blob: b1103e519ef615cc10f4cbb2c9d38ac22429e4a1 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Functions for working with the Flattened Device Tree data format
3 *
4 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
5 * benh@kernel.crashing.org
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12#define pr_fmt(fmt) "OF: fdt: " fmt
13
14#include <linux/crc32.h>
15#include <linux/kernel.h>
16#include <linux/initrd.h>
17#include <linux/memblock.h>
18#include <linux/mutex.h>
19#include <linux/of.h>
20#include <linux/of_fdt.h>
21#include <linux/of_reserved_mem.h>
22#include <linux/sizes.h>
23#include <linux/string.h>
24#include <linux/errno.h>
25#include <linux/slab.h>
26#include <linux/libfdt.h>
27#include <linux/debugfs.h>
28#include <linux/serial_core.h>
29#include <linux/sysfs.h>
30
31#include <asm/setup.h> /* for COMMAND_LINE_SIZE */
32#include <asm/page.h>
33
34#include "of_private.h"
35
36/*
37 * of_fdt_limit_memory - limit the number of regions in the /memory node
38 * @limit: maximum entries
39 *
40 * Adjust the flattened device tree to have at most 'limit' number of
41 * memory entries in the /memory node. This function may be called
42 * any time after initial_boot_param is set.
43 */
44void of_fdt_limit_memory(int limit)
45{
46 int memory;
47 int len;
48 const void *val;
49 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
50 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
51 const __be32 *addr_prop;
52 const __be32 *size_prop;
53 int root_offset;
54 int cell_size;
55
56 root_offset = fdt_path_offset(initial_boot_params, "/");
57 if (root_offset < 0)
58 return;
59
60 addr_prop = fdt_getprop(initial_boot_params, root_offset,
61 "#address-cells", NULL);
62 if (addr_prop)
63 nr_address_cells = fdt32_to_cpu(*addr_prop);
64
65 size_prop = fdt_getprop(initial_boot_params, root_offset,
66 "#size-cells", NULL);
67 if (size_prop)
68 nr_size_cells = fdt32_to_cpu(*size_prop);
69
70 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
71
72 memory = fdt_path_offset(initial_boot_params, "/memory");
73 if (memory > 0) {
74 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
75 if (len > limit*cell_size) {
76 len = limit*cell_size;
77 pr_debug("Limiting number of entries to %d\n", limit);
78 fdt_setprop(initial_boot_params, memory, "reg", val,
79 len);
80 }
81 }
82}
83
84/**
85 * of_fdt_is_compatible - Return true if given node from the given blob has
86 * compat in its compatible list
87 * @blob: A device tree blob
88 * @node: node to test
89 * @compat: compatible string to compare with compatible list.
90 *
91 * On match, returns a non-zero value with smaller values returned for more
92 * specific compatible values.
93 */
94static int of_fdt_is_compatible(const void *blob,
95 unsigned long node, const char *compat)
96{
97 const char *cp;
98 int cplen;
99 unsigned long l, score = 0;
100
101 cp = fdt_getprop(blob, node, "compatible", &cplen);
102 if (cp == NULL)
103 return 0;
104 while (cplen > 0) {
105 score++;
106 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
107 return score;
108 l = strlen(cp) + 1;
109 cp += l;
110 cplen -= l;
111 }
112
113 return 0;
114}
115
116/**
117 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
118 * @blob: A device tree blob
119 * @node: node to test
120 *
121 * Returns true if the node has a "big-endian" property, or if the kernel
122 * was compiled for BE *and* the node has a "native-endian" property.
123 * Returns false otherwise.
124 */
125bool of_fdt_is_big_endian(const void *blob, unsigned long node)
126{
127 if (fdt_getprop(blob, node, "big-endian", NULL))
128 return true;
129 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
130 fdt_getprop(blob, node, "native-endian", NULL))
131 return true;
132 return false;
133}
134
135/**
136 * of_fdt_match - Return true if node matches a list of compatible values
137 */
138int of_fdt_match(const void *blob, unsigned long node,
139 const char *const *compat)
140{
141 unsigned int tmp, score = 0;
142
143 if (!compat)
144 return 0;
145
146 while (*compat) {
147 tmp = of_fdt_is_compatible(blob, node, *compat);
148 if (tmp && (score == 0 || (tmp < score)))
149 score = tmp;
150 compat++;
151 }
152
153 return score;
154}
155
156static void *unflatten_dt_alloc(void **mem, unsigned long size,
157 unsigned long align)
158{
159 void *res;
160
161 *mem = PTR_ALIGN(*mem, align);
162 res = *mem;
163 *mem += size;
164
165 return res;
166}
167
168static void populate_properties(const void *blob,
169 int offset,
170 void **mem,
171 struct device_node *np,
172 const char *nodename,
173 bool dryrun)
174{
175 struct property *pp, **pprev = NULL;
176 int cur;
177 bool has_name = false;
178
179 pprev = &np->properties;
180 for (cur = fdt_first_property_offset(blob, offset);
181 cur >= 0;
182 cur = fdt_next_property_offset(blob, cur)) {
183 const __be32 *val;
184 const char *pname;
185 u32 sz;
186
187 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
188 if (!val) {
189 pr_warn("Cannot locate property at 0x%x\n", cur);
190 continue;
191 }
192
193 if (!pname) {
194 pr_warn("Cannot find property name at 0x%x\n", cur);
195 continue;
196 }
197
198 if (!strcmp(pname, "name"))
199 has_name = true;
200
201 pp = unflatten_dt_alloc(mem, sizeof(struct property),
202 __alignof__(struct property));
203 if (dryrun)
204 continue;
205
206 /* We accept flattened tree phandles either in
207 * ePAPR-style "phandle" properties, or the
208 * legacy "linux,phandle" properties. If both
209 * appear and have different values, things
210 * will get weird. Don't do that.
