blob: c847b5554db6dfb9c651ee3fa4f4fb0ce3d40d5e [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10#include <linux/acpi.h>
11#include <linux/kernel.h>
12#include <linux/delay.h>
13#include <linux/dmi.h>
14#include <linux/init.h>
15#include <linux/of.h>
16#include <linux/of_pci.h>
17#include <linux/pci.h>
18#include <linux/pm.h>
19#include <linux/slab.h>
20#include <linux/module.h>
21#include <linux/spinlock.h>
22#include <linux/string.h>
23#include <linux/log2.h>
24#include <linux/pci-aspm.h>
25#include <linux/pm_wakeup.h>
26#include <linux/interrupt.h>
27#include <linux/device.h>
28#include <linux/pm_runtime.h>
29#include <linux/pci_hotplug.h>
30#include <linux/vmalloc.h>
31#include <linux/pci-ats.h>
32#include <asm/setup.h>
33#include <asm/dma.h>
34#include <linux/aer.h>
35#include "pci.h"
36
37const char *pci_power_names[] = {
38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39};
40EXPORT_SYMBOL_GPL(pci_power_names);
41
42int isa_dma_bridge_buggy;
43EXPORT_SYMBOL(isa_dma_bridge_buggy);
44
45int pci_pci_problems;
46EXPORT_SYMBOL(pci_pci_problems);
47
48unsigned int pci_pm_d3_delay;
49
50static void pci_pme_list_scan(struct work_struct *work);
51
52static LIST_HEAD(pci_pme_list);
53static DEFINE_MUTEX(pci_pme_list_mutex);
54static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
55
56struct pci_pme_device {
57 struct list_head list;
58 struct pci_dev *dev;
59};
60
61#define PME_TIMEOUT 1000 /* How long between PME checks */
62
63static void pci_dev_d3_sleep(struct pci_dev *dev)
64{
65 unsigned int delay = dev->d3_delay;
66
67 if (delay < pci_pm_d3_delay)
68 delay = pci_pm_d3_delay;
69
70 if (delay)
71 msleep(delay);
72}
73
74#ifdef CONFIG_PCI_DOMAINS
75int pci_domains_supported = 1;
76#endif
77
78#define DEFAULT_CARDBUS_IO_SIZE (256)
79#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
80/* pci=cbmemsize=nnM,cbiosize=nn can override this */
81unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
82unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
83
84#define DEFAULT_HOTPLUG_IO_SIZE (256)
85#define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
86/* pci=hpmemsize=nnM,hpiosize=nn can override this */
87unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
88unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
89
90#define DEFAULT_HOTPLUG_BUS_SIZE 1
91unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
92
93enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
94
95/*
96 * The default CLS is used if arch didn't set CLS explicitly and not
97 * all pci devices agree on the same value. Arch can override either
98 * the dfl or actual value as it sees fit. Don't forget this is
99 * measured in 32-bit words, not bytes.
100 */
101u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
102u8 pci_cache_line_size;
103
104/*
105 * If we set up a device for bus mastering, we need to check the latency
106 * timer as certain BIOSes forget to set it properly.
107 */
108unsigned int pcibios_max_latency = 255;
109
110/* If set, the PCIe ARI capability will not be used. */
111static bool pcie_ari_disabled;
112
113/* Disable bridge_d3 for all PCIe ports */
114static bool pci_bridge_d3_disable;
115/* Force bridge_d3 for all PCIe ports */
116static bool pci_bridge_d3_force;
117
118static int __init pcie_port_pm_setup(char *str)
119{
120 if (!strcmp(str, "off"))
121 pci_bridge_d3_disable = true;
122 else if (!strcmp(str, "force"))
123 pci_bridge_d3_force = true;
124 return 1;
125}
126__setup("pcie_port_pm=", pcie_port_pm_setup);
127
128/**
129 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
130 * @bus: pointer to PCI bus structure to search
131 *
132 * Given a PCI bus, returns the highest PCI bus number present in the set
133 * including the given PCI bus and its list of child PCI buses.
134 */
135unsigned char pci_bus_max_busnr(struct pci_bus *bus)
136{
137 struct pci_bus *tmp;
138 unsigned char max, n;
139
140 max = bus->busn_res.end;
141 list_for_each_entry(tmp, &bus->children, node) {
142 n = pci_bus_max_busnr(tmp);
143 if (n > max)
144 max = n;
145 }
146 return max;
147}
148EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
149
150#ifdef CONFIG_HAS_IOMEM
151void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
152{
153 struct resource *res = &pdev->resource[bar];
154
155 /*
156 * Make sure the BAR is actually a memory resource, not an IO resource
157 */
158 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
159 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
160 return NULL;
161 }
162 return ioremap_nocache(res->start, resource_size(res));
163}
164EXPORT_SYMBOL_GPL(pci_ioremap_bar);
165
166void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
167{
168 /*
169 * Make sure the BAR is actually a memory resource, not an IO resource
170 */
171 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
172 WARN_ON(1);
173 return NULL;
174 }
175 return ioremap_wc(pci_resource_start(pdev, bar),
176 pci_resource_len(pdev, bar));
177}
178EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
179#endif
180
181
182static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
183 u8 pos, int cap, int *ttl)
184{
185 u8 id;
186 u16 ent;
187
188 pci_bus_read_config_byte(bus, devfn, pos, &pos);
189
190 while ((*ttl)--) {
191 if (pos < 0x40)
192 break;
193 pos &= ~3;
194 pci_bus_read_config_word(bus, devfn, pos, &ent);
195
196 id = ent & 0xff;
197 if (id == 0xff)
198 break;
199 if (id == cap)
200 return pos;
201 pos = (ent >> 8);
202 }
203 return 0;
204}
205
206static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
207 u8 pos, int cap)
208{
209 int ttl = PCI_FIND_CAP_TTL;
210
211 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
212}
213
214int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
215{
216 return __pci_find_next_cap(dev->bus, dev->devfn,
217 pos + PCI_CAP_LIST_NEXT, cap);
218}
219EXPORT_SYMBOL_GPL(pci_find_next_capability);
220
221static int __pci_bus_find_cap_start(struct pci_bus *bus,
222 unsigned int devfn, u8 hdr_type)
223{
224 u16 status;
225
226 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
227 if (!(status & PCI_STATUS_CAP_LIST))
228 return 0;
229
230 switch (hdr_type) {
231 case PCI_HEADER_TYPE_NORMAL:
232 case PCI_HEADER_TYPE_BRIDGE:
233 return PCI_CAPABILITY_LIST;
234 case PCI_HEADER_TYPE_CARDBUS:
235 return PCI_CB_CAPABILITY_LIST;
236 }
237
238 return 0;
239}
240
241/**
242 * pci_find_capability - query for devices' capabilities
243 * @dev: PCI device to query
244 * @cap: capability code
245 *
246 * Tell if a device supports a given PCI capability.
247 * Returns the address of the requested capability structure within the
248 * device's PCI configuration space or 0 in case the device does not
249 * support it. Possible values for @cap:
250 *
251 * %PCI_CAP_ID_PM Power Management
252 * %PCI_CAP_ID_AGP Accelerated Graphics Port
253 * %PCI_CAP_ID_VPD Vital Product Data
254 * %PCI_CAP_ID_SLOTID Slot Identification
255 * %PCI_CAP_ID_MSI Message Signalled Interrupts
256 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
257 * %PCI_CAP_ID_PCIX PCI-X
258 * %PCI_CAP_ID_EXP PCI Express
259 */
260int pci_find_capability(struct pci_dev *dev, int cap)
261{
262 int pos;
263
264 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
265 if (pos)
266 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
267
268 return pos;
269}
270EXPORT_SYMBOL(pci_find_capability);
271
272/**
273 * pci_bus_find_capability - query for devices' capabilities
274 * @bus: the PCI bus to query
275 * @devfn: PCI device to query
276 * @cap: capability code
277 *
278 * Like pci_find_capability() but works for pci devices that do not have a
279 * pci_dev structure set up yet.
280 *
281 * Returns the address of the requested capability structure within the
282 * device's PCI configuration space or 0 in case the device does not
283 * support it.
284 */
285int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
286{
287 int pos;
288 u8 hdr_type;
289
290 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
291
292 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
293 if (pos)
294 pos = __pci_find_next_cap(bus, devfn, pos, cap);
295
296 return pos;
297}
298EXPORT_SYMBOL(pci_bus_find_capability);
299
300/**
301 * pci_find_next_ext_capability - Find an extended capability
302 * @dev: PCI device to query
303 * @start: address at which to start looking (0 to start at beginning of list)
304 * @cap: capability code
305 *
306 * Returns the address of the next matching extended capability structure
307 * within the device's PCI configuration space or 0 if the device does
308 * not support it. Some capabilities can occur several times, e.g., the
309 * vendor-specific capability, and this provides a way to find them all.
310 */
311int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
312{
313 u32 header;
314 int ttl;
315 int pos = PCI_CFG_SPACE_SIZE;
316
317 /* minimum 8 bytes per capability */
318 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
319
320 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
321 return 0;
322
323 if (start)
324 pos = start;
325
326 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
327 return 0;
328
329 /*
330 * If we have no capabilities, this is indicated by cap ID,
331 * cap version and next pointer all being 0.
332 */
333 if (header == 0)
334 return 0;
335
336 while (ttl-- > 0) {
337 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
338 return pos;
339
340 pos = PCI_EXT_CAP_NEXT(header);
341 if (pos < PCI_CFG_SPACE_SIZE)
342 break;
343
344 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
345 break;
346 }
347
348 return 0;
349}
350EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
351
352/**
353 * pci_find_ext_capability - Find an extended capability
354 * @dev: PCI device to query
355 * @cap: capability code
356 *
357 * Returns the address of the requested extended capability structure
358 * within the device's PCI configuration space or 0 if the device does
359 * not support it. Possible values for @cap:
360 *
361 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
362 * %PCI_EXT_CAP_ID_VC Virtual Channel
363 * %PCI_EXT_CAP_ID_DSN Device Serial Number
364 * %PCI_EXT_CAP_ID_PWR Power Budgeting
365 */
366int pci_find_ext_capability(struct pci_dev *dev, int cap)
367{
368 return pci_find_next_ext_capability(dev, 0, cap);
369}
370EXPORT_SYMBOL_GPL(pci_find_ext_capability);
371
372static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
373{
374 int rc, ttl = PCI_FIND_CAP_TTL;
375 u8 cap, mask;
376
377 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
378 mask = HT_3BIT_CAP_MASK;
379 else
380 mask = HT_5BIT_CAP_MASK;
381
382 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
383 PCI_CAP_ID_HT, &ttl);
384 while (pos) {
385 rc = pci_read_config_byte(dev, pos + 3, &cap);
386 if (rc != PCIBIOS_SUCCESSFUL)
387 return 0;
388
389 if ((cap & mask) == ht_cap)
390 return pos;
391
392 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
393 pos + PCI_CAP_LIST_NEXT,
394 PCI_CAP_ID_HT, &ttl);
395 }
396
397 return 0;
398}
399/**
400 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
401 * @dev: PCI device to query
402 * @pos: Position from which to continue searching
403 * @ht_cap: Hypertransport capability code
404 *
405 * To be used in conjunction with pci_find_ht_capability() to search for
406 * all capabilities matching @ht_cap. @pos should always be a value returned
407 * from pci_find_ht_capability().
408 *
409 * NB. To be 100% safe against broken PCI devices, the caller should take
410 * steps to avoid an infinite loop.
411 */
412int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
413{
414 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
415}
416EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
417
418/**
419 * pci_find_ht_capability - query a device's Hypertransport capabilities
420 * @dev: PCI device to query
421 * @ht_cap: Hypertransport capability code
422 *
423 * Tell if a device supports a given Hypertransport capability.
424 * Returns an address within the device's PCI configuration space
425 * or 0 in case the device does not support the request capability.
426 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
427 * which has a Hypertransport capability matching @ht_cap.
428 */
429int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
430{
431 int pos;
432
433 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
434 if (pos)
435 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
436
437 return pos;
438}
439EXPORT_SYMBOL_GPL(pci_find_ht_capability);
440
441/**
442 * pci_find_parent_resource - return resource region of parent bus of given region
443 * @dev: PCI device structure contains resources to be searched
444 * @res: child resource record for which parent is sought
445 *
446 * For given resource region of given device, return the resource
447 * region of parent bus the given region is contained in.
448 */
449struct resource *pci_find_parent_resource(const struct pci_dev *dev,
450 struct resource *res)
451{
452 const struct pci_bus *bus = dev->bus;
453 struct resource *r;
454 int i;
455
456 pci_bus_for_each_resource(bus, r, i) {
457 if (!r)
458 continue;
459 if (resource_contains(r, res)) {
460
461 /*
462 * If the window is prefetchable but the BAR is
463 * not, the allocator made a mistake.
464 */
465 if (r->flags & IORESOURCE_PREFETCH &&
466 !(res->flags & IORESOURCE_PREFETCH))
467 return NULL;
468
469 /*
470 * If we're below a transparent bridge, there may
471 * be both a positively-decoded aperture and a
472 * subtractively-decoded region that contain the BAR.
473 * We want the positively-decoded one, so this depends
474 * on pci_bus_for_each_resource() giving us those
475 * first.
476 */
477 return r;
478 }
479 }
480 return NULL;
481}
482EXPORT_SYMBOL(pci_find_parent_resource);
483
484/**
485 * pci_find_resource - Return matching PCI device resource
486 * @dev: PCI device to query
487 * @res: Resource to look for
488 *
489 * Goes over standard PCI resources (BARs) and checks if the given resource
490 * is partially or fully contained in any of them. In that case the
491 * matching resource is returned, %NULL otherwise.
492 */
493struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
494{
495 int i;
496
497 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
498 struct resource *r = &dev->resource[i];
499
500 if (r->start && resource_contains(r, res))
501 return r;
502 }
503
504 return NULL;
505}
506EXPORT_SYMBOL(pci_find_resource);
507
508/**
509 * pci_find_pcie_root_port - return PCIe Root Port
510 * @dev: PCI device to query
511 *
512 * Traverse up the parent chain and return the PCIe Root Port PCI Device
513 * for a given PCI Device.
514 */
515struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
516{
517 struct pci_dev *bridge, *highest_pcie_bridge = dev;
518
519 bridge = pci_upstream_bridge(dev);
520 while (bridge && pci_is_pcie(bridge)) {
521 highest_pcie_bridge = bridge;
522 bridge = pci_upstream_bridge(bridge);
523 }
524
525 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
526 return NULL;
527
528 return highest_pcie_bridge;
529}
530EXPORT_SYMBOL(pci_find_pcie_root_port);
531
532/**
533 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
534 * @dev: the PCI device to operate on
535 * @pos: config space offset of status word
536 * @mask: mask of bit(s) to care about in status word
537 *
538 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
539 */
540int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
541{
542 int i;
543
544 /* Wait for Transaction Pending bit clean */
545 for (i = 0; i < 4; i++) {
546 u16 status;
547 if (i)
548 msleep((1 << (i - 1)) * 100);
549
550 pci_read_config_word(dev, pos, &status);
551 if (!(status & mask))
552 return 1;
553 }
554
555 return 0;
556}
557
558/**
559 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
560 * @dev: PCI device to have its BARs restored
561 *
562 * Restore the BAR values for a given device, so as to make it
563 * accessible by its driver.
564 */
565static void pci_restore_bars(struct pci_dev *dev)
566{
567 int i;
568
569 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
570 pci_update_resource(dev, i);
571}
572
573static const struct pci_platform_pm_ops *pci_platform_pm;
574
575int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
576{
577 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
578 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
579 return -EINVAL;
580 pci_platform_pm = ops;
581 return 0;
582}
583
584static inline bool platform_pci_power_manageable(struct pci_dev *dev)
585{
586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
587}
588
589static inline int platform_pci_set_power_state(struct pci_dev *dev,
590 pci_power_t t)
591{
592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
593}
594
595static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
596{
597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
598}
599
600static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
601{
602 return pci_platform_pm ?
603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
604}
605
606static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
607{
608 return pci_platform_pm ?
609 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
610}
611
612static inline bool platform_pci_need_resume(struct pci_dev *dev)
613{
614 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
615}
616
617/**
618 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
619 * given PCI device
620 * @dev: PCI device to handle.
621 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
622 *
623 * RETURN VALUE:
624 * -EINVAL if the requested state is invalid.
625 * -EIO if device does not support PCI PM or its PM capabilities register has a
626 * wrong version, or device doesn't support the requested state.
627 * 0 if device already is in the requested state.
628 * 0 if device's power state has been successfully changed.
629 */
630static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
631{
632 u16 pmcsr;
633 bool need_restore = false;
634
635 /* Check if we're already there */
636 if (dev->current_state == state)
637 return 0;
638
639 if (!dev->pm_cap)
640 return -EIO;
641
642 if (state < PCI_D0 || state > PCI_D3hot)
643 return -EINVAL;
644
645 /* Validate current state:
646 * Can enter D0 from any state, but if we can only go deeper
647 * to sleep if we're already in a low power state
648 */
649 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
650 && dev->current_state > state) {
651 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
652 dev->current_state, state);
653 return -EINVAL;
654 }
655
656 /* check if this device supports the desired state */
657 if ((state == PCI_D1 && !dev->d1_support)
658 || (state == PCI_D2 && !dev->d2_support))
659 return -EIO;
660
661 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
662
663 /* If we're (effectively) in D3, force entire word to 0.
664 * This doesn't affect PME_Status, disables PME_En, and
665 * sets PowerState to 0.
666 */
667 switch (dev->current_state) {
668 case PCI_D0:
669 case PCI_D1:
670 case PCI_D2:
671 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
672 pmcsr |= state;
673 break;
674 case PCI_D3hot:
675 case PCI_D3cold:
676 case PCI_UNKNOWN: /* Boot-up */
677 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
678 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
679 need_restore = true;
680 /* Fall-through: force to D0 */
681 default:
682 pmcsr = 0;
683 break;
684 }
685
686 /* enter specified state */
687 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
688
689 /* Mandatory power management transition delays */
690 /* see PCI PM 1.1 5.6.1 table 18 */
691 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
692 pci_dev_d3_sleep(dev);
693 else if (state == PCI_D2 || dev->current_state == PCI_D2)
694 udelay(PCI_PM_D2_DELAY);
695
696 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
697 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
698 if (dev->current_state != state && printk_ratelimit())
699 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
700 dev->current_state);
701
702 /*
703 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
704 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
705 * from D3hot to D0 _may_ perform an internal reset, thereby
706 * going to "D0 Uninitialized" rather than "D0 Initialized".
707 * For example, at least some versions of the 3c905B and the
708 * 3c556B exhibit this behaviour.
709 *
710 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
711 * devices in a D3hot state at boot. Consequently, we need to
712 * restore at least the BARs so that the device will be
713 * accessible to its driver.
714 */
715 if (need_restore)
716 pci_restore_bars(dev);
717
718 if (dev->bus->self)
719 pcie_aspm_pm_state_change(dev->bus->self);
720
721 return 0;
722}
723
724/**
725 * pci_update_current_state - Read power state of given device and cache it
726 * @dev: PCI device to handle.
727 * @state: State to cache in case the device doesn't have the PM capability
728 *
729 * The power state is read from the PMCSR register, which however is
730 * inaccessible in D3cold. The platform firmware is therefore queried first
731 * to detect accessibility of the register. In case the platform firmware
732 * reports an incorrect state or the device isn't power manageable by the
733 * platform at all, we try to detect D3cold by testing accessibility of the
734 * vendor ID in config space.
735 */
736void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
737{
738 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
739 !pci_device_is_present(dev)) {
740 dev->current_state = PCI_D3cold;
741 } else if (dev->pm_cap) {
742 u16 pmcsr;
743
744 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
745 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
746 } else {
747 dev->current_state = state;
748 }
749}
750
751/**
752 * pci_platform_power_transition - Use platform to change device power state
753 * @dev: PCI device to handle.
