blob: 3b892918d8219484e1729e6f93cf7893ef41f677 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 *
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17 *
18 */
19
20#include <linux/module.h>
21#include <linux/interrupt.h>
22#include <linux/types.h>
23#include <linux/pci.h>
24#include <linux/pci-aspm.h>
25#include <linux/kernel.h>
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/fs.h>
29#include <linux/timer.h>
30#include <linux/init.h>
31#include <linux/spinlock.h>
32#include <linux/compat.h>
33#include <linux/blktrace_api.h>
34#include <linux/uaccess.h>
35#include <linux/io.h>
36#include <linux/dma-mapping.h>
37#include <linux/completion.h>
38#include <linux/moduleparam.h>
39#include <scsi/scsi.h>
40#include <scsi/scsi_cmnd.h>
41#include <scsi/scsi_device.h>
42#include <scsi/scsi_host.h>
43#include <scsi/scsi_tcq.h>
44#include <scsi/scsi_eh.h>
45#include <scsi/scsi_transport_sas.h>
46#include <scsi/scsi_dbg.h>
47#include <linux/cciss_ioctl.h>
48#include <linux/string.h>
49#include <linux/bitmap.h>
50#include <linux/atomic.h>
51#include <linux/jiffies.h>
52#include <linux/percpu-defs.h>
53#include <linux/percpu.h>
54#include <asm/unaligned.h>
55#include <asm/div64.h>
56#include "hpsa_cmd.h"
57#include "hpsa.h"
58
59/*
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
62 */
63#define HPSA_DRIVER_VERSION "3.4.20-0"
64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65#define HPSA "hpsa"
66
67/* How long to wait for CISS doorbell communication */
68#define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69#define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70#define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71#define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72#define MAX_IOCTL_CONFIG_WAIT 1000
73
74/*define how many times we will try a command because of bus resets */
75#define MAX_CMD_RETRIES 3
76
77/* Embedded module documentation macros - see modules.h */
78MODULE_AUTHOR("Hewlett-Packard Company");
79MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82MODULE_VERSION(HPSA_DRIVER_VERSION);
83MODULE_LICENSE("GPL");
84MODULE_ALIAS("cciss");
85
86static int hpsa_simple_mode;
87module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88MODULE_PARM_DESC(hpsa_simple_mode,
89 "Use 'simple mode' rather than 'performant mode'");
90
91/* define the PCI info for the cards we can control */
92static const struct pci_device_id hpsa_pci_device_id[] = {
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
147 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
149 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 {0,}
151};
152
153MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155/* board_id = Subsystem Device ID & Vendor ID
156 * product = Marketing Name for the board
157 * access = Address of the struct of function pointers
158 */
159static struct board_type products[] = {
160 {0x40700E11, "Smart Array 5300", &SA5A_access},
161 {0x40800E11, "Smart Array 5i", &SA5B_access},
162 {0x40820E11, "Smart Array 532", &SA5B_access},
163 {0x40830E11, "Smart Array 5312", &SA5B_access},
164 {0x409A0E11, "Smart Array 641", &SA5A_access},
165 {0x409B0E11, "Smart Array 642", &SA5A_access},
166 {0x409C0E11, "Smart Array 6400", &SA5A_access},
167 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 {0x40910E11, "Smart Array 6i", &SA5A_access},
169 {0x3225103C, "Smart Array P600", &SA5A_access},
170 {0x3223103C, "Smart Array P800", &SA5A_access},
171 {0x3234103C, "Smart Array P400", &SA5A_access},
172 {0x3235103C, "Smart Array P400i", &SA5A_access},
173 {0x3211103C, "Smart Array E200i", &SA5A_access},
174 {0x3212103C, "Smart Array E200", &SA5A_access},
175 {0x3213103C, "Smart Array E200i", &SA5A_access},
176 {0x3214103C, "Smart Array E200i", &SA5A_access},
177 {0x3215103C, "Smart Array E200i", &SA5A_access},
178 {0x3237103C, "Smart Array E500", &SA5A_access},
179 {0x323D103C, "Smart Array P700m", &SA5A_access},
180 {0x3241103C, "Smart Array P212", &SA5_access},
181 {0x3243103C, "Smart Array P410", &SA5_access},
182 {0x3245103C, "Smart Array P410i", &SA5_access},
183 {0x3247103C, "Smart Array P411", &SA5_access},
184 {0x3249103C, "Smart Array P812", &SA5_access},
185 {0x324A103C, "Smart Array P712m", &SA5_access},
186 {0x324B103C, "Smart Array P711m", &SA5_access},
187 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 {0x3350103C, "Smart Array P222", &SA5_access},
189 {0x3351103C, "Smart Array P420", &SA5_access},
190 {0x3352103C, "Smart Array P421", &SA5_access},
191 {0x3353103C, "Smart Array P822", &SA5_access},
192 {0x3354103C, "Smart Array P420i", &SA5_access},
193 {0x3355103C, "Smart Array P220i", &SA5_access},
194 {0x3356103C, "Smart Array P721m", &SA5_access},
195 {0x1920103C, "Smart Array P430i", &SA5_access},
196 {0x1921103C, "Smart Array P830i", &SA5_access},
197 {0x1922103C, "Smart Array P430", &SA5_access},
198 {0x1923103C, "Smart Array P431", &SA5_access},
199 {0x1924103C, "Smart Array P830", &SA5_access},
200 {0x1925103C, "Smart Array P831", &SA5_access},
201 {0x1926103C, "Smart Array P731m", &SA5_access},
202 {0x1928103C, "Smart Array P230i", &SA5_access},
203 {0x1929103C, "Smart Array P530", &SA5_access},
204 {0x21BD103C, "Smart Array P244br", &SA5_access},
205 {0x21BE103C, "Smart Array P741m", &SA5_access},
206 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 {0x21C0103C, "Smart Array P440ar", &SA5_access},
208 {0x21C1103C, "Smart Array P840ar", &SA5_access},
209 {0x21C2103C, "Smart Array P440", &SA5_access},
210 {0x21C3103C, "Smart Array P441", &SA5_access},
211 {0x21C4103C, "Smart Array", &SA5_access},
212 {0x21C5103C, "Smart Array P841", &SA5_access},
213 {0x21C6103C, "Smart HBA H244br", &SA5_access},
214 {0x21C7103C, "Smart HBA H240", &SA5_access},
215 {0x21C8103C, "Smart HBA H241", &SA5_access},
216 {0x21C9103C, "Smart Array", &SA5_access},
217 {0x21CA103C, "Smart Array P246br", &SA5_access},
218 {0x21CB103C, "Smart Array P840", &SA5_access},
219 {0x21CC103C, "Smart Array", &SA5_access},
220 {0x21CD103C, "Smart Array", &SA5_access},
221 {0x21CE103C, "Smart HBA", &SA5_access},
222 {0x05809005, "SmartHBA-SA", &SA5_access},
223 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234};
235
236static struct scsi_transport_template *hpsa_sas_transport_template;
237static int hpsa_add_sas_host(struct ctlr_info *h);
238static void hpsa_delete_sas_host(struct ctlr_info *h);
239static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 struct hpsa_scsi_dev_t *device);
241static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242static struct hpsa_scsi_dev_t
243 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 struct sas_rphy *rphy);
245
246#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247static const struct scsi_cmnd hpsa_cmd_busy;
248#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249static const struct scsi_cmnd hpsa_cmd_idle;
250static int number_of_controllers;
251
252static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256#ifdef CONFIG_COMPAT
257static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 void __user *arg);
259#endif
260
261static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262static struct CommandList *cmd_alloc(struct ctlr_info *h);
263static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 struct scsi_cmnd *scmd);
266static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 int cmd_type);
269static void hpsa_free_cmd_pool(struct ctlr_info *h);
270#define VPD_PAGE (1 << 8)
271#define HPSA_SIMPLE_ERROR_BITS 0x03
272
273static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274static void hpsa_scan_start(struct Scsi_Host *);
275static int hpsa_scan_finished(struct Scsi_Host *sh,
276 unsigned long elapsed_time);
277static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280static int hpsa_slave_alloc(struct scsi_device *sdev);
281static int hpsa_slave_configure(struct scsi_device *sdev);
282static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284static void hpsa_update_scsi_devices(struct ctlr_info *h);
285static int check_for_unit_attention(struct ctlr_info *h,
286 struct CommandList *c);
287static void check_ioctl_unit_attention(struct ctlr_info *h,
288 struct CommandList *c);
289/* performant mode helper functions */
290static void calc_bucket_map(int *bucket, int num_buckets,
291 int nsgs, int min_blocks, u32 *bucket_map);
292static void hpsa_free_performant_mode(struct ctlr_info *h);
293static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294static inline u32 next_command(struct ctlr_info *h, u8 q);
295static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 u64 *cfg_offset);
298static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 unsigned long *memory_bar);
300static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 bool *legacy_board);
302static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 unsigned char lunaddr[],
304 int reply_queue);
305static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 int wait_for_ready);
307static inline void finish_cmd(struct CommandList *c);
308static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309#define BOARD_NOT_READY 0
310#define BOARD_READY 1
311static void hpsa_drain_accel_commands(struct ctlr_info *h);
312static void hpsa_flush_cache(struct ctlr_info *h);
313static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316static void hpsa_command_resubmit_worker(struct work_struct *work);
317static u32 lockup_detected(struct ctlr_info *h);
318static int detect_controller_lockup(struct ctlr_info *h);
319static void hpsa_disable_rld_caching(struct ctlr_info *h);
320static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 struct ReportExtendedLUNdata *buf, int bufsize);
322static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 unsigned char scsi3addr[], u8 page);
324static int hpsa_luns_changed(struct ctlr_info *h);
325static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 struct hpsa_scsi_dev_t *dev,
327 unsigned char *scsi3addr);
328
329static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330{
331 unsigned long *priv = shost_priv(sdev->host);
332 return (struct ctlr_info *) *priv;
333}
334
335static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336{
337 unsigned long *priv = shost_priv(sh);
338 return (struct ctlr_info *) *priv;
339}
340
341static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342{
343 return c->scsi_cmd == SCSI_CMD_IDLE;
344}
345
346static inline bool hpsa_is_pending_event(struct CommandList *c)
347{
348 return c->reset_pending;
349}
350
351/* extract sense key, asc, and ascq from sense data. -1 means invalid. */
352static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 u8 *sense_key, u8 *asc, u8 *ascq)
354{
355 struct scsi_sense_hdr sshdr;
356 bool rc;
357
358 *sense_key = -1;
359 *asc = -1;
360 *ascq = -1;
361
362 if (sense_data_len < 1)
363 return;
364
365 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 if (rc) {
367 *sense_key = sshdr.sense_key;
368 *asc = sshdr.asc;
369 *ascq = sshdr.ascq;
370 }
371}
372
373static int check_for_unit_attention(struct ctlr_info *h,
374 struct CommandList *c)
375{
376 u8 sense_key, asc, ascq;
377 int sense_len;
378
379 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 sense_len = sizeof(c->err_info->SenseInfo);
381 else
382 sense_len = c->err_info->SenseLen;
383
384 decode_sense_data(c->err_info->SenseInfo, sense_len,
385 &sense_key, &asc, &ascq);
386 if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 return 0;
388
389 switch (asc) {
390 case STATE_CHANGED:
391 dev_warn(&h->pdev->dev,
392 "%s: a state change detected, command retried\n",
393 h->devname);
394 break;
395 case LUN_FAILED:
396 dev_warn(&h->pdev->dev,
397 "%s: LUN failure detected\n", h->devname);
398 break;
399 case REPORT_LUNS_CHANGED:
400 dev_warn(&h->pdev->dev,
401 "%s: report LUN data changed\n", h->devname);
402 /*
403 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 * target (array) devices.
405 */
406 break;
407 case POWER_OR_RESET:
408 dev_warn(&h->pdev->dev,
409 "%s: a power on or device reset detected\n",
410 h->devname);
411 break;
412 case UNIT_ATTENTION_CLEARED:
413 dev_warn(&h->pdev->dev,
414 "%s: unit attention cleared by another initiator\n",
415 h->devname);
416 break;
417 default:
418 dev_warn(&h->pdev->dev,
419 "%s: unknown unit attention detected\n",
420 h->devname);
421 break;
422 }
423 return 1;
424}
425
426static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427{
428 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 return 0;
432 dev_warn(&h->pdev->dev, HPSA "device busy");
433 return 1;
434}
435
436static u32 lockup_detected(struct ctlr_info *h);
437static ssize_t host_show_lockup_detected(struct device *dev,
438 struct device_attribute *attr, char *buf)
439{
440 int ld;
441 struct ctlr_info *h;
442 struct Scsi_Host *shost = class_to_shost(dev);
443
444 h = shost_to_hba(shost);
445 ld = lockup_detected(h);
446
447 return sprintf(buf, "ld=%d\n", ld);
448}
449
450static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 struct device_attribute *attr,
452 const char *buf, size_t count)
453{
454 int status, len;
455 struct ctlr_info *h;
456 struct Scsi_Host *shost = class_to_shost(dev);
457 char tmpbuf[10];
458
459 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 return -EACCES;
461 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 strncpy(tmpbuf, buf, len);
463 tmpbuf[len] = '\0';
464 if (sscanf(tmpbuf, "%d", &status) != 1)
465 return -EINVAL;
466 h = shost_to_hba(shost);
467 h->acciopath_status = !!status;
468 dev_warn(&h->pdev->dev,
469 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 h->acciopath_status ? "enabled" : "disabled");
471 return count;
472}
473
474static ssize_t host_store_raid_offload_debug(struct device *dev,
475 struct device_attribute *attr,
476 const char *buf, size_t count)
477{
478 int debug_level, len;
479 struct ctlr_info *h;
480 struct Scsi_Host *shost = class_to_shost(dev);
481 char tmpbuf[10];
482
483 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 return -EACCES;
485 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 strncpy(tmpbuf, buf, len);
487 tmpbuf[len] = '\0';
488 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 return -EINVAL;
490 if (debug_level < 0)
491 debug_level = 0;
492 h = shost_to_hba(shost);
493 h->raid_offload_debug = debug_level;
494 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 h->raid_offload_debug);
496 return count;
497}
498
499static ssize_t host_store_rescan(struct device *dev,
500 struct device_attribute *attr,
501 const char *buf, size_t count)
502{
503 struct ctlr_info *h;
504 struct Scsi_Host *shost = class_to_shost(dev);
505 h = shost_to_hba(shost);
506 hpsa_scan_start(h->scsi_host);
507 return count;
508}
509
510static ssize_t host_show_firmware_revision(struct device *dev,
511 struct device_attribute *attr, char *buf)
512{
513 struct ctlr_info *h;
514 struct Scsi_Host *shost = class_to_shost(dev);
515 unsigned char *fwrev;
516
517 h = shost_to_hba(shost);
518 if (!h->hba_inquiry_data)
519 return 0;
520 fwrev = &h->hba_inquiry_data[32];
521 return snprintf(buf, 20, "%c%c%c%c\n",
522 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523}
524
525static ssize_t host_show_commands_outstanding(struct device *dev,
526 struct device_attribute *attr, char *buf)
527{
528 struct Scsi_Host *shost = class_to_shost(dev);
529 struct ctlr_info *h = shost_to_hba(shost);
530
531 return snprintf(buf, 20, "%d\n",
532 atomic_read(&h->commands_outstanding));
533}
534
535static ssize_t host_show_transport_mode(struct device *dev,
536 struct device_attribute *attr, char *buf)
537{
538 struct ctlr_info *h;
539 struct Scsi_Host *shost = class_to_shost(dev);
540
541 h = shost_to_hba(shost);
542 return snprintf(buf, 20, "%s\n",
543 h->transMethod & CFGTBL_Trans_Performant ?
544 "performant" : "simple");
545}
546
547static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 struct device_attribute *attr, char *buf)
549{
550 struct ctlr_info *h;
551 struct Scsi_Host *shost = class_to_shost(dev);
552
553 h = shost_to_hba(shost);
554 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 (h->acciopath_status == 1) ? "enabled" : "disabled");
556}
557
558/* List of controllers which cannot be hard reset on kexec with reset_devices */
559static u32 unresettable_controller[] = {
560 0x324a103C, /* Smart Array P712m */
561 0x324b103C, /* Smart Array P711m */
562 0x3223103C, /* Smart Array P800 */
563 0x3234103C, /* Smart Array P400 */
564 0x3235103C, /* Smart Array P400i */
565 0x3211103C, /* Smart Array E200i */
566 0x3212103C, /* Smart Array E200 */
567 0x3213103C, /* Smart Array E200i */
568 0x3214103C, /* Smart Array E200i */
569 0x3215103C, /* Smart Array E200i */
570 0x3237103C, /* Smart Array E500 */
571 0x323D103C, /* Smart Array P700m */
572 0x40800E11, /* Smart Array 5i */
573 0x409C0E11, /* Smart Array 6400 */
574 0x409D0E11, /* Smart Array 6400 EM */
575 0x40700E11, /* Smart Array 5300 */
576 0x40820E11, /* Smart Array 532 */
577 0x40830E11, /* Smart Array 5312 */
578 0x409A0E11, /* Smart Array 641 */
579 0x409B0E11, /* Smart Array 642 */
580 0x40910E11, /* Smart Array 6i */
581};
582
583/* List of controllers which cannot even be soft reset */
584static u32 soft_unresettable_controller[] = {
585 0x40800E11, /* Smart Array 5i */
586 0x40700E11, /* Smart Array 5300 */
587 0x40820E11, /* Smart Array 532 */
588 0x40830E11, /* Smart Array 5312 */
589 0x409A0E11, /* Smart Array 641 */
590 0x409B0E11, /* Smart Array 642 */
591 0x40910E11, /* Smart Array 6i */
592 /* Exclude 640x boards. These are two pci devices in one slot
593 * which share a battery backed cache module. One controls the
594 * cache, the other accesses the cache through the one that controls
595 * it. If we reset the one controlling the cache, the other will
596 * likely not be happy. Just forbid resetting this conjoined mess.
597 * The 640x isn't really supported by hpsa anyway.
598 */
599 0x409C0E11, /* Smart Array 6400 */
600 0x409D0E11, /* Smart Array 6400 EM */
601};
602
603static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604{
605 int i;
606
607 for (i = 0; i < nelems; i++)
608 if (a[i] == board_id)
609 return 1;
610 return 0;
611}
612
613static int ctlr_is_hard_resettable(u32 board_id)
614{
615 return !board_id_in_array(unresettable_controller,
616 ARRAY_SIZE(unresettable_controller), board_id);
617}
618
619static int ctlr_is_soft_resettable(u32 board_id)
620{
621 return !board_id_in_array(soft_unresettable_controller,
622 ARRAY_SIZE(soft_unresettable_controller), board_id);
623}
624
625static int ctlr_is_resettable(u32 board_id)
626{
627 return ctlr_is_hard_resettable(board_id) ||
628 ctlr_is_soft_resettable(board_id);
629}
630
631static ssize_t host_show_resettable(struct device *dev,
632 struct device_attribute *attr, char *buf)
633{
634 struct ctlr_info *h;
635 struct Scsi_Host *shost = class_to_shost(dev);
636
637 h = shost_to_hba(shost);
638 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639}
640
641static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642{
643 return (scsi3addr[3] & 0xC0) == 0x40;
644}
645
646static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
648};
649#define HPSA_RAID_0 0
650#define HPSA_RAID_4 1
651#define HPSA_RAID_1 2 /* also used for RAID 10 */
652#define HPSA_RAID_5 3 /* also used for RAID 50 */
653#define HPSA_RAID_51 4
654#define HPSA_RAID_6 5 /* also used for RAID 60 */
655#define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
656#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658
659static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660{
661 return !device->physical_device;
662}
663
664static ssize_t raid_level_show(struct device *dev,
665 struct device_attribute *attr, char *buf)
666{
667 ssize_t l = 0;
668 unsigned char rlevel;
669 struct ctlr_info *h;
670 struct scsi_device *sdev;
671 struct hpsa_scsi_dev_t *hdev;
672 unsigned long flags;
673
674 sdev = to_scsi_device(dev);
675 h = sdev_to_hba(sdev);
676 spin_lock_irqsave(&h->lock, flags);
677 hdev = sdev->hostdata;
678 if (!hdev) {
679 spin_unlock_irqrestore(&h->lock, flags);
680 return -ENODEV;
681 }
682
683 /* Is this even a logical drive? */
684 if (!is_logical_device(hdev)) {
685 spin_unlock_irqrestore(&h->lock, flags);
686 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 return l;
688 }
689
690 rlevel = hdev->raid_level;
691 spin_unlock_irqrestore(&h->lock, flags);
692 if (rlevel > RAID_UNKNOWN)
693 rlevel = RAID_UNKNOWN;
694 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 return l;
696}
697
698static ssize_t lunid_show(struct device *dev,
699 struct device_attribute *attr, char *buf)
700{
701 struct ctlr_info *h;
702 struct scsi_device *sdev;
703 struct hpsa_scsi_dev_t *hdev;
704 unsigned long flags;
705 unsigned char lunid[8];
706
707 sdev = to_scsi_device(dev);
708 h = sdev_to_hba(sdev);
709 spin_lock_irqsave(&h->lock, flags);
710 hdev = sdev->hostdata;
711 if (!hdev) {
712 spin_unlock_irqrestore(&h->lock, flags);
713 return -ENODEV;
714 }
715 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 spin_unlock_irqrestore(&h->lock, flags);
717 return snprintf(buf, 20, "0x%8phN\n", lunid);
718}
719
720static ssize_t unique_id_show(struct device *dev,
721 struct device_attribute *attr, char *buf)
722{
723 struct ctlr_info *h;
724 struct scsi_device *sdev;
725 struct hpsa_scsi_dev_t *hdev;
726 unsigned long flags;
727 unsigned char sn[16];
728
729 sdev = to_scsi_device(dev);
730 h = sdev_to_hba(sdev);
731 spin_lock_irqsave(&h->lock, flags);
732 hdev = sdev->hostdata;
733 if (!hdev) {
734 spin_unlock_irqrestore(&h->lock, flags);
735 return -ENODEV;
736 }
737 memcpy(sn, hdev->device_id, sizeof(sn));
738 spin_unlock_irqrestore(&h->lock, flags);
739 return snprintf(buf, 16 * 2 + 2,
740 "%02X%02X%02X%02X%02X%02X%02X%02X"
741 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 sn[0], sn[1], sn[2], sn[3],
743 sn[4], sn[5], sn[6], sn[7],
744 sn[8], sn[9], sn[10], sn[11],
745 sn[12], sn[13], sn[14], sn[15]);
746}
747
748static ssize_t sas_address_show(struct device *dev,
749 struct device_attribute *attr, char *buf)
750{
751 struct ctlr_info *h;
752 struct scsi_device *sdev;
753 struct hpsa_scsi_dev_t *hdev;
754 unsigned long flags;
755 u64 sas_address;
756
757 sdev = to_scsi_device(dev);
758 h = sdev_to_hba(sdev);
759 spin_lock_irqsave(&h->lock, flags);
760 hdev = sdev->hostdata;
761 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 spin_unlock_irqrestore(&h->lock, flags);
763 return -ENODEV;
764 }
765 sas_address = hdev->sas_address;
766 spin_unlock_irqrestore(&h->lock, flags);
767
768 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769}
770
771static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 struct device_attribute *attr, char *buf)
773{
774 struct ctlr_info *h;
775 struct scsi_device *sdev;
776 struct hpsa_scsi_dev_t *hdev;
777 unsigned long flags;
778 int offload_enabled;
779
780 sdev = to_scsi_device(dev);
781 h = sdev_to_hba(sdev);
782 spin_lock_irqsave(&h->lock, flags);
783 hdev = sdev->hostdata;
784 if (!hdev) {
785 spin_unlock_irqrestore(&h->lock, flags);
786 return -ENODEV;
787 }
788 offload_enabled = hdev->offload_enabled;
789 spin_unlock_irqrestore(&h->lock, flags);
790 return snprintf(buf, 20, "%d\n", offload_enabled);
791}
792
793#define MAX_PATHS 8
794static ssize_t path_info_show(struct device *dev,
795 struct device_attribute *attr, char *buf)
796{
797 struct ctlr_info *h;
798 struct scsi_device *sdev;
799 struct hpsa_scsi_dev_t *hdev;
800 unsigned long flags;
801 int i;
802 int output_len = 0;
803 u8 box;
804 u8 bay;
805 u8 path_map_index = 0;
806 char *active;
807 unsigned char phys_connector[2];
808
809 sdev = to_scsi_device(dev);
810 h = sdev_to_hba(sdev);
811 spin_lock_irqsave(&h->devlock, flags);
812 hdev = sdev->hostdata;
813 if (!hdev) {
814 spin_unlock_irqrestore(&h->devlock, flags);
815 return -ENODEV;
816 }
817
818 bay = hdev->bay;
819 for (i = 0; i < MAX_PATHS; i++) {
820 path_map_index = 1<<i;
821 if (i == hdev->active_path_index)
822 active = "Active";
823 else if (hdev->path_map & path_map_index)
824 active = "Inactive";
825 else
826 continue;
827
828 output_len += scnprintf(buf + output_len,
829 PAGE_SIZE - output_len,
830 "[%d:%d:%d:%d] %20.20s ",
831 h->scsi_host->host_no,
832 hdev->bus, hdev->target, hdev->lun,
833 scsi_device_type(hdev->devtype));
834
835 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
836 output_len += scnprintf(buf + output_len,
837 PAGE_SIZE - output_len,
838 "%s\n", active);
839 continue;
840 }
841
842 box = hdev->box[i];
843 memcpy(&phys_connector, &hdev->phys_connector[i],
844 sizeof(phys_connector));
845 if (phys_connector[0] < '0')
846 phys_connector[0] = '0';
847 if (phys_connector[1] < '0')
848 phys_connector[1] = '0';
849 output_len += scnprintf(buf + output_len,
850 PAGE_SIZE - output_len,
851 "PORT: %.2s ",
852 phys_connector);
853 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
854 hdev->expose_device) {
855 if (box == 0 || box == 0xFF) {
856 output_len += scnprintf(buf + output_len,
857 PAGE_SIZE - output_len,
858 "BAY: %hhu %s\n",
859 bay, active);
860 } else {
861 output_len += scnprintf(buf + output_len,
862 PAGE_SIZE - output_len,
863 "BOX: %hhu BAY: %hhu %s\n",
864 box, bay, active);
865 }
866 } else if (box != 0 && box != 0xFF) {
867 output_len += scnprintf(buf + output_len,
868 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
869 box, active);
870 } else
871 output_len += scnprintf(buf + output_len,
872 PAGE_SIZE - output_len, "%s\n", active);
873 }
874
875 spin_unlock_irqrestore(&h->devlock, flags);
876 return output_len;
877}
878
879static ssize_t host_show_ctlr_num(struct device *dev,
880 struct device_attribute *attr, char *buf)
881{
882 struct ctlr_info *h;
883 struct Scsi_Host *shost = class_to_shost(dev);
884
885 h = shost_to_hba(shost);
886 return snprintf(buf, 20, "%d\n", h->ctlr);
887}
888
889static ssize_t host_show_legacy_board(struct device *dev,
890 struct device_attribute *attr, char *buf)
891{
892 struct ctlr_info *h;
893 struct Scsi_Host *shost = class_to_shost(dev);
894
895 h = shost_to_hba(shost);
896 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
897}
898
899static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
900static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
901static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
902static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
903static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
904static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
905 host_show_hp_ssd_smart_path_enabled, NULL);
906static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
907static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
908 host_show_hp_ssd_smart_path_status,
909 host_store_hp_ssd_smart_path_status);
910static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
911 host_store_raid_offload_debug);
912static DEVICE_ATTR(firmware_revision, S_IRUGO,
913 host_show_firmware_revision, NULL);
914static DEVICE_ATTR(commands_outstanding, S_IRUGO,
915 host_show_commands_outstanding, NULL);
916static DEVICE_ATTR(transport_mode, S_IRUGO,
917 host_show_transport_mode, NULL);
918static DEVICE_ATTR(resettable, S_IRUGO,
919 host_show_resettable, NULL);
920static DEVICE_ATTR(lockup_detected, S_IRUGO,
921 host_show_lockup_detected, NULL);
922static DEVICE_ATTR(ctlr_num, S_IRUGO,
923 host_show_ctlr_num, NULL);
924static DEVICE_ATTR(legacy_board, S_IRUGO,
925 host_show_legacy_board, NULL);
926
927static struct device_attribute *hpsa_sdev_attrs[] = {
928 &dev_attr_raid_level,
929 &dev_attr_lunid,
930 &dev_attr_unique_id,
931 &dev_attr_hp_ssd_smart_path_enabled,
932 &dev_attr_path_info,
933 &dev_attr_sas_address,
934 NULL,
935};
936
937static struct device_attribute *hpsa_shost_attrs[] = {
938 &dev_attr_rescan,
939 &dev_attr_firmware_revision,
940 &dev_attr_commands_outstanding,
941 &dev_attr_transport_mode,
942 &dev_attr_resettable,
943 &dev_attr_hp_ssd_smart_path_status,
944 &dev_attr_raid_offload_debug,
945 &dev_attr_lockup_detected,
946 &dev_attr_ctlr_num,
947 &dev_attr_legacy_board,
948 NULL,
949};
950
951#define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
952 HPSA_MAX_CONCURRENT_PASSTHRUS)
953
954static struct scsi_host_template hpsa_driver_template = {
955 .module = THIS_MODULE,
956 .name = HPSA,
957 .proc_name = HPSA,
958 .queuecommand = hpsa_scsi_queue_command,
959 .scan_start = hpsa_scan_start,
960 .scan_finished = hpsa_scan_finished,
961 .change_queue_depth = hpsa_change_queue_depth,
962 .this_id = -1,
963 .use_clustering = ENABLE_CLUSTERING,
964 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
965 .ioctl = hpsa_ioctl,
966 .slave_alloc = hpsa_slave_alloc,
967 .slave_configure = hpsa_slave_configure,
968 .slave_destroy = hpsa_slave_destroy,
969#ifdef CONFIG_COMPAT
970 .compat_ioctl = hpsa_compat_ioctl,
971#endif
972 .sdev_attrs = hpsa_sdev_attrs,
973 .shost_attrs = hpsa_shost_attrs,
974 .max_sectors = 1024,
975 .no_write_same = 1,
976};
977
978static inline u32 next_command(struct ctlr_info *h, u8 q)
979{
980 u32 a;
981 struct reply_queue_buffer *rq = &h->reply_queue[q];
982
983 if (h->transMethod & CFGTBL_Trans_io_accel1)
984 return h->access.command_completed(h, q);
985
986 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
987 return h->access.command_completed(h, q);
988
989 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
990 a = rq->head[rq->current_entry];
991 rq->current_entry++;
992 atomic_dec(&h->commands_outstanding);
993 } else {
994 a = FIFO_EMPTY;
995 }
996 /* Check for wraparound */
997 if (rq->current_entry == h->max_commands) {
998 rq->current_entry = 0;
999 rq->wraparound ^= 1;
1000 }
1001 return a;
1002}
1003
1004/*
1005 * There are some special bits in the bus address of the
1006 * command that we have to set for the controller to know
1007 * how to process the command:
1008 *
1009 * Normal performant mode:
1010 * bit 0: 1 means performant mode, 0 means simple mode.