211 */
212 if (!strcmp(pname, "phandle") ||
213 !strcmp(pname, "linux,phandle")) {
214 if (!np->phandle)
215 np->phandle = be32_to_cpup(val);
216 }
217
218 /* And we process the "ibm,phandle" property
219 * used in pSeries dynamic device tree
220 * stuff
221 */
222 if (!strcmp(pname, "ibm,phandle"))
223 np->phandle = be32_to_cpup(val);
224
225 pp->name = (char *)pname;
226 pp->length = sz;
227 pp->value = (__be32 *)val;
228 *pprev = pp;
229 pprev = &pp->next;
230 }
231
232 /* With version 0x10 we may not have the name property,
233 * recreate it here from the unit name if absent
234 */
235 if (!has_name) {
236 const char *p = nodename, *ps = p, *pa = NULL;
237 int len;
238
239 while (*p) {
240 if ((*p) == '@')
241 pa = p;
242 else if ((*p) == '/')
243 ps = p + 1;
244 p++;
245 }
246
247 if (pa < ps)
248 pa = p;
249 len = (pa - ps) + 1;
250 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
251 __alignof__(struct property));
252 if (!dryrun) {
253 pp->name = "name";
254 pp->length = len;
255 pp->value = pp + 1;
256 *pprev = pp;
257 pprev = &pp->next;
258 memcpy(pp->value, ps, len - 1);
259 ((char *)pp->value)[len - 1] = 0;
260 pr_debug("fixed up name for %s -> %s\n",
261 nodename, (char *)pp->value);
262 }
263 }
264
265 if (!dryrun)
266 *pprev = NULL;
267}
268
269static unsigned int populate_node(const void *blob,
270 int offset,
271 void **mem,
272 struct device_node *dad,
273 unsigned int fpsize,
274 struct device_node **pnp,
275 bool dryrun)
276{
277 struct device_node *np;
278 const char *pathp;
279 unsigned int l, allocl;
280 int new_format = 0;
281
282 pathp = fdt_get_name(blob, offset, &l);
283 if (!pathp) {
284 *pnp = NULL;
285 return 0;
286 }
287
288 allocl = ++l;
289
290 /* version 0x10 has a more compact unit name here instead of the full
291 * path. we accumulate the full path size using "fpsize", we'll rebuild
292 * it later. We detect this because the first character of the name is
293 * not '/'.