754 * @state: State to put the device into.
755 */
756static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
757{
758 int error;
759
760 if (platform_pci_power_manageable(dev)) {
761 error = platform_pci_set_power_state(dev, state);
762 if (!error)
763 pci_update_current_state(dev, state);
764 } else
765 error = -ENODEV;
766
767 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
768 dev->current_state = PCI_D0;
769
770 return error;
771}
772
773/**
774 * pci_wakeup - Wake up a PCI device
775 * @pci_dev: Device to handle.
776 * @ign: ignored parameter
777 */
778static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
779{
780 pci_wakeup_event(pci_dev);
781 pm_request_resume(&pci_dev->dev);
782 return 0;
783}
784
785/**
786 * pci_wakeup_bus - Walk given bus and wake up devices on it
787 * @bus: Top bus of the subtree to walk.
788 */
789static void pci_wakeup_bus(struct pci_bus *bus)
790{
791 if (bus)
792 pci_walk_bus(bus, pci_wakeup, NULL);
793}
794
795/**
796 * __pci_start_power_transition - Start power transition of a PCI device
797 * @dev: PCI device to handle.
798 * @state: State to put the device into.
799 */
800static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
801{
802 if (state == PCI_D0) {
803 pci_platform_power_transition(dev, PCI_D0);
804 /*
805 * Mandatory power management transition delays, see
806 * PCI Express Base Specification Revision 2.0 Section
807 * 6.6.1: Conventional Reset. Do not delay for
808 * devices powered on/off by corresponding bridge,
809 * because have already delayed for the bridge.
810 */
811 if (dev->runtime_d3cold) {
812 if (dev->d3cold_delay)
813 msleep(dev->d3cold_delay);
814 /*
815 * When powering on a bridge from D3cold, the
816 * whole hierarchy may be powered on into
817 * D0uninitialized state, resume them to give
818 * them a chance to suspend again
819 */
820 pci_wakeup_bus(dev->subordinate);
821 }
822 }
823}
824
825/**
826 * __pci_dev_set_current_state - Set current state of a PCI device
827 * @dev: Device to handle
828 * @data: pointer to state to be set
829 */
830static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
831{
832 pci_power_t state = *(pci_power_t *)data;
833
834 dev->current_state = state;
835 return 0;
836}
837
838/**
839 * __pci_bus_set_current_state - Walk given bus and set current state of devices
840 * @bus: Top bus of the subtree to walk.
841 * @state: state to be set
842 */
843static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
844{
845 if (bus)
846 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
847}
848
849/**
850 * __pci_complete_power_transition - Complete power transition of a PCI device
851 * @dev: PCI device to handle.
852 * @state: State to put the device into.
853 *
854 * This function should not be called directly by device drivers.
855 */
856int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
857{
858 int ret;
859
860 if (state <= PCI_D0)
861 return -EINVAL;
862 ret = pci_platform_power_transition(dev, state);
863 /* Power off the bridge may power off the whole hierarchy */
864 if (!ret && state == PCI_D3cold)
865 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
866 return ret;
867}
868EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
869
870/**
871 * pci_set_power_state - Set the power state of a PCI device
872 * @dev: PCI device to handle.
873 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
874 *
875 * Transition a device to a new power state, using the platform firmware and/or
876 * the device's PCI PM registers.
877 *
878 * RETURN VALUE:
879 * -EINVAL if the requested state is invalid.
880 * -EIO if device does not support PCI PM or its PM capabilities register has a
881 * wrong version, or device doesn't support the requested state.
882 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
883 * 0 if device already is in the requested state.
884 * 0 if the transition is to D3 but D3 is not supported.
885 * 0 if device's power state has been successfully changed.
886 */
887int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
888{
889 int error;
890
891 /* bound the state we're entering */
892 if (state > PCI_D3cold)
893 state = PCI_D3cold;
894 else if (state < PCI_D0)
895 state = PCI_D0;
896 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
897 /*
898 * If the device or the parent bridge do not support PCI PM,
899 * ignore the request if we're doing anything other than putting
900 * it into D0 (which would only happen on boot).
901 */
902 return 0;
903
904 /* Check if we're already there */
905 if (dev->current_state == state)
906 return 0;
907
908 __pci_start_power_transition(dev, state);
909
910 /* This device is quirked not to be put into D3, so
911 don't put it in D3 */
912 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
913 return 0;
914
915 /*
916 * To put device in D3cold, we put device into D3hot in native
917 * way, then put device into D3cold with platform ops
918 */
919 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
920 PCI_D3hot : state);
921
922 if (!__pci_complete_power_transition(dev, state))
923 error = 0;
924
925 return error;
926}
927EXPORT_SYMBOL(pci_set_power_state);
928
929/**
930 * pci_power_up - Put the given device into D0 forcibly
931 * @dev: PCI device to power up
932 */
933void pci_power_up(struct pci_dev *dev)
934{
935 __pci_start_power_transition(dev, PCI_D0);
936 pci_raw_set_power_state(dev, PCI_D0);
937 pci_update_current_state(dev, PCI_D0);
938}
939
940/**
941 * pci_choose_state - Choose the power state of a PCI device
942 * @dev: PCI device to be suspended
943 * @state: target sleep state for the whole system. This is the value
944 * that is passed to suspend() function.
945 *
946 * Returns PCI power state suitable for given device and given system
947 * message.
948 */
949
950pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
951{
952 pci_power_t ret;
953
954 if (!dev->pm_cap)
955 return PCI_D0;
956
957 ret = platform_pci_choose_state(dev);
958 if (ret != PCI_POWER_ERROR)
959 return ret;
960
961 switch (state.event) {
962 case PM_EVENT_ON:
963 return PCI_D0;
964 case PM_EVENT_FREEZE:
965 case PM_EVENT_PRETHAW:
966 /* REVISIT both freeze and pre-thaw "should" use D0 */
967 case PM_EVENT_SUSPEND:
968 case PM_EVENT_HIBERNATE:
969 return PCI_D3hot;
970 default:
971 dev_info(&dev->dev, "unrecognized suspend event %d\n",
972 state.event);
973 BUG();
974 }
975 return PCI_D0;
976}
977EXPORT_SYMBOL(pci_choose_state);
978
979#define PCI_EXP_SAVE_REGS 7
980
981static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
982 u16 cap, bool extended)
983{
984 struct pci_cap_saved_state *tmp;
985
986 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
987 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
988 return tmp;
989 }
990 return NULL;
991}
992
993struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
994{
995 return _pci_find_saved_cap(dev, cap, false);
996}
997
998struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
999{
1000 return _pci_find_saved_cap(dev, cap, true);
1001}
1002
1003static int pci_save_pcie_state(struct pci_dev *dev)
1004{
1005 int i = 0;
1006 struct pci_cap_saved_state *save_state;
1007 u16 *cap;
1008
1009 if (!pci_is_pcie(dev))
1010 return 0;
1011
1012 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1013 if (!save_state) {
1014 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1015 return -ENOMEM;
1016 }
1017
1018 cap = (u16 *)&save_state->cap.data[0];
1019 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1020 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1021 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1022 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1023 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1024 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1025 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1026
1027 return 0;
1028}
1029
1030static void pci_restore_pcie_state(struct pci_dev *dev)
1031{
1032 int i = 0;
1033 struct pci_cap_saved_state *save_state;
1034 u16 *cap;
1035
1036 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1037 if (!save_state)
1038 return;
1039
1040 cap = (u16 *)&save_state->cap.data[0];
1041 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1042 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1043 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1044 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1045 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1046 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1047 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1048}
1049
1050
1051static int pci_save_pcix_state(struct pci_dev *dev)
1052{
1053 int pos;
1054 struct pci_cap_saved_state *save_state;
1055
1056 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1057 if (!pos)
1058 return 0;
1059
1060 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1061 if (!save_state) {
1062 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1063 return -ENOMEM;
1064 }
1065
1066 pci_read_config_word(dev, pos + PCI_X_CMD,
1067 (u16 *)save_state->cap.data);
1068
1069 return 0;
1070}
1071
1072static void pci_restore_pcix_state(struct pci_dev *dev)
1073{
1074 int i = 0, pos;
1075 struct pci_cap_saved_state *save_state;
1076 u16 *cap;
1077
1078 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1079 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1080 if (!save_state || !pos)
1081 return;
1082 cap = (u16 *)&save_state->cap.data[0];
1083
1084 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1085}
1086
1087
1088/**
1089 * pci_save_state - save the PCI configuration space of a device before suspending
1090 * @dev: - PCI device that we're dealing with
1091 */
1092int pci_save_state(struct pci_dev *dev)
1093{
1094 int i;
1095 /* XXX: 100% dword access ok here? */
1096 for (i = 0; i < 16; i++)
1097 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1098 dev->state_saved = true;
1099
1100 i = pci_save_pcie_state(dev);
1101 if (i != 0)
1102 return i;
1103
1104 i = pci_save_pcix_state(dev);
1105 if (i != 0)
1106 return i;
1107
1108 return pci_save_vc_state(dev);
1109}
1110EXPORT_SYMBOL(pci_save_state);
1111
1112static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1113 u32 saved_val, int retry, bool force)
1114{
1115 u32 val;
1116
1117 pci_read_config_dword(pdev, offset, &val);
1118 if (!force && val == saved_val)
1119 return;
1120
1121 for (;;) {
1122 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1123 offset, val, saved_val);
1124 pci_write_config_dword(pdev, offset, saved_val);
1125 if (retry-- <= 0)
1126 return;
1127
1128 pci_read_config_dword(pdev, offset, &val);
1129 if (val == saved_val)
1130 return;
1131
1132 mdelay(1);
1133 }
1134}
1135
1136static void pci_restore_config_space_range(struct pci_dev *pdev,
1137 int start, int end, int retry,
1138 bool force)
1139{
1140 int index;
1141
1142 for (index = end; index >= start; index--)
1143 pci_restore_config_dword(pdev, 4 * index,
1144 pdev->saved_config_space[index],
1145 retry, force);
1146}
1147
1148static void pci_restore_config_space(struct pci_dev *pdev)
1149{
1150 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1151 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1152 /* Restore BARs before the command register. */
1153 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1154 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1155 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1156 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1157
1158 /*
1159 * Force rewriting of prefetch registers to avoid S3 resume
1160 * issues on Intel PCI bridges that occur when these
1161 * registers are not explicitly written.
1162 */
1163 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1164 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1165 } else {
1166 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1167 }
1168}
1169
1170/**
1171 * pci_restore_state - Restore the saved state of a PCI device
1172 * @dev: - PCI device that we're dealing with
1173 */
1174void pci_restore_state(struct pci_dev *dev)
1175{
1176 if (!dev->state_saved)
1177 return;
1178
1179 /* PCI Express register must be restored first */
1180 pci_restore_pcie_state(dev);
1181 pci_restore_pasid_state(dev);
1182 pci_restore_pri_state(dev);
1183 pci_restore_ats_state(dev);
1184 pci_restore_vc_state(dev);
1185
1186 pci_cleanup_aer_error_status_regs(dev);
1187
1188 pci_restore_config_space(dev);
1189
1190 pci_restore_pcix_state(dev);
1191 pci_restore_msi_state(dev);
1192
1193 /* Restore ACS and IOV configuration state */
1194 pci_enable_acs(dev);
1195 pci_restore_iov_state(dev);
1196
1197 dev->state_saved = false;
1198}
1199EXPORT_SYMBOL(pci_restore_state);
1200
1201struct pci_saved_state {
1202 u32 config_space[16];
1203 struct pci_cap_saved_data cap[0];
1204};
1205
1206/**
1207 * pci_store_saved_state - Allocate and return an opaque struct containing
1208 * the device saved state.
1209 * @dev: PCI device that we're dealing with
1210 *
1211 * Return NULL if no state or error.
1212 */
1213struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1214{
1215 struct pci_saved_state *state;
1216 struct pci_cap_saved_state *tmp;
1217 struct pci_cap_saved_data *cap;
1218 size_t size;
1219
1220 if (!dev->state_saved)
1221 return NULL;
1222
1223 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1224
1225 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1226 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1227
1228 state = kzalloc(size, GFP_KERNEL);
1229 if (!state)
1230 return NULL;
1231
1232 memcpy(state->config_space, dev->saved_config_space,
1233 sizeof(state->config_space));
1234
1235 cap = state->cap;
1236 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1237 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1238 memcpy(cap, &tmp->cap, len);
1239 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1240 }
1241 /* Empty cap_save terminates list */
1242
1243 return state;
1244}
1245EXPORT_SYMBOL_GPL(pci_store_saved_state);
1246
1247/**
1248 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1249 * @dev: PCI device that we're dealing with
1250 * @state: Saved state returned from pci_store_saved_state()
1251 */
1252int pci_load_saved_state(struct pci_dev *dev,
1253 struct pci_saved_state *state)
1254{
1255 struct pci_cap_saved_data *cap;
1256
1257 dev->state_saved = false;
1258
1259 if (!state)
1260 return 0;
1261
1262 memcpy(dev->saved_config_space, state->config_space,
1263 sizeof(state->config_space));
1264
1265 cap = state->cap;
1266 while (cap->size) {
1267 struct pci_cap_saved_state *tmp;
1268
1269 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1270 if (!tmp || tmp->cap.size != cap->size)
1271 return -EINVAL;
1272
1273 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1274 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1275 sizeof(struct pci_cap_saved_data) + cap->size);
1276 }
1277
1278 dev->state_saved = true;
1279 return 0;
1280}
1281EXPORT_SYMBOL_GPL(pci_load_saved_state);
1282
1283/**
1284 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1285 * and free the memory allocated for it.
1286 * @dev: PCI device that we're dealing with
1287 * @state: Pointer to saved state returned from pci_store_saved_state()
1288 */
1289int pci_load_and_free_saved_state(struct pci_dev *dev,
1290 struct pci_saved_state **state)
1291{
1292 int ret = pci_load_saved_state(dev, *state);
1293 kfree(*state);
1294 *state = NULL;
1295 return ret;
1296}
1297EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1298
1299int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1300{
1301 return pci_enable_resources(dev, bars);
1302}
1303
1304static int do_pci_enable_device(struct pci_dev *dev, int bars)
1305{
1306 int err;
1307 struct pci_dev *bridge;
1308 u16 cmd;
1309 u8 pin;
1310
1311 err = pci_set_power_state(dev, PCI_D0);
1312 if (err < 0 && err != -EIO)
1313 return err;
1314
1315 bridge = pci_upstream_bridge(dev);
1316 if (bridge)
1317 pcie_aspm_powersave_config_link(bridge);
1318
1319 err = pcibios_enable_device(dev, bars);
1320 if (err < 0)
1321 return err;
1322 pci_fixup_device(pci_fixup_enable, dev);
1323
1324 if (dev->msi_enabled || dev->msix_enabled)
1325 return 0;
1326
1327 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1328 if (pin) {
1329 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1330 if (cmd & PCI_COMMAND_INTX_DISABLE)
1331 pci_write_config_word(dev, PCI_COMMAND,
1332 cmd & ~PCI_COMMAND_INTX_DISABLE);
1333 }
1334
1335 return 0;
1336}
1337
1338/**
1339 * pci_reenable_device - Resume abandoned device
1340 * @dev: PCI device to be resumed
1341 *
1342 * Note this function is a backend of pci_default_resume and is not supposed
1343 * to be called by normal code, write proper resume handler and use it instead.
1344 */
1345int pci_reenable_device(struct pci_dev *dev)
1346{
1347 if (pci_is_enabled(dev))
1348 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1349 return 0;
1350}
1351EXPORT_SYMBOL(pci_reenable_device);
1352
1353static void pci_enable_bridge(struct pci_dev *dev)
1354{
1355 struct pci_dev *bridge;
1356 int retval;
1357
1358 bridge = pci_upstream_bridge(dev);
1359 if (bridge)
1360 pci_enable_bridge(bridge);
1361
1362 if (pci_is_enabled(dev)) {
1363 if (!dev->is_busmaster)
1364 pci_set_master(dev);
1365 return;
1366 }
1367
1368 retval = pci_enable_device(dev);
1369 if (retval)
1370 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1371 retval);
1372 pci_set_master(dev);
1373}
1374
1375static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1376{
1377 struct pci_dev *bridge;
1378 int err;
1379 int i, bars = 0;
1380
1381 /*
1382 * Power state could be unknown at this point, either due to a fresh
1383 * boot or a device removal call. So get the current power state
1384 * so that things like MSI message writing will behave as expected
1385 * (e.g. if the device really is in D0 at enable time).
1386 */
1387 if (dev->pm_cap) {
1388 u16 pmcsr;
1389 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1390 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1391 }
1392
1393 if (atomic_inc_return(&dev->enable_cnt) > 1)
1394 return 0; /* already enabled */
1395
1396 bridge = pci_upstream_bridge(dev);
1397 if (bridge)
1398 pci_enable_bridge(bridge);
1399
1400 /* only skip sriov related */
1401 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1402 if (dev->resource[i].flags & flags)
1403 bars |= (1 << i);
1404 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1405 if (dev->resource[i].flags & flags)
1406 bars |= (1 << i);
1407
1408 err = do_pci_enable_device(dev, bars);
1409 if (err < 0)
1410 atomic_dec(&dev->enable_cnt);
1411 return err;
1412}
1413
1414/**
1415 * pci_enable_device_io - Initialize a device for use with IO space
1416 * @dev: PCI device to be initialized
1417 *
1418 * Initialize device before it's used by a driver. Ask low-level code
1419 * to enable I/O resources. Wake up the device if it was suspended.
1420 * Beware, this function can fail.
1421 */
1422int pci_enable_device_io(struct pci_dev *dev)
1423{
1424 return pci_enable_device_flags(dev, IORESOURCE_IO);
1425}
1426EXPORT_SYMBOL(pci_enable_device_io);
1427
1428/**
1429 * pci_enable_device_mem - Initialize a device for use with Memory space
1430 * @dev: PCI device to be initialized
1431 *
1432 * Initialize device before it's used by a driver. Ask low-level code
1433 * to enable Memory resources. Wake up the device if it was suspended.
1434 * Beware, this function can fail.
1435 */
1436int pci_enable_device_mem(struct pci_dev *dev)
1437{
1438 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1439}
1440EXPORT_SYMBOL(pci_enable_device_mem);
1441
1442/**
1443 * pci_enable_device - Initialize device before it's used by a driver.
1444 * @dev: PCI device to be initialized
1445 *
1446 * Initialize device before it's used by a driver. Ask low-level code
1447 * to enable I/O and memory. Wake up the device if it was suspended.
1448 * Beware, this function can fail.
1449 *
1450 * Note we don't actually enable the device many times if we call
1451 * this function repeatedly (we just increment the count).
1452 */
1453int pci_enable_device(struct pci_dev *dev)
1454{
1455 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1456}
1457EXPORT_SYMBOL(pci_enable_device);
1458
1459/*
1460 * Managed PCI resources. This manages device on/off, intx/msi/msix
1461 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1462 * there's no need to track it separately. pci_devres is initialized
1463 * when a device is enabled using managed PCI device enable interface.
