC. If it doesn't exist fallback to |
| 375 | * standard "reg" property. |
| 376 | */ |
| 377 | if (IS_ENABLED(CONFIG_PPC) && |
| 378 | __of_find_n_match_cpu_property(cpun, |
| 379 | "ibm,ppc-interrupt-server#s", |
| 380 | cpu, thread)) |
| 381 | return true; |
| 382 | |
| 383 | return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread); |
| 384 | } |
| 385 | |
| 386 | /** |
| 387 | * of_get_cpu_node - Get device node associated with the given logical CPU |
| 388 | * |
| 389 | * @cpu: CPU number(logical index) for which device node is required |
| 390 | * @thread: if not NULL, local thread number within the physical core is |
| 391 | * returned |
| 392 | * |
| 393 | * The main purpose of this function is to retrieve the device node for the |
| 394 | * given logical CPU index. It should be used to initialize the of_node in |
| 395 | * cpu device. Once of_node in cpu device is populated, all the further |
| 396 | * references can use that instead. |
| 397 | * |
| 398 | * CPU logical to physical index mapping is architecture specific and is built |
| 399 | * before booting secondary cores. This function uses arch_match_cpu_phys_id |
| 400 | * which can be overridden by architecture specific implementation. |
| 401 | * |
| 402 | * Returns a node pointer for the logical cpu with refcount incremented, use |
| 403 | * of_node_put() on it when done. Returns NULL if not found. |
| 404 | */ |
| 405 | struct device_node *of_get_cpu_node(int cpu, unsigned int *thread) |
| 406 | { |
| 407 | struct device_node *cpun; |
| 408 | |
| 409 | for_each_node_by_type(cpun, "cpu") { |
| 410 | if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread)) |
| 411 | return cpun; |
| 412 | } |
| 413 | return NULL; |
| 414 | } |
| 415 | EXPORT_SYMBOL(of_get_cpu_node); |
| 416 | |
| 417 | /** |
| 418 | * __of_device_is_compatible() - Check if the node matches given constraints |
| 419 | * @device: pointer to node |
| 420 | * @compat: required compatible string, NULL or "" for any match |
| 421 | * @type: required device_type value, NULL or "" for any match |
| 422 | * @name: required node name, NULL or "" for any match |
| 423 | * |
| 424 | * Checks if the given @compat, @type and @name strings match the |
| 425 | * properties of the given @device. A constraints can be skipped by |
| 426 | * passing NULL or an empty string as the constraint. |
| 427 | * |
| 428 | * Returns 0 for no match, and a positive integer on match. The return |
| 429 | * value is a relative score with larger values indicating better |
| 430 | * matches. The score is weighted for the most specific compatible value |
| 431 | * to get the highest score. Matching type is next, followed by matching |
| 432 | * name. Practically speaking, this results in the following priority |
| 433 | * order for matches: |
| 434 | * |
| 435 | * 1. specific compatible && type && name |
| 436 | * 2. specific compatible && type |
| 437 | * 3. specific compatible && name |
| 438 | * 4. specific compatible |
| 439 | * 5. general compatible && type && name |
| 440 | * 6. general compatible && type |
| 441 | * 7. general compatible && name |
| 442 | * 8. general compatible |
| 443 | * 9. type && name |
| 444 | * 10. type |
| 445 | * 11. name |
| 446 | */ |
| 447 | static int __of_device_is_compatible(const struct device_node *device, |
| 448 | const char *compat, const char *type, const char *name) |
| 449 | { |
| 450 | struct property *prop; |
| 451 | const char *cp; |
| 452 | int index = 0, score = 0; |
| 453 | |
| 454 | /* Compatible match has highest priority */ |
| 455 | if (compat && compat[0]) { |
| 456 | prop = __of_find_property(device, "compatible", NULL); |
| 457 | for (cp = of_prop_next_string(prop, NULL); cp; |
| 458 | cp = of_prop_next_string(prop, cp), index++) { |
| 459 | if (of_compat_cmp(cp, compat, strlen(compat)) == 0) { |
| 460 | score = INT_MAX/2 - (index << 2); |
| 461 | break; |
| 462 | } |
| 463 | } |
| 464 | if (!score) |
| 465 | return 0; |
| 466 | } |
| 467 | |
| 468 | /* Matching type is better than matching name */ |
| 469 | if (type && type[0]) { |
| 470 | if (!device->type || of_node_cmp(type, device->type)) |
| 471 | return 0; |
| 472 | score += 2; |
| 473 | } |
| 474 | |
| 475 | /* Matching name is a bit better than not */ |
| 476 | if (name && name[0]) { |
| 477 | if (!device->name || of_node_cmp(name, device->name)) |
| 478 | return 0; |
| 479 | score++; |
| 480 | } |
| 481 | |
| 482 | return score; |
| 483 | } |
| 484 | |
| 485 | /** Checks if the given "compat" string matches one of the strings in |
| 486 | * the device's "compatible" property |
| 487 | */ |
| 488 | int of_device_is_compatible(const struct device_node *device, |
| 489 | const char *compat) |
| 490 | { |
| 491 | unsigned long flags; |
| 492 | int res; |
| 493 | |
| 494 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 495 | res = __of_device_is_compatible(device, compat, NULL, NULL); |
| 496 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 497 | return res; |
| 498 | } |
| 499 | EXPORT_SYMBOL(of_device_is_compatible); |
| 500 | |
| 501 | /** Checks if the device is compatible with any of the entries in |
| 502 | * a NULL terminated array of strings. Returns the best match |
| 503 | * score or 0. |
| 504 | */ |
| 505 | int of_device_compatible_match(struct device_node *device, |
| 506 | const char *const *compat) |
| 507 | { |
| 508 | unsigned int tmp, score = 0; |
| 509 | |
| 510 | if (!compat) |
| 511 | return 0; |
| 512 | |
| 513 | while (*compat) { |
| 514 | tmp = of_device_is_compatible(device, *compat); |
| 515 | if (tmp > score) |
| 516 | score = tmp; |
| 517 | compat++; |
| 518 | } |
| 519 | |
| 520 | return score; |
| 521 | } |
| 522 | |
| 523 | /** |
| 524 | * of_machine_is_compatible - Test root of device tree for a given compatible value |
| 525 | * @compat: compatible string to look for in root node's compatible property. |
| 526 | * |
| 527 | * Returns a positive integer if the root node has the given value in its |
| 528 | * compatible property. |
| 529 | */ |
| 530 | int of_machine_is_compatible(const char *compat) |
| 531 | { |
| 532 | struct device_node *root; |
| 533 | int rc = 0; |
| 534 | |
| 535 | root = of_find_node_by_path("/"); |
| 536 | if (root) { |
| 537 | rc = of_device_is_compatible(root, compat); |
| 538 | of_node_put(root); |
| 539 | } |
| 540 | return rc; |
| 541 | } |
| 542 | EXPORT_SYMBOL(of_machine_is_compatible); |
| 543 | |
| 544 | /** |
| 545 | * __of_device_is_available - check if a device is available for use |
| 546 | * |
| 547 | * @device: Node to check for availability, with locks already held |
| 548 | * |
| 549 | * Returns true if the status property is absent or set to "okay" or "ok", |