294 */
295 if ((*pathp) != '/') {
296 new_format = 1;
297 if (fpsize == 0) {
298 /* root node: special case. fpsize accounts for path
299 * plus terminating zero. root node only has '/', so
300 * fpsize should be 2, but we want to avoid the first
301 * level nodes to have two '/' so we use fpsize 1 here
302 */
303 fpsize = 1;
304 allocl = 2;
305 l = 1;
306 pathp = "";
307 } else {
308 /* account for '/' and path size minus terminal 0
309 * already in 'l'
310 */
311 fpsize += l;
312 allocl = fpsize;
313 }
314 }
315
316 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
317 __alignof__(struct device_node));
318 if (!dryrun) {
319 char *fn;
320 of_node_init(np);
321 np->full_name = fn = ((char *)np) + sizeof(*np);
322 if (new_format) {
323 /* rebuild full path for new format */
324 if (dad && dad->parent) {
325 strcpy(fn, dad->full_name);
326#ifdef DEBUG
327 if ((strlen(fn) + l + 1) != allocl) {
328 pr_debug("%s: p: %d, l: %d, a: %d\n",
329 pathp, (int)strlen(fn),
330 l, allocl);
331 }
332#endif
333 fn += strlen(fn);
334 }
335 *(fn++) = '/';
336 }
337 memcpy(fn, pathp, l);
338
339 if (dad != NULL) {
340 np->parent = dad;
341 np->sibling = dad->child;
342 dad->child = np;
343 }
344 }
345
346 populate_properties(blob, offset, mem, np, pathp, dryrun);
347 if (!dryrun) {
348 np->name = of_get_property(np, "name", NULL);
349 np->type = of_get_property(np, "device_type", NULL);
350
351 if (!np->name)
352 np->name = "<NULL>";
353 if (!np->type)
354 np->type = "<NULL>";
355 }
356
357 *pnp = np;
358 return fpsize;
359}
360
361static void reverse_nodes(struct device_node *parent)
362{
363 struct device_node *child, *next;
364
365 /* In-depth first */
366 child = parent->child;
367 while (child) {
368 reverse_nodes(child);
369
370 child = child->sibling;
371 }
372
373 /* Reverse the nodes in the child list */
374 child = parent->child;
375 parent->child = NULL;
376 while (child) {
377 next = child->sibling;
378
379 child->sibling = parent->child;
380 parent->child = child;
381 child = next;
382 }
383}
384
385/**
386 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
387 * @blob: The parent device tree blob
388 * @mem: Memory chunk to use for allocating device nodes and properties
389 * @dad: Parent struct device_node
390 * @nodepp: The device_node tree created by the call
391 *
392 * It returns the size of unflattened device tree or error code
393 */
394static int unflatten_dt_nodes(const void *blob,
395 void *mem,
396 struct device_node *dad,
397 struct device_node **nodepp)
398{
399 struct device_node *root;
400 int offset = 0, depth = 0, initial_depth = 0;
401#define FDT_MAX_DEPTH 64
402 unsigned int fpsizes[FDT_MAX_DEPTH];
403 struct device_node *nps[FDT_MAX_DEPTH];
404 void *base = mem;
405 bool dryrun = !base;
406
407 if (nodepp)
408 *nodepp = NULL;
409
410 /*
411 * We're unflattening device sub-tree if @dad is valid. There are
412 * possibly multiple nodes in the first level of depth. We need
413 * set @depth to 1 to make fdt_next_node() happy as it bails
414 * immediately when negative @depth is found. Otherwise, the device
415 * nodes except the first one won't be unflattened successfully.
416 */
417 if (dad)
418 depth = initial_depth = 1;
419
420 root = dad;
421 fpsizes[depth] = dad ? strlen(of_node_full_name(dad)) : 0;
422 nps[depth] = dad;
423
424 for (offset = 0;
425 offset >= 0 && depth >= initial_depth;
426 offset = fdt_next_node(blob, offset, &depth)) {
427 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
428 continue;
429
430 fpsizes[depth+1] = populate_node(blob, offset, &mem,
431 nps[depth],
432 fpsizes[depth],
433 &nps[depth+1], dryrun);
434 if (!fpsizes[depth+1])
435 return mem - base;
436
437 if (!dryrun && nodepp && !*nodepp)
438 *nodepp = nps[depth+1];
439 if (!dryrun && !root)
440 root = nps[depth+1];
441 }
442
443 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
444 pr_err("Error %d processing FDT\n", offset);
445 return -EINVAL;
446 }
447
448 /*
449 * Reverse the child list. Some drivers assumes node order matches .dts
450 * node order
451 */
452 if (!dryrun)
453 reverse_nodes(root);
454
455 return mem - base;
456}
457
458/**
459 * __unflatten_device_tree - create tree of device_nodes from flat blob
460 *
461 * unflattens a device-tree, creating the
462 * tree of struct device_node. It also fills the "name" and "type"
463 * pointers of the nodes so the normal device-tree walking functions
464 * can be used.
465 * @blob: The blob to expand
466 * @dad: Parent device node
467 * @mynodes: The device_node tree created by the call
468 * @dt_alloc: An allocator that provides a virtual address to memory
469 * for the resulting tree
470 *
471 * Returns NULL on failure or the memory chunk containing the unflattened
472 * device tree on success.
