rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * PCI Bus Services, see include/linux/pci.h for further explanation. |
| 3 | * |
| 4 | * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, |
| 5 | * David Mosberger-Tang |
| 6 | * |
| 7 | * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> |
| 8 | */ |
| 9 | |
| 10 | #include <linux/acpi.h> |
| 11 | #include <linux/kernel.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/dmi.h> |
| 14 | #include <linux/init.h> |
| 15 | #include <linux/of.h> |
| 16 | #include <linux/of_pci.h> |
| 17 | #include <linux/pci.h> |
| 18 | #include <linux/pm.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/module.h> |
| 21 | #include <linux/spinlock.h> |
| 22 | #include <linux/string.h> |
| 23 | #include <linux/log2.h> |
| 24 | #include <linux/pci-aspm.h> |
| 25 | #include <linux/pm_wakeup.h> |
| 26 | #include <linux/interrupt.h> |
| 27 | #include <linux/device.h> |
| 28 | #include <linux/pm_runtime.h> |
| 29 | #include <linux/pci_hotplug.h> |
| 30 | #include <linux/vmalloc.h> |
| 31 | #include <linux/pci-ats.h> |
| 32 | #include <asm/setup.h> |
| 33 | #include <asm/dma.h> |
| 34 | #include <linux/aer.h> |
| 35 | #include "pci.h" |
| 36 | |
| 37 | const char *pci_power_names[] = { |
| 38 | "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", |
| 39 | }; |
| 40 | EXPORT_SYMBOL_GPL(pci_power_names); |
| 41 | |
| 42 | int isa_dma_bridge_buggy; |
| 43 | EXPORT_SYMBOL(isa_dma_bridge_buggy); |
| 44 | |
| 45 | int pci_pci_problems; |
| 46 | EXPORT_SYMBOL(pci_pci_problems); |
| 47 | |
| 48 | unsigned int pci_pm_d3_delay; |
| 49 | |
| 50 | static void pci_pme_list_scan(struct work_struct *work); |
| 51 | |
| 52 | static LIST_HEAD(pci_pme_list); |
| 53 | static DEFINE_MUTEX(pci_pme_list_mutex); |
| 54 | static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); |
| 55 | |
| 56 | struct pci_pme_device { |
| 57 | struct list_head list; |
| 58 | struct pci_dev *dev; |
| 59 | }; |
| 60 | |
| 61 | #define PME_TIMEOUT 1000 /* How long between PME checks */ |
| 62 | |
| 63 | static void pci_dev_d3_sleep(struct pci_dev *dev) |
| 64 | { |
| 65 | unsigned int delay = dev->d3_delay; |
| 66 | |
| 67 | if (delay < pci_pm_d3_delay) |
| 68 | delay = pci_pm_d3_delay; |
| 69 | |
| 70 | if (delay) |
| 71 | msleep(delay); |
| 72 | } |
| 73 | |
| 74 | #ifdef CONFIG_PCI_DOMAINS |
| 75 | int pci_domains_supported = 1; |
| 76 | #endif |
| 77 | |
| 78 | #define DEFAULT_CARDBUS_IO_SIZE (256) |
| 79 | #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) |
| 80 | /* pci=cbmemsize=nnM,cbiosize=nn can override this */ |
| 81 | unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; |
| 82 | unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; |
| 83 | |
| 84 | #define DEFAULT_HOTPLUG_IO_SIZE (256) |
| 85 | #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) |
| 86 | /* pci=hpmemsize=nnM,hpiosize=nn can override this */ |
| 87 | unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; |
| 88 | unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; |
| 89 | |
| 90 | #define DEFAULT_HOTPLUG_BUS_SIZE 1 |
| 91 | unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; |
| 92 | |
| 93 | enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; |
| 94 | |
| 95 | /* |
| 96 | * The default CLS is used if arch didn't set CLS explicitly and not |
| 97 | * all pci devices agree on the same value. Arch can override either |
| 98 | * the dfl or actual value as it sees fit. Don't forget this is |
| 99 | * measured in 32-bit words, not bytes. |
| 100 | */ |
| 101 | u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; |
| 102 | u8 pci_cache_line_size; |
| 103 | |
| 104 | /* |
| 105 | * If we set up a device for bus mastering, we need to check the latency |
| 106 | * timer as certain BIOSes forget to set it properly. |
| 107 | */ |
| 108 | unsigned int pcibios_max_latency = 255; |
| 109 | |
| 110 | /* If set, the PCIe ARI capability will not be used. */ |
| 111 | static bool pcie_ari_disabled; |
| 112 | |
| 113 | /* Disable bridge_d3 for all PCIe ports */ |
| 114 | static bool pci_bridge_d3_disable; |
| 115 | /* Force bridge_d3 for all PCIe ports */ |
| 116 | static bool pci_bridge_d3_force; |
| 117 | |
| 118 | static int __init pcie_port_pm_setup(char *str) |
| 119 | { |
| 120 | if (!strcmp(str, "off")) |
| 121 | pci_bridge_d3_disable = true; |
| 122 | else if (!strcmp(str, "force")) |
| 123 | pci_bridge_d3_force = true; |
| 124 | return 1; |
| 125 | } |
| 126 | __setup("pcie_port_pm=", pcie_port_pm_setup); |
| 127 | |
| 128 | /** |
| 129 | * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children |
| 130 | * @bus: pointer to PCI bus structure to search |
| 131 | * |
| 132 | * Given a PCI bus, returns the highest PCI bus number present in the set |
| 133 | * including the given PCI bus and its list of child PCI buses. |
| 134 | */ |
| 135 | unsigned char pci_bus_max_busnr(struct pci_bus *bus) |
| 136 | { |
| 137 | struct pci_bus *tmp; |
| 138 | unsigned char max, n; |
| 139 | |
| 140 | max = bus->busn_res.end; |
| 141 | list_for_each_entry(tmp, &bus->children, node) { |
| 142 | n = pci_bus_max_busnr(tmp); |
| 143 | if (n > max) |
| 144 | max = n; |
| 145 | } |
| 146 | return max; |
| 147 | } |
| 148 | EXPORT_SYMBOL_GPL(pci_bus_max_busnr); |
| 149 | |
| 150 | #ifdef CONFIG_HAS_IOMEM |
| 151 | void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) |
| 152 | { |
| 153 | struct resource *res = &pdev->resource[bar]; |
| 154 | |
| 155 | /* |
| 156 | * Make sure the BAR is actually a memory resource, not an IO resource |
| 157 | */ |
| 158 | if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { |
| 159 | dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); |
| 160 | return NULL; |
| 161 | } |
| 162 | return ioremap_nocache(res->start, resource_size(res)); |
| 163 | } |
| 164 | EXPORT_SYMBOL_GPL(pci_ioremap_bar); |
| 165 | |
| 166 | void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) |
| 167 | { |
| 168 | /* |
| 169 | * Make sure the BAR is actually a memory resource, not an IO resource |
| 170 | */ |
| 171 | if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { |
| 172 | WARN_ON(1); |
| 173 | return NULL; |
| 174 | } |
| 175 | return ioremap_wc(pci_resource_start(pdev, bar), |
| 176 | pci_resource_len(pdev, bar)); |
| 177 | } |
| 178 | EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); |
| 179 | #endif |
| 180 | |
| 181 | |
| 182 | static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, |
| 183 | u8 pos, int cap, int *ttl) |
| 184 | { |
| 185 | u8 id; |
| 186 | u16 ent; |
| 187 | |
| 188 | pci_bus_read_config_byte(bus, devfn, pos, &pos); |
| 189 | |
| 190 | while ((*ttl)--) { |
| 191 | if (pos < 0x40) |
| 192 | break; |
| 193 | pos &= ~3; |
| 194 | pci_bus_read_config_word(bus, devfn, pos, &ent); |
| 195 | |
| 196 | id = ent & 0xff; |
| 197 | if (id == 0xff) |
| 198 | break; |
| 199 | if (id == cap) |
| 200 | return pos; |
| 201 | pos = (ent >> 8); |
| 202 | } |
| 203 | return 0; |
| 204 | } |
| 205 | |
| 206 | static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, |
| 207 | u8 pos, int cap) |
| 208 | { |
| 209 | int ttl = PCI_FIND_CAP_TTL; |
| 210 | |
| 211 | return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); |
| 212 | } |
| 213 | |
| 214 | int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) |
| 215 | { |
| 216 | return __pci_find_next_cap(dev->bus, dev->devfn, |
| 217 | pos + PCI_CAP_LIST_NEXT, cap); |
| 218 | } |
| 219 | EXPORT_SYMBOL_GPL(pci_find_next_capability); |
| 220 | |
| 221 | static int __pci_bus_find_cap_start(struct pci_bus *bus, |
| 222 | unsigned int devfn, u8 hdr_type) |
| 223 | { |
| 224 | u16 status; |
| 225 | |
| 226 | pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); |
| 227 | if (!(status & PCI_STATUS_CAP_LIST)) |
| 228 | return 0; |
| 229 | |
| 230 | switch (hdr_type) { |
| 231 | case PCI_HEADER_TYPE_NORMAL: |
| 232 | case PCI_HEADER_TYPE_BRIDGE: |
| 233 | return PCI_CAPABILITY_LIST; |
| 234 | case PCI_HEADER_TYPE_CARDBUS: |
| 235 | return PCI_CB_CAPABILITY_LIST; |
| 236 | } |
| 237 | |
| 238 | return 0; |
| 239 | } |
| 240 | |
| 241 | /** |
| 242 | * pci_find_capability - query for devices' capabilities |
| 243 | * @dev: PCI device to query |
| 244 | * @cap: capability code |
| 245 | * |
| 246 | * Tell if a device supports a given PCI capability. |
| 247 | * Returns the address of the requested capability structure within the |
| 248 | * device's PCI configuration space or 0 in case the device does not |
| 249 | * support it. Possible values for @cap: |
| 250 | * |
| 251 | * %PCI_CAP_ID_PM Power Management |
| 252 | * %PCI_CAP_ID_AGP Accelerated Graphics Port |
| 253 | * %PCI_CAP_ID_VPD Vital Product Data |
| 254 | * %PCI_CAP_ID_SLOTID Slot Identification |
| 255 | * %PCI_CAP_ID_MSI Message Signalled Interrupts |
| 256 | * %PCI_CAP_ID_CHSWP CompactPCI HotSwap |
| 257 | * %PCI_CAP_ID_PCIX PCI-X |
| 258 | * %PCI_CAP_ID_EXP PCI Express |
| 259 | */ |
| 260 | int pci_find_capability(struct pci_dev *dev, int cap) |
| 261 | { |
| 262 | int pos; |
| 263 | |
| 264 | pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); |
| 265 | if (pos) |
| 266 | pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); |
| 267 | |
| 268 | return pos; |
| 269 | } |
| 270 | EXPORT_SYMBOL(pci_find_capability); |
| 271 | |
| 272 | /** |
| 273 | * pci_bus_find_capability - query for devices' capabilities |
| 274 | * @bus: the PCI bus to query |
| 275 | * @devfn: PCI device to query |
| 276 | * @cap: capability code |
| 277 | * |
| 278 | * Like pci_find_capability() but works for pci devices that do not have a |
| 279 | * pci_dev structure set up yet. |
| 280 | * |
| 281 | * Returns the address of the requested capability structure within the |
| 282 | * device's PCI configuration space or 0 in case the device does not |
| 283 | * support it. |
| 284 | */ |
| 285 | int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) |
| 286 | { |
| 287 | int pos; |
| 288 | u8 hdr_type; |
| 289 | |
| 290 | pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); |
| 291 | |
| 292 | pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); |
| 293 | if (pos) |
| 294 | pos = __pci_find_next_cap(bus, devfn, pos, cap); |
| 295 | |
| 296 | return pos; |
| 297 | } |
| 298 | EXPORT_SYMBOL(pci_bus_find_capability); |
| 299 | |
| 300 | /** |
| 301 | * pci_find_next_ext_capability - Find an extended capability |
| 302 | * @dev: PCI device to query |
| 303 | * @start: address at which to start looking (0 to start at beginning of list) |
| 304 | * @cap: capability code |
| 305 | * |
| 306 | * Returns the address of the next matching extended capability structure |
| 307 | * within the device's PCI configuration space or 0 if the device does |
| 308 | * not support it. Some capabilities can occur several times, e.g., the |
| 309 | * vendor-specific capability, and this provides a way to find them all. |
| 310 | */ |
| 311 | int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) |
| 312 | { |
| 313 | u32 header; |
| 314 | int ttl; |
| 315 | int pos = PCI_CFG_SPACE_SIZE; |
| 316 | |
| 317 | /* minimum 8 bytes per capability */ |
| 318 | ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; |
| 319 | |
| 320 | if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) |
| 321 | return 0; |
| 322 | |
| 323 | if (start) |
| 324 | pos = start; |
| 325 | |
| 326 | if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) |
| 327 | return 0; |
| 328 | |
| 329 | /* |
| 330 | * If we have no capabilities, this is indicated by cap ID, |
| 331 | * cap version and next pointer all being 0. |
| 332 | */ |
| 333 | if (header == 0) |
| 334 | return 0; |
| 335 | |
| 336 | while (ttl-- > 0) { |
| 337 | if (PCI_EXT_CAP_ID(header) == cap && pos != start) |
| 338 | return pos; |
| 339 | |
| 340 | pos = PCI_EXT_CAP_NEXT(header); |
| 341 | if (pos < PCI_CFG_SPACE_SIZE) |
| 342 | break; |
| 343 | |
| 344 | if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) |
| 345 | break; |
| 346 | } |
| 347 | |
| 348 | return 0; |
| 349 | } |
| 350 | EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); |
| 351 | |
| 352 | /** |
| 353 | * pci_find_ext_capability - Find an extended capability |
| 354 | * @dev: PCI device to query |
| 355 | * @cap: capability code |
| 356 | * |
| 357 | * Returns the address of the requested extended capability structure |
| 358 | * within the device's PCI configuration space or 0 if the device does |
| 359 | * not support it. Possible values for @cap: |
| 360 | * |
| 361 | * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting |
| 362 | * %PCI_EXT_CAP_ID_VC Virtual Channel |
| 363 | * %PCI_EXT_CAP_ID_DSN Device Serial Number |
| 364 | * %PCI_EXT_CAP_ID_PWR Power Budgeting |
| 365 | */ |
| 366 | int pci_find_ext_capability(struct pci_dev *dev, int cap) |
| 367 | { |
| 368 | return pci_find_next_ext_capability(dev, 0, cap); |
| 369 | } |
| 370 | EXPORT_SYMBOL_GPL(pci_find_ext_capability); |
| 371 | |
| 372 | static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) |
| 373 | { |
| 374 | int rc, ttl = PCI_FIND_CAP_TTL; |
| 375 | u8 cap, mask; |
| 376 | |
| 377 | if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) |
| 378 | mask = HT_3BIT_CAP_MASK; |
| 379 | else |
| 380 | mask = HT_5BIT_CAP_MASK; |
| 381 | |
| 382 | pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, |
| 383 | PCI_CAP_ID_HT, &ttl); |
| 384 | while (pos) { |
| 385 | rc = pci_read_config_byte(dev, pos + 3, &cap); |
| 386 | if (rc != PCIBIOS_SUCCESSFUL) |
| 387 | return 0; |
| 388 | |
| 389 | if ((cap & mask) == ht_cap) |
| 390 | return pos; |
| 391 | |
| 392 | pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, |
| 393 | pos + PCI_CAP_LIST_NEXT, |
| 394 | PCI_CAP_ID_HT, &ttl); |
| 395 | } |
| 396 | |
| 397 | return 0; |
| 398 | } |
| 399 | /** |
| 400 | * pci_find_next_ht_capability - query a device's Hypertransport capabilities |
| 401 | * @dev: PCI device to query |
| 402 | * @pos: Position from which to continue searching |
| 403 | * @ht_cap: Hypertransport capability code |
| 404 | * |
| 405 | * To be used in conjunction with pci_find_ht_capability() to search for |
| 406 | * all capabilities matching @ht_cap. @pos should always be a value returned |
| 407 | * from pci_find_ht_capability(). |
| 408 | * |
| 409 | * NB. To be 100% safe against broken PCI devices, the caller should take |
| 410 | * steps to avoid an infinite loop. |
| 411 | */ |
| 412 | int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) |
| 413 | { |
| 414 | return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); |
| 415 | } |
| 416 | EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); |
| 417 | |
| 418 | /** |
| 419 | * pci_find_ht_capability - query a device's Hypertransport capabilities |
| 420 | * @dev: PCI device to query |
| 421 | * @ht_cap: Hypertransport capability code |
| 422 | * |
| 423 | * Tell if a device supports a given Hypertransport capability. |
| 424 | * Returns an address within the device's PCI configuration space |
| 425 | * or 0 in case the device does not support the request capability. |
| 426 | * The address points to the PCI capability, of type PCI_CAP_ID_HT, |
| 427 | * which has a Hypertransport capability matching @ht_cap. |
| 428 | */ |
| 429 | int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) |
| 430 | { |
| 431 | int pos; |
| 432 | |
| 433 | pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); |
| 434 | if (pos) |
| 435 | pos = __pci_find_next_ht_cap(dev, pos, ht_cap); |
| 436 | |
| 437 | return pos; |
| 438 | } |
| 439 | EXPORT_SYMBOL_GPL(pci_find_ht_capability); |
| 440 | |
| 441 | /** |
| 442 | * pci_find_parent_resource - return resource region of parent bus of given region |
| 443 | * @dev: PCI device structure contains resources to be searched |
| 444 | * @res: child resource record for which parent is sought |
| 445 | * |
| 446 | * For given resource region of given device, return the resource |
| 447 | * region of parent bus the given region is contained in. |
| 448 | */ |
| 449 | struct resource *pci_find_parent_resource(const struct pci_dev *dev, |
| 450 | struct resource *res) |
| 451 | { |
| 452 | const struct pci_bus *bus = dev->bus; |
| 453 | struct resource *r; |
| 454 | int i; |
| 455 | |
| 456 | pci_bus_for_each_resource(bus, r, i) { |
| 457 | if (!r) |
| 458 | continue; |
| 459 | if (resource_contains(r, res)) { |
| 460 | |
| 461 | /* |
| 462 | * If the window is prefetchable but the BAR is |
| 463 | * not, the allocator made a mistake. |
| 464 | */ |
| 465 | if (r->flags & IORESOURCE_PREFETCH && |
| 466 | !(res->flags & IORESOURCE_PREFETCH)) |
| 467 | return NULL; |
| 468 | |
| 469 | /* |
| 470 | * If we're below a transparent bridge, there may |
| 471 | * be both a positively-decoded aperture and a |
| 472 | * subtractively-decoded region that contain the BAR. |
| 473 | * We want the positively-decoded one, so this depends |
| 474 | * on pci_bus_for_each_resource() giving us those |
| 475 | * first. |
| 476 | */ |
| 477 | return r; |
| 478 | } |
| 479 | } |
| 480 | return NULL; |
| 481 | } |
| 482 | EXPORT_SYMBOL(pci_find_parent_resource); |
| 483 | |
| 484 | /** |
| 485 | * pci_find_resource - Return matching PCI device resource |
| 486 | * @dev: PCI device to query |
| 487 | * @res: Resource to look for |
| 488 | * |
| 489 | * Goes over standard PCI resources (BARs) and checks if the given resource |
| 490 | * is partially or fully contained in any of them. In that case the |
| 491 | * matching resource is returned, %NULL otherwise. |
| 492 | */ |
| 493 | struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) |
| 494 | { |
| 495 | int i; |
| 496 | |
| 497 | for (i = 0; i < PCI_ROM_RESOURCE; i++) { |
| 498 | struct resource *r = &dev->resource[i]; |
| 499 | |
| 500 | if (r->start && resource_contains(r, res)) |
| 501 | return r; |
| 502 | } |
| 503 | |
| 504 | return NULL; |
| 505 | } |
| 506 | EXPORT_SYMBOL(pci_find_resource); |
| 507 | |
| 508 | /** |
| 509 | * pci_find_pcie_root_port - return PCIe Root Port |
| 510 | * @dev: PCI device to query |
| 511 | * |
| 512 | * Traverse up the parent chain and return the PCIe Root Port PCI Device |
| 513 | * for a given PCI Device. |
| 514 | */ |
| 515 | struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) |
| 516 | { |
| 517 | struct pci_dev *bridge, *highest_pcie_bridge = dev; |
| 518 | |
| 519 | bridge = pci_upstream_bridge(dev); |
| 520 | while (bridge && pci_is_pcie(bridge)) { |
| 521 | highest_pcie_bridge = bridge; |
| 522 | bridge = pci_upstream_bridge(bridge); |
| 523 | } |
| 524 | |
| 525 | if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) |
| 526 | return NULL; |
| 527 | |
| 528 | return highest_pcie_bridge; |
| 529 | } |
| 530 | EXPORT_SYMBOL(pci_find_pcie_root_port); |
| 531 | |
| 532 | /** |
| 533 | * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos |
| 534 | * @dev: the PCI device to operate on |
| 535 | * @pos: config space offset of status word |
| 536 | * @mask: mask of bit(s) to care about in status word |
| 537 | * |
| 538 | * Return 1 when mask bit(s) in status word clear, 0 otherwise. |
| 539 | */ |
| 540 | int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) |
| 541 | { |
| 542 | int i; |
| 543 | |
| 544 | /* Wait for Transaction Pending bit clean */ |
| 545 | for (i = 0; i < 4; i++) { |
| 546 | u16 status; |
| 547 | if (i) |
| 548 | msleep((1 << (i - 1)) * 100); |
| 549 | |
| 550 | pci_read_config_word(dev, pos, &status); |
| 551 | if (!(status & mask)) |
| 552 | return 1; |
| 553 | } |
| 554 | |
| 555 | return 0; |
| 556 | } |
| 557 | |
| 558 | /** |
| 559 | * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) |
| 560 | * @dev: PCI device to have its BARs restored |
| 561 | * |
| 562 | * Restore the BAR values for a given device, so as to make it |
| 563 | * accessible by its driver. |
| 564 | */ |
| 565 | static void pci_restore_bars(struct pci_dev *dev) |
| 566 | { |
| 567 | int i; |
| 568 | |
| 569 | for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) |
| 570 | pci_update_resource(dev, i); |
| 571 | } |
| 572 | |
| 573 | static const struct pci_platform_pm_ops *pci_platform_pm; |
| 574 | |
| 575 | int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) |
| 576 | { |
| 577 | if (!ops->is_manageable || !ops->set_state || !ops->get_state || |
| 578 | !ops->choose_state || !ops->set_wakeup || !ops->need_resume) |
| 579 | return -EINVAL; |
| 580 | pci_platform_pm = ops; |
| 581 | return 0; |
| 582 | } |
| 583 | |
| 584 | static inline bool platform_pci_power_manageable(struct pci_dev *dev) |
| 585 | { |
| 586 | return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; |
| 587 | } |
| 588 | |
| 589 | static inline int platform_pci_set_power_state(struct pci_dev *dev, |
| 590 | pci_power_t t) |
| 591 | { |
| 592 | return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; |
| 593 | } |
| 594 | |
| 595 | static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) |
| 596 | { |
| 597 | return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; |
| 598 | } |
| 599 | |
| 600 | static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) |
| 601 | { |
| 602 | return pci_platform_pm ? |
| 603 | pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; |
| 604 | } |
| 605 | |
| 606 | static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) |
| 607 | { |
| 608 | return pci_platform_pm ? |
| 609 | pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; |
| 610 | } |
| 611 | |
| 612 | static inline bool platform_pci_need_resume(struct pci_dev *dev) |
| 613 | { |
| 614 | return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; |
| 615 | } |
| 616 | |
| 617 | /** |
| 618 | * pci_raw_set_power_state - Use PCI PM registers to set the power state of |
| 619 | * given PCI device |
| 620 | * @dev: PCI device to handle. |
| 621 | * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. |
| 622 | * |
| 623 | * RETURN VALUE: |
| 624 | * -EINVAL if the requested state is invalid. |
| 625 | * -EIO if device does not support PCI PM or its PM capabilities register has a |
| 626 | * wrong version, or device doesn't support the requested state. |
| 627 | * 0 if device already is in the requested state. |
| 628 | * 0 if device's power state has been successfully changed. |
| 629 | */ |
| 630 | static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) |
| 631 | { |
| 632 | u16 pmcsr; |
| 633 | bool need_restore = false; |
| 634 | |
| 635 | /* Check if we're already there */ |
| 636 | if (dev->current_state == state) |
| 637 | return 0; |
| 638 | |
| 639 | if (!dev->pm_cap) |
| 640 | return -EIO; |
| 641 | |
| 642 | if (state < PCI_D0 || state > PCI_D3hot) |
| 643 | return -EINVAL; |
| 644 | |
| 645 | /* Validate current state: |
| 646 | * Can enter D0 from any state, but if we can only go deeper |
| 647 | * to sleep if we're already in a low power state |
| 648 | */ |
| 649 | if (state != PCI_D0 && dev->current_state <= PCI_D3cold |
| 650 | && dev->current_state > state) { |
| 651 | dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", |
| 652 | dev->current_state, state); |
| 653 | return -EINVAL; |
| 654 | } |
| 655 | |
| 656 | /* check if this device supports the desired state */ |
| 657 | if ((state == PCI_D1 && !dev->d1_support) |
| 658 | || (state == PCI_D2 && !dev->d2_support)) |
| 659 | return -EIO; |
| 660 | |
| 661 | pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| 662 | |
| 663 | /* If we're (effectively) in D3, force entire word to 0. |
| 664 | * This doesn't affect PME_Status, disables PME_En, and |
| 665 | * sets PowerState to 0. |
| 666 | */ |
| 667 | switch (dev->current_state) { |
| 668 | case PCI_D0: |
| 669 | case PCI_D1: |
| 670 | case PCI_D2: |
| 671 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| 672 | pmcsr |= state; |
| 673 | break; |
| 674 | case PCI_D3hot: |
| 675 | case PCI_D3cold: |
| 676 | case PCI_UNKNOWN: /* Boot-up */ |
| 677 | if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot |
| 678 | && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) |
| 679 | need_restore = true; |
| 680 | /* Fall-through: force to D0 */ |
| 681 | default: |
| 682 | pmcsr = 0; |
| 683 | break; |
| 684 | } |
| 685 | |
| 686 | /* enter specified state */ |
| 687 | pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); |
| 688 | |
| 689 | /* Mandatory power management transition delays */ |
| 690 | /* see PCI PM 1.1 5.6.1 table 18 */ |
| 691 | if (state == PCI_D3hot || dev->current_state == PCI_D3hot) |
| 692 | pci_dev_d3_sleep(dev); |
| 693 | else if (state == PCI_D2 || dev->current_state == PCI_D2) |
| 694 | udelay(PCI_PM_D2_DELAY); |
| 695 | |
| 696 | pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| 697 | dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); |
| 698 | if (dev->current_state != state && printk_ratelimit()) |
| 699 | dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", |
| 700 | dev->current_state); |
| 701 | |
| 702 | /* |
| 703 | * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT |
| 704 | * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning |
| 705 | * from D3hot to D0 _may_ perform an internal reset, thereby |
| 706 | * going to "D0 Uninitialized" rather than "D0 Initialized". |