| 550 | * false otherwise |
| 551 | */ |
| 552 | static bool __of_device_is_available(const struct device_node *device) |
| 553 | { |
| 554 | const char *status; |
| 555 | int statlen; |
| 556 | |
| 557 | if (!device) |
| 558 | return false; |
| 559 | |
| 560 | status = __of_get_property(device, "status", &statlen); |
| 561 | if (status == NULL) |
| 562 | return true; |
| 563 | |
| 564 | if (statlen > 0) { |
| 565 | if (!strcmp(status, "okay") || !strcmp(status, "ok")) |
| 566 | return true; |
| 567 | } |
| 568 | |
| 569 | return false; |
| 570 | } |
| 571 | |
| 572 | /** |
| 573 | * of_device_is_available - check if a device is available for use |
| 574 | * |
| 575 | * @device: Node to check for availability |
| 576 | * |
| 577 | * Returns true if the status property is absent or set to "okay" or "ok", |
| 578 | * false otherwise |
| 579 | */ |
| 580 | bool of_device_is_available(const struct device_node *device) |
| 581 | { |
| 582 | unsigned long flags; |
| 583 | bool res; |
| 584 | |
| 585 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 586 | res = __of_device_is_available(device); |
| 587 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 588 | return res; |
| 589 | |
| 590 | } |
| 591 | EXPORT_SYMBOL(of_device_is_available); |
| 592 | |
| 593 | /** |
| 594 | * of_device_is_big_endian - check if a device has BE registers |
| 595 | * |
| 596 | * @device: Node to check for endianness |
| 597 | * |
| 598 | * Returns true if the device has a "big-endian" property, or if the kernel |
| 599 | * was compiled for BE *and* the device has a "native-endian" property. |
| 600 | * Returns false otherwise. |
| 601 | * |
| 602 | * Callers would nominally use ioread32be/iowrite32be if |
| 603 | * of_device_is_big_endian() == true, or readl/writel otherwise. |
| 604 | */ |
| 605 | bool of_device_is_big_endian(const struct device_node *device) |
| 606 | { |
| 607 | if (of_property_read_bool(device, "big-endian")) |
| 608 | return true; |
| 609 | if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) && |
| 610 | of_property_read_bool(device, "native-endian")) |
| 611 | return true; |
| 612 | return false; |
| 613 | } |
| 614 | EXPORT_SYMBOL(of_device_is_big_endian); |
| 615 | |
| 616 | /** |
| 617 | * of_get_parent - Get a node's parent if any |
| 618 | * @node: Node to get parent |
| 619 | * |
| 620 | * Returns a node pointer with refcount incremented, use |
| 621 | * of_node_put() on it when done. |
| 622 | */ |
| 623 | struct device_node *of_get_parent(const struct device_node *node) |
| 624 | { |
| 625 | struct device_node *np; |
| 626 | unsigned long flags; |
| 627 | |
| 628 | if (!node) |
| 629 | return NULL; |
| 630 | |
| 631 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 632 | np = of_node_get(node->parent); |
| 633 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 634 | return np; |
| 635 | } |
| 636 | EXPORT_SYMBOL(of_get_parent); |
| 637 | |
| 638 | /** |
| 639 | * of_get_next_parent - Iterate to a node's parent |
| 640 | * @node: Node to get parent of |
| 641 | * |
| 642 | * This is like of_get_parent() except that it drops the |
| 643 | * refcount on the passed node, making it suitable for iterating |
| 644 | * through a node's parents. |
| 645 | * |
| 646 | * Returns a node pointer with refcount incremented, use |
| 647 | * of_node_put() on it when done. |
| 648 | */ |
| 649 | struct device_node *of_get_next_parent(struct device_node *node) |
| 650 | { |
| 651 | struct device_node *parent; |
| 652 | unsigned long flags; |
| 653 | |
| 654 | if (!node) |
| 655 | return NULL; |
| 656 | |
| 657 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 658 | parent = of_node_get(node->parent); |
| 659 | of_node_put(node); |
| 660 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 661 | return parent; |
| 662 | } |
| 663 | EXPORT_SYMBOL(of_get_next_parent); |
| 664 | |
| 665 | static struct device_node *__of_get_next_child(const struct device_node *node, |
| 666 | struct device_node *prev) |
| 667 | { |
| 668 | struct device_node *next; |
| 669 | |
| 670 | if (!node) |
| 671 | return NULL; |
| 672 | |
| 673 | next = prev ? prev->sibling : node->child; |
| 674 | for (; next; next = next->sibling) |
| 675 | if (of_node_get(next)) |
| 676 | break; |
| 677 | of_node_put(prev); |
| 678 | return next; |
| 679 | } |
| 680 | #define __for_each_child_of_node(parent, child) \ |
| 681 | for (child = __of_get_next_child(parent, NULL); child != NULL; \ |
| 682 | child = __of_get_next_child(parent, child)) |
| 683 | |
| 684 | /** |
| 685 | * of_get_next_child - Iterate a node childs |
| 686 | * @node: parent node |
| 687 | * @prev: previous child of the parent node, or NULL to get first |
| 688 | * |
| 689 | * Returns a node pointer with refcount incremented, use of_node_put() on |
| 690 | * it when done. Returns NULL when prev is the last child. Decrements the |
| 691 | * refcount of prev. |
| 692 | */ |
| 693 | struct device_node *of_get_next_child(const struct device_node *node, |
| 694 | struct device_node *prev) |
| 695 | { |
| 696 | struct device_node *next; |
| 697 | unsigned long flags; |
| 698 | |
| 699 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 700 | next = __of_get_next_child(node, prev); |
| 701 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 702 | return next; |
| 703 | } |
| 704 | EXPORT_SYMBOL(of_get_next_child); |
| 705 | |
| 706 | /** |
| 707 | * of_get_next_available_child - Find the next available child node |
| 708 | * @node: parent node |
| 709 | * @prev: previous child of the parent node, or NULL to get first |
| 710 | * |
| 711 | * This function is like of_get_next_child(), except that it |
| 712 | * automatically skips any disabled nodes (i.e. status = "disabled"). |
| 713 | */ |
| 714 | struct device_node *of_get_next_available_child(const struct device_node *node, |
| 715 | struct device_node *prev) |
| 716 | { |
| 717 | struct device_node *next; |
| 718 | unsigned long flags; |
| 719 | |
| 720 | if (!node) |
| 721 | return NULL; |
| 722 | |
| 723 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 724 | next = prev ? prev->sibling : node->child; |
| 725 | for (; next; next = next->sibling) { |
| 726 | if (!__of_device_is_available(next)) |
| 727 | continue; |
| 728 | if (of_node_get(next)) |
| 729 | break; |
| 730 | } |
| 731 | of_node_put(prev); |
| 732 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 733 | return next; |
| 734 | } |
| 735 | EXPORT_SYMBOL(of_get_next_available_child); |
| 736 | |
| 737 | /** |
| 738 | * of_get_compatible_child - Find compatible child node |
| 739 | * @parent: parent node |
| 740 | * @compatible: compatible string |