473 */
474void *__unflatten_device_tree(const void *blob,
475 struct device_node *dad,
476 struct device_node **mynodes,
477 void *(*dt_alloc)(u64 size, u64 align),
478 bool detached)
479{
480 int size;
481 void *mem;
482
483 pr_debug(" -> unflatten_device_tree()\n");
484
485 if (!blob) {
486 pr_debug("No device tree pointer\n");
487 return NULL;
488 }
489
490 pr_debug("Unflattening device tree:\n");
491 pr_debug("magic: %08x\n", fdt_magic(blob));
492 pr_debug("size: %08x\n", fdt_totalsize(blob));
493 pr_debug("version: %08x\n", fdt_version(blob));
494
495 if (fdt_check_header(blob)) {
496 pr_err("Invalid device tree blob header\n");
497 return NULL;
498 }
499
500 /* First pass, scan for size */
501 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
502 if (size < 0)
503 return NULL;
504
505 size = ALIGN(size, 4);
506 pr_debug(" size is %d, allocating...\n", size);
507
508 /* Allocate memory for the expanded device tree */
509 mem = dt_alloc(size + 4, __alignof__(struct device_node));
510 if (!mem)
511 return NULL;
512
513 memset(mem, 0, size);
514
515 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
516
517 pr_debug(" unflattening %p...\n", mem);
518
519 /* Second pass, do actual unflattening */
520 unflatten_dt_nodes(blob, mem, dad, mynodes);
521 if (be32_to_cpup(mem + size) != 0xdeadbeef)
522 pr_warning("End of tree marker overwritten: %08x\n",
523 be32_to_cpup(mem + size));
524
525 if (detached && mynodes) {
526 of_node_set_flag(*mynodes, OF_DETACHED);
527 pr_debug("unflattened tree is detached\n");
528 }
529
530 pr_debug(" <- unflatten_device_tree()\n");
531 return mem;
532}
533
534static void *kernel_tree_alloc(u64 size, u64 align)
535{
536 return kzalloc(size, GFP_KERNEL);
537}
538
539static DEFINE_MUTEX(of_fdt_unflatten_mutex);
540
541/**
542 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
543 * @blob: Flat device tree blob
544 * @dad: Parent device node
545 * @mynodes: The device tree created by the call
546 *
547 * unflattens the device-tree passed by the firmware, creating the
548 * tree of struct device_node. It also fills the "name" and "type"
549 * pointers of the nodes so the normal device-tree walking functions
550 * can be used.
551 *
552 * Returns NULL on failure or the memory chunk containing the unflattened
553 * device tree on success.
554 */
555void *of_fdt_unflatten_tree(const unsigned long *blob,
556 struct device_node *dad,
557 struct device_node **mynodes)
558{
559 void *mem;
560
561 mutex_lock(&of_fdt_unflatten_mutex);
562 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
563 true);
564 mutex_unlock(&of_fdt_unflatten_mutex);
565
566 return mem;
567}
568EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
569
570/* Everything below here references initial_boot_params directly. */
571int __initdata dt_root_addr_cells;
572int __initdata dt_root_size_cells;
573
574void *initial_boot_params;
575
576#ifdef CONFIG_OF_EARLY_FLATTREE
577
578static u32 of_fdt_crc32;
579
580/**
581 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
582 */
583static int __init __reserved_mem_reserve_reg(unsigned long node,
584 const char *uname)
585{
586 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
587 phys_addr_t base, size;
588 int len;
589 const __be32 *prop;
590 int nomap, first = 1;
591
592 prop = of_get_flat_dt_prop(node, "reg", &len);
593 if (!prop)
594 return -ENOENT;
595
596 if (len && len % t_len != 0) {
597 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
598 uname);
599 return -EINVAL;
600 }
601
602 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
603
604 while (len >= t_len) {
605 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
606 size = dt_mem_next_cell(dt_root_size_cells, &prop);
607
608 if (size &&
609 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
610 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
611 uname, &base, (unsigned long)size / SZ_1M);
612 else
613 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
614 uname, &base, (unsigned long)size / SZ_1M);
615
616 len -= t_len;
617 if (first) {
618 fdt_reserved_mem_save_node(node, uname, base, size);
619 first = 0;
620 }
621 }
622 return 0;
623}
624
625/**
626 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
627 * in /reserved-memory matches the values supported by the current implementation,
628 * also check if ranges property has been provided
629 */
630static int __init __reserved_mem_check_root(unsigned long node)
631{
632 const __be32 *prop;
633
634 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
635 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
636 return -EINVAL;
637
638 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
639 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
640 return -EINVAL;
641
642 prop = of_get_flat_dt_prop(node, "ranges", NULL);
643 if (!prop)
644 return -EINVAL;
645 return 0;
646}
647
648/**
649 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
650 */
651static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
652 int depth, void *data)
653{
654 static int found;
655 const char *status;
656 int err;
657
658 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
659 if (__reserved_mem_check_root(node) != 0) {
660 pr_err("Reserved memory: unsupported node format, ignoring\n");
661 /* break scan */
662 return 1;
663 }
664 found = 1;
665 /* scan next node */
666 return 0;
667 } else if (!found) {
668 /* scan next node */
669 return 0;
670 } else if (found && depth < 2) {
671 /* scanning of /reserved-memory has been finished */
672 return 1;
673 }
674
675 status = of_get_flat_dt_prop(node, "status", NULL);
676 if (status && strcmp(status, "okay") != 0 && strcmp(status, "ok") != 0)
677 return 0;
678
679 err = __reserved_mem_reserve_reg(node, uname);
680 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
681 fdt_reserved_mem_save_node(node, uname, 0, 0);
682
683 /* scan next node */
684 return 0;
685}
686
687/**
688 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
689 *
690 * This function grabs memory from early allocator for device exclusive use
691 * defined in device tree structures. It should be called by arch specific code
692 * once the early allocator (i.e. memblock) has been fully activated.