| 707 | * For example, at least some versions of the 3c905B and the |
| 708 | * 3c556B exhibit this behaviour. |
| 709 | * |
| 710 | * At least some laptop BIOSen (e.g. the Thinkpad T21) leave |
| 711 | * devices in a D3hot state at boot. Consequently, we need to |
| 712 | * restore at least the BARs so that the device will be |
| 713 | * accessible to its driver. |
| 714 | */ |
| 715 | if (need_restore) |
| 716 | pci_restore_bars(dev); |
| 717 | |
| 718 | if (dev->bus->self) |
| 719 | pcie_aspm_pm_state_change(dev->bus->self); |
| 720 | |
| 721 | return 0; |
| 722 | } |
| 723 | |
| 724 | /** |
| 725 | * pci_update_current_state - Read power state of given device and cache it |
| 726 | * @dev: PCI device to handle. |
| 727 | * @state: State to cache in case the device doesn't have the PM capability |
| 728 | * |
| 729 | * The power state is read from the PMCSR register, which however is |
| 730 | * inaccessible in D3cold. The platform firmware is therefore queried first |
| 731 | * to detect accessibility of the register. In case the platform firmware |
| 732 | * reports an incorrect state or the device isn't power manageable by the |
| 733 | * platform at all, we try to detect D3cold by testing accessibility of the |
| 734 | * vendor ID in config space. |
| 735 | */ |
| 736 | void pci_update_current_state(struct pci_dev *dev, pci_power_t state) |
| 737 | { |
| 738 | if (platform_pci_get_power_state(dev) == PCI_D3cold || |
| 739 | !pci_device_is_present(dev)) { |
| 740 | dev->current_state = PCI_D3cold; |
| 741 | } else if (dev->pm_cap) { |
| 742 | u16 pmcsr; |
| 743 | |
| 744 | pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| 745 | dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); |
| 746 | } else { |
| 747 | dev->current_state = state; |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | /** |
| 752 | * pci_platform_power_transition - Use platform to change device power state |
| 753 | * @dev: PCI device to handle. |
| 754 | * @state: State to put the device into. |
| 755 | */ |
| 756 | static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) |
| 757 | { |
| 758 | int error; |
| 759 | |
| 760 | if (platform_pci_power_manageable(dev)) { |
| 761 | error = platform_pci_set_power_state(dev, state); |
| 762 | if (!error) |
| 763 | pci_update_current_state(dev, state); |
| 764 | } else |
| 765 | error = -ENODEV; |
| 766 | |
| 767 | if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ |
| 768 | dev->current_state = PCI_D0; |
| 769 | |
| 770 | return error; |
| 771 | } |
| 772 | |
| 773 | /** |
| 774 | * pci_wakeup - Wake up a PCI device |
| 775 | * @pci_dev: Device to handle. |
| 776 | * @ign: ignored parameter |
| 777 | */ |
| 778 | static int pci_wakeup(struct pci_dev *pci_dev, void *ign) |
| 779 | { |
| 780 | pci_wakeup_event(pci_dev); |
| 781 | pm_request_resume(&pci_dev->dev); |
| 782 | return 0; |
| 783 | } |
| 784 | |
| 785 | /** |
| 786 | * pci_wakeup_bus - Walk given bus and wake up devices on it |
| 787 | * @bus: Top bus of the subtree to walk. |
| 788 | */ |
| 789 | static void pci_wakeup_bus(struct pci_bus *bus) |
| 790 | { |
| 791 | if (bus) |
| 792 | pci_walk_bus(bus, pci_wakeup, NULL); |
| 793 | } |
| 794 | |
| 795 | /** |
| 796 | * __pci_start_power_transition - Start power transition of a PCI device |
| 797 | * @dev: PCI device to handle. |
| 798 | * @state: State to put the device into. |
| 799 | */ |
| 800 | static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) |
| 801 | { |
| 802 | if (state == PCI_D0) { |
| 803 | pci_platform_power_transition(dev, PCI_D0); |
| 804 | /* |
| 805 | * Mandatory power management transition delays, see |
| 806 | * PCI Express Base Specification Revision 2.0 Section |
| 807 | * 6.6.1: Conventional Reset. Do not delay for |
| 808 | * devices powered on/off by corresponding bridge, |
| 809 | * because have already delayed for the bridge. |
| 810 | */ |
| 811 | if (dev->runtime_d3cold) { |
| 812 | if (dev->d3cold_delay) |
| 813 | msleep(dev->d3cold_delay); |
| 814 | /* |
| 815 | * When powering on a bridge from D3cold, the |
| 816 | * whole hierarchy may be powered on into |
| 817 | * D0uninitialized state, resume them to give |
| 818 | * them a chance to suspend again |
| 819 | */ |
| 820 | pci_wakeup_bus(dev->subordinate); |
| 821 | } |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | /** |
| 826 | * __pci_dev_set_current_state - Set current state of a PCI device |
| 827 | * @dev: Device to handle |
| 828 | * @data: pointer to state to be set |
| 829 | */ |
| 830 | static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) |
| 831 | { |
| 832 | pci_power_t state = *(pci_power_t *)data; |
| 833 | |
| 834 | dev->current_state = state; |
| 835 | return 0; |
| 836 | } |
| 837 | |
| 838 | /** |
| 839 | * __pci_bus_set_current_state - Walk given bus and set current state of devices |
| 840 | * @bus: Top bus of the subtree to walk. |
| 841 | * @state: state to be set |
| 842 | */ |
| 843 | static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) |
| 844 | { |
| 845 | if (bus) |
| 846 | pci_walk_bus(bus, __pci_dev_set_current_state, &state); |
| 847 | } |
| 848 | |
| 849 | /** |
| 850 | * __pci_complete_power_transition - Complete power transition of a PCI device |
| 851 | * @dev: PCI device to handle. |
| 852 | * @state: State to put the device into. |
| 853 | * |
| 854 | * This function should not be called directly by device drivers. |
| 855 | */ |
| 856 | int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) |
| 857 | { |
| 858 | int ret; |
| 859 | |
| 860 | if (state <= PCI_D0) |
| 861 | return -EINVAL; |
| 862 | ret = pci_platform_power_transition(dev, state); |
| 863 | /* Power off the bridge may power off the whole hierarchy */ |
| 864 | if (!ret && state == PCI_D3cold) |
| 865 | __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); |
| 866 | return ret; |
| 867 | } |
| 868 | EXPORT_SYMBOL_GPL(__pci_complete_power_transition); |
| 869 | |
| 870 | /** |
| 871 | * pci_set_power_state - Set the power state of a PCI device |
| 872 | * @dev: PCI device to handle. |
| 873 | * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. |
| 874 | * |
| 875 | * Transition a device to a new power state, using the platform firmware and/or |
| 876 | * the device's PCI PM registers. |
| 877 | * |
| 878 | * RETURN VALUE: |
| 879 | * -EINVAL if the requested state is invalid. |
| 880 | * -EIO if device does not support PCI PM or its PM capabilities register has a |
| 881 | * wrong version, or device doesn't support the requested state. |
| 882 | * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. |
| 883 | * 0 if device already is in the requested state. |
| 884 | * 0 if the transition is to D3 but D3 is not supported. |
| 885 | * 0 if device's power state has been successfully changed. |
| 886 | */ |
| 887 | int pci_set_power_state(struct pci_dev *dev, pci_power_t state) |
| 888 | { |
| 889 | int error; |
| 890 | |
| 891 | /* bound the state we're entering */ |
| 892 | if (state > PCI_D3cold) |
| 893 | state = PCI_D3cold; |
| 894 | else if (state < PCI_D0) |
| 895 | state = PCI_D0; |
| 896 | else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) |
| 897 | /* |
| 898 | * If the device or the parent bridge do not support PCI PM, |
| 899 | * ignore the request if we're doing anything other than putting |
| 900 | * it into D0 (which would only happen on boot). |
| 901 | */ |
| 902 | return 0; |
| 903 | |
| 904 | /* Check if we're already there */ |
| 905 | if (dev->current_state == state) |
| 906 | return 0; |
| 907 | |
| 908 | __pci_start_power_transition(dev, state); |
| 909 | |
| 910 | /* This device is quirked not to be put into D3, so |
| 911 | don't put it in D3 */ |
| 912 | if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) |
| 913 | return 0; |
| 914 | |
| 915 | /* |
| 916 | * To put device in D3cold, we put device into D3hot in native |
| 917 | * way, then put device into D3cold with platform ops |
| 918 | */ |
| 919 | error = pci_raw_set_power_state(dev, state > PCI_D3hot ? |
| 920 | PCI_D3hot : state); |
| 921 | |
| 922 | if (!__pci_complete_power_transition(dev, state)) |
| 923 | error = 0; |
| 924 | |
| 925 | return error; |
| 926 | } |
| 927 | EXPORT_SYMBOL(pci_set_power_state); |
| 928 | |
| 929 | /** |
| 930 | * pci_power_up - Put the given device into D0 forcibly |
| 931 | * @dev: PCI device to power up |
| 932 | */ |
| 933 | void pci_power_up(struct pci_dev *dev) |
| 934 | { |
| 935 | __pci_start_power_transition(dev, PCI_D0); |
| 936 | pci_raw_set_power_state(dev, PCI_D0); |
| 937 | pci_update_current_state(dev, PCI_D0); |
| 938 | } |
| 939 | |
| 940 | /** |
| 941 | * pci_choose_state - Choose the power state of a PCI device |
| 942 | * @dev: PCI device to be suspended |
| 943 | * @state: target sleep state for the whole system. This is the value |
| 944 | * that is passed to suspend() function. |
| 945 | * |
| 946 | * Returns PCI power state suitable for given device and given system |
| 947 | * message. |
| 948 | */ |
| 949 | |
| 950 | pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) |
| 951 | { |
| 952 | pci_power_t ret; |
| 953 | |
| 954 | if (!dev->pm_cap) |
| 955 | return PCI_D0; |
| 956 | |
| 957 | ret = platform_pci_choose_state(dev); |
| 958 | if (ret != PCI_POWER_ERROR) |
| 959 | return ret; |
| 960 | |
| 961 | switch (state.event) { |
| 962 | case PM_EVENT_ON: |
| 963 | return PCI_D0; |
| 964 | case PM_EVENT_FREEZE: |
| 965 | case PM_EVENT_PRETHAW: |
| 966 | /* REVISIT both freeze and pre-thaw "should" use D0 */ |
| 967 | case PM_EVENT_SUSPEND: |
| 968 | case PM_EVENT_HIBERNATE: |
| 969 | return PCI_D3hot; |
| 970 | default: |
| 971 | dev_info(&dev->dev, "unrecognized suspend event %d\n", |
| 972 | state.event); |
| 973 | BUG(); |
| 974 | } |
| 975 | return PCI_D0; |
| 976 | } |
| 977 | EXPORT_SYMBOL(pci_choose_state); |
| 978 | |
| 979 | #define PCI_EXP_SAVE_REGS 7 |
| 980 | |
| 981 | static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, |
| 982 | u16 cap, bool extended) |
| 983 | { |
| 984 | struct pci_cap_saved_state *tmp; |
| 985 | |
| 986 | hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { |
| 987 | if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) |
| 988 | return tmp; |
| 989 | } |
| 990 | return NULL; |
| 991 | } |
| 992 | |
| 993 | struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) |
| 994 | { |
| 995 | return _pci_find_saved_cap(dev, cap, false); |
| 996 | } |
| 997 | |
| 998 | struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) |
| 999 | { |
| 1000 | return _pci_find_saved_cap(dev, cap, true); |
| 1001 | } |
| 1002 | |
| 1003 | static int pci_save_pcie_state(struct pci_dev *dev) |
| 1004 | { |
| 1005 | int i = 0; |
| 1006 | struct pci_cap_saved_state *save_state; |
| 1007 | u16 *cap; |
| 1008 | |
| 1009 | if (!pci_is_pcie(dev)) |
| 1010 | return 0; |
| 1011 | |
| 1012 | save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); |
| 1013 | if (!save_state) { |
| 1014 | dev_err(&dev->dev, "buffer not found in %s\n", __func__); |
| 1015 | return -ENOMEM; |
| 1016 | } |
| 1017 | |
| 1018 | cap = (u16 *)&save_state->cap.data[0]; |
| 1019 | pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); |
| 1020 | pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); |
| 1021 | pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); |
| 1022 | pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); |
| 1023 | pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); |
| 1024 | pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); |
| 1025 | pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); |
| 1026 | |
| 1027 | return 0; |
| 1028 | } |
| 1029 | |
| 1030 | static void pci_restore_pcie_state(struct pci_dev *dev) |
| 1031 | { |
| 1032 | int i = 0; |
| 1033 | struct pci_cap_saved_state *save_state; |
| 1034 | u16 *cap; |
| 1035 | |
| 1036 | save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); |
| 1037 | if (!save_state) |
| 1038 | return; |
| 1039 | |
| 1040 | cap = (u16 *)&save_state->cap.data[0]; |
| 1041 | pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); |
| 1042 | pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); |
| 1043 | pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); |
| 1044 | pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); |
| 1045 | pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); |
| 1046 | pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); |
| 1047 | pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); |
| 1048 | } |
| 1049 | |
| 1050 | |
| 1051 | static int pci_save_pcix_state(struct pci_dev *dev) |
| 1052 | { |
| 1053 | int pos; |
| 1054 | struct pci_cap_saved_state *save_state; |
| 1055 | |
| 1056 | pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| 1057 | if (!pos) |
| 1058 | return 0; |
| 1059 | |
| 1060 | save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); |
| 1061 | if (!save_state) { |
| 1062 | dev_err(&dev->dev, "buffer not found in %s\n", __func__); |
| 1063 | return -ENOMEM; |
| 1064 | } |
| 1065 | |
| 1066 | pci_read_config_word(dev, pos + PCI_X_CMD, |
| 1067 | (u16 *)save_state->cap.data); |
| 1068 | |
| 1069 | return 0; |
| 1070 | } |
| 1071 | |
| 1072 | static void pci_restore_pcix_state(struct pci_dev *dev) |
| 1073 | { |
| 1074 | int i = 0, pos; |
| 1075 | struct pci_cap_saved_state *save_state; |
| 1076 | u16 *cap; |
| 1077 | |
| 1078 | save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); |
| 1079 | pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| 1080 | if (!save_state || !pos) |
| 1081 | return; |
| 1082 | cap = (u16 *)&save_state->cap.data[0]; |
| 1083 | |
| 1084 | pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); |
| 1085 | } |
| 1086 | |
| 1087 | |
| 1088 | /** |
| 1089 | * pci_save_state - save the PCI configuration space of a device before suspending |
| 1090 | * @dev: - PCI device that we're dealing with |
| 1091 | */ |
| 1092 | int pci_save_state(struct pci_dev *dev) |
| 1093 | { |
| 1094 | int i; |
| 1095 | /* XXX: 100% dword access ok here? */ |
| 1096 | for (i = 0; i < 16; i++) |
| 1097 | pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); |
| 1098 | dev->state_saved = true; |
| 1099 | |
| 1100 | i = pci_save_pcie_state(dev); |
| 1101 | if (i != 0) |
| 1102 | return i; |
| 1103 | |
| 1104 | i = pci_save_pcix_state(dev); |
| 1105 | if (i != 0) |
| 1106 | return i; |
| 1107 | |
| 1108 | return pci_save_vc_state(dev); |
| 1109 | } |
| 1110 | EXPORT_SYMBOL(pci_save_state); |
| 1111 | |
| 1112 | static void pci_restore_config_dword(struct pci_dev *pdev, int offset, |
| 1113 | u32 saved_val, int retry, bool force) |
| 1114 | { |
| 1115 | u32 val; |
| 1116 | |
| 1117 | pci_read_config_dword(pdev, offset, &val); |
| 1118 | if (!force && val == saved_val) |
| 1119 | return; |
| 1120 | |
| 1121 | for (;;) { |
| 1122 | dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", |
| 1123 | offset, val, saved_val); |
| 1124 | pci_write_config_dword(pdev, offset, saved_val); |
| 1125 | if (retry-- <= 0) |
| 1126 | return; |
| 1127 | |
| 1128 | pci_read_config_dword(pdev, offset, &val); |
| 1129 | if (val == saved_val) |
| 1130 | return; |
| 1131 | |
| 1132 | mdelay(1); |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | static void pci_restore_config_space_range(struct pci_dev *pdev, |
| 1137 | int start, int end, int retry, |
| 1138 | bool force) |
| 1139 | { |
| 1140 | int index; |
| 1141 | |
| 1142 | for (index = end; index >= start; index--) |
| 1143 | pci_restore_config_dword(pdev, 4 * index, |
| 1144 | pdev->saved_config_space[index], |
| 1145 | retry, force); |
| 1146 | } |
| 1147 | |
| 1148 | static void pci_restore_config_space(struct pci_dev *pdev) |
| 1149 | { |
| 1150 | if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { |
| 1151 | pci_restore_config_space_range(pdev, 10, 15, 0, false); |
| 1152 | /* Restore BARs before the command register. */ |
| 1153 | pci_restore_config_space_range(pdev, 4, 9, 10, false); |
| 1154 | pci_restore_config_space_range(pdev, 0, 3, 0, false); |
| 1155 | } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { |
| 1156 | pci_restore_config_space_range(pdev, 12, 15, 0, false); |
| 1157 | |
| 1158 | /* |
| 1159 | * Force rewriting of prefetch registers to avoid S3 resume |
| 1160 | * issues on Intel PCI bridges that occur when these |
| 1161 | * registers are not explicitly written. |
| 1162 | */ |
| 1163 | pci_restore_config_space_range(pdev, 9, 11, 0, true); |
| 1164 | pci_restore_config_space_range(pdev, 0, 8, 0, false); |
| 1165 | } else { |
| 1166 | pci_restore_config_space_range(pdev, 0, 15, 0, false); |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | /** |
| 1171 | * pci_restore_state - Restore the saved state of a PCI device |
| 1172 | * @dev: - PCI device that we're dealing with |
| 1173 | */ |
| 1174 | void pci_restore_state(struct pci_dev *dev) |
| 1175 | { |
| 1176 | if (!dev->state_saved) |
| 1177 | return; |
| 1178 | |
| 1179 | /* PCI Express register must be restored first */ |
| 1180 | pci_restore_pcie_state(dev); |
| 1181 | pci_restore_pasid_state(dev); |
| 1182 | pci_restore_pri_state(dev); |
| 1183 | pci_restore_ats_state(dev); |
| 1184 | pci_restore_vc_state(dev); |
| 1185 | |
| 1186 | pci_cleanup_aer_error_status_regs(dev); |
| 1187 | |
| 1188 | pci_restore_config_space(dev); |
| 1189 | |
| 1190 | pci_restore_pcix_state(dev); |
| 1191 | pci_restore_msi_state(dev); |
| 1192 | |
| 1193 | /* Restore ACS and IOV configuration state */ |
| 1194 | pci_enable_acs(dev); |
| 1195 | pci_restore_iov_state(dev); |
| 1196 | |
| 1197 | dev->state_saved = false; |
| 1198 | } |
| 1199 | EXPORT_SYMBOL(pci_restore_state); |
| 1200 | |
| 1201 | struct pci_saved_state { |
| 1202 | u32 config_space[16]; |
| 1203 | struct pci_cap_saved_data cap[0]; |
| 1204 | }; |
| 1205 | |
| 1206 | /** |
| 1207 | * pci_store_saved_state - Allocate and return an opaque struct containing |
| 1208 | * the device saved state. |
| 1209 | * @dev: PCI device that we're dealing with |
| 1210 | * |
| 1211 | * Return NULL if no state or error. |
| 1212 | */ |
| 1213 | struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) |
| 1214 | { |
| 1215 | struct pci_saved_state *state; |
| 1216 | struct pci_cap_saved_state *tmp; |
| 1217 | struct pci_cap_saved_data *cap; |
| 1218 | size_t size; |
| 1219 | |
| 1220 | if (!dev->state_saved) |
| 1221 | return NULL; |
| 1222 | |
| 1223 | size = sizeof(*state) + sizeof(struct pci_cap_saved_data); |
| 1224 | |
| 1225 | hlist_for_each_entry(tmp, &dev->saved_cap_space, next) |
| 1226 | size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; |
| 1227 | |
| 1228 | state = kzalloc(size, GFP_KERNEL); |
| 1229 | if (!state) |
| 1230 | return NULL; |
| 1231 | |
| 1232 | memcpy(state->config_space, dev->saved_config_space, |
| 1233 | sizeof(state->config_space)); |
| 1234 | |
| 1235 | cap = state->cap; |
| 1236 | hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { |
| 1237 | size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; |
| 1238 | memcpy(cap, &tmp->cap, len); |
| 1239 | cap = (struct pci_cap_saved_data *)((u8 *)cap + len); |
| 1240 | } |
| 1241 | /* Empty cap_save terminates list */ |
| 1242 | |
| 1243 | return state; |
| 1244 | } |
| 1245 | EXPORT_SYMBOL_GPL(pci_store_saved_state); |
| 1246 | |
| 1247 | /** |
| 1248 | * pci_load_saved_state - Reload the provided save state into struct pci_dev. |
| 1249 | * @dev: PCI device that we're dealing with |
| 1250 | * @state: Saved state returned from pci_store_saved_state() |
| 1251 | */ |
| 1252 | int pci_load_saved_state(struct pci_dev *dev, |
| 1253 | struct pci_saved_state *state) |
| 1254 | { |
| 1255 | struct pci_cap_saved_data *cap; |
| 1256 | |
| 1257 | dev->state_saved = false; |
| 1258 | |
| 1259 | if (!state) |
| 1260 | return 0; |
| 1261 | |
| 1262 | memcpy(dev->saved_config_space, state->config_space, |
| 1263 | sizeof(state->config_space)); |
| 1264 | |
| 1265 | cap = state->cap; |
| 1266 | while (cap->size) { |
| 1267 | struct pci_cap_saved_state *tmp; |
| 1268 | |
| 1269 | tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); |
| 1270 | if (!tmp || tmp->cap.size != cap->size) |
| 1271 | return -EINVAL; |
| 1272 | |
| 1273 | memcpy(tmp->cap.data, cap->data, tmp->cap.size); |
| 1274 | cap = (struct pci_cap_saved_data *)((u8 *)cap + |
| 1275 | sizeof(struct pci_cap_saved_data) + cap->size); |
| 1276 | } |
| 1277 | |
| 1278 | dev->state_saved = true; |
| 1279 | return 0; |
| 1280 | } |
| 1281 | EXPORT_SYMBOL_GPL(pci_load_saved_state); |
| 1282 | |
| 1283 | /** |
| 1284 | * pci_load_and_free_saved_state - Reload the save state pointed to by state, |
| 1285 | * and free the memory allocated for it. |
| 1286 | * @dev: PCI device that we're dealing with |
| 1287 | * @state: Pointer to saved state returned from pci_store_saved_state() |
| 1288 | */ |
| 1289 | int pci_load_and_free_saved_state(struct pci_dev *dev, |
| 1290 | struct pci_saved_state **state) |
| 1291 | { |
| 1292 | int ret = pci_load_saved_state(dev, *state); |
| 1293 | kfree(*state); |
| 1294 | *state = NULL; |
| 1295 | return ret; |
| 1296 | } |
| 1297 | EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); |
| 1298 | |
| 1299 | int __weak pcibios_enable_device(struct pci_dev *dev, int bars) |
| 1300 | { |
| 1301 | return pci_enable_resources(dev, bars); |
| 1302 | } |
| 1303 | |
| 1304 | static int do_pci_enable_device(struct pci_dev *dev, int bars) |
| 1305 | { |
| 1306 | int err; |
| 1307 | struct pci_dev *bridge; |
| 1308 | u16 cmd; |
| 1309 | u8 pin; |
| 1310 | |
| 1311 | err = pci_set_power_state(dev, PCI_D0); |
| 1312 | if (err < 0 && err != -EIO) |
| 1313 | return err; |
| 1314 | |
| 1315 | bridge = pci_upstream_bridge(dev); |
| 1316 | if (bridge) |
| 1317 | pcie_aspm_powersave_config_link(bridge); |
| 1318 | |
| 1319 | err = pcibios_enable_device(dev, bars); |
| 1320 | if (err < 0) |
| 1321 | return err; |
| 1322 | pci_fixup_device(pci_fixup_enable, dev); |
| 1323 | |
| 1324 | if (dev->msi_enabled || dev->msix_enabled) |
| 1325 | return 0; |
| 1326 | |
| 1327 | pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); |
| 1328 | if (pin) { |
| 1329 | pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| 1330 | if (cmd & PCI_COMMAND_INTX_DISABLE) |
| 1331 | pci_write_config_word(dev, PCI_COMMAND, |
| 1332 | cmd & ~PCI_COMMAND_INTX_DISABLE); |
| 1333 | } |
| 1334 | |
| 1335 | return 0; |
| 1336 | } |
| 1337 | |
| 1338 | /** |
| 1339 | * pci_reenable_device - Resume abandoned device |
| 1340 | * @dev: PCI device to be resumed |
| 1341 | * |
| 1342 | * Note this function is a backend of pci_default_resume and is not supposed |
| 1343 | * to be called by normal code, write proper resume handler and use it instead. |
| 1344 | */ |
| 1345 | int pci_reenable_device(struct pci_dev *dev) |
| 1346 | { |
| 1347 | if (pci_is_enabled(dev)) |
| 1348 | return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); |
| 1349 | return 0; |
| 1350 | } |
| 1351 | EXPORT_SYMBOL(pci_reenable_device); |
| 1352 | |
| 1353 | static void pci_enable_bridge(struct pci_dev *dev) |
| 1354 | { |
| 1355 | struct pci_dev *bridge; |
| 1356 | int retval; |
| 1357 | |
| 1358 | bridge = pci_upstream_bridge(dev); |
| 1359 | if (bridge) |
| 1360 | pci_enable_bridge(bridge); |
| 1361 | |
| 1362 | if (pci_is_enabled(dev)) { |
| 1363 | if (!dev->is_busmaster) |
| 1364 | pci_set_master(dev); |
| 1365 | return; |
| 1366 | } |
| 1367 | |
| 1368 | retval = pci_enable_device(dev); |
| 1369 | if (retval) |
| 1370 | dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", |
| 1371 | retval); |
| 1372 | pci_set_master(dev); |
| 1373 | } |
| 1374 | |
| 1375 | static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) |
| 1376 | { |
| 1377 | struct pci_dev *bridge; |
| 1378 | int err; |
| 1379 | int i, bars = 0; |
| 1380 | |
| 1381 | /* |
| 1382 | * Power state could be unknown at this point, either due to a fresh |
| 1383 | * boot or a device removal call. So get the current power state |
| 1384 | * so that things like MSI message writing will behave as expected |
| 1385 | * (e.g. if the device really is in D0 at enable time). |
| 1386 | */ |
| 1387 | if (dev->pm_cap) { |
| 1388 | u16 pmcsr; |
| 1389 | pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| 1390 | dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); |
| 1391 | } |
| 1392 | |
| 1393 | if (atomic_inc_return(&dev->enable_cnt) > 1) |
| 1394 | return 0; /* already enabled */ |
| 1395 | |
| 1396 | bridge = pci_upstream_bridge(dev); |
| 1397 | if (bridge) |
| 1398 | pci_enable_bridge(bridge); |
| 1399 | |
| 1400 | /* only skip sriov related */ |
| 1401 | for (i = 0; i <= PCI_ROM_RESOURCE; i++) |
| 1402 | if (dev->resource[i].flags & flags) |
| 1403 | bars |= (1 << i); |
| 1404 | for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) |
| 1405 | if (dev->resource[i].flags & flags) |
| 1406 | bars |= (1 << i); |
| 1407 | |
| 1408 | err = do_pci_enable_device(dev, bars); |
| 1409 | if (err < 0) |
| 1410 | atomic_dec(&dev->enable_cnt); |
| 1411 | return err; |
| 1412 | } |
| 1413 | |
| 1414 | /** |
| 1415 | * pci_enable_device_io - Initialize a device for use with IO space |
