blob: 97cf40a522be307a716685ba01684a9de1806fe3 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001// SPDX-License-Identifier: GPL-2.0
2#include <linux/mm.h>
3#include <linux/gfp.h>
4#include <linux/kernel.h>
5
6#include <asm/mce.h>
7
8#include "debugfs.h"
9
10/*
11 * RAS Correctable Errors Collector
12 *
13 * This is a simple gadget which collects correctable errors and counts their
14 * occurrence per physical page address.
15 *
16 * We've opted for possibly the simplest data structure to collect those - an
17 * array of the size of a memory page. It stores 512 u64's with the following
18 * structure:
19 *
20 * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
21 *
22 * The generation in the two highest order bits is two bits which are set to 11b
23 * on every insertion. During the course of each entry's existence, the
24 * generation field gets decremented during spring cleaning to 10b, then 01b and
25 * then 00b.
26 *
27 * This way we're employing the natural numeric ordering to make sure that newly
28 * inserted/touched elements have higher 12-bit counts (which we've manufactured)
29 * and thus iterating over the array initially won't kick out those elements
30 * which were inserted last.
31 *
32 * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
33 * elements entered into the array, during which, we're decaying all elements.
34 * If, after decay, an element gets inserted again, its generation is set to 11b
35 * to make sure it has higher numerical count than other, older elements and
36 * thus emulate an an LRU-like behavior when deleting elements to free up space
37 * in the page.
38 *
39 * When an element reaches it's max count of count_threshold, we try to poison
40 * it by assuming that errors triggered count_threshold times in a single page
41 * are excessive and that page shouldn't be used anymore. count_threshold is
42 * initialized to COUNT_MASK which is the maximum.
43 *
44 * That error event entry causes cec_add_elem() to return !0 value and thus
45 * signal to its callers to log the error.
46 *
47 * To the question why we've chosen a page and moving elements around with
48 * memmove(), it is because it is a very simple structure to handle and max data
49 * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
50 * We wanted to avoid the pointer traversal of more complex structures like a
51 * linked list or some sort of a balancing search tree.
52 *
53 * Deleting an element takes O(n) but since it is only a single page, it should
54 * be fast enough and it shouldn't happen all too often depending on error
55 * patterns.
56 */
57
58#undef pr_fmt
59#define pr_fmt(fmt) "RAS: " fmt
60
61/*
62 * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
63 * elements have stayed in the array without having been accessed again.
64 */
65#define DECAY_BITS 2
66#define DECAY_MASK ((1ULL << DECAY_BITS) - 1)
67#define MAX_ELEMS (PAGE_SIZE / sizeof(u64))
68
69/*
70 * Threshold amount of inserted elements after which we start spring
71 * cleaning.
72 */
73#define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS)
74
75/* Bits which count the number of errors happened in this 4K page. */
76#define COUNT_BITS (PAGE_SHIFT - DECAY_BITS)
77#define COUNT_MASK ((1ULL << COUNT_BITS) - 1)
78#define FULL_COUNT_MASK (PAGE_SIZE - 1)
79
80/*
81 * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
82 */
83
84#define PFN(e) ((e) >> PAGE_SHIFT)
85#define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK)
86#define COUNT(e) ((unsigned int)(e) & COUNT_MASK)
87#define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1))
88
89static struct ce_array {
90 u64 *array; /* container page */
91 unsigned int n; /* number of elements in the array */
92
93 unsigned int decay_count; /*
94 * number of element insertions/increments
95 * since the last spring cleaning.
96 */
97
98 u64 pfns_poisoned; /*
99 * number of PFNs which got poisoned.
100 */
101
102 u64 ces_entered; /*
103 * The number of correctable errors
104 * entered into the collector.
105 */
106
107 u64 decays_done; /*
108 * Times we did spring cleaning.
109 */
110
111 union {
112 struct {
113 __u32 disabled : 1, /* cmdline disabled */
114 __resv : 31;
115 };
116 __u32 flags;
117 };
118} ce_arr;
119
120static DEFINE_MUTEX(ce_mutex);
121static u64 dfs_pfn;
122
123/* Amount of errors after which we offline */
124static unsigned int count_threshold = COUNT_MASK;
125
126/*
127 * The timer "decays" element count each timer_interval which is 24hrs by
128 * default.
129 */
130
131#define CEC_TIMER_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */
132#define CEC_TIMER_MIN_INTERVAL 1 * 60 * 60 /* 1h */
133#define CEC_TIMER_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */
134static struct timer_list cec_timer;
135static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL;
136
137/*
138 * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
139 * element in the array. On insertion and any access, it gets reset to max.