693 */
694void __init early_init_fdt_scan_reserved_mem(void)
695{
696 int n;
697 u64 base, size;
698
699 if (!initial_boot_params)
700 return;
701
702 /* Process header /memreserve/ fields */
703 for (n = 0; ; n++) {
704 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
705 if (!size)
706 break;
707 early_init_dt_reserve_memory_arch(base, size, 0);
708 }
709
710 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
711 fdt_init_reserved_mem();
712}
713
714/**
715 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
716 */
717void __init early_init_fdt_reserve_self(void)
718{
719 if (!initial_boot_params)
720 return;
721
722 /* Reserve the dtb region */
723 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
724 fdt_totalsize(initial_boot_params),
725 0);
726}
727
728/**
729 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
730 * @it: callback function
731 * @data: context data pointer
732 *
733 * This function is used to scan the flattened device-tree, it is
734 * used to extract the memory information at boot before we can
735 * unflatten the tree
736 */
737int __init of_scan_flat_dt(int (*it)(unsigned long node,
738 const char *uname, int depth,
739 void *data),
740 void *data)
741{
742 const void *blob = initial_boot_params;
743 const char *pathp;
744 int offset, rc = 0, depth = -1;
745
746 if (!blob)
747 return 0;
748
749 for (offset = fdt_next_node(blob, -1, &depth);
750 offset >= 0 && depth >= 0 && !rc;
751 offset = fdt_next_node(blob, offset, &depth)) {
752
753 pathp = fdt_get_name(blob, offset, NULL);
754 if (*pathp == '/')
755 pathp = kbasename(pathp);
756 rc = it(offset, pathp, depth, data);
757 }
758 return rc;
759}
760
761/**
762 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
763 * @it: callback function
764 * @data: context data pointer
765 *
766 * This function is used to scan sub-nodes of a node.
767 */
768int __init of_scan_flat_dt_subnodes(unsigned long parent,
769 int (*it)(unsigned long node,
770 const char *uname,
771 void *data),
772 void *data)
773{
774 const void *blob = initial_boot_params;
775 int node;
776
777 fdt_for_each_subnode(node, blob, parent) {
778 const char *pathp;
779 int rc;
780
781 pathp = fdt_get_name(blob, node, NULL);
782 if (*pathp == '/')
783 pathp = kbasename(pathp);
784 rc = it(node, pathp, data);
785 if (rc)
786 return rc;
787 }
788 return 0;
789}
790
791/**
792 * of_get_flat_dt_subnode_by_name - get the subnode by given name
793 *
794 * @node: the parent node
795 * @uname: the name of subnode
796 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
797 */
798
799int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
800{
801 return fdt_subnode_offset(initial_boot_params, node, uname);
802}
803
804/**
805 * of_get_flat_dt_root - find the root node in the flat blob
806 */
807unsigned long __init of_get_flat_dt_root(void)
808{
809 return 0;
810}
811
812/**
813 * of_get_flat_dt_size - Return the total size of the FDT
814 */
815int __init of_get_flat_dt_size(void)
816{
817 return fdt_totalsize(initial_boot_params);
818}
819
820/**
821 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
822 *
823 * This function can be used within scan_flattened_dt callback to get
824 * access to properties
825 */
826const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
827 int *size)
828{
829 return fdt_getprop(initial_boot_params, node, name, size);
830}
831
832/**
833 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
834 * @node: node to test
835 * @compat: compatible string to compare with compatible list.
836 */
837int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
838{
839 return of_fdt_is_compatible(initial_boot_params, node, compat);
840}
841
842/**
843 * of_flat_dt_match - Return true if node matches a list of compatible values
844 */
845int __init of_flat_dt_match(unsigned long node, const char *const *compat)
846{
847 return of_fdt_match(initial_boot_params, node, compat);
848}
849
850/**
851 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
852 */
853uint32_t __init of_get_flat_dt_phandle(unsigned long node)
854{
855 return fdt_get_phandle(initial_boot_params, node);
856}
857
858struct fdt_scan_status {
859 const char *name;
860 int namelen;
861 int depth;
862 int found;
863 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
864 void *data;
865};
866
867const char * __init of_flat_dt_get_machine_name(void)
868{
869 const char *name;
870 unsigned long dt_root = of_get_flat_dt_root();
871
872 name = of_get_flat_dt_prop(dt_root, "model", NULL);
873 if (!name)
874 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
875 return name;
876}
877
878/**
879 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
880 *
881 * @default_match: A machine specific ptr to return in case of no match.