| 1416 | * @dev: PCI device to be initialized |
| 1417 | * |
| 1418 | * Initialize device before it's used by a driver. Ask low-level code |
| 1419 | * to enable I/O resources. Wake up the device if it was suspended. |
| 1420 | * Beware, this function can fail. |
| 1421 | */ |
| 1422 | int pci_enable_device_io(struct pci_dev *dev) |
| 1423 | { |
| 1424 | return pci_enable_device_flags(dev, IORESOURCE_IO); |
| 1425 | } |
| 1426 | EXPORT_SYMBOL(pci_enable_device_io); |
| 1427 | |
| 1428 | /** |
| 1429 | * pci_enable_device_mem - Initialize a device for use with Memory space |
| 1430 | * @dev: PCI device to be initialized |
| 1431 | * |
| 1432 | * Initialize device before it's used by a driver. Ask low-level code |
| 1433 | * to enable Memory resources. Wake up the device if it was suspended. |
| 1434 | * Beware, this function can fail. |
| 1435 | */ |
| 1436 | int pci_enable_device_mem(struct pci_dev *dev) |
| 1437 | { |
| 1438 | return pci_enable_device_flags(dev, IORESOURCE_MEM); |
| 1439 | } |
| 1440 | EXPORT_SYMBOL(pci_enable_device_mem); |
| 1441 | |
| 1442 | /** |
| 1443 | * pci_enable_device - Initialize device before it's used by a driver. |
| 1444 | * @dev: PCI device to be initialized |
| 1445 | * |
| 1446 | * Initialize device before it's used by a driver. Ask low-level code |
| 1447 | * to enable I/O and memory. Wake up the device if it was suspended. |
| 1448 | * Beware, this function can fail. |
| 1449 | * |
| 1450 | * Note we don't actually enable the device many times if we call |
| 1451 | * this function repeatedly (we just increment the count). |
| 1452 | */ |
| 1453 | int pci_enable_device(struct pci_dev *dev) |
| 1454 | { |
| 1455 | return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); |
| 1456 | } |
| 1457 | EXPORT_SYMBOL(pci_enable_device); |
| 1458 | |
| 1459 | /* |
| 1460 | * Managed PCI resources. This manages device on/off, intx/msi/msix |
| 1461 | * on/off and BAR regions. pci_dev itself records msi/msix status, so |
| 1462 | * there's no need to track it separately. pci_devres is initialized |
| 1463 | * when a device is enabled using managed PCI device enable interface. |
| 1464 | */ |
| 1465 | struct pci_devres { |
| 1466 | unsigned int enabled:1; |
| 1467 | unsigned int pinned:1; |
| 1468 | unsigned int orig_intx:1; |
| 1469 | unsigned int restore_intx:1; |
| 1470 | u32 region_mask; |
| 1471 | }; |
| 1472 | |
| 1473 | static void pcim_release(struct device *gendev, void *res) |
| 1474 | { |
| 1475 | struct pci_dev *dev = to_pci_dev(gendev); |
| 1476 | struct pci_devres *this = res; |
| 1477 | int i; |
| 1478 | |
| 1479 | if (dev->msi_enabled) |
| 1480 | pci_disable_msi(dev); |
| 1481 | if (dev->msix_enabled) |
| 1482 | pci_disable_msix(dev); |
| 1483 | |
| 1484 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) |
| 1485 | if (this->region_mask & (1 << i)) |
| 1486 | pci_release_region(dev, i); |
| 1487 | |
| 1488 | if (this->restore_intx) |
| 1489 | pci_intx(dev, this->orig_intx); |
| 1490 | |
| 1491 | if (this->enabled && !this->pinned) |
| 1492 | pci_disable_device(dev); |
| 1493 | } |
| 1494 | |
| 1495 | static struct pci_devres *get_pci_dr(struct pci_dev *pdev) |
| 1496 | { |
| 1497 | struct pci_devres *dr, *new_dr; |
| 1498 | |
| 1499 | dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); |
| 1500 | if (dr) |
| 1501 | return dr; |
| 1502 | |
| 1503 | new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); |
| 1504 | if (!new_dr) |
| 1505 | return NULL; |
| 1506 | return devres_get(&pdev->dev, new_dr, NULL, NULL); |
| 1507 | } |
| 1508 | |
| 1509 | static struct pci_devres *find_pci_dr(struct pci_dev *pdev) |
| 1510 | { |
| 1511 | if (pci_is_managed(pdev)) |
| 1512 | return devres_find(&pdev->dev, pcim_release, NULL, NULL); |
| 1513 | return NULL; |
| 1514 | } |
| 1515 | |
| 1516 | /** |
| 1517 | * pcim_enable_device - Managed pci_enable_device() |
| 1518 | * @pdev: PCI device to be initialized |
| 1519 | * |
| 1520 | * Managed pci_enable_device(). |
| 1521 | */ |
| 1522 | int pcim_enable_device(struct pci_dev *pdev) |
| 1523 | { |
| 1524 | struct pci_devres *dr; |
| 1525 | int rc; |
| 1526 | |
| 1527 | dr = get_pci_dr(pdev); |
| 1528 | if (unlikely(!dr)) |
| 1529 | return -ENOMEM; |
| 1530 | if (dr->enabled) |
| 1531 | return 0; |
| 1532 | |
| 1533 | rc = pci_enable_device(pdev); |
| 1534 | if (!rc) { |
| 1535 | pdev->is_managed = 1; |
| 1536 | dr->enabled = 1; |
| 1537 | } |
| 1538 | return rc; |
| 1539 | } |
| 1540 | EXPORT_SYMBOL(pcim_enable_device); |
| 1541 | |
| 1542 | /** |
| 1543 | * pcim_pin_device - Pin managed PCI device |
| 1544 | * @pdev: PCI device to pin |
| 1545 | * |
| 1546 | * Pin managed PCI device @pdev. Pinned device won't be disabled on |
| 1547 | * driver detach. @pdev must have been enabled with |
| 1548 | * pcim_enable_device(). |
| 1549 | */ |
| 1550 | void pcim_pin_device(struct pci_dev *pdev) |
| 1551 | { |
| 1552 | struct pci_devres *dr; |
| 1553 | |
| 1554 | dr = find_pci_dr(pdev); |
| 1555 | WARN_ON(!dr || !dr->enabled); |
| 1556 | if (dr) |
| 1557 | dr->pinned = 1; |
| 1558 | } |
| 1559 | EXPORT_SYMBOL(pcim_pin_device); |
| 1560 | |
| 1561 | /* |
| 1562 | * pcibios_add_device - provide arch specific hooks when adding device dev |
| 1563 | * @dev: the PCI device being added |
| 1564 | * |
| 1565 | * Permits the platform to provide architecture specific functionality when |
| 1566 | * devices are added. This is the default implementation. Architecture |
| 1567 | * implementations can override this. |
| 1568 | */ |
| 1569 | int __weak pcibios_add_device(struct pci_dev *dev) |
| 1570 | { |
| 1571 | return 0; |
| 1572 | } |
| 1573 | |
| 1574 | /** |
| 1575 | * pcibios_release_device - provide arch specific hooks when releasing device dev |
| 1576 | * @dev: the PCI device being released |
| 1577 | * |
| 1578 | * Permits the platform to provide architecture specific functionality when |
| 1579 | * devices are released. This is the default implementation. Architecture |
| 1580 | * implementations can override this. |
| 1581 | */ |
| 1582 | void __weak pcibios_release_device(struct pci_dev *dev) {} |
| 1583 | |
| 1584 | /** |
| 1585 | * pcibios_disable_device - disable arch specific PCI resources for device dev |
| 1586 | * @dev: the PCI device to disable |
| 1587 | * |
| 1588 | * Disables architecture specific PCI resources for the device. This |
| 1589 | * is the default implementation. Architecture implementations can |
| 1590 | * override this. |
| 1591 | */ |
| 1592 | void __weak pcibios_disable_device(struct pci_dev *dev) {} |
| 1593 | |
| 1594 | /** |
| 1595 | * pcibios_penalize_isa_irq - penalize an ISA IRQ |
| 1596 | * @irq: ISA IRQ to penalize |
| 1597 | * @active: IRQ active or not |
| 1598 | * |
| 1599 | * Permits the platform to provide architecture-specific functionality when |
| 1600 | * penalizing ISA IRQs. This is the default implementation. Architecture |
| 1601 | * implementations can override this. |
| 1602 | */ |
| 1603 | void __weak pcibios_penalize_isa_irq(int irq, int active) {} |
| 1604 | |
| 1605 | static void do_pci_disable_device(struct pci_dev *dev) |
| 1606 | { |
| 1607 | u16 pci_command; |
| 1608 | |
| 1609 | pci_read_config_word(dev, PCI_COMMAND, &pci_command); |
| 1610 | if (pci_command & PCI_COMMAND_MASTER) { |
| 1611 | pci_command &= ~PCI_COMMAND_MASTER; |
| 1612 | pci_write_config_word(dev, PCI_COMMAND, pci_command); |
| 1613 | } |
| 1614 | |
| 1615 | pcibios_disable_device(dev); |
| 1616 | } |
| 1617 | |
| 1618 | /** |
| 1619 | * pci_disable_enabled_device - Disable device without updating enable_cnt |
| 1620 | * @dev: PCI device to disable |
| 1621 | * |
| 1622 | * NOTE: This function is a backend of PCI power management routines and is |
| 1623 | * not supposed to be called drivers. |
| 1624 | */ |
| 1625 | void pci_disable_enabled_device(struct pci_dev *dev) |
| 1626 | { |
| 1627 | if (pci_is_enabled(dev)) |
| 1628 | do_pci_disable_device(dev); |
| 1629 | } |
| 1630 | |
| 1631 | /** |
| 1632 | * pci_disable_device - Disable PCI device after use |
| 1633 | * @dev: PCI device to be disabled |
| 1634 | * |
| 1635 | * Signal to the system that the PCI device is not in use by the system |
| 1636 | * anymore. This only involves disabling PCI bus-mastering, if active. |
| 1637 | * |
| 1638 | * Note we don't actually disable the device until all callers of |
| 1639 | * pci_enable_device() have called pci_disable_device(). |
| 1640 | */ |
| 1641 | void pci_disable_device(struct pci_dev *dev) |
| 1642 | { |
| 1643 | struct pci_devres *dr; |
| 1644 | |
| 1645 | dr = find_pci_dr(dev); |
| 1646 | if (dr) |
| 1647 | dr->enabled = 0; |
| 1648 | |
| 1649 | dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, |
| 1650 | "disabling already-disabled device"); |
| 1651 | |
| 1652 | if (atomic_dec_return(&dev->enable_cnt) != 0) |
| 1653 | return; |
| 1654 | |
| 1655 | do_pci_disable_device(dev); |
| 1656 | |
| 1657 | dev->is_busmaster = 0; |
| 1658 | } |
| 1659 | EXPORT_SYMBOL(pci_disable_device); |
| 1660 | |
| 1661 | /** |
| 1662 | * pcibios_set_pcie_reset_state - set reset state for device dev |
| 1663 | * @dev: the PCIe device reset |
| 1664 | * @state: Reset state to enter into |
| 1665 | * |
| 1666 | * |
| 1667 | * Sets the PCIe reset state for the device. This is the default |
| 1668 | * implementation. Architecture implementations can override this. |
| 1669 | */ |
| 1670 | int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, |
| 1671 | enum pcie_reset_state state) |
| 1672 | { |
| 1673 | return -EINVAL; |
| 1674 | } |
| 1675 | |
| 1676 | /** |
| 1677 | * pci_set_pcie_reset_state - set reset state for device dev |
| 1678 | * @dev: the PCIe device reset |
| 1679 | * @state: Reset state to enter into |
| 1680 | * |
| 1681 | * |
| 1682 | * Sets the PCI reset state for the device. |
| 1683 | */ |
| 1684 | int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) |
| 1685 | { |
| 1686 | return pcibios_set_pcie_reset_state(dev, state); |
| 1687 | } |
| 1688 | EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); |
| 1689 | |
| 1690 | /** |
| 1691 | * pci_check_pme_status - Check if given device has generated PME. |
| 1692 | * @dev: Device to check. |
| 1693 | * |
| 1694 | * Check the PME status of the device and if set, clear it and clear PME enable |
| 1695 | * (if set). Return 'true' if PME status and PME enable were both set or |
| 1696 | * 'false' otherwise. |
| 1697 | */ |
| 1698 | bool pci_check_pme_status(struct pci_dev *dev) |
| 1699 | { |
| 1700 | int pmcsr_pos; |
| 1701 | u16 pmcsr; |
| 1702 | bool ret = false; |
| 1703 | |
| 1704 | if (!dev->pm_cap) |
| 1705 | return false; |
| 1706 | |
| 1707 | pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; |
| 1708 | pci_read_config_word(dev, pmcsr_pos, &pmcsr); |
| 1709 | if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) |
| 1710 | return false; |
| 1711 | |
| 1712 | /* Clear PME status. */ |
| 1713 | pmcsr |= PCI_PM_CTRL_PME_STATUS; |
| 1714 | if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { |
| 1715 | /* Disable PME to avoid interrupt flood. */ |
| 1716 | pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; |
| 1717 | ret = true; |
| 1718 | } |
| 1719 | |
| 1720 | pci_write_config_word(dev, pmcsr_pos, pmcsr); |
| 1721 | |
| 1722 | return ret; |
| 1723 | } |
| 1724 | |
| 1725 | /** |
| 1726 | * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. |
| 1727 | * @dev: Device to handle. |
| 1728 | * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. |
| 1729 | * |
| 1730 | * Check if @dev has generated PME and queue a resume request for it in that |
| 1731 | * case. |
| 1732 | */ |
| 1733 | static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) |
| 1734 | { |
| 1735 | if (pme_poll_reset && dev->pme_poll) |
| 1736 | dev->pme_poll = false; |
| 1737 | |
| 1738 | if (pci_check_pme_status(dev)) { |
| 1739 | pci_wakeup_event(dev); |
| 1740 | pm_request_resume(&dev->dev); |
| 1741 | } |
| 1742 | return 0; |
| 1743 | } |
| 1744 | |
| 1745 | /** |
| 1746 | * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. |
| 1747 | * @bus: Top bus of the subtree to walk. |
| 1748 | */ |
| 1749 | void pci_pme_wakeup_bus(struct pci_bus *bus) |
| 1750 | { |
| 1751 | if (bus) |
| 1752 | pci_walk_bus(bus, pci_pme_wakeup, (void *)true); |
| 1753 | } |
| 1754 | |
| 1755 | |
| 1756 | /** |
| 1757 | * pci_pme_capable - check the capability of PCI device to generate PME# |
| 1758 | * @dev: PCI device to handle. |
| 1759 | * @state: PCI state from which device will issue PME#. |
| 1760 | */ |
| 1761 | bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) |
| 1762 | { |
| 1763 | if (!dev->pm_cap) |
| 1764 | return false; |
| 1765 | |
| 1766 | return !!(dev->pme_support & (1 << state)); |
| 1767 | } |
| 1768 | EXPORT_SYMBOL(pci_pme_capable); |
| 1769 | |
| 1770 | static void pci_pme_list_scan(struct work_struct *work) |
| 1771 | { |
| 1772 | struct pci_pme_device *pme_dev, *n; |
| 1773 | |
| 1774 | mutex_lock(&pci_pme_list_mutex); |
| 1775 | list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { |
| 1776 | if (pme_dev->dev->pme_poll) { |
| 1777 | struct pci_dev *bridge; |
| 1778 | |
| 1779 | bridge = pme_dev->dev->bus->self; |
| 1780 | /* |
| 1781 | * If bridge is in low power state, the |
| 1782 | * configuration space of subordinate devices |
| 1783 | * may be not accessible |
| 1784 | */ |
| 1785 | if (bridge && bridge->current_state != PCI_D0) |
| 1786 | continue; |
| 1787 | /* |
| 1788 | * If the device is in D3cold it should not be |
| 1789 | * polled either. |
| 1790 | */ |
| 1791 | if (pme_dev->dev->current_state == PCI_D3cold) |
| 1792 | continue; |
| 1793 | |
| 1794 | pci_pme_wakeup(pme_dev->dev, NULL); |
| 1795 | } else { |
| 1796 | list_del(&pme_dev->list); |
| 1797 | kfree(pme_dev); |
| 1798 | } |
| 1799 | } |
| 1800 | if (!list_empty(&pci_pme_list)) |
| 1801 | queue_delayed_work(system_freezable_wq, &pci_pme_work, |
| 1802 | msecs_to_jiffies(PME_TIMEOUT)); |
| 1803 | mutex_unlock(&pci_pme_list_mutex); |
| 1804 | } |
| 1805 | |
| 1806 | static void __pci_pme_active(struct pci_dev *dev, bool enable) |
| 1807 | { |
| 1808 | u16 pmcsr; |
| 1809 | |
| 1810 | if (!dev->pme_support) |
| 1811 | return; |
| 1812 | |
| 1813 | pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| 1814 | /* Clear PME_Status by writing 1 to it and enable PME# */ |
| 1815 | pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; |
| 1816 | if (!enable) |
| 1817 | pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; |
| 1818 | |
| 1819 | pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); |
| 1820 | } |
| 1821 | |
| 1822 | /** |
| 1823 | * pci_pme_restore - Restore PME configuration after config space restore. |
| 1824 | * @dev: PCI device to update. |
| 1825 | */ |
| 1826 | void pci_pme_restore(struct pci_dev *dev) |
| 1827 | { |
| 1828 | u16 pmcsr; |
| 1829 | |
| 1830 | if (!dev->pme_support) |
| 1831 | return; |
| 1832 | |
| 1833 | pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); |
| 1834 | if (dev->wakeup_prepared) { |
| 1835 | pmcsr |= PCI_PM_CTRL_PME_ENABLE; |
| 1836 | pmcsr &= ~PCI_PM_CTRL_PME_STATUS; |
| 1837 | } else { |
| 1838 | pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; |
| 1839 | pmcsr |= PCI_PM_CTRL_PME_STATUS; |
| 1840 | } |
| 1841 | pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); |
| 1842 | } |
| 1843 | |
| 1844 | /** |
| 1845 | * pci_pme_active - enable or disable PCI device's PME# function |
| 1846 | * @dev: PCI device to handle. |
| 1847 | * @enable: 'true' to enable PME# generation; 'false' to disable it. |
| 1848 | * |
| 1849 | * The caller must verify that the device is capable of generating PME# before |
| 1850 | * calling this function with @enable equal to 'true'. |
| 1851 | */ |
| 1852 | void pci_pme_active(struct pci_dev *dev, bool enable) |
| 1853 | { |
| 1854 | __pci_pme_active(dev, enable); |
| 1855 | |
| 1856 | /* |
| 1857 | * PCI (as opposed to PCIe) PME requires that the device have |
| 1858 | * its PME# line hooked up correctly. Not all hardware vendors |
| 1859 | * do this, so the PME never gets delivered and the device |
| 1860 | * remains asleep. The easiest way around this is to |
| 1861 | * periodically walk the list of suspended devices and check |
| 1862 | * whether any have their PME flag set. The assumption is that |
| 1863 | * we'll wake up often enough anyway that this won't be a huge |
| 1864 | * hit, and the power savings from the devices will still be a |
| 1865 | * win. |
| 1866 | * |
| 1867 | * Although PCIe uses in-band PME message instead of PME# line |
| 1868 | * to report PME, PME does not work for some PCIe devices in |
| 1869 | * reality. For example, there are devices that set their PME |
| 1870 | * status bits, but don't really bother to send a PME message; |
| 1871 | * there are PCI Express Root Ports that don't bother to |
| 1872 | * trigger interrupts when they receive PME messages from the |
| 1873 | * devices below. So PME poll is used for PCIe devices too. |
| 1874 | */ |
| 1875 | |
| 1876 | if (dev->pme_poll) { |
| 1877 | struct pci_pme_device *pme_dev; |
| 1878 | if (enable) { |
| 1879 | pme_dev = kmalloc(sizeof(struct pci_pme_device), |
| 1880 | GFP_KERNEL); |
| 1881 | if (!pme_dev) { |
| 1882 | dev_warn(&dev->dev, "can't enable PME#\n"); |
| 1883 | return; |
| 1884 | } |
| 1885 | pme_dev->dev = dev; |
| 1886 | mutex_lock(&pci_pme_list_mutex); |
| 1887 | list_add(&pme_dev->list, &pci_pme_list); |
| 1888 | if (list_is_singular(&pci_pme_list)) |
| 1889 | queue_delayed_work(system_freezable_wq, |
| 1890 | &pci_pme_work, |
| 1891 | msecs_to_jiffies(PME_TIMEOUT)); |
| 1892 | mutex_unlock(&pci_pme_list_mutex); |
| 1893 | } else { |
| 1894 | mutex_lock(&pci_pme_list_mutex); |
| 1895 | list_for_each_entry(pme_dev, &pci_pme_list, list) { |
| 1896 | if (pme_dev->dev == dev) { |
| 1897 | list_del(&pme_dev->list); |
| 1898 | kfree(pme_dev); |
| 1899 | break; |
| 1900 | } |
| 1901 | } |
| 1902 | mutex_unlock(&pci_pme_list_mutex); |
| 1903 | } |
| 1904 | } |
| 1905 | |
| 1906 | dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); |
| 1907 | } |
| 1908 | EXPORT_SYMBOL(pci_pme_active); |
| 1909 | |
| 1910 | /** |
| 1911 | * __pci_enable_wake - enable PCI device as wakeup event source |
| 1912 | * @dev: PCI device affected |
| 1913 | * @state: PCI state from which device will issue wakeup events |
| 1914 | * @enable: True to enable event generation; false to disable |
| 1915 | * |
| 1916 | * This enables the device as a wakeup event source, or disables it. |
| 1917 | * When such events involves platform-specific hooks, those hooks are |
| 1918 | * called automatically by this routine. |
| 1919 | * |
| 1920 | * Devices with legacy power management (no standard PCI PM capabilities) |
| 1921 | * always require such platform hooks. |
| 1922 | * |
| 1923 | * RETURN VALUE: |
| 1924 | * 0 is returned on success |
| 1925 | * -EINVAL is returned if device is not supposed to wake up the system |
| 1926 | * Error code depending on the platform is returned if both the platform and |
| 1927 | * the native mechanism fail to enable the generation of wake-up events |
| 1928 | */ |
| 1929 | static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) |
| 1930 | { |
| 1931 | int ret = 0; |
| 1932 | |
| 1933 | /* |
| 1934 | * Bridges can only signal wakeup on behalf of subordinate devices, |
| 1935 | * but that is set up elsewhere, so skip them. |
| 1936 | */ |
| 1937 | if (pci_has_subordinate(dev)) |
| 1938 | return 0; |
| 1939 | |
| 1940 | /* Don't do the same thing twice in a row for one device. */ |
| 1941 | if (!!enable == !!dev->wakeup_prepared) |
| 1942 | return 0; |
| 1943 | |
| 1944 | /* |
| 1945 | * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don |
| 1946 | * Anderson we should be doing PME# wake enable followed by ACPI wake |
| 1947 | * enable. To disable wake-up we call the platform first, for symmetry. |
| 1948 | */ |
| 1949 | |
| 1950 | if (enable) { |
| 1951 | int error; |
| 1952 | |
| 1953 | if (pci_pme_capable(dev, state)) |
| 1954 | pci_pme_active(dev, true); |
| 1955 | else |
| 1956 | ret = 1; |
| 1957 | error = platform_pci_set_wakeup(dev, true); |
| 1958 | if (ret) |
| 1959 | ret = error; |
| 1960 | if (!ret) |
| 1961 | dev->wakeup_prepared = true; |
| 1962 | } else { |
| 1963 | platform_pci_set_wakeup(dev, false); |
| 1964 | pci_pme_active(dev, false); |
| 1965 | dev->wakeup_prepared = false; |
| 1966 | } |
| 1967 | |
| 1968 | return ret; |
| 1969 | } |
| 1970 | |
| 1971 | /** |
| 1972 | * pci_enable_wake - change wakeup settings for a PCI device |
| 1973 | * @pci_dev: Target device |
| 1974 | * @state: PCI state from which device will issue wakeup events |
| 1975 | * @enable: Whether or not to enable event generation |
| 1976 | * |
| 1977 | * If @enable is set, check device_may_wakeup() for the device before calling |
| 1978 | * __pci_enable_wake() for it. |
| 1979 | */ |
| 1980 | int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) |
| 1981 | { |
| 1982 | if (enable && !device_may_wakeup(&pci_dev->dev)) |
| 1983 | return -EINVAL; |
| 1984 | |
| 1985 | return __pci_enable_wake(pci_dev, state, enable); |
| 1986 | } |
| 1987 | EXPORT_SYMBOL(pci_enable_wake); |
| 1988 | |
| 1989 | /** |
| 1990 | * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold |
| 1991 | * @dev: PCI device to prepare |
| 1992 | * @enable: True to enable wake-up event generation; false to disable |
| 1993 | * |
| 1994 | * Many drivers want the device to wake up the system from D3_hot or D3_cold |
| 1995 | * and this function allows them to set that up cleanly - pci_enable_wake() |
| 1996 | * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI |
| 1997 | * ordering constraints. |
| 1998 | * |
| 1999 | * This function only returns error code if the device is not allowed to wake |
| 2000 | * up the system from sleep or it is not capable of generating PME# from both |
| 2001 | * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. |
| 2002 | */ |
| 2003 | int pci_wake_from_d3(struct pci_dev *dev, bool enable) |
| 2004 | { |
| 2005 | return pci_pme_capable(dev, PCI_D3cold) ? |
| 2006 | pci_enable_wake(dev, PCI_D3cold, enable) : |
| 2007 | pci_enable_wake(dev, PCI_D3hot, enable); |
| 2008 | } |
| 2009 | EXPORT_SYMBOL(pci_wake_from_d3); |
| 2010 | |
| 2011 | /** |
| 2012 | * pci_target_state - find an appropriate low power state for a given PCI dev |
| 2013 | * @dev: PCI device |
| 2014 | * @wakeup: Whether or not wakeup functionality will be enabled for the device. |
| 2015 | * |
| 2016 | * Use underlying platform code to find a supported low power state for @dev. |
| 2017 | * If the platform can't manage @dev, return the deepest state from which it |
| 2018 | * can generate wake events, based on any available PME info. |
| 2019 | */ |
| 2020 | static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) |
| 2021 | { |
| 2022 | pci_power_t target_state = PCI_D3hot; |
| 2023 | |
| 2024 | if (platform_pci_power_manageable(dev)) { |
| 2025 | /* |
| 2026 | * Call the platform to choose the target state of the device |
| 2027 | * and enable wake-up from this state if supported. |
| 2028 | */ |
| 2029 | pci_power_t state = platform_pci_choose_state(dev); |
| 2030 | |
| 2031 | switch (state) { |
| 2032 | case PCI_POWER_ERROR: |
| 2033 | case PCI_UNKNOWN: |
| 2034 | break; |
| 2035 | case PCI_D1: |
| 2036 | case PCI_D2: |
| 2037 | if (pci_no_d1d2(dev)) |
| 2038 | break; |
| 2039 | default: |
| 2040 | target_state = state; |
| 2041 | } |
| 2042 | |
| 2043 | return target_state; |
| 2044 | } |
| 2045 | |
| 2046 | if (!dev->pm_cap) |
| 2047 | target_state = PCI_D0; |
| 2048 | |
| 2049 | /* |
| 2050 | * If the device is in D3cold even though it's not power-manageable by |
| 2051 | * the platform, it may have been powered down by non-standard means. |
| 2052 | * Best to let it slumber. |
| 2053 | */ |
| 2054 | if (dev->current_state == PCI_D3cold) |
| 2055 | target_state = PCI_D3cold; |
| 2056 | |
| 2057 | if (wakeup) { |
| 2058 | /* |
| 2059 | * Find the deepest state from which the device can generate |
| 2060 | * wake-up events, make it the target state and enable device |
| 2061 | * to generate PME#. |
| 2062 | */ |
| 2063 | if (dev->pme_support) { |
| 2064 | while (target_state |
| 2065 | && !(dev->pme_support & (1 << target_state))) |
| 2066 | target_state--; |
| 2067 | } |
| 2068 | } |
| 2069 | |
| 2070 | return target_state; |
| 2071 | } |
| 2072 | |
| 2073 | /** |
| 2074 | * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state |
| 2075 | * @dev: Device to handle. |
| 2076 | * |
| 2077 | * Choose the power state appropriate for the device depending on whether |
| 2078 | * it can wake up the system and/or is power manageable by the platform |
| 2079 | * (PCI_D3hot is the default) and put the device into that state. |
| 2080 | */ |
| 2081 | int pci_prepare_to_sleep(struct pci_dev *dev) |
| 2082 | { |
| 2083 | bool wakeup = device_may_wakeup(&dev->dev); |
| 2084 | pci_power_t target_state = pci_target_state(dev, wakeup); |
| 2085 | int error; |
| 2086 | |
| 2087 | if (target_state == PCI_POWER_ERROR) |
| 2088 | return -EIO; |
| 2089 | |
| 2090 | pci_enable_wake(dev, target_state, wakeup); |
| 2091 | |