1011 * bits 1-3 = block fetch table entry
1012 * bits 4-6 = command type (== 0)
1013 *
1014 * ioaccel1 mode:
1015 * bit 0 = "performant mode" bit.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 110)
1018 * (command type is needed because ioaccel1 mode
1019 * commands are submitted through the same register as normal
1020 * mode commands, so this is how the controller knows whether
1021 * the command is normal mode or ioaccel1 mode.)
1022 *
1023 * ioaccel2 mode:
1024 * bit 0 = "performant mode" bit.
1025 * bits 1-4 = block fetch table entry (note extra bit)
1026 * bits 4-6 = not needed, because ioaccel2 mode has
1027 * a separate special register for submitting commands.
1028 */
1029
1030/*
1031 * set_performant_mode: Modify the tag for cciss performant
1032 * set bit 0 for pull model, bits 3-1 for block fetch
1033 * register number
1034 */
1035#define DEFAULT_REPLY_QUEUE (-1)
1036static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1037 int reply_queue)
1038{
1039 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1040 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1041 if (unlikely(!h->msix_vectors))
1042 return;
1043 c->Header.ReplyQueue = reply_queue;
1044 }
1045}
1046
1047static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1048 struct CommandList *c,
1049 int reply_queue)
1050{
1051 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1052
1053 /*
1054 * Tell the controller to post the reply to the queue for this
1055 * processor. This seems to give the best I/O throughput.
1056 */
1057 cp->ReplyQueue = reply_queue;
1058 /*
1059 * Set the bits in the address sent down to include:
1060 * - performant mode bit (bit 0)
1061 * - pull count (bits 1-3)
1062 * - command type (bits 4-6)
1063 */
1064 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1065 IOACCEL1_BUSADDR_CMDTYPE;
1066}
1067
1068static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1069 struct CommandList *c,
1070 int reply_queue)
1071{
1072 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1073 &h->ioaccel2_cmd_pool[c->cmdindex];
1074
1075 /* Tell the controller to post the reply to the queue for this
1076 * processor. This seems to give the best I/O throughput.
1077 */
1078 cp->reply_queue = reply_queue;
1079 /* Set the bits in the address sent down to include:
1080 * - performant mode bit not used in ioaccel mode 2
1081 * - pull count (bits 0-3)
1082 * - command type isn't needed for ioaccel2
1083 */
1084 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1085}
1086
1087static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1088 struct CommandList *c,
1089 int reply_queue)
1090{
1091 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1092
1093 /*
1094 * Tell the controller to post the reply to the queue for this
1095 * processor. This seems to give the best I/O throughput.
1096 */
1097 cp->reply_queue = reply_queue;
1098 /*
1099 * Set the bits in the address sent down to include:
1100 * - performant mode bit not used in ioaccel mode 2
1101 * - pull count (bits 0-3)
1102 * - command type isn't needed for ioaccel2
1103 */
1104 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1105}
1106
1107static int is_firmware_flash_cmd(u8 *cdb)
1108{
1109 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1110}
1111
1112/*
1113 * During firmware flash, the heartbeat register may not update as frequently
1114 * as it should. So we dial down lockup detection during firmware flash. and
1115 * dial it back up when firmware flash completes.
1116 */
1117#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1118#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1119#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1120static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1121 struct CommandList *c)
1122{
1123 if (!is_firmware_flash_cmd(c->Request.CDB))
1124 return;
1125 atomic_inc(&h->firmware_flash_in_progress);
1126 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1127}
1128
1129static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1130 struct CommandList *c)
1131{
1132 if (is_firmware_flash_cmd(c->Request.CDB) &&
1133 atomic_dec_and_test(&h->firmware_flash_in_progress))
1134 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1135}
1136
1137static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1138 struct CommandList *c, int reply_queue)
1139{
1140 dial_down_lockup_detection_during_fw_flash(h, c);
1141 atomic_inc(&h->commands_outstanding);
1142
1143 reply_queue = h->reply_map[raw_smp_processor_id()];
1144 switch (c->cmd_type) {
1145 case CMD_IOACCEL1:
1146 set_ioaccel1_performant_mode(h, c, reply_queue);
1147 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1148 break;
1149 case CMD_IOACCEL2:
1150 set_ioaccel2_performant_mode(h, c, reply_queue);
1151 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1152 break;
1153 case IOACCEL2_TMF:
1154 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1155 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1156 break;
1157 default:
1158 set_performant_mode(h, c, reply_queue);
1159 h->access.submit_command(h, c);
1160 }
1161}
1162
1163static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1164{
1165 if (unlikely(hpsa_is_pending_event(c)))
1166 return finish_cmd(c);
1167
1168 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1169}
1170
1171static inline int is_hba_lunid(unsigned char scsi3addr[])
1172{
1173 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1174}
1175
1176static inline int is_scsi_rev_5(struct ctlr_info *h)
1177{
1178 if (!h->hba_inquiry_data)
1179 return 0;
1180 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1181 return 1;
1182 return 0;
1183}
1184
1185static int hpsa_find_target_lun(struct ctlr_info *h,
1186 unsigned char scsi3addr[], int bus, int *target, int *lun)
1187{
1188 /* finds an unused bus, target, lun for a new physical device
1189 * assumes h->devlock is held
1190 */
1191 int i, found = 0;
1192 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1193
1194 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1195
1196 for (i = 0; i < h->ndevices; i++) {
1197 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1198 __set_bit(h->dev[i]->target, lun_taken);
1199 }
1200
1201 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1202 if (i < HPSA_MAX_DEVICES) {
1203 /* *bus = 1; */
1204 *target = i;
1205 *lun = 0;
1206 found = 1;
1207 }
1208 return !found;
1209}
1210
1211static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1212 struct hpsa_scsi_dev_t *dev, char *description)
1213{
1214#define LABEL_SIZE 25
1215 char label[LABEL_SIZE];
1216
1217 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1218 return;
1219
1220 switch (dev->devtype) {
1221 case TYPE_RAID:
1222 snprintf(label, LABEL_SIZE, "controller");
1223 break;
1224 case TYPE_ENCLOSURE:
1225 snprintf(label, LABEL_SIZE, "enclosure");
1226 break;
1227 case TYPE_DISK:
1228 case TYPE_ZBC:
1229 if (dev->external)
1230 snprintf(label, LABEL_SIZE, "external");
1231 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1232 snprintf(label, LABEL_SIZE, "%s",
1233 raid_label[PHYSICAL_DRIVE]);
1234 else
1235 snprintf(label, LABEL_SIZE, "RAID-%s",
1236 dev->raid_level > RAID_UNKNOWN ? "?" :
1237 raid_label[dev->raid_level]);
1238 break;
1239 case TYPE_ROM:
1240 snprintf(label, LABEL_SIZE, "rom");
1241 break;
1242 case TYPE_TAPE:
1243 snprintf(label, LABEL_SIZE, "tape");
1244 break;
1245 case TYPE_MEDIUM_CHANGER:
1246 snprintf(label, LABEL_SIZE, "changer");
1247 break;
1248 default:
1249 snprintf(label, LABEL_SIZE, "UNKNOWN");
1250 break;
1251 }
1252
1253 dev_printk(level, &h->pdev->dev,
1254 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1255 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1256 description,
1257 scsi_device_type(dev->devtype),
1258 dev->vendor,
1259 dev->model,
1260 label,
1261 dev->offload_config ? '+' : '-',
1262 dev->offload_enabled ? '+' : '-',
1263 dev->expose_device);
1264}
1265
1266/* Add an entry into h->dev[] array. */
1267static int hpsa_scsi_add_entry(struct ctlr_info *h,
1268 struct hpsa_scsi_dev_t *device,
1269 struct hpsa_scsi_dev_t *added[], int *nadded)
1270{
1271 /* assumes h->devlock is held */
1272 int n = h->ndevices;
1273 int i;
1274 unsigned char addr1[8], addr2[8];
1275 struct hpsa_scsi_dev_t *sd;
1276
1277 if (n >= HPSA_MAX_DEVICES) {
1278 dev_err(&h->pdev->dev, "too many devices, some will be "
1279 "inaccessible.\n");
1280 return -1;
1281 }
1282
1283 /* physical devices do not have lun or target assigned until now. */
1284 if (device->lun != -1)
1285 /* Logical device, lun is already assigned. */
1286 goto lun_assigned;
1287
1288 /* If this device a non-zero lun of a multi-lun device
1289 * byte 4 of the 8-byte LUN addr will contain the logical
1290 * unit no, zero otherwise.
1291 */
1292 if (device->scsi3addr[4] == 0) {
1293 /* This is not a non-zero lun of a multi-lun device */
1294 if (hpsa_find_target_lun(h, device->scsi3addr,
1295 device->bus, &device->target, &device->lun) != 0)
1296 return -1;
1297 goto lun_assigned;
1298 }
1299
1300 /* This is a non-zero lun of a multi-lun device.
1301 * Search through our list and find the device which
1302 * has the same 8 byte LUN address, excepting byte 4 and 5.
1303 * Assign the same bus and target for this new LUN.
1304 * Use the logical unit number from the firmware.
1305 */
1306 memcpy(addr1, device->scsi3addr, 8);
1307 addr1[4] = 0;
1308 addr1[5] = 0;
1309 for (i = 0; i < n; i++) {
1310 sd = h->dev[i];
1311 memcpy(addr2, sd->scsi3addr, 8);
1312 addr2[4] = 0;
1313 addr2[5] = 0;
1314 /* differ only in byte 4 and 5? */
1315 if (memcmp(addr1, addr2, 8) == 0) {
1316 device->bus = sd->bus;
1317 device->target = sd->target;
1318 device->lun = device->scsi3addr[4];
1319 break;
1320 }
1321 }
1322 if (device->lun == -1) {
1323 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1324 " suspect firmware bug or unsupported hardware "
1325 "configuration.\n");
1326 return -1;
1327 }
1328
1329lun_assigned:
1330
1331 h->dev[n] = device;
1332 h->ndevices++;
1333 added[*nadded] = device;
1334 (*nadded)++;
1335 hpsa_show_dev_msg(KERN_INFO, h, device,
1336 device->expose_device ? "added" : "masked");
1337 device->offload_to_be_enabled = device->offload_enabled;
1338 device->offload_enabled = 0;
1339 return 0;
1340}
1341
1342/* Update an entry in h->dev[] array. */
1343static void hpsa_scsi_update_entry(struct ctlr_info *h,
1344 int entry, struct hpsa_scsi_dev_t *new_entry)
1345{
1346 int offload_enabled;
1347 /* assumes h->devlock is held */
1348 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1349
1350 /* Raid level changed. */
1351 h->dev[entry]->raid_level = new_entry->raid_level;
1352
1353 /* Raid offload parameters changed. Careful about the ordering. */
1354 if (new_entry->offload_config && new_entry->offload_enabled) {
1355 /*
1356 * if drive is newly offload_enabled, we want to copy the
1357 * raid map data first. If previously offload_enabled and
1358 * offload_config were set, raid map data had better be
1359 * the same as it was before. if raid map data is changed
1360 * then it had better be the case that
1361 * h->dev[entry]->offload_enabled is currently 0.
1362 */
1363 h->dev[entry]->raid_map = new_entry->raid_map;
1364 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1365 }
1366 if (new_entry->hba_ioaccel_enabled) {
1367 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1368 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1369 }
1370 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1371 h->dev[entry]->offload_config = new_entry->offload_config;
1372 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1373 h->dev[entry]->queue_depth = new_entry->queue_depth;
1374
1375 /*
1376 * We can turn off ioaccel offload now, but need to delay turning
1377 * it on until we can update h->dev[entry]->phys_disk[], but we
1378 * can't do that until all the devices are updated.
1379 */
1380 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1381 if (!new_entry->offload_enabled)
1382 h->dev[entry]->offload_enabled = 0;
1383
1384 offload_enabled = h->dev[entry]->offload_enabled;
1385 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1386 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1387 h->dev[entry]->offload_enabled = offload_enabled;
1388}
1389
1390/* Replace an entry from h->dev[] array. */
1391static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1392 int entry, struct hpsa_scsi_dev_t *new_entry,
1393 struct hpsa_scsi_dev_t *added[], int *nadded,
1394 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1395{
1396 /* assumes h->devlock is held */
1397 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1398 removed[*nremoved] = h->dev[entry];
1399 (*nremoved)++;
1400
1401 /*
1402 * New physical devices won't have target/lun assigned yet
1403 * so we need to preserve the values in the slot we are replacing.
1404 */
1405 if (new_entry->target == -1) {
1406 new_entry->target = h->dev[entry]->target;
1407 new_entry->lun = h->dev[entry]->lun;
1408 }
1409
1410 h->dev[entry] = new_entry;
1411 added[*nadded] = new_entry;
1412 (*nadded)++;
1413 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1414 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1415 new_entry->offload_enabled = 0;
1416}
1417
1418/* Remove an entry from h->dev[] array. */
1419static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1420 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1421{
1422 /* assumes h->devlock is held */
1423 int i;
1424 struct hpsa_scsi_dev_t *sd;
1425
1426 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1427
1428 sd = h->dev[entry];
1429 removed[*nremoved] = h->dev[entry];
1430 (*nremoved)++;
1431
1432 for (i = entry; i < h->ndevices-1; i++)
1433 h->dev[i] = h->dev[i+1];
1434 h->ndevices--;
1435 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1436}
1437
1438#define SCSI3ADDR_EQ(a, b) ( \
1439 (a)[7] == (b)[7] && \
1440 (a)[6] == (b)[6] && \
1441 (a)[5] == (b)[5] && \
1442 (a)[4] == (b)[4] && \
1443 (a)[3] == (b)[3] && \
1444 (a)[2] == (b)[2] && \
1445 (a)[1] == (b)[1] && \
1446 (a)[0] == (b)[0])
1447
1448static void fixup_botched_add(struct ctlr_info *h,
1449 struct hpsa_scsi_dev_t *added)
1450{
1451 /* called when scsi_add_device fails in order to re-adjust
1452 * h->dev[] to match the mid layer's view.
1453 */
1454 unsigned long flags;
1455 int i, j;
1456
1457 spin_lock_irqsave(&h->lock, flags);
1458 for (i = 0; i < h->ndevices; i++) {
1459 if (h->dev[i] == added) {
1460 for (j = i; j < h->ndevices-1; j++)
1461 h->dev[j] = h->dev[j+1];
1462 h->ndevices--;
1463 break;
1464 }
1465 }
1466 spin_unlock_irqrestore(&h->lock, flags);
1467 kfree(added);
1468}
1469
1470static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1471 struct hpsa_scsi_dev_t *dev2)
1472{
1473 /* we compare everything except lun and target as these
1474 * are not yet assigned. Compare parts likely
1475 * to differ first
1476 */
1477 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1478 sizeof(dev1->scsi3addr)) != 0)
1479 return 0;
1480 if (memcmp(dev1->device_id, dev2->device_id,
1481 sizeof(dev1->device_id)) != 0)
1482 return 0;
1483 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1484 return 0;
1485 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1486 return 0;
1487 if (dev1->devtype != dev2->devtype)
1488 return 0;
1489 if (dev1->bus != dev2->bus)
1490 return 0;
1491 return 1;
1492}
1493
1494static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1495 struct hpsa_scsi_dev_t *dev2)
1496{
1497 /* Device attributes that can change, but don't mean
1498 * that the device is a different device, nor that the OS
1499 * needs to be told anything about the change.
1500 */
1501 if (dev1->raid_level != dev2->raid_level)
1502 return 1;
1503 if (dev1->offload_config != dev2->offload_config)
1504 return 1;
1505 if (dev1->offload_enabled != dev2->offload_enabled)
1506 return 1;
1507 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1508 if (dev1->queue_depth != dev2->queue_depth)
1509 return 1;
1510 return 0;
1511}
1512
1513/* Find needle in haystack. If exact match found, return DEVICE_SAME,
1514 * and return needle location in *index. If scsi3addr matches, but not
1515 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1516 * location in *index.
1517 * In the case of a minor device attribute change, such as RAID level, just
1518 * return DEVICE_UPDATED, along with the updated device's location in index.
1519 * If needle not found, return DEVICE_NOT_FOUND.
1520 */
1521static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1522 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1523 int *index)
1524{
1525 int i;
1526#define DEVICE_NOT_FOUND 0
1527#define DEVICE_CHANGED 1
1528#define DEVICE_SAME 2
1529#define DEVICE_UPDATED 3
1530 if (needle == NULL)
1531 return DEVICE_NOT_FOUND;
1532
1533 for (i = 0; i < haystack_size; i++) {
1534 if (haystack[i] == NULL) /* previously removed. */
1535 continue;
1536 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1537 *index = i;
1538 if (device_is_the_same(needle, haystack[i])) {
1539 if (device_updated(needle, haystack[i]))
1540 return DEVICE_UPDATED;
1541 return DEVICE_SAME;
1542 } else {
1543 /* Keep offline devices offline */
1544 if (needle->volume_offline)
1545 return DEVICE_NOT_FOUND;
1546 return DEVICE_CHANGED;
1547 }
1548 }
1549 }
1550 *index = -1;
1551 return DEVICE_NOT_FOUND;
1552}
1553
1554static void hpsa_monitor_offline_device(struct ctlr_info *h,
1555 unsigned char scsi3addr[])
1556{
1557 struct offline_device_entry *device;
1558 unsigned long flags;
1559
1560 /* Check to see if device is already on the list */
1561 spin_lock_irqsave(&h->offline_device_lock, flags);
1562 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1563 if (memcmp(device->scsi3addr, scsi3addr,
1564 sizeof(device->scsi3addr)) == 0) {
1565 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1566 return;
1567 }
1568 }
1569 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1570
1571 /* Device is not on the list, add it. */
1572 device = kmalloc(sizeof(*device), GFP_KERNEL);
1573 if (!device)
1574 return;
1575
1576 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1577 spin_lock_irqsave(&h->offline_device_lock, flags);
1578 list_add_tail(&device->offline_list, &h->offline_device_list);
1579 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1580}
1581
1582/* Print a message explaining various offline volume states */
1583static void hpsa_show_volume_status(struct ctlr_info *h,
1584 struct hpsa_scsi_dev_t *sd)
1585{
1586 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1587 dev_info(&h->pdev->dev,
1588 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1589 h->scsi_host->host_no,
1590 sd->bus, sd->target, sd->lun);
1591 switch (sd->volume_offline) {
1592 case HPSA_LV_OK:
1593 break;
1594 case HPSA_LV_UNDERGOING_ERASE:
1595 dev_info(&h->pdev->dev,
1596 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1597 h->scsi_host->host_no,
1598 sd->bus, sd->target, sd->lun);
1599 break;
1600 case HPSA_LV_NOT_AVAILABLE:
1601 dev_info(&h->pdev->dev,
1602 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1603 h->scsi_host->host_no,
1604 sd->bus, sd->target, sd->lun);
1605 break;
1606 case HPSA_LV_UNDERGOING_RPI:
1607 dev_info(&h->pdev->dev,
1608 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1609 h->scsi_host->host_no,
1610 sd->bus, sd->target, sd->lun);
1611 break;
1612 case HPSA_LV_PENDING_RPI:
1613 dev_info(&h->pdev->dev,
1614 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1615 h->scsi_host->host_no,
1616 sd->bus, sd->target, sd->lun);
1617 break;
1618 case HPSA_LV_ENCRYPTED_NO_KEY:
1619 dev_info(&h->pdev->dev,
1620 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1621 h->scsi_host->host_no,
1622 sd->bus, sd->target, sd->lun);
1623 break;
1624 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1625 dev_info(&h->pdev->dev,
1626 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1627 h->scsi_host->host_no,
1628 sd->bus, sd->target, sd->lun);
1629 break;
1630 case HPSA_LV_UNDERGOING_ENCRYPTION:
1631 dev_info(&h->pdev->dev,
1632 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1633 h->scsi_host->host_no,
1634 sd->bus, sd->target, sd->lun);
1635 break;
1636 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1637 dev_info(&h->pdev->dev,
1638 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1639 h->scsi_host->host_no,
1640 sd->bus, sd->target, sd->lun);
1641 break;
1642 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1643 dev_info(&h->pdev->dev,
1644 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1645 h->scsi_host->host_no,
1646 sd->bus, sd->target, sd->lun);
1647 break;
1648 case HPSA_LV_PENDING_ENCRYPTION:
1649 dev_info(&h->pdev->dev,
1650 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1651 h->scsi_host->host_no,
1652 sd->bus, sd->target, sd->lun);
1653 break;
1654 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1655 dev_info(&h->pdev->dev,
1656 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1657 h->scsi_host->host_no,
1658 sd->bus, sd->target, sd->lun);
1659 break;
1660 }
1661}
1662
1663/*
1664 * Figure the list of physical drive pointers for a logical drive with
1665 * raid offload configured.
1666 */
1667static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1668 struct hpsa_scsi_dev_t *dev[], int ndevices,
1669 struct hpsa_scsi_dev_t *logical_drive)
1670{
1671 struct raid_map_data *map = &logical_drive->raid_map;
1672 struct raid_map_disk_data *dd = &map->data[0];
1673 int i, j;
1674 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1675 le16_to_cpu(map->metadata_disks_per_row);
1676 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1677 le16_to_cpu(map->layout_map_count) *
1678 total_disks_per_row;
1679 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1680 total_disks_per_row;
1681 int qdepth;
1682
1683 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1684 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1685
1686 logical_drive->nphysical_disks = nraid_map_entries;
1687
1688 qdepth = 0;
1689 for (i = 0; i < nraid_map_entries; i++) {
1690 logical_drive->phys_disk[i] = NULL;
1691 if (!logical_drive->offload_config)
1692 continue;
1693 for (j = 0; j < ndevices; j++) {
1694 if (dev[j] == NULL)
1695 continue;
1696 if (dev[j]->devtype != TYPE_DISK &&
1697 dev[j]->devtype != TYPE_ZBC)
1698 continue;
1699 if (is_logical_device(dev[j]))
1700 continue;
1701 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1702 continue;
1703
1704 logical_drive->phys_disk[i] = dev[j];
1705 if (i < nphys_disk)
1706 qdepth = min(h->nr_cmds, qdepth +
1707 logical_drive->phys_disk[i]->queue_depth);
1708 break;
1709 }
1710
1711 /*
1712 * This can happen if a physical drive is removed and
1713 * the logical drive is degraded. In that case, the RAID
1714 * map data will refer to a physical disk which isn't actually
1715 * present. And in that case offload_enabled should already
1716 * be 0, but we'll turn it off here just in case
1717 */
1718 if (!logical_drive->phys_disk[i]) {
1719 logical_drive->offload_enabled = 0;
1720 logical_drive->offload_to_be_enabled = 0;
1721 logical_drive->queue_depth = 8;
1722 }
1723 }
1724 if (nraid_map_entries)
1725 /*
1726 * This is correct for reads, too high for full stripe writes,
1727 * way too high for partial stripe writes
1728 */
1729 logical_drive->queue_depth = qdepth;
1730 else
1731 logical_drive->queue_depth = h->nr_cmds;
1732}
1733
1734static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1735 struct hpsa_scsi_dev_t *dev[], int ndevices)
1736{
1737 int i;
1738
1739 for (i = 0; i < ndevices; i++) {
1740 if (dev[i] == NULL)
1741 continue;
1742 if (dev[i]->devtype != TYPE_DISK &&
1743 dev[i]->devtype != TYPE_ZBC)
1744 continue;
1745 if (!is_logical_device(dev[i]))
1746 continue;
1747
1748 /*
1749 * If offload is currently enabled, the RAID map and
1750 * phys_disk[] assignment *better* not be changing
1751 * and since it isn't changing, we do not need to
1752 * update it.
1753 */
1754 if (dev[i]->offload_enabled)
1755 continue;
1756
1757 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1758 }
1759}
1760
1761static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1762{
1763 int rc = 0;
1764
1765 if (!h->scsi_host)
1766 return 1;
1767
1768 if (is_logical_device(device)) /* RAID */
1769 rc = scsi_add_device(h->scsi_host, device->bus,
1770 device->target, device->lun);
1771 else /* HBA */
1772 rc = hpsa_add_sas_device(h->sas_host, device);
1773
1774 return rc;
1775}
1776
1777static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1778 struct hpsa_scsi_dev_t *dev)
1779{
1780 int i;
1781 int count = 0;
1782
1783 for (i = 0; i < h->nr_cmds; i++) {
1784 struct CommandList *c = h->cmd_pool + i;
1785 int refcount = atomic_inc_return(&c->refcount);
1786
1787 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1788 dev->scsi3addr)) {
1789 unsigned long flags;
1790
1791 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1792 if (!hpsa_is_cmd_idle(c))
1793 ++count;
1794 spin_unlock_irqrestore(&h->lock, flags);
1795 }
1796
1797 cmd_free(h, c);
1798 }
1799
1800 return count;
1801}
1802
1803static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1804 struct hpsa_scsi_dev_t *device)
1805{
1806 int cmds = 0;
1807 int waits = 0;
1808
1809 while (1) {
1810 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1811 if (cmds == 0)
1812 break;
1813 if (++waits > 20)
1814 break;
1815 dev_warn(&h->pdev->dev,
1816 "%s: removing device with %d outstanding commands!\n",
1817 __func__, cmds);
1818 msleep(1000);
1819 }
1820}
1821
1822static void hpsa_remove_device(struct ctlr_info *h,
1823 struct hpsa_scsi_dev_t *device)
1824{
1825 struct scsi_device *sdev = NULL;
1826
1827 if (!h->scsi_host)
1828 return;
1829
1830 if (is_logical_device(device)) { /* RAID */
1831 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1832 device->target, device->lun);
1833 if (sdev) {
1834 scsi_remove_device(sdev);
1835 scsi_device_put(sdev);
1836 } else {
1837 /*
1838 * We don't expect to get here. Future commands
1839 * to this device will get a selection timeout as
1840 * if the device were gone.
1841 */
1842 hpsa_show_dev_msg(KERN_WARNING, h, device,
1843 "didn't find device for removal.");
1844 }
1845 } else { /* HBA */
1846
1847 device->removed = 1;
1848 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1849
1850 hpsa_remove_sas_device(device);
1851 }
1852}
1853
1854static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1855 struct hpsa_scsi_dev_t *sd[], int nsds)
1856{
1857 /* sd contains scsi3 addresses and devtypes, and inquiry
1858 * data. This function takes what's in sd to be the current
1859 * reality and updates h->dev[] to reflect that reality.
1860 */
1861 int i, entry, device_change, changes = 0;
1862 struct hpsa_scsi_dev_t *csd;
1863 unsigned long flags;
1864 struct hpsa_scsi_dev_t **added, **removed;
1865 int nadded, nremoved;
1866
1867 /*
1868 * A reset can cause a device status to change
1869 * re-schedule the scan to see what happened.
1870 */
1871 spin_lock_irqsave(&h->reset_lock, flags);
1872 if (h->reset_in_progress) {
1873 h->drv_req_rescan = 1;
1874 spin_unlock_irqrestore(&h->reset_lock, flags);
1875 return;
1876 }
1877 spin_unlock_irqrestore(&h->reset_lock, flags);
1878
1879 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1880 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1881
1882 if (!added || !removed) {
1883 dev_warn(&h->pdev->dev, "out of memory in "
1884 "adjust_hpsa_scsi_table\n");
1885 goto free_and_out;
1886 }
1887
1888 spin_lock_irqsave(&h->devlock, flags);
1889
1890 /* find any devices in h->dev[] that are not in
1891 * sd[] and remove them from h->dev[], and for any
1892 * devices which have changed, remove the old device
1893 * info and add the new device info.
1894 * If minor device attributes change, just update
1895 * the existing device structure.
1896 */
1897 i = 0;
1898 nremoved = 0;
1899 nadded = 0;
1900 while (i < h->ndevices) {
1901 csd = h->dev[i];
1902 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1903 if (device_change == DEVICE_NOT_FOUND) {
1904 changes++;
1905 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1906 continue; /* remove ^^^, hence i not incremented */
1907 } else if (device_change == DEVICE_CHANGED) {
1908 changes++;
1909 hpsa_scsi_replace_entry(h, i, sd[entry],
1910 added, &nadded, removed, &nremoved);
1911 /* Set it to NULL to prevent it from being freed
1912 * at the bottom of hpsa_update_scsi_devices()
1913 */
1914 sd[entry] = NULL;
1915 } else if (device_change == DEVICE_UPDATED) {
1916 hpsa_scsi_update_entry(h, i, sd[entry]);
1917 }
1918 i++;
1919 }
1920
1921 /* Now, make sure every device listed in sd[] is also
1922 * listed in h->dev[], adding them if they aren't found
1923 */
1924
1925 for (i = 0; i < nsds; i++) {
1926 if (!sd[i]) /* if already added above. */
1927 continue;
1928
1929 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1930 * as the SCSI mid-layer does not handle such devices well.
1931 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1932 * at 160Hz, and prevents the system from coming up.
1933 */
1934 if (sd[i]->volume_offline) {
1935 hpsa_show_volume_status(h, sd[i]);
1936 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1937 continue;
1938 }
1939
1940 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1941 h->ndevices, &entry);
1942 if (device_change == DEVICE_NOT_FOUND) {
1943 changes++;
1944 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1945 break;
1946 sd[i] = NULL; /* prevent from being freed later. */
1947 } else if (device_change == DEVICE_CHANGED) {
1948 /* should never happen... */
1949 changes++;
1950 dev_warn(&h->pdev->dev,
1951 "device unexpectedly changed.\n");
1952 /* but if it does happen, we just ignore that device */
1953 }
1954 }
1955 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1956
1957 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1958 * any logical drives that need it enabled.
1959 */
1960 for (i = 0; i < h->ndevices; i++) {
1961 if (h->dev[i] == NULL)
1962 continue;
1963 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1964 }
1965
1966 spin_unlock_irqrestore(&h->devlock, flags);
1967
1968 /* Monitor devices which are in one of several NOT READY states to be
1969 * brought online later. This must be done without holding h->devlock,
1970 * so don't touch h->dev[]
1971 */
1972 for (i = 0; i < nsds; i++) {
1973 if (!sd[i]) /* if already added above. */
1974 continue;
1975 if (sd[i]->volume_offline)
1976 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1977 }
1978
1979 /* Don't notify scsi mid layer of any changes the first time through
1980 * (or if there are no changes) scsi_scan_host will do it later the
1981 * first time through.