882 * @get_next_compat: callback function to return next compatible match table.
883 *
884 * Iterate through machine match tables to find the best match for the machine
885 * compatible string in the FDT.
886 */
887const void * __init of_flat_dt_match_machine(const void *default_match,
888 const void * (*get_next_compat)(const char * const**))
889{
890 const void *data = NULL;
891 const void *best_data = default_match;
892 const char *const *compat;
893 unsigned long dt_root;
894 unsigned int best_score = ~1, score = 0;
895
896 dt_root = of_get_flat_dt_root();
897 while ((data = get_next_compat(&compat))) {
898 score = of_flat_dt_match(dt_root, compat);
899 if (score > 0 && score < best_score) {
900 best_data = data;
901 best_score = score;
902 }
903 }
904 if (!best_data) {
905 const char *prop;
906 int size;
907
908 pr_err("\n unrecognized device tree list:\n[ ");
909
910 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
911 if (prop) {
912 while (size > 0) {
913 printk("'%s' ", prop);
914 size -= strlen(prop) + 1;
915 prop += strlen(prop) + 1;
916 }
917 }
918 printk("]\n\n");
919 return NULL;
920 }
921
922 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
923
924 return best_data;
925}
926
927#ifdef CONFIG_BLK_DEV_INITRD
928#ifndef __early_init_dt_declare_initrd
929static void __early_init_dt_declare_initrd(unsigned long start,
930 unsigned long end)
931{
932 initrd_start = (unsigned long)__va(start);
933 initrd_end = (unsigned long)__va(end);
934 initrd_below_start_ok = 1;
935}
936#endif
937
938/**
939 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
940 * @node: reference to node containing initrd location ('chosen')
941 */
942static void __init early_init_dt_check_for_initrd(unsigned long node)
943{
944 u64 start, end;
945 int len;
946 const __be32 *prop;
947
948 pr_debug("Looking for initrd properties... ");
949
950 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
951 if (!prop)
952 return;
953 start = of_read_number(prop, len/4);
954
955 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
956 if (!prop)
957 return;
958 end = of_read_number(prop, len/4);
959
960 __early_init_dt_declare_initrd(start, end);
961
962 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
963 (unsigned long long)start, (unsigned long long)end);
964}
965#else
966static inline void early_init_dt_check_for_initrd(unsigned long node)
967{
968}
969#endif /* CONFIG_BLK_DEV_INITRD */
970
971#ifdef CONFIG_SERIAL_EARLYCON
972
973int __init early_init_dt_scan_chosen_stdout(void)
974{
975 int offset;
976 const char *p, *q, *options = NULL;
977 int l;
978 const struct earlycon_id **p_match;
979 const void *fdt = initial_boot_params;
980
981 offset = fdt_path_offset(fdt, "/chosen");
982 if (offset < 0)
983 offset = fdt_path_offset(fdt, "/chosen@0");
984 if (offset < 0)
985 return -ENOENT;
986
987 p = fdt_getprop(fdt, offset, "stdout-path", &l);
988 if (!p)
989 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
990 if (!p || !l)
991 return -ENOENT;
992
993 q = strchrnul(p, ':');
994 if (*q != '\0')
995 options = q + 1;
996 l = q - p;
997
998 /* Get the node specified by stdout-path */
999 offset = fdt_path_offset_namelen(fdt, p, l);
1000 if (offset < 0) {
1001 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1002 return 0;
1003 }
1004
1005 for (p_match = __earlycon_table; p_match < __earlycon_table_end;
1006 p_match++) {
1007 const struct earlycon_id *match = *p_match;
1008
1009 if (!match->compatible[0])
1010 continue;
1011
1012 if (fdt_node_check_compatible(fdt, offset, match->compatible))
1013 continue;
1014
1015 of_setup_earlycon(match, offset, options);
1016 return 0;
1017 }
1018 return -ENODEV;
1019}
1020#endif
1021
1022/**
1023 * early_init_dt_scan_root - fetch the top level address and size cells
1024 */
1025int __init early_init_dt_scan_root(unsigned long node, const char *uname,
1026 int depth, void *data)
1027{
1028 const __be32 *prop;
1029
1030 if (depth != 0)
1031 return 0;
1032
1033 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1034 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1035
1036 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1037 if (prop)
1038 dt_root_size_cells = be32_to_cpup(prop);
1039 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1040
1041 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1042 if (prop)
1043 dt_root_addr_cells = be32_to_cpup(prop);
1044 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1045
1046 /* break now */
1047 return 1;
1048}
1049
1050u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1051{
1052 const __be32 *p = *cellp;
1053
1054 *cellp = p + s;
1055 return of_read_number(p, s);
1056}
1057
1058/**
1059 * early_init_dt_scan_memory - Look for and parse memory nodes
1060 */
1061int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1062 int depth, void *data)
1063{
1064 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1065 const __be32 *reg, *endp;
1066 int l;
1067 bool hotpluggable;
1068
1069 /* We are scanning "memory" nodes only */
1070 if (type == NULL) {
1071 /*
1072 * The longtrail doesn't have a device_type on the
1073 * /memory node, so look for the node called /memory@0.