1464 */
1465struct pci_devres {
1466 unsigned int enabled:1;
1467 unsigned int pinned:1;
1468 unsigned int orig_intx:1;
1469 unsigned int restore_intx:1;
1470 u32 region_mask;
1471};
1472
1473static void pcim_release(struct device *gendev, void *res)
1474{
1475 struct pci_dev *dev = to_pci_dev(gendev);
1476 struct pci_devres *this = res;
1477 int i;
1478
1479 if (dev->msi_enabled)
1480 pci_disable_msi(dev);
1481 if (dev->msix_enabled)
1482 pci_disable_msix(dev);
1483
1484 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1485 if (this->region_mask & (1 << i))
1486 pci_release_region(dev, i);
1487
1488 if (this->restore_intx)
1489 pci_intx(dev, this->orig_intx);
1490
1491 if (this->enabled && !this->pinned)
1492 pci_disable_device(dev);
1493}
1494
1495static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1496{
1497 struct pci_devres *dr, *new_dr;
1498
1499 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1500 if (dr)
1501 return dr;
1502
1503 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1504 if (!new_dr)
1505 return NULL;
1506 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1507}
1508
1509static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1510{
1511 if (pci_is_managed(pdev))
1512 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1513 return NULL;
1514}
1515
1516/**
1517 * pcim_enable_device - Managed pci_enable_device()
1518 * @pdev: PCI device to be initialized
1519 *
1520 * Managed pci_enable_device().
1521 */
1522int pcim_enable_device(struct pci_dev *pdev)
1523{
1524 struct pci_devres *dr;
1525 int rc;
1526
1527 dr = get_pci_dr(pdev);
1528 if (unlikely(!dr))
1529 return -ENOMEM;
1530 if (dr->enabled)
1531 return 0;
1532
1533 rc = pci_enable_device(pdev);
1534 if (!rc) {
1535 pdev->is_managed = 1;
1536 dr->enabled = 1;
1537 }
1538 return rc;
1539}
1540EXPORT_SYMBOL(pcim_enable_device);
1541
1542/**
1543 * pcim_pin_device - Pin managed PCI device
1544 * @pdev: PCI device to pin
1545 *
1546 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1547 * driver detach. @pdev must have been enabled with
1548 * pcim_enable_device().
1549 */
1550void pcim_pin_device(struct pci_dev *pdev)
1551{
1552 struct pci_devres *dr;
1553
1554 dr = find_pci_dr(pdev);
1555 WARN_ON(!dr || !dr->enabled);
1556 if (dr)
1557 dr->pinned = 1;
1558}
1559EXPORT_SYMBOL(pcim_pin_device);
1560
1561/*
1562 * pcibios_add_device - provide arch specific hooks when adding device dev
1563 * @dev: the PCI device being added
1564 *
1565 * Permits the platform to provide architecture specific functionality when
1566 * devices are added. This is the default implementation. Architecture
1567 * implementations can override this.
1568 */
1569int __weak pcibios_add_device(struct pci_dev *dev)
1570{
1571 return 0;
1572}
1573
1574/**
1575 * pcibios_release_device - provide arch specific hooks when releasing device dev
1576 * @dev: the PCI device being released
1577 *
1578 * Permits the platform to provide architecture specific functionality when
1579 * devices are released. This is the default implementation. Architecture
1580 * implementations can override this.
1581 */
1582void __weak pcibios_release_device(struct pci_dev *dev) {}
1583
1584/**
1585 * pcibios_disable_device - disable arch specific PCI resources for device dev
1586 * @dev: the PCI device to disable
1587 *
1588 * Disables architecture specific PCI resources for the device. This
1589 * is the default implementation. Architecture implementations can
1590 * override this.
1591 */
1592void __weak pcibios_disable_device(struct pci_dev *dev) {}
1593
1594/**
1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596 * @irq: ISA IRQ to penalize
1597 * @active: IRQ active or not
1598 *
1599 * Permits the platform to provide architecture-specific functionality when
1600 * penalizing ISA IRQs. This is the default implementation. Architecture
1601 * implementations can override this.
1602 */
1603void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1604
1605static void do_pci_disable_device(struct pci_dev *dev)
1606{
1607 u16 pci_command;
1608
1609 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610 if (pci_command & PCI_COMMAND_MASTER) {
1611 pci_command &= ~PCI_COMMAND_MASTER;
1612 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1613 }
1614
1615 pcibios_disable_device(dev);
1616}
1617
1618/**
1619 * pci_disable_enabled_device - Disable device without updating enable_cnt
1620 * @dev: PCI device to disable
1621 *
1622 * NOTE: This function is a backend of PCI power management routines and is
1623 * not supposed to be called drivers.
1624 */
1625void pci_disable_enabled_device(struct pci_dev *dev)
1626{
1627 if (pci_is_enabled(dev))
1628 do_pci_disable_device(dev);
1629}
1630
1631/**
1632 * pci_disable_device - Disable PCI device after use
1633 * @dev: PCI device to be disabled
1634 *
1635 * Signal to the system that the PCI device is not in use by the system
1636 * anymore. This only involves disabling PCI bus-mastering, if active.
1637 *
1638 * Note we don't actually disable the device until all callers of
1639 * pci_enable_device() have called pci_disable_device().
1640 */
1641void pci_disable_device(struct pci_dev *dev)
1642{
1643 struct pci_devres *dr;
1644
1645 dr = find_pci_dr(dev);
1646 if (dr)
1647 dr->enabled = 0;
1648
1649 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650 "disabling already-disabled device");
1651
1652 if (atomic_dec_return(&dev->enable_cnt) != 0)
1653 return;
1654
1655 do_pci_disable_device(dev);
1656
1657 dev->is_busmaster = 0;
1658}
1659EXPORT_SYMBOL(pci_disable_device);
1660
1661/**
1662 * pcibios_set_pcie_reset_state - set reset state for device dev
1663 * @dev: the PCIe device reset
1664 * @state: Reset state to enter into
1665 *
1666 *
1667 * Sets the PCIe reset state for the device. This is the default
1668 * implementation. Architecture implementations can override this.
1669 */
1670int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671 enum pcie_reset_state state)
1672{
1673 return -EINVAL;
1674}
1675
1676/**
1677 * pci_set_pcie_reset_state - set reset state for device dev
1678 * @dev: the PCIe device reset
1679 * @state: Reset state to enter into
1680 *
1681 *
1682 * Sets the PCI reset state for the device.
1683 */
1684int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1685{
1686 return pcibios_set_pcie_reset_state(dev, state);
1687}
1688EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1689
1690/**
1691 * pci_check_pme_status - Check if given device has generated PME.
1692 * @dev: Device to check.
1693 *
1694 * Check the PME status of the device and if set, clear it and clear PME enable
1695 * (if set). Return 'true' if PME status and PME enable were both set or
1696 * 'false' otherwise.
1697 */
1698bool pci_check_pme_status(struct pci_dev *dev)
1699{
1700 int pmcsr_pos;
1701 u16 pmcsr;
1702 bool ret = false;
1703
1704 if (!dev->pm_cap)
1705 return false;
1706
1707 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1708 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1709 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1710 return false;
1711
1712 /* Clear PME status. */
1713 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1714 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1715 /* Disable PME to avoid interrupt flood. */
1716 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1717 ret = true;
1718 }
1719
1720 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1721
1722 return ret;
1723}
1724
1725/**
1726 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1727 * @dev: Device to handle.
1728 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1729 *
1730 * Check if @dev has generated PME and queue a resume request for it in that
1731 * case.
1732 */
1733static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1734{
1735 if (pme_poll_reset && dev->pme_poll)
1736 dev->pme_poll = false;
1737
1738 if (pci_check_pme_status(dev)) {
1739 pci_wakeup_event(dev);
1740 pm_request_resume(&dev->dev);
1741 }
1742 return 0;
1743}
1744
1745/**
1746 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1747 * @bus: Top bus of the subtree to walk.
1748 */
1749void pci_pme_wakeup_bus(struct pci_bus *bus)
1750{
1751 if (bus)
1752 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1753}
1754
1755
1756/**
1757 * pci_pme_capable - check the capability of PCI device to generate PME#
1758 * @dev: PCI device to handle.
1759 * @state: PCI state from which device will issue PME#.
1760 */
1761bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1762{
1763 if (!dev->pm_cap)
1764 return false;
1765
1766 return !!(dev->pme_support & (1 << state));
1767}
1768EXPORT_SYMBOL(pci_pme_capable);
1769
1770static void pci_pme_list_scan(struct work_struct *work)
1771{
1772 struct pci_pme_device *pme_dev, *n;
1773
1774 mutex_lock(&pci_pme_list_mutex);
1775 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1776 if (pme_dev->dev->pme_poll) {
1777 struct pci_dev *bridge;
1778
1779 bridge = pme_dev->dev->bus->self;
1780 /*
1781 * If bridge is in low power state, the
1782 * configuration space of subordinate devices
1783 * may be not accessible
1784 */
1785 if (bridge && bridge->current_state != PCI_D0)
1786 continue;
1787 /*
1788 * If the device is in D3cold it should not be
1789 * polled either.
1790 */
1791 if (pme_dev->dev->current_state == PCI_D3cold)
1792 continue;
1793
1794 pci_pme_wakeup(pme_dev->dev, NULL);
1795 } else {
1796 list_del(&pme_dev->list);
1797 kfree(pme_dev);
1798 }
1799 }
1800 if (!list_empty(&pci_pme_list))
1801 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1802 msecs_to_jiffies(PME_TIMEOUT));
1803 mutex_unlock(&pci_pme_list_mutex);
1804}
1805
1806static void __pci_pme_active(struct pci_dev *dev, bool enable)
1807{
1808 u16 pmcsr;
1809
1810 if (!dev->pme_support)
1811 return;
1812
1813 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1814 /* Clear PME_Status by writing 1 to it and enable PME# */
1815 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1816 if (!enable)
1817 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1818
1819 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1820}
1821
1822/**
1823 * pci_pme_restore - Restore PME configuration after config space restore.
1824 * @dev: PCI device to update.
1825 */
1826void pci_pme_restore(struct pci_dev *dev)
1827{
1828 u16 pmcsr;
1829
1830 if (!dev->pme_support)
1831 return;
1832
1833 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1834 if (dev->wakeup_prepared) {
1835 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1836 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1837 } else {
1838 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1839 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1840 }
1841 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1842}
1843
1844/**
1845 * pci_pme_active - enable or disable PCI device's PME# function
1846 * @dev: PCI device to handle.
1847 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1848 *
1849 * The caller must verify that the device is capable of generating PME# before
1850 * calling this function with @enable equal to 'true'.
1851 */
1852void pci_pme_active(struct pci_dev *dev, bool enable)
1853{
1854 __pci_pme_active(dev, enable);
1855
1856 /*
1857 * PCI (as opposed to PCIe) PME requires that the device have
1858 * its PME# line hooked up correctly. Not all hardware vendors
1859 * do this, so the PME never gets delivered and the device
1860 * remains asleep. The easiest way around this is to
1861 * periodically walk the list of suspended devices and check
1862 * whether any have their PME flag set. The assumption is that
1863 * we'll wake up often enough anyway that this won't be a huge
1864 * hit, and the power savings from the devices will still be a
1865 * win.
1866 *
1867 * Although PCIe uses in-band PME message instead of PME# line
1868 * to report PME, PME does not work for some PCIe devices in
1869 * reality. For example, there are devices that set their PME
1870 * status bits, but don't really bother to send a PME message;
1871 * there are PCI Express Root Ports that don't bother to
1872 * trigger interrupts when they receive PME messages from the
1873 * devices below. So PME poll is used for PCIe devices too.
1874 */
1875
1876 if (dev->pme_poll) {
1877 struct pci_pme_device *pme_dev;
1878 if (enable) {
1879 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1880 GFP_KERNEL);
1881 if (!pme_dev) {
1882 dev_warn(&dev->dev, "can't enable PME#\n");
1883 return;
1884 }
1885 pme_dev->dev = dev;
1886 mutex_lock(&pci_pme_list_mutex);
1887 list_add(&pme_dev->list, &pci_pme_list);
1888 if (list_is_singular(&pci_pme_list))
1889 queue_delayed_work(system_freezable_wq,
1890 &pci_pme_work,
1891 msecs_to_jiffies(PME_TIMEOUT));
1892 mutex_unlock(&pci_pme_list_mutex);
1893 } else {
1894 mutex_lock(&pci_pme_list_mutex);
1895 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1896 if (pme_dev->dev == dev) {
1897 list_del(&pme_dev->list);
1898 kfree(pme_dev);
1899 break;
1900 }
1901 }
1902 mutex_unlock(&pci_pme_list_mutex);
1903 }
1904 }
1905
1906 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1907}
1908EXPORT_SYMBOL(pci_pme_active);
1909
1910/**
1911 * __pci_enable_wake - enable PCI device as wakeup event source
1912 * @dev: PCI device affected
1913 * @state: PCI state from which device will issue wakeup events
1914 * @enable: True to enable event generation; false to disable
1915 *
1916 * This enables the device as a wakeup event source, or disables it.
1917 * When such events involves platform-specific hooks, those hooks are
1918 * called automatically by this routine.
1919 *
1920 * Devices with legacy power management (no standard PCI PM capabilities)
1921 * always require such platform hooks.
1922 *
1923 * RETURN VALUE:
1924 * 0 is returned on success
1925 * -EINVAL is returned if device is not supposed to wake up the system
1926 * Error code depending on the platform is returned if both the platform and
1927 * the native mechanism fail to enable the generation of wake-up events
1928 */
1929static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1930{
1931 int ret = 0;
1932
1933 /*
1934 * Bridges can only signal wakeup on behalf of subordinate devices,
1935 * but that is set up elsewhere, so skip them.
1936 */
1937 if (pci_has_subordinate(dev))
1938 return 0;
1939
1940 /* Don't do the same thing twice in a row for one device. */
1941 if (!!enable == !!dev->wakeup_prepared)
1942 return 0;
1943
1944 /*
1945 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1946 * Anderson we should be doing PME# wake enable followed by ACPI wake
1947 * enable. To disable wake-up we call the platform first, for symmetry.
1948 */
1949
1950 if (enable) {
1951 int error;
1952
1953 if (pci_pme_capable(dev, state))
1954 pci_pme_active(dev, true);
1955 else
1956 ret = 1;
1957 error = platform_pci_set_wakeup(dev, true);
1958 if (ret)
1959 ret = error;
1960 if (!ret)
1961 dev->wakeup_prepared = true;
1962 } else {
1963 platform_pci_set_wakeup(dev, false);
1964 pci_pme_active(dev, false);
1965 dev->wakeup_prepared = false;
1966 }
1967
1968 return ret;
1969}
1970
1971/**
1972 * pci_enable_wake - change wakeup settings for a PCI device
1973 * @pci_dev: Target device
1974 * @state: PCI state from which device will issue wakeup events
1975 * @enable: Whether or not to enable event generation
1976 *
1977 * If @enable is set, check device_may_wakeup() for the device before calling
1978 * __pci_enable_wake() for it.
1979 */
1980int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1981{
1982 if (enable && !device_may_wakeup(&pci_dev->dev))
1983 return -EINVAL;
1984
1985 return __pci_enable_wake(pci_dev, state, enable);
1986}
1987EXPORT_SYMBOL(pci_enable_wake);
1988
1989/**
1990 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1991 * @dev: PCI device to prepare
1992 * @enable: True to enable wake-up event generation; false to disable
1993 *
1994 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1995 * and this function allows them to set that up cleanly - pci_enable_wake()
1996 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1997 * ordering constraints.
1998 *
1999 * This function only returns error code if the device is not allowed to wake
2000 * up the system from sleep or it is not capable of generating PME# from both
2001 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2002 */
2003int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2004{
2005 return pci_pme_capable(dev, PCI_D3cold) ?
2006 pci_enable_wake(dev, PCI_D3cold, enable) :
2007 pci_enable_wake(dev, PCI_D3hot, enable);
2008}
2009EXPORT_SYMBOL(pci_wake_from_d3);
2010
2011/**
2012 * pci_target_state - find an appropriate low power state for a given PCI dev
2013 * @dev: PCI device
2014 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2015 *
2016 * Use underlying platform code to find a supported low power state for @dev.
2017 * If the platform can't manage @dev, return the deepest state from which it
2018 * can generate wake events, based on any available PME info.
2019 */
2020static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2021{
2022 pci_power_t target_state = PCI_D3hot;
2023
2024 if (platform_pci_power_manageable(dev)) {
2025 /*
2026 * Call the platform to choose the target state of the device
2027 * and enable wake-up from this state if supported.
2028 */
2029 pci_power_t state = platform_pci_choose_state(dev);
2030
2031 switch (state) {
2032 case PCI_POWER_ERROR:
2033 case PCI_UNKNOWN:
2034 break;
2035 case PCI_D1:
2036 case PCI_D2:
2037 if (pci_no_d1d2(dev))
2038 break;
2039 default:
2040 target_state = state;
2041 }
2042
2043 return target_state;
2044 }
2045
2046 if (!dev->pm_cap)
2047 target_state = PCI_D0;
2048
2049 /*
2050 * If the device is in D3cold even though it's not power-manageable by
2051 * the platform, it may have been powered down by non-standard means.
2052 * Best to let it slumber.
2053 */
2054 if (dev->current_state == PCI_D3cold)
2055 target_state = PCI_D3cold;
2056
2057 if (wakeup) {
2058 /*
2059 * Find the deepest state from which the device can generate
2060 * wake-up events, make it the target state and enable device
2061 * to generate PME#.
2062 */
2063 if (dev->pme_support) {
2064 while (target_state
2065 && !(dev->pme_support & (1 << target_state)))
2066 target_state--;
2067 }
2068 }
2069
2070 return target_state;
2071}
2072
2073/**
2074 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2075 * @dev: Device to handle.
2076 *
2077 * Choose the power state appropriate for the device depending on whether
2078 * it can wake up the system and/or is power manageable by the platform
2079 * (PCI_D3hot is the default) and put the device into that state.
2080 */
2081int pci_prepare_to_sleep(struct pci_dev *dev)
2082{
2083 bool wakeup = device_may_wakeup(&dev->dev);
2084 pci_power_t target_state = pci_target_state(dev, wakeup);
2085 int error;
2086
2087 if (target_state == PCI_POWER_ERROR)
2088 return -EIO;
2089
2090 pci_enable_wake(dev, target_state, wakeup);
2091
2092 error = pci_set_power_state(dev, target_state);
2093
2094 if (error)
2095 pci_enable_wake(dev, target_state, false);
2096
2097 return error;
2098}
2099EXPORT_SYMBOL(pci_prepare_to_sleep);
2100
2101/**
2102 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2103 * @dev: Device to handle.
2104 *
2105 * Disable device's system wake-up capability and put it into D0.
2106 */
2107int pci_back_from_sleep(struct pci_dev *dev)
2108{
2109 pci_enable_wake(dev, PCI_D0, false);
2110 return pci_set_power_state(dev, PCI_D0);
2111}
2112EXPORT_SYMBOL(pci_back_from_sleep);
2113
2114/**
2115 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2116 * @dev: PCI device being suspended.
2117 *
2118 * Prepare @dev to generate wake-up events at run time and put it into a low
2119 * power state.
2120 */
2121int pci_finish_runtime_suspend(struct pci_dev *dev)
2122{
2123 pci_power_t target_state;
2124 int error;
2125
2126 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2127 if (target_state == PCI_POWER_ERROR)
2128 return -EIO;
2129
2130 dev->runtime_d3cold = target_state == PCI_D3cold;
2131
2132 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2133
2134 error = pci_set_power_state(dev, target_state);
2135
2136 if (error) {
2137 pci_enable_wake(dev, target_state, false);
2138 dev->runtime_d3cold = false;
2139 }
2140
2141 return error;
2142}
2143
2144/**
2145 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2146 * @dev: Device to check.
2147 *
2148 * Return true if the device itself is capable of generating wake-up events
2149 * (through the platform or using the native PCIe PME) or if the device supports
2150 * PME and one of its upstream bridges can generate wake-up events.