140 */
141static void do_spring_cleaning(struct ce_array *ca)
142{
143 int i;
144
145 for (i = 0; i < ca->n; i++) {
146 u8 decay = DECAY(ca->array[i]);
147
148 if (!decay)
149 continue;
150
151 decay--;
152
153 ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
154 ca->array[i] |= (decay << COUNT_BITS);
155 }
156 ca->decay_count = 0;
157 ca->decays_done++;
158}
159
160/*
161 * @interval in seconds
162 */
163static void cec_mod_timer(struct timer_list *t, unsigned long interval)
164{
165 unsigned long iv;
166
167 iv = interval * HZ + jiffies;
168
169 mod_timer(t, round_jiffies(iv));
170}
171
172static void cec_timer_fn(unsigned long data)
173{
174 struct ce_array *ca = (struct ce_array *)data;
175
176 do_spring_cleaning(ca);
177
178 cec_mod_timer(&cec_timer, timer_interval);
179}
180
181/*
182 * @to: index of the smallest element which is >= then @pfn.
183 *
184 * Return the index of the pfn if found, otherwise negative value.
185 */
186static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
187{
188 int min = 0, max = ca->n - 1;
189 u64 this_pfn;
190
191 while (min <= max) {
192 int i = (min + max) >> 1;
193
194 this_pfn = PFN(ca->array[i]);
195
196 if (this_pfn < pfn)
197 min = i + 1;
198 else if (this_pfn > pfn)
199 max = i - 1;
200 else if (this_pfn == pfn) {
201 if (to)
202 *to = i;
203
204 return i;
205 }
206 }
207
208 /*
209 * When the loop terminates without finding @pfn, min has the index of
210 * the element slot where the new @pfn should be inserted. The loop
211 * terminates when min > max, which means the min index points to the
212 * bigger element while the max index to the smaller element, in-between
213 * which the new @pfn belongs to.
214 *
215 * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3.
216 */
217 if (to)
218 *to = min;
219
220 return -ENOKEY;
221}
222
223static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
224{
225 WARN_ON(!to);
226
227 if (!ca->n) {
228 *to = 0;
229 return -ENOKEY;
230 }
231 return __find_elem(ca, pfn, to);
232}
233
234static void del_elem(struct ce_array *ca, int idx)
235{
236 /* Save us a function call when deleting the last element. */
237 if (ca->n - (idx + 1))
238 memmove((void *)&ca->array[idx],
239 (void *)&ca->array[idx + 1],
240 (ca->n - (idx + 1)) * sizeof(u64));
241
242 ca->n--;
243}
244
245static u64 del_lru_elem_unlocked(struct ce_array *ca)
246{
247 unsigned int min = FULL_COUNT_MASK;
248 int i, min_idx = 0;
249
250 for (i = 0; i < ca->n; i++) {
251 unsigned int this = FULL_COUNT(ca->array[i]);
252
253 if (min > this) {
254 min = this;
255 min_idx = i;
256 }
257 }
258
259 del_elem(ca, min_idx);
260
261 return PFN(ca->array[min_idx]);
262}
263
264/*
265 * We return the 0th pfn in the error case under the assumption that it cannot
266 * be poisoned and excessive CEs in there are a serious deal anyway.
267 */
268static u64 __maybe_unused del_lru_elem(void)
269{
270 struct ce_array *ca = &ce_arr;
271 u64 pfn;
272
273 if (!ca->n)
274 return 0;
275
276 mutex_lock(&ce_mutex);
277 pfn = del_lru_elem_unlocked(ca);
278 mutex_unlock(&ce_mutex);
279
280 return pfn;
281}
282
283
284int cec_add_elem(u64 pfn)
285{
286 struct ce_array *ca = &ce_arr;
287 unsigned int to;
288 int count, ret = 0;
289
290 /*
291 * We can be called very early on the identify_cpu() path where we are
292 * not initialized yet. We ignore the error for simplicity.
293 */
294 if (!ce_arr.array || ce_arr.disabled)
295 return -ENODEV;
296
297 ca->ces_entered++;
298
299 mutex_lock(&ce_mutex);
300
301 if (ca->n == MAX_ELEMS)
302 WARN_ON(!del_lru_elem_unlocked(ca));
303
304 ret = find_elem(ca, pfn, &to);
305 if (ret < 0) {
306 /*
307 * Shift range [to-end] to make room for one more element.
308 */
309 memmove((void *)&ca->array[to + 1],
310 (void *)&ca->array[to],
311 (ca->n - to) * sizeof(u64));
312
313 ca->array[to] = (pfn << PAGE_SHIFT) |
314 (DECAY_MASK << COUNT_BITS) | 1;
315
316 ca->n++;
317
318 ret = 0;
319
320 goto decay;
321 }
322
323 count = COUNT(ca->array[to]);
324
325 if (count < count_threshold) {
326 ca->array[to] |= (DECAY_MASK << COUNT_BITS);
327 ca->array[to]++;
328
329 ret = 0;
330 } else {
331 u64 pfn = ca->array[to] >> PAGE_SHIFT;
332
333 if (!pfn_valid(pfn)) {
334 pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
335 } else {
336 /* We have reached max count for this page, soft-offline it. */
337 pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
338 memory_failure_queue(pfn, 0, MF_SOFT_OFFLINE);
339 ca->pfns_poisoned++;
340 }
341
342 del_elem(ca, to);
343
344 /*
345 * Return a >0 value to denote that we've reached the offlining
346 * threshold.