| 741 | * |
| 742 | * Lookup child node whose compatible property contains the given compatible |
| 743 | * string. |
| 744 | * |
| 745 | * Returns a node pointer with refcount incremented, use of_node_put() on it |
| 746 | * when done; or NULL if not found. |
| 747 | */ |
| 748 | struct device_node *of_get_compatible_child(const struct device_node *parent, |
| 749 | const char *compatible) |
| 750 | { |
| 751 | struct device_node *child; |
| 752 | |
| 753 | for_each_child_of_node(parent, child) { |
| 754 | if (of_device_is_compatible(child, compatible)) |
| 755 | break; |
| 756 | } |
| 757 | |
| 758 | return child; |
| 759 | } |
| 760 | EXPORT_SYMBOL(of_get_compatible_child); |
| 761 | |
| 762 | /** |
| 763 | * of_get_child_by_name - Find the child node by name for a given parent |
| 764 | * @node: parent node |
| 765 | * @name: child name to look for. |
| 766 | * |
| 767 | * This function looks for child node for given matching name |
| 768 | * |
| 769 | * Returns a node pointer if found, with refcount incremented, use |
| 770 | * of_node_put() on it when done. |
| 771 | * Returns NULL if node is not found. |
| 772 | */ |
| 773 | struct device_node *of_get_child_by_name(const struct device_node *node, |
| 774 | const char *name) |
| 775 | { |
| 776 | struct device_node *child; |
| 777 | |
| 778 | for_each_child_of_node(node, child) |
| 779 | if (child->name && (of_node_cmp(child->name, name) == 0)) |
| 780 | break; |
| 781 | return child; |
| 782 | } |
| 783 | EXPORT_SYMBOL(of_get_child_by_name); |
| 784 | |
| 785 | static struct device_node *__of_find_node_by_path(struct device_node *parent, |
| 786 | const char *path) |
| 787 | { |
| 788 | struct device_node *child; |
| 789 | int len; |
| 790 | |
| 791 | len = strcspn(path, "/:"); |
| 792 | if (!len) |
| 793 | return NULL; |
| 794 | |
| 795 | __for_each_child_of_node(parent, child) { |
| 796 | const char *name = kbasename(child->full_name); |
| 797 | if (strncmp(path, name, len) == 0 && (strlen(name) == len)) |
| 798 | return child; |
| 799 | } |
| 800 | return NULL; |
| 801 | } |
| 802 | |
| 803 | struct device_node *__of_find_node_by_full_path(struct device_node *node, |
| 804 | const char *path) |
| 805 | { |
| 806 | const char *separator = strchr(path, ':'); |
| 807 | |
| 808 | while (node && *path == '/') { |
| 809 | struct device_node *tmp = node; |
| 810 | |
| 811 | path++; /* Increment past '/' delimiter */ |
| 812 | node = __of_find_node_by_path(node, path); |
| 813 | of_node_put(tmp); |
| 814 | path = strchrnul(path, '/'); |
| 815 | if (separator && separator < path) |
| 816 | break; |
| 817 | } |
| 818 | return node; |
| 819 | } |
| 820 | |
| 821 | /** |
| 822 | * of_find_node_opts_by_path - Find a node matching a full OF path |
| 823 | * @path: Either the full path to match, or if the path does not |
| 824 | * start with '/', the name of a property of the /aliases |
| 825 | * node (an alias). In the case of an alias, the node |
| 826 | * matching the alias' value will be returned. |
| 827 | * @opts: Address of a pointer into which to store the start of |
| 828 | * an options string appended to the end of the path with |
| 829 | * a ':' separator. |
| 830 | * |
| 831 | * Valid paths: |
| 832 | * /foo/bar Full path |
| 833 | * foo Valid alias |
| 834 | * foo/bar Valid alias + relative path |
| 835 | * |
| 836 | * Returns a node pointer with refcount incremented, use |
| 837 | * of_node_put() on it when done. |
| 838 | */ |
| 839 | struct device_node *of_find_node_opts_by_path(const char *path, const char **opts) |
| 840 | { |
| 841 | struct device_node *np = NULL; |
| 842 | struct property *pp; |
| 843 | unsigned long flags; |
| 844 | const char *separator = strchr(path, ':'); |
| 845 | |
| 846 | if (opts) |
| 847 | *opts = separator ? separator + 1 : NULL; |
| 848 | |
| 849 | if (strcmp(path, "/") == 0) |
| 850 | return of_node_get(of_root); |
| 851 | |
| 852 | /* The path could begin with an alias */ |
| 853 | if (*path != '/') { |
| 854 | int len; |
| 855 | const char *p = separator; |
| 856 | |
| 857 | if (!p) |
| 858 | p = strchrnul(path, '/'); |
| 859 | len = p - path; |
| 860 | |
| 861 | /* of_aliases must not be NULL */ |
| 862 | if (!of_aliases) |
| 863 | return NULL; |
| 864 | |
| 865 | for_each_property_of_node(of_aliases, pp) { |
| 866 | if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) { |
| 867 | np = of_find_node_by_path(pp->value); |
| 868 | break; |
| 869 | } |
| 870 | } |
| 871 | if (!np) |
| 872 | return NULL; |
| 873 | path = p; |
| 874 | } |
| 875 | |
| 876 | /* Step down the tree matching path components */ |
| 877 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 878 | if (!np) |
| 879 | np = of_node_get(of_root); |
| 880 | np = __of_find_node_by_full_path(np, path); |
| 881 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 882 | return np; |
| 883 | } |
| 884 | EXPORT_SYMBOL(of_find_node_opts_by_path); |
| 885 | |
| 886 | /** |
| 887 | * of_find_node_by_name - Find a node by its "name" property |
| 888 | * @from: The node to start searching from or NULL, the node |
| 889 | * you pass will not be searched, only the next one |
| 890 | * will; typically, you pass what the previous call |
| 891 | * returned. of_node_put() will be called on it |
| 892 | * @name: The name string to match against |
| 893 | * |
| 894 | * Returns a node pointer with refcount incremented, use |
| 895 | * of_node_put() on it when done. |
| 896 | */ |
| 897 | struct device_node *of_find_node_by_name(struct device_node *from, |
| 898 | const char *name) |
| 899 | { |
| 900 | struct device_node *np; |
| 901 | unsigned long flags; |
| 902 | |
| 903 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 904 | for_each_of_allnodes_from(from, np) |
| 905 | if (np->name && (of_node_cmp(np->name, name) == 0) |
| 906 | && of_node_get(np)) |
| 907 | break; |
| 908 | of_node_put(from); |
| 909 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 910 | return np; |
| 911 | } |
| 912 | EXPORT_SYMBOL(of_find_node_by_name); |
| 913 | |
| 914 | /** |
| 915 | * of_find_node_by_type - Find a node by its "device_type" property |
| 916 | * @from: The node to start searching from, or NULL to start searching |
| 917 | * the entire device tree. The node you pass will not be |
| 918 | * searched, only the next one will; typically, you pass |
| 919 | * what the previous call returned. of_node_put() will be |
| 920 | * called on from for you. |
| 921 | * @type: The type string to match against |
| 922 | * |
| 923 | * Returns a node pointer with refcount incremented, use |
| 924 | * of_node_put() on it when done. |
| 925 | */ |
| 926 | struct device_node *of_find_node_by_type(struct device_node *from, |