1982 */
1983 if (!changes)
1984 goto free_and_out;
1985
1986 /* Notify scsi mid layer of any removed devices */
1987 for (i = 0; i < nremoved; i++) {
1988 if (removed[i] == NULL)
1989 continue;
1990 if (removed[i]->expose_device)
1991 hpsa_remove_device(h, removed[i]);
1992 kfree(removed[i]);
1993 removed[i] = NULL;
1994 }
1995
1996 /* Notify scsi mid layer of any added devices */
1997 for (i = 0; i < nadded; i++) {
1998 int rc = 0;
1999
2000 if (added[i] == NULL)
2001 continue;
2002 if (!(added[i]->expose_device))
2003 continue;
2004 rc = hpsa_add_device(h, added[i]);
2005 if (!rc)
2006 continue;
2007 dev_warn(&h->pdev->dev,
2008 "addition failed %d, device not added.", rc);
2009 /* now we have to remove it from h->dev,
2010 * since it didn't get added to scsi mid layer
2011 */
2012 fixup_botched_add(h, added[i]);
2013 h->drv_req_rescan = 1;
2014 }
2015
2016free_and_out:
2017 kfree(added);
2018 kfree(removed);
2019}
2020
2021/*
2022 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2023 * Assume's h->devlock is held.
2024 */
2025static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2026 int bus, int target, int lun)
2027{
2028 int i;
2029 struct hpsa_scsi_dev_t *sd;
2030
2031 for (i = 0; i < h->ndevices; i++) {
2032 sd = h->dev[i];
2033 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2034 return sd;
2035 }
2036 return NULL;
2037}
2038
2039static int hpsa_slave_alloc(struct scsi_device *sdev)
2040{
2041 struct hpsa_scsi_dev_t *sd = NULL;
2042 unsigned long flags;
2043 struct ctlr_info *h;
2044
2045 h = sdev_to_hba(sdev);
2046 spin_lock_irqsave(&h->devlock, flags);
2047 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2048 struct scsi_target *starget;
2049 struct sas_rphy *rphy;
2050
2051 starget = scsi_target(sdev);
2052 rphy = target_to_rphy(starget);
2053 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2054 if (sd) {
2055 sd->target = sdev_id(sdev);
2056 sd->lun = sdev->lun;
2057 }
2058 }
2059 if (!sd)
2060 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2061 sdev_id(sdev), sdev->lun);
2062
2063 if (sd && sd->expose_device) {
2064 atomic_set(&sd->ioaccel_cmds_out, 0);
2065 sdev->hostdata = sd;
2066 } else
2067 sdev->hostdata = NULL;
2068 spin_unlock_irqrestore(&h->devlock, flags);
2069 return 0;
2070}
2071
2072/* configure scsi device based on internal per-device structure */
2073static int hpsa_slave_configure(struct scsi_device *sdev)
2074{
2075 struct hpsa_scsi_dev_t *sd;
2076 int queue_depth;
2077
2078 sd = sdev->hostdata;
2079 sdev->no_uld_attach = !sd || !sd->expose_device;
2080
2081 if (sd) {
2082 if (sd->external)
2083 queue_depth = EXTERNAL_QD;
2084 else
2085 queue_depth = sd->queue_depth != 0 ?
2086 sd->queue_depth : sdev->host->can_queue;
2087 } else
2088 queue_depth = sdev->host->can_queue;
2089
2090 scsi_change_queue_depth(sdev, queue_depth);
2091
2092 return 0;
2093}
2094
2095static void hpsa_slave_destroy(struct scsi_device *sdev)
2096{
2097 /* nothing to do. */
2098}
2099
2100static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2101{
2102 int i;
2103
2104 if (!h->ioaccel2_cmd_sg_list)
2105 return;
2106 for (i = 0; i < h->nr_cmds; i++) {
2107 kfree(h->ioaccel2_cmd_sg_list[i]);
2108 h->ioaccel2_cmd_sg_list[i] = NULL;
2109 }
2110 kfree(h->ioaccel2_cmd_sg_list);
2111 h->ioaccel2_cmd_sg_list = NULL;
2112}
2113
2114static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2115{
2116 int i;
2117
2118 if (h->chainsize <= 0)
2119 return 0;
2120
2121 h->ioaccel2_cmd_sg_list =
2122 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2123 GFP_KERNEL);
2124 if (!h->ioaccel2_cmd_sg_list)
2125 return -ENOMEM;
2126 for (i = 0; i < h->nr_cmds; i++) {
2127 h->ioaccel2_cmd_sg_list[i] =
2128 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2129 h->maxsgentries, GFP_KERNEL);
2130 if (!h->ioaccel2_cmd_sg_list[i])
2131 goto clean;
2132 }
2133 return 0;
2134
2135clean:
2136 hpsa_free_ioaccel2_sg_chain_blocks(h);
2137 return -ENOMEM;
2138}
2139
2140static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2141{
2142 int i;
2143
2144 if (!h->cmd_sg_list)
2145 return;
2146 for (i = 0; i < h->nr_cmds; i++) {
2147 kfree(h->cmd_sg_list[i]);
2148 h->cmd_sg_list[i] = NULL;
2149 }
2150 kfree(h->cmd_sg_list);
2151 h->cmd_sg_list = NULL;
2152}
2153
2154static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2155{
2156 int i;
2157
2158 if (h->chainsize <= 0)
2159 return 0;
2160
2161 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2162 GFP_KERNEL);
2163 if (!h->cmd_sg_list)
2164 return -ENOMEM;
2165
2166 for (i = 0; i < h->nr_cmds; i++) {
2167 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2168 h->chainsize, GFP_KERNEL);
2169 if (!h->cmd_sg_list[i])
2170 goto clean;
2171
2172 }
2173 return 0;
2174
2175clean:
2176 hpsa_free_sg_chain_blocks(h);
2177 return -ENOMEM;
2178}
2179
2180static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2181 struct io_accel2_cmd *cp, struct CommandList *c)
2182{
2183 struct ioaccel2_sg_element *chain_block;
2184 u64 temp64;
2185 u32 chain_size;
2186
2187 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2188 chain_size = le32_to_cpu(cp->sg[0].length);
2189 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2190 PCI_DMA_TODEVICE);
2191 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2192 /* prevent subsequent unmapping */
2193 cp->sg->address = 0;
2194 return -1;
2195 }
2196 cp->sg->address = cpu_to_le64(temp64);
2197 return 0;
2198}
2199
2200static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2201 struct io_accel2_cmd *cp)
2202{
2203 struct ioaccel2_sg_element *chain_sg;
2204 u64 temp64;
2205 u32 chain_size;
2206
2207 chain_sg = cp->sg;
2208 temp64 = le64_to_cpu(chain_sg->address);
2209 chain_size = le32_to_cpu(cp->sg[0].length);
2210 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2211}
2212
2213static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2214 struct CommandList *c)
2215{
2216 struct SGDescriptor *chain_sg, *chain_block;
2217 u64 temp64;
2218 u32 chain_len;
2219
2220 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2221 chain_block = h->cmd_sg_list[c->cmdindex];
2222 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2223 chain_len = sizeof(*chain_sg) *
2224 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2225 chain_sg->Len = cpu_to_le32(chain_len);
2226 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2227 PCI_DMA_TODEVICE);
2228 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2229 /* prevent subsequent unmapping */
2230 chain_sg->Addr = cpu_to_le64(0);
2231 return -1;
2232 }
2233 chain_sg->Addr = cpu_to_le64(temp64);
2234 return 0;
2235}
2236
2237static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2238 struct CommandList *c)
2239{
2240 struct SGDescriptor *chain_sg;
2241
2242 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2243 return;
2244
2245 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2246 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2247 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2248}
2249
2250
2251/* Decode the various types of errors on ioaccel2 path.
2252 * Return 1 for any error that should generate a RAID path retry.
2253 * Return 0 for errors that don't require a RAID path retry.
2254 */
2255static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2256 struct CommandList *c,
2257 struct scsi_cmnd *cmd,
2258 struct io_accel2_cmd *c2,
2259 struct hpsa_scsi_dev_t *dev)
2260{
2261 int data_len;
2262 int retry = 0;
2263 u32 ioaccel2_resid = 0;
2264
2265 switch (c2->error_data.serv_response) {
2266 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2267 switch (c2->error_data.status) {
2268 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2269 if (cmd)
2270 cmd->result = 0;
2271 break;
2272 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2273 cmd->result |= SAM_STAT_CHECK_CONDITION;
2274 if (c2->error_data.data_present !=
2275 IOACCEL2_SENSE_DATA_PRESENT) {
2276 memset(cmd->sense_buffer, 0,
2277 SCSI_SENSE_BUFFERSIZE);
2278 break;
2279 }
2280 /* copy the sense data */
2281 data_len = c2->error_data.sense_data_len;
2282 if (data_len > SCSI_SENSE_BUFFERSIZE)
2283 data_len = SCSI_SENSE_BUFFERSIZE;
2284 if (data_len > sizeof(c2->error_data.sense_data_buff))
2285 data_len =
2286 sizeof(c2->error_data.sense_data_buff);
2287 memcpy(cmd->sense_buffer,
2288 c2->error_data.sense_data_buff, data_len);
2289 retry = 1;
2290 break;
2291 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2292 retry = 1;
2293 break;
2294 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2295 retry = 1;
2296 break;
2297 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2298 retry = 1;
2299 break;
2300 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2301 retry = 1;
2302 break;
2303 default:
2304 retry = 1;
2305 break;
2306 }
2307 break;
2308 case IOACCEL2_SERV_RESPONSE_FAILURE:
2309 switch (c2->error_data.status) {
2310 case IOACCEL2_STATUS_SR_IO_ERROR:
2311 case IOACCEL2_STATUS_SR_IO_ABORTED:
2312 case IOACCEL2_STATUS_SR_OVERRUN:
2313 retry = 1;
2314 break;
2315 case IOACCEL2_STATUS_SR_UNDERRUN:
2316 cmd->result = (DID_OK << 16); /* host byte */
2317 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2318 ioaccel2_resid = get_unaligned_le32(
2319 &c2->error_data.resid_cnt[0]);
2320 scsi_set_resid(cmd, ioaccel2_resid);
2321 break;
2322 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2323 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2324 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2325 /*
2326 * Did an HBA disk disappear? We will eventually
2327 * get a state change event from the controller but
2328 * in the meantime, we need to tell the OS that the
2329 * HBA disk is no longer there and stop I/O
2330 * from going down. This allows the potential re-insert
2331 * of the disk to get the same device node.
2332 */
2333 if (dev->physical_device && dev->expose_device) {
2334 cmd->result = DID_NO_CONNECT << 16;
2335 dev->removed = 1;
2336 h->drv_req_rescan = 1;
2337 dev_warn(&h->pdev->dev,
2338 "%s: device is gone!\n", __func__);
2339 } else
2340 /*
2341 * Retry by sending down the RAID path.
2342 * We will get an event from ctlr to
2343 * trigger rescan regardless.
2344 */
2345 retry = 1;
2346 break;
2347 default:
2348 retry = 1;
2349 }
2350 break;
2351 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2352 break;
2353 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2354 break;
2355 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2356 retry = 1;
2357 break;
2358 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2359 break;
2360 default:
2361 retry = 1;
2362 break;
2363 }
2364
2365 return retry; /* retry on raid path? */
2366}
2367
2368static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2369 struct CommandList *c)
2370{
2371 bool do_wake = false;
2372
2373 /*
2374 * Reset c->scsi_cmd here so that the reset handler will know
2375 * this command has completed. Then, check to see if the handler is
2376 * waiting for this command, and, if so, wake it.
2377 */
2378 c->scsi_cmd = SCSI_CMD_IDLE;
2379 mb(); /* Declare command idle before checking for pending events. */
2380 if (c->reset_pending) {
2381 unsigned long flags;
2382 struct hpsa_scsi_dev_t *dev;
2383
2384 /*
2385 * There appears to be a reset pending; lock the lock and
2386 * reconfirm. If so, then decrement the count of outstanding
2387 * commands and wake the reset command if this is the last one.
2388 */
2389 spin_lock_irqsave(&h->lock, flags);
2390 dev = c->reset_pending; /* Re-fetch under the lock. */
2391 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2392 do_wake = true;
2393 c->reset_pending = NULL;
2394 spin_unlock_irqrestore(&h->lock, flags);
2395 }
2396
2397 if (do_wake)
2398 wake_up_all(&h->event_sync_wait_queue);
2399}
2400
2401static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2402 struct CommandList *c)
2403{
2404 hpsa_cmd_resolve_events(h, c);
2405 cmd_tagged_free(h, c);
2406}
2407
2408static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2409 struct CommandList *c, struct scsi_cmnd *cmd)
2410{
2411 hpsa_cmd_resolve_and_free(h, c);
2412 if (cmd && cmd->scsi_done)
2413 cmd->scsi_done(cmd);
2414}
2415
2416static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2417{
2418 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2419 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2420}
2421
2422static void process_ioaccel2_completion(struct ctlr_info *h,
2423 struct CommandList *c, struct scsi_cmnd *cmd,
2424 struct hpsa_scsi_dev_t *dev)
2425{
2426 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2427
2428 /* check for good status */
2429 if (likely(c2->error_data.serv_response == 0 &&
2430 c2->error_data.status == 0)) {
2431 cmd->result = 0;
2432 return hpsa_cmd_free_and_done(h, c, cmd);
2433 }
2434
2435 /*
2436 * Any RAID offload error results in retry which will use
2437 * the normal I/O path so the controller can handle whatever's
2438 * wrong.
2439 */
2440 if (is_logical_device(dev) &&
2441 c2->error_data.serv_response ==
2442 IOACCEL2_SERV_RESPONSE_FAILURE) {
2443 if (c2->error_data.status ==
2444 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2445 dev->offload_enabled = 0;
2446 dev->offload_to_be_enabled = 0;
2447 }
2448
2449 return hpsa_retry_cmd(h, c);
2450 }
2451
2452 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2453 return hpsa_retry_cmd(h, c);
2454
2455 return hpsa_cmd_free_and_done(h, c, cmd);
2456}
2457
2458/* Returns 0 on success, < 0 otherwise. */
2459static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2460 struct CommandList *cp)
2461{
2462 u8 tmf_status = cp->err_info->ScsiStatus;
2463
2464 switch (tmf_status) {
2465 case CISS_TMF_COMPLETE:
2466 /*
2467 * CISS_TMF_COMPLETE never happens, instead,
2468 * ei->CommandStatus == 0 for this case.
2469 */
2470 case CISS_TMF_SUCCESS:
2471 return 0;
2472 case CISS_TMF_INVALID_FRAME:
2473 case CISS_TMF_NOT_SUPPORTED:
2474 case CISS_TMF_FAILED:
2475 case CISS_TMF_WRONG_LUN:
2476 case CISS_TMF_OVERLAPPED_TAG:
2477 break;
2478 default:
2479 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2480 tmf_status);
2481 break;
2482 }
2483 return -tmf_status;
2484}
2485
2486static void complete_scsi_command(struct CommandList *cp)
2487{
2488 struct scsi_cmnd *cmd;
2489 struct ctlr_info *h;
2490 struct ErrorInfo *ei;
2491 struct hpsa_scsi_dev_t *dev;
2492 struct io_accel2_cmd *c2;
2493
2494 u8 sense_key;
2495 u8 asc; /* additional sense code */
2496 u8 ascq; /* additional sense code qualifier */
2497 unsigned long sense_data_size;
2498
2499 ei = cp->err_info;
2500 cmd = cp->scsi_cmd;
2501 h = cp->h;
2502
2503 if (!cmd->device) {
2504 cmd->result = DID_NO_CONNECT << 16;
2505 return hpsa_cmd_free_and_done(h, cp, cmd);
2506 }
2507
2508 dev = cmd->device->hostdata;
2509 if (!dev) {
2510 cmd->result = DID_NO_CONNECT << 16;
2511 return hpsa_cmd_free_and_done(h, cp, cmd);
2512 }
2513 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2514
2515 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2516 if ((cp->cmd_type == CMD_SCSI) &&
2517 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2518 hpsa_unmap_sg_chain_block(h, cp);
2519
2520 if ((cp->cmd_type == CMD_IOACCEL2) &&
2521 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2522 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2523
2524 cmd->result = (DID_OK << 16); /* host byte */
2525 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2526
2527 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2528 if (dev->physical_device && dev->expose_device &&
2529 dev->removed) {
2530 cmd->result = DID_NO_CONNECT << 16;
2531 return hpsa_cmd_free_and_done(h, cp, cmd);
2532 }
2533 if (likely(cp->phys_disk != NULL))
2534 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2535 }
2536
2537 /*
2538 * We check for lockup status here as it may be set for
2539 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2540 * fail_all_oustanding_cmds()
2541 */
2542 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2543 /* DID_NO_CONNECT will prevent a retry */
2544 cmd->result = DID_NO_CONNECT << 16;
2545 return hpsa_cmd_free_and_done(h, cp, cmd);
2546 }
2547
2548 if ((unlikely(hpsa_is_pending_event(cp))))
2549 if (cp->reset_pending)
2550 return hpsa_cmd_free_and_done(h, cp, cmd);
2551
2552 if (cp->cmd_type == CMD_IOACCEL2)
2553 return process_ioaccel2_completion(h, cp, cmd, dev);
2554
2555 scsi_set_resid(cmd, ei->ResidualCnt);
2556 if (ei->CommandStatus == 0)
2557 return hpsa_cmd_free_and_done(h, cp, cmd);
2558
2559 /* For I/O accelerator commands, copy over some fields to the normal
2560 * CISS header used below for error handling.
2561 */
2562 if (cp->cmd_type == CMD_IOACCEL1) {
2563 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2564 cp->Header.SGList = scsi_sg_count(cmd);
2565 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2566 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2567 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2568 cp->Header.tag = c->tag;
2569 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2570 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2571
2572 /* Any RAID offload error results in retry which will use
2573 * the normal I/O path so the controller can handle whatever's
2574 * wrong.
2575 */
2576 if (is_logical_device(dev)) {
2577 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2578 dev->offload_enabled = 0;
2579 return hpsa_retry_cmd(h, cp);
2580 }
2581 }
2582
2583 /* an error has occurred */
2584 switch (ei->CommandStatus) {
2585
2586 case CMD_TARGET_STATUS:
2587 cmd->result |= ei->ScsiStatus;
2588 /* copy the sense data */
2589 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2590 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2591 else
2592 sense_data_size = sizeof(ei->SenseInfo);
2593 if (ei->SenseLen < sense_data_size)
2594 sense_data_size = ei->SenseLen;
2595 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2596 if (ei->ScsiStatus)
2597 decode_sense_data(ei->SenseInfo, sense_data_size,
2598 &sense_key, &asc, &ascq);
2599 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2600 if (sense_key == ABORTED_COMMAND) {
2601 cmd->result |= DID_SOFT_ERROR << 16;
2602 break;
2603 }
2604 break;
2605 }
2606 /* Problem was not a check condition
2607 * Pass it up to the upper layers...
2608 */
2609 if (ei->ScsiStatus) {
2610 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2611 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2612 "Returning result: 0x%x\n",
2613 cp, ei->ScsiStatus,
2614 sense_key, asc, ascq,
2615 cmd->result);
2616 } else { /* scsi status is zero??? How??? */
2617 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2618 "Returning no connection.\n", cp),
2619
2620 /* Ordinarily, this case should never happen,
2621 * but there is a bug in some released firmware
2622 * revisions that allows it to happen if, for
2623 * example, a 4100 backplane loses power and
2624 * the tape drive is in it. We assume that
2625 * it's a fatal error of some kind because we
2626 * can't show that it wasn't. We will make it
2627 * look like selection timeout since that is
2628 * the most common reason for this to occur,
2629 * and it's severe enough.
2630 */
2631
2632 cmd->result = DID_NO_CONNECT << 16;
2633 }
2634 break;
2635
2636 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2637 break;
2638 case CMD_DATA_OVERRUN:
2639 dev_warn(&h->pdev->dev,
2640 "CDB %16phN data overrun\n", cp->Request.CDB);
2641 break;
2642 case CMD_INVALID: {
2643 /* print_bytes(cp, sizeof(*cp), 1, 0);
2644 print_cmd(cp); */
2645 /* We get CMD_INVALID if you address a non-existent device
2646 * instead of a selection timeout (no response). You will
2647 * see this if you yank out a drive, then try to access it.
2648 * This is kind of a shame because it means that any other
2649 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2650 * missing target. */
2651 cmd->result = DID_NO_CONNECT << 16;
2652 }
2653 break;
2654 case CMD_PROTOCOL_ERR:
2655 cmd->result = DID_ERROR << 16;
2656 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2657 cp->Request.CDB);
2658 break;
2659 case CMD_HARDWARE_ERR:
2660 cmd->result = DID_ERROR << 16;
2661 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2662 cp->Request.CDB);
2663 break;
2664 case CMD_CONNECTION_LOST:
2665 cmd->result = DID_ERROR << 16;
2666 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2667 cp->Request.CDB);
2668 break;
2669 case CMD_ABORTED:
2670 cmd->result = DID_ABORT << 16;
2671 break;
2672 case CMD_ABORT_FAILED:
2673 cmd->result = DID_ERROR << 16;
2674 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2675 cp->Request.CDB);
2676 break;
2677 case CMD_UNSOLICITED_ABORT:
2678 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2679 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2680 cp->Request.CDB);
2681 break;
2682 case CMD_TIMEOUT:
2683 cmd->result = DID_TIME_OUT << 16;
2684 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2685 cp->Request.CDB);
2686 break;
2687 case CMD_UNABORTABLE:
2688 cmd->result = DID_ERROR << 16;
2689 dev_warn(&h->pdev->dev, "Command unabortable\n");
2690 break;
2691 case CMD_TMF_STATUS:
2692 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2693 cmd->result = DID_ERROR << 16;
2694 break;
2695 case CMD_IOACCEL_DISABLED:
2696 /* This only handles the direct pass-through case since RAID
2697 * offload is handled above. Just attempt a retry.
2698 */
2699 cmd->result = DID_SOFT_ERROR << 16;
2700 dev_warn(&h->pdev->dev,
2701 "cp %p had HP SSD Smart Path error\n", cp);
2702 break;
2703 default:
2704 cmd->result = DID_ERROR << 16;
2705 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2706 cp, ei->CommandStatus);
2707 }
2708
2709 return hpsa_cmd_free_and_done(h, cp, cmd);
2710}
2711
2712static void hpsa_pci_unmap(struct pci_dev *pdev,
2713 struct CommandList *c, int sg_used, int data_direction)
2714{
2715 int i;
2716
2717 for (i = 0; i < sg_used; i++)
2718 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2719 le32_to_cpu(c->SG[i].Len),
2720 data_direction);
2721}
2722
2723static int hpsa_map_one(struct pci_dev *pdev,
2724 struct CommandList *cp,
2725 unsigned char *buf,
2726 size_t buflen,
2727 int data_direction)
2728{
2729 u64 addr64;
2730
2731 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2732 cp->Header.SGList = 0;
2733 cp->Header.SGTotal = cpu_to_le16(0);
2734 return 0;
2735 }
2736
2737 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2738 if (dma_mapping_error(&pdev->dev, addr64)) {
2739 /* Prevent subsequent unmap of something never mapped */
2740 cp->Header.SGList = 0;
2741 cp->Header.SGTotal = cpu_to_le16(0);
2742 return -1;
2743 }
2744 cp->SG[0].Addr = cpu_to_le64(addr64);
2745 cp->SG[0].Len = cpu_to_le32(buflen);
2746 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2747 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2748 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2749 return 0;
2750}
2751
2752#define NO_TIMEOUT ((unsigned long) -1)
2753#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2754static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2755 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2756{
2757 DECLARE_COMPLETION_ONSTACK(wait);
2758
2759 c->waiting = &wait;
2760 __enqueue_cmd_and_start_io(h, c, reply_queue);
2761 if (timeout_msecs == NO_TIMEOUT) {
2762 /* TODO: get rid of this no-timeout thing */
2763 wait_for_completion_io(&wait);
2764 return IO_OK;
2765 }
2766 if (!wait_for_completion_io_timeout(&wait,
2767 msecs_to_jiffies(timeout_msecs))) {
2768 dev_warn(&h->pdev->dev, "Command timed out.\n");
2769 return -ETIMEDOUT;
2770 }
2771 return IO_OK;
2772}
2773
2774static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2775 int reply_queue, unsigned long timeout_msecs)
2776{
2777 if (unlikely(lockup_detected(h))) {
2778 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2779 return IO_OK;
2780 }
2781 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2782}
2783
2784static u32 lockup_detected(struct ctlr_info *h)
2785{
2786 int cpu;
2787 u32 rc, *lockup_detected;
2788
2789 cpu = get_cpu();
2790 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2791 rc = *lockup_detected;
2792 put_cpu();
2793 return rc;
2794}
2795
2796#define MAX_DRIVER_CMD_RETRIES 25
2797static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2798 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2799{
2800 int backoff_time = 10, retry_count = 0;
2801 int rc;
2802
2803 do {
2804 memset(c->err_info, 0, sizeof(*c->err_info));
2805 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2806 timeout_msecs);
2807 if (rc)
2808 break;
2809 retry_count++;
2810 if (retry_count > 3) {
2811 msleep(backoff_time);
2812 if (backoff_time < 1000)
2813 backoff_time *= 2;
2814 }
2815 } while ((check_for_unit_attention(h, c) ||
2816 check_for_busy(h, c)) &&
2817 retry_count <= MAX_DRIVER_CMD_RETRIES);
2818 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2819 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2820 rc = -EIO;
2821 return rc;
2822}
2823
2824static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2825 struct CommandList *c)
2826{
2827 const u8 *cdb = c->Request.CDB;
2828 const u8 *lun = c->Header.LUN.LunAddrBytes;
2829
2830 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2831 txt, lun, cdb);
2832}
2833
2834static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2835 struct CommandList *cp)
2836{
2837 const struct ErrorInfo *ei = cp->err_info;
2838 struct device *d = &cp->h->pdev->dev;
2839 u8 sense_key, asc, ascq;
2840 int sense_len;
2841
2842 switch (ei->CommandStatus) {
2843 case CMD_TARGET_STATUS:
2844 if (ei->SenseLen > sizeof(ei->SenseInfo))
2845 sense_len = sizeof(ei->SenseInfo);
2846 else
2847 sense_len = ei->SenseLen;
2848 decode_sense_data(ei->SenseInfo, sense_len,
2849 &sense_key, &asc, &ascq);
2850 hpsa_print_cmd(h, "SCSI status", cp);
2851 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2852 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2853 sense_key, asc, ascq);
2854 else
2855 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2856 if (ei->ScsiStatus == 0)
2857 dev_warn(d, "SCSI status is abnormally zero. "
2858 "(probably indicates selection timeout "
2859 "reported incorrectly due to a known "
2860 "firmware bug, circa July, 2001.)\n");
2861 break;
2862 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2863 break;
2864 case CMD_DATA_OVERRUN:
2865 hpsa_print_cmd(h, "overrun condition", cp);
2866 break;
2867 case CMD_INVALID: {
2868 /* controller unfortunately reports SCSI passthru's
2869 * to non-existent targets as invalid commands.
2870 */
2871 hpsa_print_cmd(h, "invalid command", cp);
2872 dev_warn(d, "probably means device no longer present\n");
2873 }
2874 break;
2875 case CMD_PROTOCOL_ERR:
2876 hpsa_print_cmd(h, "protocol error", cp);
2877 break;
2878 case CMD_HARDWARE_ERR:
2879 hpsa_print_cmd(h, "hardware error", cp);
2880 break;
2881 case CMD_CONNECTION_LOST:
2882 hpsa_print_cmd(h, "connection lost", cp);
2883 break;
2884 case CMD_ABORTED:
2885 hpsa_print_cmd(h, "aborted", cp);
2886 break;
2887 case CMD_ABORT_FAILED:
2888 hpsa_print_cmd(h, "abort failed", cp);
2889 break;
2890 case CMD_UNSOLICITED_ABORT:
2891 hpsa_print_cmd(h, "unsolicited abort", cp);
2892 break;
2893 case CMD_TIMEOUT:
2894 hpsa_print_cmd(h, "timed out", cp);
2895 break;
2896 case CMD_UNABORTABLE:
2897 hpsa_print_cmd(h, "unabortable", cp);
2898 break;
2899 case CMD_CTLR_LOCKUP:
2900 hpsa_print_cmd(h, "controller lockup detected", cp);
2901 break;
2902 default:
2903 hpsa_print_cmd(h, "unknown status", cp);
2904 dev_warn(d, "Unknown command status %x\n",
2905 ei->CommandStatus);
2906 }
2907}
2908
2909static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2910 u16 page, unsigned char *buf,
2911 unsigned char bufsize)
2912{
2913 int rc = IO_OK;
2914 struct CommandList *c;
2915 struct ErrorInfo *ei;
2916
2917 c = cmd_alloc(h);
2918
2919 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2920 page, scsi3addr, TYPE_CMD)) {
2921 rc = -1;
2922 goto out;
2923 }
2924 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2925 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2926 if (rc)
2927 goto out;
2928 ei = c->err_info;
2929 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2930 hpsa_scsi_interpret_error(h, c);
2931 rc = -1;
2932 }
2933out:
2934 cmd_free(h, c);
2935 return rc;
2936}
2937
2938static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2939 u8 reset_type, int reply_queue)
2940{
2941 int rc = IO_OK;
2942 struct CommandList *c;
2943 struct ErrorInfo *ei;
2944
2945 c = cmd_alloc(h);
2946
2947
2948 /* fill_cmd can't fail here, no data buffer to map. */
2949 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2950 scsi3addr, TYPE_MSG);
2951 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2952 if (rc) {
2953 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2954 goto out;
2955 }
2956 /* no unmap needed here because no data xfer. */
2957
2958 ei = c->err_info;
2959 if (ei->CommandStatus != 0) {
2960 hpsa_scsi_interpret_error(h, c);
2961 rc = -1;
2962 }
2963out:
2964 cmd_free(h, c);
2965 return rc;
2966}
2967
2968static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2969 struct hpsa_scsi_dev_t *dev,
2970 unsigned char *scsi3addr)
2971{
2972 int i;
2973 bool match = false;
2974 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2975 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2976
2977 if (hpsa_is_cmd_idle(c))
2978 return false;
2979
2980 switch (c->cmd_type) {
2981 case CMD_SCSI:
2982 case CMD_IOCTL_PEND:
2983 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2984 sizeof(c->Header.LUN.LunAddrBytes));
2985 break;
2986
2987 case CMD_IOACCEL1:
2988 case CMD_IOACCEL2:
2989 if (c->phys_disk == dev) {
2990 /* HBA mode match */
2991 match = true;
2992 } else {
2993 /* Possible RAID mode -- check each phys dev. */
2994 /* FIXME: Do we need to take out a lock here? If
2995 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2996 * instead. */
2997 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2998 /* FIXME: an alternate test might be
2999 *
3000 * match = dev->phys_disk[i]->ioaccel_handle
3001 * == c2->scsi_nexus; */
3002 match = dev->phys_disk[i] == c->phys_disk;
3003 }
3004 }
3005 break;
3006
3007 case IOACCEL2_TMF:
3008 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3009 match = dev->phys_disk[i]->ioaccel_handle ==
3010 le32_to_cpu(ac->it_nexus);
3011 }
3012 break;
3013
3014 case 0: /* The command is in the middle of being initialized. */
3015 match = false;
3016 break;
3017
3018 default:
3019 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3020 c->cmd_type);
3021 BUG();
3022 }
3023
3024 return match;
3025}
3026
3027static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3028 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3029{
3030 int i;
3031 int rc = 0;
3032
3033 /* We can really only handle one reset at a time */
3034 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3035 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3036 return -EINTR;
3037 }
3038
3039 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3040
3041 for (i = 0; i < h->nr_cmds; i++) {
3042 struct CommandList *c = h->cmd_pool + i;
3043 int refcount = atomic_inc_return(&c->refcount);
3044
3045 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3046 unsigned long flags;
3047
3048 /*
3049 * Mark the target command as having a reset pending,
3050 * then lock a lock so that the command cannot complete
3051 * while we're considering it. If the command is not
3052 * idle then count it; otherwise revoke the event.