1074 */
1075 if (!IS_ENABLED(CONFIG_PPC32) || depth != 1 || strcmp(uname, "memory@0") != 0)
1076 return 0;
1077 } else if (strcmp(type, "memory") != 0)
1078 return 0;
1079
1080 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1081 if (reg == NULL)
1082 reg = of_get_flat_dt_prop(node, "reg", &l);
1083 if (reg == NULL)
1084 return 0;
1085
1086 endp = reg + (l / sizeof(__be32));
1087 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1088
1089 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1090
1091 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1092 u64 base, size;
1093
1094 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1095 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1096
1097 if (size == 0)
1098 continue;
1099 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
1100 (unsigned long long)size);
1101
1102 early_init_dt_add_memory_arch(base, size);
1103
1104 if (!hotpluggable)
1105 continue;
1106
1107 if (early_init_dt_mark_hotplug_memory_arch(base, size))
1108 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1109 base, base + size);
1110 }
1111
1112 return 0;
1113}
1114
1115/*
1116 * Convert configs to something easy to use in C code
1117 */
1118#if defined(CONFIG_CMDLINE_FORCE)
1119static const int overwrite_incoming_cmdline = 1;
1120static const int read_dt_cmdline;
1121static const int concat_cmdline;
1122#elif defined(CONFIG_CMDLINE_EXTEND)
1123static const int overwrite_incoming_cmdline;
1124static const int read_dt_cmdline = 1;
1125static const int concat_cmdline = 1;
1126#else /* CMDLINE_FROM_BOOTLOADER */
1127static const int overwrite_incoming_cmdline;
1128static const int read_dt_cmdline = 1;
1129static const int concat_cmdline;
1130#endif
1131
1132#ifdef CONFIG_CMDLINE
1133static const char *config_cmdline = CONFIG_CMDLINE;
1134#else
1135static const char *config_cmdline = "";
1136#endif
1137
1138int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1139 int depth, void *data)
1140{
1141 int l = 0;
1142 const char *p = NULL;
1143 char *cmdline = data;
1144
1145 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1146
1147 if (depth != 1 || !cmdline ||
1148 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1149 return 0;
1150
1151 early_init_dt_check_for_initrd(node);
1152
1153 /* Put CONFIG_CMDLINE in if forced or if data had nothing in it to start */
1154 if (overwrite_incoming_cmdline || !cmdline[0])
1155 strlcpy(cmdline, config_cmdline, COMMAND_LINE_SIZE);
1156
1157 /* Retrieve command line unless forcing */
1158 if (read_dt_cmdline)
1159 p = of_get_flat_dt_prop(node, "bootargs", &l);
1160
1161 if (p != NULL && l > 0) {
1162 if (concat_cmdline) {
1163 int cmdline_len;
1164 int copy_len;
1165 strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1166 cmdline_len = strlen(cmdline);
1167 copy_len = COMMAND_LINE_SIZE - cmdline_len - 1;
1168 copy_len = min((int)l, copy_len);
1169 strncpy(cmdline + cmdline_len, p, copy_len);
1170 cmdline[cmdline_len + copy_len] = '\0';
1171 } else {
1172 strlcpy(cmdline, p, min((int)l, COMMAND_LINE_SIZE));
1173 }
1174 }
1175
1176 pr_debug("Command line is: %s\n", (char*)data);
1177
1178 /* break now */
1179 return 1;
1180}
1181
1182#ifdef CONFIG_HAVE_MEMBLOCK
1183#ifndef MIN_MEMBLOCK_ADDR
1184#define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1185#endif
1186#ifndef MAX_MEMBLOCK_ADDR
1187#define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1188#endif
1189
1190void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1191{
1192 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1193
1194 if (!PAGE_ALIGNED(base)) {
1195 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1196 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1197 base, base + size);
1198 return;
1199 }
1200 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1201 base = PAGE_ALIGN(base);
1202 }
1203 size &= PAGE_MASK;
1204
1205 if (base > MAX_MEMBLOCK_ADDR) {
1206 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1207 base, base + size);
1208 return;
1209 }
1210
1211 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1212 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1213 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1214 size = MAX_MEMBLOCK_ADDR - base + 1;
1215 }
1216
1217 if (base + size < phys_offset) {
1218 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1219 base, base + size);
1220 return;
1221 }
1222 if (base < phys_offset) {
1223 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1224 base, phys_offset);
1225 size -= phys_offset - base;
1226 base = phys_offset;
1227 }
1228 memblock_add(base, size);
1229}
1230
1231int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1232{
1233 return memblock_mark_hotplug(base, size);
1234}
1235