2151 */
2152bool pci_dev_run_wake(struct pci_dev *dev)
2153{
2154 struct pci_bus *bus = dev->bus;
2155
2156 if (!dev->pme_support)
2157 return false;
2158
2159 /* PME-capable in principle, but not from the target power state */
2160 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2161 return false;
2162
2163 if (device_can_wakeup(&dev->dev))
2164 return true;
2165
2166 while (bus->parent) {
2167 struct pci_dev *bridge = bus->self;
2168
2169 if (device_can_wakeup(&bridge->dev))
2170 return true;
2171
2172 bus = bus->parent;
2173 }
2174
2175 /* We have reached the root bus. */
2176 if (bus->bridge)
2177 return device_can_wakeup(bus->bridge);
2178
2179 return false;
2180}
2181EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2182
2183/**
2184 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2185 * @pci_dev: Device to check.
2186 *
2187 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2188 * reconfigured due to wakeup settings difference between system and runtime
2189 * suspend and the current power state of it is suitable for the upcoming
2190 * (system) transition.
2191 *
2192 * If the device is not configured for system wakeup, disable PME for it before
2193 * returning 'true' to prevent it from waking up the system unnecessarily.
2194 */
2195bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2196{
2197 struct device *dev = &pci_dev->dev;
2198 bool wakeup = device_may_wakeup(dev);
2199
2200 if (!pm_runtime_suspended(dev)
2201 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2202 || platform_pci_need_resume(pci_dev)
2203 || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
2204 return false;
2205
2206 /*
2207 * At this point the device is good to go unless it's been configured
2208 * to generate PME at the runtime suspend time, but it is not supposed
2209 * to wake up the system. In that case, simply disable PME for it
2210 * (it will have to be re-enabled on exit from system resume).
2211 *
2212 * If the device's power state is D3cold and the platform check above
2213 * hasn't triggered, the device's configuration is suitable and we don't
2214 * need to manipulate it at all.
2215 */
2216 spin_lock_irq(&dev->power.lock);
2217
2218 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2219 !wakeup)
2220 __pci_pme_active(pci_dev, false);
2221
2222 spin_unlock_irq(&dev->power.lock);
2223 return true;
2224}
2225
2226/**
2227 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2228 * @pci_dev: Device to handle.
2229 *
2230 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2231 * it might have been disabled during the prepare phase of system suspend if
2232 * the device was not configured for system wakeup.
2233 */
2234void pci_dev_complete_resume(struct pci_dev *pci_dev)
2235{
2236 struct device *dev = &pci_dev->dev;
2237
2238 if (!pci_dev_run_wake(pci_dev))
2239 return;
2240
2241 spin_lock_irq(&dev->power.lock);
2242
2243 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2244 __pci_pme_active(pci_dev, true);
2245
2246 spin_unlock_irq(&dev->power.lock);
2247}
2248
2249void pci_config_pm_runtime_get(struct pci_dev *pdev)
2250{
2251 struct device *dev = &pdev->dev;
2252 struct device *parent = dev->parent;
2253
2254 if (parent)
2255 pm_runtime_get_sync(parent);
2256 pm_runtime_get_noresume(dev);
2257 /*
2258 * pdev->current_state is set to PCI_D3cold during suspending,
2259 * so wait until suspending completes
2260 */
2261 pm_runtime_barrier(dev);
2262 /*
2263 * Only need to resume devices in D3cold, because config
2264 * registers are still accessible for devices suspended but
2265 * not in D3cold.
2266 */
2267 if (pdev->current_state == PCI_D3cold)
2268 pm_runtime_resume(dev);
2269}
2270
2271void pci_config_pm_runtime_put(struct pci_dev *pdev)
2272{
2273 struct device *dev = &pdev->dev;
2274 struct device *parent = dev->parent;
2275
2276 pm_runtime_put(dev);
2277 if (parent)
2278 pm_runtime_put_sync(parent);
2279}
2280
2281/**
2282 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2283 * @bridge: Bridge to check
2284 *
2285 * This function checks if it is possible to move the bridge to D3.
2286 * Currently we only allow D3 for recent enough PCIe ports.
2287 */
2288bool pci_bridge_d3_possible(struct pci_dev *bridge)
2289{
2290 unsigned int year;
2291
2292 if (!pci_is_pcie(bridge))
2293 return false;
2294
2295 switch (pci_pcie_type(bridge)) {
2296 case PCI_EXP_TYPE_ROOT_PORT:
2297 case PCI_EXP_TYPE_UPSTREAM:
2298 case PCI_EXP_TYPE_DOWNSTREAM:
2299 if (pci_bridge_d3_disable)
2300 return false;
2301
2302 /*
2303 * Hotplug interrupts cannot be delivered if the link is down,
2304 * so parents of a hotplug port must stay awake. In addition,
2305 * hotplug ports handled by firmware in System Management Mode
2306 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2307 * For simplicity, disallow in general for now.
2308 */
2309 if (bridge->is_hotplug_bridge)
2310 return false;
2311
2312 if (pci_bridge_d3_force)
2313 return true;
2314
2315 /*
2316 * It should be safe to put PCIe ports from 2015 or newer
2317 * to D3.
2318 */
2319 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2320 year >= 2015) {
2321 return true;
2322 }
2323 break;
2324 }
2325
2326 return false;
2327}
2328
2329static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2330{
2331 bool *d3cold_ok = data;
2332
2333 if (/* The device needs to be allowed to go D3cold ... */
2334 dev->no_d3cold || !dev->d3cold_allowed ||
2335
2336 /* ... and if it is wakeup capable to do so from D3cold. */
2337 (device_may_wakeup(&dev->dev) &&
2338 !pci_pme_capable(dev, PCI_D3cold)) ||
2339
2340 /* If it is a bridge it must be allowed to go to D3. */
2341 !pci_power_manageable(dev))
2342
2343 *d3cold_ok = false;
2344
2345 return !*d3cold_ok;
2346}
2347
2348/*
2349 * pci_bridge_d3_update - Update bridge D3 capabilities
2350 * @dev: PCI device which is changed
2351 *
2352 * Update upstream bridge PM capabilities accordingly depending on if the
2353 * device PM configuration was changed or the device is being removed. The
2354 * change is also propagated upstream.
2355 */
2356void pci_bridge_d3_update(struct pci_dev *dev)
2357{
2358 bool remove = !device_is_registered(&dev->dev);
2359 struct pci_dev *bridge;
2360 bool d3cold_ok = true;
2361
2362 bridge = pci_upstream_bridge(dev);
2363 if (!bridge || !pci_bridge_d3_possible(bridge))
2364 return;
2365
2366 /*
2367 * If D3 is currently allowed for the bridge, removing one of its
2368 * children won't change that.
2369 */
2370 if (remove && bridge->bridge_d3)
2371 return;
2372
2373 /*
2374 * If D3 is currently allowed for the bridge and a child is added or
2375 * changed, disallowance of D3 can only be caused by that child, so
2376 * we only need to check that single device, not any of its siblings.
2377 *
2378 * If D3 is currently not allowed for the bridge, checking the device
2379 * first may allow us to skip checking its siblings.
2380 */
2381 if (!remove)
2382 pci_dev_check_d3cold(dev, &d3cold_ok);
2383
2384 /*
2385 * If D3 is currently not allowed for the bridge, this may be caused
2386 * either by the device being changed/removed or any of its siblings,
2387 * so we need to go through all children to find out if one of them
2388 * continues to block D3.
2389 */
2390 if (d3cold_ok && !bridge->bridge_d3)
2391 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2392 &d3cold_ok);
2393
2394 if (bridge->bridge_d3 != d3cold_ok) {
2395 bridge->bridge_d3 = d3cold_ok;
2396 /* Propagate change to upstream bridges */
2397 pci_bridge_d3_update(bridge);
2398 }
2399}
2400
2401/**
2402 * pci_d3cold_enable - Enable D3cold for device
2403 * @dev: PCI device to handle
2404 *
2405 * This function can be used in drivers to enable D3cold from the device
2406 * they handle. It also updates upstream PCI bridge PM capabilities
2407 * accordingly.
2408 */
2409void pci_d3cold_enable(struct pci_dev *dev)
2410{
2411 if (dev->no_d3cold) {
2412 dev->no_d3cold = false;
2413 pci_bridge_d3_update(dev);
2414 }
2415}
2416EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2417
2418/**
2419 * pci_d3cold_disable - Disable D3cold for device
2420 * @dev: PCI device to handle
2421 *
2422 * This function can be used in drivers to disable D3cold from the device
2423 * they handle. It also updates upstream PCI bridge PM capabilities
2424 * accordingly.
2425 */
2426void pci_d3cold_disable(struct pci_dev *dev)
2427{
2428 if (!dev->no_d3cold) {
2429 dev->no_d3cold = true;
2430 pci_bridge_d3_update(dev);
2431 }
2432}
2433EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2434
2435/**
2436 * pci_pm_init - Initialize PM functions of given PCI device
2437 * @dev: PCI device to handle.
2438 */
2439void pci_pm_init(struct pci_dev *dev)
2440{
2441 int pm;
2442 u16 pmc;
2443
2444 pm_runtime_forbid(&dev->dev);
2445 pm_runtime_set_active(&dev->dev);
2446 pm_runtime_enable(&dev->dev);
2447 device_enable_async_suspend(&dev->dev);
2448 dev->wakeup_prepared = false;
2449
2450 dev->pm_cap = 0;
2451 dev->pme_support = 0;
2452
2453 /* find PCI PM capability in list */
2454 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2455 if (!pm)
2456 return;
2457 /* Check device's ability to generate PME# */
2458 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2459
2460 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2461 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2462 pmc & PCI_PM_CAP_VER_MASK);
2463 return;
2464 }
2465
2466 dev->pm_cap = pm;
2467 dev->d3_delay = PCI_PM_D3_WAIT;
2468 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2469 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2470 dev->d3cold_allowed = true;
2471
2472 dev->d1_support = false;
2473 dev->d2_support = false;
2474 if (!pci_no_d1d2(dev)) {
2475 if (pmc & PCI_PM_CAP_D1)
2476 dev->d1_support = true;
2477 if (pmc & PCI_PM_CAP_D2)
2478 dev->d2_support = true;
2479
2480 if (dev->d1_support || dev->d2_support)
2481 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2482 dev->d1_support ? " D1" : "",
2483 dev->d2_support ? " D2" : "");
2484 }
2485
2486 pmc &= PCI_PM_CAP_PME_MASK;
2487 if (pmc) {
2488 dev_printk(KERN_DEBUG, &dev->dev,
2489 "PME# supported from%s%s%s%s%s\n",
2490 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2491 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2492 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2493 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2494 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2495 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2496 dev->pme_poll = true;
2497 /*
2498 * Make device's PM flags reflect the wake-up capability, but
2499 * let the user space enable it to wake up the system as needed.
2500 */
2501 device_set_wakeup_capable(&dev->dev, true);
2502 /* Disable the PME# generation functionality */
2503 pci_pme_active(dev, false);
2504 }
2505}
2506
2507static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2508{
2509 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2510
2511 switch (prop) {
2512 case PCI_EA_P_MEM:
2513 case PCI_EA_P_VF_MEM:
2514 flags |= IORESOURCE_MEM;
2515 break;
2516 case PCI_EA_P_MEM_PREFETCH:
2517 case PCI_EA_P_VF_MEM_PREFETCH:
2518 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2519 break;
2520 case PCI_EA_P_IO:
2521 flags |= IORESOURCE_IO;
2522 break;
2523 default:
2524 return 0;
2525 }
2526
2527 return flags;
2528}
2529
2530static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2531 u8 prop)
2532{
2533 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2534 return &dev->resource[bei];
2535#ifdef CONFIG_PCI_IOV
2536 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2537 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2538 return &dev->resource[PCI_IOV_RESOURCES +
2539 bei - PCI_EA_BEI_VF_BAR0];
2540#endif
2541 else if (bei == PCI_EA_BEI_ROM)
2542 return &dev->resource[PCI_ROM_RESOURCE];
2543 else
2544 return NULL;
2545}
2546
2547/* Read an Enhanced Allocation (EA) entry */
2548static int pci_ea_read(struct pci_dev *dev, int offset)
2549{
2550 struct resource *res;
2551 int ent_size, ent_offset = offset;
2552 resource_size_t start, end;
2553 unsigned long flags;
2554 u32 dw0, bei, base, max_offset;
2555 u8 prop;
2556 bool support_64 = (sizeof(resource_size_t) >= 8);
2557
2558 pci_read_config_dword(dev, ent_offset, &dw0);
2559 ent_offset += 4;
2560
2561 /* Entry size field indicates DWORDs after 1st */
2562 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2563
2564 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2565 goto out;
2566
2567 bei = (dw0 & PCI_EA_BEI) >> 4;
2568 prop = (dw0 & PCI_EA_PP) >> 8;
2569
2570 /*
2571 * If the Property is in the reserved range, try the Secondary
2572 * Property instead.
2573 */
2574 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2575 prop = (dw0 & PCI_EA_SP) >> 16;
2576 if (prop > PCI_EA_P_BRIDGE_IO)
2577 goto out;
2578
2579 res = pci_ea_get_resource(dev, bei, prop);
2580 if (!res) {
2581 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2582 goto out;
2583 }
2584
2585 flags = pci_ea_flags(dev, prop);
2586 if (!flags) {
2587 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2588 goto out;
2589 }
2590
2591 /* Read Base */
2592 pci_read_config_dword(dev, ent_offset, &base);
2593 start = (base & PCI_EA_FIELD_MASK);
2594 ent_offset += 4;
2595
2596 /* Read MaxOffset */
2597 pci_read_config_dword(dev, ent_offset, &max_offset);
2598 ent_offset += 4;
2599
2600 /* Read Base MSBs (if 64-bit entry) */
2601 if (base & PCI_EA_IS_64) {
2602 u32 base_upper;
2603
2604 pci_read_config_dword(dev, ent_offset, &base_upper);
2605 ent_offset += 4;
2606
2607 flags |= IORESOURCE_MEM_64;
2608
2609 /* entry starts above 32-bit boundary, can't use */
2610 if (!support_64 && base_upper)
2611 goto out;
2612
2613 if (support_64)
2614 start |= ((u64)base_upper << 32);
2615 }
2616
2617 end = start + (max_offset | 0x03);
2618
2619 /* Read MaxOffset MSBs (if 64-bit entry) */
2620 if (max_offset & PCI_EA_IS_64) {
2621 u32 max_offset_upper;
2622
2623 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2624 ent_offset += 4;
2625
2626 flags |= IORESOURCE_MEM_64;
2627
2628 /* entry too big, can't use */
2629 if (!support_64 && max_offset_upper)
2630 goto out;
2631
2632 if (support_64)
2633 end += ((u64)max_offset_upper << 32);
2634 }
2635
2636 if (end < start) {
2637 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2638 goto out;
2639 }
2640
2641 if (ent_size != ent_offset - offset) {
2642 dev_err(&dev->dev,
2643 "EA Entry Size (%d) does not match length read (%d)\n",
2644 ent_size, ent_offset - offset);
2645 goto out;
2646 }
2647
2648 res->name = pci_name(dev);
2649 res->start = start;
2650 res->end = end;
2651 res->flags = flags;
2652
2653 if (bei <= PCI_EA_BEI_BAR5)
2654 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2655 bei, res, prop);
2656 else if (bei == PCI_EA_BEI_ROM)
2657 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2658 res, prop);
2659 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2660 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2661 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2662 else
2663 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2664 bei, res, prop);
2665
2666out:
2667 return offset + ent_size;
2668}
2669
2670/* Enhanced Allocation Initialization */
2671void pci_ea_init(struct pci_dev *dev)
2672{
2673 int ea;
2674 u8 num_ent;
2675 int offset;
2676 int i;
2677
2678 /* find PCI EA capability in list */
2679 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2680 if (!ea)
2681 return;
2682
2683 /* determine the number of entries */
2684 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2685 &num_ent);
2686 num_ent &= PCI_EA_NUM_ENT_MASK;
2687
2688 offset = ea + PCI_EA_FIRST_ENT;
2689
2690 /* Skip DWORD 2 for type 1 functions */
2691 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2692 offset += 4;
2693
2694 /* parse each EA entry */
2695 for (i = 0; i < num_ent; ++i)
2696 offset = pci_ea_read(dev, offset);
2697}
2698
2699static void pci_add_saved_cap(struct pci_dev *pci_dev,
2700 struct pci_cap_saved_state *new_cap)
2701{
2702 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2703}
2704
2705/**
2706 * _pci_add_cap_save_buffer - allocate buffer for saving given
2707 * capability registers
2708 * @dev: the PCI device
2709 * @cap: the capability to allocate the buffer for
2710 * @extended: Standard or Extended capability ID
2711 * @size: requested size of the buffer
2712 */
2713static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2714 bool extended, unsigned int size)
2715{
2716 int pos;
2717 struct pci_cap_saved_state *save_state;
2718
2719 if (extended)
2720 pos = pci_find_ext_capability(dev, cap);
2721 else
2722 pos = pci_find_capability(dev, cap);
2723
2724 if (!pos)
2725 return 0;
2726
2727 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2728 if (!save_state)
2729 return -ENOMEM;
2730
2731 save_state->cap.cap_nr = cap;
2732 save_state->cap.cap_extended = extended;
2733 save_state->cap.size = size;
2734 pci_add_saved_cap(dev, save_state);
2735
2736 return 0;
2737}
2738
2739int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2740{
2741 return _pci_add_cap_save_buffer(dev, cap, false, size);
2742}
2743
2744int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2745{
2746 return _pci_add_cap_save_buffer(dev, cap, true, size);
2747}
2748
2749/**
2750 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2751 * @dev: the PCI device
2752 */
2753void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2754{
2755 int error;
2756
2757 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2758 PCI_EXP_SAVE_REGS * sizeof(u16));
2759 if (error)
2760 dev_err(&dev->dev,
2761 "unable to preallocate PCI Express save buffer\n");
2762
2763 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2764 if (error)
2765 dev_err(&dev->dev,
2766 "unable to preallocate PCI-X save buffer\n");
2767
2768 pci_allocate_vc_save_buffers(dev);
2769}
2770
2771void pci_free_cap_save_buffers(struct pci_dev *dev)
2772{
2773 struct pci_cap_saved_state *tmp;
2774 struct hlist_node *n;
2775
2776 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2777 kfree(tmp);
2778}
2779
2780/**
2781 * pci_configure_ari - enable or disable ARI forwarding
2782 * @dev: the PCI device
2783 *
2784 * If @dev and its upstream bridge both support ARI, enable ARI in the
2785 * bridge. Otherwise, disable ARI in the bridge.
2786 */
2787void pci_configure_ari(struct pci_dev *dev)
2788{
2789 u32 cap;
2790 struct pci_dev *bridge;
2791
2792 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2793 return;
2794
2795 bridge = dev->bus->self;
2796 if (!bridge)
2797 return;
2798
2799 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2800 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2801 return;
2802
2803 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2804 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2805 PCI_EXP_DEVCTL2_ARI);
2806 bridge->ari_enabled = 1;
2807 } else {
2808 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2809 PCI_EXP_DEVCTL2_ARI);
2810 bridge->ari_enabled = 0;
2811 }
2812}
2813
2814static int pci_acs_enable;
2815
2816/**
2817 * pci_request_acs - ask for ACS to be enabled if supported
2818 */
2819void pci_request_acs(void)
2820{
2821 pci_acs_enable = 1;
2822}
2823
2824/**
2825 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2826 * @dev: the PCI device
2827 */
2828static void pci_std_enable_acs(struct pci_dev *dev)
2829{
2830 int pos;
2831 u16 cap;
2832 u16 ctrl;
2833
2834 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2835 if (!pos)
2836 return;
2837
2838 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2839 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2840
2841 /* Source Validation */
2842 ctrl |= (cap & PCI_ACS_SV);
2843
2844 /* P2P Request Redirect */
2845 ctrl |= (cap & PCI_ACS_RR);
2846
2847 /* P2P Completion Redirect */
2848 ctrl |= (cap & PCI_ACS_CR);
2849
2850 /* Upstream Forwarding */
2851 ctrl |= (cap & PCI_ACS_UF);
2852
2853 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2854}
2855
2856/**
2857 * pci_enable_acs - enable ACS if hardware support it
2858 * @dev: the PCI device
2859 */
2860void pci_enable_acs(struct pci_dev *dev)
2861{
2862 if (!pci_acs_enable)
2863 return;
2864
2865 if (!pci_dev_specific_enable_acs(dev))
2866 return;
2867
2868 pci_std_enable_acs(dev);
2869}
2870
2871static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2872{
2873 int pos;
2874 u16 cap, ctrl;
2875
2876 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2877 if (!pos)
2878 return false;
2879
2880 /*
2881 * Except for egress control, capabilities are either required
2882 * or only required if controllable. Features missing from the
2883 * capability field can therefore be assumed as hard-wired enabled.