3053 */
3054 c->reset_pending = dev;
3055 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
3056 if (!hpsa_is_cmd_idle(c))
3057 atomic_inc(&dev->reset_cmds_out);
3058 else
3059 c->reset_pending = NULL;
3060 spin_unlock_irqrestore(&h->lock, flags);
3061 }
3062
3063 cmd_free(h, c);
3064 }
3065
3066 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3067 if (!rc)
3068 wait_event(h->event_sync_wait_queue,
3069 atomic_read(&dev->reset_cmds_out) == 0 ||
3070 lockup_detected(h));
3071
3072 if (unlikely(lockup_detected(h))) {
3073 dev_warn(&h->pdev->dev,
3074 "Controller lockup detected during reset wait\n");
3075 rc = -ENODEV;
3076 }
3077
3078 if (unlikely(rc))
3079 atomic_set(&dev->reset_cmds_out, 0);
3080 else
3081 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3082
3083 mutex_unlock(&h->reset_mutex);
3084 return rc;
3085}
3086
3087static void hpsa_get_raid_level(struct ctlr_info *h,
3088 unsigned char *scsi3addr, unsigned char *raid_level)
3089{
3090 int rc;
3091 unsigned char *buf;
3092
3093 *raid_level = RAID_UNKNOWN;
3094 buf = kzalloc(64, GFP_KERNEL);
3095 if (!buf)
3096 return;
3097
3098 if (!hpsa_vpd_page_supported(h, scsi3addr,
3099 HPSA_VPD_LV_DEVICE_GEOMETRY))
3100 goto exit;
3101
3102 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3103 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3104
3105 if (rc == 0)
3106 *raid_level = buf[8];
3107 if (*raid_level > RAID_UNKNOWN)
3108 *raid_level = RAID_UNKNOWN;
3109exit:
3110 kfree(buf);
3111 return;
3112}
3113
3114#define HPSA_MAP_DEBUG
3115#ifdef HPSA_MAP_DEBUG
3116static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3117 struct raid_map_data *map_buff)
3118{
3119 struct raid_map_disk_data *dd = &map_buff->data[0];
3120 int map, row, col;
3121 u16 map_cnt, row_cnt, disks_per_row;
3122
3123 if (rc != 0)
3124 return;
3125
3126 /* Show details only if debugging has been activated. */
3127 if (h->raid_offload_debug < 2)
3128 return;
3129
3130 dev_info(&h->pdev->dev, "structure_size = %u\n",
3131 le32_to_cpu(map_buff->structure_size));
3132 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3133 le32_to_cpu(map_buff->volume_blk_size));
3134 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3135 le64_to_cpu(map_buff->volume_blk_cnt));
3136 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3137 map_buff->phys_blk_shift);
3138 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3139 map_buff->parity_rotation_shift);
3140 dev_info(&h->pdev->dev, "strip_size = %u\n",
3141 le16_to_cpu(map_buff->strip_size));
3142 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3143 le64_to_cpu(map_buff->disk_starting_blk));
3144 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3145 le64_to_cpu(map_buff->disk_blk_cnt));
3146 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3147 le16_to_cpu(map_buff->data_disks_per_row));
3148 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3149 le16_to_cpu(map_buff->metadata_disks_per_row));
3150 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3151 le16_to_cpu(map_buff->row_cnt));
3152 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3153 le16_to_cpu(map_buff->layout_map_count));
3154 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3155 le16_to_cpu(map_buff->flags));
3156 dev_info(&h->pdev->dev, "encryption = %s\n",
3157 le16_to_cpu(map_buff->flags) &
3158 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3159 dev_info(&h->pdev->dev, "dekindex = %u\n",
3160 le16_to_cpu(map_buff->dekindex));
3161 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3162 for (map = 0; map < map_cnt; map++) {
3163 dev_info(&h->pdev->dev, "Map%u:\n", map);
3164 row_cnt = le16_to_cpu(map_buff->row_cnt);
3165 for (row = 0; row < row_cnt; row++) {
3166 dev_info(&h->pdev->dev, " Row%u:\n", row);
3167 disks_per_row =
3168 le16_to_cpu(map_buff->data_disks_per_row);
3169 for (col = 0; col < disks_per_row; col++, dd++)
3170 dev_info(&h->pdev->dev,
3171 " D%02u: h=0x%04x xor=%u,%u\n",
3172 col, dd->ioaccel_handle,
3173 dd->xor_mult[0], dd->xor_mult[1]);
3174 disks_per_row =
3175 le16_to_cpu(map_buff->metadata_disks_per_row);
3176 for (col = 0; col < disks_per_row; col++, dd++)
3177 dev_info(&h->pdev->dev,
3178 " M%02u: h=0x%04x xor=%u,%u\n",
3179 col, dd->ioaccel_handle,
3180 dd->xor_mult[0], dd->xor_mult[1]);
3181 }
3182 }
3183}
3184#else
3185static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3186 __attribute__((unused)) int rc,
3187 __attribute__((unused)) struct raid_map_data *map_buff)
3188{
3189}
3190#endif
3191
3192static int hpsa_get_raid_map(struct ctlr_info *h,
3193 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3194{
3195 int rc = 0;
3196 struct CommandList *c;
3197 struct ErrorInfo *ei;
3198
3199 c = cmd_alloc(h);
3200
3201 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3202 sizeof(this_device->raid_map), 0,
3203 scsi3addr, TYPE_CMD)) {
3204 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3205 cmd_free(h, c);
3206 return -1;
3207 }
3208 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3209 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3210 if (rc)
3211 goto out;
3212 ei = c->err_info;
3213 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3214 hpsa_scsi_interpret_error(h, c);
3215 rc = -1;
3216 goto out;
3217 }
3218 cmd_free(h, c);
3219
3220 /* @todo in the future, dynamically allocate RAID map memory */
3221 if (le32_to_cpu(this_device->raid_map.structure_size) >
3222 sizeof(this_device->raid_map)) {
3223 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3224 rc = -1;
3225 }
3226 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3227 return rc;
3228out:
3229 cmd_free(h, c);
3230 return rc;
3231}
3232
3233static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3234 unsigned char scsi3addr[], u16 bmic_device_index,
3235 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3236{
3237 int rc = IO_OK;
3238 struct CommandList *c;
3239 struct ErrorInfo *ei;
3240
3241 c = cmd_alloc(h);
3242
3243 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3244 0, RAID_CTLR_LUNID, TYPE_CMD);
3245 if (rc)
3246 goto out;
3247
3248 c->Request.CDB[2] = bmic_device_index & 0xff;
3249 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3250
3251 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3252 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3253 if (rc)
3254 goto out;
3255 ei = c->err_info;
3256 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3257 hpsa_scsi_interpret_error(h, c);
3258 rc = -1;
3259 }
3260out:
3261 cmd_free(h, c);
3262 return rc;
3263}
3264
3265static int hpsa_bmic_id_controller(struct ctlr_info *h,
3266 struct bmic_identify_controller *buf, size_t bufsize)
3267{
3268 int rc = IO_OK;
3269 struct CommandList *c;
3270 struct ErrorInfo *ei;
3271
3272 c = cmd_alloc(h);
3273
3274 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3275 0, RAID_CTLR_LUNID, TYPE_CMD);
3276 if (rc)
3277 goto out;
3278
3279 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3280 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3281 if (rc)
3282 goto out;
3283 ei = c->err_info;
3284 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3285 hpsa_scsi_interpret_error(h, c);
3286 rc = -1;
3287 }
3288out:
3289 cmd_free(h, c);
3290 return rc;
3291}
3292
3293static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3294 unsigned char scsi3addr[], u16 bmic_device_index,
3295 struct bmic_identify_physical_device *buf, size_t bufsize)
3296{
3297 int rc = IO_OK;
3298 struct CommandList *c;
3299 struct ErrorInfo *ei;
3300
3301 c = cmd_alloc(h);
3302 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3303 0, RAID_CTLR_LUNID, TYPE_CMD);
3304 if (rc)
3305 goto out;
3306
3307 c->Request.CDB[2] = bmic_device_index & 0xff;
3308 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3309
3310 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3311 DEFAULT_TIMEOUT);
3312 ei = c->err_info;
3313 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3314 hpsa_scsi_interpret_error(h, c);
3315 rc = -1;
3316 }
3317out:
3318 cmd_free(h, c);
3319
3320 return rc;
3321}
3322
3323/*
3324 * get enclosure information
3325 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3326 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3327 * Uses id_physical_device to determine the box_index.
3328 */
3329static void hpsa_get_enclosure_info(struct ctlr_info *h,
3330 unsigned char *scsi3addr,
3331 struct ReportExtendedLUNdata *rlep, int rle_index,
3332 struct hpsa_scsi_dev_t *encl_dev)
3333{
3334 int rc = -1;
3335 struct CommandList *c = NULL;
3336 struct ErrorInfo *ei = NULL;
3337 struct bmic_sense_storage_box_params *bssbp = NULL;
3338 struct bmic_identify_physical_device *id_phys = NULL;
3339 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3340 u16 bmic_device_index = 0;
3341
3342 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3343
3344 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3345 rc = IO_OK;
3346 goto out;
3347 }
3348
3349 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3350 rc = IO_OK;
3351 goto out;
3352 }
3353
3354 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3355 if (!bssbp)
3356 goto out;
3357
3358 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3359 if (!id_phys)
3360 goto out;
3361
3362 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3363 id_phys, sizeof(*id_phys));
3364 if (rc) {
3365 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3366 __func__, encl_dev->external, bmic_device_index);
3367 goto out;
3368 }
3369
3370 c = cmd_alloc(h);
3371
3372 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3373 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3374
3375 if (rc)
3376 goto out;
3377
3378 if (id_phys->phys_connector[1] == 'E')
3379 c->Request.CDB[5] = id_phys->box_index;
3380 else
3381 c->Request.CDB[5] = 0;
3382
3383 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3384 DEFAULT_TIMEOUT);
3385 if (rc)
3386 goto out;
3387
3388 ei = c->err_info;
3389 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3390 rc = -1;
3391 goto out;
3392 }
3393
3394 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3395 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3396 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3397
3398 rc = IO_OK;
3399out:
3400 kfree(bssbp);
3401 kfree(id_phys);
3402
3403 if (c)
3404 cmd_free(h, c);
3405
3406 if (rc != IO_OK)
3407 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3408 "Error, could not get enclosure information\n");
3409}
3410
3411static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3412 unsigned char *scsi3addr)
3413{
3414 struct ReportExtendedLUNdata *physdev;
3415 u32 nphysicals;
3416 u64 sa = 0;
3417 int i;
3418
3419 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3420 if (!physdev)
3421 return 0;
3422
3423 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3424 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3425 kfree(physdev);
3426 return 0;
3427 }
3428 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3429
3430 for (i = 0; i < nphysicals; i++)
3431 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3432 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3433 break;
3434 }
3435
3436 kfree(physdev);
3437
3438 return sa;
3439}
3440
3441static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3442 struct hpsa_scsi_dev_t *dev)
3443{
3444 int rc;
3445 u64 sa = 0;
3446
3447 if (is_hba_lunid(scsi3addr)) {
3448 struct bmic_sense_subsystem_info *ssi;
3449
3450 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3451 if (!ssi)
3452 return;
3453
3454 rc = hpsa_bmic_sense_subsystem_information(h,
3455 scsi3addr, 0, ssi, sizeof(*ssi));
3456 if (rc == 0) {
3457 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3458 h->sas_address = sa;
3459 }
3460
3461 kfree(ssi);
3462 } else
3463 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3464
3465 dev->sas_address = sa;
3466}
3467
3468/* Get a device id from inquiry page 0x83 */
3469static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3470 unsigned char scsi3addr[], u8 page)
3471{
3472 int rc;
3473 int i;
3474 int pages;
3475 unsigned char *buf, bufsize;
3476
3477 buf = kzalloc(256, GFP_KERNEL);
3478 if (!buf)
3479 return false;
3480
3481 /* Get the size of the page list first */
3482 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3483 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3484 buf, HPSA_VPD_HEADER_SZ);
3485 if (rc != 0)
3486 goto exit_unsupported;
3487 pages = buf[3];
3488 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3489 bufsize = pages + HPSA_VPD_HEADER_SZ;
3490 else
3491 bufsize = 255;
3492
3493 /* Get the whole VPD page list */
3494 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3495 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3496 buf, bufsize);
3497 if (rc != 0)
3498 goto exit_unsupported;
3499
3500 pages = buf[3];
3501 for (i = 1; i <= pages; i++)
3502 if (buf[3 + i] == page)
3503 goto exit_supported;
3504exit_unsupported:
3505 kfree(buf);
3506 return false;
3507exit_supported:
3508 kfree(buf);
3509 return true;
3510}
3511
3512static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3513 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3514{
3515 int rc;
3516 unsigned char *buf;
3517 u8 ioaccel_status;
3518
3519 this_device->offload_config = 0;
3520 this_device->offload_enabled = 0;
3521 this_device->offload_to_be_enabled = 0;
3522
3523 buf = kzalloc(64, GFP_KERNEL);
3524 if (!buf)
3525 return;
3526 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3527 goto out;
3528 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3529 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3530 if (rc != 0)
3531 goto out;
3532
3533#define IOACCEL_STATUS_BYTE 4
3534#define OFFLOAD_CONFIGURED_BIT 0x01
3535#define OFFLOAD_ENABLED_BIT 0x02
3536 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3537 this_device->offload_config =
3538 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3539 if (this_device->offload_config) {
3540 this_device->offload_enabled =
3541 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3542 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3543 this_device->offload_enabled = 0;
3544 }
3545 this_device->offload_to_be_enabled = this_device->offload_enabled;
3546out:
3547 kfree(buf);
3548 return;
3549}
3550
3551/* Get the device id from inquiry page 0x83 */
3552static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3553 unsigned char *device_id, int index, int buflen)
3554{
3555 int rc;
3556 unsigned char *buf;
3557
3558 /* Does controller have VPD for device id? */
3559 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3560 return 1; /* not supported */
3561
3562 buf = kzalloc(64, GFP_KERNEL);
3563 if (!buf)
3564 return -ENOMEM;
3565
3566 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3567 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3568 if (rc == 0) {
3569 if (buflen > 16)
3570 buflen = 16;
3571 memcpy(device_id, &buf[8], buflen);
3572 }
3573
3574 kfree(buf);
3575
3576 return rc; /*0 - got id, otherwise, didn't */
3577}
3578
3579static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3580 void *buf, int bufsize,
3581 int extended_response)
3582{
3583 int rc = IO_OK;
3584 struct CommandList *c;
3585 unsigned char scsi3addr[8];
3586 struct ErrorInfo *ei;
3587
3588 c = cmd_alloc(h);
3589
3590 /* address the controller */
3591 memset(scsi3addr, 0, sizeof(scsi3addr));
3592 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3593 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3594 rc = -EAGAIN;
3595 goto out;
3596 }
3597 if (extended_response)
3598 c->Request.CDB[1] = extended_response;
3599 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3600 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3601 if (rc)
3602 goto out;
3603 ei = c->err_info;
3604 if (ei->CommandStatus != 0 &&
3605 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3606 hpsa_scsi_interpret_error(h, c);
3607 rc = -EIO;
3608 } else {
3609 struct ReportLUNdata *rld = buf;
3610
3611 if (rld->extended_response_flag != extended_response) {
3612 if (!h->legacy_board) {
3613 dev_err(&h->pdev->dev,
3614 "report luns requested format %u, got %u\n",
3615 extended_response,
3616 rld->extended_response_flag);
3617 rc = -EINVAL;
3618 } else
3619 rc = -EOPNOTSUPP;
3620 }
3621 }
3622out:
3623 cmd_free(h, c);
3624 return rc;
3625}
3626
3627static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3628 struct ReportExtendedLUNdata *buf, int bufsize)
3629{
3630 int rc;
3631 struct ReportLUNdata *lbuf;
3632
3633 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3634 HPSA_REPORT_PHYS_EXTENDED);
3635 if (!rc || rc != -EOPNOTSUPP)
3636 return rc;
3637
3638 /* REPORT PHYS EXTENDED is not supported */
3639 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3640 if (!lbuf)
3641 return -ENOMEM;
3642
3643 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3644 if (!rc) {
3645 int i;
3646 u32 nphys;
3647
3648 /* Copy ReportLUNdata header */
3649 memcpy(buf, lbuf, 8);
3650 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3651 for (i = 0; i < nphys; i++)
3652 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3653 }
3654 kfree(lbuf);
3655 return rc;
3656}
3657
3658static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3659 struct ReportLUNdata *buf, int bufsize)
3660{
3661 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3662}
3663
3664static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3665 int bus, int target, int lun)
3666{
3667 device->bus = bus;
3668 device->target = target;
3669 device->lun = lun;
3670}
3671
3672/* Use VPD inquiry to get details of volume status */
3673static int hpsa_get_volume_status(struct ctlr_info *h,
3674 unsigned char scsi3addr[])
3675{
3676 int rc;
3677 int status;
3678 int size;
3679 unsigned char *buf;
3680
3681 buf = kzalloc(64, GFP_KERNEL);
3682 if (!buf)
3683 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3684
3685 /* Does controller have VPD for logical volume status? */
3686 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3687 goto exit_failed;
3688
3689 /* Get the size of the VPD return buffer */
3690 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3691 buf, HPSA_VPD_HEADER_SZ);
3692 if (rc != 0)
3693 goto exit_failed;
3694 size = buf[3];
3695
3696 /* Now get the whole VPD buffer */
3697 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3698 buf, size + HPSA_VPD_HEADER_SZ);
3699 if (rc != 0)
3700 goto exit_failed;
3701 status = buf[4]; /* status byte */
3702
3703 kfree(buf);
3704 return status;
3705exit_failed:
3706 kfree(buf);
3707 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3708}
3709
3710/* Determine offline status of a volume.
3711 * Return either:
3712 * 0 (not offline)
3713 * 0xff (offline for unknown reasons)
3714 * # (integer code indicating one of several NOT READY states
3715 * describing why a volume is to be kept offline)
3716 */
3717static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3718 unsigned char scsi3addr[])
3719{
3720 struct CommandList *c;
3721 unsigned char *sense;
3722 u8 sense_key, asc, ascq;
3723 int sense_len;
3724 int rc, ldstat = 0;
3725 u16 cmd_status;
3726 u8 scsi_status;
3727#define ASC_LUN_NOT_READY 0x04
3728#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3729#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3730
3731 c = cmd_alloc(h);
3732
3733 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3734 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3735 DEFAULT_TIMEOUT);
3736 if (rc) {
3737 cmd_free(h, c);
3738 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3739 }
3740 sense = c->err_info->SenseInfo;
3741 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3742 sense_len = sizeof(c->err_info->SenseInfo);
3743 else
3744 sense_len = c->err_info->SenseLen;
3745 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3746 cmd_status = c->err_info->CommandStatus;
3747 scsi_status = c->err_info->ScsiStatus;
3748 cmd_free(h, c);
3749
3750 /* Determine the reason for not ready state */
3751 ldstat = hpsa_get_volume_status(h, scsi3addr);
3752
3753 /* Keep volume offline in certain cases: */
3754 switch (ldstat) {
3755 case HPSA_LV_FAILED:
3756 case HPSA_LV_UNDERGOING_ERASE:
3757 case HPSA_LV_NOT_AVAILABLE:
3758 case HPSA_LV_UNDERGOING_RPI:
3759 case HPSA_LV_PENDING_RPI:
3760 case HPSA_LV_ENCRYPTED_NO_KEY:
3761 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3762 case HPSA_LV_UNDERGOING_ENCRYPTION:
3763 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3764 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3765 return ldstat;
3766 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3767 /* If VPD status page isn't available,
3768 * use ASC/ASCQ to determine state
3769 */
3770 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3771 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3772 return ldstat;
3773 break;
3774 default:
3775 break;
3776 }
3777 return HPSA_LV_OK;
3778}
3779
3780static int hpsa_update_device_info(struct ctlr_info *h,
3781 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3782 unsigned char *is_OBDR_device)
3783{
3784
3785#define OBDR_SIG_OFFSET 43
3786#define OBDR_TAPE_SIG "$DR-10"
3787#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3788#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3789
3790 unsigned char *inq_buff;
3791 unsigned char *obdr_sig;
3792 int rc = 0;
3793
3794 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3795 if (!inq_buff) {
3796 rc = -ENOMEM;
3797 goto bail_out;
3798 }
3799
3800 /* Do an inquiry to the device to see what it is. */
3801 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3802 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3803 dev_err(&h->pdev->dev,
3804 "%s: inquiry failed, device will be skipped.\n",
3805 __func__);
3806 rc = HPSA_INQUIRY_FAILED;
3807 goto bail_out;
3808 }
3809
3810 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3811 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3812
3813 this_device->devtype = (inq_buff[0] & 0x1f);
3814 memcpy(this_device->scsi3addr, scsi3addr, 8);
3815 memcpy(this_device->vendor, &inq_buff[8],
3816 sizeof(this_device->vendor));
3817 memcpy(this_device->model, &inq_buff[16],
3818 sizeof(this_device->model));
3819 this_device->rev = inq_buff[2];
3820 memset(this_device->device_id, 0,
3821 sizeof(this_device->device_id));
3822 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3823 sizeof(this_device->device_id)) < 0)
3824 dev_err(&h->pdev->dev,
3825 "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3826 h->ctlr, __func__,
3827 h->scsi_host->host_no,
3828 this_device->target, this_device->lun,
3829 scsi_device_type(this_device->devtype),
3830 this_device->model);
3831
3832 if ((this_device->devtype == TYPE_DISK ||
3833 this_device->devtype == TYPE_ZBC) &&
3834 is_logical_dev_addr_mode(scsi3addr)) {
3835 unsigned char volume_offline;
3836
3837 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3838 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3839 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3840 volume_offline = hpsa_volume_offline(h, scsi3addr);
3841 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3842 h->legacy_board) {
3843 /*
3844 * Legacy boards might not support volume status
3845 */
3846 dev_info(&h->pdev->dev,
3847 "C0:T%d:L%d Volume status not available, assuming online.\n",
3848 this_device->target, this_device->lun);
3849 volume_offline = 0;
3850 }
3851 this_device->volume_offline = volume_offline;
3852 if (volume_offline == HPSA_LV_FAILED) {
3853 rc = HPSA_LV_FAILED;
3854 dev_err(&h->pdev->dev,
3855 "%s: LV failed, device will be skipped.\n",
3856 __func__);
3857 goto bail_out;
3858 }
3859 } else {
3860 this_device->raid_level = RAID_UNKNOWN;
3861 this_device->offload_config = 0;
3862 this_device->offload_enabled = 0;
3863 this_device->offload_to_be_enabled = 0;
3864 this_device->hba_ioaccel_enabled = 0;
3865 this_device->volume_offline = 0;
3866 this_device->queue_depth = h->nr_cmds;
3867 }
3868
3869 if (this_device->external)
3870 this_device->queue_depth = EXTERNAL_QD;
3871
3872 if (is_OBDR_device) {
3873 /* See if this is a One-Button-Disaster-Recovery device
3874 * by looking for "$DR-10" at offset 43 in inquiry data.
3875 */
3876 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3877 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3878 strncmp(obdr_sig, OBDR_TAPE_SIG,
3879 OBDR_SIG_LEN) == 0);
3880 }
3881 kfree(inq_buff);
3882 return 0;
3883
3884bail_out:
3885 kfree(inq_buff);
3886 return rc;
3887}
3888
3889/*
3890 * Helper function to assign bus, target, lun mapping of devices.
3891 * Logical drive target and lun are assigned at this time, but
3892 * physical device lun and target assignment are deferred (assigned
3893 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3894*/
3895static void figure_bus_target_lun(struct ctlr_info *h,
3896 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3897{
3898 u32 lunid = get_unaligned_le32(lunaddrbytes);
3899
3900 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3901 /* physical device, target and lun filled in later */
3902 if (is_hba_lunid(lunaddrbytes)) {
3903 int bus = HPSA_HBA_BUS;
3904
3905 if (!device->rev)
3906 bus = HPSA_LEGACY_HBA_BUS;
3907 hpsa_set_bus_target_lun(device,
3908 bus, 0, lunid & 0x3fff);
3909 } else
3910 /* defer target, lun assignment for physical devices */
3911 hpsa_set_bus_target_lun(device,
3912 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3913 return;
3914 }
3915 /* It's a logical device */
3916 if (device->external) {
3917 hpsa_set_bus_target_lun(device,
3918 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3919 lunid & 0x00ff);
3920 return;
3921 }
3922 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3923 0, lunid & 0x3fff);
3924}
3925
3926static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3927 int i, int nphysicals, int nlocal_logicals)
3928{
3929 /* In report logicals, local logicals are listed first,
3930 * then any externals.
3931 */
3932 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3933
3934 if (i == raid_ctlr_position)
3935 return 0;
3936
3937 if (i < logicals_start)
3938 return 0;
3939
3940 /* i is in logicals range, but still within local logicals */
3941 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3942 return 0;
3943
3944 return 1; /* it's an external lun */
3945}
3946
3947/*
3948 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3949 * logdev. The number of luns in physdev and logdev are returned in
3950 * *nphysicals and *nlogicals, respectively.
3951 * Returns 0 on success, -1 otherwise.
3952 */
3953static int hpsa_gather_lun_info(struct ctlr_info *h,
3954 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3955 struct ReportLUNdata *logdev, u32 *nlogicals)
3956{
3957 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3958 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3959 return -1;
3960 }
3961 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3962 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3963 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3964 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3965 *nphysicals = HPSA_MAX_PHYS_LUN;
3966 }
3967 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3968 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3969 return -1;
3970 }
3971 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3972 /* Reject Logicals in excess of our max capability. */
3973 if (*nlogicals > HPSA_MAX_LUN) {
3974 dev_warn(&h->pdev->dev,
3975 "maximum logical LUNs (%d) exceeded. "
3976 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3977 *nlogicals - HPSA_MAX_LUN);
3978 *nlogicals = HPSA_MAX_LUN;
3979 }
3980 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3981 dev_warn(&h->pdev->dev,
3982 "maximum logical + physical LUNs (%d) exceeded. "
3983 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3984 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3985 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3986 }
3987 return 0;
3988}
3989
3990static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3991 int i, int nphysicals, int nlogicals,
3992 struct ReportExtendedLUNdata *physdev_list,
3993 struct ReportLUNdata *logdev_list)
3994{
3995 /* Helper function, figure out where the LUN ID info is coming from
3996 * given index i, lists of physical and logical devices, where in
3997 * the list the raid controller is supposed to appear (first or last)
3998 */
3999
4000 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4001 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4002
4003 if (i == raid_ctlr_position)
4004 return RAID_CTLR_LUNID;
4005
4006 if (i < logicals_start)
4007 return &physdev_list->LUN[i -
4008 (raid_ctlr_position == 0)].lunid[0];
4009
4010 if (i < last_device)
4011 return &logdev_list->LUN[i - nphysicals -
4012 (raid_ctlr_position == 0)][0];
4013 BUG();
4014 return NULL;
4015}
4016
4017/* get physical drive ioaccel handle and queue depth */
4018static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4019 struct hpsa_scsi_dev_t *dev,
4020 struct ReportExtendedLUNdata *rlep, int rle_index,
4021 struct bmic_identify_physical_device *id_phys)
4022{
4023 int rc;
4024 struct ext_report_lun_entry *rle;
4025
4026 rle = &rlep->LUN[rle_index];
4027
4028 dev->ioaccel_handle = rle->ioaccel_handle;
4029 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4030 dev->hba_ioaccel_enabled = 1;
4031 memset(id_phys, 0, sizeof(*id_phys));
4032 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4033 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4034 sizeof(*id_phys));
4035 if (!rc)
4036 /* Reserve space for FW operations */
4037#define DRIVE_CMDS_RESERVED_FOR_FW 2
4038#define DRIVE_QUEUE_DEPTH 7
4039 dev->queue_depth =
4040 le16_to_cpu(id_phys->current_queue_depth_limit) -
4041 DRIVE_CMDS_RESERVED_FOR_FW;
4042 else
4043 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4044}
4045
4046static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4047 struct ReportExtendedLUNdata *rlep, int rle_index,
4048 struct bmic_identify_physical_device *id_phys)
4049{
4050 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4051
4052 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4053 this_device->hba_ioaccel_enabled = 1;
4054
4055 memcpy(&this_device->active_path_index,
4056 &id_phys->active_path_number,
4057 sizeof(this_device->active_path_index));
4058 memcpy(&this_device->path_map,
4059 &id_phys->redundant_path_present_map,
4060 sizeof(this_device->path_map));
4061 memcpy(&this_device->box,
4062 &id_phys->alternate_paths_phys_box_on_port,
4063 sizeof(this_device->box));
4064 memcpy(&this_device->phys_connector,
4065 &id_phys->alternate_paths_phys_connector,
4066 sizeof(this_device->phys_connector));
4067 memcpy(&this_device->bay,
4068 &id_phys->phys_bay_in_box,
4069 sizeof(this_device->bay));
4070}
4071
4072/* get number of local logical disks. */
4073static int hpsa_set_local_logical_count(struct ctlr_info *h,
4074 struct bmic_identify_controller *id_ctlr,
4075 u32 *nlocals)
4076{
4077 int rc;
4078
4079 if (!id_ctlr) {
4080 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4081 __func__);
4082 return -ENOMEM;
4083 }
4084 memset(id_ctlr, 0, sizeof(*id_ctlr));
4085 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4086 if (!rc)
4087 if (id_ctlr->configured_logical_drive_count < 255)
4088 *nlocals = id_ctlr->configured_logical_drive_count;
4089 else
4090 *nlocals = le16_to_cpu(
4091 id_ctlr->extended_logical_unit_count);
4092 else
4093 *nlocals = -1;
4094 return rc;
4095}
4096
4097static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4098{
4099 struct bmic_identify_physical_device *id_phys;
4100 bool is_spare = false;
4101 int rc;
4102
4103 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4104 if (!id_phys)
4105 return false;
4106
4107 rc = hpsa_bmic_id_physical_device(h,
4108 lunaddrbytes,
4109 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4110 id_phys, sizeof(*id_phys));
4111 if (rc == 0)
4112 is_spare = (id_phys->more_flags >> 6) & 0x01;
4113
4114 kfree(id_phys);
4115 return is_spare;
4116}
4117
4118#define RPL_DEV_FLAG_NON_DISK 0x1
4119#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4120#define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4121
4122#define BMIC_DEVICE_TYPE_ENCLOSURE 6
4123
4124static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4125 struct ext_report_lun_entry *rle)
4126{
4127 u8 device_flags;
4128 u8 device_type;
4129
4130 if (!MASKED_DEVICE(lunaddrbytes))
4131 return false;
4132
4133 device_flags = rle->device_flags;
4134 device_type = rle->device_type;
4135
4136 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4137 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4138 return false;
4139 return true;
4140 }
4141
4142 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4143 return false;
4144
4145 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4146 return false;
4147
4148 /*
4149 * Spares may be spun down, we do not want to
4150 * do an Inquiry to a RAID set spare drive as
4151 * that would have them spun up, that is a
4152 * performance hit because I/O to the RAID device
4153 * stops while the spin up occurs which can take
4154 * over 50 seconds.