| 2092 | error = pci_set_power_state(dev, target_state); |
| 2093 | |
| 2094 | if (error) |
| 2095 | pci_enable_wake(dev, target_state, false); |
| 2096 | |
| 2097 | return error; |
| 2098 | } |
| 2099 | EXPORT_SYMBOL(pci_prepare_to_sleep); |
| 2100 | |
| 2101 | /** |
| 2102 | * pci_back_from_sleep - turn PCI device on during system-wide transition into working state |
| 2103 | * @dev: Device to handle. |
| 2104 | * |
| 2105 | * Disable device's system wake-up capability and put it into D0. |
| 2106 | */ |
| 2107 | int pci_back_from_sleep(struct pci_dev *dev) |
| 2108 | { |
| 2109 | pci_enable_wake(dev, PCI_D0, false); |
| 2110 | return pci_set_power_state(dev, PCI_D0); |
| 2111 | } |
| 2112 | EXPORT_SYMBOL(pci_back_from_sleep); |
| 2113 | |
| 2114 | /** |
| 2115 | * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. |
| 2116 | * @dev: PCI device being suspended. |
| 2117 | * |
| 2118 | * Prepare @dev to generate wake-up events at run time and put it into a low |
| 2119 | * power state. |
| 2120 | */ |
| 2121 | int pci_finish_runtime_suspend(struct pci_dev *dev) |
| 2122 | { |
| 2123 | pci_power_t target_state; |
| 2124 | int error; |
| 2125 | |
| 2126 | target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); |
| 2127 | if (target_state == PCI_POWER_ERROR) |
| 2128 | return -EIO; |
| 2129 | |
| 2130 | dev->runtime_d3cold = target_state == PCI_D3cold; |
| 2131 | |
| 2132 | __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); |
| 2133 | |
| 2134 | error = pci_set_power_state(dev, target_state); |
| 2135 | |
| 2136 | if (error) { |
| 2137 | pci_enable_wake(dev, target_state, false); |
| 2138 | dev->runtime_d3cold = false; |
| 2139 | } |
| 2140 | |
| 2141 | return error; |
| 2142 | } |
| 2143 | |
| 2144 | /** |
| 2145 | * pci_dev_run_wake - Check if device can generate run-time wake-up events. |
| 2146 | * @dev: Device to check. |
| 2147 | * |
| 2148 | * Return true if the device itself is capable of generating wake-up events |
| 2149 | * (through the platform or using the native PCIe PME) or if the device supports |
| 2150 | * PME and one of its upstream bridges can generate wake-up events. |
| 2151 | */ |
| 2152 | bool pci_dev_run_wake(struct pci_dev *dev) |
| 2153 | { |
| 2154 | struct pci_bus *bus = dev->bus; |
| 2155 | |
| 2156 | if (!dev->pme_support) |
| 2157 | return false; |
| 2158 | |
| 2159 | /* PME-capable in principle, but not from the target power state */ |
| 2160 | if (!pci_pme_capable(dev, pci_target_state(dev, true))) |
| 2161 | return false; |
| 2162 | |
| 2163 | if (device_can_wakeup(&dev->dev)) |
| 2164 | return true; |
| 2165 | |
| 2166 | while (bus->parent) { |
| 2167 | struct pci_dev *bridge = bus->self; |
| 2168 | |
| 2169 | if (device_can_wakeup(&bridge->dev)) |
| 2170 | return true; |
| 2171 | |
| 2172 | bus = bus->parent; |
| 2173 | } |
| 2174 | |
| 2175 | /* We have reached the root bus. */ |
| 2176 | if (bus->bridge) |
| 2177 | return device_can_wakeup(bus->bridge); |
| 2178 | |
| 2179 | return false; |
| 2180 | } |
| 2181 | EXPORT_SYMBOL_GPL(pci_dev_run_wake); |
| 2182 | |
| 2183 | /** |
| 2184 | * pci_dev_keep_suspended - Check if the device can stay in the suspended state. |
| 2185 | * @pci_dev: Device to check. |
| 2186 | * |
| 2187 | * Return 'true' if the device is runtime-suspended, it doesn't have to be |
| 2188 | * reconfigured due to wakeup settings difference between system and runtime |
| 2189 | * suspend and the current power state of it is suitable for the upcoming |
| 2190 | * (system) transition. |
| 2191 | * |
| 2192 | * If the device is not configured for system wakeup, disable PME for it before |
| 2193 | * returning 'true' to prevent it from waking up the system unnecessarily. |
| 2194 | */ |
| 2195 | bool pci_dev_keep_suspended(struct pci_dev *pci_dev) |
| 2196 | { |
| 2197 | struct device *dev = &pci_dev->dev; |
| 2198 | bool wakeup = device_may_wakeup(dev); |
| 2199 | |
| 2200 | if (!pm_runtime_suspended(dev) |
| 2201 | || pci_target_state(pci_dev, wakeup) != pci_dev->current_state |
| 2202 | || platform_pci_need_resume(pci_dev) |
| 2203 | || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME)) |
| 2204 | return false; |
| 2205 | |
| 2206 | /* |
| 2207 | * At this point the device is good to go unless it's been configured |
| 2208 | * to generate PME at the runtime suspend time, but it is not supposed |
| 2209 | * to wake up the system. In that case, simply disable PME for it |
| 2210 | * (it will have to be re-enabled on exit from system resume). |
| 2211 | * |
| 2212 | * If the device's power state is D3cold and the platform check above |
| 2213 | * hasn't triggered, the device's configuration is suitable and we don't |
| 2214 | * need to manipulate it at all. |
| 2215 | */ |
| 2216 | spin_lock_irq(&dev->power.lock); |
| 2217 | |
| 2218 | if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && |
| 2219 | !wakeup) |
| 2220 | __pci_pme_active(pci_dev, false); |
| 2221 | |
| 2222 | spin_unlock_irq(&dev->power.lock); |
| 2223 | return true; |
| 2224 | } |
| 2225 | |
| 2226 | /** |
| 2227 | * pci_dev_complete_resume - Finalize resume from system sleep for a device. |
| 2228 | * @pci_dev: Device to handle. |
| 2229 | * |
| 2230 | * If the device is runtime suspended and wakeup-capable, enable PME for it as |
| 2231 | * it might have been disabled during the prepare phase of system suspend if |
| 2232 | * the device was not configured for system wakeup. |
| 2233 | */ |
| 2234 | void pci_dev_complete_resume(struct pci_dev *pci_dev) |
| 2235 | { |
| 2236 | struct device *dev = &pci_dev->dev; |
| 2237 | |
| 2238 | if (!pci_dev_run_wake(pci_dev)) |
| 2239 | return; |
| 2240 | |
| 2241 | spin_lock_irq(&dev->power.lock); |
| 2242 | |
| 2243 | if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) |
| 2244 | __pci_pme_active(pci_dev, true); |
| 2245 | |
| 2246 | spin_unlock_irq(&dev->power.lock); |
| 2247 | } |
| 2248 | |
| 2249 | void pci_config_pm_runtime_get(struct pci_dev *pdev) |
| 2250 | { |
| 2251 | struct device *dev = &pdev->dev; |
| 2252 | struct device *parent = dev->parent; |
| 2253 | |
| 2254 | if (parent) |
| 2255 | pm_runtime_get_sync(parent); |
| 2256 | pm_runtime_get_noresume(dev); |
| 2257 | /* |
| 2258 | * pdev->current_state is set to PCI_D3cold during suspending, |
| 2259 | * so wait until suspending completes |
| 2260 | */ |
| 2261 | pm_runtime_barrier(dev); |
| 2262 | /* |
| 2263 | * Only need to resume devices in D3cold, because config |
| 2264 | * registers are still accessible for devices suspended but |
| 2265 | * not in D3cold. |
| 2266 | */ |
| 2267 | if (pdev->current_state == PCI_D3cold) |
| 2268 | pm_runtime_resume(dev); |
| 2269 | } |
| 2270 | |
| 2271 | void pci_config_pm_runtime_put(struct pci_dev *pdev) |
| 2272 | { |
| 2273 | struct device *dev = &pdev->dev; |
| 2274 | struct device *parent = dev->parent; |
| 2275 | |
| 2276 | pm_runtime_put(dev); |
| 2277 | if (parent) |
| 2278 | pm_runtime_put_sync(parent); |
| 2279 | } |
| 2280 | |
| 2281 | /** |
| 2282 | * pci_bridge_d3_possible - Is it possible to put the bridge into D3 |
| 2283 | * @bridge: Bridge to check |
| 2284 | * |
| 2285 | * This function checks if it is possible to move the bridge to D3. |
| 2286 | * Currently we only allow D3 for recent enough PCIe ports. |
| 2287 | */ |
| 2288 | bool pci_bridge_d3_possible(struct pci_dev *bridge) |
| 2289 | { |
| 2290 | unsigned int year; |
| 2291 | |
| 2292 | if (!pci_is_pcie(bridge)) |
| 2293 | return false; |
| 2294 | |
| 2295 | switch (pci_pcie_type(bridge)) { |
| 2296 | case PCI_EXP_TYPE_ROOT_PORT: |
| 2297 | case PCI_EXP_TYPE_UPSTREAM: |
| 2298 | case PCI_EXP_TYPE_DOWNSTREAM: |
| 2299 | if (pci_bridge_d3_disable) |
| 2300 | return false; |
| 2301 | |
| 2302 | /* |
| 2303 | * Hotplug interrupts cannot be delivered if the link is down, |
| 2304 | * so parents of a hotplug port must stay awake. In addition, |
| 2305 | * hotplug ports handled by firmware in System Management Mode |
| 2306 | * may not be put into D3 by the OS (Thunderbolt on non-Macs). |
| 2307 | * For simplicity, disallow in general for now. |
| 2308 | */ |
| 2309 | if (bridge->is_hotplug_bridge) |
| 2310 | return false; |
| 2311 | |
| 2312 | if (pci_bridge_d3_force) |
| 2313 | return true; |
| 2314 | |
| 2315 | /* |
| 2316 | * It should be safe to put PCIe ports from 2015 or newer |
| 2317 | * to D3. |
| 2318 | */ |
| 2319 | if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && |
| 2320 | year >= 2015) { |
| 2321 | return true; |
| 2322 | } |
| 2323 | break; |
| 2324 | } |
| 2325 | |
| 2326 | return false; |
| 2327 | } |
| 2328 | |
| 2329 | static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) |
| 2330 | { |
| 2331 | bool *d3cold_ok = data; |
| 2332 | |
| 2333 | if (/* The device needs to be allowed to go D3cold ... */ |
| 2334 | dev->no_d3cold || !dev->d3cold_allowed || |
| 2335 | |
| 2336 | /* ... and if it is wakeup capable to do so from D3cold. */ |
| 2337 | (device_may_wakeup(&dev->dev) && |
| 2338 | !pci_pme_capable(dev, PCI_D3cold)) || |
| 2339 | |
| 2340 | /* If it is a bridge it must be allowed to go to D3. */ |
| 2341 | !pci_power_manageable(dev)) |
| 2342 | |
| 2343 | *d3cold_ok = false; |
| 2344 | |
| 2345 | return !*d3cold_ok; |
| 2346 | } |
| 2347 | |
| 2348 | /* |
| 2349 | * pci_bridge_d3_update - Update bridge D3 capabilities |
| 2350 | * @dev: PCI device which is changed |
| 2351 | * |
| 2352 | * Update upstream bridge PM capabilities accordingly depending on if the |
| 2353 | * device PM configuration was changed or the device is being removed. The |
| 2354 | * change is also propagated upstream. |
| 2355 | */ |
| 2356 | void pci_bridge_d3_update(struct pci_dev *dev) |
| 2357 | { |
| 2358 | bool remove = !device_is_registered(&dev->dev); |
| 2359 | struct pci_dev *bridge; |
| 2360 | bool d3cold_ok = true; |
| 2361 | |
| 2362 | bridge = pci_upstream_bridge(dev); |
| 2363 | if (!bridge || !pci_bridge_d3_possible(bridge)) |
| 2364 | return; |
| 2365 | |
| 2366 | /* |
| 2367 | * If D3 is currently allowed for the bridge, removing one of its |
| 2368 | * children won't change that. |
| 2369 | */ |
| 2370 | if (remove && bridge->bridge_d3) |
| 2371 | return; |
| 2372 | |
| 2373 | /* |
| 2374 | * If D3 is currently allowed for the bridge and a child is added or |
| 2375 | * changed, disallowance of D3 can only be caused by that child, so |
| 2376 | * we only need to check that single device, not any of its siblings. |
| 2377 | * |
| 2378 | * If D3 is currently not allowed for the bridge, checking the device |
| 2379 | * first may allow us to skip checking its siblings. |
| 2380 | */ |
| 2381 | if (!remove) |
| 2382 | pci_dev_check_d3cold(dev, &d3cold_ok); |
| 2383 | |
| 2384 | /* |
| 2385 | * If D3 is currently not allowed for the bridge, this may be caused |
| 2386 | * either by the device being changed/removed or any of its siblings, |
| 2387 | * so we need to go through all children to find out if one of them |
| 2388 | * continues to block D3. |
| 2389 | */ |
| 2390 | if (d3cold_ok && !bridge->bridge_d3) |
| 2391 | pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, |
| 2392 | &d3cold_ok); |
| 2393 | |
| 2394 | if (bridge->bridge_d3 != d3cold_ok) { |
| 2395 | bridge->bridge_d3 = d3cold_ok; |
| 2396 | /* Propagate change to upstream bridges */ |
| 2397 | pci_bridge_d3_update(bridge); |
| 2398 | } |
| 2399 | } |
| 2400 | |
| 2401 | /** |
| 2402 | * pci_d3cold_enable - Enable D3cold for device |
| 2403 | * @dev: PCI device to handle |
| 2404 | * |
| 2405 | * This function can be used in drivers to enable D3cold from the device |
| 2406 | * they handle. It also updates upstream PCI bridge PM capabilities |
| 2407 | * accordingly. |
| 2408 | */ |
| 2409 | void pci_d3cold_enable(struct pci_dev *dev) |
| 2410 | { |
| 2411 | if (dev->no_d3cold) { |
| 2412 | dev->no_d3cold = false; |
| 2413 | pci_bridge_d3_update(dev); |
| 2414 | } |
| 2415 | } |
| 2416 | EXPORT_SYMBOL_GPL(pci_d3cold_enable); |
| 2417 | |
| 2418 | /** |
| 2419 | * pci_d3cold_disable - Disable D3cold for device |
| 2420 | * @dev: PCI device to handle |
| 2421 | * |
| 2422 | * This function can be used in drivers to disable D3cold from the device |
| 2423 | * they handle. It also updates upstream PCI bridge PM capabilities |
| 2424 | * accordingly. |
| 2425 | */ |
| 2426 | void pci_d3cold_disable(struct pci_dev *dev) |
| 2427 | { |
| 2428 | if (!dev->no_d3cold) { |
| 2429 | dev->no_d3cold = true; |
| 2430 | pci_bridge_d3_update(dev); |
| 2431 | } |
| 2432 | } |
| 2433 | EXPORT_SYMBOL_GPL(pci_d3cold_disable); |
| 2434 | |
| 2435 | /** |
| 2436 | * pci_pm_init - Initialize PM functions of given PCI device |
| 2437 | * @dev: PCI device to handle. |
| 2438 | */ |
| 2439 | void pci_pm_init(struct pci_dev *dev) |
| 2440 | { |
| 2441 | int pm; |
| 2442 | u16 pmc; |
| 2443 | |
| 2444 | pm_runtime_forbid(&dev->dev); |
| 2445 | pm_runtime_set_active(&dev->dev); |
| 2446 | pm_runtime_enable(&dev->dev); |
| 2447 | device_enable_async_suspend(&dev->dev); |
| 2448 | dev->wakeup_prepared = false; |
| 2449 | |
| 2450 | dev->pm_cap = 0; |
| 2451 | dev->pme_support = 0; |
| 2452 | |
| 2453 | /* find PCI PM capability in list */ |
| 2454 | pm = pci_find_capability(dev, PCI_CAP_ID_PM); |
| 2455 | if (!pm) |
| 2456 | return; |
| 2457 | /* Check device's ability to generate PME# */ |
| 2458 | pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); |
| 2459 | |
| 2460 | if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { |
| 2461 | dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", |
| 2462 | pmc & PCI_PM_CAP_VER_MASK); |
| 2463 | return; |
| 2464 | } |
| 2465 | |
| 2466 | dev->pm_cap = pm; |
| 2467 | dev->d3_delay = PCI_PM_D3_WAIT; |
| 2468 | dev->d3cold_delay = PCI_PM_D3COLD_WAIT; |
| 2469 | dev->bridge_d3 = pci_bridge_d3_possible(dev); |
| 2470 | dev->d3cold_allowed = true; |
| 2471 | |
| 2472 | dev->d1_support = false; |
| 2473 | dev->d2_support = false; |
| 2474 | if (!pci_no_d1d2(dev)) { |
| 2475 | if (pmc & PCI_PM_CAP_D1) |
| 2476 | dev->d1_support = true; |
| 2477 | if (pmc & PCI_PM_CAP_D2) |
| 2478 | dev->d2_support = true; |
| 2479 | |
| 2480 | if (dev->d1_support || dev->d2_support) |
| 2481 | dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", |
| 2482 | dev->d1_support ? " D1" : "", |
| 2483 | dev->d2_support ? " D2" : ""); |
| 2484 | } |
| 2485 | |
| 2486 | pmc &= PCI_PM_CAP_PME_MASK; |
| 2487 | if (pmc) { |
| 2488 | dev_printk(KERN_DEBUG, &dev->dev, |
| 2489 | "PME# supported from%s%s%s%s%s\n", |
| 2490 | (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", |
| 2491 | (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", |
| 2492 | (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", |
| 2493 | (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", |
| 2494 | (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); |
| 2495 | dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; |
| 2496 | dev->pme_poll = true; |
| 2497 | /* |
| 2498 | * Make device's PM flags reflect the wake-up capability, but |
| 2499 | * let the user space enable it to wake up the system as needed. |
| 2500 | */ |
| 2501 | device_set_wakeup_capable(&dev->dev, true); |
| 2502 | /* Disable the PME# generation functionality */ |
| 2503 | pci_pme_active(dev, false); |
| 2504 | } |
| 2505 | } |
| 2506 | |
| 2507 | static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) |
| 2508 | { |
| 2509 | unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; |
| 2510 | |
| 2511 | switch (prop) { |
| 2512 | case PCI_EA_P_MEM: |
| 2513 | case PCI_EA_P_VF_MEM: |
| 2514 | flags |= IORESOURCE_MEM; |
| 2515 | break; |
| 2516 | case PCI_EA_P_MEM_PREFETCH: |
| 2517 | case PCI_EA_P_VF_MEM_PREFETCH: |
| 2518 | flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; |
| 2519 | break; |
| 2520 | case PCI_EA_P_IO: |
| 2521 | flags |= IORESOURCE_IO; |
| 2522 | break; |
| 2523 | default: |
| 2524 | return 0; |
| 2525 | } |
| 2526 | |
| 2527 | return flags; |
| 2528 | } |
| 2529 | |
| 2530 | static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, |
| 2531 | u8 prop) |
| 2532 | { |
| 2533 | if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) |
| 2534 | return &dev->resource[bei]; |
| 2535 | #ifdef CONFIG_PCI_IOV |
| 2536 | else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && |
| 2537 | (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) |
| 2538 | return &dev->resource[PCI_IOV_RESOURCES + |
| 2539 | bei - PCI_EA_BEI_VF_BAR0]; |
| 2540 | #endif |
| 2541 | else if (bei == PCI_EA_BEI_ROM) |
| 2542 | return &dev->resource[PCI_ROM_RESOURCE]; |
| 2543 | else |
| 2544 | return NULL; |
| 2545 | } |
| 2546 | |
| 2547 | /* Read an Enhanced Allocation (EA) entry */ |
| 2548 | static int pci_ea_read(struct pci_dev *dev, int offset) |
| 2549 | { |
| 2550 | struct resource *res; |
| 2551 | int ent_size, ent_offset = offset; |
| 2552 | resource_size_t start, end; |
| 2553 | unsigned long flags; |
| 2554 | u32 dw0, bei, base, max_offset; |
| 2555 | u8 prop; |
| 2556 | bool support_64 = (sizeof(resource_size_t) >= 8); |
| 2557 | |
| 2558 | pci_read_config_dword(dev, ent_offset, &dw0); |
| 2559 | ent_offset += 4; |
| 2560 | |
| 2561 | /* Entry size field indicates DWORDs after 1st */ |
| 2562 | ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; |
| 2563 | |
| 2564 | if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ |
| 2565 | goto out; |
| 2566 | |
| 2567 | bei = (dw0 & PCI_EA_BEI) >> 4; |
| 2568 | prop = (dw0 & PCI_EA_PP) >> 8; |
| 2569 | |
| 2570 | /* |
| 2571 | * If the Property is in the reserved range, try the Secondary |
| 2572 | * Property instead. |
| 2573 | */ |
| 2574 | if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) |
| 2575 | prop = (dw0 & PCI_EA_SP) >> 16; |
| 2576 | if (prop > PCI_EA_P_BRIDGE_IO) |
| 2577 | goto out; |
| 2578 | |
| 2579 | res = pci_ea_get_resource(dev, bei, prop); |
| 2580 | if (!res) { |
| 2581 | dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei); |
| 2582 | goto out; |
| 2583 | } |
| 2584 | |
| 2585 | flags = pci_ea_flags(dev, prop); |
| 2586 | if (!flags) { |
| 2587 | dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop); |
| 2588 | goto out; |
| 2589 | } |
| 2590 | |
| 2591 | /* Read Base */ |
| 2592 | pci_read_config_dword(dev, ent_offset, &base); |
| 2593 | start = (base & PCI_EA_FIELD_MASK); |
| 2594 | ent_offset += 4; |
| 2595 | |
| 2596 | /* Read MaxOffset */ |
| 2597 | pci_read_config_dword(dev, ent_offset, &max_offset); |
| 2598 | ent_offset += 4; |
| 2599 | |
| 2600 | /* Read Base MSBs (if 64-bit entry) */ |
| 2601 | if (base & PCI_EA_IS_64) { |
| 2602 | u32 base_upper; |
| 2603 | |
| 2604 | pci_read_config_dword(dev, ent_offset, &base_upper); |
| 2605 | ent_offset += 4; |
| 2606 | |
| 2607 | flags |= IORESOURCE_MEM_64; |
| 2608 | |
| 2609 | /* entry starts above 32-bit boundary, can't use */ |
| 2610 | if (!support_64 && base_upper) |
| 2611 | goto out; |
| 2612 | |
| 2613 | if (support_64) |
| 2614 | start |= ((u64)base_upper << 32); |
| 2615 | } |
| 2616 | |
| 2617 | end = start + (max_offset | 0x03); |
| 2618 | |
| 2619 | /* Read MaxOffset MSBs (if 64-bit entry) */ |
| 2620 | if (max_offset & PCI_EA_IS_64) { |
| 2621 | u32 max_offset_upper; |
| 2622 | |
| 2623 | pci_read_config_dword(dev, ent_offset, &max_offset_upper); |
| 2624 | ent_offset += 4; |
| 2625 | |
| 2626 | flags |= IORESOURCE_MEM_64; |
| 2627 | |
| 2628 | /* entry too big, can't use */ |
| 2629 | if (!support_64 && max_offset_upper) |
| 2630 | goto out; |
| 2631 | |
| 2632 | if (support_64) |
| 2633 | end += ((u64)max_offset_upper << 32); |
| 2634 | } |
| 2635 | |
| 2636 | if (end < start) { |
| 2637 | dev_err(&dev->dev, "EA Entry crosses address boundary\n"); |
| 2638 | goto out; |
| 2639 | } |
| 2640 | |
| 2641 | if (ent_size != ent_offset - offset) { |
| 2642 | dev_err(&dev->dev, |
| 2643 | "EA Entry Size (%d) does not match length read (%d)\n", |
| 2644 | ent_size, ent_offset - offset); |
| 2645 | goto out; |
| 2646 | } |
| 2647 | |
| 2648 | res->name = pci_name(dev); |
| 2649 | res->start = start; |
| 2650 | res->end = end; |
| 2651 | res->flags = flags; |
| 2652 | |
| 2653 | if (bei <= PCI_EA_BEI_BAR5) |
| 2654 | dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", |
| 2655 | bei, res, prop); |
| 2656 | else if (bei == PCI_EA_BEI_ROM) |
| 2657 | dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", |
| 2658 | res, prop); |
| 2659 | else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) |
| 2660 | dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", |
| 2661 | bei - PCI_EA_BEI_VF_BAR0, res, prop); |
| 2662 | else |
| 2663 | dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", |
| 2664 | bei, res, prop); |
| 2665 | |
| 2666 | out: |
| 2667 | return offset + ent_size; |
| 2668 | } |
| 2669 | |
| 2670 | /* Enhanced Allocation Initialization */ |
| 2671 | void pci_ea_init(struct pci_dev *dev) |
| 2672 | { |
| 2673 | int ea; |
| 2674 | u8 num_ent; |
| 2675 | int offset; |
| 2676 | int i; |
| 2677 | |
| 2678 | /* find PCI EA capability in list */ |
| 2679 | ea = pci_find_capability(dev, PCI_CAP_ID_EA); |
| 2680 | if (!ea) |
| 2681 | return; |
| 2682 | |
| 2683 | /* determine the number of entries */ |
| 2684 | pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, |
| 2685 | &num_ent); |
| 2686 | num_ent &= PCI_EA_NUM_ENT_MASK; |
| 2687 | |
| 2688 | offset = ea + PCI_EA_FIRST_ENT; |
| 2689 | |
| 2690 | /* Skip DWORD 2 for type 1 functions */ |
| 2691 | if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) |
| 2692 | offset += 4; |
| 2693 | |
| 2694 | /* parse each EA entry */ |
| 2695 | for (i = 0; i < num_ent; ++i) |
| 2696 | offset = pci_ea_read(dev, offset); |
| 2697 | } |
| 2698 | |
| 2699 | static void pci_add_saved_cap(struct pci_dev *pci_dev, |
| 2700 | struct pci_cap_saved_state *new_cap) |
| 2701 | { |
| 2702 | hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); |
| 2703 | } |
| 2704 | |
| 2705 | /** |
| 2706 | * _pci_add_cap_save_buffer - allocate buffer for saving given |
| 2707 | * capability registers |
| 2708 | * @dev: the PCI device |
| 2709 | * @cap: the capability to allocate the buffer for |
| 2710 | * @extended: Standard or Extended capability ID |
| 2711 | * @size: requested size of the buffer |
| 2712 | */ |
| 2713 | static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, |
| 2714 | bool extended, unsigned int size) |
| 2715 | { |
| 2716 | int pos; |
| 2717 | struct pci_cap_saved_state *save_state; |
| 2718 | |
| 2719 | if (extended) |
| 2720 | pos = pci_find_ext_capability(dev, cap); |
| 2721 | else |
| 2722 | pos = pci_find_capability(dev, cap); |
| 2723 | |
| 2724 | if (!pos) |
| 2725 | return 0; |
| 2726 | |
| 2727 | save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); |
| 2728 | if (!save_state) |
| 2729 | return -ENOMEM; |
| 2730 | |
| 2731 | save_state->cap.cap_nr = cap; |
| 2732 | save_state->cap.cap_extended = extended; |
| 2733 | save_state->cap.size = size; |
| 2734 | pci_add_saved_cap(dev, save_state); |
| 2735 | |
| 2736 | return 0; |
| 2737 | } |
| 2738 | |
| 2739 | int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) |
| 2740 | { |
| 2741 | return _pci_add_cap_save_buffer(dev, cap, false, size); |
| 2742 | } |
| 2743 | |
| 2744 | int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) |
| 2745 | { |
| 2746 | return _pci_add_cap_save_buffer(dev, cap, true, size); |
| 2747 | } |
| 2748 | |
| 2749 | /** |
| 2750 | * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities |
| 2751 | * @dev: the PCI device |
| 2752 | */ |
| 2753 | void pci_allocate_cap_save_buffers(struct pci_dev *dev) |
| 2754 | { |
| 2755 | int error; |
| 2756 | |
| 2757 | error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, |
| 2758 | PCI_EXP_SAVE_REGS * sizeof(u16)); |
| 2759 | if (error) |
| 2760 | dev_err(&dev->dev, |
| 2761 | "unable to preallocate PCI Express save buffer\n"); |
| 2762 | |
| 2763 | error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); |
| 2764 | if (error) |
| 2765 | dev_err(&dev->dev, |
| 2766 | "unable to preallocate PCI-X save buffer\n"); |
| 2767 | |
| 2768 | pci_allocate_vc_save_buffers(dev); |
| 2769 | } |
| 2770 | |
| 2771 | void pci_free_cap_save_buffers(struct pci_dev *dev) |
| 2772 | { |
| 2773 | struct pci_cap_saved_state *tmp; |
| 2774 | struct hlist_node *n; |
| 2775 | |
| 2776 | hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) |
| 2777 | kfree(tmp); |
| 2778 | } |
| 2779 | |
| 2780 | /** |
| 2781 | * pci_configure_ari - enable or disable ARI forwarding |
| 2782 | * @dev: the PCI device |
| 2783 | * |
| 2784 | * If @dev and its upstream bridge both support ARI, enable ARI in the |
| 2785 | * bridge. Otherwise, disable ARI in the bridge. |
| 2786 | */ |
| 2787 | void pci_configure_ari(struct pci_dev *dev) |
| 2788 | { |
| 2789 | u32 cap; |
| 2790 | struct pci_dev *bridge; |
| 2791 | |
| 2792 | if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) |
| 2793 | return; |
| 2794 | |
| 2795 | bridge = dev->bus->self; |
| 2796 | if (!bridge) |
| 2797 | return; |
| 2798 | |
| 2799 | pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); |
| 2800 | if (!(cap & PCI_EXP_DEVCAP2_ARI)) |
| 2801 | return; |
| 2802 | |