1236int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1237 phys_addr_t size, bool nomap)
1238{
1239 if (nomap)
1240 return memblock_remove(base, size);
1241 return memblock_reserve(base, size);
1242}
1243
1244/*
1245 * called from unflatten_device_tree() to bootstrap devicetree itself
1246 * Architectures can override this definition if memblock isn't used
1247 */
1248void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1249{
1250 return __va(memblock_alloc(size, align));
1251}
1252#else
1253void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1254{
1255 WARN_ON(1);
1256}
1257
1258int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1259{
1260 return -ENOSYS;
1261}
1262
1263int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1264 phys_addr_t size, bool nomap)
1265{
1266 pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1267 &base, &size, nomap ? " (nomap)" : "");
1268 return -ENOSYS;
1269}
1270
1271void * __init __weak early_init_dt_alloc_memory_arch(u64 size, u64 align)
1272{
1273 WARN_ON(1);
1274 return NULL;
1275}
1276#endif
1277
1278bool __init early_init_dt_verify(void *params)
1279{
1280 if (!params)
1281 return false;
1282
1283 /* check device tree validity */
1284 if (fdt_check_header(params))
1285 return false;
1286
1287 /* Setup flat device-tree pointer */
1288 initial_boot_params = params;
1289 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1290 fdt_totalsize(initial_boot_params));
1291 return true;
1292}
1293
1294
1295void __init early_init_dt_scan_nodes(void)
1296{
1297 /* Retrieve various information from the /chosen node */
1298 of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1299
1300 /* Initialize {size,address}-cells info */
1301 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1302
1303 /* Setup memory, calling early_init_dt_add_memory_arch */
1304 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1305}
1306
1307bool __init early_init_dt_scan(void *params)
1308{
1309 bool status;
1310
1311 status = early_init_dt_verify(params);
1312 if (!status)
1313 return false;
1314
1315 early_init_dt_scan_nodes();
1316 return true;
1317}
1318
1319/**
1320 * unflatten_device_tree - create tree of device_nodes from flat blob
1321 *
1322 * unflattens the device-tree passed by the firmware, creating the
1323 * tree of struct device_node. It also fills the "name" and "type"
1324 * pointers of the nodes so the normal device-tree walking functions
1325 * can be used.
1326 */
1327void __init unflatten_device_tree(void)
1328{
1329 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1330 early_init_dt_alloc_memory_arch, false);
1331
1332 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1333 of_alias_scan(early_init_dt_alloc_memory_arch);
1334
1335 unittest_unflatten_overlay_base();
1336}
1337
1338/**
1339 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1340 *
1341 * Copies and unflattens the device-tree passed by the firmware, creating the
1342 * tree of struct device_node. It also fills the "name" and "type"
1343 * pointers of the nodes so the normal device-tree walking functions
1344 * can be used. This should only be used when the FDT memory has not been
1345 * reserved such is the case when the FDT is built-in to the kernel init
1346 * section. If the FDT memory is reserved already then unflatten_device_tree
1347 * should be used instead.
1348 */
1349void __init unflatten_and_copy_device_tree(void)
1350{
1351 int size;
1352 void *dt;
1353
1354 if (!initial_boot_params) {
1355 pr_warn("No valid device tree found, continuing without\n");
1356 return;
1357 }
1358
1359 size = fdt_totalsize(initial_boot_params);
1360 dt = early_init_dt_alloc_memory_arch(size,
1361 roundup_pow_of_two(FDT_V17_SIZE));
1362
1363 if (dt) {
1364 memcpy(dt, initial_boot_params, size);
1365 initial_boot_params = dt;
1366 }
1367 unflatten_device_tree();
1368}
1369
1370#ifdef CONFIG_SYSFS
1371static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1372 struct bin_attribute *bin_attr,
1373 char *buf, loff_t off, size_t count)
1374{
1375 memcpy(buf, initial_boot_params + off, count);
1376 return count;
1377}
1378
1379static int __init of_fdt_raw_init(void)
1380{
1381 static struct bin_attribute of_fdt_raw_attr =
1382 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1383
1384 if (!initial_boot_params)
1385 return 0;
1386
1387 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1388 fdt_totalsize(initial_boot_params))) {
1389 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1390 return 0;
1391 }
1392 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1393 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1394}
1395late_initcall(of_fdt_raw_init);
1396#endif
1397
1398#endif /* CONFIG_OF_EARLY_FLATTREE */