| 927 | const char *type) |
| 928 | { |
| 929 | struct device_node *np; |
| 930 | unsigned long flags; |
| 931 | |
| 932 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 933 | for_each_of_allnodes_from(from, np) |
| 934 | if (np->type && (of_node_cmp(np->type, type) == 0) |
| 935 | && of_node_get(np)) |
| 936 | break; |
| 937 | of_node_put(from); |
| 938 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 939 | return np; |
| 940 | } |
| 941 | EXPORT_SYMBOL(of_find_node_by_type); |
| 942 | |
| 943 | /** |
| 944 | * of_find_compatible_node - Find a node based on type and one of the |
| 945 | * tokens in its "compatible" property |
| 946 | * @from: The node to start searching from or NULL, the node |
| 947 | * you pass will not be searched, only the next one |
| 948 | * will; typically, you pass what the previous call |
| 949 | * returned. of_node_put() will be called on it |
| 950 | * @type: The type string to match "device_type" or NULL to ignore |
| 951 | * @compatible: The string to match to one of the tokens in the device |
| 952 | * "compatible" list. |
| 953 | * |
| 954 | * Returns a node pointer with refcount incremented, use |
| 955 | * of_node_put() on it when done. |
| 956 | */ |
| 957 | struct device_node *of_find_compatible_node(struct device_node *from, |
| 958 | const char *type, const char *compatible) |
| 959 | { |
| 960 | struct device_node *np; |
| 961 | unsigned long flags; |
| 962 | |
| 963 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 964 | for_each_of_allnodes_from(from, np) |
| 965 | if (__of_device_is_compatible(np, compatible, type, NULL) && |
| 966 | of_node_get(np)) |
| 967 | break; |
| 968 | of_node_put(from); |
| 969 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 970 | return np; |
| 971 | } |
| 972 | EXPORT_SYMBOL(of_find_compatible_node); |
| 973 | |
| 974 | /** |
| 975 | * of_find_node_with_property - Find a node which has a property with |
| 976 | * the given name. |
| 977 | * @from: The node to start searching from or NULL, the node |
| 978 | * you pass will not be searched, only the next one |
| 979 | * will; typically, you pass what the previous call |
| 980 | * returned. of_node_put() will be called on it |
| 981 | * @prop_name: The name of the property to look for. |
| 982 | * |
| 983 | * Returns a node pointer with refcount incremented, use |
| 984 | * of_node_put() on it when done. |
| 985 | */ |
| 986 | struct device_node *of_find_node_with_property(struct device_node *from, |
| 987 | const char *prop_name) |
| 988 | { |
| 989 | struct device_node *np; |
| 990 | struct property *pp; |
| 991 | unsigned long flags; |
| 992 | |
| 993 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 994 | for_each_of_allnodes_from(from, np) { |
| 995 | for (pp = np->properties; pp; pp = pp->next) { |
| 996 | if (of_prop_cmp(pp->name, prop_name) == 0) { |
| 997 | of_node_get(np); |
| 998 | goto out; |
| 999 | } |
| 1000 | } |
| 1001 | } |
| 1002 | out: |
| 1003 | of_node_put(from); |
| 1004 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 1005 | return np; |
| 1006 | } |
| 1007 | EXPORT_SYMBOL(of_find_node_with_property); |
| 1008 | |
| 1009 | static |
| 1010 | const struct of_device_id *__of_match_node(const struct of_device_id *matches, |
| 1011 | const struct device_node *node) |
| 1012 | { |
| 1013 | const struct of_device_id *best_match = NULL; |
| 1014 | int score, best_score = 0; |
| 1015 | |
| 1016 | if (!matches) |
| 1017 | return NULL; |
| 1018 | |
| 1019 | for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) { |
| 1020 | score = __of_device_is_compatible(node, matches->compatible, |
| 1021 | matches->type, matches->name); |
| 1022 | if (score > best_score) { |
| 1023 | best_match = matches; |
| 1024 | best_score = score; |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | return best_match; |
| 1029 | } |
| 1030 | |
| 1031 | /** |
| 1032 | * of_match_node - Tell if a device_node has a matching of_match structure |
| 1033 | * @matches: array of of device match structures to search in |
| 1034 | * @node: the of device structure to match against |
| 1035 | * |
| 1036 | * Low level utility function used by device matching. |
| 1037 | */ |
| 1038 | const struct of_device_id *of_match_node(const struct of_device_id *matches, |
| 1039 | const struct device_node *node) |
| 1040 | { |
| 1041 | const struct of_device_id *match; |
| 1042 | unsigned long flags; |
| 1043 | |
| 1044 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 1045 | match = __of_match_node(matches, node); |
| 1046 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 1047 | return match; |
| 1048 | } |
| 1049 | EXPORT_SYMBOL(of_match_node); |
| 1050 | |
| 1051 | /** |
| 1052 | * of_find_matching_node_and_match - Find a node based on an of_device_id |
| 1053 | * match table. |
| 1054 | * @from: The node to start searching from or NULL, the node |
| 1055 | * you pass will not be searched, only the next one |
| 1056 | * will; typically, you pass what the previous call |
| 1057 | * returned. of_node_put() will be called on it |
| 1058 | * @matches: array of of device match structures to search in |
| 1059 | * @match Updated to point at the matches entry which matched |
| 1060 | * |
| 1061 | * Returns a node pointer with refcount incremented, use |
| 1062 | * of_node_put() on it when done. |
| 1063 | */ |
| 1064 | struct device_node *of_find_matching_node_and_match(struct device_node *from, |
| 1065 | const struct of_device_id *matches, |
| 1066 | const struct of_device_id **match) |
| 1067 | { |
| 1068 | struct device_node *np; |
| 1069 | const struct of_device_id *m; |
| 1070 | unsigned long flags; |
| 1071 | |
| 1072 | if (match) |
| 1073 | *match = NULL; |
| 1074 | |
| 1075 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 1076 | for_each_of_allnodes_from(from, np) { |
| 1077 | m = __of_match_node(matches, np); |
| 1078 | if (m && of_node_get(np)) { |
| 1079 | if (match) |
| 1080 | *match = m; |
| 1081 | break; |
| 1082 | } |
| 1083 | } |
| 1084 | of_node_put(from); |
| 1085 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 1086 | return np; |
| 1087 | } |
| 1088 | EXPORT_SYMBOL(of_find_matching_node_and_match); |
| 1089 | |
| 1090 | /** |
| 1091 | * of_modalias_node - Lookup appropriate modalias for a device node |
| 1092 | * @node: pointer to a device tree node |
| 1093 | * @modalias: Pointer to buffer that modalias value will be copied into |
| 1094 | * @len: Length of modalias value |
| 1095 | * |
| 1096 | * Based on the value of the compatible property, this routine will attempt |
| 1097 | * to choose an appropriate modalias value for a particular device tree node. |