2884 */
2885 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2886 acs_flags &= (cap | PCI_ACS_EC);
2887
2888 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2889 return (ctrl & acs_flags) == acs_flags;
2890}
2891
2892/**
2893 * pci_acs_enabled - test ACS against required flags for a given device
2894 * @pdev: device to test
2895 * @acs_flags: required PCI ACS flags
2896 *
2897 * Return true if the device supports the provided flags. Automatically
2898 * filters out flags that are not implemented on multifunction devices.
2899 *
2900 * Note that this interface checks the effective ACS capabilities of the
2901 * device rather than the actual capabilities. For instance, most single
2902 * function endpoints are not required to support ACS because they have no
2903 * opportunity for peer-to-peer access. We therefore return 'true'
2904 * regardless of whether the device exposes an ACS capability. This makes
2905 * it much easier for callers of this function to ignore the actual type
2906 * or topology of the device when testing ACS support.
2907 */
2908bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2909{
2910 int ret;
2911
2912 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2913 if (ret >= 0)
2914 return ret > 0;
2915
2916 /*
2917 * Conventional PCI and PCI-X devices never support ACS, either
2918 * effectively or actually. The shared bus topology implies that
2919 * any device on the bus can receive or snoop DMA.
2920 */
2921 if (!pci_is_pcie(pdev))
2922 return false;
2923
2924 switch (pci_pcie_type(pdev)) {
2925 /*
2926 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2927 * but since their primary interface is PCI/X, we conservatively
2928 * handle them as we would a non-PCIe device.
2929 */
2930 case PCI_EXP_TYPE_PCIE_BRIDGE:
2931 /*
2932 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2933 * applicable... must never implement an ACS Extended Capability...".
2934 * This seems arbitrary, but we take a conservative interpretation
2935 * of this statement.
2936 */
2937 case PCI_EXP_TYPE_PCI_BRIDGE:
2938 case PCI_EXP_TYPE_RC_EC:
2939 return false;
2940 /*
2941 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2942 * implement ACS in order to indicate their peer-to-peer capabilities,
2943 * regardless of whether they are single- or multi-function devices.
2944 */
2945 case PCI_EXP_TYPE_DOWNSTREAM:
2946 case PCI_EXP_TYPE_ROOT_PORT:
2947 return pci_acs_flags_enabled(pdev, acs_flags);
2948 /*
2949 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2950 * implemented by the remaining PCIe types to indicate peer-to-peer
2951 * capabilities, but only when they are part of a multifunction
2952 * device. The footnote for section 6.12 indicates the specific
2953 * PCIe types included here.
2954 */
2955 case PCI_EXP_TYPE_ENDPOINT:
2956 case PCI_EXP_TYPE_UPSTREAM:
2957 case PCI_EXP_TYPE_LEG_END:
2958 case PCI_EXP_TYPE_RC_END:
2959 if (!pdev->multifunction)
2960 break;
2961
2962 return pci_acs_flags_enabled(pdev, acs_flags);
2963 }
2964
2965 /*
2966 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2967 * to single function devices with the exception of downstream ports.
2968 */
2969 return true;
2970}
2971
2972/**
2973 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2974 * @start: starting downstream device
2975 * @end: ending upstream device or NULL to search to the root bus
2976 * @acs_flags: required flags
2977 *
2978 * Walk up a device tree from start to end testing PCI ACS support. If
2979 * any step along the way does not support the required flags, return false.
2980 */
2981bool pci_acs_path_enabled(struct pci_dev *start,
2982 struct pci_dev *end, u16 acs_flags)
2983{
2984 struct pci_dev *pdev, *parent = start;
2985
2986 do {
2987 pdev = parent;
2988
2989 if (!pci_acs_enabled(pdev, acs_flags))
2990 return false;
2991
2992 if (pci_is_root_bus(pdev->bus))
2993 return (end == NULL);
2994
2995 parent = pdev->bus->self;
2996 } while (pdev != end);
2997
2998 return true;
2999}
3000
3001/**
3002 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3003 * @dev: the PCI device
3004 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3005 *
3006 * Perform INTx swizzling for a device behind one level of bridge. This is
3007 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3008 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3009 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3010 * the PCI Express Base Specification, Revision 2.1)
3011 */
3012u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3013{
3014 int slot;
3015
3016 if (pci_ari_enabled(dev->bus))
3017 slot = 0;
3018 else
3019 slot = PCI_SLOT(dev->devfn);
3020
3021 return (((pin - 1) + slot) % 4) + 1;
3022}
3023
3024int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3025{
3026 u8 pin;
3027
3028 pin = dev->pin;
3029 if (!pin)
3030 return -1;
3031
3032 while (!pci_is_root_bus(dev->bus)) {
3033 pin = pci_swizzle_interrupt_pin(dev, pin);
3034 dev = dev->bus->self;
3035 }
3036 *bridge = dev;
3037 return pin;
3038}
3039
3040/**
3041 * pci_common_swizzle - swizzle INTx all the way to root bridge
3042 * @dev: the PCI device
3043 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3044 *
3045 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3046 * bridges all the way up to a PCI root bus.
3047 */
3048u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3049{
3050 u8 pin = *pinp;
3051
3052 while (!pci_is_root_bus(dev->bus)) {
3053 pin = pci_swizzle_interrupt_pin(dev, pin);
3054 dev = dev->bus->self;
3055 }
3056 *pinp = pin;
3057 return PCI_SLOT(dev->devfn);
3058}
3059EXPORT_SYMBOL_GPL(pci_common_swizzle);
3060
3061/**
3062 * pci_release_region - Release a PCI bar
3063 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3064 * @bar: BAR to release
3065 *
3066 * Releases the PCI I/O and memory resources previously reserved by a
3067 * successful call to pci_request_region. Call this function only
3068 * after all use of the PCI regions has ceased.
3069 */
3070void pci_release_region(struct pci_dev *pdev, int bar)
3071{
3072 struct pci_devres *dr;
3073
3074 if (pci_resource_len(pdev, bar) == 0)
3075 return;
3076 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3077 release_region(pci_resource_start(pdev, bar),
3078 pci_resource_len(pdev, bar));
3079 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3080 release_mem_region(pci_resource_start(pdev, bar),
3081 pci_resource_len(pdev, bar));
3082
3083 dr = find_pci_dr(pdev);
3084 if (dr)
3085 dr->region_mask &= ~(1 << bar);
3086}
3087EXPORT_SYMBOL(pci_release_region);
3088
3089/**
3090 * __pci_request_region - Reserved PCI I/O and memory resource
3091 * @pdev: PCI device whose resources are to be reserved
3092 * @bar: BAR to be reserved
3093 * @res_name: Name to be associated with resource.
3094 * @exclusive: whether the region access is exclusive or not
3095 *
3096 * Mark the PCI region associated with PCI device @pdev BR @bar as
3097 * being reserved by owner @res_name. Do not access any
3098 * address inside the PCI regions unless this call returns
3099 * successfully.
3100 *
3101 * If @exclusive is set, then the region is marked so that userspace
3102 * is explicitly not allowed to map the resource via /dev/mem or
3103 * sysfs MMIO access.
3104 *
3105 * Returns 0 on success, or %EBUSY on error. A warning
3106 * message is also printed on failure.
3107 */
3108static int __pci_request_region(struct pci_dev *pdev, int bar,
3109 const char *res_name, int exclusive)
3110{
3111 struct pci_devres *dr;
3112
3113 if (pci_resource_len(pdev, bar) == 0)
3114 return 0;
3115
3116 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3117 if (!request_region(pci_resource_start(pdev, bar),
3118 pci_resource_len(pdev, bar), res_name))
3119 goto err_out;
3120 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3121 if (!__request_mem_region(pci_resource_start(pdev, bar),
3122 pci_resource_len(pdev, bar), res_name,
3123 exclusive))
3124 goto err_out;
3125 }
3126
3127 dr = find_pci_dr(pdev);
3128 if (dr)
3129 dr->region_mask |= 1 << bar;
3130
3131 return 0;
3132
3133err_out:
3134 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3135 &pdev->resource[bar]);
3136 return -EBUSY;
3137}
3138
3139/**
3140 * pci_request_region - Reserve PCI I/O and memory resource
3141 * @pdev: PCI device whose resources are to be reserved
3142 * @bar: BAR to be reserved
3143 * @res_name: Name to be associated with resource
3144 *
3145 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3146 * being reserved by owner @res_name. Do not access any
3147 * address inside the PCI regions unless this call returns
3148 * successfully.
3149 *
3150 * Returns 0 on success, or %EBUSY on error. A warning
3151 * message is also printed on failure.
3152 */
3153int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3154{
3155 return __pci_request_region(pdev, bar, res_name, 0);
3156}
3157EXPORT_SYMBOL(pci_request_region);
3158
3159/**
3160 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3161 * @pdev: PCI device whose resources are to be reserved
3162 * @bar: BAR to be reserved
3163 * @res_name: Name to be associated with resource.
3164 *
3165 * Mark the PCI region associated with PCI device @pdev BR @bar as
3166 * being reserved by owner @res_name. Do not access any
3167 * address inside the PCI regions unless this call returns
3168 * successfully.
3169 *
3170 * Returns 0 on success, or %EBUSY on error. A warning
3171 * message is also printed on failure.
3172 *
3173 * The key difference that _exclusive makes it that userspace is
3174 * explicitly not allowed to map the resource via /dev/mem or
3175 * sysfs.
3176 */
3177int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3178 const char *res_name)
3179{
3180 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3181}
3182EXPORT_SYMBOL(pci_request_region_exclusive);
3183
3184/**
3185 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3186 * @pdev: PCI device whose resources were previously reserved
3187 * @bars: Bitmask of BARs to be released
3188 *
3189 * Release selected PCI I/O and memory resources previously reserved.
3190 * Call this function only after all use of the PCI regions has ceased.
3191 */
3192void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3193{
3194 int i;
3195
3196 for (i = 0; i < 6; i++)
3197 if (bars & (1 << i))
3198 pci_release_region(pdev, i);
3199}
3200EXPORT_SYMBOL(pci_release_selected_regions);
3201
3202static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3203 const char *res_name, int excl)
3204{
3205 int i;
3206
3207 for (i = 0; i < 6; i++)
3208 if (bars & (1 << i))
3209 if (__pci_request_region(pdev, i, res_name, excl))
3210 goto err_out;
3211 return 0;
3212
3213err_out:
3214 while (--i >= 0)
3215 if (bars & (1 << i))
3216 pci_release_region(pdev, i);
3217
3218 return -EBUSY;
3219}
3220
3221
3222/**
3223 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3224 * @pdev: PCI device whose resources are to be reserved
3225 * @bars: Bitmask of BARs to be requested
3226 * @res_name: Name to be associated with resource
3227 */
3228int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3229 const char *res_name)
3230{
3231 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3232}
3233EXPORT_SYMBOL(pci_request_selected_regions);
3234
3235int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3236 const char *res_name)
3237{
3238 return __pci_request_selected_regions(pdev, bars, res_name,
3239 IORESOURCE_EXCLUSIVE);
3240}
3241EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3242
3243/**
3244 * pci_release_regions - Release reserved PCI I/O and memory resources
3245 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3246 *
3247 * Releases all PCI I/O and memory resources previously reserved by a
3248 * successful call to pci_request_regions. Call this function only
3249 * after all use of the PCI regions has ceased.
3250 */
3251
3252void pci_release_regions(struct pci_dev *pdev)
3253{
3254 pci_release_selected_regions(pdev, (1 << 6) - 1);
3255}
3256EXPORT_SYMBOL(pci_release_regions);
3257
3258/**
3259 * pci_request_regions - Reserved PCI I/O and memory resources
3260 * @pdev: PCI device whose resources are to be reserved
3261 * @res_name: Name to be associated with resource.
3262 *
3263 * Mark all PCI regions associated with PCI device @pdev as
3264 * being reserved by owner @res_name. Do not access any
3265 * address inside the PCI regions unless this call returns
3266 * successfully.
3267 *
3268 * Returns 0 on success, or %EBUSY on error. A warning
3269 * message is also printed on failure.
3270 */
3271int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3272{
3273 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3274}
3275EXPORT_SYMBOL(pci_request_regions);
3276
3277/**
3278 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3279 * @pdev: PCI device whose resources are to be reserved
3280 * @res_name: Name to be associated with resource.
3281 *
3282 * Mark all PCI regions associated with PCI device @pdev as
3283 * being reserved by owner @res_name. Do not access any
3284 * address inside the PCI regions unless this call returns
3285 * successfully.
3286 *
3287 * pci_request_regions_exclusive() will mark the region so that
3288 * /dev/mem and the sysfs MMIO access will not be allowed.
3289 *
3290 * Returns 0 on success, or %EBUSY on error. A warning
3291 * message is also printed on failure.
3292 */
3293int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3294{
3295 return pci_request_selected_regions_exclusive(pdev,
3296 ((1 << 6) - 1), res_name);
3297}
3298EXPORT_SYMBOL(pci_request_regions_exclusive);
3299
3300#ifdef PCI_IOBASE
3301struct io_range {
3302 struct list_head list;
3303 phys_addr_t start;
3304 resource_size_t size;
3305};
3306
3307static LIST_HEAD(io_range_list);
3308static DEFINE_SPINLOCK(io_range_lock);
3309#endif
3310
3311/*
3312 * Record the PCI IO range (expressed as CPU physical address + size).
3313 * Return a negative value if an error has occured, zero otherwise
3314 */
3315int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3316{
3317 int err = 0;
3318
3319#ifdef PCI_IOBASE
3320 struct io_range *range;
3321 resource_size_t allocated_size = 0;
3322
3323 /* check if the range hasn't been previously recorded */
3324 spin_lock(&io_range_lock);
3325 list_for_each_entry(range, &io_range_list, list) {
3326 if (addr >= range->start && addr + size <= range->start + size) {
3327 /* range already registered, bail out */
3328 goto end_register;
3329 }
3330 allocated_size += range->size;
3331 }
3332
3333 /* range not registed yet, check for available space */
3334 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3335 /* if it's too big check if 64K space can be reserved */
3336 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3337 err = -E2BIG;
3338 goto end_register;
3339 }
3340
3341 size = SZ_64K;
3342 pr_warn("Requested IO range too big, new size set to 64K\n");
3343 }
3344
3345 /* add the range to the list */
3346 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3347 if (!range) {
3348 err = -ENOMEM;
3349 goto end_register;
3350 }
3351
3352 range->start = addr;
3353 range->size = size;
3354
3355 list_add_tail(&range->list, &io_range_list);
3356
3357end_register:
3358 spin_unlock(&io_range_lock);
3359#endif
3360
3361 return err;
3362}
3363
3364phys_addr_t pci_pio_to_address(unsigned long pio)
3365{
3366 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3367
3368#ifdef PCI_IOBASE
3369 struct io_range *range;
3370 resource_size_t allocated_size = 0;
3371
3372 if (pio > IO_SPACE_LIMIT)
3373 return address;
3374
3375 spin_lock(&io_range_lock);
3376 list_for_each_entry(range, &io_range_list, list) {
3377 if (pio >= allocated_size && pio < allocated_size + range->size) {
3378 address = range->start + pio - allocated_size;
3379 break;
3380 }
3381 allocated_size += range->size;
3382 }
3383 spin_unlock(&io_range_lock);
3384#endif
3385
3386 return address;
3387}
3388
3389unsigned long __weak pci_address_to_pio(phys_addr_t address)
3390{
3391#ifdef PCI_IOBASE
3392 struct io_range *res;
3393 resource_size_t offset = 0;
3394 unsigned long addr = -1;
3395
3396 spin_lock(&io_range_lock);
3397 list_for_each_entry(res, &io_range_list, list) {
3398 if (address >= res->start && address < res->start + res->size) {
3399 addr = address - res->start + offset;
3400 break;
3401 }
3402 offset += res->size;
3403 }
3404 spin_unlock(&io_range_lock);
3405
3406 return addr;
3407#else
3408 if (address > IO_SPACE_LIMIT)
3409 return (unsigned long)-1;
3410
3411 return (unsigned long) address;
3412#endif
3413}
3414
3415/**
3416 * pci_remap_iospace - Remap the memory mapped I/O space
3417 * @res: Resource describing the I/O space
3418 * @phys_addr: physical address of range to be mapped
3419 *
3420 * Remap the memory mapped I/O space described by the @res
3421 * and the CPU physical address @phys_addr into virtual address space.
3422 * Only architectures that have memory mapped IO functions defined
3423 * (and the PCI_IOBASE value defined) should call this function.
3424 */
3425int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3426{
3427#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3428 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3429
3430 if (!(res->flags & IORESOURCE_IO))
3431 return -EINVAL;
3432
3433 if (res->end > IO_SPACE_LIMIT)
3434 return -EINVAL;
3435
3436 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3437 pgprot_device(PAGE_KERNEL));
3438#else
3439 /* this architecture does not have memory mapped I/O space,
3440 so this function should never be called */
3441 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3442 return -ENODEV;
3443#endif
3444}
3445EXPORT_SYMBOL(pci_remap_iospace);
3446
3447/**
3448 * pci_unmap_iospace - Unmap the memory mapped I/O space
3449 * @res: resource to be unmapped
3450 *
3451 * Unmap the CPU virtual address @res from virtual address space.
3452 * Only architectures that have memory mapped IO functions defined
3453 * (and the PCI_IOBASE value defined) should call this function.
3454 */
3455void pci_unmap_iospace(struct resource *res)
3456{
3457#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3458 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3459
3460 unmap_kernel_range(vaddr, resource_size(res));
3461#endif
3462}
3463EXPORT_SYMBOL(pci_unmap_iospace);
3464
3465static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3466{
3467 struct resource **res = ptr;
3468
3469 pci_unmap_iospace(*res);
3470}
3471
3472/**
3473 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3474 * @dev: Generic device to remap IO address for
3475 * @res: Resource describing the I/O space
3476 * @phys_addr: physical address of range to be mapped
3477 *
3478 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3479 * detach.
3480 */
3481int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3482 phys_addr_t phys_addr)
3483{
3484 const struct resource **ptr;
3485 int error;
3486
3487 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
3488 if (!ptr)
3489 return -ENOMEM;
3490
3491 error = pci_remap_iospace(res, phys_addr);
3492 if (error) {
3493 devres_free(ptr);
3494 } else {
3495 *ptr = res;
3496 devres_add(dev, ptr);
3497 }
3498
3499 return error;
3500}
3501EXPORT_SYMBOL(devm_pci_remap_iospace);
3502
3503/**
3504 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3505 * @dev: Generic device to remap IO address for
3506 * @offset: Resource address to map
3507 * @size: Size of map
3508 *
3509 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3510 * detach.