| 2803 | if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { |
| 2804 | pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, |
| 2805 | PCI_EXP_DEVCTL2_ARI); |
| 2806 | bridge->ari_enabled = 1; |
| 2807 | } else { |
| 2808 | pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, |
| 2809 | PCI_EXP_DEVCTL2_ARI); |
| 2810 | bridge->ari_enabled = 0; |
| 2811 | } |
| 2812 | } |
| 2813 | |
| 2814 | static int pci_acs_enable; |
| 2815 | |
| 2816 | /** |
| 2817 | * pci_request_acs - ask for ACS to be enabled if supported |
| 2818 | */ |
| 2819 | void pci_request_acs(void) |
| 2820 | { |
| 2821 | pci_acs_enable = 1; |
| 2822 | } |
| 2823 | |
| 2824 | /** |
| 2825 | * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites |
| 2826 | * @dev: the PCI device |
| 2827 | */ |
| 2828 | static void pci_std_enable_acs(struct pci_dev *dev) |
| 2829 | { |
| 2830 | int pos; |
| 2831 | u16 cap; |
| 2832 | u16 ctrl; |
| 2833 | |
| 2834 | pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); |
| 2835 | if (!pos) |
| 2836 | return; |
| 2837 | |
| 2838 | pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); |
| 2839 | pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); |
| 2840 | |
| 2841 | /* Source Validation */ |
| 2842 | ctrl |= (cap & PCI_ACS_SV); |
| 2843 | |
| 2844 | /* P2P Request Redirect */ |
| 2845 | ctrl |= (cap & PCI_ACS_RR); |
| 2846 | |
| 2847 | /* P2P Completion Redirect */ |
| 2848 | ctrl |= (cap & PCI_ACS_CR); |
| 2849 | |
| 2850 | /* Upstream Forwarding */ |
| 2851 | ctrl |= (cap & PCI_ACS_UF); |
| 2852 | |
| 2853 | pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); |
| 2854 | } |
| 2855 | |
| 2856 | /** |
| 2857 | * pci_enable_acs - enable ACS if hardware support it |
| 2858 | * @dev: the PCI device |
| 2859 | */ |
| 2860 | void pci_enable_acs(struct pci_dev *dev) |
| 2861 | { |
| 2862 | if (!pci_acs_enable) |
| 2863 | return; |
| 2864 | |
| 2865 | if (!pci_dev_specific_enable_acs(dev)) |
| 2866 | return; |
| 2867 | |
| 2868 | pci_std_enable_acs(dev); |
| 2869 | } |
| 2870 | |
| 2871 | static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) |
| 2872 | { |
| 2873 | int pos; |
| 2874 | u16 cap, ctrl; |
| 2875 | |
| 2876 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); |
| 2877 | if (!pos) |
| 2878 | return false; |
| 2879 | |
| 2880 | /* |
| 2881 | * Except for egress control, capabilities are either required |
| 2882 | * or only required if controllable. Features missing from the |
| 2883 | * capability field can therefore be assumed as hard-wired enabled. |
| 2884 | */ |
| 2885 | pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); |
| 2886 | acs_flags &= (cap | PCI_ACS_EC); |
| 2887 | |
| 2888 | pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); |
| 2889 | return (ctrl & acs_flags) == acs_flags; |
| 2890 | } |
| 2891 | |
| 2892 | /** |
| 2893 | * pci_acs_enabled - test ACS against required flags for a given device |
| 2894 | * @pdev: device to test |
| 2895 | * @acs_flags: required PCI ACS flags |
| 2896 | * |
| 2897 | * Return true if the device supports the provided flags. Automatically |
| 2898 | * filters out flags that are not implemented on multifunction devices. |
| 2899 | * |
| 2900 | * Note that this interface checks the effective ACS capabilities of the |
| 2901 | * device rather than the actual capabilities. For instance, most single |
| 2902 | * function endpoints are not required to support ACS because they have no |
| 2903 | * opportunity for peer-to-peer access. We therefore return 'true' |
| 2904 | * regardless of whether the device exposes an ACS capability. This makes |
| 2905 | * it much easier for callers of this function to ignore the actual type |
| 2906 | * or topology of the device when testing ACS support. |
| 2907 | */ |
| 2908 | bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) |
| 2909 | { |
| 2910 | int ret; |
| 2911 | |
| 2912 | ret = pci_dev_specific_acs_enabled(pdev, acs_flags); |
| 2913 | if (ret >= 0) |
| 2914 | return ret > 0; |
| 2915 | |
| 2916 | /* |
| 2917 | * Conventional PCI and PCI-X devices never support ACS, either |
| 2918 | * effectively or actually. The shared bus topology implies that |
| 2919 | * any device on the bus can receive or snoop DMA. |
| 2920 | */ |
| 2921 | if (!pci_is_pcie(pdev)) |
| 2922 | return false; |
| 2923 | |
| 2924 | switch (pci_pcie_type(pdev)) { |
| 2925 | /* |
| 2926 | * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, |
| 2927 | * but since their primary interface is PCI/X, we conservatively |
| 2928 | * handle them as we would a non-PCIe device. |
| 2929 | */ |
| 2930 | case PCI_EXP_TYPE_PCIE_BRIDGE: |
| 2931 | /* |
| 2932 | * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never |
| 2933 | * applicable... must never implement an ACS Extended Capability...". |
| 2934 | * This seems arbitrary, but we take a conservative interpretation |
| 2935 | * of this statement. |
| 2936 | */ |
| 2937 | case PCI_EXP_TYPE_PCI_BRIDGE: |
| 2938 | case PCI_EXP_TYPE_RC_EC: |
| 2939 | return false; |
| 2940 | /* |
| 2941 | * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should |
| 2942 | * implement ACS in order to indicate their peer-to-peer capabilities, |
| 2943 | * regardless of whether they are single- or multi-function devices. |
| 2944 | */ |
| 2945 | case PCI_EXP_TYPE_DOWNSTREAM: |
| 2946 | case PCI_EXP_TYPE_ROOT_PORT: |
| 2947 | return pci_acs_flags_enabled(pdev, acs_flags); |
| 2948 | /* |
| 2949 | * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be |
| 2950 | * implemented by the remaining PCIe types to indicate peer-to-peer |
| 2951 | * capabilities, but only when they are part of a multifunction |
| 2952 | * device. The footnote for section 6.12 indicates the specific |
| 2953 | * PCIe types included here. |
| 2954 | */ |
| 2955 | case PCI_EXP_TYPE_ENDPOINT: |
| 2956 | case PCI_EXP_TYPE_UPSTREAM: |
| 2957 | case PCI_EXP_TYPE_LEG_END: |
| 2958 | case PCI_EXP_TYPE_RC_END: |
| 2959 | if (!pdev->multifunction) |
| 2960 | break; |
| 2961 | |
| 2962 | return pci_acs_flags_enabled(pdev, acs_flags); |
| 2963 | } |
| 2964 | |
| 2965 | /* |
| 2966 | * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable |
| 2967 | * to single function devices with the exception of downstream ports. |
| 2968 | */ |
| 2969 | return true; |
| 2970 | } |
| 2971 | |
| 2972 | /** |
| 2973 | * pci_acs_path_enable - test ACS flags from start to end in a hierarchy |
| 2974 | * @start: starting downstream device |
| 2975 | * @end: ending upstream device or NULL to search to the root bus |
| 2976 | * @acs_flags: required flags |
| 2977 | * |
| 2978 | * Walk up a device tree from start to end testing PCI ACS support. If |
| 2979 | * any step along the way does not support the required flags, return false. |
| 2980 | */ |
| 2981 | bool pci_acs_path_enabled(struct pci_dev *start, |
| 2982 | struct pci_dev *end, u16 acs_flags) |
| 2983 | { |
| 2984 | struct pci_dev *pdev, *parent = start; |
| 2985 | |
| 2986 | do { |
| 2987 | pdev = parent; |
| 2988 | |
| 2989 | if (!pci_acs_enabled(pdev, acs_flags)) |
| 2990 | return false; |
| 2991 | |
| 2992 | if (pci_is_root_bus(pdev->bus)) |
| 2993 | return (end == NULL); |
| 2994 | |
| 2995 | parent = pdev->bus->self; |
| 2996 | } while (pdev != end); |
| 2997 | |
| 2998 | return true; |
| 2999 | } |
| 3000 | |
| 3001 | /** |
| 3002 | * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge |
| 3003 | * @dev: the PCI device |
| 3004 | * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) |
| 3005 | * |
| 3006 | * Perform INTx swizzling for a device behind one level of bridge. This is |
| 3007 | * required by section 9.1 of the PCI-to-PCI bridge specification for devices |
| 3008 | * behind bridges on add-in cards. For devices with ARI enabled, the slot |
| 3009 | * number is always 0 (see the Implementation Note in section 2.2.8.1 of |
| 3010 | * the PCI Express Base Specification, Revision 2.1) |
| 3011 | */ |
| 3012 | u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) |
| 3013 | { |
| 3014 | int slot; |
| 3015 | |
| 3016 | if (pci_ari_enabled(dev->bus)) |
| 3017 | slot = 0; |
| 3018 | else |
| 3019 | slot = PCI_SLOT(dev->devfn); |
| 3020 | |
| 3021 | return (((pin - 1) + slot) % 4) + 1; |
| 3022 | } |
| 3023 | |
| 3024 | int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) |
| 3025 | { |
| 3026 | u8 pin; |
| 3027 | |
| 3028 | pin = dev->pin; |
| 3029 | if (!pin) |
| 3030 | return -1; |
| 3031 | |
| 3032 | while (!pci_is_root_bus(dev->bus)) { |
| 3033 | pin = pci_swizzle_interrupt_pin(dev, pin); |
| 3034 | dev = dev->bus->self; |
| 3035 | } |
| 3036 | *bridge = dev; |
| 3037 | return pin; |
| 3038 | } |
| 3039 | |
| 3040 | /** |
| 3041 | * pci_common_swizzle - swizzle INTx all the way to root bridge |
| 3042 | * @dev: the PCI device |
| 3043 | * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) |
| 3044 | * |
| 3045 | * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI |
| 3046 | * bridges all the way up to a PCI root bus. |
| 3047 | */ |
| 3048 | u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) |
| 3049 | { |
| 3050 | u8 pin = *pinp; |
| 3051 | |
| 3052 | while (!pci_is_root_bus(dev->bus)) { |
| 3053 | pin = pci_swizzle_interrupt_pin(dev, pin); |
| 3054 | dev = dev->bus->self; |
| 3055 | } |
| 3056 | *pinp = pin; |
| 3057 | return PCI_SLOT(dev->devfn); |
| 3058 | } |
| 3059 | EXPORT_SYMBOL_GPL(pci_common_swizzle); |
| 3060 | |
| 3061 | /** |
| 3062 | * pci_release_region - Release a PCI bar |
| 3063 | * @pdev: PCI device whose resources were previously reserved by pci_request_region |
| 3064 | * @bar: BAR to release |
| 3065 | * |
| 3066 | * Releases the PCI I/O and memory resources previously reserved by a |
| 3067 | * successful call to pci_request_region. Call this function only |
| 3068 | * after all use of the PCI regions has ceased. |
| 3069 | */ |
| 3070 | void pci_release_region(struct pci_dev *pdev, int bar) |
| 3071 | { |
| 3072 | struct pci_devres *dr; |
| 3073 | |
| 3074 | if (pci_resource_len(pdev, bar) == 0) |
| 3075 | return; |
| 3076 | if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) |
| 3077 | release_region(pci_resource_start(pdev, bar), |
| 3078 | pci_resource_len(pdev, bar)); |
| 3079 | else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) |
| 3080 | release_mem_region(pci_resource_start(pdev, bar), |
| 3081 | pci_resource_len(pdev, bar)); |
| 3082 | |
| 3083 | dr = find_pci_dr(pdev); |
| 3084 | if (dr) |
| 3085 | dr->region_mask &= ~(1 << bar); |
| 3086 | } |
| 3087 | EXPORT_SYMBOL(pci_release_region); |
| 3088 | |
| 3089 | /** |
| 3090 | * __pci_request_region - Reserved PCI I/O and memory resource |
| 3091 | * @pdev: PCI device whose resources are to be reserved |
| 3092 | * @bar: BAR to be reserved |
| 3093 | * @res_name: Name to be associated with resource. |
| 3094 | * @exclusive: whether the region access is exclusive or not |
| 3095 | * |
| 3096 | * Mark the PCI region associated with PCI device @pdev BR @bar as |
| 3097 | * being reserved by owner @res_name. Do not access any |
| 3098 | * address inside the PCI regions unless this call returns |
| 3099 | * successfully. |
| 3100 | * |
| 3101 | * If @exclusive is set, then the region is marked so that userspace |
| 3102 | * is explicitly not allowed to map the resource via /dev/mem or |
| 3103 | * sysfs MMIO access. |
| 3104 | * |
| 3105 | * Returns 0 on success, or %EBUSY on error. A warning |
| 3106 | * message is also printed on failure. |
| 3107 | */ |
| 3108 | static int __pci_request_region(struct pci_dev *pdev, int bar, |
| 3109 | const char *res_name, int exclusive) |
| 3110 | { |
| 3111 | struct pci_devres *dr; |
| 3112 | |
| 3113 | if (pci_resource_len(pdev, bar) == 0) |
| 3114 | return 0; |
| 3115 | |
| 3116 | if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { |
| 3117 | if (!request_region(pci_resource_start(pdev, bar), |
| 3118 | pci_resource_len(pdev, bar), res_name)) |
| 3119 | goto err_out; |
| 3120 | } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { |
| 3121 | if (!__request_mem_region(pci_resource_start(pdev, bar), |
| 3122 | pci_resource_len(pdev, bar), res_name, |
| 3123 | exclusive)) |
| 3124 | goto err_out; |
| 3125 | } |
| 3126 | |
| 3127 | dr = find_pci_dr(pdev); |
| 3128 | if (dr) |
| 3129 | dr->region_mask |= 1 << bar; |
| 3130 | |
| 3131 | return 0; |
| 3132 | |
| 3133 | err_out: |
| 3134 | dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, |
| 3135 | &pdev->resource[bar]); |
| 3136 | return -EBUSY; |
| 3137 | } |
| 3138 | |
| 3139 | /** |
| 3140 | * pci_request_region - Reserve PCI I/O and memory resource |
| 3141 | * @pdev: PCI device whose resources are to be reserved |
| 3142 | * @bar: BAR to be reserved |
| 3143 | * @res_name: Name to be associated with resource |
| 3144 | * |
| 3145 | * Mark the PCI region associated with PCI device @pdev BAR @bar as |
| 3146 | * being reserved by owner @res_name. Do not access any |
| 3147 | * address inside the PCI regions unless this call returns |
| 3148 | * successfully. |
| 3149 | * |
| 3150 | * Returns 0 on success, or %EBUSY on error. A warning |
| 3151 | * message is also printed on failure. |
| 3152 | */ |
| 3153 | int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) |
| 3154 | { |
| 3155 | return __pci_request_region(pdev, bar, res_name, 0); |
| 3156 | } |
| 3157 | EXPORT_SYMBOL(pci_request_region); |
| 3158 | |
| 3159 | /** |
| 3160 | * pci_request_region_exclusive - Reserved PCI I/O and memory resource |
| 3161 | * @pdev: PCI device whose resources are to be reserved |
| 3162 | * @bar: BAR to be reserved |
| 3163 | * @res_name: Name to be associated with resource. |
| 3164 | * |
| 3165 | * Mark the PCI region associated with PCI device @pdev BR @bar as |
| 3166 | * being reserved by owner @res_name. Do not access any |
| 3167 | * address inside the PCI regions unless this call returns |
| 3168 | * successfully. |
| 3169 | * |
| 3170 | * Returns 0 on success, or %EBUSY on error. A warning |
| 3171 | * message is also printed on failure. |
| 3172 | * |
| 3173 | * The key difference that _exclusive makes it that userspace is |
| 3174 | * explicitly not allowed to map the resource via /dev/mem or |
| 3175 | * sysfs. |
| 3176 | */ |
| 3177 | int pci_request_region_exclusive(struct pci_dev *pdev, int bar, |
| 3178 | const char *res_name) |
| 3179 | { |
| 3180 | return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); |
| 3181 | } |
| 3182 | EXPORT_SYMBOL(pci_request_region_exclusive); |
| 3183 | |
| 3184 | /** |
| 3185 | * pci_release_selected_regions - Release selected PCI I/O and memory resources |
| 3186 | * @pdev: PCI device whose resources were previously reserved |
| 3187 | * @bars: Bitmask of BARs to be released |
| 3188 | * |
| 3189 | * Release selected PCI I/O and memory resources previously reserved. |
| 3190 | * Call this function only after all use of the PCI regions has ceased. |
| 3191 | */ |
| 3192 | void pci_release_selected_regions(struct pci_dev *pdev, int bars) |
| 3193 | { |
| 3194 | int i; |
| 3195 | |
| 3196 | for (i = 0; i < 6; i++) |
| 3197 | if (bars & (1 << i)) |
| 3198 | pci_release_region(pdev, i); |
| 3199 | } |
| 3200 | EXPORT_SYMBOL(pci_release_selected_regions); |
| 3201 | |
| 3202 | static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, |
| 3203 | const char *res_name, int excl) |
| 3204 | { |
| 3205 | int i; |
| 3206 | |
| 3207 | for (i = 0; i < 6; i++) |
| 3208 | if (bars & (1 << i)) |
| 3209 | if (__pci_request_region(pdev, i, res_name, excl)) |
| 3210 | goto err_out; |
| 3211 | return 0; |
| 3212 | |
| 3213 | err_out: |
| 3214 | while (--i >= 0) |
| 3215 | if (bars & (1 << i)) |
| 3216 | pci_release_region(pdev, i); |
| 3217 | |
| 3218 | return -EBUSY; |
| 3219 | } |
| 3220 | |
| 3221 | |
| 3222 | /** |
| 3223 | * pci_request_selected_regions - Reserve selected PCI I/O and memory resources |
| 3224 | * @pdev: PCI device whose resources are to be reserved |
| 3225 | * @bars: Bitmask of BARs to be requested |
| 3226 | * @res_name: Name to be associated with resource |
| 3227 | */ |
| 3228 | int pci_request_selected_regions(struct pci_dev *pdev, int bars, |
| 3229 | const char *res_name) |
| 3230 | { |
| 3231 | return __pci_request_selected_regions(pdev, bars, res_name, 0); |
| 3232 | } |
| 3233 | EXPORT_SYMBOL(pci_request_selected_regions); |
| 3234 | |
| 3235 | int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, |
| 3236 | const char *res_name) |
| 3237 | { |
| 3238 | return __pci_request_selected_regions(pdev, bars, res_name, |
| 3239 | IORESOURCE_EXCLUSIVE); |
| 3240 | } |
| 3241 | EXPORT_SYMBOL(pci_request_selected_regions_exclusive); |
| 3242 | |
| 3243 | /** |
| 3244 | * pci_release_regions - Release reserved PCI I/O and memory resources |
| 3245 | * @pdev: PCI device whose resources were previously reserved by pci_request_regions |
| 3246 | * |
| 3247 | * Releases all PCI I/O and memory resources previously reserved by a |
| 3248 | * successful call to pci_request_regions. Call this function only |
| 3249 | * after all use of the PCI regions has ceased. |
| 3250 | */ |
| 3251 | |
| 3252 | void pci_release_regions(struct pci_dev *pdev) |
| 3253 | { |
| 3254 | pci_release_selected_regions(pdev, (1 << 6) - 1); |
| 3255 | } |
| 3256 | EXPORT_SYMBOL(pci_release_regions); |
| 3257 | |
| 3258 | /** |
| 3259 | * pci_request_regions - Reserved PCI I/O and memory resources |
| 3260 | * @pdev: PCI device whose resources are to be reserved |
| 3261 | * @res_name: Name to be associated with resource. |
| 3262 | * |
| 3263 | * Mark all PCI regions associated with PCI device @pdev as |
| 3264 | * being reserved by owner @res_name. Do not access any |
| 3265 | * address inside the PCI regions unless this call returns |
| 3266 | * successfully. |
| 3267 | * |
| 3268 | * Returns 0 on success, or %EBUSY on error. A warning |
| 3269 | * message is also printed on failure. |
| 3270 | */ |
| 3271 | int pci_request_regions(struct pci_dev *pdev, const char *res_name) |
| 3272 | { |
| 3273 | return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); |
| 3274 | } |
| 3275 | EXPORT_SYMBOL(pci_request_regions); |
| 3276 | |
| 3277 | /** |
| 3278 | * pci_request_regions_exclusive - Reserved PCI I/O and memory resources |
| 3279 | * @pdev: PCI device whose resources are to be reserved |
| 3280 | * @res_name: Name to be associated with resource. |
| 3281 | * |
| 3282 | * Mark all PCI regions associated with PCI device @pdev as |
| 3283 | * being reserved by owner @res_name. Do not access any |
| 3284 | * address inside the PCI regions unless this call returns |
| 3285 | * successfully. |
| 3286 | * |
| 3287 | * pci_request_regions_exclusive() will mark the region so that |
| 3288 | * /dev/mem and the sysfs MMIO access will not be allowed. |
| 3289 | * |
| 3290 | * Returns 0 on success, or %EBUSY on error. A warning |
| 3291 | * message is also printed on failure. |
| 3292 | */ |
| 3293 | int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) |
| 3294 | { |
| 3295 | return pci_request_selected_regions_exclusive(pdev, |
| 3296 | ((1 << 6) - 1), res_name); |
| 3297 | } |
| 3298 | EXPORT_SYMBOL(pci_request_regions_exclusive); |
| 3299 | |
| 3300 | #ifdef PCI_IOBASE |
| 3301 | struct io_range { |
| 3302 | struct list_head list; |
| 3303 | phys_addr_t start; |
| 3304 | resource_size_t size; |
| 3305 | }; |
| 3306 | |
| 3307 | static LIST_HEAD(io_range_list); |
| 3308 | static DEFINE_SPINLOCK(io_range_lock); |
| 3309 | #endif |
| 3310 | |
| 3311 | /* |
| 3312 | * Record the PCI IO range (expressed as CPU physical address + size). |
| 3313 | * Return a negative value if an error has occured, zero otherwise |
| 3314 | */ |
| 3315 | int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) |
| 3316 | { |
| 3317 | int err = 0; |
| 3318 | |
| 3319 | #ifdef PCI_IOBASE |
| 3320 | struct io_range *range; |
| 3321 | resource_size_t allocated_size = 0; |
| 3322 | |
| 3323 | /* check if the range hasn't been previously recorded */ |
| 3324 | spin_lock(&io_range_lock); |
| 3325 | list_for_each_entry(range, &io_range_list, list) { |
| 3326 | if (addr >= range->start && addr + size <= range->start + size) { |
| 3327 | /* range already registered, bail out */ |
| 3328 | goto end_register; |
| 3329 | } |
| 3330 | allocated_size += range->size; |
| 3331 | } |
| 3332 | |
| 3333 | /* range not registed yet, check for available space */ |
| 3334 | if (allocated_size + size - 1 > IO_SPACE_LIMIT) { |
| 3335 | /* if it's too big check if 64K space can be reserved */ |
| 3336 | if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { |
| 3337 | err = -E2BIG; |
| 3338 | goto end_register; |
| 3339 | } |
| 3340 | |
| 3341 | size = SZ_64K; |
| 3342 | pr_warn("Requested IO range too big, new size set to 64K\n"); |
| 3343 | } |
| 3344 | |
| 3345 | /* add the range to the list */ |
| 3346 | range = kzalloc(sizeof(*range), GFP_ATOMIC); |
| 3347 | if (!range) { |
| 3348 | err = -ENOMEM; |
| 3349 | goto end_register; |
| 3350 | } |
| 3351 | |
| 3352 | range->start = addr; |
| 3353 | range->size = size; |
| 3354 | |
| 3355 | list_add_tail(&range->list, &io_range_list); |
| 3356 | |
| 3357 | end_register: |
| 3358 | spin_unlock(&io_range_lock); |
| 3359 | #endif |
| 3360 | |
| 3361 | return err; |
| 3362 | } |
| 3363 | |
| 3364 | phys_addr_t pci_pio_to_address(unsigned long pio) |
| 3365 | { |
| 3366 | phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; |
| 3367 | |
| 3368 | #ifdef PCI_IOBASE |
| 3369 | struct io_range *range; |
| 3370 | resource_size_t allocated_size = 0; |
| 3371 | |
| 3372 | if (pio > IO_SPACE_LIMIT) |
| 3373 | return address; |
| 3374 | |
| 3375 | spin_lock(&io_range_lock); |
| 3376 | list_for_each_entry(range, &io_range_list, list) { |
| 3377 | if (pio >= allocated_size && pio < allocated_size + range->size) { |
| 3378 | address = range->start + pio - allocated_size; |
| 3379 | break; |
| 3380 | } |
| 3381 | allocated_size += range->size; |
| 3382 | } |
| 3383 | spin_unlock(&io_range_lock); |
| 3384 | #endif |
| 3385 | |
| 3386 | return address; |
| 3387 | } |
| 3388 | |
| 3389 | unsigned long __weak pci_address_to_pio(phys_addr_t address) |
| 3390 | { |
| 3391 | #ifdef PCI_IOBASE |
| 3392 | struct io_range *res; |
| 3393 | resource_size_t offset = 0; |
| 3394 | unsigned long addr = -1; |
| 3395 | |
| 3396 | spin_lock(&io_range_lock); |
| 3397 | list_for_each_entry(res, &io_range_list, list) { |
| 3398 | if (address >= res->start && address < res->start + res->size) { |
| 3399 | addr = address - res->start + offset; |
| 3400 | break; |
| 3401 | } |
| 3402 | offset += res->size; |
| 3403 | } |
| 3404 | spin_unlock(&io_range_lock); |
| 3405 | |
| 3406 | return addr; |
| 3407 | #else |
| 3408 | if (address > IO_SPACE_LIMIT) |
| 3409 | return (unsigned long)-1; |
| 3410 | |
| 3411 | return (unsigned long) address; |
| 3412 | #endif |
| 3413 | } |
| 3414 | |
| 3415 | /** |
| 3416 | * pci_remap_iospace - Remap the memory mapped I/O space |
| 3417 | * @res: Resource describing the I/O space |
| 3418 | * @phys_addr: physical address of range to be mapped |
| 3419 | * |
| 3420 | * Remap the memory mapped I/O space described by the @res |
| 3421 | * and the CPU physical address @phys_addr into virtual address space. |
| 3422 | * Only architectures that have memory mapped IO functions defined |
| 3423 | * (and the PCI_IOBASE value defined) should call this function. |
| 3424 | */ |
| 3425 | int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) |
| 3426 | { |
| 3427 | #if defined(PCI_IOBASE) && defined(CONFIG_MMU) |
| 3428 | unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; |
| 3429 | |
| 3430 | if (!(res->flags & IORESOURCE_IO)) |
| 3431 | return -EINVAL; |
| 3432 | |
| 3433 | if (res->end > IO_SPACE_LIMIT) |
| 3434 | return -EINVAL; |
| 3435 | |
| 3436 | return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, |
| 3437 | pgprot_device(PAGE_KERNEL)); |
| 3438 | #else |
| 3439 | /* this architecture does not have memory mapped I/O space, |
| 3440 | so this function should never be called */ |
| 3441 | WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); |
| 3442 | return -ENODEV; |
| 3443 | #endif |
| 3444 | } |
| 3445 | EXPORT_SYMBOL(pci_remap_iospace); |
| 3446 | |
| 3447 | /** |
| 3448 | * pci_unmap_iospace - Unmap the memory mapped I/O space |
| 3449 | * @res: resource to be unmapped |
| 3450 | * |
| 3451 | * Unmap the CPU virtual address @res from virtual address space. |
| 3452 | * Only architectures that have memory mapped IO functions defined |
| 3453 | * (and the PCI_IOBASE value defined) should call this function. |
| 3454 | */ |
| 3455 | void pci_unmap_iospace(struct resource *res) |
| 3456 | { |
| 3457 | #if defined(PCI_IOBASE) && defined(CONFIG_MMU) |
| 3458 | unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; |
| 3459 | |
| 3460 | unmap_kernel_range(vaddr, resource_size(res)); |
| 3461 | #endif |
| 3462 | } |
| 3463 | EXPORT_SYMBOL(pci_unmap_iospace); |
| 3464 | |
| 3465 | static void devm_pci_unmap_iospace(struct device *dev, void *ptr) |
| 3466 | { |
| 3467 | struct resource **res = ptr; |
| 3468 | |
| 3469 | pci_unmap_iospace(*res); |
| 3470 | } |
| 3471 | |
| 3472 | /** |
| 3473 | * devm_pci_remap_iospace - Managed pci_remap_iospace() |