| 1098 | * It does this by stripping the manufacturer prefix (as delimited by a ',') |
| 1099 | * from the first entry in the compatible list property. |
| 1100 | * |
| 1101 | * This routine returns 0 on success, <0 on failure. |
| 1102 | */ |
| 1103 | int of_modalias_node(struct device_node *node, char *modalias, int len) |
| 1104 | { |
| 1105 | const char *compatible, *p; |
| 1106 | int cplen; |
| 1107 | |
| 1108 | compatible = of_get_property(node, "compatible", &cplen); |
| 1109 | if (!compatible || strlen(compatible) > cplen) |
| 1110 | return -ENODEV; |
| 1111 | p = strchr(compatible, ','); |
| 1112 | strlcpy(modalias, p ? p + 1 : compatible, len); |
| 1113 | return 0; |
| 1114 | } |
| 1115 | EXPORT_SYMBOL_GPL(of_modalias_node); |
| 1116 | |
| 1117 | /** |
| 1118 | * of_find_node_by_phandle - Find a node given a phandle |
| 1119 | * @handle: phandle of the node to find |
| 1120 | * |
| 1121 | * Returns a node pointer with refcount incremented, use |
| 1122 | * of_node_put() on it when done. |
| 1123 | */ |
| 1124 | struct device_node *of_find_node_by_phandle(phandle handle) |
| 1125 | { |
| 1126 | struct device_node *np; |
| 1127 | unsigned long flags; |
| 1128 | |
| 1129 | if (!handle) |
| 1130 | return NULL; |
| 1131 | |
| 1132 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 1133 | for_each_of_allnodes(np) |
| 1134 | if (np->phandle == handle) |
| 1135 | break; |
| 1136 | of_node_get(np); |
| 1137 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 1138 | return np; |
| 1139 | } |
| 1140 | EXPORT_SYMBOL(of_find_node_by_phandle); |
| 1141 | |
| 1142 | void of_print_phandle_args(const char *msg, const struct of_phandle_args *args) |
| 1143 | { |
| 1144 | int i; |
| 1145 | printk("%s %pOF", msg, args->np); |
| 1146 | for (i = 0; i < args->args_count; i++) { |
| 1147 | const char delim = i ? ',' : ':'; |
| 1148 | |
| 1149 | pr_cont("%c%08x", delim, args->args[i]); |
| 1150 | } |
| 1151 | pr_cont("\n"); |
| 1152 | } |
| 1153 | |
| 1154 | int of_phandle_iterator_init(struct of_phandle_iterator *it, |
| 1155 | const struct device_node *np, |
| 1156 | const char *list_name, |
| 1157 | const char *cells_name, |
| 1158 | int cell_count) |
| 1159 | { |
| 1160 | const __be32 *list; |
| 1161 | int size; |
| 1162 | |
| 1163 | memset(it, 0, sizeof(*it)); |
| 1164 | |
| 1165 | list = of_get_property(np, list_name, &size); |
| 1166 | if (!list) |
| 1167 | return -ENOENT; |
| 1168 | |
| 1169 | it->cells_name = cells_name; |
| 1170 | it->cell_count = cell_count; |
| 1171 | it->parent = np; |
| 1172 | it->list_end = list + size / sizeof(*list); |
| 1173 | it->phandle_end = list; |
| 1174 | it->cur = list; |
| 1175 | |
| 1176 | return 0; |
| 1177 | } |
| 1178 | EXPORT_SYMBOL_GPL(of_phandle_iterator_init); |
| 1179 | |
| 1180 | int of_phandle_iterator_next(struct of_phandle_iterator *it) |
| 1181 | { |
| 1182 | uint32_t count = 0; |
| 1183 | |
| 1184 | if (it->node) { |
| 1185 | of_node_put(it->node); |
| 1186 | it->node = NULL; |
| 1187 | } |
| 1188 | |
| 1189 | if (!it->cur || it->phandle_end >= it->list_end) |
| 1190 | return -ENOENT; |
| 1191 | |
| 1192 | it->cur = it->phandle_end; |
| 1193 | |
| 1194 | /* If phandle is 0, then it is an empty entry with no arguments. */ |
| 1195 | it->phandle = be32_to_cpup(it->cur++); |
| 1196 | |
| 1197 | if (it->phandle) { |
| 1198 | |
| 1199 | /* |
| 1200 | * Find the provider node and parse the #*-cells property to |
| 1201 | * determine the argument length. |
| 1202 | */ |
| 1203 | it->node = of_find_node_by_phandle(it->phandle); |
| 1204 | |
| 1205 | if (it->cells_name) { |
| 1206 | if (!it->node) { |
| 1207 | pr_err("%pOF: could not find phandle\n", |
| 1208 | it->parent); |
| 1209 | goto err; |
| 1210 | } |
| 1211 | |
| 1212 | if (of_property_read_u32(it->node, it->cells_name, |
| 1213 | &count)) { |
| 1214 | pr_err("%pOF: could not get %s for %pOF\n", |
| 1215 | it->parent, |
| 1216 | it->cells_name, |
| 1217 | it->node); |
| 1218 | goto err; |
| 1219 | } |
| 1220 | } else { |
| 1221 | count = it->cell_count; |
| 1222 | } |
| 1223 | |
| 1224 | /* |
| 1225 | * Make sure that the arguments actually fit in the remaining |
| 1226 | * property data length |
| 1227 | */ |
| 1228 | if (it->cur + count > it->list_end) { |
| 1229 | pr_err("%pOF: arguments longer than property\n", |
| 1230 | it->parent); |
| 1231 | goto err; |
| 1232 | } |
| 1233 | } |
| 1234 | |
| 1235 | it->phandle_end = it->cur + count; |
| 1236 | it->cur_count = count; |
| 1237 | |
| 1238 | return 0; |
| 1239 | |
| 1240 | err: |
| 1241 | if (it->node) { |
| 1242 | of_node_put(it->node); |
| 1243 | it->node = NULL; |
| 1244 | } |
| 1245 | |
| 1246 | return -EINVAL; |
| 1247 | } |
| 1248 | EXPORT_SYMBOL_GPL(of_phandle_iterator_next); |
| 1249 | |
| 1250 | int of_phandle_iterator_args(struct of_phandle_iterator *it, |
| 1251 | uint32_t *args, |
| 1252 | int size) |
| 1253 | { |
| 1254 | int i, count; |
| 1255 | |
| 1256 | count = it->cur_count; |
| 1257 | |
| 1258 | if (WARN_ON(size < count)) |
| 1259 | count = size; |
| 1260 | |
| 1261 | for (i = 0; i < count; i++) |
| 1262 | args[i] = be32_to_cpup(it->cur++); |
| 1263 | |
| 1264 | return count; |
| 1265 | } |
| 1266 | |
| 1267 | static int __of_parse_phandle_with_args(const struct device_node *np, |
| 1268 | const char *list_name, |
| 1269 | const char *cells_name, |
| 1270 | int cell_count, int index, |
| 1271 | struct of_phandle_args *out_args) |
| 1272 | { |
| 1273 | struct of_phandle_iterator it; |
| 1274 | int rc, cur_index = 0; |
| 1275 | |
| 1276 | /* Loop over the phandles until all the requested entry is found */ |
| 1277 | of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) { |
| 1278 | /* |
| 1279 | * All of the error cases bail out of the loop, so at |
| 1280 | * this point, the parsing is successful. If the requested |
| 1281 | * index matches, then fill the out_args structure and return, |
| 1282 | * or return -ENOENT for an empty entry. |
| 1283 | */ |
| 1284 | rc = -ENOENT; |
| 1285 | if (cur_index == index) { |
| 1286 | if (!it.phandle) |
| 1287 | goto err; |
| 1288 | |
| 1289 | if (out_args) { |
| 1290 | int c; |
| 1291 | |
| 1292 | c = of_phandle_iterator_args(&it, |
| 1293 | out_args->args, |
| 1294 | MAX_PHANDLE_ARGS); |
| 1295 | out_args->np = it.node; |
| 1296 | out_args->args_count = c; |
| 1297 | } else { |
| 1298 | of_node_put(it.node); |
| 1299 | } |
| 1300 | |
| 1301 | /* Found it! return success */ |
| 1302 | return 0; |
| 1303 | } |
| 1304 | |
| 1305 | cur_index++; |
| 1306 | } |
| 1307 | |
| 1308 | /* |
| 1309 | * Unlock node before returning result; will be one of: |
| 1310 | * -ENOENT : index is for empty phandle |
| 1311 | * -EINVAL : parsing error on data |