3511 */
3512void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3513 resource_size_t offset,
3514 resource_size_t size)
3515{
3516 void __iomem **ptr, *addr;
3517
3518 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3519 if (!ptr)
3520 return NULL;
3521
3522 addr = pci_remap_cfgspace(offset, size);
3523 if (addr) {
3524 *ptr = addr;
3525 devres_add(dev, ptr);
3526 } else
3527 devres_free(ptr);
3528
3529 return addr;
3530}
3531EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3532
3533/**
3534 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3535 * @dev: generic device to handle the resource for
3536 * @res: configuration space resource to be handled
3537 *
3538 * Checks that a resource is a valid memory region, requests the memory
3539 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3540 * proper PCI configuration space memory attributes are guaranteed.
3541 *
3542 * All operations are managed and will be undone on driver detach.
3543 *
3544 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3545 * on failure. Usage example:
3546 *
3547 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3548 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3549 * if (IS_ERR(base))
3550 * return PTR_ERR(base);
3551 */
3552void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3553 struct resource *res)
3554{
3555 resource_size_t size;
3556 const char *name;
3557 void __iomem *dest_ptr;
3558
3559 BUG_ON(!dev);
3560
3561 if (!res || resource_type(res) != IORESOURCE_MEM) {
3562 dev_err(dev, "invalid resource\n");
3563 return IOMEM_ERR_PTR(-EINVAL);
3564 }
3565
3566 size = resource_size(res);
3567 name = res->name ?: dev_name(dev);
3568
3569 if (!devm_request_mem_region(dev, res->start, size, name)) {
3570 dev_err(dev, "can't request region for resource %pR\n", res);
3571 return IOMEM_ERR_PTR(-EBUSY);
3572 }
3573
3574 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3575 if (!dest_ptr) {
3576 dev_err(dev, "ioremap failed for resource %pR\n", res);
3577 devm_release_mem_region(dev, res->start, size);
3578 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3579 }
3580
3581 return dest_ptr;
3582}
3583EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3584
3585static void __pci_set_master(struct pci_dev *dev, bool enable)
3586{
3587 u16 old_cmd, cmd;
3588
3589 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3590 if (enable)
3591 cmd = old_cmd | PCI_COMMAND_MASTER;
3592 else
3593 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3594 if (cmd != old_cmd) {
3595 dev_dbg(&dev->dev, "%s bus mastering\n",
3596 enable ? "enabling" : "disabling");
3597 pci_write_config_word(dev, PCI_COMMAND, cmd);
3598 }
3599 dev->is_busmaster = enable;
3600}
3601
3602/**
3603 * pcibios_setup - process "pci=" kernel boot arguments
3604 * @str: string used to pass in "pci=" kernel boot arguments
3605 *
3606 * Process kernel boot arguments. This is the default implementation.
3607 * Architecture specific implementations can override this as necessary.
3608 */
3609char * __weak __init pcibios_setup(char *str)
3610{
3611 return str;
3612}
3613
3614/**
3615 * pcibios_set_master - enable PCI bus-mastering for device dev
3616 * @dev: the PCI device to enable
3617 *
3618 * Enables PCI bus-mastering for the device. This is the default
3619 * implementation. Architecture specific implementations can override
3620 * this if necessary.
3621 */
3622void __weak pcibios_set_master(struct pci_dev *dev)
3623{
3624 u8 lat;
3625
3626 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3627 if (pci_is_pcie(dev))
3628 return;
3629
3630 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3631 if (lat < 16)
3632 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3633 else if (lat > pcibios_max_latency)
3634 lat = pcibios_max_latency;
3635 else
3636 return;
3637
3638 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3639}
3640
3641/**
3642 * pci_set_master - enables bus-mastering for device dev
3643 * @dev: the PCI device to enable
3644 *
3645 * Enables bus-mastering on the device and calls pcibios_set_master()
3646 * to do the needed arch specific settings.
3647 */
3648void pci_set_master(struct pci_dev *dev)
3649{
3650 __pci_set_master(dev, true);
3651 pcibios_set_master(dev);
3652}
3653EXPORT_SYMBOL(pci_set_master);
3654
3655/**
3656 * pci_clear_master - disables bus-mastering for device dev
3657 * @dev: the PCI device to disable
3658 */
3659void pci_clear_master(struct pci_dev *dev)
3660{
3661 __pci_set_master(dev, false);
3662}
3663EXPORT_SYMBOL(pci_clear_master);
3664
3665/**
3666 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3667 * @dev: the PCI device for which MWI is to be enabled
3668 *
3669 * Helper function for pci_set_mwi.
3670 * Originally copied from drivers/net/acenic.c.
3671 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3672 *
3673 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3674 */
3675int pci_set_cacheline_size(struct pci_dev *dev)
3676{
3677 u8 cacheline_size;
3678
3679 if (!pci_cache_line_size)
3680 return -EINVAL;
3681
3682 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3683 equal to or multiple of the right value. */
3684 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3685 if (cacheline_size >= pci_cache_line_size &&
3686 (cacheline_size % pci_cache_line_size) == 0)
3687 return 0;
3688
3689 /* Write the correct value. */
3690 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3691 /* Read it back. */
3692 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3693 if (cacheline_size == pci_cache_line_size)
3694 return 0;
3695
3696 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3697 pci_cache_line_size << 2);
3698
3699 return -EINVAL;
3700}
3701EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3702
3703/**
3704 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3705 * @dev: the PCI device for which MWI is enabled
3706 *
3707 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3708 *
3709 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3710 */
3711int pci_set_mwi(struct pci_dev *dev)
3712{
3713#ifdef PCI_DISABLE_MWI
3714 return 0;
3715#else
3716 int rc;
3717 u16 cmd;
3718
3719 rc = pci_set_cacheline_size(dev);
3720 if (rc)
3721 return rc;
3722
3723 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3724 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3725 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3726 cmd |= PCI_COMMAND_INVALIDATE;
3727 pci_write_config_word(dev, PCI_COMMAND, cmd);
3728 }
3729 return 0;
3730#endif
3731}
3732EXPORT_SYMBOL(pci_set_mwi);
3733
3734/**
3735 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3736 * @dev: the PCI device for which MWI is enabled
3737 *
3738 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3739 * Callers are not required to check the return value.
3740 *
3741 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3742 */
3743int pci_try_set_mwi(struct pci_dev *dev)
3744{
3745#ifdef PCI_DISABLE_MWI
3746 return 0;
3747#else
3748 return pci_set_mwi(dev);
3749#endif
3750}
3751EXPORT_SYMBOL(pci_try_set_mwi);
3752
3753/**
3754 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3755 * @dev: the PCI device to disable
3756 *
3757 * Disables PCI Memory-Write-Invalidate transaction on the device
3758 */
3759void pci_clear_mwi(struct pci_dev *dev)
3760{
3761#ifndef PCI_DISABLE_MWI
3762 u16 cmd;
3763
3764 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3765 if (cmd & PCI_COMMAND_INVALIDATE) {
3766 cmd &= ~PCI_COMMAND_INVALIDATE;
3767 pci_write_config_word(dev, PCI_COMMAND, cmd);
3768 }
3769#endif
3770}
3771EXPORT_SYMBOL(pci_clear_mwi);
3772
3773/**
3774 * pci_intx - enables/disables PCI INTx for device dev
3775 * @pdev: the PCI device to operate on
3776 * @enable: boolean: whether to enable or disable PCI INTx
3777 *
3778 * Enables/disables PCI INTx for device dev
3779 */
3780void pci_intx(struct pci_dev *pdev, int enable)
3781{
3782 u16 pci_command, new;
3783
3784 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3785
3786 if (enable)
3787 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3788 else
3789 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3790
3791 if (new != pci_command) {
3792 struct pci_devres *dr;
3793
3794 pci_write_config_word(pdev, PCI_COMMAND, new);
3795
3796 dr = find_pci_dr(pdev);
3797 if (dr && !dr->restore_intx) {
3798 dr->restore_intx = 1;
3799 dr->orig_intx = !enable;
3800 }
3801 }
3802}
3803EXPORT_SYMBOL_GPL(pci_intx);
3804
3805static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3806{
3807 struct pci_bus *bus = dev->bus;
3808 bool mask_updated = true;
3809 u32 cmd_status_dword;
3810 u16 origcmd, newcmd;
3811 unsigned long flags;
3812 bool irq_pending;
3813
3814 /*
3815 * We do a single dword read to retrieve both command and status.
3816 * Document assumptions that make this possible.
3817 */
3818 BUILD_BUG_ON(PCI_COMMAND % 4);
3819 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3820
3821 raw_spin_lock_irqsave(&pci_lock, flags);
3822
3823 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3824
3825 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3826
3827 /*
3828 * Check interrupt status register to see whether our device
3829 * triggered the interrupt (when masking) or the next IRQ is
3830 * already pending (when unmasking).
3831 */
3832 if (mask != irq_pending) {
3833 mask_updated = false;
3834 goto done;
3835 }
3836
3837 origcmd = cmd_status_dword;
3838 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3839 if (mask)
3840 newcmd |= PCI_COMMAND_INTX_DISABLE;
3841 if (newcmd != origcmd)
3842 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3843
3844done:
3845 raw_spin_unlock_irqrestore(&pci_lock, flags);
3846
3847 return mask_updated;
3848}
3849
3850/**
3851 * pci_check_and_mask_intx - mask INTx on pending interrupt
3852 * @dev: the PCI device to operate on
3853 *
3854 * Check if the device dev has its INTx line asserted, mask it and
3855 * return true in that case. False is returned if no interrupt was
3856 * pending.
3857 */
3858bool pci_check_and_mask_intx(struct pci_dev *dev)
3859{
3860 return pci_check_and_set_intx_mask(dev, true);
3861}
3862EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3863
3864/**
3865 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3866 * @dev: the PCI device to operate on
3867 *
3868 * Check if the device dev has its INTx line asserted, unmask it if not
3869 * and return true. False is returned and the mask remains active if
3870 * there was still an interrupt pending.
3871 */
3872bool pci_check_and_unmask_intx(struct pci_dev *dev)
3873{
3874 return pci_check_and_set_intx_mask(dev, false);
3875}
3876EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3877
3878/**
3879 * pci_wait_for_pending_transaction - waits for pending transaction
3880 * @dev: the PCI device to operate on
3881 *
3882 * Return 0 if transaction is pending 1 otherwise.
3883 */
3884int pci_wait_for_pending_transaction(struct pci_dev *dev)
3885{
3886 if (!pci_is_pcie(dev))
3887 return 1;
3888
3889 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3890 PCI_EXP_DEVSTA_TRPND);
3891}
3892EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3893
3894static void pci_flr_wait(struct pci_dev *dev)
3895{
3896 int delay = 1, timeout = 60000;
3897 u32 id;
3898
3899 /*
3900 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3901 * 100ms, but may silently discard requests while the FLR is in
3902 * progress. Wait 100ms before trying to access the device.
3903 */
3904 msleep(100);
3905
3906 /*
3907 * After 100ms, the device should not silently discard config
3908 * requests, but it may still indicate that it needs more time by
3909 * responding to them with CRS completions. The Root Port will
3910 * generally synthesize ~0 data to complete the read (except when
3911 * CRS SV is enabled and the read was for the Vendor ID; in that
3912 * case it synthesizes 0x0001 data).
3913 *
3914 * Wait for the device to return a non-CRS completion. Read the
3915 * Command register instead of Vendor ID so we don't have to
3916 * contend with the CRS SV value.
3917 */
3918 pci_read_config_dword(dev, PCI_COMMAND, &id);
3919 while (id == ~0) {
3920 if (delay > timeout) {
3921 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3922 100 + delay - 1);
3923 return;
3924 }
3925
3926 if (delay > 1000)
3927 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3928 100 + delay - 1);
3929
3930 msleep(delay);
3931 delay *= 2;
3932 pci_read_config_dword(dev, PCI_COMMAND, &id);
3933 }
3934
3935 if (delay > 1000)
3936 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3937}
3938
3939/**
3940 * pcie_has_flr - check if a device supports function level resets
3941 * @dev: device to check
3942 *
3943 * Returns true if the device advertises support for PCIe function level
3944 * resets.
3945 */
3946static bool pcie_has_flr(struct pci_dev *dev)
3947{
3948 u32 cap;
3949
3950 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3951 return false;
3952
3953 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3954 return cap & PCI_EXP_DEVCAP_FLR;
3955}
3956
3957/**
3958 * pcie_flr - initiate a PCIe function level reset
3959 * @dev: device to reset
3960 *
3961 * Initiate a function level reset on @dev. The caller should ensure the
3962 * device supports FLR before calling this function, e.g. by using the
3963 * pcie_has_flr() helper.
3964 */
3965void pcie_flr(struct pci_dev *dev)
3966{
3967 if (!pci_wait_for_pending_transaction(dev))
3968 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3969
3970 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3971 pci_flr_wait(dev);
3972}
3973EXPORT_SYMBOL_GPL(pcie_flr);
3974
3975static int pci_af_flr(struct pci_dev *dev, int probe)
3976{
3977 int pos;
3978 u8 cap;
3979
3980 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3981 if (!pos)
3982 return -ENOTTY;
3983
3984 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
3985 return -ENOTTY;
3986
3987 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3988 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3989 return -ENOTTY;
3990
3991 if (probe)
3992 return 0;
3993
3994 /*
3995 * Wait for Transaction Pending bit to clear. A word-aligned test
3996 * is used, so we use the conrol offset rather than status and shift
3997 * the test bit to match.
3998 */
3999 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4000 PCI_AF_STATUS_TP << 8))
4001 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4002
4003 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4004 pci_flr_wait(dev);
4005 return 0;
4006}
4007
4008/**
4009 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4010 * @dev: Device to reset.
4011 * @probe: If set, only check if the device can be reset this way.
4012 *
4013 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4014 * unset, it will be reinitialized internally when going from PCI_D3hot to
4015 * PCI_D0. If that's the case and the device is not in a low-power state
4016 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4017 *
4018 * NOTE: This causes the caller to sleep for twice the device power transition
4019 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4020 * by default (i.e. unless the @dev's d3_delay field has a different value).
4021 * Moreover, only devices in D0 can be reset by this function.
4022 */
4023static int pci_pm_reset(struct pci_dev *dev, int probe)
4024{
4025 u16 csr;
4026
4027 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4028 return -ENOTTY;
4029
4030 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4031 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4032 return -ENOTTY;
4033
4034 if (probe)
4035 return 0;
4036
4037 if (dev->current_state != PCI_D0)
4038 return -EINVAL;
4039
4040 csr &= ~PCI_PM_CTRL_STATE_MASK;
4041 csr |= PCI_D3hot;
4042 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4043 pci_dev_d3_sleep(dev);
4044
4045 csr &= ~PCI_PM_CTRL_STATE_MASK;
4046 csr |= PCI_D0;
4047 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4048 pci_dev_d3_sleep(dev);
4049
4050 return 0;
4051}
4052
4053void pci_reset_secondary_bus(struct pci_dev *dev)
4054{
4055 u16 ctrl;
4056
4057 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4058 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4059 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4060 /*
4061 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4062 * this to 2ms to ensure that we meet the minimum requirement.
4063 */
4064 msleep(2);
4065
4066 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4067 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4068
4069 /*
4070 * Trhfa for conventional PCI is 2^25 clock cycles.
4071 * Assuming a minimum 33MHz clock this results in a 1s
4072 * delay before we can consider subordinate devices to
4073 * be re-initialized. PCIe has some ways to shorten this,
4074 * but we don't make use of them yet.
4075 */
4076 ssleep(1);
4077}
4078
4079void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4080{
4081 pci_reset_secondary_bus(dev);
4082}
4083
4084/**
4085 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4086 * @dev: Bridge device
4087 *
4088 * Use the bridge control register to assert reset on the secondary bus.
4089 * Devices on the secondary bus are left in power-on state.
4090 */
4091void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4092{
4093 pcibios_reset_secondary_bus(dev);
4094}
4095EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4096
4097static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4098{
4099 struct pci_dev *pdev;
4100
4101 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4102 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4103 return -ENOTTY;
4104
4105 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4106 if (pdev != dev)
4107 return -ENOTTY;
4108
4109 if (probe)
4110 return 0;
4111
4112 pci_reset_bridge_secondary_bus(dev->bus->self);
4113
4114 return 0;
4115}
4116
4117static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4118{
4119 int rc = -ENOTTY;
4120
4121 if (!hotplug || !try_module_get(hotplug->ops->owner))
4122 return rc;
4123
4124 if (hotplug->ops->reset_slot)
4125 rc = hotplug->ops->reset_slot(hotplug, probe);
4126
4127 module_put(hotplug->ops->owner);
4128
4129 return rc;
4130}
4131
4132static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4133{
4134 struct pci_dev *pdev;
4135
4136 if (dev->subordinate || !dev->slot ||
4137 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4138 return -ENOTTY;
4139
4140 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4141 if (pdev != dev && pdev->slot == dev->slot)
4142 return -ENOTTY;
4143
4144 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4145}
4146
4147static void pci_dev_lock(struct pci_dev *dev)
4148{
4149 pci_cfg_access_lock(dev);
4150 /* block PM suspend, driver probe, etc. */
4151 device_lock(&dev->dev);
4152}
4153
4154/* Return 1 on successful lock, 0 on contention */
4155static int pci_dev_trylock(struct pci_dev *dev)
4156{
4157 if (pci_cfg_access_trylock(dev)) {
4158 if (device_trylock(&dev->dev))
4159 return 1;
4160 pci_cfg_access_unlock(dev);
4161 }
4162
4163 return 0;
4164}
4165
4166static void pci_dev_unlock(struct pci_dev *dev)
4167{
4168 device_unlock(&dev->dev);
4169 pci_cfg_access_unlock(dev);
4170}
4171
4172static void pci_dev_save_and_disable(struct pci_dev *dev)
4173{
4174 const struct pci_error_handlers *err_handler =
4175 dev->driver ? dev->driver->err_handler : NULL;
4176
4177 /*
4178 * dev->driver->err_handler->reset_prepare() is protected against
4179 * races with ->remove() by the device lock, which must be held by
4180 * the caller.
4181 */
4182 if (err_handler && err_handler->reset_prepare)
4183 err_handler->reset_prepare(dev);
4184
4185 /*
4186 * Wake-up device prior to save. PM registers default to D0 after
4187 * reset and a simple register restore doesn't reliably return
4188 * to a non-D0 state anyway.
4189 */
4190 pci_set_power_state(dev, PCI_D0);
4191
4192 pci_save_state(dev);
4193 /*
4194 * Disable the device by clearing the Command register, except for
4195 * INTx-disable which is set. This not only disables MMIO and I/O port
4196 * BARs, but also prevents the device from being Bus Master, preventing
4197 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4198 * compliant devices, INTx-disable prevents legacy interrupts.
4199 */
4200 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4201}
4202
4203static void pci_dev_restore(struct pci_dev *dev)
4204{
4205 const struct pci_error_handlers *err_handler =
4206 dev->driver ? dev->driver->err_handler : NULL;
4207
4208 pci_restore_state(dev);
4209
4210 /*
4211 * dev->driver->err_handler->reset_done() is protected against
4212 * races with ->remove() by the device lock, which must be held by
4213 * the caller.
4214 */
4215 if (err_handler && err_handler->reset_done)
4216 err_handler->reset_done(dev);
4217}
4218
4219/**
4220 * __pci_reset_function - reset a PCI device function
4221 * @dev: PCI device to reset
4222 *
4223 * Some devices allow an individual function to be reset without affecting
4224 * other functions in the same device. The PCI device must be responsive
4225 * to PCI config space in order to use this function.
4226 *
4227 * The device function is presumed to be unused when this function is called.
4228 * Resetting the device will make the contents of PCI configuration space
4229 * random, so any caller of this must be prepared to reinitialise the
4230 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4231 * etc.
4232 *
4233 * Returns 0 if the device function was successfully reset or negative if the
4234 * device doesn't support resetting a single function.