4155 */
4156 if (hpsa_is_disk_spare(h, lunaddrbytes))
4157 return true;
4158
4159 return false;
4160}
4161
4162static void hpsa_update_scsi_devices(struct ctlr_info *h)
4163{
4164 /* the idea here is we could get notified
4165 * that some devices have changed, so we do a report
4166 * physical luns and report logical luns cmd, and adjust
4167 * our list of devices accordingly.
4168 *
4169 * The scsi3addr's of devices won't change so long as the
4170 * adapter is not reset. That means we can rescan and
4171 * tell which devices we already know about, vs. new
4172 * devices, vs. disappearing devices.
4173 */
4174 struct ReportExtendedLUNdata *physdev_list = NULL;
4175 struct ReportLUNdata *logdev_list = NULL;
4176 struct bmic_identify_physical_device *id_phys = NULL;
4177 struct bmic_identify_controller *id_ctlr = NULL;
4178 u32 nphysicals = 0;
4179 u32 nlogicals = 0;
4180 u32 nlocal_logicals = 0;
4181 u32 ndev_allocated = 0;
4182 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4183 int ncurrent = 0;
4184 int i, n_ext_target_devs, ndevs_to_allocate;
4185 int raid_ctlr_position;
4186 bool physical_device;
4187 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4188
4189 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4190 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4191 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4192 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4193 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4194 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4195
4196 if (!currentsd || !physdev_list || !logdev_list ||
4197 !tmpdevice || !id_phys || !id_ctlr) {
4198 dev_err(&h->pdev->dev, "out of memory\n");
4199 goto out;
4200 }
4201 memset(lunzerobits, 0, sizeof(lunzerobits));
4202
4203 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4204
4205 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4206 logdev_list, &nlogicals)) {
4207 h->drv_req_rescan = 1;
4208 goto out;
4209 }
4210
4211 /* Set number of local logicals (non PTRAID) */
4212 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4213 dev_warn(&h->pdev->dev,
4214 "%s: Can't determine number of local logical devices.\n",
4215 __func__);
4216 }
4217
4218 /* We might see up to the maximum number of logical and physical disks
4219 * plus external target devices, and a device for the local RAID
4220 * controller.
4221 */
4222 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4223
4224 /* Allocate the per device structures */
4225 for (i = 0; i < ndevs_to_allocate; i++) {
4226 if (i >= HPSA_MAX_DEVICES) {
4227 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4228 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4229 ndevs_to_allocate - HPSA_MAX_DEVICES);
4230 break;
4231 }
4232
4233 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4234 if (!currentsd[i]) {
4235 h->drv_req_rescan = 1;
4236 goto out;
4237 }
4238 ndev_allocated++;
4239 }
4240
4241 if (is_scsi_rev_5(h))
4242 raid_ctlr_position = 0;
4243 else
4244 raid_ctlr_position = nphysicals + nlogicals;
4245
4246 /* adjust our table of devices */
4247 n_ext_target_devs = 0;
4248 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4249 u8 *lunaddrbytes, is_OBDR = 0;
4250 int rc = 0;
4251 int phys_dev_index = i - (raid_ctlr_position == 0);
4252 bool skip_device = false;
4253
4254 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4255
4256 /* Figure out where the LUN ID info is coming from */
4257 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4258 i, nphysicals, nlogicals, physdev_list, logdev_list);
4259
4260 /* Determine if this is a lun from an external target array */
4261 tmpdevice->external =
4262 figure_external_status(h, raid_ctlr_position, i,
4263 nphysicals, nlocal_logicals);
4264
4265 /*
4266 * Skip over some devices such as a spare.
4267 */
4268 if (!tmpdevice->external && physical_device) {
4269 skip_device = hpsa_skip_device(h, lunaddrbytes,
4270 &physdev_list->LUN[phys_dev_index]);
4271 if (skip_device)
4272 continue;
4273 }
4274
4275 /* Get device type, vendor, model, device id */
4276 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4277 &is_OBDR);
4278 if (rc == -ENOMEM) {
4279 dev_warn(&h->pdev->dev,
4280 "Out of memory, rescan deferred.\n");
4281 h->drv_req_rescan = 1;
4282 goto out;
4283 }
4284 if (rc) {
4285 h->drv_req_rescan = 1;
4286 continue;
4287 }
4288
4289 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4290 this_device = currentsd[ncurrent];
4291
4292 /* Turn on discovery_polling if there are ext target devices.
4293 * Event-based change notification is unreliable for those.
4294 */
4295 if (!h->discovery_polling) {
4296 if (tmpdevice->external) {
4297 h->discovery_polling = 1;
4298 dev_info(&h->pdev->dev,
4299 "External target, activate discovery polling.\n");
4300 }
4301 }
4302
4303
4304 *this_device = *tmpdevice;
4305 this_device->physical_device = physical_device;
4306
4307 /*
4308 * Expose all devices except for physical devices that
4309 * are masked.
4310 */
4311 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4312 this_device->expose_device = 0;
4313 else
4314 this_device->expose_device = 1;
4315
4316
4317 /*
4318 * Get the SAS address for physical devices that are exposed.
4319 */
4320 if (this_device->physical_device && this_device->expose_device)
4321 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4322
4323 switch (this_device->devtype) {
4324 case TYPE_ROM:
4325 /* We don't *really* support actual CD-ROM devices,
4326 * just "One Button Disaster Recovery" tape drive
4327 * which temporarily pretends to be a CD-ROM drive.
4328 * So we check that the device is really an OBDR tape
4329 * device by checking for "$DR-10" in bytes 43-48 of
4330 * the inquiry data.
4331 */
4332 if (is_OBDR)
4333 ncurrent++;
4334 break;
4335 case TYPE_DISK:
4336 case TYPE_ZBC:
4337 if (this_device->physical_device) {
4338 /* The disk is in HBA mode. */
4339 /* Never use RAID mapper in HBA mode. */
4340 this_device->offload_enabled = 0;
4341 hpsa_get_ioaccel_drive_info(h, this_device,
4342 physdev_list, phys_dev_index, id_phys);
4343 hpsa_get_path_info(this_device,
4344 physdev_list, phys_dev_index, id_phys);
4345 }
4346 ncurrent++;
4347 break;
4348 case TYPE_TAPE:
4349 case TYPE_MEDIUM_CHANGER:
4350 ncurrent++;
4351 break;
4352 case TYPE_ENCLOSURE:
4353 if (!this_device->external)
4354 hpsa_get_enclosure_info(h, lunaddrbytes,
4355 physdev_list, phys_dev_index,
4356 this_device);
4357 ncurrent++;
4358 break;
4359 case TYPE_RAID:
4360 /* Only present the Smartarray HBA as a RAID controller.
4361 * If it's a RAID controller other than the HBA itself
4362 * (an external RAID controller, MSA500 or similar)
4363 * don't present it.
4364 */
4365 if (!is_hba_lunid(lunaddrbytes))
4366 break;
4367 ncurrent++;
4368 break;
4369 default:
4370 break;
4371 }
4372 if (ncurrent >= HPSA_MAX_DEVICES)
4373 break;
4374 }
4375
4376 if (h->sas_host == NULL) {
4377 int rc = 0;
4378
4379 rc = hpsa_add_sas_host(h);
4380 if (rc) {
4381 dev_warn(&h->pdev->dev,
4382 "Could not add sas host %d\n", rc);
4383 goto out;
4384 }
4385 }
4386
4387 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4388out:
4389 kfree(tmpdevice);
4390 for (i = 0; i < ndev_allocated; i++)
4391 kfree(currentsd[i]);
4392 kfree(currentsd);
4393 kfree(physdev_list);
4394 kfree(logdev_list);
4395 kfree(id_ctlr);
4396 kfree(id_phys);
4397}
4398
4399static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4400 struct scatterlist *sg)
4401{
4402 u64 addr64 = (u64) sg_dma_address(sg);
4403 unsigned int len = sg_dma_len(sg);
4404
4405 desc->Addr = cpu_to_le64(addr64);
4406 desc->Len = cpu_to_le32(len);
4407 desc->Ext = 0;
4408}
4409
4410/*
4411 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4412 * dma mapping and fills in the scatter gather entries of the
4413 * hpsa command, cp.
4414 */
4415static int hpsa_scatter_gather(struct ctlr_info *h,
4416 struct CommandList *cp,
4417 struct scsi_cmnd *cmd)
4418{
4419 struct scatterlist *sg;
4420 int use_sg, i, sg_limit, chained, last_sg;
4421 struct SGDescriptor *curr_sg;
4422
4423 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4424
4425 use_sg = scsi_dma_map(cmd);
4426 if (use_sg < 0)
4427 return use_sg;
4428
4429 if (!use_sg)
4430 goto sglist_finished;
4431
4432 /*
4433 * If the number of entries is greater than the max for a single list,
4434 * then we have a chained list; we will set up all but one entry in the
4435 * first list (the last entry is saved for link information);
4436 * otherwise, we don't have a chained list and we'll set up at each of
4437 * the entries in the one list.
4438 */
4439 curr_sg = cp->SG;
4440 chained = use_sg > h->max_cmd_sg_entries;
4441 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4442 last_sg = scsi_sg_count(cmd) - 1;
4443 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4444 hpsa_set_sg_descriptor(curr_sg, sg);
4445 curr_sg++;
4446 }
4447
4448 if (chained) {
4449 /*
4450 * Continue with the chained list. Set curr_sg to the chained
4451 * list. Modify the limit to the total count less the entries
4452 * we've already set up. Resume the scan at the list entry
4453 * where the previous loop left off.
4454 */
4455 curr_sg = h->cmd_sg_list[cp->cmdindex];
4456 sg_limit = use_sg - sg_limit;
4457 for_each_sg(sg, sg, sg_limit, i) {
4458 hpsa_set_sg_descriptor(curr_sg, sg);
4459 curr_sg++;
4460 }
4461 }
4462
4463 /* Back the pointer up to the last entry and mark it as "last". */
4464 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4465
4466 if (use_sg + chained > h->maxSG)
4467 h->maxSG = use_sg + chained;
4468
4469 if (chained) {
4470 cp->Header.SGList = h->max_cmd_sg_entries;
4471 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4472 if (hpsa_map_sg_chain_block(h, cp)) {
4473 scsi_dma_unmap(cmd);
4474 return -1;
4475 }
4476 return 0;
4477 }
4478
4479sglist_finished:
4480
4481 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4482 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4483 return 0;
4484}
4485
4486#define BUFLEN 128
4487static inline void warn_zero_length_transfer(struct ctlr_info *h,
4488 u8 *cdb, int cdb_len,
4489 const char *func)
4490{
4491 char buf[BUFLEN];
4492 int outlen;
4493 int i;
4494
4495 outlen = scnprintf(buf, BUFLEN,
4496 "%s: Blocking zero-length request: CDB:", func);
4497 for (i = 0; i < cdb_len; i++)
4498 outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4499 "%02hhx", cdb[i]);
4500 dev_warn(&h->pdev->dev, "%s\n", buf);
4501}
4502
4503#define IO_ACCEL_INELIGIBLE 1
4504/* zero-length transfers trigger hardware errors. */
4505static bool is_zero_length_transfer(u8 *cdb)
4506{
4507 u32 block_cnt;
4508
4509 /* Block zero-length transfer sizes on certain commands. */
4510 switch (cdb[0]) {
4511 case READ_10:
4512 case WRITE_10:
4513 case VERIFY: /* 0x2F */
4514 case WRITE_VERIFY: /* 0x2E */
4515 block_cnt = get_unaligned_be16(&cdb[7]);
4516 break;
4517 case READ_12:
4518 case WRITE_12:
4519 case VERIFY_12: /* 0xAF */
4520 case WRITE_VERIFY_12: /* 0xAE */
4521 block_cnt = get_unaligned_be32(&cdb[6]);
4522 break;
4523 case READ_16:
4524 case WRITE_16:
4525 case VERIFY_16: /* 0x8F */
4526 block_cnt = get_unaligned_be32(&cdb[10]);
4527 break;
4528 default:
4529 return false;
4530 }
4531
4532 return block_cnt == 0;
4533}
4534
4535static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4536{
4537 int is_write = 0;
4538 u32 block;
4539 u32 block_cnt;
4540
4541 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4542 switch (cdb[0]) {
4543 case WRITE_6:
4544 case WRITE_12:
4545 is_write = 1;
4546 case READ_6:
4547 case READ_12:
4548 if (*cdb_len == 6) {
4549 block = (((cdb[1] & 0x1F) << 16) |
4550 (cdb[2] << 8) |
4551 cdb[3]);
4552 block_cnt = cdb[4];
4553 if (block_cnt == 0)
4554 block_cnt = 256;
4555 } else {
4556 BUG_ON(*cdb_len != 12);
4557 block = get_unaligned_be32(&cdb[2]);
4558 block_cnt = get_unaligned_be32(&cdb[6]);
4559 }
4560 if (block_cnt > 0xffff)
4561 return IO_ACCEL_INELIGIBLE;
4562
4563 cdb[0] = is_write ? WRITE_10 : READ_10;
4564 cdb[1] = 0;
4565 cdb[2] = (u8) (block >> 24);
4566 cdb[3] = (u8) (block >> 16);
4567 cdb[4] = (u8) (block >> 8);
4568 cdb[5] = (u8) (block);
4569 cdb[6] = 0;
4570 cdb[7] = (u8) (block_cnt >> 8);
4571 cdb[8] = (u8) (block_cnt);
4572 cdb[9] = 0;
4573 *cdb_len = 10;
4574 break;
4575 }
4576 return 0;
4577}
4578
4579static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4580 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4581 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4582{
4583 struct scsi_cmnd *cmd = c->scsi_cmd;
4584 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4585 unsigned int len;
4586 unsigned int total_len = 0;
4587 struct scatterlist *sg;
4588 u64 addr64;
4589 int use_sg, i;
4590 struct SGDescriptor *curr_sg;
4591 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4592
4593 /* TODO: implement chaining support */
4594 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4595 atomic_dec(&phys_disk->ioaccel_cmds_out);
4596 return IO_ACCEL_INELIGIBLE;
4597 }
4598
4599 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4600
4601 if (is_zero_length_transfer(cdb)) {
4602 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4603 atomic_dec(&phys_disk->ioaccel_cmds_out);
4604 return IO_ACCEL_INELIGIBLE;
4605 }
4606
4607 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4608 atomic_dec(&phys_disk->ioaccel_cmds_out);
4609 return IO_ACCEL_INELIGIBLE;
4610 }
4611
4612 c->cmd_type = CMD_IOACCEL1;
4613
4614 /* Adjust the DMA address to point to the accelerated command buffer */
4615 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4616 (c->cmdindex * sizeof(*cp));
4617 BUG_ON(c->busaddr & 0x0000007F);
4618
4619 use_sg = scsi_dma_map(cmd);
4620 if (use_sg < 0) {
4621 atomic_dec(&phys_disk->ioaccel_cmds_out);
4622 return use_sg;
4623 }
4624
4625 if (use_sg) {
4626 curr_sg = cp->SG;
4627 scsi_for_each_sg(cmd, sg, use_sg, i) {
4628 addr64 = (u64) sg_dma_address(sg);
4629 len = sg_dma_len(sg);
4630 total_len += len;
4631 curr_sg->Addr = cpu_to_le64(addr64);
4632 curr_sg->Len = cpu_to_le32(len);
4633 curr_sg->Ext = cpu_to_le32(0);
4634 curr_sg++;
4635 }
4636 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4637
4638 switch (cmd->sc_data_direction) {
4639 case DMA_TO_DEVICE:
4640 control |= IOACCEL1_CONTROL_DATA_OUT;
4641 break;
4642 case DMA_FROM_DEVICE:
4643 control |= IOACCEL1_CONTROL_DATA_IN;
4644 break;
4645 case DMA_NONE:
4646 control |= IOACCEL1_CONTROL_NODATAXFER;
4647 break;
4648 default:
4649 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4650 cmd->sc_data_direction);
4651 BUG();
4652 break;
4653 }
4654 } else {
4655 control |= IOACCEL1_CONTROL_NODATAXFER;
4656 }
4657
4658 c->Header.SGList = use_sg;
4659 /* Fill out the command structure to submit */
4660 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4661 cp->transfer_len = cpu_to_le32(total_len);
4662 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4663 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4664 cp->control = cpu_to_le32(control);
4665 memcpy(cp->CDB, cdb, cdb_len);
4666 memcpy(cp->CISS_LUN, scsi3addr, 8);
4667 /* Tag was already set at init time. */
4668 enqueue_cmd_and_start_io(h, c);
4669 return 0;
4670}
4671
4672/*
4673 * Queue a command directly to a device behind the controller using the
4674 * I/O accelerator path.
4675 */
4676static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4677 struct CommandList *c)
4678{
4679 struct scsi_cmnd *cmd = c->scsi_cmd;
4680 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4681
4682 if (!dev)
4683 return -1;
4684
4685 c->phys_disk = dev;
4686
4687 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4688 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4689}
4690
4691/*
4692 * Set encryption parameters for the ioaccel2 request
4693 */
4694static void set_encrypt_ioaccel2(struct ctlr_info *h,
4695 struct CommandList *c, struct io_accel2_cmd *cp)
4696{
4697 struct scsi_cmnd *cmd = c->scsi_cmd;
4698 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4699 struct raid_map_data *map = &dev->raid_map;
4700 u64 first_block;
4701
4702 /* Are we doing encryption on this device */
4703 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4704 return;
4705 /* Set the data encryption key index. */
4706 cp->dekindex = map->dekindex;
4707
4708 /* Set the encryption enable flag, encoded into direction field. */
4709 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4710
4711 /* Set encryption tweak values based on logical block address
4712 * If block size is 512, tweak value is LBA.
4713 * For other block sizes, tweak is (LBA * block size)/ 512)
4714 */
4715 switch (cmd->cmnd[0]) {
4716 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4717 case READ_6:
4718 case WRITE_6:
4719 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4720 (cmd->cmnd[2] << 8) |
4721 cmd->cmnd[3]);
4722 break;
4723 case WRITE_10:
4724 case READ_10:
4725 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4726 case WRITE_12:
4727 case READ_12:
4728 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4729 break;
4730 case WRITE_16:
4731 case READ_16:
4732 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4733 break;
4734 default:
4735 dev_err(&h->pdev->dev,
4736 "ERROR: %s: size (0x%x) not supported for encryption\n",
4737 __func__, cmd->cmnd[0]);
4738 BUG();
4739 break;
4740 }
4741
4742 if (le32_to_cpu(map->volume_blk_size) != 512)
4743 first_block = first_block *
4744 le32_to_cpu(map->volume_blk_size)/512;
4745
4746 cp->tweak_lower = cpu_to_le32(first_block);
4747 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4748}
4749
4750static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4751 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4752 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4753{
4754 struct scsi_cmnd *cmd = c->scsi_cmd;
4755 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4756 struct ioaccel2_sg_element *curr_sg;
4757 int use_sg, i;
4758 struct scatterlist *sg;
4759 u64 addr64;
4760 u32 len;
4761 u32 total_len = 0;
4762
4763 if (!cmd->device)
4764 return -1;
4765
4766 if (!cmd->device->hostdata)
4767 return -1;
4768
4769 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4770
4771 if (is_zero_length_transfer(cdb)) {
4772 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4773 atomic_dec(&phys_disk->ioaccel_cmds_out);
4774 return IO_ACCEL_INELIGIBLE;
4775 }
4776
4777 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4778 atomic_dec(&phys_disk->ioaccel_cmds_out);
4779 return IO_ACCEL_INELIGIBLE;
4780 }
4781
4782 c->cmd_type = CMD_IOACCEL2;
4783 /* Adjust the DMA address to point to the accelerated command buffer */
4784 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4785 (c->cmdindex * sizeof(*cp));
4786 BUG_ON(c->busaddr & 0x0000007F);
4787
4788 memset(cp, 0, sizeof(*cp));
4789 cp->IU_type = IOACCEL2_IU_TYPE;
4790
4791 use_sg = scsi_dma_map(cmd);
4792 if (use_sg < 0) {
4793 atomic_dec(&phys_disk->ioaccel_cmds_out);
4794 return use_sg;
4795 }
4796
4797 if (use_sg) {
4798 curr_sg = cp->sg;
4799 if (use_sg > h->ioaccel_maxsg) {
4800 addr64 = le64_to_cpu(
4801 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4802 curr_sg->address = cpu_to_le64(addr64);
4803 curr_sg->length = 0;
4804 curr_sg->reserved[0] = 0;
4805 curr_sg->reserved[1] = 0;
4806 curr_sg->reserved[2] = 0;
4807 curr_sg->chain_indicator = IOACCEL2_CHAIN;
4808
4809 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4810 }
4811 scsi_for_each_sg(cmd, sg, use_sg, i) {
4812 addr64 = (u64) sg_dma_address(sg);
4813 len = sg_dma_len(sg);
4814 total_len += len;
4815 curr_sg->address = cpu_to_le64(addr64);
4816 curr_sg->length = cpu_to_le32(len);
4817 curr_sg->reserved[0] = 0;
4818 curr_sg->reserved[1] = 0;
4819 curr_sg->reserved[2] = 0;
4820 curr_sg->chain_indicator = 0;
4821 curr_sg++;
4822 }
4823
4824 /*
4825 * Set the last s/g element bit
4826 */
4827 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4828
4829 switch (cmd->sc_data_direction) {
4830 case DMA_TO_DEVICE:
4831 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4832 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4833 break;
4834 case DMA_FROM_DEVICE:
4835 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4836 cp->direction |= IOACCEL2_DIR_DATA_IN;
4837 break;
4838 case DMA_NONE:
4839 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4840 cp->direction |= IOACCEL2_DIR_NO_DATA;
4841 break;
4842 default:
4843 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4844 cmd->sc_data_direction);
4845 BUG();
4846 break;
4847 }
4848 } else {
4849 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4850 cp->direction |= IOACCEL2_DIR_NO_DATA;
4851 }
4852
4853 /* Set encryption parameters, if necessary */
4854 set_encrypt_ioaccel2(h, c, cp);
4855
4856 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4857 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4858 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4859
4860 cp->data_len = cpu_to_le32(total_len);
4861 cp->err_ptr = cpu_to_le64(c->busaddr +
4862 offsetof(struct io_accel2_cmd, error_data));
4863 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4864
4865 /* fill in sg elements */
4866 if (use_sg > h->ioaccel_maxsg) {
4867 cp->sg_count = 1;
4868 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4869 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4870 atomic_dec(&phys_disk->ioaccel_cmds_out);
4871 scsi_dma_unmap(cmd);
4872 return -1;
4873 }
4874 } else
4875 cp->sg_count = (u8) use_sg;
4876
4877 enqueue_cmd_and_start_io(h, c);
4878 return 0;
4879}
4880
4881/*
4882 * Queue a command to the correct I/O accelerator path.
4883 */
4884static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4885 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4886 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4887{
4888 if (!c->scsi_cmd->device)
4889 return -1;
4890
4891 if (!c->scsi_cmd->device->hostdata)
4892 return -1;
4893
4894 /* Try to honor the device's queue depth */
4895 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4896 phys_disk->queue_depth) {
4897 atomic_dec(&phys_disk->ioaccel_cmds_out);
4898 return IO_ACCEL_INELIGIBLE;
4899 }
4900 if (h->transMethod & CFGTBL_Trans_io_accel1)
4901 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4902 cdb, cdb_len, scsi3addr,
4903 phys_disk);
4904 else
4905 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4906 cdb, cdb_len, scsi3addr,
4907 phys_disk);
4908}
4909
4910static void raid_map_helper(struct raid_map_data *map,
4911 int offload_to_mirror, u32 *map_index, u32 *current_group)
4912{
4913 if (offload_to_mirror == 0) {
4914 /* use physical disk in the first mirrored group. */
4915 *map_index %= le16_to_cpu(map->data_disks_per_row);
4916 return;
4917 }
4918 do {
4919 /* determine mirror group that *map_index indicates */
4920 *current_group = *map_index /
4921 le16_to_cpu(map->data_disks_per_row);
4922 if (offload_to_mirror == *current_group)
4923 continue;
4924 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4925 /* select map index from next group */
4926 *map_index += le16_to_cpu(map->data_disks_per_row);
4927 (*current_group)++;
4928 } else {
4929 /* select map index from first group */
4930 *map_index %= le16_to_cpu(map->data_disks_per_row);
4931 *current_group = 0;
4932 }
4933 } while (offload_to_mirror != *current_group);
4934}
4935
4936/*
4937 * Attempt to perform offload RAID mapping for a logical volume I/O.
4938 */
4939static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4940 struct CommandList *c)
4941{
4942 struct scsi_cmnd *cmd = c->scsi_cmd;
4943 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4944 struct raid_map_data *map = &dev->raid_map;
4945 struct raid_map_disk_data *dd = &map->data[0];
4946 int is_write = 0;
4947 u32 map_index;
4948 u64 first_block, last_block;
4949 u32 block_cnt;
4950 u32 blocks_per_row;
4951 u64 first_row, last_row;
4952 u32 first_row_offset, last_row_offset;
4953 u32 first_column, last_column;
4954 u64 r0_first_row, r0_last_row;
4955 u32 r5or6_blocks_per_row;
4956 u64 r5or6_first_row, r5or6_last_row;
4957 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4958 u32 r5or6_first_column, r5or6_last_column;
4959 u32 total_disks_per_row;
4960 u32 stripesize;
4961 u32 first_group, last_group, current_group;
4962 u32 map_row;
4963 u32 disk_handle;
4964 u64 disk_block;
4965 u32 disk_block_cnt;
4966 u8 cdb[16];
4967 u8 cdb_len;
4968 u16 strip_size;
4969#if BITS_PER_LONG == 32
4970 u64 tmpdiv;
4971#endif
4972 int offload_to_mirror;
4973
4974 if (!dev)
4975 return -1;
4976
4977 /* check for valid opcode, get LBA and block count */
4978 switch (cmd->cmnd[0]) {
4979 case WRITE_6:
4980 is_write = 1;
4981 case READ_6:
4982 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4983 (cmd->cmnd[2] << 8) |
4984 cmd->cmnd[3]);
4985 block_cnt = cmd->cmnd[4];
4986 if (block_cnt == 0)
4987 block_cnt = 256;
4988 break;
4989 case WRITE_10:
4990 is_write = 1;
4991 case READ_10:
4992 first_block =
4993 (((u64) cmd->cmnd[2]) << 24) |
4994 (((u64) cmd->cmnd[3]) << 16) |
4995 (((u64) cmd->cmnd[4]) << 8) |
4996 cmd->cmnd[5];
4997 block_cnt =
4998 (((u32) cmd->cmnd[7]) << 8) |
4999 cmd->cmnd[8];
5000 break;
5001 case WRITE_12:
5002 is_write = 1;
5003 case READ_12:
5004 first_block =
5005 (((u64) cmd->cmnd[2]) << 24) |
5006 (((u64) cmd->cmnd[3]) << 16) |
5007 (((u64) cmd->cmnd[4]) << 8) |
5008 cmd->cmnd[5];
5009 block_cnt =
5010 (((u32) cmd->cmnd[6]) << 24) |
5011 (((u32) cmd->cmnd[7]) << 16) |
5012 (((u32) cmd->cmnd[8]) << 8) |
5013 cmd->cmnd[9];
5014 break;
5015 case WRITE_16:
5016 is_write = 1;
5017 case READ_16:
5018 first_block =
5019 (((u64) cmd->cmnd[2]) << 56) |
5020 (((u64) cmd->cmnd[3]) << 48) |
5021 (((u64) cmd->cmnd[4]) << 40) |
5022 (((u64) cmd->cmnd[5]) << 32) |
5023 (((u64) cmd->cmnd[6]) << 24) |
5024 (((u64) cmd->cmnd[7]) << 16) |
5025 (((u64) cmd->cmnd[8]) << 8) |
5026 cmd->cmnd[9];
5027 block_cnt =
5028 (((u32) cmd->cmnd[10]) << 24) |
5029 (((u32) cmd->cmnd[11]) << 16) |
5030 (((u32) cmd->cmnd[12]) << 8) |
5031 cmd->cmnd[13];
5032 break;
5033 default:
5034 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5035 }
5036 last_block = first_block + block_cnt - 1;
5037
5038 /* check for write to non-RAID-0 */
5039 if (is_write && dev->raid_level != 0)
5040 return IO_ACCEL_INELIGIBLE;
5041
5042 /* check for invalid block or wraparound */
5043 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5044 last_block < first_block)
5045 return IO_ACCEL_INELIGIBLE;
5046
5047 /* calculate stripe information for the request */
5048 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5049 le16_to_cpu(map->strip_size);
5050 strip_size = le16_to_cpu(map->strip_size);
5051#if BITS_PER_LONG == 32
5052 tmpdiv = first_block;
5053 (void) do_div(tmpdiv, blocks_per_row);
5054 first_row = tmpdiv;
5055 tmpdiv = last_block;
5056 (void) do_div(tmpdiv, blocks_per_row);
5057 last_row = tmpdiv;
5058 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5059 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5060 tmpdiv = first_row_offset;
5061 (void) do_div(tmpdiv, strip_size);
5062 first_column = tmpdiv;
5063 tmpdiv = last_row_offset;
5064 (void) do_div(tmpdiv, strip_size);
5065 last_column = tmpdiv;
5066#else
5067 first_row = first_block / blocks_per_row;
5068 last_row = last_block / blocks_per_row;
5069 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5070 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5071 first_column = first_row_offset / strip_size;
5072 last_column = last_row_offset / strip_size;
5073#endif
5074
5075 /* if this isn't a single row/column then give to the controller */
5076 if ((first_row != last_row) || (first_column != last_column))
5077 return IO_ACCEL_INELIGIBLE;
5078
5079 /* proceeding with driver mapping */
5080 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5081 le16_to_cpu(map->metadata_disks_per_row);
5082 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5083 le16_to_cpu(map->row_cnt);
5084 map_index = (map_row * total_disks_per_row) + first_column;
5085
5086 switch (dev->raid_level) {
5087 case HPSA_RAID_0:
5088 break; /* nothing special to do */
5089 case HPSA_RAID_1:
5090 /* Handles load balance across RAID 1 members.