| 3474 | * @dev: Generic device to remap IO address for |
| 3475 | * @res: Resource describing the I/O space |
| 3476 | * @phys_addr: physical address of range to be mapped |
| 3477 | * |
| 3478 | * Managed pci_remap_iospace(). Map is automatically unmapped on driver |
| 3479 | * detach. |
| 3480 | */ |
| 3481 | int devm_pci_remap_iospace(struct device *dev, const struct resource *res, |
| 3482 | phys_addr_t phys_addr) |
| 3483 | { |
| 3484 | const struct resource **ptr; |
| 3485 | int error; |
| 3486 | |
| 3487 | ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); |
| 3488 | if (!ptr) |
| 3489 | return -ENOMEM; |
| 3490 | |
| 3491 | error = pci_remap_iospace(res, phys_addr); |
| 3492 | if (error) { |
| 3493 | devres_free(ptr); |
| 3494 | } else { |
| 3495 | *ptr = res; |
| 3496 | devres_add(dev, ptr); |
| 3497 | } |
| 3498 | |
| 3499 | return error; |
| 3500 | } |
| 3501 | EXPORT_SYMBOL(devm_pci_remap_iospace); |
| 3502 | |
| 3503 | /** |
| 3504 | * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() |
| 3505 | * @dev: Generic device to remap IO address for |
| 3506 | * @offset: Resource address to map |
| 3507 | * @size: Size of map |
| 3508 | * |
| 3509 | * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver |
| 3510 | * detach. |
| 3511 | */ |
| 3512 | void __iomem *devm_pci_remap_cfgspace(struct device *dev, |
| 3513 | resource_size_t offset, |
| 3514 | resource_size_t size) |
| 3515 | { |
| 3516 | void __iomem **ptr, *addr; |
| 3517 | |
| 3518 | ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); |
| 3519 | if (!ptr) |
| 3520 | return NULL; |
| 3521 | |
| 3522 | addr = pci_remap_cfgspace(offset, size); |
| 3523 | if (addr) { |
| 3524 | *ptr = addr; |
| 3525 | devres_add(dev, ptr); |
| 3526 | } else |
| 3527 | devres_free(ptr); |
| 3528 | |
| 3529 | return addr; |
| 3530 | } |
| 3531 | EXPORT_SYMBOL(devm_pci_remap_cfgspace); |
| 3532 | |
| 3533 | /** |
| 3534 | * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource |
| 3535 | * @dev: generic device to handle the resource for |
| 3536 | * @res: configuration space resource to be handled |
| 3537 | * |
| 3538 | * Checks that a resource is a valid memory region, requests the memory |
| 3539 | * region and ioremaps with pci_remap_cfgspace() API that ensures the |
| 3540 | * proper PCI configuration space memory attributes are guaranteed. |
| 3541 | * |
| 3542 | * All operations are managed and will be undone on driver detach. |
| 3543 | * |
| 3544 | * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code |
| 3545 | * on failure. Usage example: |
| 3546 | * |
| 3547 | * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 3548 | * base = devm_pci_remap_cfg_resource(&pdev->dev, res); |
| 3549 | * if (IS_ERR(base)) |
| 3550 | * return PTR_ERR(base); |
| 3551 | */ |
| 3552 | void __iomem *devm_pci_remap_cfg_resource(struct device *dev, |
| 3553 | struct resource *res) |
| 3554 | { |
| 3555 | resource_size_t size; |
| 3556 | const char *name; |
| 3557 | void __iomem *dest_ptr; |
| 3558 | |
| 3559 | BUG_ON(!dev); |
| 3560 | |
| 3561 | if (!res || resource_type(res) != IORESOURCE_MEM) { |
| 3562 | dev_err(dev, "invalid resource\n"); |
| 3563 | return IOMEM_ERR_PTR(-EINVAL); |
| 3564 | } |
| 3565 | |
| 3566 | size = resource_size(res); |
| 3567 | name = res->name ?: dev_name(dev); |
| 3568 | |
| 3569 | if (!devm_request_mem_region(dev, res->start, size, name)) { |
| 3570 | dev_err(dev, "can't request region for resource %pR\n", res); |
| 3571 | return IOMEM_ERR_PTR(-EBUSY); |
| 3572 | } |
| 3573 | |
| 3574 | dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); |
| 3575 | if (!dest_ptr) { |
| 3576 | dev_err(dev, "ioremap failed for resource %pR\n", res); |
| 3577 | devm_release_mem_region(dev, res->start, size); |
| 3578 | dest_ptr = IOMEM_ERR_PTR(-ENOMEM); |
| 3579 | } |
| 3580 | |
| 3581 | return dest_ptr; |
| 3582 | } |
| 3583 | EXPORT_SYMBOL(devm_pci_remap_cfg_resource); |
| 3584 | |
| 3585 | static void __pci_set_master(struct pci_dev *dev, bool enable) |
| 3586 | { |
| 3587 | u16 old_cmd, cmd; |
| 3588 | |
| 3589 | pci_read_config_word(dev, PCI_COMMAND, &old_cmd); |
| 3590 | if (enable) |
| 3591 | cmd = old_cmd | PCI_COMMAND_MASTER; |
| 3592 | else |
| 3593 | cmd = old_cmd & ~PCI_COMMAND_MASTER; |
| 3594 | if (cmd != old_cmd) { |
| 3595 | dev_dbg(&dev->dev, "%s bus mastering\n", |
| 3596 | enable ? "enabling" : "disabling"); |
| 3597 | pci_write_config_word(dev, PCI_COMMAND, cmd); |
| 3598 | } |
| 3599 | dev->is_busmaster = enable; |
| 3600 | } |
| 3601 | |
| 3602 | /** |
| 3603 | * pcibios_setup - process "pci=" kernel boot arguments |
| 3604 | * @str: string used to pass in "pci=" kernel boot arguments |
| 3605 | * |
| 3606 | * Process kernel boot arguments. This is the default implementation. |
| 3607 | * Architecture specific implementations can override this as necessary. |
| 3608 | */ |
| 3609 | char * __weak __init pcibios_setup(char *str) |
| 3610 | { |
| 3611 | return str; |
| 3612 | } |
| 3613 | |
| 3614 | /** |
| 3615 | * pcibios_set_master - enable PCI bus-mastering for device dev |
| 3616 | * @dev: the PCI device to enable |
| 3617 | * |
| 3618 | * Enables PCI bus-mastering for the device. This is the default |
| 3619 | * implementation. Architecture specific implementations can override |
| 3620 | * this if necessary. |
| 3621 | */ |
| 3622 | void __weak pcibios_set_master(struct pci_dev *dev) |
| 3623 | { |
| 3624 | u8 lat; |
| 3625 | |
| 3626 | /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ |
| 3627 | if (pci_is_pcie(dev)) |
| 3628 | return; |
| 3629 | |
| 3630 | pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); |
| 3631 | if (lat < 16) |
| 3632 | lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; |
| 3633 | else if (lat > pcibios_max_latency) |
| 3634 | lat = pcibios_max_latency; |
| 3635 | else |
| 3636 | return; |
| 3637 | |
| 3638 | pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); |
| 3639 | } |
| 3640 | |
| 3641 | /** |
| 3642 | * pci_set_master - enables bus-mastering for device dev |
| 3643 | * @dev: the PCI device to enable |
| 3644 | * |
| 3645 | * Enables bus-mastering on the device and calls pcibios_set_master() |
| 3646 | * to do the needed arch specific settings. |
| 3647 | */ |
| 3648 | void pci_set_master(struct pci_dev *dev) |
| 3649 | { |
| 3650 | __pci_set_master(dev, true); |
| 3651 | pcibios_set_master(dev); |
| 3652 | } |
| 3653 | EXPORT_SYMBOL(pci_set_master); |
| 3654 | |
| 3655 | /** |
| 3656 | * pci_clear_master - disables bus-mastering for device dev |
| 3657 | * @dev: the PCI device to disable |
| 3658 | */ |
| 3659 | void pci_clear_master(struct pci_dev *dev) |
| 3660 | { |
| 3661 | __pci_set_master(dev, false); |
| 3662 | } |
| 3663 | EXPORT_SYMBOL(pci_clear_master); |
| 3664 | |
| 3665 | /** |
| 3666 | * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed |
| 3667 | * @dev: the PCI device for which MWI is to be enabled |
| 3668 | * |
| 3669 | * Helper function for pci_set_mwi. |
| 3670 | * Originally copied from drivers/net/acenic.c. |
| 3671 | * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. |
| 3672 | * |
| 3673 | * RETURNS: An appropriate -ERRNO error value on error, or zero for success. |
| 3674 | */ |
| 3675 | int pci_set_cacheline_size(struct pci_dev *dev) |
| 3676 | { |
| 3677 | u8 cacheline_size; |
| 3678 | |
| 3679 | if (!pci_cache_line_size) |
| 3680 | return -EINVAL; |
| 3681 | |
| 3682 | /* Validate current setting: the PCI_CACHE_LINE_SIZE must be |
| 3683 | equal to or multiple of the right value. */ |
| 3684 | pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); |
| 3685 | if (cacheline_size >= pci_cache_line_size && |
| 3686 | (cacheline_size % pci_cache_line_size) == 0) |
| 3687 | return 0; |
| 3688 | |
| 3689 | /* Write the correct value. */ |
| 3690 | pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); |
| 3691 | /* Read it back. */ |
| 3692 | pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); |
| 3693 | if (cacheline_size == pci_cache_line_size) |
| 3694 | return 0; |
| 3695 | |
| 3696 | dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", |
| 3697 | pci_cache_line_size << 2); |
| 3698 | |
| 3699 | return -EINVAL; |
| 3700 | } |
| 3701 | EXPORT_SYMBOL_GPL(pci_set_cacheline_size); |
| 3702 | |
| 3703 | /** |
| 3704 | * pci_set_mwi - enables memory-write-invalidate PCI transaction |
| 3705 | * @dev: the PCI device for which MWI is enabled |
| 3706 | * |
| 3707 | * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. |
| 3708 | * |
| 3709 | * RETURNS: An appropriate -ERRNO error value on error, or zero for success. |
| 3710 | */ |
| 3711 | int pci_set_mwi(struct pci_dev *dev) |
| 3712 | { |
| 3713 | #ifdef PCI_DISABLE_MWI |
| 3714 | return 0; |
| 3715 | #else |
| 3716 | int rc; |
| 3717 | u16 cmd; |
| 3718 | |
| 3719 | rc = pci_set_cacheline_size(dev); |
| 3720 | if (rc) |
| 3721 | return rc; |
| 3722 | |
| 3723 | pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| 3724 | if (!(cmd & PCI_COMMAND_INVALIDATE)) { |
| 3725 | dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); |
| 3726 | cmd |= PCI_COMMAND_INVALIDATE; |
| 3727 | pci_write_config_word(dev, PCI_COMMAND, cmd); |
| 3728 | } |
| 3729 | return 0; |
| 3730 | #endif |
| 3731 | } |
| 3732 | EXPORT_SYMBOL(pci_set_mwi); |
| 3733 | |
| 3734 | /** |
| 3735 | * pci_try_set_mwi - enables memory-write-invalidate PCI transaction |
| 3736 | * @dev: the PCI device for which MWI is enabled |
| 3737 | * |
| 3738 | * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. |
| 3739 | * Callers are not required to check the return value. |
| 3740 | * |
| 3741 | * RETURNS: An appropriate -ERRNO error value on error, or zero for success. |
| 3742 | */ |
| 3743 | int pci_try_set_mwi(struct pci_dev *dev) |
| 3744 | { |
| 3745 | #ifdef PCI_DISABLE_MWI |
| 3746 | return 0; |
| 3747 | #else |
| 3748 | return pci_set_mwi(dev); |
| 3749 | #endif |
| 3750 | } |
| 3751 | EXPORT_SYMBOL(pci_try_set_mwi); |
| 3752 | |
| 3753 | /** |
| 3754 | * pci_clear_mwi - disables Memory-Write-Invalidate for device dev |
| 3755 | * @dev: the PCI device to disable |
| 3756 | * |
| 3757 | * Disables PCI Memory-Write-Invalidate transaction on the device |
| 3758 | */ |
| 3759 | void pci_clear_mwi(struct pci_dev *dev) |
| 3760 | { |
| 3761 | #ifndef PCI_DISABLE_MWI |
| 3762 | u16 cmd; |
| 3763 | |
| 3764 | pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| 3765 | if (cmd & PCI_COMMAND_INVALIDATE) { |
| 3766 | cmd &= ~PCI_COMMAND_INVALIDATE; |
| 3767 | pci_write_config_word(dev, PCI_COMMAND, cmd); |
| 3768 | } |
| 3769 | #endif |
| 3770 | } |
| 3771 | EXPORT_SYMBOL(pci_clear_mwi); |
| 3772 | |
| 3773 | /** |
| 3774 | * pci_intx - enables/disables PCI INTx for device dev |
| 3775 | * @pdev: the PCI device to operate on |
| 3776 | * @enable: boolean: whether to enable or disable PCI INTx |
| 3777 | * |
| 3778 | * Enables/disables PCI INTx for device dev |
| 3779 | */ |
| 3780 | void pci_intx(struct pci_dev *pdev, int enable) |
| 3781 | { |
| 3782 | u16 pci_command, new; |
| 3783 | |
| 3784 | pci_read_config_word(pdev, PCI_COMMAND, &pci_command); |
| 3785 | |
| 3786 | if (enable) |
| 3787 | new = pci_command & ~PCI_COMMAND_INTX_DISABLE; |
| 3788 | else |
| 3789 | new = pci_command | PCI_COMMAND_INTX_DISABLE; |
| 3790 | |
| 3791 | if (new != pci_command) { |
| 3792 | struct pci_devres *dr; |
| 3793 | |
| 3794 | pci_write_config_word(pdev, PCI_COMMAND, new); |
| 3795 | |
| 3796 | dr = find_pci_dr(pdev); |
| 3797 | if (dr && !dr->restore_intx) { |
| 3798 | dr->restore_intx = 1; |
| 3799 | dr->orig_intx = !enable; |
| 3800 | } |
| 3801 | } |
| 3802 | } |
| 3803 | EXPORT_SYMBOL_GPL(pci_intx); |
| 3804 | |
| 3805 | static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) |
| 3806 | { |
| 3807 | struct pci_bus *bus = dev->bus; |
| 3808 | bool mask_updated = true; |
| 3809 | u32 cmd_status_dword; |
| 3810 | u16 origcmd, newcmd; |
| 3811 | unsigned long flags; |
| 3812 | bool irq_pending; |
| 3813 | |
| 3814 | /* |
| 3815 | * We do a single dword read to retrieve both command and status. |
| 3816 | * Document assumptions that make this possible. |
| 3817 | */ |
| 3818 | BUILD_BUG_ON(PCI_COMMAND % 4); |
| 3819 | BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); |
| 3820 | |
| 3821 | raw_spin_lock_irqsave(&pci_lock, flags); |
| 3822 | |
| 3823 | bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); |
| 3824 | |
| 3825 | irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; |
| 3826 | |
| 3827 | /* |
| 3828 | * Check interrupt status register to see whether our device |
| 3829 | * triggered the interrupt (when masking) or the next IRQ is |
| 3830 | * already pending (when unmasking). |
| 3831 | */ |
| 3832 | if (mask != irq_pending) { |
| 3833 | mask_updated = false; |
| 3834 | goto done; |
| 3835 | } |
| 3836 | |
| 3837 | origcmd = cmd_status_dword; |
| 3838 | newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; |
| 3839 | if (mask) |
| 3840 | newcmd |= PCI_COMMAND_INTX_DISABLE; |
| 3841 | if (newcmd != origcmd) |
| 3842 | bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); |
| 3843 | |
| 3844 | done: |
| 3845 | raw_spin_unlock_irqrestore(&pci_lock, flags); |
| 3846 | |
| 3847 | return mask_updated; |
| 3848 | } |
| 3849 | |
| 3850 | /** |
| 3851 | * pci_check_and_mask_intx - mask INTx on pending interrupt |
| 3852 | * @dev: the PCI device to operate on |
| 3853 | * |
| 3854 | * Check if the device dev has its INTx line asserted, mask it and |
| 3855 | * return true in that case. False is returned if no interrupt was |
| 3856 | * pending. |
| 3857 | */ |
| 3858 | bool pci_check_and_mask_intx(struct pci_dev *dev) |
| 3859 | { |
| 3860 | return pci_check_and_set_intx_mask(dev, true); |
| 3861 | } |
| 3862 | EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); |
| 3863 | |
| 3864 | /** |
| 3865 | * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending |
| 3866 | * @dev: the PCI device to operate on |
| 3867 | * |
| 3868 | * Check if the device dev has its INTx line asserted, unmask it if not |
| 3869 | * and return true. False is returned and the mask remains active if |
| 3870 | * there was still an interrupt pending. |
| 3871 | */ |
| 3872 | bool pci_check_and_unmask_intx(struct pci_dev *dev) |
| 3873 | { |
| 3874 | return pci_check_and_set_intx_mask(dev, false); |
| 3875 | } |
| 3876 | EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); |
| 3877 | |
| 3878 | /** |
| 3879 | * pci_wait_for_pending_transaction - waits for pending transaction |
| 3880 | * @dev: the PCI device to operate on |
| 3881 | * |
| 3882 | * Return 0 if transaction is pending 1 otherwise. |
| 3883 | */ |
| 3884 | int pci_wait_for_pending_transaction(struct pci_dev *dev) |
| 3885 | { |
| 3886 | if (!pci_is_pcie(dev)) |
| 3887 | return 1; |
| 3888 | |
| 3889 | return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, |
| 3890 | PCI_EXP_DEVSTA_TRPND); |
| 3891 | } |
| 3892 | EXPORT_SYMBOL(pci_wait_for_pending_transaction); |
| 3893 | |
| 3894 | static void pci_flr_wait(struct pci_dev *dev) |
| 3895 | { |
| 3896 | int delay = 1, timeout = 60000; |
| 3897 | u32 id; |
| 3898 | |
| 3899 | /* |
| 3900 | * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within |
| 3901 | * 100ms, but may silently discard requests while the FLR is in |
| 3902 | * progress. Wait 100ms before trying to access the device. |
| 3903 | */ |
| 3904 | msleep(100); |
| 3905 | |
| 3906 | /* |
| 3907 | * After 100ms, the device should not silently discard config |
| 3908 | * requests, but it may still indicate that it needs more time by |
| 3909 | * responding to them with CRS completions. The Root Port will |
| 3910 | * generally synthesize ~0 data to complete the read (except when |
| 3911 | * CRS SV is enabled and the read was for the Vendor ID; in that |
| 3912 | * case it synthesizes 0x0001 data). |
| 3913 | * |
| 3914 | * Wait for the device to return a non-CRS completion. Read the |
| 3915 | * Command register instead of Vendor ID so we don't have to |
| 3916 | * contend with the CRS SV value. |
| 3917 | */ |
| 3918 | pci_read_config_dword(dev, PCI_COMMAND, &id); |
| 3919 | while (id == ~0) { |
| 3920 | if (delay > timeout) { |
| 3921 | dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n", |
| 3922 | 100 + delay - 1); |
| 3923 | return; |
| 3924 | } |
| 3925 | |
| 3926 | if (delay > 1000) |
| 3927 | dev_info(&dev->dev, "not ready %dms after FLR; waiting\n", |
| 3928 | 100 + delay - 1); |
| 3929 | |
| 3930 | msleep(delay); |
| 3931 | delay *= 2; |
| 3932 | pci_read_config_dword(dev, PCI_COMMAND, &id); |
| 3933 | } |
| 3934 | |
| 3935 | if (delay > 1000) |
| 3936 | dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1); |
| 3937 | } |
| 3938 | |
| 3939 | /** |
| 3940 | * pcie_has_flr - check if a device supports function level resets |
| 3941 | * @dev: device to check |
| 3942 | * |
| 3943 | * Returns true if the device advertises support for PCIe function level |
| 3944 | * resets. |
| 3945 | */ |
| 3946 | static bool pcie_has_flr(struct pci_dev *dev) |
| 3947 | { |
| 3948 | u32 cap; |
| 3949 | |
| 3950 | if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) |
| 3951 | return false; |
| 3952 | |
| 3953 | pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); |
| 3954 | return cap & PCI_EXP_DEVCAP_FLR; |
| 3955 | } |
| 3956 | |
| 3957 | /** |
| 3958 | * pcie_flr - initiate a PCIe function level reset |
| 3959 | * @dev: device to reset |
| 3960 | * |
| 3961 | * Initiate a function level reset on @dev. The caller should ensure the |
| 3962 | * device supports FLR before calling this function, e.g. by using the |
| 3963 | * pcie_has_flr() helper. |
| 3964 | */ |
| 3965 | void pcie_flr(struct pci_dev *dev) |
| 3966 | { |
| 3967 | if (!pci_wait_for_pending_transaction(dev)) |
| 3968 | dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); |
| 3969 | |
| 3970 | pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); |
| 3971 | pci_flr_wait(dev); |
| 3972 | } |
| 3973 | EXPORT_SYMBOL_GPL(pcie_flr); |
| 3974 | |
| 3975 | static int pci_af_flr(struct pci_dev *dev, int probe) |
| 3976 | { |
| 3977 | int pos; |
| 3978 | u8 cap; |
| 3979 | |
| 3980 | pos = pci_find_capability(dev, PCI_CAP_ID_AF); |
| 3981 | if (!pos) |
| 3982 | return -ENOTTY; |
| 3983 | |
| 3984 | if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) |
| 3985 | return -ENOTTY; |
| 3986 | |
| 3987 | pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); |
| 3988 | if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) |
| 3989 | return -ENOTTY; |
| 3990 | |
| 3991 | if (probe) |
| 3992 | return 0; |
| 3993 | |
| 3994 | /* |
| 3995 | * Wait for Transaction Pending bit to clear. A word-aligned test |
| 3996 | * is used, so we use the conrol offset rather than status and shift |
| 3997 | * the test bit to match. |
| 3998 | */ |
| 3999 | if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, |
| 4000 | PCI_AF_STATUS_TP << 8)) |
| 4001 | dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); |
| 4002 | |
| 4003 | pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); |
| 4004 | pci_flr_wait(dev); |
| 4005 | return 0; |
| 4006 | } |
| 4007 | |
| 4008 | /** |
| 4009 | * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. |
| 4010 | * @dev: Device to reset. |
| 4011 | * @probe: If set, only check if the device can be reset this way. |
| 4012 | * |
| 4013 | * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is |
| 4014 | * unset, it will be reinitialized internally when going from PCI_D3hot to |
| 4015 | * PCI_D0. If that's the case and the device is not in a low-power state |
| 4016 | * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. |
| 4017 | * |
| 4018 | * NOTE: This causes the caller to sleep for twice the device power transition |
| 4019 | * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms |
| 4020 | * by default (i.e. unless the @dev's d3_delay field has a different value). |
| 4021 | * Moreover, only devices in D0 can be reset by this function. |
| 4022 | */ |
| 4023 | static int pci_pm_reset(struct pci_dev *dev, int probe) |
| 4024 | { |
| 4025 | u16 csr; |
| 4026 | |
| 4027 | if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) |
| 4028 | return -ENOTTY; |
| 4029 | |
| 4030 | pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); |
| 4031 | if (csr & PCI_PM_CTRL_NO_SOFT_RESET) |
| 4032 | return -ENOTTY; |
| 4033 | |
| 4034 | if (probe) |
| 4035 | return 0; |
| 4036 | |
| 4037 | if (dev->current_state != PCI_D0) |
| 4038 | return -EINVAL; |
| 4039 | |
| 4040 | csr &= ~PCI_PM_CTRL_STATE_MASK; |
| 4041 | csr |= PCI_D3hot; |
| 4042 | pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); |
| 4043 | pci_dev_d3_sleep(dev); |
| 4044 | |
| 4045 | csr &= ~PCI_PM_CTRL_STATE_MASK; |
| 4046 | csr |= PCI_D0; |
| 4047 | pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); |
| 4048 | pci_dev_d3_sleep(dev); |
| 4049 | |
| 4050 | return 0; |
| 4051 | } |
| 4052 | |
| 4053 | void pci_reset_secondary_bus(struct pci_dev *dev) |
| 4054 | { |
| 4055 | u16 ctrl; |
| 4056 | |
| 4057 | pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); |
| 4058 | ctrl |= PCI_BRIDGE_CTL_BUS_RESET; |
| 4059 | pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); |
| 4060 | /* |
| 4061 | * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double |
| 4062 | * this to 2ms to ensure that we meet the minimum requirement. |
| 4063 | */ |
| 4064 | msleep(2); |
| 4065 | |
| 4066 | ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; |
| 4067 | pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); |
| 4068 | |
| 4069 | /* |
| 4070 | * Trhfa for conventional PCI is 2^25 clock cycles. |
| 4071 | * Assuming a minimum 33MHz clock this results in a 1s |
| 4072 | * delay before we can consider subordinate devices to |
| 4073 | * be re-initialized. PCIe has some ways to shorten this, |
| 4074 | * but we don't make use of them yet. |
| 4075 | */ |
| 4076 | ssleep(1); |
| 4077 | } |
| 4078 | |
| 4079 | void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) |
| 4080 | { |
| 4081 | pci_reset_secondary_bus(dev); |
| 4082 | } |
| 4083 | |
| 4084 | /** |
| 4085 | * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. |
| 4086 | * @dev: Bridge device |
| 4087 | * |
| 4088 | * Use the bridge control register to assert reset on the secondary bus. |
| 4089 | * Devices on the secondary bus are left in power-on state. |
| 4090 | */ |
| 4091 | void pci_reset_bridge_secondary_bus(struct pci_dev *dev) |
| 4092 | { |
| 4093 | pcibios_reset_secondary_bus(dev); |
| 4094 | } |
| 4095 | EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); |
| 4096 | |
| 4097 | static int pci_parent_bus_reset(struct pci_dev *dev, int probe) |
| 4098 | { |
| 4099 | struct pci_dev *pdev; |
| 4100 | |
| 4101 | if (pci_is_root_bus(dev->bus) || dev->subordinate || |
| 4102 | !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) |
| 4103 | return -ENOTTY; |
| 4104 | |
| 4105 | list_for_each_entry(pdev, &dev->bus->devices, bus_list) |
| 4106 | if (pdev != dev) |
| 4107 | return -ENOTTY; |
| 4108 | |
| 4109 | if (probe) |
| 4110 | return 0; |
| 4111 | |
| 4112 | pci_reset_bridge_secondary_bus(dev->bus->self); |
| 4113 | |
| 4114 | return 0; |
| 4115 | } |
| 4116 | |
| 4117 | static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) |
| 4118 | { |
| 4119 | int rc = -ENOTTY; |
| 4120 | |
| 4121 | if (!hotplug || !try_module_get(hotplug->ops->owner)) |
| 4122 | return rc; |
| 4123 | |
| 4124 | if (hotplug->ops->reset_slot) |
| 4125 | rc = hotplug->ops->reset_slot(hotplug, probe); |
| 4126 | |
| 4127 | module_put(hotplug->ops->owner); |
| 4128 | |
| 4129 | return rc; |
| 4130 | } |
| 4131 | |
| 4132 | static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) |
| 4133 | { |
| 4134 | struct pci_dev *pdev; |
| 4135 | |
| 4136 | if (dev->subordinate || !dev->slot || |
| 4137 | dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) |
| 4138 | return -ENOTTY; |
| 4139 | |
| 4140 | list_for_each_entry(pdev, &dev->bus->devices, bus_list) |
| 4141 | if (pdev != dev && pdev->slot == dev->slot) |
| 4142 | return -ENOTTY; |
| 4143 | |
| 4144 | return pci_reset_hotplug_slot(dev->slot->hotplug, probe); |
| 4145 | } |
| 4146 | |
| 4147 | static void pci_dev_lock(struct pci_dev *dev) |
| 4148 | { |
| 4149 | pci_cfg_access_lock(dev); |
| 4150 | /* block PM suspend, driver probe, etc. */ |
| 4151 | device_lock(&dev->dev); |
| 4152 | } |
| 4153 | |
| 4154 | /* Return 1 on successful lock, 0 on contention */ |
| 4155 | static int pci_dev_trylock(struct pci_dev *dev) |
| 4156 | { |
| 4157 | if (pci_cfg_access_trylock(dev)) { |
| 4158 | if (device_trylock(&dev->dev)) |
| 4159 | return 1; |
| 4160 | pci_cfg_access_unlock(dev); |
| 4161 | } |
| 4162 | |
| 4163 | return 0; |
| 4164 | } |
| 4165 | |
| 4166 | static void pci_dev_unlock(struct pci_dev *dev) |
| 4167 | { |
| 4168 | device_unlock(&dev->dev); |
| 4169 | pci_cfg_access_unlock(dev); |
| 4170 | } |
| 4171 | |
| 4172 | static void pci_dev_save_and_disable(struct pci_dev *dev) |
| 4173 | { |
| 4174 | const struct pci_error_handlers *err_handler = |
| 4175 | dev->driver ? dev->driver->err_handler : NULL; |
| 4176 | |
| 4177 | /* |