| 1312 | */ |
| 1313 | |
| 1314 | err: |
| 1315 | of_node_put(it.node); |
| 1316 | return rc; |
| 1317 | } |
| 1318 | |
| 1319 | /** |
| 1320 | * of_parse_phandle - Resolve a phandle property to a device_node pointer |
| 1321 | * @np: Pointer to device node holding phandle property |
| 1322 | * @phandle_name: Name of property holding a phandle value |
| 1323 | * @index: For properties holding a table of phandles, this is the index into |
| 1324 | * the table |
| 1325 | * |
| 1326 | * Returns the device_node pointer with refcount incremented. Use |
| 1327 | * of_node_put() on it when done. |
| 1328 | */ |
| 1329 | struct device_node *of_parse_phandle(const struct device_node *np, |
| 1330 | const char *phandle_name, int index) |
| 1331 | { |
| 1332 | struct of_phandle_args args; |
| 1333 | |
| 1334 | if (index < 0) |
| 1335 | return NULL; |
| 1336 | |
| 1337 | if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0, |
| 1338 | index, &args)) |
| 1339 | return NULL; |
| 1340 | |
| 1341 | return args.np; |
| 1342 | } |
| 1343 | EXPORT_SYMBOL(of_parse_phandle); |
| 1344 | |
| 1345 | /** |
| 1346 | * of_parse_phandle_with_args() - Find a node pointed by phandle in a list |
| 1347 | * @np: pointer to a device tree node containing a list |
| 1348 | * @list_name: property name that contains a list |
| 1349 | * @cells_name: property name that specifies phandles' arguments count |
| 1350 | * @index: index of a phandle to parse out |
| 1351 | * @out_args: optional pointer to output arguments structure (will be filled) |
| 1352 | * |
| 1353 | * This function is useful to parse lists of phandles and their arguments. |
| 1354 | * Returns 0 on success and fills out_args, on error returns appropriate |
| 1355 | * errno value. |
| 1356 | * |
| 1357 | * Caller is responsible to call of_node_put() on the returned out_args->np |
| 1358 | * pointer. |
| 1359 | * |
| 1360 | * Example: |
| 1361 | * |
| 1362 | * phandle1: node1 { |
| 1363 | * #list-cells = <2>; |
| 1364 | * } |
| 1365 | * |
| 1366 | * phandle2: node2 { |
| 1367 | * #list-cells = <1>; |
| 1368 | * } |
| 1369 | * |
| 1370 | * node3 { |
| 1371 | * list = <&phandle1 1 2 &phandle2 3>; |
| 1372 | * } |
| 1373 | * |
| 1374 | * To get a device_node of the `node2' node you may call this: |
| 1375 | * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args); |
| 1376 | */ |
| 1377 | int of_parse_phandle_with_args(const struct device_node *np, const char *list_name, |
| 1378 | const char *cells_name, int index, |
| 1379 | struct of_phandle_args *out_args) |
| 1380 | { |
| 1381 | if (index < 0) |
| 1382 | return -EINVAL; |
| 1383 | return __of_parse_phandle_with_args(np, list_name, cells_name, 0, |
| 1384 | index, out_args); |
| 1385 | } |
| 1386 | EXPORT_SYMBOL(of_parse_phandle_with_args); |
| 1387 | |
| 1388 | /** |
| 1389 | * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list |
| 1390 | * @np: pointer to a device tree node containing a list |
| 1391 | * @list_name: property name that contains a list |
| 1392 | * @cell_count: number of argument cells following the phandle |
| 1393 | * @index: index of a phandle to parse out |
| 1394 | * @out_args: optional pointer to output arguments structure (will be filled) |
| 1395 | * |
| 1396 | * This function is useful to parse lists of phandles and their arguments. |
| 1397 | * Returns 0 on success and fills out_args, on error returns appropriate |
| 1398 | * errno value. |
| 1399 | * |
| 1400 | * Caller is responsible to call of_node_put() on the returned out_args->np |
| 1401 | * pointer. |
| 1402 | * |
| 1403 | * Example: |
| 1404 | * |
| 1405 | * phandle1: node1 { |
| 1406 | * } |
| 1407 | * |
| 1408 | * phandle2: node2 { |
| 1409 | * } |
| 1410 | * |
| 1411 | * node3 { |
| 1412 | * list = <&phandle1 0 2 &phandle2 2 3>; |
| 1413 | * } |
| 1414 | * |
| 1415 | * To get a device_node of the `node2' node you may call this: |
| 1416 | * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args); |
| 1417 | */ |
| 1418 | int of_parse_phandle_with_fixed_args(const struct device_node *np, |
| 1419 | const char *list_name, int cell_count, |
| 1420 | int index, struct of_phandle_args *out_args) |
| 1421 | { |
| 1422 | if (index < 0) |
| 1423 | return -EINVAL; |
| 1424 | return __of_parse_phandle_with_args(np, list_name, NULL, cell_count, |
| 1425 | index, out_args); |
| 1426 | } |
| 1427 | EXPORT_SYMBOL(of_parse_phandle_with_fixed_args); |
| 1428 | |
| 1429 | /** |
| 1430 | * of_count_phandle_with_args() - Find the number of phandles references in a property |
| 1431 | * @np: pointer to a device tree node containing a list |
| 1432 | * @list_name: property name that contains a list |
| 1433 | * @cells_name: property name that specifies phandles' arguments count |
| 1434 | * |
| 1435 | * Returns the number of phandle + argument tuples within a property. It |
| 1436 | * is a typical pattern to encode a list of phandle and variable |
| 1437 | * arguments into a single property. The number of arguments is encoded |
| 1438 | * by a property in the phandle-target node. For example, a gpios |
| 1439 | * property would contain a list of GPIO specifies consisting of a |
| 1440 | * phandle and 1 or more arguments. The number of arguments are |
| 1441 | * determined by the #gpio-cells property in the node pointed to by the |
| 1442 | * phandle. |
| 1443 | */ |
| 1444 | int of_count_phandle_with_args(const struct device_node *np, const char *list_name, |
| 1445 | const char *cells_name) |
| 1446 | { |
| 1447 | struct of_phandle_iterator it; |
| 1448 | int rc, cur_index = 0; |
| 1449 | |
| 1450 | rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0); |
| 1451 | if (rc) |
| 1452 | return rc; |
| 1453 | |
| 1454 | while ((rc = of_phandle_iterator_next(&it)) == 0) |
| 1455 | cur_index += 1; |
| 1456 | |
| 1457 | if (rc != -ENOENT) |
| 1458 | return rc; |
| 1459 | |
| 1460 | return cur_index; |
| 1461 | } |
| 1462 | EXPORT_SYMBOL(of_count_phandle_with_args); |
| 1463 | |
| 1464 | /** |
| 1465 | * __of_add_property - Add a property to a node without lock operations |
| 1466 | */ |
| 1467 | int __of_add_property(struct device_node *np, struct property *prop) |
| 1468 | { |
| 1469 | struct property **next; |
| 1470 | |
| 1471 | prop->next = NULL; |
| 1472 | next = &np->properties; |
| 1473 | while (*next) { |
| 1474 | if (strcmp(prop->name, (*next)->name) == 0) |
| 1475 | /* duplicate ! don't insert it */ |
| 1476 | return -EEXIST; |
| 1477 | |
| 1478 | next = &(*next)->next; |
| 1479 | } |
| 1480 | *next = prop; |
| 1481 | |
| 1482 | return 0; |
| 1483 | } |
| 1484 | |
| 1485 | /** |
| 1486 | * of_add_property - Add a property to a node |
| 1487 | */ |