5091 * (2-drive R1 and R10 with even # of drives.)
5092 * Appropriate for SSDs, not optimal for HDDs
5093 */
5094 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5095 if (dev->offload_to_mirror)
5096 map_index += le16_to_cpu(map->data_disks_per_row);
5097 dev->offload_to_mirror = !dev->offload_to_mirror;
5098 break;
5099 case HPSA_RAID_ADM:
5100 /* Handles N-way mirrors (R1-ADM)
5101 * and R10 with # of drives divisible by 3.)
5102 */
5103 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5104
5105 offload_to_mirror = dev->offload_to_mirror;
5106 raid_map_helper(map, offload_to_mirror,
5107 &map_index, &current_group);
5108 /* set mirror group to use next time */
5109 offload_to_mirror =
5110 (offload_to_mirror >=
5111 le16_to_cpu(map->layout_map_count) - 1)
5112 ? 0 : offload_to_mirror + 1;
5113 dev->offload_to_mirror = offload_to_mirror;
5114 /* Avoid direct use of dev->offload_to_mirror within this
5115 * function since multiple threads might simultaneously
5116 * increment it beyond the range of dev->layout_map_count -1.
5117 */
5118 break;
5119 case HPSA_RAID_5:
5120 case HPSA_RAID_6:
5121 if (le16_to_cpu(map->layout_map_count) <= 1)
5122 break;
5123
5124 /* Verify first and last block are in same RAID group */
5125 r5or6_blocks_per_row =
5126 le16_to_cpu(map->strip_size) *
5127 le16_to_cpu(map->data_disks_per_row);
5128 BUG_ON(r5or6_blocks_per_row == 0);
5129 stripesize = r5or6_blocks_per_row *
5130 le16_to_cpu(map->layout_map_count);
5131#if BITS_PER_LONG == 32
5132 tmpdiv = first_block;
5133 first_group = do_div(tmpdiv, stripesize);
5134 tmpdiv = first_group;
5135 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5136 first_group = tmpdiv;
5137 tmpdiv = last_block;
5138 last_group = do_div(tmpdiv, stripesize);
5139 tmpdiv = last_group;
5140 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5141 last_group = tmpdiv;
5142#else
5143 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5144 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5145#endif
5146 if (first_group != last_group)
5147 return IO_ACCEL_INELIGIBLE;
5148
5149 /* Verify request is in a single row of RAID 5/6 */
5150#if BITS_PER_LONG == 32
5151 tmpdiv = first_block;
5152 (void) do_div(tmpdiv, stripesize);
5153 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5154 tmpdiv = last_block;
5155 (void) do_div(tmpdiv, stripesize);
5156 r5or6_last_row = r0_last_row = tmpdiv;
5157#else
5158 first_row = r5or6_first_row = r0_first_row =
5159 first_block / stripesize;
5160 r5or6_last_row = r0_last_row = last_block / stripesize;
5161#endif
5162 if (r5or6_first_row != r5or6_last_row)
5163 return IO_ACCEL_INELIGIBLE;
5164
5165
5166 /* Verify request is in a single column */
5167#if BITS_PER_LONG == 32
5168 tmpdiv = first_block;
5169 first_row_offset = do_div(tmpdiv, stripesize);
5170 tmpdiv = first_row_offset;
5171 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5172 r5or6_first_row_offset = first_row_offset;
5173 tmpdiv = last_block;
5174 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5175 tmpdiv = r5or6_last_row_offset;
5176 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5177 tmpdiv = r5or6_first_row_offset;
5178 (void) do_div(tmpdiv, map->strip_size);
5179 first_column = r5or6_first_column = tmpdiv;
5180 tmpdiv = r5or6_last_row_offset;
5181 (void) do_div(tmpdiv, map->strip_size);
5182 r5or6_last_column = tmpdiv;
5183#else
5184 first_row_offset = r5or6_first_row_offset =
5185 (u32)((first_block % stripesize) %
5186 r5or6_blocks_per_row);
5187
5188 r5or6_last_row_offset =
5189 (u32)((last_block % stripesize) %
5190 r5or6_blocks_per_row);
5191
5192 first_column = r5or6_first_column =
5193 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5194 r5or6_last_column =
5195 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5196#endif
5197 if (r5or6_first_column != r5or6_last_column)
5198 return IO_ACCEL_INELIGIBLE;
5199
5200 /* Request is eligible */
5201 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5202 le16_to_cpu(map->row_cnt);
5203
5204 map_index = (first_group *
5205 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5206 (map_row * total_disks_per_row) + first_column;
5207 break;
5208 default:
5209 return IO_ACCEL_INELIGIBLE;
5210 }
5211
5212 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5213 return IO_ACCEL_INELIGIBLE;
5214
5215 c->phys_disk = dev->phys_disk[map_index];
5216 if (!c->phys_disk)
5217 return IO_ACCEL_INELIGIBLE;
5218
5219 disk_handle = dd[map_index].ioaccel_handle;
5220 disk_block = le64_to_cpu(map->disk_starting_blk) +
5221 first_row * le16_to_cpu(map->strip_size) +
5222 (first_row_offset - first_column *
5223 le16_to_cpu(map->strip_size));
5224 disk_block_cnt = block_cnt;
5225
5226 /* handle differing logical/physical block sizes */
5227 if (map->phys_blk_shift) {
5228 disk_block <<= map->phys_blk_shift;
5229 disk_block_cnt <<= map->phys_blk_shift;
5230 }
5231 BUG_ON(disk_block_cnt > 0xffff);
5232
5233 /* build the new CDB for the physical disk I/O */
5234 if (disk_block > 0xffffffff) {
5235 cdb[0] = is_write ? WRITE_16 : READ_16;
5236 cdb[1] = 0;
5237 cdb[2] = (u8) (disk_block >> 56);
5238 cdb[3] = (u8) (disk_block >> 48);
5239 cdb[4] = (u8) (disk_block >> 40);
5240 cdb[5] = (u8) (disk_block >> 32);
5241 cdb[6] = (u8) (disk_block >> 24);
5242 cdb[7] = (u8) (disk_block >> 16);
5243 cdb[8] = (u8) (disk_block >> 8);
5244 cdb[9] = (u8) (disk_block);
5245 cdb[10] = (u8) (disk_block_cnt >> 24);
5246 cdb[11] = (u8) (disk_block_cnt >> 16);
5247 cdb[12] = (u8) (disk_block_cnt >> 8);
5248 cdb[13] = (u8) (disk_block_cnt);
5249 cdb[14] = 0;
5250 cdb[15] = 0;
5251 cdb_len = 16;
5252 } else {
5253 cdb[0] = is_write ? WRITE_10 : READ_10;
5254 cdb[1] = 0;
5255 cdb[2] = (u8) (disk_block >> 24);
5256 cdb[3] = (u8) (disk_block >> 16);
5257 cdb[4] = (u8) (disk_block >> 8);
5258 cdb[5] = (u8) (disk_block);
5259 cdb[6] = 0;
5260 cdb[7] = (u8) (disk_block_cnt >> 8);
5261 cdb[8] = (u8) (disk_block_cnt);
5262 cdb[9] = 0;
5263 cdb_len = 10;
5264 }
5265 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5266 dev->scsi3addr,
5267 dev->phys_disk[map_index]);
5268}
5269
5270/*
5271 * Submit commands down the "normal" RAID stack path
5272 * All callers to hpsa_ciss_submit must check lockup_detected
5273 * beforehand, before (opt.) and after calling cmd_alloc
5274 */
5275static int hpsa_ciss_submit(struct ctlr_info *h,
5276 struct CommandList *c, struct scsi_cmnd *cmd,
5277 unsigned char scsi3addr[])
5278{
5279 cmd->host_scribble = (unsigned char *) c;
5280 c->cmd_type = CMD_SCSI;
5281 c->scsi_cmd = cmd;
5282 c->Header.ReplyQueue = 0; /* unused in simple mode */
5283 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5284 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5285
5286 /* Fill in the request block... */
5287
5288 c->Request.Timeout = 0;
5289 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5290 c->Request.CDBLen = cmd->cmd_len;
5291 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5292 switch (cmd->sc_data_direction) {
5293 case DMA_TO_DEVICE:
5294 c->Request.type_attr_dir =
5295 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5296 break;
5297 case DMA_FROM_DEVICE:
5298 c->Request.type_attr_dir =
5299 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5300 break;
5301 case DMA_NONE:
5302 c->Request.type_attr_dir =
5303 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5304 break;
5305 case DMA_BIDIRECTIONAL:
5306 /* This can happen if a buggy application does a scsi passthru
5307 * and sets both inlen and outlen to non-zero. ( see
5308 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5309 */
5310
5311 c->Request.type_attr_dir =
5312 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5313 /* This is technically wrong, and hpsa controllers should
5314 * reject it with CMD_INVALID, which is the most correct
5315 * response, but non-fibre backends appear to let it
5316 * slide by, and give the same results as if this field
5317 * were set correctly. Either way is acceptable for
5318 * our purposes here.
5319 */
5320
5321 break;
5322
5323 default:
5324 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5325 cmd->sc_data_direction);
5326 BUG();
5327 break;
5328 }
5329
5330 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5331 hpsa_cmd_resolve_and_free(h, c);
5332 return SCSI_MLQUEUE_HOST_BUSY;
5333 }
5334 enqueue_cmd_and_start_io(h, c);
5335 /* the cmd'll come back via intr handler in complete_scsi_command() */
5336 return 0;
5337}
5338
5339static void hpsa_cmd_init(struct ctlr_info *h, int index,
5340 struct CommandList *c)
5341{
5342 dma_addr_t cmd_dma_handle, err_dma_handle;
5343
5344 /* Zero out all of commandlist except the last field, refcount */
5345 memset(c, 0, offsetof(struct CommandList, refcount));
5346 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5347 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5348 c->err_info = h->errinfo_pool + index;
5349 memset(c->err_info, 0, sizeof(*c->err_info));
5350 err_dma_handle = h->errinfo_pool_dhandle
5351 + index * sizeof(*c->err_info);
5352 c->cmdindex = index;
5353 c->busaddr = (u32) cmd_dma_handle;
5354 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5355 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5356 c->h = h;
5357 c->scsi_cmd = SCSI_CMD_IDLE;
5358}
5359
5360static void hpsa_preinitialize_commands(struct ctlr_info *h)
5361{
5362 int i;
5363
5364 for (i = 0; i < h->nr_cmds; i++) {
5365 struct CommandList *c = h->cmd_pool + i;
5366
5367 hpsa_cmd_init(h, i, c);
5368 atomic_set(&c->refcount, 0);
5369 }
5370}
5371
5372static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5373 struct CommandList *c)
5374{
5375 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5376
5377 BUG_ON(c->cmdindex != index);
5378
5379 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5380 memset(c->err_info, 0, sizeof(*c->err_info));
5381 c->busaddr = (u32) cmd_dma_handle;
5382}
5383
5384static int hpsa_ioaccel_submit(struct ctlr_info *h,
5385 struct CommandList *c, struct scsi_cmnd *cmd,
5386 unsigned char *scsi3addr)
5387{
5388 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5389 int rc = IO_ACCEL_INELIGIBLE;
5390
5391 if (!dev)
5392 return SCSI_MLQUEUE_HOST_BUSY;
5393
5394 cmd->host_scribble = (unsigned char *) c;
5395
5396 if (dev->offload_enabled) {
5397 hpsa_cmd_init(h, c->cmdindex, c);
5398 c->cmd_type = CMD_SCSI;
5399 c->scsi_cmd = cmd;
5400 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5401 if (rc < 0) /* scsi_dma_map failed. */
5402 rc = SCSI_MLQUEUE_HOST_BUSY;
5403 } else if (dev->hba_ioaccel_enabled) {
5404 hpsa_cmd_init(h, c->cmdindex, c);
5405 c->cmd_type = CMD_SCSI;
5406 c->scsi_cmd = cmd;
5407 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5408 if (rc < 0) /* scsi_dma_map failed. */
5409 rc = SCSI_MLQUEUE_HOST_BUSY;
5410 }
5411 return rc;
5412}
5413
5414static void hpsa_command_resubmit_worker(struct work_struct *work)
5415{
5416 struct scsi_cmnd *cmd;
5417 struct hpsa_scsi_dev_t *dev;
5418 struct CommandList *c = container_of(work, struct CommandList, work);
5419
5420 cmd = c->scsi_cmd;
5421 dev = cmd->device->hostdata;
5422 if (!dev) {
5423 cmd->result = DID_NO_CONNECT << 16;
5424 return hpsa_cmd_free_and_done(c->h, c, cmd);
5425 }
5426 if (c->reset_pending)
5427 return hpsa_cmd_free_and_done(c->h, c, cmd);
5428 if (c->cmd_type == CMD_IOACCEL2) {
5429 struct ctlr_info *h = c->h;
5430 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5431 int rc;
5432
5433 if (c2->error_data.serv_response ==
5434 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5435 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5436 if (rc == 0)
5437 return;
5438 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5439 /*
5440 * If we get here, it means dma mapping failed.
5441 * Try again via scsi mid layer, which will
5442 * then get SCSI_MLQUEUE_HOST_BUSY.
5443 */
5444 cmd->result = DID_IMM_RETRY << 16;
5445 return hpsa_cmd_free_and_done(h, c, cmd);
5446 }
5447 /* else, fall thru and resubmit down CISS path */
5448 }
5449 }
5450 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5451 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5452 /*
5453 * If we get here, it means dma mapping failed. Try
5454 * again via scsi mid layer, which will then get
5455 * SCSI_MLQUEUE_HOST_BUSY.
5456 *
5457 * hpsa_ciss_submit will have already freed c
5458 * if it encountered a dma mapping failure.
5459 */
5460 cmd->result = DID_IMM_RETRY << 16;
5461 cmd->scsi_done(cmd);
5462 }
5463}
5464
5465/* Running in struct Scsi_Host->host_lock less mode */
5466static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5467{
5468 struct ctlr_info *h;
5469 struct hpsa_scsi_dev_t *dev;
5470 unsigned char scsi3addr[8];
5471 struct CommandList *c;
5472 int rc = 0;
5473
5474 /* Get the ptr to our adapter structure out of cmd->host. */
5475 h = sdev_to_hba(cmd->device);
5476
5477 BUG_ON(cmd->request->tag < 0);
5478
5479 dev = cmd->device->hostdata;
5480 if (!dev) {
5481 cmd->result = DID_NO_CONNECT << 16;
5482 cmd->scsi_done(cmd);
5483 return 0;
5484 }
5485
5486 if (dev->removed) {
5487 cmd->result = DID_NO_CONNECT << 16;
5488 cmd->scsi_done(cmd);
5489 return 0;
5490 }
5491
5492 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5493
5494 if (unlikely(lockup_detected(h))) {
5495 cmd->result = DID_NO_CONNECT << 16;
5496 cmd->scsi_done(cmd);
5497 return 0;
5498 }
5499 c = cmd_tagged_alloc(h, cmd);
5500
5501 /*
5502 * This is necessary because the SML doesn't zero out this field during
5503 * error recovery.
5504 */
5505 cmd->result = 0;
5506
5507 /*
5508 * Call alternate submit routine for I/O accelerated commands.
5509 * Retries always go down the normal I/O path.
5510 */
5511 if (likely(cmd->retries == 0 &&
5512 !blk_rq_is_passthrough(cmd->request) &&
5513 h->acciopath_status)) {
5514 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5515 if (rc == 0)
5516 return 0;
5517 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5518 hpsa_cmd_resolve_and_free(h, c);
5519 return SCSI_MLQUEUE_HOST_BUSY;
5520 }
5521 }
5522 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5523}
5524
5525static void hpsa_scan_complete(struct ctlr_info *h)
5526{
5527 unsigned long flags;
5528
5529 spin_lock_irqsave(&h->scan_lock, flags);
5530 h->scan_finished = 1;
5531 wake_up(&h->scan_wait_queue);
5532 spin_unlock_irqrestore(&h->scan_lock, flags);
5533}
5534
5535static void hpsa_scan_start(struct Scsi_Host *sh)
5536{
5537 struct ctlr_info *h = shost_to_hba(sh);
5538 unsigned long flags;
5539
5540 /*
5541 * Don't let rescans be initiated on a controller known to be locked
5542 * up. If the controller locks up *during* a rescan, that thread is
5543 * probably hosed, but at least we can prevent new rescan threads from
5544 * piling up on a locked up controller.
5545 */
5546 if (unlikely(lockup_detected(h)))
5547 return hpsa_scan_complete(h);
5548
5549 /*
5550 * If a scan is already waiting to run, no need to add another
5551 */
5552 spin_lock_irqsave(&h->scan_lock, flags);
5553 if (h->scan_waiting) {
5554 spin_unlock_irqrestore(&h->scan_lock, flags);
5555 return;
5556 }
5557
5558 spin_unlock_irqrestore(&h->scan_lock, flags);
5559
5560 /* wait until any scan already in progress is finished. */
5561 while (1) {
5562 spin_lock_irqsave(&h->scan_lock, flags);
5563 if (h->scan_finished)
5564 break;
5565 h->scan_waiting = 1;
5566 spin_unlock_irqrestore(&h->scan_lock, flags);
5567 wait_event(h->scan_wait_queue, h->scan_finished);
5568 /* Note: We don't need to worry about a race between this
5569 * thread and driver unload because the midlayer will
5570 * have incremented the reference count, so unload won't
5571 * happen if we're in here.
5572 */
5573 }
5574 h->scan_finished = 0; /* mark scan as in progress */
5575 h->scan_waiting = 0;
5576 spin_unlock_irqrestore(&h->scan_lock, flags);
5577
5578 if (unlikely(lockup_detected(h)))
5579 return hpsa_scan_complete(h);
5580
5581 /*
5582 * Do the scan after a reset completion
5583 */
5584 spin_lock_irqsave(&h->reset_lock, flags);
5585 if (h->reset_in_progress) {
5586 h->drv_req_rescan = 1;
5587 spin_unlock_irqrestore(&h->reset_lock, flags);
5588 hpsa_scan_complete(h);
5589 return;
5590 }
5591 spin_unlock_irqrestore(&h->reset_lock, flags);
5592
5593 hpsa_update_scsi_devices(h);
5594
5595 hpsa_scan_complete(h);
5596}
5597
5598static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5599{
5600 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5601
5602 if (!logical_drive)
5603 return -ENODEV;
5604
5605 if (qdepth < 1)
5606 qdepth = 1;
5607 else if (qdepth > logical_drive->queue_depth)
5608 qdepth = logical_drive->queue_depth;
5609
5610 return scsi_change_queue_depth(sdev, qdepth);
5611}
5612
5613static int hpsa_scan_finished(struct Scsi_Host *sh,
5614 unsigned long elapsed_time)
5615{
5616 struct ctlr_info *h = shost_to_hba(sh);
5617 unsigned long flags;
5618 int finished;
5619
5620 spin_lock_irqsave(&h->scan_lock, flags);
5621 finished = h->scan_finished;
5622 spin_unlock_irqrestore(&h->scan_lock, flags);
5623 return finished;
5624}
5625
5626static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5627{
5628 struct Scsi_Host *sh;
5629
5630 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5631 if (sh == NULL) {
5632 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5633 return -ENOMEM;
5634 }
5635
5636 sh->io_port = 0;
5637 sh->n_io_port = 0;
5638 sh->this_id = -1;
5639 sh->max_channel = 3;
5640 sh->max_cmd_len = MAX_COMMAND_SIZE;
5641 sh->max_lun = HPSA_MAX_LUN;
5642 sh->max_id = HPSA_MAX_LUN;
5643 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5644 sh->cmd_per_lun = sh->can_queue;
5645 sh->sg_tablesize = h->maxsgentries;
5646 sh->transportt = hpsa_sas_transport_template;
5647 sh->hostdata[0] = (unsigned long) h;
5648 sh->irq = pci_irq_vector(h->pdev, 0);
5649 sh->unique_id = sh->irq;
5650
5651 h->scsi_host = sh;
5652 return 0;
5653}
5654
5655static int hpsa_scsi_add_host(struct ctlr_info *h)
5656{
5657 int rv;
5658
5659 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5660 if (rv) {
5661 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5662 return rv;
5663 }
5664 scsi_scan_host(h->scsi_host);
5665 return 0;
5666}
5667
5668/*
5669 * The block layer has already gone to the trouble of picking out a unique,
5670 * small-integer tag for this request. We use an offset from that value as
5671 * an index to select our command block. (The offset allows us to reserve the
5672 * low-numbered entries for our own uses.)
5673 */
5674static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5675{
5676 int idx = scmd->request->tag;
5677
5678 if (idx < 0)
5679 return idx;
5680
5681 /* Offset to leave space for internal cmds. */
5682 return idx += HPSA_NRESERVED_CMDS;
5683}
5684
5685/*
5686 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5687 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5688 */
5689static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5690 struct CommandList *c, unsigned char lunaddr[],
5691 int reply_queue)
5692{
5693 int rc;
5694
5695 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5696 (void) fill_cmd(c, TEST_UNIT_READY, h,
5697 NULL, 0, 0, lunaddr, TYPE_CMD);
5698 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5699 if (rc)
5700 return rc;
5701 /* no unmap needed here because no data xfer. */
5702
5703 /* Check if the unit is already ready. */
5704 if (c->err_info->CommandStatus == CMD_SUCCESS)
5705 return 0;
5706
5707 /*
5708 * The first command sent after reset will receive "unit attention" to
5709 * indicate that the LUN has been reset...this is actually what we're
5710 * looking for (but, success is good too).
5711 */
5712 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5713 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5714 (c->err_info->SenseInfo[2] == NO_SENSE ||
5715 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5716 return 0;
5717
5718 return 1;
5719}
5720
5721/*
5722 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5723 * returns zero when the unit is ready, and non-zero when giving up.
5724 */
5725static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5726 struct CommandList *c,
5727 unsigned char lunaddr[], int reply_queue)
5728{
5729 int rc;
5730 int count = 0;
5731 int waittime = 1; /* seconds */
5732
5733 /* Send test unit ready until device ready, or give up. */
5734 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5735
5736 /*
5737 * Wait for a bit. do this first, because if we send
5738 * the TUR right away, the reset will just abort it.
5739 */
5740 msleep(1000 * waittime);
5741
5742 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5743 if (!rc)
5744 break;
5745
5746 /* Increase wait time with each try, up to a point. */
5747 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5748 waittime *= 2;
5749
5750 dev_warn(&h->pdev->dev,
5751 "waiting %d secs for device to become ready.\n",
5752 waittime);
5753 }
5754
5755 return rc;
5756}
5757
5758static int wait_for_device_to_become_ready(struct ctlr_info *h,
5759 unsigned char lunaddr[],
5760 int reply_queue)
5761{
5762 int first_queue;
5763 int last_queue;
5764 int rq;
5765 int rc = 0;
5766 struct CommandList *c;
5767
5768 c = cmd_alloc(h);
5769
5770 /*
5771 * If no specific reply queue was requested, then send the TUR
5772 * repeatedly, requesting a reply on each reply queue; otherwise execute
5773 * the loop exactly once using only the specified queue.
5774 */
5775 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5776 first_queue = 0;
5777 last_queue = h->nreply_queues - 1;
5778 } else {
5779 first_queue = reply_queue;
5780 last_queue = reply_queue;
5781 }
5782
5783 for (rq = first_queue; rq <= last_queue; rq++) {
5784 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5785 if (rc)
5786 break;
5787 }
5788
5789 if (rc)
5790 dev_warn(&h->pdev->dev, "giving up on device.\n");
5791 else
5792 dev_warn(&h->pdev->dev, "device is ready.\n");
5793
5794 cmd_free(h, c);
5795 return rc;
5796}
5797
5798/* Need at least one of these error handlers to keep ../scsi/hosts.c from
5799 * complaining. Doing a host- or bus-reset can't do anything good here.
5800 */
5801static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5802{
5803 int rc = SUCCESS;
5804 struct ctlr_info *h;
5805 struct hpsa_scsi_dev_t *dev;
5806 u8 reset_type;
5807 char msg[48];
5808 unsigned long flags;
5809
5810 /* find the controller to which the command to be aborted was sent */
5811 h = sdev_to_hba(scsicmd->device);
5812 if (h == NULL) /* paranoia */
5813 return FAILED;
5814
5815 spin_lock_irqsave(&h->reset_lock, flags);
5816 h->reset_in_progress = 1;
5817 spin_unlock_irqrestore(&h->reset_lock, flags);
5818
5819 if (lockup_detected(h)) {
5820 rc = FAILED;
5821 goto return_reset_status;
5822 }
5823
5824 dev = scsicmd->device->hostdata;
5825 if (!dev) {
5826 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5827 rc = FAILED;
5828 goto return_reset_status;
5829 }
5830
5831 if (dev->devtype == TYPE_ENCLOSURE) {
5832 rc = SUCCESS;
5833 goto return_reset_status;
5834 }
5835
5836 /* if controller locked up, we can guarantee command won't complete */
5837 if (lockup_detected(h)) {
5838 snprintf(msg, sizeof(msg),
5839 "cmd %d RESET FAILED, lockup detected",
5840 hpsa_get_cmd_index(scsicmd));
5841 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5842 rc = FAILED;
5843 goto return_reset_status;
5844 }
5845
5846 /* this reset request might be the result of a lockup; check */
5847 if (detect_controller_lockup(h)) {
5848 snprintf(msg, sizeof(msg),
5849 "cmd %d RESET FAILED, new lockup detected",
5850 hpsa_get_cmd_index(scsicmd));
5851 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5852 rc = FAILED;
5853 goto return_reset_status;
5854 }
5855
5856 /* Do not attempt on controller */
5857 if (is_hba_lunid(dev->scsi3addr)) {
5858 rc = SUCCESS;
5859 goto return_reset_status;
5860 }
5861
5862 if (is_logical_dev_addr_mode(dev->scsi3addr))
5863 reset_type = HPSA_DEVICE_RESET_MSG;
5864 else
5865 reset_type = HPSA_PHYS_TARGET_RESET;
5866
5867 sprintf(msg, "resetting %s",
5868 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5869 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5870
5871 /* send a reset to the SCSI LUN which the command was sent to */
5872 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5873 DEFAULT_REPLY_QUEUE);
5874 if (rc == 0)
5875 rc = SUCCESS;
5876 else
5877 rc = FAILED;
5878
5879 sprintf(msg, "reset %s %s",
5880 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5881 rc == SUCCESS ? "completed successfully" : "failed");
5882 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5883
5884return_reset_status:
5885 spin_lock_irqsave(&h->reset_lock, flags);
5886 h->reset_in_progress = 0;
5887 spin_unlock_irqrestore(&h->reset_lock, flags);
5888 return rc;
5889}
5890
5891/*
5892 * For operations with an associated SCSI command, a command block is allocated
5893 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5894 * block request tag as an index into a table of entries. cmd_tagged_free() is
5895 * the complement, although cmd_free() may be called instead.
5896 */
5897static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5898 struct scsi_cmnd *scmd)
5899{
5900 int idx = hpsa_get_cmd_index(scmd);
5901 struct CommandList *c = h->cmd_pool + idx;
5902
5903 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5904 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5905 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5906 /* The index value comes from the block layer, so if it's out of
5907 * bounds, it's probably not our bug.
5908 */
5909 BUG();
5910 }
5911
5912 atomic_inc(&c->refcount);
5913 if (unlikely(!hpsa_is_cmd_idle(c))) {
5914 /*
5915 * We expect that the SCSI layer will hand us a unique tag
5916 * value. Thus, there should never be a collision here between
5917 * two requests...because if the selected command isn't idle
5918 * then someone is going to be very disappointed.
5919 */
5920 dev_err(&h->pdev->dev,
5921 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5922 idx);
5923 if (c->scsi_cmd != NULL)
5924 scsi_print_command(c->scsi_cmd);
5925 scsi_print_command(scmd);
5926 }
5927
5928 hpsa_cmd_partial_init(h, idx, c);
5929 return c;
5930}
5931
5932static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5933{
5934 /*
5935 * Release our reference to the block. We don't need to do anything
5936 * else to free it, because it is accessed by index.
5937 */
5938 (void)atomic_dec(&c->refcount);
5939}
5940
5941/*
5942 * For operations that cannot sleep, a command block is allocated at init,
5943 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5944 * which ones are free or in use. Lock must be held when calling this.
5945 * cmd_free() is the complement.
5946 * This function never gives up and returns NULL. If it hangs,
5947 * another thread must call cmd_free() to free some tags.
5948 */
5949
5950static struct CommandList *cmd_alloc(struct ctlr_info *h)
5951{
5952 struct CommandList *c;
5953 int refcount, i;
5954 int offset = 0;
5955
5956 /*
5957 * There is some *extremely* small but non-zero chance that that
5958 * multiple threads could get in here, and one thread could
5959 * be scanning through the list of bits looking for a free
5960 * one, but the free ones are always behind him, and other
5961 * threads sneak in behind him and eat them before he can
5962 * get to them, so that while there is always a free one, a
5963 * very unlucky thread might be starved anyway, never able to
5964 * beat the other threads. In reality, this happens so
5965 * infrequently as to be indistinguishable from never.
5966 *
5967 * Note that we start allocating commands before the SCSI host structure
5968 * is initialized. Since the search starts at bit zero, this
5969 * all works, since we have at least one command structure available;
5970 * however, it means that the structures with the low indexes have to be
5971 * reserved for driver-initiated requests, while requests from the block
5972 * layer will use the higher indexes.