| 4178 | * dev->driver->err_handler->reset_prepare() is protected against |
| 4179 | * races with ->remove() by the device lock, which must be held by |
| 4180 | * the caller. |
| 4181 | */ |
| 4182 | if (err_handler && err_handler->reset_prepare) |
| 4183 | err_handler->reset_prepare(dev); |
| 4184 | |
| 4185 | /* |
| 4186 | * Wake-up device prior to save. PM registers default to D0 after |
| 4187 | * reset and a simple register restore doesn't reliably return |
| 4188 | * to a non-D0 state anyway. |
| 4189 | */ |
| 4190 | pci_set_power_state(dev, PCI_D0); |
| 4191 | |
| 4192 | pci_save_state(dev); |
| 4193 | /* |
| 4194 | * Disable the device by clearing the Command register, except for |
| 4195 | * INTx-disable which is set. This not only disables MMIO and I/O port |
| 4196 | * BARs, but also prevents the device from being Bus Master, preventing |
| 4197 | * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 |
| 4198 | * compliant devices, INTx-disable prevents legacy interrupts. |
| 4199 | */ |
| 4200 | pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); |
| 4201 | } |
| 4202 | |
| 4203 | static void pci_dev_restore(struct pci_dev *dev) |
| 4204 | { |
| 4205 | const struct pci_error_handlers *err_handler = |
| 4206 | dev->driver ? dev->driver->err_handler : NULL; |
| 4207 | |
| 4208 | pci_restore_state(dev); |
| 4209 | |
| 4210 | /* |
| 4211 | * dev->driver->err_handler->reset_done() is protected against |
| 4212 | * races with ->remove() by the device lock, which must be held by |
| 4213 | * the caller. |
| 4214 | */ |
| 4215 | if (err_handler && err_handler->reset_done) |
| 4216 | err_handler->reset_done(dev); |
| 4217 | } |
| 4218 | |
| 4219 | /** |
| 4220 | * __pci_reset_function - reset a PCI device function |
| 4221 | * @dev: PCI device to reset |
| 4222 | * |
| 4223 | * Some devices allow an individual function to be reset without affecting |
| 4224 | * other functions in the same device. The PCI device must be responsive |
| 4225 | * to PCI config space in order to use this function. |
| 4226 | * |
| 4227 | * The device function is presumed to be unused when this function is called. |
| 4228 | * Resetting the device will make the contents of PCI configuration space |
| 4229 | * random, so any caller of this must be prepared to reinitialise the |
| 4230 | * device including MSI, bus mastering, BARs, decoding IO and memory spaces, |
| 4231 | * etc. |
| 4232 | * |
| 4233 | * Returns 0 if the device function was successfully reset or negative if the |
| 4234 | * device doesn't support resetting a single function. |
| 4235 | */ |
| 4236 | int __pci_reset_function(struct pci_dev *dev) |
| 4237 | { |
| 4238 | int ret; |
| 4239 | |
| 4240 | pci_dev_lock(dev); |
| 4241 | ret = __pci_reset_function_locked(dev); |
| 4242 | pci_dev_unlock(dev); |
| 4243 | |
| 4244 | return ret; |
| 4245 | } |
| 4246 | EXPORT_SYMBOL_GPL(__pci_reset_function); |
| 4247 | |
| 4248 | /** |
| 4249 | * __pci_reset_function_locked - reset a PCI device function while holding |
| 4250 | * the @dev mutex lock. |
| 4251 | * @dev: PCI device to reset |
| 4252 | * |
| 4253 | * Some devices allow an individual function to be reset without affecting |
| 4254 | * other functions in the same device. The PCI device must be responsive |
| 4255 | * to PCI config space in order to use this function. |
| 4256 | * |
| 4257 | * The device function is presumed to be unused and the caller is holding |
| 4258 | * the device mutex lock when this function is called. |
| 4259 | * Resetting the device will make the contents of PCI configuration space |
| 4260 | * random, so any caller of this must be prepared to reinitialise the |
| 4261 | * device including MSI, bus mastering, BARs, decoding IO and memory spaces, |
| 4262 | * etc. |
| 4263 | * |
| 4264 | * Returns 0 if the device function was successfully reset or negative if the |
| 4265 | * device doesn't support resetting a single function. |
| 4266 | */ |
| 4267 | int __pci_reset_function_locked(struct pci_dev *dev) |
| 4268 | { |
| 4269 | int rc; |
| 4270 | |
| 4271 | might_sleep(); |
| 4272 | |
| 4273 | rc = pci_dev_specific_reset(dev, 0); |
| 4274 | if (rc != -ENOTTY) |
| 4275 | return rc; |
| 4276 | if (pcie_has_flr(dev)) { |
| 4277 | pcie_flr(dev); |
| 4278 | return 0; |
| 4279 | } |
| 4280 | rc = pci_af_flr(dev, 0); |
| 4281 | if (rc != -ENOTTY) |
| 4282 | return rc; |
| 4283 | rc = pci_pm_reset(dev, 0); |
| 4284 | if (rc != -ENOTTY) |
| 4285 | return rc; |
| 4286 | rc = pci_dev_reset_slot_function(dev, 0); |
| 4287 | if (rc != -ENOTTY) |
| 4288 | return rc; |
| 4289 | return pci_parent_bus_reset(dev, 0); |
| 4290 | } |
| 4291 | EXPORT_SYMBOL_GPL(__pci_reset_function_locked); |
| 4292 | |
| 4293 | /** |
| 4294 | * pci_probe_reset_function - check whether the device can be safely reset |
| 4295 | * @dev: PCI device to reset |
| 4296 | * |
| 4297 | * Some devices allow an individual function to be reset without affecting |
| 4298 | * other functions in the same device. The PCI device must be responsive |
| 4299 | * to PCI config space in order to use this function. |
| 4300 | * |
| 4301 | * Returns 0 if the device function can be reset or negative if the |
| 4302 | * device doesn't support resetting a single function. |
| 4303 | */ |
| 4304 | int pci_probe_reset_function(struct pci_dev *dev) |
| 4305 | { |
| 4306 | int rc; |
| 4307 | |
| 4308 | might_sleep(); |
| 4309 | |
| 4310 | rc = pci_dev_specific_reset(dev, 1); |
| 4311 | if (rc != -ENOTTY) |
| 4312 | return rc; |
| 4313 | if (pcie_has_flr(dev)) |
| 4314 | return 0; |
| 4315 | rc = pci_af_flr(dev, 1); |
| 4316 | if (rc != -ENOTTY) |
| 4317 | return rc; |
| 4318 | rc = pci_pm_reset(dev, 1); |
| 4319 | if (rc != -ENOTTY) |
| 4320 | return rc; |
| 4321 | rc = pci_dev_reset_slot_function(dev, 1); |
| 4322 | if (rc != -ENOTTY) |
| 4323 | return rc; |
| 4324 | |
| 4325 | return pci_parent_bus_reset(dev, 1); |
| 4326 | } |
| 4327 | |
| 4328 | /** |
| 4329 | * pci_reset_function - quiesce and reset a PCI device function |
| 4330 | * @dev: PCI device to reset |
| 4331 | * |
| 4332 | * Some devices allow an individual function to be reset without affecting |
| 4333 | * other functions in the same device. The PCI device must be responsive |
| 4334 | * to PCI config space in order to use this function. |
| 4335 | * |
| 4336 | * This function does not just reset the PCI portion of a device, but |
| 4337 | * clears all the state associated with the device. This function differs |
| 4338 | * from __pci_reset_function in that it saves and restores device state |
| 4339 | * over the reset. |
| 4340 | * |
| 4341 | * Returns 0 if the device function was successfully reset or negative if the |
| 4342 | * device doesn't support resetting a single function. |
| 4343 | */ |
| 4344 | int pci_reset_function(struct pci_dev *dev) |
| 4345 | { |
| 4346 | int rc; |
| 4347 | |
| 4348 | rc = pci_probe_reset_function(dev); |
| 4349 | if (rc) |
| 4350 | return rc; |
| 4351 | |
| 4352 | pci_dev_lock(dev); |
| 4353 | pci_dev_save_and_disable(dev); |
| 4354 | |
| 4355 | rc = __pci_reset_function_locked(dev); |
| 4356 | |
| 4357 | pci_dev_restore(dev); |
| 4358 | pci_dev_unlock(dev); |
| 4359 | |
| 4360 | return rc; |
| 4361 | } |
| 4362 | EXPORT_SYMBOL_GPL(pci_reset_function); |
| 4363 | |
| 4364 | /** |
| 4365 | * pci_reset_function_locked - quiesce and reset a PCI device function |
| 4366 | * @dev: PCI device to reset |
| 4367 | * |
| 4368 | * Some devices allow an individual function to be reset without affecting |
| 4369 | * other functions in the same device. The PCI device must be responsive |
| 4370 | * to PCI config space in order to use this function. |
| 4371 | * |
| 4372 | * This function does not just reset the PCI portion of a device, but |
| 4373 | * clears all the state associated with the device. This function differs |
| 4374 | * from __pci_reset_function() in that it saves and restores device state |
| 4375 | * over the reset. It also differs from pci_reset_function() in that it |
| 4376 | * requires the PCI device lock to be held. |
| 4377 | * |
| 4378 | * Returns 0 if the device function was successfully reset or negative if the |
| 4379 | * device doesn't support resetting a single function. |
| 4380 | */ |
| 4381 | int pci_reset_function_locked(struct pci_dev *dev) |
| 4382 | { |
| 4383 | int rc; |
| 4384 | |
| 4385 | rc = pci_probe_reset_function(dev); |
| 4386 | if (rc) |
| 4387 | return rc; |
| 4388 | |
| 4389 | pci_dev_save_and_disable(dev); |
| 4390 | |
| 4391 | rc = __pci_reset_function_locked(dev); |
| 4392 | |
| 4393 | pci_dev_restore(dev); |
| 4394 | |
| 4395 | return rc; |
| 4396 | } |
| 4397 | EXPORT_SYMBOL_GPL(pci_reset_function_locked); |
| 4398 | |
| 4399 | /** |
| 4400 | * pci_try_reset_function - quiesce and reset a PCI device function |
| 4401 | * @dev: PCI device to reset |
| 4402 | * |
| 4403 | * Same as above, except return -EAGAIN if unable to lock device. |
| 4404 | */ |
| 4405 | int pci_try_reset_function(struct pci_dev *dev) |
| 4406 | { |
| 4407 | int rc; |
| 4408 | |
| 4409 | rc = pci_probe_reset_function(dev); |
| 4410 | if (rc) |
| 4411 | return rc; |
| 4412 | |
| 4413 | if (!pci_dev_trylock(dev)) |
| 4414 | return -EAGAIN; |
| 4415 | |
| 4416 | pci_dev_save_and_disable(dev); |
| 4417 | rc = __pci_reset_function_locked(dev); |
| 4418 | pci_dev_unlock(dev); |
| 4419 | |
| 4420 | pci_dev_restore(dev); |
| 4421 | return rc; |
| 4422 | } |
| 4423 | EXPORT_SYMBOL_GPL(pci_try_reset_function); |
| 4424 | |
| 4425 | /* Do any devices on or below this bus prevent a bus reset? */ |
| 4426 | static bool pci_bus_resetable(struct pci_bus *bus) |
| 4427 | { |
| 4428 | struct pci_dev *dev; |
| 4429 | |
| 4430 | |
| 4431 | if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) |
| 4432 | return false; |
| 4433 | |
| 4434 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 4435 | if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || |
| 4436 | (dev->subordinate && !pci_bus_resetable(dev->subordinate))) |
| 4437 | return false; |
| 4438 | } |
| 4439 | |
| 4440 | return true; |
| 4441 | } |
| 4442 | |
| 4443 | /* Lock devices from the top of the tree down */ |
| 4444 | static void pci_bus_lock(struct pci_bus *bus) |
| 4445 | { |
| 4446 | struct pci_dev *dev; |
| 4447 | |
| 4448 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 4449 | pci_dev_lock(dev); |
| 4450 | if (dev->subordinate) |
| 4451 | pci_bus_lock(dev->subordinate); |
| 4452 | } |
| 4453 | } |
| 4454 | |
| 4455 | /* Unlock devices from the bottom of the tree up */ |
| 4456 | static void pci_bus_unlock(struct pci_bus *bus) |
| 4457 | { |
| 4458 | struct pci_dev *dev; |
| 4459 | |
| 4460 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 4461 | if (dev->subordinate) |
| 4462 | pci_bus_unlock(dev->subordinate); |
| 4463 | pci_dev_unlock(dev); |
| 4464 | } |
| 4465 | } |
| 4466 | |
| 4467 | /* Return 1 on successful lock, 0 on contention */ |
| 4468 | static int pci_bus_trylock(struct pci_bus *bus) |
| 4469 | { |
| 4470 | struct pci_dev *dev; |
| 4471 | |
| 4472 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 4473 | if (!pci_dev_trylock(dev)) |
| 4474 | goto unlock; |
| 4475 | if (dev->subordinate) { |
| 4476 | if (!pci_bus_trylock(dev->subordinate)) { |
| 4477 | pci_dev_unlock(dev); |
| 4478 | goto unlock; |
| 4479 | } |
| 4480 | } |
| 4481 | } |
| 4482 | return 1; |
| 4483 | |
| 4484 | unlock: |
| 4485 | list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { |
| 4486 | if (dev->subordinate) |
| 4487 | pci_bus_unlock(dev->subordinate); |
| 4488 | pci_dev_unlock(dev); |
| 4489 | } |
| 4490 | return 0; |
| 4491 | } |
| 4492 | |
| 4493 | /* Do any devices on or below this slot prevent a bus reset? */ |
| 4494 | static bool pci_slot_resetable(struct pci_slot *slot) |
| 4495 | { |
| 4496 | struct pci_dev *dev; |
| 4497 | |
| 4498 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| 4499 | if (!dev->slot || dev->slot != slot) |
| 4500 | continue; |
| 4501 | if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || |
| 4502 | (dev->subordinate && !pci_bus_resetable(dev->subordinate))) |
| 4503 | return false; |
| 4504 | } |
| 4505 | |
| 4506 | return true; |
| 4507 | } |
| 4508 | |
| 4509 | /* Lock devices from the top of the tree down */ |
| 4510 | static void pci_slot_lock(struct pci_slot *slot) |
| 4511 | { |
| 4512 | struct pci_dev *dev; |
| 4513 | |
| 4514 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| 4515 | if (!dev->slot || dev->slot != slot) |
| 4516 | continue; |
| 4517 | pci_dev_lock(dev); |
| 4518 | if (dev->subordinate) |
| 4519 | pci_bus_lock(dev->subordinate); |
| 4520 | } |
| 4521 | } |
| 4522 | |
| 4523 | /* Unlock devices from the bottom of the tree up */ |
| 4524 | static void pci_slot_unlock(struct pci_slot *slot) |
| 4525 | { |
| 4526 | struct pci_dev *dev; |
| 4527 | |
| 4528 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| 4529 | if (!dev->slot || dev->slot != slot) |
| 4530 | continue; |
| 4531 | if (dev->subordinate) |
| 4532 | pci_bus_unlock(dev->subordinate); |
| 4533 | pci_dev_unlock(dev); |
| 4534 | } |
| 4535 | } |
| 4536 | |
| 4537 | /* Return 1 on successful lock, 0 on contention */ |
| 4538 | static int pci_slot_trylock(struct pci_slot *slot) |
| 4539 | { |
| 4540 | struct pci_dev *dev; |
| 4541 | |
| 4542 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| 4543 | if (!dev->slot || dev->slot != slot) |
| 4544 | continue; |
| 4545 | if (!pci_dev_trylock(dev)) |
| 4546 | goto unlock; |
| 4547 | if (dev->subordinate) { |
| 4548 | if (!pci_bus_trylock(dev->subordinate)) { |
| 4549 | pci_dev_unlock(dev); |
| 4550 | goto unlock; |
| 4551 | } |
| 4552 | } |
| 4553 | } |
| 4554 | return 1; |
| 4555 | |
| 4556 | unlock: |
| 4557 | list_for_each_entry_continue_reverse(dev, |
| 4558 | &slot->bus->devices, bus_list) { |
| 4559 | if (!dev->slot || dev->slot != slot) |
| 4560 | continue; |
| 4561 | if (dev->subordinate) |
| 4562 | pci_bus_unlock(dev->subordinate); |
| 4563 | pci_dev_unlock(dev); |
| 4564 | } |
| 4565 | return 0; |
| 4566 | } |
| 4567 | |
| 4568 | /* Save and disable devices from the top of the tree down */ |
| 4569 | static void pci_bus_save_and_disable(struct pci_bus *bus) |
| 4570 | { |
| 4571 | struct pci_dev *dev; |
| 4572 | |
| 4573 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 4574 | pci_dev_lock(dev); |
| 4575 | pci_dev_save_and_disable(dev); |
| 4576 | pci_dev_unlock(dev); |
| 4577 | if (dev->subordinate) |
| 4578 | pci_bus_save_and_disable(dev->subordinate); |
| 4579 | } |
| 4580 | } |
| 4581 | |
| 4582 | /* |
| 4583 | * Restore devices from top of the tree down - parent bridges need to be |
| 4584 | * restored before we can get to subordinate devices. |
| 4585 | */ |
| 4586 | static void pci_bus_restore(struct pci_bus *bus) |
| 4587 | { |
| 4588 | struct pci_dev *dev; |
| 4589 | |
| 4590 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 4591 | pci_dev_lock(dev); |
| 4592 | pci_dev_restore(dev); |
| 4593 | pci_dev_unlock(dev); |
| 4594 | if (dev->subordinate) |
| 4595 | pci_bus_restore(dev->subordinate); |
| 4596 | } |
| 4597 | } |
| 4598 | |
| 4599 | /* Save and disable devices from the top of the tree down */ |
| 4600 | static void pci_slot_save_and_disable(struct pci_slot *slot) |
| 4601 | { |
| 4602 | struct pci_dev *dev; |
| 4603 | |
| 4604 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| 4605 | if (!dev->slot || dev->slot != slot) |
| 4606 | continue; |
| 4607 | pci_dev_save_and_disable(dev); |
| 4608 | if (dev->subordinate) |
| 4609 | pci_bus_save_and_disable(dev->subordinate); |
| 4610 | } |
| 4611 | } |
| 4612 | |
| 4613 | /* |
| 4614 | * Restore devices from top of the tree down - parent bridges need to be |
| 4615 | * restored before we can get to subordinate devices. |
| 4616 | */ |
| 4617 | static void pci_slot_restore(struct pci_slot *slot) |
| 4618 | { |
| 4619 | struct pci_dev *dev; |
| 4620 | |
| 4621 | list_for_each_entry(dev, &slot->bus->devices, bus_list) { |
| 4622 | if (!dev->slot || dev->slot != slot) |
| 4623 | continue; |
| 4624 | pci_dev_restore(dev); |
| 4625 | if (dev->subordinate) |
| 4626 | pci_bus_restore(dev->subordinate); |
| 4627 | } |
| 4628 | } |
| 4629 | |
| 4630 | static int pci_slot_reset(struct pci_slot *slot, int probe) |
| 4631 | { |
| 4632 | int rc; |
| 4633 | |
| 4634 | if (!slot || !pci_slot_resetable(slot)) |
| 4635 | return -ENOTTY; |
| 4636 | |
| 4637 | if (!probe) |
| 4638 | pci_slot_lock(slot); |
| 4639 | |
| 4640 | might_sleep(); |
| 4641 | |
| 4642 | rc = pci_reset_hotplug_slot(slot->hotplug, probe); |
| 4643 | |
| 4644 | if (!probe) |
| 4645 | pci_slot_unlock(slot); |
| 4646 | |
| 4647 | return rc; |
| 4648 | } |
| 4649 | |
| 4650 | /** |
| 4651 | * pci_probe_reset_slot - probe whether a PCI slot can be reset |
| 4652 | * @slot: PCI slot to probe |
| 4653 | * |
| 4654 | * Return 0 if slot can be reset, negative if a slot reset is not supported. |
| 4655 | */ |
| 4656 | int pci_probe_reset_slot(struct pci_slot *slot) |
| 4657 | { |
| 4658 | return pci_slot_reset(slot, 1); |
| 4659 | } |
| 4660 | EXPORT_SYMBOL_GPL(pci_probe_reset_slot); |
| 4661 | |
| 4662 | /** |
| 4663 | * pci_reset_slot - reset a PCI slot |
| 4664 | * @slot: PCI slot to reset |
| 4665 | * |
| 4666 | * A PCI bus may host multiple slots, each slot may support a reset mechanism |
| 4667 | * independent of other slots. For instance, some slots may support slot power |
| 4668 | * control. In the case of a 1:1 bus to slot architecture, this function may |
| 4669 | * wrap the bus reset to avoid spurious slot related events such as hotplug. |
| 4670 | * Generally a slot reset should be attempted before a bus reset. All of the |
| 4671 | * function of the slot and any subordinate buses behind the slot are reset |
| 4672 | * through this function. PCI config space of all devices in the slot and |
| 4673 | * behind the slot is saved before and restored after reset. |
| 4674 | * |
| 4675 | * Return 0 on success, non-zero on error. |
| 4676 | */ |
| 4677 | int pci_reset_slot(struct pci_slot *slot) |
| 4678 | { |
| 4679 | int rc; |
| 4680 | |
| 4681 | rc = pci_slot_reset(slot, 1); |
| 4682 | if (rc) |
| 4683 | return rc; |
| 4684 | |
| 4685 | pci_slot_save_and_disable(slot); |
| 4686 | |
| 4687 | rc = pci_slot_reset(slot, 0); |
| 4688 | |
| 4689 | pci_slot_restore(slot); |
| 4690 | |
| 4691 | return rc; |
| 4692 | } |
| 4693 | EXPORT_SYMBOL_GPL(pci_reset_slot); |
| 4694 | |
| 4695 | /** |
| 4696 | * pci_try_reset_slot - Try to reset a PCI slot |
| 4697 | * @slot: PCI slot to reset |
| 4698 | * |
| 4699 | * Same as above except return -EAGAIN if the slot cannot be locked |
| 4700 | */ |
| 4701 | int pci_try_reset_slot(struct pci_slot *slot) |
| 4702 | { |
| 4703 | int rc; |
| 4704 | |
| 4705 | rc = pci_slot_reset(slot, 1); |
| 4706 | if (rc) |
| 4707 | return rc; |
| 4708 | |
| 4709 | pci_slot_save_and_disable(slot); |
| 4710 | |
| 4711 | if (pci_slot_trylock(slot)) { |
| 4712 | might_sleep(); |
| 4713 | rc = pci_reset_hotplug_slot(slot->hotplug, 0); |
| 4714 | pci_slot_unlock(slot); |
| 4715 | } else |
| 4716 | rc = -EAGAIN; |
| 4717 | |
| 4718 | pci_slot_restore(slot); |
| 4719 | |
| 4720 | return rc; |
| 4721 | } |
| 4722 | EXPORT_SYMBOL_GPL(pci_try_reset_slot); |
| 4723 | |
| 4724 | static int pci_bus_reset(struct pci_bus *bus, int probe) |
| 4725 | { |
| 4726 | if (!bus->self || !pci_bus_resetable(bus)) |
| 4727 | return -ENOTTY; |
| 4728 | |
| 4729 | if (probe) |
| 4730 | return 0; |
| 4731 | |
| 4732 | pci_bus_lock(bus); |
| 4733 | |
| 4734 | might_sleep(); |
| 4735 | |
| 4736 | pci_reset_bridge_secondary_bus(bus->self); |
| 4737 | |
| 4738 | pci_bus_unlock(bus); |
| 4739 | |
| 4740 | return 0; |
| 4741 | } |
| 4742 | |
| 4743 | /** |
| 4744 | * pci_probe_reset_bus - probe whether a PCI bus can be reset |
| 4745 | * @bus: PCI bus to probe |
| 4746 | * |
| 4747 | * Return 0 if bus can be reset, negative if a bus reset is not supported. |
| 4748 | */ |
| 4749 | int pci_probe_reset_bus(struct pci_bus *bus) |
| 4750 | { |
| 4751 | return pci_bus_reset(bus, 1); |
| 4752 | } |
| 4753 | EXPORT_SYMBOL_GPL(pci_probe_reset_bus); |
| 4754 | |
| 4755 | /** |
| 4756 | * pci_reset_bus - reset a PCI bus |
| 4757 | * @bus: top level PCI bus to reset |
| 4758 | * |
| 4759 | * Do a bus reset on the given bus and any subordinate buses, saving |
| 4760 | * and restoring state of all devices. |
| 4761 | * |
| 4762 | * Return 0 on success, non-zero on error. |
| 4763 | */ |
| 4764 | int pci_reset_bus(struct pci_bus *bus) |
| 4765 | { |
| 4766 | int rc; |
| 4767 | |
| 4768 | rc = pci_bus_reset(bus, 1); |
| 4769 | if (rc) |
| 4770 | return rc; |
| 4771 | |
| 4772 | pci_bus_save_and_disable(bus); |
| 4773 | |
| 4774 | rc = pci_bus_reset(bus, 0); |
| 4775 | |
| 4776 | pci_bus_restore(bus); |
| 4777 | |
| 4778 | return rc; |
| 4779 | } |
| 4780 | EXPORT_SYMBOL_GPL(pci_reset_bus); |
| 4781 | |
| 4782 | /** |
| 4783 | * pci_try_reset_bus - Try to reset a PCI bus |
| 4784 | * @bus: top level PCI bus to reset |
| 4785 | * |
| 4786 | * Same as above except return -EAGAIN if the bus cannot be locked |
| 4787 | */ |
| 4788 | int pci_try_reset_bus(struct pci_bus *bus) |
| 4789 | { |
| 4790 | int rc; |
| 4791 | |
| 4792 | rc = pci_bus_reset(bus, 1); |
| 4793 | if (rc) |
| 4794 | return rc; |
| 4795 | |
| 4796 | pci_bus_save_and_disable(bus); |
| 4797 | |
| 4798 | if (pci_bus_trylock(bus)) { |
| 4799 | might_sleep(); |
| 4800 | pci_reset_bridge_secondary_bus(bus->self); |
| 4801 | pci_bus_unlock(bus); |
| 4802 | } else |
| 4803 | rc = -EAGAIN; |
| 4804 | |
| 4805 | pci_bus_restore(bus); |
| 4806 | |
| 4807 | return rc; |
| 4808 | } |
| 4809 | EXPORT_SYMBOL_GPL(pci_try_reset_bus); |
| 4810 | |
| 4811 | /** |
| 4812 | * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count |
| 4813 | * @dev: PCI device to query |
| 4814 | * |
| 4815 | * Returns mmrbc: maximum designed memory read count in bytes |
| 4816 | * or appropriate error value. |
| 4817 | */ |
| 4818 | int pcix_get_max_mmrbc(struct pci_dev *dev) |
| 4819 | { |
| 4820 | int cap; |
| 4821 | u32 stat; |
| 4822 | |
| 4823 | cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| 4824 | if (!cap) |
| 4825 | return -EINVAL; |
| 4826 | |
| 4827 | if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) |
| 4828 | return -EINVAL; |
| 4829 | |
| 4830 | return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); |
| 4831 | } |
| 4832 | EXPORT_SYMBOL(pcix_get_max_mmrbc); |
| 4833 | |
| 4834 | /** |
| 4835 | * pcix_get_mmrbc - get PCI-X maximum memory read byte count |
| 4836 | * @dev: PCI device to query |
| 4837 | * |
| 4838 | * Returns mmrbc: maximum memory read count in bytes |
| 4839 | * or appropriate error value. |
| 4840 | */ |
| 4841 | int pcix_get_mmrbc(struct pci_dev *dev) |
| 4842 | { |
| 4843 | int cap; |
| 4844 | u16 cmd; |
| 4845 | |
| 4846 | cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| 4847 | if (!cap) |
| 4848 | return -EINVAL; |
| 4849 | |
| 4850 | if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) |
| 4851 | return -EINVAL; |
| 4852 | |
| 4853 | return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); |
| 4854 | } |
| 4855 | EXPORT_SYMBOL(pcix_get_mmrbc); |
| 4856 | |
| 4857 | /** |
| 4858 | * pcix_set_mmrbc - set PCI-X maximum memory read byte count |
| 4859 | * @dev: PCI device to query |
| 4860 | * @mmrbc: maximum memory read count in bytes |
| 4861 | * valid values are 512, 1024, 2048, 4096 |
| 4862 | * |
| 4863 | * If possible sets maximum memory read byte count, some bridges have erratas |
| 4864 | * that prevent this. |
| 4865 | */ |
| 4866 | int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) |
| 4867 | { |
| 4868 | int cap; |
| 4869 | u32 stat, v, o; |
| 4870 | u16 cmd; |
| 4871 | |
| 4872 | if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) |
| 4873 | return -EINVAL; |
| 4874 | |
| 4875 | v = ffs(mmrbc) - 10; |
| 4876 | |
| 4877 | cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); |
| 4878 | if (!cap) |
| 4879 | return -EINVAL; |
| 4880 | |
| 4881 | if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) |
| 4882 | return -EINVAL; |
| 4883 | |
| 4884 | if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) |
| 4885 | return -E2BIG; |
| 4886 | |
| 4887 | if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) |
| 4888 | return -EINVAL; |
| 4889 | |
| 4890 | o = (cmd & PCI_X_CMD_MAX_READ) >> 2; |
| 4891 | if (o != v) { |
| 4892 | if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) |
| 4893 | return -EIO; |
| 4894 | |
| 4895 | cmd &= ~PCI_X_CMD_MAX_READ; |
| 4896 | cmd |= v << 2; |
| 4897 | if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) |
| 4898 | return -EIO; |
| 4899 | } |
| 4900 | return 0; |
| 4901 | } |
| 4902 | EXPORT_SYMBOL(pcix_set_mmrbc); |
| 4903 | |
| 4904 | /** |
| 4905 | * pcie_get_readrq - get PCI Express read request size |
| 4906 | * @dev: PCI device to query |
| 4907 | * |
| 4908 | * Returns maximum memory read request in bytes |
| 4909 | * or appropriate error value. |
| 4910 | */ |
| 4911 | int pcie_get_readrq(struct pci_dev *dev) |
| 4912 | { |
| 4913 | u16 ctl; |
| 4914 | |
| 4915 | pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); |
| 4916 | |