4235 */
4236int __pci_reset_function(struct pci_dev *dev)
4237{
4238 int ret;
4239
4240 pci_dev_lock(dev);
4241 ret = __pci_reset_function_locked(dev);
4242 pci_dev_unlock(dev);
4243
4244 return ret;
4245}
4246EXPORT_SYMBOL_GPL(__pci_reset_function);
4247
4248/**
4249 * __pci_reset_function_locked - reset a PCI device function while holding
4250 * the @dev mutex lock.
4251 * @dev: PCI device to reset
4252 *
4253 * Some devices allow an individual function to be reset without affecting
4254 * other functions in the same device. The PCI device must be responsive
4255 * to PCI config space in order to use this function.
4256 *
4257 * The device function is presumed to be unused and the caller is holding
4258 * the device mutex lock when this function is called.
4259 * Resetting the device will make the contents of PCI configuration space
4260 * random, so any caller of this must be prepared to reinitialise the
4261 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4262 * etc.
4263 *
4264 * Returns 0 if the device function was successfully reset or negative if the
4265 * device doesn't support resetting a single function.
4266 */
4267int __pci_reset_function_locked(struct pci_dev *dev)
4268{
4269 int rc;
4270
4271 might_sleep();
4272
4273 rc = pci_dev_specific_reset(dev, 0);
4274 if (rc != -ENOTTY)
4275 return rc;
4276 if (pcie_has_flr(dev)) {
4277 pcie_flr(dev);
4278 return 0;
4279 }
4280 rc = pci_af_flr(dev, 0);
4281 if (rc != -ENOTTY)
4282 return rc;
4283 rc = pci_pm_reset(dev, 0);
4284 if (rc != -ENOTTY)
4285 return rc;
4286 rc = pci_dev_reset_slot_function(dev, 0);
4287 if (rc != -ENOTTY)
4288 return rc;
4289 return pci_parent_bus_reset(dev, 0);
4290}
4291EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4292
4293/**
4294 * pci_probe_reset_function - check whether the device can be safely reset
4295 * @dev: PCI device to reset
4296 *
4297 * Some devices allow an individual function to be reset without affecting
4298 * other functions in the same device. The PCI device must be responsive
4299 * to PCI config space in order to use this function.
4300 *
4301 * Returns 0 if the device function can be reset or negative if the
4302 * device doesn't support resetting a single function.
4303 */
4304int pci_probe_reset_function(struct pci_dev *dev)
4305{
4306 int rc;
4307
4308 might_sleep();
4309
4310 rc = pci_dev_specific_reset(dev, 1);
4311 if (rc != -ENOTTY)
4312 return rc;
4313 if (pcie_has_flr(dev))
4314 return 0;
4315 rc = pci_af_flr(dev, 1);
4316 if (rc != -ENOTTY)
4317 return rc;
4318 rc = pci_pm_reset(dev, 1);
4319 if (rc != -ENOTTY)
4320 return rc;
4321 rc = pci_dev_reset_slot_function(dev, 1);
4322 if (rc != -ENOTTY)
4323 return rc;
4324
4325 return pci_parent_bus_reset(dev, 1);
4326}
4327
4328/**
4329 * pci_reset_function - quiesce and reset a PCI device function
4330 * @dev: PCI device to reset
4331 *
4332 * Some devices allow an individual function to be reset without affecting
4333 * other functions in the same device. The PCI device must be responsive
4334 * to PCI config space in order to use this function.
4335 *
4336 * This function does not just reset the PCI portion of a device, but
4337 * clears all the state associated with the device. This function differs
4338 * from __pci_reset_function in that it saves and restores device state
4339 * over the reset.
4340 *
4341 * Returns 0 if the device function was successfully reset or negative if the
4342 * device doesn't support resetting a single function.
4343 */
4344int pci_reset_function(struct pci_dev *dev)
4345{
4346 int rc;
4347
4348 rc = pci_probe_reset_function(dev);
4349 if (rc)
4350 return rc;
4351
4352 pci_dev_lock(dev);
4353 pci_dev_save_and_disable(dev);
4354
4355 rc = __pci_reset_function_locked(dev);
4356
4357 pci_dev_restore(dev);
4358 pci_dev_unlock(dev);
4359
4360 return rc;
4361}
4362EXPORT_SYMBOL_GPL(pci_reset_function);
4363
4364/**
4365 * pci_reset_function_locked - quiesce and reset a PCI device function
4366 * @dev: PCI device to reset
4367 *
4368 * Some devices allow an individual function to be reset without affecting
4369 * other functions in the same device. The PCI device must be responsive
4370 * to PCI config space in order to use this function.
4371 *
4372 * This function does not just reset the PCI portion of a device, but
4373 * clears all the state associated with the device. This function differs
4374 * from __pci_reset_function() in that it saves and restores device state
4375 * over the reset. It also differs from pci_reset_function() in that it
4376 * requires the PCI device lock to be held.
4377 *
4378 * Returns 0 if the device function was successfully reset or negative if the
4379 * device doesn't support resetting a single function.
4380 */
4381int pci_reset_function_locked(struct pci_dev *dev)
4382{
4383 int rc;
4384
4385 rc = pci_probe_reset_function(dev);
4386 if (rc)
4387 return rc;
4388
4389 pci_dev_save_and_disable(dev);
4390
4391 rc = __pci_reset_function_locked(dev);
4392
4393 pci_dev_restore(dev);
4394
4395 return rc;
4396}
4397EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4398
4399/**
4400 * pci_try_reset_function - quiesce and reset a PCI device function
4401 * @dev: PCI device to reset
4402 *
4403 * Same as above, except return -EAGAIN if unable to lock device.
4404 */
4405int pci_try_reset_function(struct pci_dev *dev)
4406{
4407 int rc;
4408
4409 rc = pci_probe_reset_function(dev);
4410 if (rc)
4411 return rc;
4412
4413 if (!pci_dev_trylock(dev))
4414 return -EAGAIN;
4415
4416 pci_dev_save_and_disable(dev);
4417 rc = __pci_reset_function_locked(dev);
4418 pci_dev_unlock(dev);
4419
4420 pci_dev_restore(dev);
4421 return rc;
4422}
4423EXPORT_SYMBOL_GPL(pci_try_reset_function);
4424
4425/* Do any devices on or below this bus prevent a bus reset? */
4426static bool pci_bus_resetable(struct pci_bus *bus)
4427{
4428 struct pci_dev *dev;
4429
4430
4431 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4432 return false;
4433
4434 list_for_each_entry(dev, &bus->devices, bus_list) {
4435 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4436 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4437 return false;
4438 }
4439
4440 return true;
4441}
4442
4443/* Lock devices from the top of the tree down */
4444static void pci_bus_lock(struct pci_bus *bus)
4445{
4446 struct pci_dev *dev;
4447
4448 list_for_each_entry(dev, &bus->devices, bus_list) {
4449 pci_dev_lock(dev);
4450 if (dev->subordinate)
4451 pci_bus_lock(dev->subordinate);
4452 }
4453}
4454
4455/* Unlock devices from the bottom of the tree up */
4456static void pci_bus_unlock(struct pci_bus *bus)
4457{
4458 struct pci_dev *dev;
4459
4460 list_for_each_entry(dev, &bus->devices, bus_list) {
4461 if (dev->subordinate)
4462 pci_bus_unlock(dev->subordinate);
4463 pci_dev_unlock(dev);
4464 }
4465}
4466
4467/* Return 1 on successful lock, 0 on contention */
4468static int pci_bus_trylock(struct pci_bus *bus)
4469{
4470 struct pci_dev *dev;
4471
4472 list_for_each_entry(dev, &bus->devices, bus_list) {
4473 if (!pci_dev_trylock(dev))
4474 goto unlock;
4475 if (dev->subordinate) {
4476 if (!pci_bus_trylock(dev->subordinate)) {
4477 pci_dev_unlock(dev);
4478 goto unlock;
4479 }
4480 }
4481 }
4482 return 1;
4483
4484unlock:
4485 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4486 if (dev->subordinate)
4487 pci_bus_unlock(dev->subordinate);
4488 pci_dev_unlock(dev);
4489 }
4490 return 0;
4491}
4492
4493/* Do any devices on or below this slot prevent a bus reset? */
4494static bool pci_slot_resetable(struct pci_slot *slot)
4495{
4496 struct pci_dev *dev;
4497
4498 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4499 if (!dev->slot || dev->slot != slot)
4500 continue;
4501 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4502 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4503 return false;
4504 }
4505
4506 return true;
4507}
4508
4509/* Lock devices from the top of the tree down */
4510static void pci_slot_lock(struct pci_slot *slot)
4511{
4512 struct pci_dev *dev;
4513
4514 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4515 if (!dev->slot || dev->slot != slot)
4516 continue;
4517 pci_dev_lock(dev);
4518 if (dev->subordinate)
4519 pci_bus_lock(dev->subordinate);
4520 }
4521}
4522
4523/* Unlock devices from the bottom of the tree up */
4524static void pci_slot_unlock(struct pci_slot *slot)
4525{
4526 struct pci_dev *dev;
4527
4528 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4529 if (!dev->slot || dev->slot != slot)
4530 continue;
4531 if (dev->subordinate)
4532 pci_bus_unlock(dev->subordinate);
4533 pci_dev_unlock(dev);
4534 }
4535}
4536
4537/* Return 1 on successful lock, 0 on contention */
4538static int pci_slot_trylock(struct pci_slot *slot)
4539{
4540 struct pci_dev *dev;
4541
4542 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4543 if (!dev->slot || dev->slot != slot)
4544 continue;
4545 if (!pci_dev_trylock(dev))
4546 goto unlock;
4547 if (dev->subordinate) {
4548 if (!pci_bus_trylock(dev->subordinate)) {
4549 pci_dev_unlock(dev);
4550 goto unlock;
4551 }
4552 }
4553 }
4554 return 1;
4555
4556unlock:
4557 list_for_each_entry_continue_reverse(dev,
4558 &slot->bus->devices, bus_list) {
4559 if (!dev->slot || dev->slot != slot)
4560 continue;
4561 if (dev->subordinate)
4562 pci_bus_unlock(dev->subordinate);
4563 pci_dev_unlock(dev);
4564 }
4565 return 0;
4566}
4567
4568/* Save and disable devices from the top of the tree down */
4569static void pci_bus_save_and_disable(struct pci_bus *bus)
4570{
4571 struct pci_dev *dev;
4572
4573 list_for_each_entry(dev, &bus->devices, bus_list) {
4574 pci_dev_lock(dev);
4575 pci_dev_save_and_disable(dev);
4576 pci_dev_unlock(dev);
4577 if (dev->subordinate)
4578 pci_bus_save_and_disable(dev->subordinate);
4579 }
4580}
4581
4582/*
4583 * Restore devices from top of the tree down - parent bridges need to be
4584 * restored before we can get to subordinate devices.
4585 */
4586static void pci_bus_restore(struct pci_bus *bus)
4587{
4588 struct pci_dev *dev;
4589
4590 list_for_each_entry(dev, &bus->devices, bus_list) {
4591 pci_dev_lock(dev);
4592 pci_dev_restore(dev);
4593 pci_dev_unlock(dev);
4594 if (dev->subordinate)
4595 pci_bus_restore(dev->subordinate);
4596 }
4597}
4598
4599/* Save and disable devices from the top of the tree down */
4600static void pci_slot_save_and_disable(struct pci_slot *slot)
4601{
4602 struct pci_dev *dev;
4603
4604 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4605 if (!dev->slot || dev->slot != slot)
4606 continue;
4607 pci_dev_save_and_disable(dev);
4608 if (dev->subordinate)
4609 pci_bus_save_and_disable(dev->subordinate);
4610 }
4611}
4612
4613/*
4614 * Restore devices from top of the tree down - parent bridges need to be
4615 * restored before we can get to subordinate devices.
4616 */
4617static void pci_slot_restore(struct pci_slot *slot)
4618{
4619 struct pci_dev *dev;
4620
4621 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4622 if (!dev->slot || dev->slot != slot)
4623 continue;
4624 pci_dev_restore(dev);
4625 if (dev->subordinate)
4626 pci_bus_restore(dev->subordinate);
4627 }
4628}
4629
4630static int pci_slot_reset(struct pci_slot *slot, int probe)
4631{
4632 int rc;
4633
4634 if (!slot || !pci_slot_resetable(slot))
4635 return -ENOTTY;
4636
4637 if (!probe)
4638 pci_slot_lock(slot);
4639
4640 might_sleep();
4641
4642 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4643
4644 if (!probe)
4645 pci_slot_unlock(slot);
4646
4647 return rc;
4648}
4649
4650/**
4651 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4652 * @slot: PCI slot to probe
4653 *
4654 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4655 */
4656int pci_probe_reset_slot(struct pci_slot *slot)
4657{
4658 return pci_slot_reset(slot, 1);
4659}
4660EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4661
4662/**
4663 * pci_reset_slot - reset a PCI slot
4664 * @slot: PCI slot to reset
4665 *
4666 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4667 * independent of other slots. For instance, some slots may support slot power
4668 * control. In the case of a 1:1 bus to slot architecture, this function may
4669 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4670 * Generally a slot reset should be attempted before a bus reset. All of the
4671 * function of the slot and any subordinate buses behind the slot are reset
4672 * through this function. PCI config space of all devices in the slot and
4673 * behind the slot is saved before and restored after reset.
4674 *
4675 * Return 0 on success, non-zero on error.
4676 */
4677int pci_reset_slot(struct pci_slot *slot)
4678{
4679 int rc;
4680
4681 rc = pci_slot_reset(slot, 1);
4682 if (rc)
4683 return rc;
4684
4685 pci_slot_save_and_disable(slot);
4686
4687 rc = pci_slot_reset(slot, 0);
4688
4689 pci_slot_restore(slot);
4690
4691 return rc;
4692}
4693EXPORT_SYMBOL_GPL(pci_reset_slot);
4694
4695/**
4696 * pci_try_reset_slot - Try to reset a PCI slot
4697 * @slot: PCI slot to reset
4698 *
4699 * Same as above except return -EAGAIN if the slot cannot be locked
4700 */
4701int pci_try_reset_slot(struct pci_slot *slot)
4702{
4703 int rc;
4704
4705 rc = pci_slot_reset(slot, 1);
4706 if (rc)
4707 return rc;
4708
4709 pci_slot_save_and_disable(slot);
4710
4711 if (pci_slot_trylock(slot)) {
4712 might_sleep();
4713 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4714 pci_slot_unlock(slot);
4715 } else
4716 rc = -EAGAIN;
4717
4718 pci_slot_restore(slot);
4719
4720 return rc;
4721}
4722EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4723
4724static int pci_bus_reset(struct pci_bus *bus, int probe)
4725{
4726 if (!bus->self || !pci_bus_resetable(bus))
4727 return -ENOTTY;
4728
4729 if (probe)
4730 return 0;
4731
4732 pci_bus_lock(bus);
4733
4734 might_sleep();
4735
4736 pci_reset_bridge_secondary_bus(bus->self);
4737
4738 pci_bus_unlock(bus);
4739
4740 return 0;
4741}
4742
4743/**
4744 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4745 * @bus: PCI bus to probe
4746 *
4747 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4748 */
4749int pci_probe_reset_bus(struct pci_bus *bus)
4750{
4751 return pci_bus_reset(bus, 1);
4752}
4753EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4754
4755/**
4756 * pci_reset_bus - reset a PCI bus
4757 * @bus: top level PCI bus to reset
4758 *
4759 * Do a bus reset on the given bus and any subordinate buses, saving
4760 * and restoring state of all devices.
4761 *
4762 * Return 0 on success, non-zero on error.
4763 */
4764int pci_reset_bus(struct pci_bus *bus)
4765{
4766 int rc;
4767
4768 rc = pci_bus_reset(bus, 1);
4769 if (rc)
4770 return rc;
4771
4772 pci_bus_save_and_disable(bus);
4773
4774 rc = pci_bus_reset(bus, 0);
4775
4776 pci_bus_restore(bus);
4777
4778 return rc;
4779}
4780EXPORT_SYMBOL_GPL(pci_reset_bus);
4781
4782/**
4783 * pci_try_reset_bus - Try to reset a PCI bus
4784 * @bus: top level PCI bus to reset
4785 *
4786 * Same as above except return -EAGAIN if the bus cannot be locked
4787 */
4788int pci_try_reset_bus(struct pci_bus *bus)
4789{
4790 int rc;
4791
4792 rc = pci_bus_reset(bus, 1);
4793 if (rc)
4794 return rc;
4795
4796 pci_bus_save_and_disable(bus);
4797
4798 if (pci_bus_trylock(bus)) {
4799 might_sleep();
4800 pci_reset_bridge_secondary_bus(bus->self);
4801 pci_bus_unlock(bus);
4802 } else
4803 rc = -EAGAIN;
4804
4805 pci_bus_restore(bus);
4806
4807 return rc;
4808}
4809EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4810
4811/**
4812 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4813 * @dev: PCI device to query
4814 *
4815 * Returns mmrbc: maximum designed memory read count in bytes
4816 * or appropriate error value.
4817 */
4818int pcix_get_max_mmrbc(struct pci_dev *dev)
4819{
4820 int cap;
4821 u32 stat;
4822
4823 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4824 if (!cap)
4825 return -EINVAL;
4826
4827 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4828 return -EINVAL;
4829
4830 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4831}
4832EXPORT_SYMBOL(pcix_get_max_mmrbc);
4833
4834/**
4835 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4836 * @dev: PCI device to query
4837 *
4838 * Returns mmrbc: maximum memory read count in bytes
4839 * or appropriate error value.
4840 */
4841int pcix_get_mmrbc(struct pci_dev *dev)
4842{
4843 int cap;
4844 u16 cmd;
4845
4846 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4847 if (!cap)
4848 return -EINVAL;
4849
4850 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4851 return -EINVAL;
4852
4853 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4854}
4855EXPORT_SYMBOL(pcix_get_mmrbc);
4856
4857/**
4858 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4859 * @dev: PCI device to query
4860 * @mmrbc: maximum memory read count in bytes
4861 * valid values are 512, 1024, 2048, 4096
4862 *
4863 * If possible sets maximum memory read byte count, some bridges have erratas
4864 * that prevent this.
4865 */
4866int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4867{
4868 int cap;
4869 u32 stat, v, o;
4870 u16 cmd;
4871
4872 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4873 return -EINVAL;
4874
4875 v = ffs(mmrbc) - 10;
4876
4877 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4878 if (!cap)
4879 return -EINVAL;
4880
4881 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4882 return -EINVAL;
4883
4884 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4885 return -E2BIG;
4886
4887 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4888 return -EINVAL;
4889
4890 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4891 if (o != v) {
4892 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4893 return -EIO;
4894
4895 cmd &= ~PCI_X_CMD_MAX_READ;
4896 cmd |= v << 2;
4897 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4898 return -EIO;
4899 }
4900 return 0;
4901}
4902EXPORT_SYMBOL(pcix_set_mmrbc);
4903
4904/**
4905 * pcie_get_readrq - get PCI Express read request size
4906 * @dev: PCI device to query
4907 *
4908 * Returns maximum memory read request in bytes
4909 * or appropriate error value.