5973 */
5974
5975 for (;;) {
5976 i = find_next_zero_bit(h->cmd_pool_bits,
5977 HPSA_NRESERVED_CMDS,
5978 offset);
5979 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5980 offset = 0;
5981 continue;
5982 }
5983 c = h->cmd_pool + i;
5984 refcount = atomic_inc_return(&c->refcount);
5985 if (unlikely(refcount > 1)) {
5986 cmd_free(h, c); /* already in use */
5987 offset = (i + 1) % HPSA_NRESERVED_CMDS;
5988 continue;
5989 }
5990 set_bit(i & (BITS_PER_LONG - 1),
5991 h->cmd_pool_bits + (i / BITS_PER_LONG));
5992 break; /* it's ours now. */
5993 }
5994 hpsa_cmd_partial_init(h, i, c);
5995 return c;
5996}
5997
5998/*
5999 * This is the complementary operation to cmd_alloc(). Note, however, in some
6000 * corner cases it may also be used to free blocks allocated by
6001 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6002 * the clear-bit is harmless.
6003 */
6004static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6005{
6006 if (atomic_dec_and_test(&c->refcount)) {
6007 int i;
6008
6009 i = c - h->cmd_pool;
6010 clear_bit(i & (BITS_PER_LONG - 1),
6011 h->cmd_pool_bits + (i / BITS_PER_LONG));
6012 }
6013}
6014
6015#ifdef CONFIG_COMPAT
6016
6017static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6018 void __user *arg)
6019{
6020 IOCTL32_Command_struct __user *arg32 =
6021 (IOCTL32_Command_struct __user *) arg;
6022 IOCTL_Command_struct arg64;
6023 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6024 int err;
6025 u32 cp;
6026
6027 memset(&arg64, 0, sizeof(arg64));
6028 err = 0;
6029 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6030 sizeof(arg64.LUN_info));
6031 err |= copy_from_user(&arg64.Request, &arg32->Request,
6032 sizeof(arg64.Request));
6033 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6034 sizeof(arg64.error_info));
6035 err |= get_user(arg64.buf_size, &arg32->buf_size);
6036 err |= get_user(cp, &arg32->buf);
6037 arg64.buf = compat_ptr(cp);
6038 err |= copy_to_user(p, &arg64, sizeof(arg64));
6039
6040 if (err)
6041 return -EFAULT;
6042
6043 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6044 if (err)
6045 return err;
6046 err |= copy_in_user(&arg32->error_info, &p->error_info,
6047 sizeof(arg32->error_info));
6048 if (err)
6049 return -EFAULT;
6050 return err;
6051}
6052
6053static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6054 int cmd, void __user *arg)
6055{
6056 BIG_IOCTL32_Command_struct __user *arg32 =
6057 (BIG_IOCTL32_Command_struct __user *) arg;
6058 BIG_IOCTL_Command_struct arg64;
6059 BIG_IOCTL_Command_struct __user *p =
6060 compat_alloc_user_space(sizeof(arg64));
6061 int err;
6062 u32 cp;
6063
6064 memset(&arg64, 0, sizeof(arg64));
6065 err = 0;
6066 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6067 sizeof(arg64.LUN_info));
6068 err |= copy_from_user(&arg64.Request, &arg32->Request,
6069 sizeof(arg64.Request));
6070 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6071 sizeof(arg64.error_info));
6072 err |= get_user(arg64.buf_size, &arg32->buf_size);
6073 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6074 err |= get_user(cp, &arg32->buf);
6075 arg64.buf = compat_ptr(cp);
6076 err |= copy_to_user(p, &arg64, sizeof(arg64));
6077
6078 if (err)
6079 return -EFAULT;
6080
6081 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6082 if (err)
6083 return err;
6084 err |= copy_in_user(&arg32->error_info, &p->error_info,
6085 sizeof(arg32->error_info));
6086 if (err)
6087 return -EFAULT;
6088 return err;
6089}
6090
6091static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6092{
6093 switch (cmd) {
6094 case CCISS_GETPCIINFO:
6095 case CCISS_GETINTINFO:
6096 case CCISS_SETINTINFO:
6097 case CCISS_GETNODENAME:
6098 case CCISS_SETNODENAME:
6099 case CCISS_GETHEARTBEAT:
6100 case CCISS_GETBUSTYPES:
6101 case CCISS_GETFIRMVER:
6102 case CCISS_GETDRIVVER:
6103 case CCISS_REVALIDVOLS:
6104 case CCISS_DEREGDISK:
6105 case CCISS_REGNEWDISK:
6106 case CCISS_REGNEWD:
6107 case CCISS_RESCANDISK:
6108 case CCISS_GETLUNINFO:
6109 return hpsa_ioctl(dev, cmd, arg);
6110
6111 case CCISS_PASSTHRU32:
6112 return hpsa_ioctl32_passthru(dev, cmd, arg);
6113 case CCISS_BIG_PASSTHRU32:
6114 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6115
6116 default:
6117 return -ENOIOCTLCMD;
6118 }
6119}
6120#endif
6121
6122static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6123{
6124 struct hpsa_pci_info pciinfo;
6125
6126 if (!argp)
6127 return -EINVAL;
6128 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6129 pciinfo.bus = h->pdev->bus->number;
6130 pciinfo.dev_fn = h->pdev->devfn;
6131 pciinfo.board_id = h->board_id;
6132 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6133 return -EFAULT;
6134 return 0;
6135}
6136
6137static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6138{
6139 DriverVer_type DriverVer;
6140 unsigned char vmaj, vmin, vsubmin;
6141 int rc;
6142
6143 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6144 &vmaj, &vmin, &vsubmin);
6145 if (rc != 3) {
6146 dev_info(&h->pdev->dev, "driver version string '%s' "
6147 "unrecognized.", HPSA_DRIVER_VERSION);
6148 vmaj = 0;
6149 vmin = 0;
6150 vsubmin = 0;
6151 }
6152 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6153 if (!argp)
6154 return -EINVAL;
6155 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6156 return -EFAULT;
6157 return 0;
6158}
6159
6160static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6161{
6162 IOCTL_Command_struct iocommand;
6163 struct CommandList *c;
6164 char *buff = NULL;
6165 u64 temp64;
6166 int rc = 0;
6167
6168 if (!argp)
6169 return -EINVAL;
6170 if (!capable(CAP_SYS_RAWIO))
6171 return -EPERM;
6172 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6173 return -EFAULT;
6174 if ((iocommand.buf_size < 1) &&
6175 (iocommand.Request.Type.Direction != XFER_NONE)) {
6176 return -EINVAL;
6177 }
6178 if (iocommand.buf_size > 0) {
6179 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6180 if (buff == NULL)
6181 return -ENOMEM;
6182 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6183 /* Copy the data into the buffer we created */
6184 if (copy_from_user(buff, iocommand.buf,
6185 iocommand.buf_size)) {
6186 rc = -EFAULT;
6187 goto out_kfree;
6188 }
6189 } else {
6190 memset(buff, 0, iocommand.buf_size);
6191 }
6192 }
6193 c = cmd_alloc(h);
6194
6195 /* Fill in the command type */
6196 c->cmd_type = CMD_IOCTL_PEND;
6197 c->scsi_cmd = SCSI_CMD_BUSY;
6198 /* Fill in Command Header */
6199 c->Header.ReplyQueue = 0; /* unused in simple mode */
6200 if (iocommand.buf_size > 0) { /* buffer to fill */
6201 c->Header.SGList = 1;
6202 c->Header.SGTotal = cpu_to_le16(1);
6203 } else { /* no buffers to fill */
6204 c->Header.SGList = 0;
6205 c->Header.SGTotal = cpu_to_le16(0);
6206 }
6207 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6208
6209 /* Fill in Request block */
6210 memcpy(&c->Request, &iocommand.Request,
6211 sizeof(c->Request));
6212
6213 /* Fill in the scatter gather information */
6214 if (iocommand.buf_size > 0) {
6215 temp64 = pci_map_single(h->pdev, buff,
6216 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6217 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6218 c->SG[0].Addr = cpu_to_le64(0);
6219 c->SG[0].Len = cpu_to_le32(0);
6220 rc = -ENOMEM;
6221 goto out;
6222 }
6223 c->SG[0].Addr = cpu_to_le64(temp64);
6224 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6225 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6226 }
6227 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6228 NO_TIMEOUT);
6229 if (iocommand.buf_size > 0)
6230 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6231 check_ioctl_unit_attention(h, c);
6232 if (rc) {
6233 rc = -EIO;
6234 goto out;
6235 }
6236
6237 /* Copy the error information out */
6238 memcpy(&iocommand.error_info, c->err_info,
6239 sizeof(iocommand.error_info));
6240 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6241 rc = -EFAULT;
6242 goto out;
6243 }
6244 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6245 iocommand.buf_size > 0) {
6246 /* Copy the data out of the buffer we created */
6247 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6248 rc = -EFAULT;
6249 goto out;
6250 }
6251 }
6252out:
6253 cmd_free(h, c);
6254out_kfree:
6255 kfree(buff);
6256 return rc;
6257}
6258
6259static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6260{
6261 BIG_IOCTL_Command_struct *ioc;
6262 struct CommandList *c;
6263 unsigned char **buff = NULL;
6264 int *buff_size = NULL;
6265 u64 temp64;
6266 BYTE sg_used = 0;
6267 int status = 0;
6268 u32 left;
6269 u32 sz;
6270 BYTE __user *data_ptr;
6271
6272 if (!argp)
6273 return -EINVAL;
6274 if (!capable(CAP_SYS_RAWIO))
6275 return -EPERM;
6276 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6277 if (!ioc) {
6278 status = -ENOMEM;
6279 goto cleanup1;
6280 }
6281 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6282 status = -EFAULT;
6283 goto cleanup1;
6284 }
6285 if ((ioc->buf_size < 1) &&
6286 (ioc->Request.Type.Direction != XFER_NONE)) {
6287 status = -EINVAL;
6288 goto cleanup1;
6289 }
6290 /* Check kmalloc limits using all SGs */
6291 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6292 status = -EINVAL;
6293 goto cleanup1;
6294 }
6295 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6296 status = -EINVAL;
6297 goto cleanup1;
6298 }
6299 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6300 if (!buff) {
6301 status = -ENOMEM;
6302 goto cleanup1;
6303 }
6304 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6305 if (!buff_size) {
6306 status = -ENOMEM;
6307 goto cleanup1;
6308 }
6309 left = ioc->buf_size;
6310 data_ptr = ioc->buf;
6311 while (left) {
6312 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6313 buff_size[sg_used] = sz;
6314 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6315 if (buff[sg_used] == NULL) {
6316 status = -ENOMEM;
6317 goto cleanup1;
6318 }
6319 if (ioc->Request.Type.Direction & XFER_WRITE) {
6320 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6321 status = -EFAULT;
6322 goto cleanup1;
6323 }
6324 } else
6325 memset(buff[sg_used], 0, sz);
6326 left -= sz;
6327 data_ptr += sz;
6328 sg_used++;
6329 }
6330 c = cmd_alloc(h);
6331
6332 c->cmd_type = CMD_IOCTL_PEND;
6333 c->scsi_cmd = SCSI_CMD_BUSY;
6334 c->Header.ReplyQueue = 0;
6335 c->Header.SGList = (u8) sg_used;
6336 c->Header.SGTotal = cpu_to_le16(sg_used);
6337 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6338 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6339 if (ioc->buf_size > 0) {
6340 int i;
6341 for (i = 0; i < sg_used; i++) {
6342 temp64 = pci_map_single(h->pdev, buff[i],
6343 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6344 if (dma_mapping_error(&h->pdev->dev,
6345 (dma_addr_t) temp64)) {
6346 c->SG[i].Addr = cpu_to_le64(0);
6347 c->SG[i].Len = cpu_to_le32(0);
6348 hpsa_pci_unmap(h->pdev, c, i,
6349 PCI_DMA_BIDIRECTIONAL);
6350 status = -ENOMEM;
6351 goto cleanup0;
6352 }
6353 c->SG[i].Addr = cpu_to_le64(temp64);
6354 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6355 c->SG[i].Ext = cpu_to_le32(0);
6356 }
6357 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6358 }
6359 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6360 NO_TIMEOUT);
6361 if (sg_used)
6362 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6363 check_ioctl_unit_attention(h, c);
6364 if (status) {
6365 status = -EIO;
6366 goto cleanup0;
6367 }
6368
6369 /* Copy the error information out */
6370 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6371 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6372 status = -EFAULT;
6373 goto cleanup0;
6374 }
6375 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6376 int i;
6377
6378 /* Copy the data out of the buffer we created */
6379 BYTE __user *ptr = ioc->buf;
6380 for (i = 0; i < sg_used; i++) {
6381 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6382 status = -EFAULT;
6383 goto cleanup0;
6384 }
6385 ptr += buff_size[i];
6386 }
6387 }
6388 status = 0;
6389cleanup0:
6390 cmd_free(h, c);
6391cleanup1:
6392 if (buff) {
6393 int i;
6394
6395 for (i = 0; i < sg_used; i++)
6396 kfree(buff[i]);
6397 kfree(buff);
6398 }
6399 kfree(buff_size);
6400 kfree(ioc);
6401 return status;
6402}
6403
6404static void check_ioctl_unit_attention(struct ctlr_info *h,
6405 struct CommandList *c)
6406{
6407 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6408 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6409 (void) check_for_unit_attention(h, c);
6410}
6411
6412/*
6413 * ioctl
6414 */
6415static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6416{
6417 struct ctlr_info *h;
6418 void __user *argp = (void __user *)arg;
6419 int rc;
6420
6421 h = sdev_to_hba(dev);
6422
6423 switch (cmd) {
6424 case CCISS_DEREGDISK:
6425 case CCISS_REGNEWDISK:
6426 case CCISS_REGNEWD:
6427 hpsa_scan_start(h->scsi_host);
6428 return 0;
6429 case CCISS_GETPCIINFO:
6430 return hpsa_getpciinfo_ioctl(h, argp);
6431 case CCISS_GETDRIVVER:
6432 return hpsa_getdrivver_ioctl(h, argp);
6433 case CCISS_PASSTHRU:
6434 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6435 return -EAGAIN;
6436 rc = hpsa_passthru_ioctl(h, argp);
6437 atomic_inc(&h->passthru_cmds_avail);
6438 return rc;
6439 case CCISS_BIG_PASSTHRU:
6440 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6441 return -EAGAIN;
6442 rc = hpsa_big_passthru_ioctl(h, argp);
6443 atomic_inc(&h->passthru_cmds_avail);
6444 return rc;
6445 default:
6446 return -ENOTTY;
6447 }
6448}
6449
6450static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6451 u8 reset_type)
6452{
6453 struct CommandList *c;
6454
6455 c = cmd_alloc(h);
6456
6457 /* fill_cmd can't fail here, no data buffer to map */
6458 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6459 RAID_CTLR_LUNID, TYPE_MSG);
6460 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6461 c->waiting = NULL;
6462 enqueue_cmd_and_start_io(h, c);
6463 /* Don't wait for completion, the reset won't complete. Don't free
6464 * the command either. This is the last command we will send before
6465 * re-initializing everything, so it doesn't matter and won't leak.
6466 */
6467 return;
6468}
6469
6470static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6471 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6472 int cmd_type)
6473{
6474 int pci_dir = XFER_NONE;
6475
6476 c->cmd_type = CMD_IOCTL_PEND;
6477 c->scsi_cmd = SCSI_CMD_BUSY;
6478 c->Header.ReplyQueue = 0;
6479 if (buff != NULL && size > 0) {
6480 c->Header.SGList = 1;
6481 c->Header.SGTotal = cpu_to_le16(1);
6482 } else {
6483 c->Header.SGList = 0;
6484 c->Header.SGTotal = cpu_to_le16(0);
6485 }
6486 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6487
6488 if (cmd_type == TYPE_CMD) {
6489 switch (cmd) {
6490 case HPSA_INQUIRY:
6491 /* are we trying to read a vital product page */
6492 if (page_code & VPD_PAGE) {
6493 c->Request.CDB[1] = 0x01;
6494 c->Request.CDB[2] = (page_code & 0xff);
6495 }
6496 c->Request.CDBLen = 6;
6497 c->Request.type_attr_dir =
6498 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6499 c->Request.Timeout = 0;
6500 c->Request.CDB[0] = HPSA_INQUIRY;
6501 c->Request.CDB[4] = size & 0xFF;
6502 break;
6503 case HPSA_REPORT_LOG:
6504 case HPSA_REPORT_PHYS:
6505 /* Talking to controller so It's a physical command
6506 mode = 00 target = 0. Nothing to write.
6507 */
6508 c->Request.CDBLen = 12;
6509 c->Request.type_attr_dir =
6510 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6511 c->Request.Timeout = 0;
6512 c->Request.CDB[0] = cmd;
6513 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6514 c->Request.CDB[7] = (size >> 16) & 0xFF;
6515 c->Request.CDB[8] = (size >> 8) & 0xFF;
6516 c->Request.CDB[9] = size & 0xFF;
6517 break;
6518 case BMIC_SENSE_DIAG_OPTIONS:
6519 c->Request.CDBLen = 16;
6520 c->Request.type_attr_dir =
6521 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6522 c->Request.Timeout = 0;
6523 /* Spec says this should be BMIC_WRITE */
6524 c->Request.CDB[0] = BMIC_READ;
6525 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6526 break;
6527 case BMIC_SET_DIAG_OPTIONS:
6528 c->Request.CDBLen = 16;
6529 c->Request.type_attr_dir =
6530 TYPE_ATTR_DIR(cmd_type,
6531 ATTR_SIMPLE, XFER_WRITE);
6532 c->Request.Timeout = 0;
6533 c->Request.CDB[0] = BMIC_WRITE;
6534 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6535 break;
6536 case HPSA_CACHE_FLUSH:
6537 c->Request.CDBLen = 12;
6538 c->Request.type_attr_dir =
6539 TYPE_ATTR_DIR(cmd_type,
6540 ATTR_SIMPLE, XFER_WRITE);
6541 c->Request.Timeout = 0;
6542 c->Request.CDB[0] = BMIC_WRITE;
6543 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6544 c->Request.CDB[7] = (size >> 8) & 0xFF;
6545 c->Request.CDB[8] = size & 0xFF;
6546 break;
6547 case TEST_UNIT_READY:
6548 c->Request.CDBLen = 6;
6549 c->Request.type_attr_dir =
6550 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6551 c->Request.Timeout = 0;
6552 break;
6553 case HPSA_GET_RAID_MAP:
6554 c->Request.CDBLen = 12;
6555 c->Request.type_attr_dir =
6556 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6557 c->Request.Timeout = 0;
6558 c->Request.CDB[0] = HPSA_CISS_READ;
6559 c->Request.CDB[1] = cmd;
6560 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6561 c->Request.CDB[7] = (size >> 16) & 0xFF;
6562 c->Request.CDB[8] = (size >> 8) & 0xFF;
6563 c->Request.CDB[9] = size & 0xFF;
6564 break;
6565 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6566 c->Request.CDBLen = 10;
6567 c->Request.type_attr_dir =
6568 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6569 c->Request.Timeout = 0;
6570 c->Request.CDB[0] = BMIC_READ;
6571 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6572 c->Request.CDB[7] = (size >> 16) & 0xFF;
6573 c->Request.CDB[8] = (size >> 8) & 0xFF;
6574 break;
6575 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6576 c->Request.CDBLen = 10;
6577 c->Request.type_attr_dir =
6578 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6579 c->Request.Timeout = 0;
6580 c->Request.CDB[0] = BMIC_READ;
6581 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6582 c->Request.CDB[7] = (size >> 16) & 0xFF;
6583 c->Request.CDB[8] = (size >> 8) & 0XFF;
6584 break;
6585 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6586 c->Request.CDBLen = 10;
6587 c->Request.type_attr_dir =
6588 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6589 c->Request.Timeout = 0;
6590 c->Request.CDB[0] = BMIC_READ;
6591 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6592 c->Request.CDB[7] = (size >> 16) & 0xFF;
6593 c->Request.CDB[8] = (size >> 8) & 0XFF;
6594 break;
6595 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6596 c->Request.CDBLen = 10;
6597 c->Request.type_attr_dir =
6598 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6599 c->Request.Timeout = 0;
6600 c->Request.CDB[0] = BMIC_READ;
6601 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6602 c->Request.CDB[7] = (size >> 16) & 0xFF;
6603 c->Request.CDB[8] = (size >> 8) & 0XFF;
6604 break;
6605 case BMIC_IDENTIFY_CONTROLLER:
6606 c->Request.CDBLen = 10;
6607 c->Request.type_attr_dir =
6608 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6609 c->Request.Timeout = 0;
6610 c->Request.CDB[0] = BMIC_READ;
6611 c->Request.CDB[1] = 0;
6612 c->Request.CDB[2] = 0;
6613 c->Request.CDB[3] = 0;
6614 c->Request.CDB[4] = 0;
6615 c->Request.CDB[5] = 0;
6616 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6617 c->Request.CDB[7] = (size >> 16) & 0xFF;
6618 c->Request.CDB[8] = (size >> 8) & 0XFF;
6619 c->Request.CDB[9] = 0;
6620 break;
6621 default:
6622 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6623 BUG();
6624 }
6625 } else if (cmd_type == TYPE_MSG) {
6626 switch (cmd) {
6627
6628 case HPSA_PHYS_TARGET_RESET:
6629 c->Request.CDBLen = 16;
6630 c->Request.type_attr_dir =
6631 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6632 c->Request.Timeout = 0; /* Don't time out */
6633 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6634 c->Request.CDB[0] = HPSA_RESET;
6635 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6636 /* Physical target reset needs no control bytes 4-7*/
6637 c->Request.CDB[4] = 0x00;
6638 c->Request.CDB[5] = 0x00;
6639 c->Request.CDB[6] = 0x00;
6640 c->Request.CDB[7] = 0x00;
6641 break;
6642 case HPSA_DEVICE_RESET_MSG:
6643 c->Request.CDBLen = 16;
6644 c->Request.type_attr_dir =
6645 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6646 c->Request.Timeout = 0; /* Don't time out */
6647 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6648 c->Request.CDB[0] = cmd;
6649 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6650 /* If bytes 4-7 are zero, it means reset the */
6651 /* LunID device */
6652 c->Request.CDB[4] = 0x00;
6653 c->Request.CDB[5] = 0x00;
6654 c->Request.CDB[6] = 0x00;
6655 c->Request.CDB[7] = 0x00;
6656 break;
6657 default:
6658 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6659 cmd);
6660 BUG();
6661 }
6662 } else {
6663 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6664 BUG();
6665 }
6666
6667 switch (GET_DIR(c->Request.type_attr_dir)) {
6668 case XFER_READ:
6669 pci_dir = PCI_DMA_FROMDEVICE;
6670 break;
6671 case XFER_WRITE:
6672 pci_dir = PCI_DMA_TODEVICE;
6673 break;
6674 case XFER_NONE:
6675 pci_dir = PCI_DMA_NONE;
6676 break;
6677 default:
6678 pci_dir = PCI_DMA_BIDIRECTIONAL;
6679 }
6680 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6681 return -1;
6682 return 0;
6683}
6684
6685/*
6686 * Map (physical) PCI mem into (virtual) kernel space
6687 */
6688static void __iomem *remap_pci_mem(ulong base, ulong size)
6689{
6690 ulong page_base = ((ulong) base) & PAGE_MASK;
6691 ulong page_offs = ((ulong) base) - page_base;
6692 void __iomem *page_remapped = ioremap_nocache(page_base,
6693 page_offs + size);
6694
6695 return page_remapped ? (page_remapped + page_offs) : NULL;
6696}
6697
6698static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6699{
6700 return h->access.command_completed(h, q);
6701}
6702
6703static inline bool interrupt_pending(struct ctlr_info *h)
6704{
6705 return h->access.intr_pending(h);
6706}
6707
6708static inline long interrupt_not_for_us(struct ctlr_info *h)
6709{
6710 return (h->access.intr_pending(h) == 0) ||
6711 (h->interrupts_enabled == 0);
6712}
6713
6714static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6715 u32 raw_tag)
6716{
6717 if (unlikely(tag_index >= h->nr_cmds)) {
6718 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6719 return 1;
6720 }
6721 return 0;
6722}
6723
6724static inline void finish_cmd(struct CommandList *c)
6725{
6726 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6727 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6728 || c->cmd_type == CMD_IOACCEL2))
6729 complete_scsi_command(c);
6730 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6731 complete(c->waiting);
6732}
6733
6734/* process completion of an indexed ("direct lookup") command */
6735static inline void process_indexed_cmd(struct ctlr_info *h,
6736 u32 raw_tag)
6737{
6738 u32 tag_index;
6739 struct CommandList *c;
6740
6741 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6742 if (!bad_tag(h, tag_index, raw_tag)) {
6743 c = h->cmd_pool + tag_index;
6744 finish_cmd(c);
6745 }
6746}
6747
6748/* Some controllers, like p400, will give us one interrupt
6749 * after a soft reset, even if we turned interrupts off.
6750 * Only need to check for this in the hpsa_xxx_discard_completions
6751 * functions.
6752 */
6753static int ignore_bogus_interrupt(struct ctlr_info *h)
6754{
6755 if (likely(!reset_devices))
6756 return 0;
6757
6758 if (likely(h->interrupts_enabled))
6759 return 0;
6760
6761 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6762 "(known firmware bug.) Ignoring.\n");
6763
6764 return 1;
6765}
6766
6767/*
6768 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6769 * Relies on (h-q[x] == x) being true for x such that
6770 * 0 <= x < MAX_REPLY_QUEUES.
6771 */
6772static struct ctlr_info *queue_to_hba(u8 *queue)
6773{
6774 return container_of((queue - *queue), struct ctlr_info, q[0]);
6775}
6776
6777static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6778{
6779 struct ctlr_info *h = queue_to_hba(queue);
6780 u8 q = *(u8 *) queue;
6781 u32 raw_tag;
6782
6783 if (ignore_bogus_interrupt(h))
6784 return IRQ_NONE;
6785
6786 if (interrupt_not_for_us(h))
6787 return IRQ_NONE;
6788 h->last_intr_timestamp = get_jiffies_64();
6789 while (interrupt_pending(h)) {
6790 raw_tag = get_next_completion(h, q);
6791 while (raw_tag != FIFO_EMPTY)
6792 raw_tag = next_command(h, q);
6793 }
6794 return IRQ_HANDLED;
6795}
6796
6797static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6798{
6799 struct ctlr_info *h = queue_to_hba(queue);
6800 u32 raw_tag;
6801 u8 q = *(u8 *) queue;
6802
6803 if (ignore_bogus_interrupt(h))
6804 return IRQ_NONE;
6805
6806 h->last_intr_timestamp = get_jiffies_64();
6807 raw_tag = get_next_completion(h, q);
6808 while (raw_tag != FIFO_EMPTY)
6809 raw_tag = next_command(h, q);
6810 return IRQ_HANDLED;
6811}
6812
6813static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6814{
6815 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6816 u32 raw_tag;
6817 u8 q = *(u8 *) queue;
6818
6819 if (interrupt_not_for_us(h))
6820 return IRQ_NONE;
6821 h->last_intr_timestamp = get_jiffies_64();
6822 while (interrupt_pending(h)) {
6823 raw_tag = get_next_completion(h, q);
6824 while (raw_tag != FIFO_EMPTY) {
6825 process_indexed_cmd(h, raw_tag);
6826 raw_tag = next_command(h, q);
6827 }
6828 }
6829 return IRQ_HANDLED;
6830}
6831
6832static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6833{
6834 struct ctlr_info *h = queue_to_hba(queue);
6835 u32 raw_tag;
6836 u8 q = *(u8 *) queue;
6837
6838 h->last_intr_timestamp = get_jiffies_64();
6839 raw_tag = get_next_completion(h, q);
6840 while (raw_tag != FIFO_EMPTY) {
6841 process_indexed_cmd(h, raw_tag);
6842 raw_tag = next_command(h, q);
6843 }
6844 return IRQ_HANDLED;
6845}
6846
6847/* Send a message CDB to the firmware. Careful, this only works
6848 * in simple mode, not performant mode due to the tag lookup.
6849 * We only ever use this immediately after a controller reset.
6850 */
6851static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6852 unsigned char type)
6853{
6854 struct Command {
6855 struct CommandListHeader CommandHeader;
6856 struct RequestBlock Request;
6857 struct ErrDescriptor ErrorDescriptor;
6858 };
6859 struct Command *cmd;
6860 static const size_t cmd_sz = sizeof(*cmd) +
6861 sizeof(cmd->ErrorDescriptor);
6862 dma_addr_t paddr64;
6863 __le32 paddr32;
6864 u32 tag;
6865 void __iomem *vaddr;
6866 int i, err;
6867
6868 vaddr = pci_ioremap_bar(pdev, 0);
6869 if (vaddr == NULL)
6870 return -ENOMEM;
6871
6872 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6873 * CCISS commands, so they must be allocated from the lower 4GiB of
6874 * memory.
6875 */
6876 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6877 if (err) {
6878 iounmap(vaddr);
6879 return err;
6880 }
6881
6882 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6883 if (cmd == NULL) {
6884 iounmap(vaddr);
6885 return -ENOMEM;
6886 }
6887
6888 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6889 * although there's no guarantee, we assume that the address is at
6890 * least 4-byte aligned (most likely, it's page-aligned).
6891 */
6892 paddr32 = cpu_to_le32(paddr64);
6893
6894 cmd->CommandHeader.ReplyQueue = 0;
6895 cmd->CommandHeader.SGList = 0;
6896 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6897 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6898 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6899
6900 cmd->Request.CDBLen = 16;
6901 cmd->Request.type_attr_dir =
6902 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6903 cmd->Request.Timeout = 0; /* Don't time out */
6904 cmd->Request.CDB[0] = opcode;
6905 cmd->Request.CDB[1] = type;
6906 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6907 cmd->ErrorDescriptor.Addr =
6908 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6909 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6910
6911 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6912
6913 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6914 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6915 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6916 break;
6917 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6918 }
6919
6920 iounmap(vaddr);
6921
6922 /* we leak the DMA buffer here ... no choice since the controller could
6923 * still complete the command.
6924 */
6925 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6926 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6927 opcode, type);
6928 return -ETIMEDOUT;
6929 }
6930
6931 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6932
6933 if (tag & HPSA_ERROR_BIT) {
6934 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6935 opcode, type);
6936 return -EIO;
6937 }
6938
6939 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6940 opcode, type);
6941 return 0;
6942}
6943
6944#define hpsa_noop(p) hpsa_message(p, 3, 0)
6945
6946static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6947 void __iomem *vaddr, u32 use_doorbell)
6948{
6949
6950 if (use_doorbell) {
6951 /* For everything after the P600, the PCI power state method
6952 * of resetting the controller doesn't work, so we have this
6953 * other way using the doorbell register.