| 1488 | int of_add_property(struct device_node *np, struct property *prop) |
| 1489 | { |
| 1490 | unsigned long flags; |
| 1491 | int rc; |
| 1492 | |
| 1493 | mutex_lock(&of_mutex); |
| 1494 | |
| 1495 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 1496 | rc = __of_add_property(np, prop); |
| 1497 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 1498 | |
| 1499 | if (!rc) |
| 1500 | __of_add_property_sysfs(np, prop); |
| 1501 | |
| 1502 | mutex_unlock(&of_mutex); |
| 1503 | |
| 1504 | if (!rc) |
| 1505 | of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL); |
| 1506 | |
| 1507 | return rc; |
| 1508 | } |
| 1509 | |
| 1510 | int __of_remove_property(struct device_node *np, struct property *prop) |
| 1511 | { |
| 1512 | struct property **next; |
| 1513 | |
| 1514 | for (next = &np->properties; *next; next = &(*next)->next) { |
| 1515 | if (*next == prop) |
| 1516 | break; |
| 1517 | } |
| 1518 | if (*next == NULL) |
| 1519 | return -ENODEV; |
| 1520 | |
| 1521 | /* found the node */ |
| 1522 | *next = prop->next; |
| 1523 | prop->next = np->deadprops; |
| 1524 | np->deadprops = prop; |
| 1525 | |
| 1526 | return 0; |
| 1527 | } |
| 1528 | |
| 1529 | void __of_sysfs_remove_bin_file(struct device_node *np, struct property *prop) |
| 1530 | { |
| 1531 | sysfs_remove_bin_file(&np->kobj, &prop->attr); |
| 1532 | kfree(prop->attr.attr.name); |
| 1533 | } |
| 1534 | |
| 1535 | void __of_remove_property_sysfs(struct device_node *np, struct property *prop) |
| 1536 | { |
| 1537 | if (!IS_ENABLED(CONFIG_SYSFS)) |
| 1538 | return; |
| 1539 | |
| 1540 | /* at early boot, bail here and defer setup to of_init() */ |
| 1541 | if (of_kset && of_node_is_attached(np)) |
| 1542 | __of_sysfs_remove_bin_file(np, prop); |
| 1543 | } |
| 1544 | |
| 1545 | /** |
| 1546 | * of_remove_property - Remove a property from a node. |
| 1547 | * |
| 1548 | * Note that we don't actually remove it, since we have given out |
| 1549 | * who-knows-how-many pointers to the data using get-property. |
| 1550 | * Instead we just move the property to the "dead properties" |
| 1551 | * list, so it won't be found any more. |
| 1552 | */ |
| 1553 | int of_remove_property(struct device_node *np, struct property *prop) |
| 1554 | { |
| 1555 | unsigned long flags; |
| 1556 | int rc; |
| 1557 | |
| 1558 | if (!prop) |
| 1559 | return -ENODEV; |
| 1560 | |
| 1561 | mutex_lock(&of_mutex); |
| 1562 | |
| 1563 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 1564 | rc = __of_remove_property(np, prop); |
| 1565 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 1566 | |
| 1567 | if (!rc) |
| 1568 | __of_remove_property_sysfs(np, prop); |
| 1569 | |
| 1570 | mutex_unlock(&of_mutex); |
| 1571 | |
| 1572 | if (!rc) |
| 1573 | of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL); |
| 1574 | |
| 1575 | return rc; |
| 1576 | } |
| 1577 | |
| 1578 | int __of_update_property(struct device_node *np, struct property *newprop, |
| 1579 | struct property **oldpropp) |
| 1580 | { |
| 1581 | struct property **next, *oldprop; |
| 1582 | |
| 1583 | for (next = &np->properties; *next; next = &(*next)->next) { |
| 1584 | if (of_prop_cmp((*next)->name, newprop->name) == 0) |
| 1585 | break; |
| 1586 | } |
| 1587 | *oldpropp = oldprop = *next; |
| 1588 | |
| 1589 | if (oldprop) { |
| 1590 | /* replace the node */ |
| 1591 | newprop->next = oldprop->next; |
| 1592 | *next = newprop; |
| 1593 | oldprop->next = np->deadprops; |
| 1594 | np->deadprops = oldprop; |
| 1595 | } else { |
| 1596 | /* new node */ |
| 1597 | newprop->next = NULL; |
| 1598 | *next = newprop; |
| 1599 | } |
| 1600 | |
| 1601 | return 0; |
| 1602 | } |
| 1603 | |
| 1604 | void __of_update_property_sysfs(struct device_node *np, struct property *newprop, |
| 1605 | struct property *oldprop) |
| 1606 | { |
| 1607 | if (!IS_ENABLED(CONFIG_SYSFS)) |
| 1608 | return; |
| 1609 | |
| 1610 | /* At early boot, bail out and defer setup to of_init() */ |
| 1611 | if (!of_kset) |
| 1612 | return; |
| 1613 | |
| 1614 | if (oldprop) |
| 1615 | __of_sysfs_remove_bin_file(np, oldprop); |
| 1616 | __of_add_property_sysfs(np, newprop); |
| 1617 | } |
| 1618 | |
| 1619 | /* |
| 1620 | * of_update_property - Update a property in a node, if the property does |
| 1621 | * not exist, add it. |
| 1622 | * |
| 1623 | * Note that we don't actually remove it, since we have given out |
| 1624 | * who-knows-how-many pointers to the data using get-property. |
| 1625 | * Instead we just move the property to the "dead properties" list, |
| 1626 | * and add the new property to the property list |
| 1627 | */ |
| 1628 | int of_update_property(struct device_node *np, struct property *newprop) |
| 1629 | { |
| 1630 | struct property *oldprop; |
| 1631 | unsigned long flags; |
| 1632 | int rc; |
| 1633 | |
| 1634 | if (!newprop->name) |
| 1635 | return -EINVAL; |
| 1636 | |
| 1637 | mutex_lock(&of_mutex); |
| 1638 | |
| 1639 | raw_spin_lock_irqsave(&devtree_lock, flags); |
| 1640 | rc = __of_update_property(np, newprop, &oldprop); |
| 1641 | raw_spin_unlock_irqrestore(&devtree_lock, flags); |
| 1642 | |
| 1643 | if (!rc) |
| 1644 | __of_update_property_sysfs(np, newprop, oldprop); |
| 1645 | |
| 1646 | mutex_unlock(&of_mutex); |
| 1647 | |
| 1648 | if (!rc) |
| 1649 | of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop); |
| 1650 | |
| 1651 | return rc; |
| 1652 | } |
| 1653 | |
| 1654 | static void of_alias_add(struct alias_prop *ap, struct device_node *np, |
| 1655 | int id, const char *stem, int stem_len) |
| 1656 | { |
| 1657 | ap->np = np; |
| 1658 | ap->id = id; |
| 1659 | strncpy(ap->stem, stem, stem_len); |
| 1660 | ap->stem[stem_len] = 0; |
| 1661 | list_add_tail(&ap->link, &aliases_lookup); |
| 1662 | pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n", |
| 1663 | ap->alias, ap->stem, ap->id, np); |
| 1664 | } |
| 1665 | |
| 1666 | /** |
| 1667 | * of_alias_scan - Scan all properties of the 'aliases' node |
| 1668 | * |
| 1669 | * The function scans all the properties of the 'aliases' node and populates |
| 1670 | * the global lookup table with the properties. It returns the |
| 1671 | * number of alias properties found, or an error code in case of failure. |
| 1672 | * |
| 1673 | * @dt_alloc: An allocator that provides a virtual address to memory |
| 1674 | * for storing the resulting tree |
| 1675 | */ |
| 1676 | void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align)) |
| 1677 | { |
| 1678 | struct property *pp; |
| 1679 | |
| 1680 | of_aliases = of_find_node_by_path("/aliases"); |
| 1681 | of_chosen = of_find_node_by_path("/chosen"); |
| 1682 | if (of_chosen == NULL) |
| 1683 | of_chosen = of_find_node_by_path("/chosen@0"); |