| 4917 | return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); |
| 4918 | } |
| 4919 | EXPORT_SYMBOL(pcie_get_readrq); |
| 4920 | |
| 4921 | /** |
| 4922 | * pcie_set_readrq - set PCI Express maximum memory read request |
| 4923 | * @dev: PCI device to query |
| 4924 | * @rq: maximum memory read count in bytes |
| 4925 | * valid values are 128, 256, 512, 1024, 2048, 4096 |
| 4926 | * |
| 4927 | * If possible sets maximum memory read request in bytes |
| 4928 | */ |
| 4929 | int pcie_set_readrq(struct pci_dev *dev, int rq) |
| 4930 | { |
| 4931 | u16 v; |
| 4932 | |
| 4933 | if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) |
| 4934 | return -EINVAL; |
| 4935 | |
| 4936 | /* |
| 4937 | * If using the "performance" PCIe config, we clamp the |
| 4938 | * read rq size to the max packet size to prevent the |
| 4939 | * host bridge generating requests larger than we can |
| 4940 | * cope with |
| 4941 | */ |
| 4942 | if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { |
| 4943 | int mps = pcie_get_mps(dev); |
| 4944 | |
| 4945 | if (mps < rq) |
| 4946 | rq = mps; |
| 4947 | } |
| 4948 | |
| 4949 | v = (ffs(rq) - 8) << 12; |
| 4950 | |
| 4951 | return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, |
| 4952 | PCI_EXP_DEVCTL_READRQ, v); |
| 4953 | } |
| 4954 | EXPORT_SYMBOL(pcie_set_readrq); |
| 4955 | |
| 4956 | /** |
| 4957 | * pcie_get_mps - get PCI Express maximum payload size |
| 4958 | * @dev: PCI device to query |
| 4959 | * |
| 4960 | * Returns maximum payload size in bytes |
| 4961 | */ |
| 4962 | int pcie_get_mps(struct pci_dev *dev) |
| 4963 | { |
| 4964 | u16 ctl; |
| 4965 | |
| 4966 | pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); |
| 4967 | |
| 4968 | return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); |
| 4969 | } |
| 4970 | EXPORT_SYMBOL(pcie_get_mps); |
| 4971 | |
| 4972 | /** |
| 4973 | * pcie_set_mps - set PCI Express maximum payload size |
| 4974 | * @dev: PCI device to query |
| 4975 | * @mps: maximum payload size in bytes |
| 4976 | * valid values are 128, 256, 512, 1024, 2048, 4096 |
| 4977 | * |
| 4978 | * If possible sets maximum payload size |
| 4979 | */ |
| 4980 | int pcie_set_mps(struct pci_dev *dev, int mps) |
| 4981 | { |
| 4982 | u16 v; |
| 4983 | |
| 4984 | if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) |
| 4985 | return -EINVAL; |
| 4986 | |
| 4987 | v = ffs(mps) - 8; |
| 4988 | if (v > dev->pcie_mpss) |
| 4989 | return -EINVAL; |
| 4990 | v <<= 5; |
| 4991 | |
| 4992 | return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, |
| 4993 | PCI_EXP_DEVCTL_PAYLOAD, v); |
| 4994 | } |
| 4995 | EXPORT_SYMBOL(pcie_set_mps); |
| 4996 | |
| 4997 | /** |
| 4998 | * pcie_get_minimum_link - determine minimum link settings of a PCI device |
| 4999 | * @dev: PCI device to query |
| 5000 | * @speed: storage for minimum speed |
| 5001 | * @width: storage for minimum width |
| 5002 | * |
| 5003 | * This function will walk up the PCI device chain and determine the minimum |
| 5004 | * link width and speed of the device. |
| 5005 | */ |
| 5006 | int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, |
| 5007 | enum pcie_link_width *width) |
| 5008 | { |
| 5009 | int ret; |
| 5010 | |
| 5011 | *speed = PCI_SPEED_UNKNOWN; |
| 5012 | *width = PCIE_LNK_WIDTH_UNKNOWN; |
| 5013 | |
| 5014 | while (dev) { |
| 5015 | u16 lnksta; |
| 5016 | enum pci_bus_speed next_speed; |
| 5017 | enum pcie_link_width next_width; |
| 5018 | |
| 5019 | ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); |
| 5020 | if (ret) |
| 5021 | return ret; |
| 5022 | |
| 5023 | next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; |
| 5024 | next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> |
| 5025 | PCI_EXP_LNKSTA_NLW_SHIFT; |
| 5026 | |
| 5027 | if (next_speed < *speed) |
| 5028 | *speed = next_speed; |
| 5029 | |
| 5030 | if (next_width < *width) |
| 5031 | *width = next_width; |
| 5032 | |
| 5033 | dev = dev->bus->self; |
| 5034 | } |
| 5035 | |
| 5036 | return 0; |
| 5037 | } |
| 5038 | EXPORT_SYMBOL(pcie_get_minimum_link); |
| 5039 | |
| 5040 | /** |
| 5041 | * pci_select_bars - Make BAR mask from the type of resource |
| 5042 | * @dev: the PCI device for which BAR mask is made |
| 5043 | * @flags: resource type mask to be selected |
| 5044 | * |
| 5045 | * This helper routine makes bar mask from the type of resource. |
| 5046 | */ |
| 5047 | int pci_select_bars(struct pci_dev *dev, unsigned long flags) |
| 5048 | { |
| 5049 | int i, bars = 0; |
| 5050 | for (i = 0; i < PCI_NUM_RESOURCES; i++) |
| 5051 | if (pci_resource_flags(dev, i) & flags) |
| 5052 | bars |= (1 << i); |
| 5053 | return bars; |
| 5054 | } |
| 5055 | EXPORT_SYMBOL(pci_select_bars); |
| 5056 | |
| 5057 | /* Some architectures require additional programming to enable VGA */ |
| 5058 | static arch_set_vga_state_t arch_set_vga_state; |
| 5059 | |
| 5060 | void __init pci_register_set_vga_state(arch_set_vga_state_t func) |
| 5061 | { |
| 5062 | arch_set_vga_state = func; /* NULL disables */ |
| 5063 | } |
| 5064 | |
| 5065 | static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, |
| 5066 | unsigned int command_bits, u32 flags) |
| 5067 | { |
| 5068 | if (arch_set_vga_state) |
| 5069 | return arch_set_vga_state(dev, decode, command_bits, |
| 5070 | flags); |
| 5071 | return 0; |
| 5072 | } |
| 5073 | |
| 5074 | /** |
| 5075 | * pci_set_vga_state - set VGA decode state on device and parents if requested |
| 5076 | * @dev: the PCI device |
| 5077 | * @decode: true = enable decoding, false = disable decoding |
| 5078 | * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY |
| 5079 | * @flags: traverse ancestors and change bridges |
| 5080 | * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE |
| 5081 | */ |
| 5082 | int pci_set_vga_state(struct pci_dev *dev, bool decode, |
| 5083 | unsigned int command_bits, u32 flags) |
| 5084 | { |
| 5085 | struct pci_bus *bus; |
| 5086 | struct pci_dev *bridge; |
| 5087 | u16 cmd; |
| 5088 | int rc; |
| 5089 | |
| 5090 | WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); |
| 5091 | |
| 5092 | /* ARCH specific VGA enables */ |
| 5093 | rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); |
| 5094 | if (rc) |
| 5095 | return rc; |
| 5096 | |
| 5097 | if (flags & PCI_VGA_STATE_CHANGE_DECODES) { |
| 5098 | pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| 5099 | if (decode == true) |
| 5100 | cmd |= command_bits; |
| 5101 | else |
| 5102 | cmd &= ~command_bits; |
| 5103 | pci_write_config_word(dev, PCI_COMMAND, cmd); |
| 5104 | } |
| 5105 | |
| 5106 | if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) |
| 5107 | return 0; |
| 5108 | |
| 5109 | bus = dev->bus; |
| 5110 | while (bus) { |
| 5111 | bridge = bus->self; |
| 5112 | if (bridge) { |
| 5113 | pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, |
| 5114 | &cmd); |
| 5115 | if (decode == true) |
| 5116 | cmd |= PCI_BRIDGE_CTL_VGA; |
| 5117 | else |
| 5118 | cmd &= ~PCI_BRIDGE_CTL_VGA; |
| 5119 | pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, |
| 5120 | cmd); |
| 5121 | } |
| 5122 | bus = bus->parent; |
| 5123 | } |
| 5124 | return 0; |
| 5125 | } |
| 5126 | |
| 5127 | /** |
| 5128 | * pci_add_dma_alias - Add a DMA devfn alias for a device |
| 5129 | * @dev: the PCI device for which alias is added |
| 5130 | * @devfn: alias slot and function |
| 5131 | * |
| 5132 | * This helper encodes 8-bit devfn as bit number in dma_alias_mask. |
| 5133 | * It should be called early, preferably as PCI fixup header quirk. |
| 5134 | */ |
| 5135 | void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) |
| 5136 | { |
| 5137 | if (!dev->dma_alias_mask) |
| 5138 | dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), |
| 5139 | sizeof(long), GFP_KERNEL); |
| 5140 | if (!dev->dma_alias_mask) { |
| 5141 | dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n"); |
| 5142 | return; |
| 5143 | } |
| 5144 | |
| 5145 | set_bit(devfn, dev->dma_alias_mask); |
| 5146 | dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n", |
| 5147 | PCI_SLOT(devfn), PCI_FUNC(devfn)); |
| 5148 | } |
| 5149 | |
| 5150 | bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) |
| 5151 | { |
| 5152 | return (dev1->dma_alias_mask && |
| 5153 | test_bit(dev2->devfn, dev1->dma_alias_mask)) || |
| 5154 | (dev2->dma_alias_mask && |
| 5155 | test_bit(dev1->devfn, dev2->dma_alias_mask)); |
| 5156 | } |
| 5157 | |
| 5158 | bool pci_device_is_present(struct pci_dev *pdev) |
| 5159 | { |
| 5160 | u32 v; |
| 5161 | |
| 5162 | if (pci_dev_is_disconnected(pdev)) |
| 5163 | return false; |
| 5164 | return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); |
| 5165 | } |
| 5166 | EXPORT_SYMBOL_GPL(pci_device_is_present); |
| 5167 | |
| 5168 | void pci_ignore_hotplug(struct pci_dev *dev) |
| 5169 | { |
| 5170 | struct pci_dev *bridge = dev->bus->self; |
| 5171 | |
| 5172 | dev->ignore_hotplug = 1; |
| 5173 | /* Propagate the "ignore hotplug" setting to the parent bridge. */ |
| 5174 | if (bridge) |
| 5175 | bridge->ignore_hotplug = 1; |
| 5176 | } |
| 5177 | EXPORT_SYMBOL_GPL(pci_ignore_hotplug); |
| 5178 | |
| 5179 | resource_size_t __weak pcibios_default_alignment(void) |
| 5180 | { |
| 5181 | return 0; |
| 5182 | } |
| 5183 | |
| 5184 | #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE |
| 5185 | static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; |
| 5186 | static DEFINE_SPINLOCK(resource_alignment_lock); |
| 5187 | |
| 5188 | /** |
| 5189 | * pci_specified_resource_alignment - get resource alignment specified by user. |
| 5190 | * @dev: the PCI device to get |
| 5191 | * @resize: whether or not to change resources' size when reassigning alignment |
| 5192 | * |
| 5193 | * RETURNS: Resource alignment if it is specified. |
| 5194 | * Zero if it is not specified. |
| 5195 | */ |
| 5196 | static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, |
| 5197 | bool *resize) |
| 5198 | { |
| 5199 | int seg, bus, slot, func, align_order, count; |
| 5200 | unsigned short vendor, device, subsystem_vendor, subsystem_device; |
| 5201 | resource_size_t align = pcibios_default_alignment(); |
| 5202 | char *p; |
| 5203 | |
| 5204 | spin_lock(&resource_alignment_lock); |
| 5205 | p = resource_alignment_param; |
| 5206 | if (!*p && !align) |
| 5207 | goto out; |
| 5208 | if (pci_has_flag(PCI_PROBE_ONLY)) { |
| 5209 | align = 0; |
| 5210 | pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); |
| 5211 | goto out; |
| 5212 | } |
| 5213 | |
| 5214 | while (*p) { |
| 5215 | count = 0; |
| 5216 | if (sscanf(p, "%d%n", &align_order, &count) == 1 && |
| 5217 | p[count] == '@') { |
| 5218 | p += count + 1; |
| 5219 | } else { |
| 5220 | align_order = -1; |
| 5221 | } |
| 5222 | if (strncmp(p, "pci:", 4) == 0) { |
| 5223 | /* PCI vendor/device (subvendor/subdevice) ids are specified */ |
| 5224 | p += 4; |
| 5225 | if (sscanf(p, "%hx:%hx:%hx:%hx%n", |
| 5226 | &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { |
| 5227 | if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { |
| 5228 | printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", |
| 5229 | p); |
| 5230 | break; |
| 5231 | } |
| 5232 | subsystem_vendor = subsystem_device = 0; |
| 5233 | } |
| 5234 | p += count; |
| 5235 | if ((!vendor || (vendor == dev->vendor)) && |
| 5236 | (!device || (device == dev->device)) && |
| 5237 | (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && |
| 5238 | (!subsystem_device || (subsystem_device == dev->subsystem_device))) { |
| 5239 | *resize = true; |
| 5240 | if (align_order == -1) |
| 5241 | align = PAGE_SIZE; |
| 5242 | else |
| 5243 | align = 1 << align_order; |
| 5244 | /* Found */ |
| 5245 | break; |
| 5246 | } |
| 5247 | } |
| 5248 | else { |
| 5249 | if (sscanf(p, "%x:%x:%x.%x%n", |
| 5250 | &seg, &bus, &slot, &func, &count) != 4) { |
| 5251 | seg = 0; |
| 5252 | if (sscanf(p, "%x:%x.%x%n", |
| 5253 | &bus, &slot, &func, &count) != 3) { |
| 5254 | /* Invalid format */ |
| 5255 | printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", |
| 5256 | p); |
| 5257 | break; |
| 5258 | } |
| 5259 | } |
| 5260 | p += count; |
| 5261 | if (seg == pci_domain_nr(dev->bus) && |
| 5262 | bus == dev->bus->number && |
| 5263 | slot == PCI_SLOT(dev->devfn) && |
| 5264 | func == PCI_FUNC(dev->devfn)) { |
| 5265 | *resize = true; |
| 5266 | if (align_order == -1) |
| 5267 | align = PAGE_SIZE; |
| 5268 | else |
| 5269 | align = 1 << align_order; |
| 5270 | /* Found */ |
| 5271 | break; |
| 5272 | } |
| 5273 | } |
| 5274 | if (*p != ';' && *p != ',') { |
| 5275 | /* End of param or invalid format */ |
| 5276 | break; |
| 5277 | } |
| 5278 | p++; |
| 5279 | } |
| 5280 | out: |
| 5281 | spin_unlock(&resource_alignment_lock); |
| 5282 | return align; |
| 5283 | } |
| 5284 | |
| 5285 | static void pci_request_resource_alignment(struct pci_dev *dev, int bar, |
| 5286 | resource_size_t align, bool resize) |
| 5287 | { |
| 5288 | struct resource *r = &dev->resource[bar]; |
| 5289 | resource_size_t size; |
| 5290 | |
| 5291 | if (!(r->flags & IORESOURCE_MEM)) |
| 5292 | return; |
| 5293 | |
| 5294 | if (r->flags & IORESOURCE_PCI_FIXED) { |
| 5295 | dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n", |
| 5296 | bar, r, (unsigned long long)align); |
| 5297 | return; |
| 5298 | } |
| 5299 | |
| 5300 | size = resource_size(r); |
| 5301 | if (size >= align) |
| 5302 | return; |
| 5303 | |
| 5304 | /* |
| 5305 | * Increase the alignment of the resource. There are two ways we |
| 5306 | * can do this: |
| 5307 | * |
| 5308 | * 1) Increase the size of the resource. BARs are aligned on their |
| 5309 | * size, so when we reallocate space for this resource, we'll |
| 5310 | * allocate it with the larger alignment. This also prevents |
| 5311 | * assignment of any other BARs inside the alignment region, so |
| 5312 | * if we're requesting page alignment, this means no other BARs |
| 5313 | * will share the page. |
| 5314 | * |
| 5315 | * The disadvantage is that this makes the resource larger than |
| 5316 | * the hardware BAR, which may break drivers that compute things |
| 5317 | * based on the resource size, e.g., to find registers at a |
| 5318 | * fixed offset before the end of the BAR. |
| 5319 | * |
| 5320 | * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and |
| 5321 | * set r->start to the desired alignment. By itself this |
| 5322 | * doesn't prevent other BARs being put inside the alignment |
| 5323 | * region, but if we realign *every* resource of every device in |
| 5324 | * the system, none of them will share an alignment region. |
| 5325 | * |
| 5326 | * When the user has requested alignment for only some devices via |
| 5327 | * the "pci=resource_alignment" argument, "resize" is true and we |
| 5328 | * use the first method. Otherwise we assume we're aligning all |
| 5329 | * devices and we use the second. |
| 5330 | */ |
| 5331 | |
| 5332 | dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n", |
| 5333 | bar, r, (unsigned long long)align); |
| 5334 | |
| 5335 | if (resize) { |
| 5336 | r->start = 0; |
| 5337 | r->end = align - 1; |
| 5338 | } else { |
| 5339 | r->flags &= ~IORESOURCE_SIZEALIGN; |
| 5340 | r->flags |= IORESOURCE_STARTALIGN; |
| 5341 | r->start = align; |
| 5342 | r->end = r->start + size - 1; |
| 5343 | } |
| 5344 | r->flags |= IORESOURCE_UNSET; |
| 5345 | } |
| 5346 | |
| 5347 | /* |
| 5348 | * This function disables memory decoding and releases memory resources |
| 5349 | * of the device specified by kernel's boot parameter 'pci=resource_alignment='. |
| 5350 | * It also rounds up size to specified alignment. |
| 5351 | * Later on, the kernel will assign page-aligned memory resource back |
| 5352 | * to the device. |
| 5353 | */ |
| 5354 | void pci_reassigndev_resource_alignment(struct pci_dev *dev) |
| 5355 | { |
| 5356 | int i; |
| 5357 | struct resource *r; |
| 5358 | resource_size_t align; |
| 5359 | u16 command; |
| 5360 | bool resize = false; |
| 5361 | |
| 5362 | /* |
| 5363 | * VF BARs are read-only zero according to SR-IOV spec r1.1, sec |
| 5364 | * 3.4.1.11. Their resources are allocated from the space |
| 5365 | * described by the VF BARx register in the PF's SR-IOV capability. |
| 5366 | * We can't influence their alignment here. |
| 5367 | */ |
| 5368 | if (dev->is_virtfn) |
| 5369 | return; |
| 5370 | |
| 5371 | /* check if specified PCI is target device to reassign */ |
| 5372 | align = pci_specified_resource_alignment(dev, &resize); |
| 5373 | if (!align) |
| 5374 | return; |
| 5375 | |
| 5376 | if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && |
| 5377 | (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { |
| 5378 | dev_warn(&dev->dev, |
| 5379 | "Can't reassign resources to host bridge.\n"); |
| 5380 | return; |
| 5381 | } |
| 5382 | |
| 5383 | dev_info(&dev->dev, |
| 5384 | "Disabling memory decoding and releasing memory resources.\n"); |
| 5385 | pci_read_config_word(dev, PCI_COMMAND, &command); |
| 5386 | command &= ~PCI_COMMAND_MEMORY; |
| 5387 | pci_write_config_word(dev, PCI_COMMAND, command); |
| 5388 | |
| 5389 | for (i = 0; i <= PCI_ROM_RESOURCE; i++) |
| 5390 | pci_request_resource_alignment(dev, i, align, resize); |
| 5391 | |
| 5392 | /* |
| 5393 | * Need to disable bridge's resource window, |
| 5394 | * to enable the kernel to reassign new resource |
| 5395 | * window later on. |
| 5396 | */ |
| 5397 | if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && |
| 5398 | (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { |
| 5399 | for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { |
| 5400 | r = &dev->resource[i]; |
| 5401 | if (!(r->flags & IORESOURCE_MEM)) |
| 5402 | continue; |
| 5403 | r->flags |= IORESOURCE_UNSET; |
| 5404 | r->end = resource_size(r) - 1; |
| 5405 | r->start = 0; |
| 5406 | } |
| 5407 | pci_disable_bridge_window(dev); |
| 5408 | } |
| 5409 | } |
| 5410 | |
| 5411 | static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) |
| 5412 | { |
| 5413 | if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) |
| 5414 | count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; |
| 5415 | spin_lock(&resource_alignment_lock); |
| 5416 | strncpy(resource_alignment_param, buf, count); |
| 5417 | resource_alignment_param[count] = '\0'; |
| 5418 | spin_unlock(&resource_alignment_lock); |
| 5419 | return count; |
| 5420 | } |
| 5421 | |
| 5422 | static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) |
| 5423 | { |
| 5424 | size_t count; |
| 5425 | spin_lock(&resource_alignment_lock); |
| 5426 | count = snprintf(buf, size, "%s", resource_alignment_param); |
| 5427 | spin_unlock(&resource_alignment_lock); |
| 5428 | return count; |
| 5429 | } |
| 5430 | |
| 5431 | static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) |
| 5432 | { |
| 5433 | return pci_get_resource_alignment_param(buf, PAGE_SIZE); |
| 5434 | } |
| 5435 | |
| 5436 | static ssize_t pci_resource_alignment_store(struct bus_type *bus, |
| 5437 | const char *buf, size_t count) |
| 5438 | { |
| 5439 | return pci_set_resource_alignment_param(buf, count); |
| 5440 | } |
| 5441 | |
| 5442 | static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, |
| 5443 | pci_resource_alignment_store); |
| 5444 | |
| 5445 | static int __init pci_resource_alignment_sysfs_init(void) |
| 5446 | { |
| 5447 | return bus_create_file(&pci_bus_type, |
| 5448 | &bus_attr_resource_alignment); |
| 5449 | } |
| 5450 | late_initcall(pci_resource_alignment_sysfs_init); |
| 5451 | |
| 5452 | static void pci_no_domains(void) |
| 5453 | { |
| 5454 | #ifdef CONFIG_PCI_DOMAINS |
| 5455 | pci_domains_supported = 0; |
| 5456 | #endif |
| 5457 | } |
| 5458 | |
| 5459 | #ifdef CONFIG_PCI_DOMAINS |
| 5460 | static atomic_t __domain_nr = ATOMIC_INIT(-1); |
| 5461 | |
| 5462 | int pci_get_new_domain_nr(void) |
| 5463 | { |
| 5464 | return atomic_inc_return(&__domain_nr); |
| 5465 | } |
| 5466 | |
| 5467 | #ifdef CONFIG_PCI_DOMAINS_GENERIC |
| 5468 | static int of_pci_bus_find_domain_nr(struct device *parent) |
| 5469 | { |
| 5470 | static int use_dt_domains = -1; |
| 5471 | int domain = -1; |
| 5472 | |
| 5473 | if (parent) |
| 5474 | domain = of_get_pci_domain_nr(parent->of_node); |
| 5475 | /* |
| 5476 | * Check DT domain and use_dt_domains values. |
| 5477 | * |
| 5478 | * If DT domain property is valid (domain >= 0) and |
| 5479 | * use_dt_domains != 0, the DT assignment is valid since this means |
| 5480 | * we have not previously allocated a domain number by using |
| 5481 | * pci_get_new_domain_nr(); we should also update use_dt_domains to |
| 5482 | * 1, to indicate that we have just assigned a domain number from |
| 5483 | * DT. |
| 5484 | * |
| 5485 | * If DT domain property value is not valid (ie domain < 0), and we |
| 5486 | * have not previously assigned a domain number from DT |
| 5487 | * (use_dt_domains != 1) we should assign a domain number by |
| 5488 | * using the: |
| 5489 | * |
| 5490 | * pci_get_new_domain_nr() |
| 5491 | * |
| 5492 | * API and update the use_dt_domains value to keep track of method we |
| 5493 | * are using to assign domain numbers (use_dt_domains = 0). |
| 5494 | * |
| 5495 | * All other combinations imply we have a platform that is trying |
| 5496 | * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), |
| 5497 | * which is a recipe for domain mishandling and it is prevented by |
| 5498 | * invalidating the domain value (domain = -1) and printing a |
| 5499 | * corresponding error. |
| 5500 | */ |
| 5501 | if (domain >= 0 && use_dt_domains) { |
| 5502 | use_dt_domains = 1; |
| 5503 | } else if (domain < 0 && use_dt_domains != 1) { |
| 5504 | use_dt_domains = 0; |
| 5505 | domain = pci_get_new_domain_nr(); |
| 5506 | } else { |
| 5507 | dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n", |
| 5508 | parent->of_node); |
| 5509 | domain = -1; |
| 5510 | } |
| 5511 | |
| 5512 | return domain; |
| 5513 | } |
| 5514 | |
| 5515 | int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) |
| 5516 | { |
| 5517 | return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : |
| 5518 | acpi_pci_bus_find_domain_nr(bus); |
| 5519 | } |
| 5520 | #endif |
| 5521 | #endif |
| 5522 | |
| 5523 | /** |
| 5524 | * pci_ext_cfg_avail - can we access extended PCI config space? |
| 5525 | * |
| 5526 | * Returns 1 if we can access PCI extended config space (offsets |
| 5527 | * greater than 0xff). This is the default implementation. Architecture |
| 5528 | * implementations can override this. |
| 5529 | */ |
| 5530 | int __weak pci_ext_cfg_avail(void) |
| 5531 | { |
| 5532 | return 1; |
| 5533 | } |
| 5534 | |
| 5535 | void __weak pci_fixup_cardbus(struct pci_bus *bus) |
| 5536 | { |
| 5537 | } |
| 5538 | EXPORT_SYMBOL(pci_fixup_cardbus); |
| 5539 | |
| 5540 | static int __init pci_setup(char *str) |
| 5541 | { |
| 5542 | while (str) { |
| 5543 | char *k = strchr(str, ','); |
| 5544 | if (k) |
| 5545 | *k++ = 0; |
| 5546 | if (*str && (str = pcibios_setup(str)) && *str) { |
| 5547 | if (!strcmp(str, "nomsi")) { |
| 5548 | pci_no_msi(); |
| 5549 | } else if (!strcmp(str, "noaer")) { |
| 5550 | pci_no_aer(); |
| 5551 | } else if (!strncmp(str, "realloc=", 8)) { |
| 5552 | pci_realloc_get_opt(str + 8); |
| 5553 | } else if (!strncmp(str, "realloc", 7)) { |
| 5554 | pci_realloc_get_opt("on"); |
| 5555 | } else if (!strcmp(str, "nodomains")) { |
| 5556 | pci_no_domains(); |
| 5557 | } else if (!strncmp(str, "noari", 5)) { |
| 5558 | pcie_ari_disabled = true; |
| 5559 | } else if (!strncmp(str, "cbiosize=", 9)) { |
| 5560 | pci_cardbus_io_size = memparse(str + 9, &str); |
| 5561 | } else if (!strncmp(str, "cbmemsize=", 10)) { |
| 5562 | pci_cardbus_mem_size = memparse(str + 10, &str); |
| 5563 | } else if (!strncmp(str, "resource_alignment=", 19)) { |
| 5564 | pci_set_resource_alignment_param(str + 19, |
| 5565 | strlen(str + 19)); |
| 5566 | } else if (!strncmp(str, "ecrc=", 5)) { |
| 5567 | pcie_ecrc_get_policy(str + 5); |
| 5568 | } else if (!strncmp(str, "hpiosize=", 9)) { |
| 5569 | pci_hotplug_io_size = memparse(str + 9, &str); |
| 5570 | } else if (!strncmp(str, "hpmemsize=", 10)) { |
| 5571 | pci_hotplug_mem_size = memparse(str + 10, &str); |
| 5572 | } else if (!strncmp(str, "hpbussize=", 10)) { |
| 5573 | pci_hotplug_bus_size = |
| 5574 | simple_strtoul(str + 10, &str, 0); |
| 5575 | if (pci_hotplug_bus_size > 0xff) |
| 5576 | pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; |
| 5577 | } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { |
| 5578 | pcie_bus_config = PCIE_BUS_TUNE_OFF; |
| 5579 | } else if (!strncmp(str, "pcie_bus_safe", 13)) { |
| 5580 | pcie_bus_config = PCIE_BUS_SAFE; |
| 5581 | } else if (!strncmp(str, "pcie_bus_perf", 13)) { |
| 5582 | pcie_bus_config = PCIE_BUS_PERFORMANCE; |
| 5583 | } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { |
| 5584 | pcie_bus_config = PCIE_BUS_PEER2PEER; |
| 5585 | } else if (!strncmp(str, "pcie_scan_all", 13)) { |
| 5586 | pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); |
| 5587 | } else { |
| 5588 | printk(KERN_ERR "PCI: Unknown option `%s'\n", |
| 5589 | str); |
| 5590 | } |
| 5591 | } |
| 5592 | str = k; |
| 5593 | } |
| 5594 | return 0; |
| 5595 | } |
| 5596 | early_param("pci", pci_setup); |