347 */
348 ret = 1;
349
350 goto unlock;
351 }
352
353decay:
354 ca->decay_count++;
355
356 if (ca->decay_count >= CLEAN_ELEMS)
357 do_spring_cleaning(ca);
358
359unlock:
360 mutex_unlock(&ce_mutex);
361
362 return ret;
363}
364
365static int u64_get(void *data, u64 *val)
366{
367 *val = *(u64 *)data;
368
369 return 0;
370}
371
372static int pfn_set(void *data, u64 val)
373{
374 *(u64 *)data = val;
375
376 cec_add_elem(val);
377
378 return 0;
379}
380
381DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
382
383static int decay_interval_set(void *data, u64 val)
384{
385 *(u64 *)data = val;
386
387 if (val < CEC_TIMER_MIN_INTERVAL)
388 return -EINVAL;
389
390 if (val > CEC_TIMER_MAX_INTERVAL)
391 return -EINVAL;
392
393 timer_interval = val;
394
395 cec_mod_timer(&cec_timer, timer_interval);
396 return 0;
397}
398DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
399
400static int count_threshold_set(void *data, u64 val)
401{
402 *(u64 *)data = val;
403
404 if (val > COUNT_MASK)
405 val = COUNT_MASK;
406
407 count_threshold = val;
408
409 return 0;
410}
411DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n");
412
413static int array_dump(struct seq_file *m, void *v)
414{
415 struct ce_array *ca = &ce_arr;
416 u64 prev = 0;
417 int i;
418
419 mutex_lock(&ce_mutex);
420
421 seq_printf(m, "{ n: %d\n", ca->n);
422 for (i = 0; i < ca->n; i++) {
423 u64 this = PFN(ca->array[i]);
424
425 seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
426
427 WARN_ON(prev > this);
428
429 prev = this;
430 }
431
432 seq_printf(m, "}\n");
433
434 seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
435 ca->ces_entered, ca->pfns_poisoned);
436
437 seq_printf(m, "Flags: 0x%x\n", ca->flags);
438
439 seq_printf(m, "Timer interval: %lld seconds\n", timer_interval);
440 seq_printf(m, "Decays: %lld\n", ca->decays_done);
441
442 seq_printf(m, "Action threshold: %d\n", count_threshold);
443
444 mutex_unlock(&ce_mutex);
445
446 return 0;
447}
448
449static int array_open(struct inode *inode, struct file *filp)
450{
451 return single_open(filp, array_dump, NULL);
452}
453
454static const struct file_operations array_ops = {
455 .owner = THIS_MODULE,
456 .open = array_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = single_release,
460};
461
462static int __init create_debugfs_nodes(void)
463{
464 struct dentry *d, *pfn, *decay, *count, *array;
465
466 d = debugfs_create_dir("cec", ras_debugfs_dir);
467 if (!d) {
468 pr_warn("Error creating cec debugfs node!\n");
469 return -1;
470 }
471
472 pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
473 if (!pfn) {
474 pr_warn("Error creating pfn debugfs node!\n");
475 goto err;
476 }
477
478 array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops);
479 if (!array) {
480 pr_warn("Error creating array debugfs node!\n");
481 goto err;
482 }
483
484 decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
485 &timer_interval, &decay_interval_ops);
486 if (!decay) {
487 pr_warn("Error creating decay_interval debugfs node!\n");
488 goto err;
489 }
490
491 count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d,
492 &count_threshold, &count_threshold_ops);
493 if (!count) {
494 pr_warn("Error creating count_threshold debugfs node!\n");
495 goto err;
496 }
497
498
499 return 0;
500
501err:
502 debugfs_remove_recursive(d);
503
504 return 1;
505}
506
507void __init cec_init(void)
508{
509 if (ce_arr.disabled)
510 return;
511
512 ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
513 if (!ce_arr.array) {
514 pr_err("Error allocating CE array page!\n");
515 return;
516 }
517
518 if (create_debugfs_nodes())
519 return;
520
521 setup_timer(&cec_timer, cec_timer_fn, (unsigned long)&ce_arr);
522 cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL);
523
524 pr_info("Correctable Errors collector initialized.\n");
525}
526
527int __init parse_cec_param(char *str)
528{
529 if (!str)
530 return 0;
531
532 if (*str == '=')
533 str++;
534
535 if (!strcmp(str, "cec_disable"))
536 ce_arr.disabled = 1;
537 else
538 return 0;
539
540 return 1;
541}