4910 */
4911int pcie_get_readrq(struct pci_dev *dev)
4912{
4913 u16 ctl;
4914
4915 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4916
4917 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4918}
4919EXPORT_SYMBOL(pcie_get_readrq);
4920
4921/**
4922 * pcie_set_readrq - set PCI Express maximum memory read request
4923 * @dev: PCI device to query
4924 * @rq: maximum memory read count in bytes
4925 * valid values are 128, 256, 512, 1024, 2048, 4096
4926 *
4927 * If possible sets maximum memory read request in bytes
4928 */
4929int pcie_set_readrq(struct pci_dev *dev, int rq)
4930{
4931 u16 v;
4932
4933 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4934 return -EINVAL;
4935
4936 /*
4937 * If using the "performance" PCIe config, we clamp the
4938 * read rq size to the max packet size to prevent the
4939 * host bridge generating requests larger than we can
4940 * cope with
4941 */
4942 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4943 int mps = pcie_get_mps(dev);
4944
4945 if (mps < rq)
4946 rq = mps;
4947 }
4948
4949 v = (ffs(rq) - 8) << 12;
4950
4951 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4952 PCI_EXP_DEVCTL_READRQ, v);
4953}
4954EXPORT_SYMBOL(pcie_set_readrq);
4955
4956/**
4957 * pcie_get_mps - get PCI Express maximum payload size
4958 * @dev: PCI device to query
4959 *
4960 * Returns maximum payload size in bytes
4961 */
4962int pcie_get_mps(struct pci_dev *dev)
4963{
4964 u16 ctl;
4965
4966 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4967
4968 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4969}
4970EXPORT_SYMBOL(pcie_get_mps);
4971
4972/**
4973 * pcie_set_mps - set PCI Express maximum payload size
4974 * @dev: PCI device to query
4975 * @mps: maximum payload size in bytes
4976 * valid values are 128, 256, 512, 1024, 2048, 4096
4977 *
4978 * If possible sets maximum payload size
4979 */
4980int pcie_set_mps(struct pci_dev *dev, int mps)
4981{
4982 u16 v;
4983
4984 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4985 return -EINVAL;
4986
4987 v = ffs(mps) - 8;
4988 if (v > dev->pcie_mpss)
4989 return -EINVAL;
4990 v <<= 5;
4991
4992 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4993 PCI_EXP_DEVCTL_PAYLOAD, v);
4994}
4995EXPORT_SYMBOL(pcie_set_mps);
4996
4997/**
4998 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4999 * @dev: PCI device to query
5000 * @speed: storage for minimum speed
5001 * @width: storage for minimum width
5002 *
5003 * This function will walk up the PCI device chain and determine the minimum
5004 * link width and speed of the device.
5005 */
5006int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5007 enum pcie_link_width *width)
5008{
5009 int ret;
5010
5011 *speed = PCI_SPEED_UNKNOWN;
5012 *width = PCIE_LNK_WIDTH_UNKNOWN;
5013
5014 while (dev) {
5015 u16 lnksta;
5016 enum pci_bus_speed next_speed;
5017 enum pcie_link_width next_width;
5018
5019 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5020 if (ret)
5021 return ret;
5022
5023 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5024 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5025 PCI_EXP_LNKSTA_NLW_SHIFT;
5026
5027 if (next_speed < *speed)
5028 *speed = next_speed;
5029
5030 if (next_width < *width)
5031 *width = next_width;
5032
5033 dev = dev->bus->self;
5034 }
5035
5036 return 0;
5037}
5038EXPORT_SYMBOL(pcie_get_minimum_link);
5039
5040/**
5041 * pci_select_bars - Make BAR mask from the type of resource
5042 * @dev: the PCI device for which BAR mask is made
5043 * @flags: resource type mask to be selected
5044 *
5045 * This helper routine makes bar mask from the type of resource.
5046 */
5047int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5048{
5049 int i, bars = 0;
5050 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5051 if (pci_resource_flags(dev, i) & flags)
5052 bars |= (1 << i);
5053 return bars;
5054}
5055EXPORT_SYMBOL(pci_select_bars);
5056
5057/* Some architectures require additional programming to enable VGA */
5058static arch_set_vga_state_t arch_set_vga_state;
5059
5060void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5061{
5062 arch_set_vga_state = func; /* NULL disables */
5063}
5064
5065static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5066 unsigned int command_bits, u32 flags)
5067{
5068 if (arch_set_vga_state)
5069 return arch_set_vga_state(dev, decode, command_bits,
5070 flags);
5071 return 0;
5072}
5073
5074/**
5075 * pci_set_vga_state - set VGA decode state on device and parents if requested
5076 * @dev: the PCI device
5077 * @decode: true = enable decoding, false = disable decoding
5078 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5079 * @flags: traverse ancestors and change bridges
5080 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5081 */
5082int pci_set_vga_state(struct pci_dev *dev, bool decode,
5083 unsigned int command_bits, u32 flags)
5084{
5085 struct pci_bus *bus;
5086 struct pci_dev *bridge;
5087 u16 cmd;
5088 int rc;
5089
5090 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5091
5092 /* ARCH specific VGA enables */
5093 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5094 if (rc)
5095 return rc;
5096
5097 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5098 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5099 if (decode == true)
5100 cmd |= command_bits;
5101 else
5102 cmd &= ~command_bits;
5103 pci_write_config_word(dev, PCI_COMMAND, cmd);
5104 }
5105
5106 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5107 return 0;
5108
5109 bus = dev->bus;
5110 while (bus) {
5111 bridge = bus->self;
5112 if (bridge) {
5113 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5114 &cmd);
5115 if (decode == true)
5116 cmd |= PCI_BRIDGE_CTL_VGA;
5117 else
5118 cmd &= ~PCI_BRIDGE_CTL_VGA;
5119 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5120 cmd);
5121 }
5122 bus = bus->parent;
5123 }
5124 return 0;
5125}
5126
5127/**
5128 * pci_add_dma_alias - Add a DMA devfn alias for a device
5129 * @dev: the PCI device for which alias is added
5130 * @devfn: alias slot and function
5131 *
5132 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5133 * It should be called early, preferably as PCI fixup header quirk.
5134 */
5135void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5136{
5137 if (!dev->dma_alias_mask)
5138 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5139 sizeof(long), GFP_KERNEL);
5140 if (!dev->dma_alias_mask) {
5141 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
5142 return;
5143 }
5144
5145 set_bit(devfn, dev->dma_alias_mask);
5146 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
5147 PCI_SLOT(devfn), PCI_FUNC(devfn));
5148}
5149
5150bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5151{
5152 return (dev1->dma_alias_mask &&
5153 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5154 (dev2->dma_alias_mask &&
5155 test_bit(dev1->devfn, dev2->dma_alias_mask));
5156}
5157
5158bool pci_device_is_present(struct pci_dev *pdev)
5159{
5160 u32 v;
5161
5162 if (pci_dev_is_disconnected(pdev))
5163 return false;
5164 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5165}
5166EXPORT_SYMBOL_GPL(pci_device_is_present);
5167
5168void pci_ignore_hotplug(struct pci_dev *dev)
5169{
5170 struct pci_dev *bridge = dev->bus->self;
5171
5172 dev->ignore_hotplug = 1;
5173 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5174 if (bridge)
5175 bridge->ignore_hotplug = 1;
5176}
5177EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5178
5179resource_size_t __weak pcibios_default_alignment(void)
5180{
5181 return 0;
5182}
5183
5184#define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5185static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5186static DEFINE_SPINLOCK(resource_alignment_lock);
5187
5188/**
5189 * pci_specified_resource_alignment - get resource alignment specified by user.
5190 * @dev: the PCI device to get
5191 * @resize: whether or not to change resources' size when reassigning alignment
5192 *
5193 * RETURNS: Resource alignment if it is specified.
5194 * Zero if it is not specified.
5195 */
5196static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5197 bool *resize)
5198{
5199 int seg, bus, slot, func, align_order, count;
5200 unsigned short vendor, device, subsystem_vendor, subsystem_device;
5201 resource_size_t align = pcibios_default_alignment();
5202 char *p;
5203
5204 spin_lock(&resource_alignment_lock);
5205 p = resource_alignment_param;
5206 if (!*p && !align)
5207 goto out;
5208 if (pci_has_flag(PCI_PROBE_ONLY)) {
5209 align = 0;
5210 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5211 goto out;
5212 }
5213
5214 while (*p) {
5215 count = 0;
5216 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5217 p[count] == '@') {
5218 p += count + 1;
5219 } else {
5220 align_order = -1;
5221 }
5222 if (strncmp(p, "pci:", 4) == 0) {
5223 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5224 p += 4;
5225 if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5226 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5227 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5228 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5229 p);
5230 break;
5231 }
5232 subsystem_vendor = subsystem_device = 0;
5233 }
5234 p += count;
5235 if ((!vendor || (vendor == dev->vendor)) &&
5236 (!device || (device == dev->device)) &&
5237 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5238 (!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5239 *resize = true;
5240 if (align_order == -1)
5241 align = PAGE_SIZE;
5242 else
5243 align = 1 << align_order;
5244 /* Found */
5245 break;
5246 }
5247 }
5248 else {
5249 if (sscanf(p, "%x:%x:%x.%x%n",
5250 &seg, &bus, &slot, &func, &count) != 4) {
5251 seg = 0;
5252 if (sscanf(p, "%x:%x.%x%n",
5253 &bus, &slot, &func, &count) != 3) {
5254 /* Invalid format */
5255 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5256 p);
5257 break;
5258 }
5259 }
5260 p += count;
5261 if (seg == pci_domain_nr(dev->bus) &&
5262 bus == dev->bus->number &&
5263 slot == PCI_SLOT(dev->devfn) &&
5264 func == PCI_FUNC(dev->devfn)) {
5265 *resize = true;
5266 if (align_order == -1)
5267 align = PAGE_SIZE;
5268 else
5269 align = 1 << align_order;
5270 /* Found */
5271 break;
5272 }
5273 }
5274 if (*p != ';' && *p != ',') {
5275 /* End of param or invalid format */
5276 break;
5277 }
5278 p++;
5279 }
5280out:
5281 spin_unlock(&resource_alignment_lock);
5282 return align;
5283}
5284
5285static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5286 resource_size_t align, bool resize)
5287{
5288 struct resource *r = &dev->resource[bar];
5289 resource_size_t size;
5290
5291 if (!(r->flags & IORESOURCE_MEM))
5292 return;
5293
5294 if (r->flags & IORESOURCE_PCI_FIXED) {
5295 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5296 bar, r, (unsigned long long)align);
5297 return;
5298 }
5299
5300 size = resource_size(r);
5301 if (size >= align)
5302 return;
5303
5304 /*
5305 * Increase the alignment of the resource. There are two ways we
5306 * can do this:
5307 *
5308 * 1) Increase the size of the resource. BARs are aligned on their
5309 * size, so when we reallocate space for this resource, we'll
5310 * allocate it with the larger alignment. This also prevents
5311 * assignment of any other BARs inside the alignment region, so
5312 * if we're requesting page alignment, this means no other BARs
5313 * will share the page.
5314 *
5315 * The disadvantage is that this makes the resource larger than
5316 * the hardware BAR, which may break drivers that compute things
5317 * based on the resource size, e.g., to find registers at a
5318 * fixed offset before the end of the BAR.
5319 *
5320 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5321 * set r->start to the desired alignment. By itself this
5322 * doesn't prevent other BARs being put inside the alignment
5323 * region, but if we realign *every* resource of every device in
5324 * the system, none of them will share an alignment region.
5325 *
5326 * When the user has requested alignment for only some devices via
5327 * the "pci=resource_alignment" argument, "resize" is true and we
5328 * use the first method. Otherwise we assume we're aligning all
5329 * devices and we use the second.
5330 */
5331
5332 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n",
5333 bar, r, (unsigned long long)align);
5334
5335 if (resize) {
5336 r->start = 0;
5337 r->end = align - 1;
5338 } else {
5339 r->flags &= ~IORESOURCE_SIZEALIGN;
5340 r->flags |= IORESOURCE_STARTALIGN;
5341 r->start = align;
5342 r->end = r->start + size - 1;
5343 }
5344 r->flags |= IORESOURCE_UNSET;
5345}
5346
5347/*
5348 * This function disables memory decoding and releases memory resources
5349 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5350 * It also rounds up size to specified alignment.
5351 * Later on, the kernel will assign page-aligned memory resource back
5352 * to the device.
5353 */
5354void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5355{
5356 int i;
5357 struct resource *r;
5358 resource_size_t align;
5359 u16 command;
5360 bool resize = false;
5361
5362 /*
5363 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5364 * 3.4.1.11. Their resources are allocated from the space
5365 * described by the VF BARx register in the PF's SR-IOV capability.
5366 * We can't influence their alignment here.
5367 */
5368 if (dev->is_virtfn)
5369 return;
5370
5371 /* check if specified PCI is target device to reassign */
5372 align = pci_specified_resource_alignment(dev, &resize);
5373 if (!align)
5374 return;
5375
5376 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5377 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5378 dev_warn(&dev->dev,
5379 "Can't reassign resources to host bridge.\n");
5380 return;
5381 }
5382
5383 dev_info(&dev->dev,
5384 "Disabling memory decoding and releasing memory resources.\n");
5385 pci_read_config_word(dev, PCI_COMMAND, &command);
5386 command &= ~PCI_COMMAND_MEMORY;
5387 pci_write_config_word(dev, PCI_COMMAND, command);
5388
5389 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5390 pci_request_resource_alignment(dev, i, align, resize);
5391
5392 /*
5393 * Need to disable bridge's resource window,
5394 * to enable the kernel to reassign new resource
5395 * window later on.
5396 */
5397 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5398 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5399 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5400 r = &dev->resource[i];
5401 if (!(r->flags & IORESOURCE_MEM))
5402 continue;
5403 r->flags |= IORESOURCE_UNSET;
5404 r->end = resource_size(r) - 1;
5405 r->start = 0;
5406 }
5407 pci_disable_bridge_window(dev);
5408 }
5409}
5410
5411static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5412{
5413 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5414 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5415 spin_lock(&resource_alignment_lock);
5416 strncpy(resource_alignment_param, buf, count);
5417 resource_alignment_param[count] = '\0';
5418 spin_unlock(&resource_alignment_lock);
5419 return count;
5420}
5421
5422static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5423{
5424 size_t count;
5425 spin_lock(&resource_alignment_lock);
5426 count = snprintf(buf, size, "%s", resource_alignment_param);
5427 spin_unlock(&resource_alignment_lock);
5428 return count;
5429}
5430
5431static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5432{
5433 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5434}
5435
5436static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5437 const char *buf, size_t count)
5438{
5439 return pci_set_resource_alignment_param(buf, count);
5440}
5441
5442static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5443 pci_resource_alignment_store);
5444
5445static int __init pci_resource_alignment_sysfs_init(void)
5446{
5447 return bus_create_file(&pci_bus_type,
5448 &bus_attr_resource_alignment);
5449}
5450late_initcall(pci_resource_alignment_sysfs_init);
5451
5452static void pci_no_domains(void)
5453{
5454#ifdef CONFIG_PCI_DOMAINS
5455 pci_domains_supported = 0;
5456#endif
5457}
5458
5459#ifdef CONFIG_PCI_DOMAINS
5460static atomic_t __domain_nr = ATOMIC_INIT(-1);
5461
5462int pci_get_new_domain_nr(void)
5463{
5464 return atomic_inc_return(&__domain_nr);
5465}
5466
5467#ifdef CONFIG_PCI_DOMAINS_GENERIC
5468static int of_pci_bus_find_domain_nr(struct device *parent)
5469{
5470 static int use_dt_domains = -1;
5471 int domain = -1;
5472
5473 if (parent)
5474 domain = of_get_pci_domain_nr(parent->of_node);
5475 /*
5476 * Check DT domain and use_dt_domains values.
5477 *
5478 * If DT domain property is valid (domain >= 0) and
5479 * use_dt_domains != 0, the DT assignment is valid since this means
5480 * we have not previously allocated a domain number by using
5481 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5482 * 1, to indicate that we have just assigned a domain number from
5483 * DT.
5484 *
5485 * If DT domain property value is not valid (ie domain < 0), and we
5486 * have not previously assigned a domain number from DT
5487 * (use_dt_domains != 1) we should assign a domain number by
5488 * using the:
5489 *
5490 * pci_get_new_domain_nr()
5491 *
5492 * API and update the use_dt_domains value to keep track of method we
5493 * are using to assign domain numbers (use_dt_domains = 0).
5494 *
5495 * All other combinations imply we have a platform that is trying
5496 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5497 * which is a recipe for domain mishandling and it is prevented by
5498 * invalidating the domain value (domain = -1) and printing a
5499 * corresponding error.
5500 */
5501 if (domain >= 0 && use_dt_domains) {
5502 use_dt_domains = 1;
5503 } else if (domain < 0 && use_dt_domains != 1) {
5504 use_dt_domains = 0;
5505 domain = pci_get_new_domain_nr();
5506 } else {
5507 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5508 parent->of_node);
5509 domain = -1;
5510 }
5511
5512 return domain;
5513}
5514
5515int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5516{
5517 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5518 acpi_pci_bus_find_domain_nr(bus);
5519}
5520#endif
5521#endif
5522
5523/**
5524 * pci_ext_cfg_avail - can we access extended PCI config space?
5525 *
5526 * Returns 1 if we can access PCI extended config space (offsets
5527 * greater than 0xff). This is the default implementation. Architecture
5528 * implementations can override this.
5529 */
5530int __weak pci_ext_cfg_avail(void)
5531{
5532 return 1;
5533}
5534
5535void __weak pci_fixup_cardbus(struct pci_bus *bus)
5536{
5537}
5538EXPORT_SYMBOL(pci_fixup_cardbus);
5539
5540static int __init pci_setup(char *str)
5541{
5542 while (str) {
5543 char *k = strchr(str, ',');
5544 if (k)
5545 *k++ = 0;
5546 if (*str && (str = pcibios_setup(str)) && *str) {
5547 if (!strcmp(str, "nomsi")) {
5548 pci_no_msi();
5549 } else if (!strcmp(str, "noaer")) {
5550 pci_no_aer();
5551 } else if (!strncmp(str, "realloc=", 8)) {
5552 pci_realloc_get_opt(str + 8);
5553 } else if (!strncmp(str, "realloc", 7)) {
5554 pci_realloc_get_opt("on");
5555 } else if (!strcmp(str, "nodomains")) {
5556 pci_no_domains();
5557 } else if (!strncmp(str, "noari", 5)) {
5558 pcie_ari_disabled = true;
5559 } else if (!strncmp(str, "cbiosize=", 9)) {
5560 pci_cardbus_io_size = memparse(str + 9, &str);
5561 } else if (!strncmp(str, "cbmemsize=", 10)) {
5562 pci_cardbus_mem_size = memparse(str + 10, &str);
5563 } else if (!strncmp(str, "resource_alignment=", 19)) {
5564 pci_set_resource_alignment_param(str + 19,
5565 strlen(str + 19));
5566 } else if (!strncmp(str, "ecrc=", 5)) {
5567 pcie_ecrc_get_policy(str + 5);
5568 } else if (!strncmp(str, "hpiosize=", 9)) {
5569 pci_hotplug_io_size = memparse(str + 9, &str);
5570 } else if (!strncmp(str, "hpmemsize=", 10)) {
5571 pci_hotplug_mem_size = memparse(str + 10, &str);
5572 } else if (!strncmp(str, "hpbussize=", 10)) {
5573 pci_hotplug_bus_size =
5574 simple_strtoul(str + 10, &str, 0);
5575 if (pci_hotplug_bus_size > 0xff)
5576 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5577 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5578 pcie_bus_config = PCIE_BUS_TUNE_OFF;
5579 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
5580 pcie_bus_config = PCIE_BUS_SAFE;
5581 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
5582 pcie_bus_config = PCIE_BUS_PERFORMANCE;
5583 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5584 pcie_bus_config = PCIE_BUS_PEER2PEER;
5585 } else if (!strncmp(str, "pcie_scan_all", 13)) {
5586 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5587 } else {
5588 printk(KERN_ERR "PCI: Unknown option `%s'\n",
5589 str);
5590 }
5591 }
5592 str = k;
5593 }
5594 return 0;
5595}
5596early_param("pci", pci_setup);