| 1684 | |
| 1685 | if (of_chosen) { |
| 1686 | /* linux,stdout-path and /aliases/stdout are for legacy compatibility */ |
| 1687 | const char *name = NULL; |
| 1688 | |
| 1689 | if (of_property_read_string(of_chosen, "stdout-path", &name)) |
| 1690 | of_property_read_string(of_chosen, "linux,stdout-path", |
| 1691 | &name); |
| 1692 | if (IS_ENABLED(CONFIG_PPC) && !name) |
| 1693 | of_property_read_string(of_aliases, "stdout", &name); |
| 1694 | if (name) |
| 1695 | of_stdout = of_find_node_opts_by_path(name, &of_stdout_options); |
| 1696 | } |
| 1697 | |
| 1698 | if (!of_aliases) |
| 1699 | return; |
| 1700 | |
| 1701 | for_each_property_of_node(of_aliases, pp) { |
| 1702 | const char *start = pp->name; |
| 1703 | const char *end = start + strlen(start); |
| 1704 | struct device_node *np; |
| 1705 | struct alias_prop *ap; |
| 1706 | int id, len; |
| 1707 | |
| 1708 | /* Skip those we do not want to proceed */ |
| 1709 | if (!strcmp(pp->name, "name") || |
| 1710 | !strcmp(pp->name, "phandle") || |
| 1711 | !strcmp(pp->name, "linux,phandle")) |
| 1712 | continue; |
| 1713 | |
| 1714 | np = of_find_node_by_path(pp->value); |
| 1715 | if (!np) |
| 1716 | continue; |
| 1717 | |
| 1718 | /* walk the alias backwards to extract the id and work out |
| 1719 | * the 'stem' string */ |
| 1720 | while (isdigit(*(end-1)) && end > start) |
| 1721 | end--; |
| 1722 | len = end - start; |
| 1723 | |
| 1724 | if (kstrtoint(end, 10, &id) < 0) |
| 1725 | continue; |
| 1726 | |
| 1727 | /* Allocate an alias_prop with enough space for the stem */ |
| 1728 | ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap)); |
| 1729 | if (!ap) |
| 1730 | continue; |
| 1731 | memset(ap, 0, sizeof(*ap) + len + 1); |
| 1732 | ap->alias = start; |
| 1733 | of_alias_add(ap, np, id, start, len); |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | /** |
| 1738 | * of_alias_get_id - Get alias id for the given device_node |
| 1739 | * @np: Pointer to the given device_node |
| 1740 | * @stem: Alias stem of the given device_node |
| 1741 | * |
| 1742 | * The function travels the lookup table to get the alias id for the given |
| 1743 | * device_node and alias stem. It returns the alias id if found. |
| 1744 | */ |
| 1745 | int of_alias_get_id(struct device_node *np, const char *stem) |
| 1746 | { |
| 1747 | struct alias_prop *app; |
| 1748 | int id = -ENODEV; |
| 1749 | |
| 1750 | mutex_lock(&of_mutex); |
| 1751 | list_for_each_entry(app, &aliases_lookup, link) { |
| 1752 | if (strcmp(app->stem, stem) != 0) |
| 1753 | continue; |
| 1754 | |
| 1755 | if (np == app->np) { |
| 1756 | id = app->id; |
| 1757 | break; |
| 1758 | } |
| 1759 | } |
| 1760 | mutex_unlock(&of_mutex); |
| 1761 | |
| 1762 | return id; |
| 1763 | } |
| 1764 | EXPORT_SYMBOL_GPL(of_alias_get_id); |
| 1765 | |
| 1766 | /** |
| 1767 | * of_alias_get_highest_id - Get highest alias id for the given stem |
| 1768 | * @stem: Alias stem to be examined |
| 1769 | * |
| 1770 | * The function travels the lookup table to get the highest alias id for the |
| 1771 | * given alias stem. It returns the alias id if found. |
| 1772 | */ |
| 1773 | int of_alias_get_highest_id(const char *stem) |
| 1774 | { |
| 1775 | struct alias_prop *app; |
| 1776 | int id = -ENODEV; |
| 1777 | |
| 1778 | mutex_lock(&of_mutex); |
| 1779 | list_for_each_entry(app, &aliases_lookup, link) { |
| 1780 | if (strcmp(app->stem, stem) != 0) |
| 1781 | continue; |
| 1782 | |
| 1783 | if (app->id > id) |
| 1784 | id = app->id; |
| 1785 | } |
| 1786 | mutex_unlock(&of_mutex); |
| 1787 | |
| 1788 | return id; |
| 1789 | } |
| 1790 | EXPORT_SYMBOL_GPL(of_alias_get_highest_id); |
| 1791 | |
| 1792 | /** |
| 1793 | * of_console_check() - Test and setup console for DT setup |
| 1794 | * @dn - Pointer to device node |
| 1795 | * @name - Name to use for preferred console without index. ex. "ttyS" |
| 1796 | * @index - Index to use for preferred console. |
| 1797 | * |
| 1798 | * Check if the given device node matches the stdout-path property in the |
| 1799 | * /chosen node. If it does then register it as the preferred console and return |
| 1800 | * TRUE. Otherwise return FALSE. |
| 1801 | */ |
| 1802 | bool of_console_check(struct device_node *dn, char *name, int index) |
| 1803 | { |
| 1804 | if (!dn || dn != of_stdout || console_set_on_cmdline) |
| 1805 | return false; |
| 1806 | |
| 1807 | /* |
| 1808 | * XXX: cast `options' to char pointer to suppress complication |
| 1809 | * warnings: printk, UART and console drivers expect char pointer. |
| 1810 | */ |
| 1811 | return !add_preferred_console(name, index, (char *)of_stdout_options); |
| 1812 | } |
| 1813 | EXPORT_SYMBOL_GPL(of_console_check); |
| 1814 | |
| 1815 | /** |
| 1816 | * of_find_next_cache_node - Find a node's subsidiary cache |
| 1817 | * @np: node of type "cpu" or "cache" |
| 1818 | * |
| 1819 | * Returns a node pointer with refcount incremented, use |
| 1820 | * of_node_put() on it when done. Caller should hold a reference |
| 1821 | * to np. |
| 1822 | */ |
| 1823 | struct device_node *of_find_next_cache_node(const struct device_node *np) |
| 1824 | { |
| 1825 | struct device_node *child, *cache_node; |
| 1826 | |
| 1827 | cache_node = of_parse_phandle(np, "l2-cache", 0); |
| 1828 | if (!cache_node) |
| 1829 | cache_node = of_parse_phandle(np, "next-level-cache", 0); |
| 1830 | |
| 1831 | if (cache_node) |
| 1832 | return cache_node; |
| 1833 | |
| 1834 | /* OF on pmac has nodes instead of properties named "l2-cache" |
| 1835 | * beneath CPU nodes. |
| 1836 | */ |
| 1837 | if (IS_ENABLED(CONFIG_PPC_PMAC) && !strcmp(np->type, "cpu")) |
| 1838 | for_each_child_of_node(np, child) |
| 1839 | if (!strcmp(child->type, "cache")) |
| 1840 | return child; |
| 1841 | |
| 1842 | return NULL; |
| 1843 | } |
| 1844 | |
| 1845 | /** |
| 1846 | * of_find_last_cache_level - Find the level at which the last cache is |
| 1847 | * present for the given logical cpu |
| 1848 | * |
| 1849 | * @cpu: cpu number(logical index) for which the last cache level is needed |
| 1850 | * |
| 1851 | * Returns the the level at which the last cache is present. It is exactly |
| 1852 | * same as the total number of cache levels for the given logical cpu. |
| 1853 | */ |
| 1854 | int of_find_last_cache_level(unsigned int cpu) |
| 1855 | { |
| 1856 | u32 cache_level = 0; |
| 1857 | struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu); |
| 1858 | |
| 1859 | while (np) { |
| 1860 | prev = np; |
| 1861 | of_node_put(np); |
| 1862 | np = of_find_next_cache_node(np); |
| 1863 | } |
| 1864 | |
| 1865 | of_property_read_u32(prev, "cache-level", &cache_level); |
| 1866 | |
| 1867 | return cache_level; |
| 1868 | } |