6954 */
6955 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6956 writel(use_doorbell, vaddr + SA5_DOORBELL);
6957
6958 /* PMC hardware guys tell us we need a 10 second delay after
6959 * doorbell reset and before any attempt to talk to the board
6960 * at all to ensure that this actually works and doesn't fall
6961 * over in some weird corner cases.
6962 */
6963 msleep(10000);
6964 } else { /* Try to do it the PCI power state way */
6965
6966 /* Quoting from the Open CISS Specification: "The Power
6967 * Management Control/Status Register (CSR) controls the power
6968 * state of the device. The normal operating state is D0,
6969 * CSR=00h. The software off state is D3, CSR=03h. To reset
6970 * the controller, place the interface device in D3 then to D0,
6971 * this causes a secondary PCI reset which will reset the
6972 * controller." */
6973
6974 int rc = 0;
6975
6976 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6977
6978 /* enter the D3hot power management state */
6979 rc = pci_set_power_state(pdev, PCI_D3hot);
6980 if (rc)
6981 return rc;
6982
6983 msleep(500);
6984
6985 /* enter the D0 power management state */
6986 rc = pci_set_power_state(pdev, PCI_D0);
6987 if (rc)
6988 return rc;
6989
6990 /*
6991 * The P600 requires a small delay when changing states.
6992 * Otherwise we may think the board did not reset and we bail.
6993 * This for kdump only and is particular to the P600.
6994 */
6995 msleep(500);
6996 }
6997 return 0;
6998}
6999
7000static void init_driver_version(char *driver_version, int len)
7001{
7002 memset(driver_version, 0, len);
7003 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7004}
7005
7006static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7007{
7008 char *driver_version;
7009 int i, size = sizeof(cfgtable->driver_version);
7010
7011 driver_version = kmalloc(size, GFP_KERNEL);
7012 if (!driver_version)
7013 return -ENOMEM;
7014
7015 init_driver_version(driver_version, size);
7016 for (i = 0; i < size; i++)
7017 writeb(driver_version[i], &cfgtable->driver_version[i]);
7018 kfree(driver_version);
7019 return 0;
7020}
7021
7022static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7023 unsigned char *driver_ver)
7024{
7025 int i;
7026
7027 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7028 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7029}
7030
7031static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7032{
7033
7034 char *driver_ver, *old_driver_ver;
7035 int rc, size = sizeof(cfgtable->driver_version);
7036
7037 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7038 if (!old_driver_ver)
7039 return -ENOMEM;
7040 driver_ver = old_driver_ver + size;
7041
7042 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7043 * should have been changed, otherwise we know the reset failed.
7044 */
7045 init_driver_version(old_driver_ver, size);
7046 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7047 rc = !memcmp(driver_ver, old_driver_ver, size);
7048 kfree(old_driver_ver);
7049 return rc;
7050}
7051/* This does a hard reset of the controller using PCI power management
7052 * states or the using the doorbell register.
7053 */
7054static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7055{
7056 u64 cfg_offset;
7057 u32 cfg_base_addr;
7058 u64 cfg_base_addr_index;
7059 void __iomem *vaddr;
7060 unsigned long paddr;
7061 u32 misc_fw_support;
7062 int rc;
7063 struct CfgTable __iomem *cfgtable;
7064 u32 use_doorbell;
7065 u16 command_register;
7066
7067 /* For controllers as old as the P600, this is very nearly
7068 * the same thing as
7069 *
7070 * pci_save_state(pci_dev);
7071 * pci_set_power_state(pci_dev, PCI_D3hot);
7072 * pci_set_power_state(pci_dev, PCI_D0);
7073 * pci_restore_state(pci_dev);
7074 *
7075 * For controllers newer than the P600, the pci power state
7076 * method of resetting doesn't work so we have another way
7077 * using the doorbell register.
7078 */
7079
7080 if (!ctlr_is_resettable(board_id)) {
7081 dev_warn(&pdev->dev, "Controller not resettable\n");
7082 return -ENODEV;
7083 }
7084
7085 /* if controller is soft- but not hard resettable... */
7086 if (!ctlr_is_hard_resettable(board_id))
7087 return -ENOTSUPP; /* try soft reset later. */
7088
7089 /* Save the PCI command register */
7090 pci_read_config_word(pdev, 4, &command_register);
7091 pci_save_state(pdev);
7092
7093 /* find the first memory BAR, so we can find the cfg table */
7094 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7095 if (rc)
7096 return rc;
7097 vaddr = remap_pci_mem(paddr, 0x250);
7098 if (!vaddr)
7099 return -ENOMEM;
7100
7101 /* find cfgtable in order to check if reset via doorbell is supported */
7102 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7103 &cfg_base_addr_index, &cfg_offset);
7104 if (rc)
7105 goto unmap_vaddr;
7106 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7107 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7108 if (!cfgtable) {
7109 rc = -ENOMEM;
7110 goto unmap_vaddr;
7111 }
7112 rc = write_driver_ver_to_cfgtable(cfgtable);
7113 if (rc)
7114 goto unmap_cfgtable;
7115
7116 /* If reset via doorbell register is supported, use that.
7117 * There are two such methods. Favor the newest method.
7118 */
7119 misc_fw_support = readl(&cfgtable->misc_fw_support);
7120 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7121 if (use_doorbell) {
7122 use_doorbell = DOORBELL_CTLR_RESET2;
7123 } else {
7124 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7125 if (use_doorbell) {
7126 dev_warn(&pdev->dev,
7127 "Soft reset not supported. Firmware update is required.\n");
7128 rc = -ENOTSUPP; /* try soft reset */
7129 goto unmap_cfgtable;
7130 }
7131 }
7132
7133 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7134 if (rc)
7135 goto unmap_cfgtable;
7136
7137 pci_restore_state(pdev);
7138 pci_write_config_word(pdev, 4, command_register);
7139
7140 /* Some devices (notably the HP Smart Array 5i Controller)
7141 need a little pause here */
7142 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7143
7144 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7145 if (rc) {
7146 dev_warn(&pdev->dev,
7147 "Failed waiting for board to become ready after hard reset\n");
7148 goto unmap_cfgtable;
7149 }
7150
7151 rc = controller_reset_failed(vaddr);
7152 if (rc < 0)
7153 goto unmap_cfgtable;
7154 if (rc) {
7155 dev_warn(&pdev->dev, "Unable to successfully reset "
7156 "controller. Will try soft reset.\n");
7157 rc = -ENOTSUPP;
7158 } else {
7159 dev_info(&pdev->dev, "board ready after hard reset.\n");
7160 }
7161
7162unmap_cfgtable:
7163 iounmap(cfgtable);
7164
7165unmap_vaddr:
7166 iounmap(vaddr);
7167 return rc;
7168}
7169
7170/*
7171 * We cannot read the structure directly, for portability we must use
7172 * the io functions.
7173 * This is for debug only.
7174 */
7175static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7176{
7177#ifdef HPSA_DEBUG
7178 int i;
7179 char temp_name[17];
7180
7181 dev_info(dev, "Controller Configuration information\n");
7182 dev_info(dev, "------------------------------------\n");
7183 for (i = 0; i < 4; i++)
7184 temp_name[i] = readb(&(tb->Signature[i]));
7185 temp_name[4] = '\0';
7186 dev_info(dev, " Signature = %s\n", temp_name);
7187 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7188 dev_info(dev, " Transport methods supported = 0x%x\n",
7189 readl(&(tb->TransportSupport)));
7190 dev_info(dev, " Transport methods active = 0x%x\n",
7191 readl(&(tb->TransportActive)));
7192 dev_info(dev, " Requested transport Method = 0x%x\n",
7193 readl(&(tb->HostWrite.TransportRequest)));
7194 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7195 readl(&(tb->HostWrite.CoalIntDelay)));
7196 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7197 readl(&(tb->HostWrite.CoalIntCount)));
7198 dev_info(dev, " Max outstanding commands = %d\n",
7199 readl(&(tb->CmdsOutMax)));
7200 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7201 for (i = 0; i < 16; i++)
7202 temp_name[i] = readb(&(tb->ServerName[i]));
7203 temp_name[16] = '\0';
7204 dev_info(dev, " Server Name = %s\n", temp_name);
7205 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7206 readl(&(tb->HeartBeat)));
7207#endif /* HPSA_DEBUG */
7208}
7209
7210static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7211{
7212 int i, offset, mem_type, bar_type;
7213
7214 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7215 return 0;
7216 offset = 0;
7217 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7218 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7219 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7220 offset += 4;
7221 else {
7222 mem_type = pci_resource_flags(pdev, i) &
7223 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7224 switch (mem_type) {
7225 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7226 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7227 offset += 4; /* 32 bit */
7228 break;
7229 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7230 offset += 8;
7231 break;
7232 default: /* reserved in PCI 2.2 */
7233 dev_warn(&pdev->dev,
7234 "base address is invalid\n");
7235 return -1;
7236 break;
7237 }
7238 }
7239 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7240 return i + 1;
7241 }
7242 return -1;
7243}
7244
7245static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7246{
7247 pci_free_irq_vectors(h->pdev);
7248 h->msix_vectors = 0;
7249}
7250
7251static void hpsa_setup_reply_map(struct ctlr_info *h)
7252{
7253 const struct cpumask *mask;
7254 unsigned int queue, cpu;
7255
7256 for (queue = 0; queue < h->msix_vectors; queue++) {
7257 mask = pci_irq_get_affinity(h->pdev, queue);
7258 if (!mask)
7259 goto fallback;
7260
7261 for_each_cpu(cpu, mask)
7262 h->reply_map[cpu] = queue;
7263 }
7264 return;
7265
7266fallback:
7267 for_each_possible_cpu(cpu)
7268 h->reply_map[cpu] = 0;
7269}
7270
7271/* If MSI/MSI-X is supported by the kernel we will try to enable it on
7272 * controllers that are capable. If not, we use legacy INTx mode.
7273 */
7274static int hpsa_interrupt_mode(struct ctlr_info *h)
7275{
7276 unsigned int flags = PCI_IRQ_LEGACY;
7277 int ret;
7278
7279 /* Some boards advertise MSI but don't really support it */
7280 switch (h->board_id) {
7281 case 0x40700E11:
7282 case 0x40800E11:
7283 case 0x40820E11:
7284 case 0x40830E11:
7285 break;
7286 default:
7287 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7288 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7289 if (ret > 0) {
7290 h->msix_vectors = ret;
7291 return 0;
7292 }
7293
7294 flags |= PCI_IRQ_MSI;
7295 break;
7296 }
7297
7298 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7299 if (ret < 0)
7300 return ret;
7301 return 0;
7302}
7303
7304static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7305 bool *legacy_board)
7306{
7307 int i;
7308 u32 subsystem_vendor_id, subsystem_device_id;
7309
7310 subsystem_vendor_id = pdev->subsystem_vendor;
7311 subsystem_device_id = pdev->subsystem_device;
7312 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7313 subsystem_vendor_id;
7314
7315 if (legacy_board)
7316 *legacy_board = false;
7317 for (i = 0; i < ARRAY_SIZE(products); i++)
7318 if (*board_id == products[i].board_id) {
7319 if (products[i].access != &SA5A_access &&
7320 products[i].access != &SA5B_access)
7321 return i;
7322 dev_warn(&pdev->dev,
7323 "legacy board ID: 0x%08x\n",
7324 *board_id);
7325 if (legacy_board)
7326 *legacy_board = true;
7327 return i;
7328 }
7329
7330 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7331 if (legacy_board)
7332 *legacy_board = true;
7333 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7334}
7335
7336static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7337 unsigned long *memory_bar)
7338{
7339 int i;
7340
7341 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7342 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7343 /* addressing mode bits already removed */
7344 *memory_bar = pci_resource_start(pdev, i);
7345 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7346 *memory_bar);
7347 return 0;
7348 }
7349 dev_warn(&pdev->dev, "no memory BAR found\n");
7350 return -ENODEV;
7351}
7352
7353static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7354 int wait_for_ready)
7355{
7356 int i, iterations;
7357 u32 scratchpad;
7358 if (wait_for_ready)
7359 iterations = HPSA_BOARD_READY_ITERATIONS;
7360 else
7361 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7362
7363 for (i = 0; i < iterations; i++) {
7364 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7365 if (wait_for_ready) {
7366 if (scratchpad == HPSA_FIRMWARE_READY)
7367 return 0;
7368 } else {
7369 if (scratchpad != HPSA_FIRMWARE_READY)
7370 return 0;
7371 }
7372 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7373 }
7374 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7375 return -ENODEV;
7376}
7377
7378static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7379 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7380 u64 *cfg_offset)
7381{
7382 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7383 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7384 *cfg_base_addr &= (u32) 0x0000ffff;
7385 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7386 if (*cfg_base_addr_index == -1) {
7387 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7388 return -ENODEV;
7389 }
7390 return 0;
7391}
7392
7393static void hpsa_free_cfgtables(struct ctlr_info *h)
7394{
7395 if (h->transtable) {
7396 iounmap(h->transtable);
7397 h->transtable = NULL;
7398 }
7399 if (h->cfgtable) {
7400 iounmap(h->cfgtable);
7401 h->cfgtable = NULL;
7402 }
7403}
7404
7405/* Find and map CISS config table and transfer table
7406+ * several items must be unmapped (freed) later
7407+ * */
7408static int hpsa_find_cfgtables(struct ctlr_info *h)
7409{
7410 u64 cfg_offset;
7411 u32 cfg_base_addr;
7412 u64 cfg_base_addr_index;
7413 u32 trans_offset;
7414 int rc;
7415
7416 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7417 &cfg_base_addr_index, &cfg_offset);
7418 if (rc)
7419 return rc;
7420 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7421 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7422 if (!h->cfgtable) {
7423 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7424 return -ENOMEM;
7425 }
7426 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7427 if (rc)
7428 return rc;
7429 /* Find performant mode table. */
7430 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7431 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7432 cfg_base_addr_index)+cfg_offset+trans_offset,
7433 sizeof(*h->transtable));
7434 if (!h->transtable) {
7435 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7436 hpsa_free_cfgtables(h);
7437 return -ENOMEM;
7438 }
7439 return 0;
7440}
7441
7442static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7443{
7444#define MIN_MAX_COMMANDS 16
7445 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7446
7447 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7448
7449 /* Limit commands in memory limited kdump scenario. */
7450 if (reset_devices && h->max_commands > 32)
7451 h->max_commands = 32;
7452
7453 if (h->max_commands < MIN_MAX_COMMANDS) {
7454 dev_warn(&h->pdev->dev,
7455 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7456 h->max_commands,
7457 MIN_MAX_COMMANDS);
7458 h->max_commands = MIN_MAX_COMMANDS;
7459 }
7460}
7461
7462/* If the controller reports that the total max sg entries is greater than 512,
7463 * then we know that chained SG blocks work. (Original smart arrays did not
7464 * support chained SG blocks and would return zero for max sg entries.)
7465 */
7466static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7467{
7468 return h->maxsgentries > 512;
7469}
7470
7471/* Interrogate the hardware for some limits:
7472 * max commands, max SG elements without chaining, and with chaining,
7473 * SG chain block size, etc.
7474 */
7475static void hpsa_find_board_params(struct ctlr_info *h)
7476{
7477 hpsa_get_max_perf_mode_cmds(h);
7478 h->nr_cmds = h->max_commands;
7479 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7480 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7481 if (hpsa_supports_chained_sg_blocks(h)) {
7482 /* Limit in-command s/g elements to 32 save dma'able memory. */
7483 h->max_cmd_sg_entries = 32;
7484 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7485 h->maxsgentries--; /* save one for chain pointer */
7486 } else {
7487 /*
7488 * Original smart arrays supported at most 31 s/g entries
7489 * embedded inline in the command (trying to use more
7490 * would lock up the controller)
7491 */
7492 h->max_cmd_sg_entries = 31;
7493 h->maxsgentries = 31; /* default to traditional values */
7494 h->chainsize = 0;
7495 }
7496
7497 /* Find out what task management functions are supported and cache */
7498 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7499 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7500 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7501 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7502 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7503 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7504 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7505}
7506
7507static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7508{
7509 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7510 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7511 return false;
7512 }
7513 return true;
7514}
7515
7516static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7517{
7518 u32 driver_support;
7519
7520 driver_support = readl(&(h->cfgtable->driver_support));
7521 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7522#ifdef CONFIG_X86
7523 driver_support |= ENABLE_SCSI_PREFETCH;
7524#endif
7525 driver_support |= ENABLE_UNIT_ATTN;
7526 writel(driver_support, &(h->cfgtable->driver_support));
7527}
7528
7529/* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7530 * in a prefetch beyond physical memory.
7531 */
7532static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7533{
7534 u32 dma_prefetch;
7535
7536 if (h->board_id != 0x3225103C)
7537 return;
7538 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7539 dma_prefetch |= 0x8000;
7540 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7541}
7542
7543static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7544{
7545 int i;
7546 u32 doorbell_value;
7547 unsigned long flags;
7548 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7549 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7550 spin_lock_irqsave(&h->lock, flags);
7551 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7552 spin_unlock_irqrestore(&h->lock, flags);
7553 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7554 goto done;
7555 /* delay and try again */
7556 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7557 }
7558 return -ENODEV;
7559done:
7560 return 0;
7561}
7562
7563static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7564{
7565 int i;
7566 u32 doorbell_value;
7567 unsigned long flags;
7568
7569 /* under certain very rare conditions, this can take awhile.
7570 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7571 * as we enter this code.)
7572 */
7573 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7574 if (h->remove_in_progress)
7575 goto done;
7576 spin_lock_irqsave(&h->lock, flags);
7577 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7578 spin_unlock_irqrestore(&h->lock, flags);
7579 if (!(doorbell_value & CFGTBL_ChangeReq))
7580 goto done;
7581 /* delay and try again */
7582 msleep(MODE_CHANGE_WAIT_INTERVAL);
7583 }
7584 return -ENODEV;
7585done:
7586 return 0;
7587}
7588
7589/* return -ENODEV or other reason on error, 0 on success */
7590static int hpsa_enter_simple_mode(struct ctlr_info *h)
7591{
7592 u32 trans_support;
7593
7594 trans_support = readl(&(h->cfgtable->TransportSupport));
7595 if (!(trans_support & SIMPLE_MODE))
7596 return -ENOTSUPP;
7597
7598 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7599
7600 /* Update the field, and then ring the doorbell */
7601 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7602 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7603 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7604 if (hpsa_wait_for_mode_change_ack(h))
7605 goto error;
7606 print_cfg_table(&h->pdev->dev, h->cfgtable);
7607 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7608 goto error;
7609 h->transMethod = CFGTBL_Trans_Simple;
7610 return 0;
7611error:
7612 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7613 return -ENODEV;
7614}
7615
7616/* free items allocated or mapped by hpsa_pci_init */
7617static void hpsa_free_pci_init(struct ctlr_info *h)
7618{
7619 hpsa_free_cfgtables(h); /* pci_init 4 */
7620 iounmap(h->vaddr); /* pci_init 3 */
7621 h->vaddr = NULL;
7622 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7623 /*
7624 * call pci_disable_device before pci_release_regions per
7625 * Documentation/PCI/pci.txt
7626 */
7627 pci_disable_device(h->pdev); /* pci_init 1 */
7628 pci_release_regions(h->pdev); /* pci_init 2 */
7629}
7630
7631/* several items must be freed later */
7632static int hpsa_pci_init(struct ctlr_info *h)
7633{
7634 int prod_index, err;
7635 bool legacy_board;
7636
7637 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7638 if (prod_index < 0)
7639 return prod_index;
7640 h->product_name = products[prod_index].product_name;
7641 h->access = *(products[prod_index].access);
7642 h->legacy_board = legacy_board;
7643 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7644 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7645
7646 err = pci_enable_device(h->pdev);
7647 if (err) {
7648 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7649 pci_disable_device(h->pdev);
7650 return err;
7651 }
7652
7653 err = pci_request_regions(h->pdev, HPSA);
7654 if (err) {
7655 dev_err(&h->pdev->dev,
7656 "failed to obtain PCI resources\n");
7657 pci_disable_device(h->pdev);
7658 return err;
7659 }
7660
7661 pci_set_master(h->pdev);
7662
7663 err = hpsa_interrupt_mode(h);
7664 if (err)
7665 goto clean1;
7666
7667 /* setup mapping between CPU and reply queue */
7668 hpsa_setup_reply_map(h);
7669
7670 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7671 if (err)
7672 goto clean2; /* intmode+region, pci */
7673 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7674 if (!h->vaddr) {
7675 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7676 err = -ENOMEM;
7677 goto clean2; /* intmode+region, pci */
7678 }
7679 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7680 if (err)
7681 goto clean3; /* vaddr, intmode+region, pci */
7682 err = hpsa_find_cfgtables(h);
7683 if (err)
7684 goto clean3; /* vaddr, intmode+region, pci */
7685 hpsa_find_board_params(h);
7686
7687 if (!hpsa_CISS_signature_present(h)) {
7688 err = -ENODEV;
7689 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7690 }
7691 hpsa_set_driver_support_bits(h);
7692 hpsa_p600_dma_prefetch_quirk(h);
7693 err = hpsa_enter_simple_mode(h);
7694 if (err)
7695 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7696 return 0;
7697
7698clean4: /* cfgtables, vaddr, intmode+region, pci */
7699 hpsa_free_cfgtables(h);
7700clean3: /* vaddr, intmode+region, pci */
7701 iounmap(h->vaddr);
7702 h->vaddr = NULL;
7703clean2: /* intmode+region, pci */
7704 hpsa_disable_interrupt_mode(h);
7705clean1:
7706 /*
7707 * call pci_disable_device before pci_release_regions per
7708 * Documentation/PCI/pci.txt
7709 */
7710 pci_disable_device(h->pdev);
7711 pci_release_regions(h->pdev);
7712 return err;
7713}
7714
7715static void hpsa_hba_inquiry(struct ctlr_info *h)
7716{
7717 int rc;
7718
7719#define HBA_INQUIRY_BYTE_COUNT 64
7720 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7721 if (!h->hba_inquiry_data)
7722 return;
7723 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7724 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7725 if (rc != 0) {
7726 kfree(h->hba_inquiry_data);
7727 h->hba_inquiry_data = NULL;
7728 }
7729}
7730
7731static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7732{
7733 int rc, i;
7734 void __iomem *vaddr;
7735
7736 if (!reset_devices)
7737 return 0;
7738
7739 /* kdump kernel is loading, we don't know in which state is
7740 * the pci interface. The dev->enable_cnt is equal zero
7741 * so we call enable+disable, wait a while and switch it on.
7742 */
7743 rc = pci_enable_device(pdev);
7744 if (rc) {
7745 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7746 return -ENODEV;
7747 }
7748 pci_disable_device(pdev);
7749 msleep(260); /* a randomly chosen number */
7750 rc = pci_enable_device(pdev);
7751 if (rc) {
7752 dev_warn(&pdev->dev, "failed to enable device.\n");
7753 return -ENODEV;
7754 }
7755
7756 pci_set_master(pdev);
7757
7758 vaddr = pci_ioremap_bar(pdev, 0);
7759 if (vaddr == NULL) {
7760 rc = -ENOMEM;
7761 goto out_disable;
7762 }
7763 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7764 iounmap(vaddr);
7765
7766 /* Reset the controller with a PCI power-cycle or via doorbell */
7767 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7768
7769 /* -ENOTSUPP here means we cannot reset the controller
7770 * but it's already (and still) up and running in
7771 * "performant mode". Or, it might be 640x, which can't reset
7772 * due to concerns about shared bbwc between 6402/6404 pair.
7773 */
7774 if (rc)
7775 goto out_disable;
7776
7777 /* Now try to get the controller to respond to a no-op */
7778 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7779 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7780 if (hpsa_noop(pdev) == 0)
7781 break;
7782 else
7783 dev_warn(&pdev->dev, "no-op failed%s\n",
7784 (i < 11 ? "; re-trying" : ""));
7785 }
7786
7787out_disable:
7788
7789 pci_disable_device(pdev);
7790 return rc;
7791}
7792
7793static void hpsa_free_cmd_pool(struct ctlr_info *h)
7794{
7795 kfree(h->cmd_pool_bits);
7796 h->cmd_pool_bits = NULL;
7797 if (h->cmd_pool) {
7798 pci_free_consistent(h->pdev,
7799 h->nr_cmds * sizeof(struct CommandList),
7800 h->cmd_pool,
7801 h->cmd_pool_dhandle);
7802 h->cmd_pool = NULL;
7803 h->cmd_pool_dhandle = 0;
7804 }
7805 if (h->errinfo_pool) {
7806 pci_free_consistent(h->pdev,
7807 h->nr_cmds * sizeof(struct ErrorInfo),
7808 h->errinfo_pool,
7809 h->errinfo_pool_dhandle);
7810 h->errinfo_pool = NULL;
7811 h->errinfo_pool_dhandle = 0;
7812 }
7813}
7814
7815static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7816{
7817 h->cmd_pool_bits = kzalloc(
7818 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7819 sizeof(unsigned long), GFP_KERNEL);
7820 h->cmd_pool = pci_alloc_consistent(h->pdev,
7821 h->nr_cmds * sizeof(*h->cmd_pool),
7822 &(h->cmd_pool_dhandle));
7823 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7824 h->nr_cmds * sizeof(*h->errinfo_pool),
7825 &(h->errinfo_pool_dhandle));
7826 if ((h->cmd_pool_bits == NULL)
7827 || (h->cmd_pool == NULL)
7828 || (h->errinfo_pool == NULL)) {
7829 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7830 goto clean_up;
7831 }
7832 hpsa_preinitialize_commands(h);
7833 return 0;
7834clean_up:
7835 hpsa_free_cmd_pool(h);
7836 return -ENOMEM;
7837}
7838
7839/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7840static void hpsa_free_irqs(struct ctlr_info *h)
7841{
7842 int i;
7843
7844 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7845 /* Single reply queue, only one irq to free */
7846 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7847 h->q[h->intr_mode] = 0;
7848 return;
7849 }
7850
7851 for (i = 0; i < h->msix_vectors; i++) {
7852 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7853 h->q[i] = 0;
7854 }
7855 for (; i < MAX_REPLY_QUEUES; i++)
7856 h->q[i] = 0;
7857}
7858
7859/* returns 0 on success; cleans up and returns -Enn on error */
7860static int hpsa_request_irqs(struct ctlr_info *h,
7861 irqreturn_t (*msixhandler)(int, void *),
7862 irqreturn_t (*intxhandler)(int, void *))
7863{
7864 int rc, i;
7865
7866 /*
7867 * initialize h->q[x] = x so that interrupt handlers know which
7868 * queue to process.
7869 */
7870 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7871 h->q[i] = (u8) i;
7872
7873 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7874 /* If performant mode and MSI-X, use multiple reply queues */
7875 for (i = 0; i < h->msix_vectors; i++) {
7876 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7877 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7878 0, h->intrname[i],
7879 &h->q[i]);
7880 if (rc) {
7881 int j;
7882
7883 dev_err(&h->pdev->dev,
7884 "failed to get irq %d for %s\n",
7885 pci_irq_vector(h->pdev, i), h->devname);
7886 for (j = 0; j < i; j++) {
7887 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7888 h->q[j] = 0;
7889 }
7890 for (; j < MAX_REPLY_QUEUES; j++)
7891 h->q[j] = 0;
7892 return rc;
7893 }
7894 }
7895 } else {
7896 /* Use single reply pool */
7897 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
7898 sprintf(h->intrname[0], "%s-msi%s", h->devname,
7899 h->msix_vectors ? "x" : "");
7900 rc = request_irq(pci_irq_vector(h->pdev, 0),
7901 msixhandler, 0,
7902 h->intrname[0],
7903 &h->q[h->intr_mode]);
7904 } else {
7905 sprintf(h->intrname[h->intr_mode],
7906 "%s-intx", h->devname);
7907 rc = request_irq(pci_irq_vector(h->pdev, 0),
7908 intxhandler, IRQF_SHARED,
7909 h->intrname[0],
7910 &h->q[h->intr_mode]);
7911 }
7912 }
7913 if (rc) {
7914 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7915 pci_irq_vector(h->pdev, 0), h->devname);
7916 hpsa_free_irqs(h);
7917 return -ENODEV;
7918 }
7919 return 0;
7920}
7921
7922static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7923{
7924 int rc;
7925 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7926
7927 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7928 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7929 if (rc) {
7930 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7931 return rc;
7932 }
7933
7934 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7935 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7936 if (rc) {
7937 dev_warn(&h->pdev->dev, "Board failed to become ready "
7938 "after soft reset.\n");
7939 return rc;
7940 }
7941
7942 return 0;
7943}
7944
7945static void hpsa_free_reply_queues(struct ctlr_info *h)
7946{
7947 int i;
7948
7949 for (i = 0; i < h->nreply_queues; i++) {
7950 if (!h->reply_queue[i].head)
7951 continue;
7952 pci_free_consistent(h->pdev,
7953 h->reply_queue_size,
7954 h->reply_queue[i].head,
7955 h->reply_queue[i].busaddr);
7956 h->reply_queue[i].head = NULL;
7957 h->reply_queue[i].busaddr = 0;
7958 }
7959 h->reply_queue_size = 0;
7960}
7961
7962static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7963{
7964 hpsa_free_performant_mode(h); /* init_one 7 */
7965 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
7966 hpsa_free_cmd_pool(h); /* init_one 5 */
7967 hpsa_free_irqs(h); /* init_one 4 */
7968 scsi_host_put(h->scsi_host); /* init_one 3 */
7969 h->scsi_host = NULL; /* init_one 3 */
7970 hpsa_free_pci_init(h); /* init_one 2_5 */
7971 free_percpu(h->lockup_detected); /* init_one 2 */
7972 h->lockup_detected = NULL; /* init_one 2 */
7973 if (h->resubmit_wq) {
7974 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
7975 h->resubmit_wq = NULL;
7976 }
7977 if (h->rescan_ctlr_wq) {
7978 destroy_workqueue(h->rescan_ctlr_wq);
7979 h->rescan_ctlr_wq = NULL;
7980 }
7981 kfree(h); /* init_one 1 */
7982}
7983
7984/* Called when controller lockup detected. */
7985static void fail_all_outstanding_cmds(struct ctlr_info *h)
7986{
7987 int i, refcount;
7988 struct CommandList *c;
7989 int failcount = 0;
7990
7991 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7992 for (i = 0; i < h->nr_cmds; i++) {
7993 c = h->cmd_pool + i;
7994 refcount = atomic_inc_return(&c->refcount);
7995 if (refcount > 1) {
7996 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7997 finish_cmd(c);
7998 atomic_dec(&h->commands_outstanding);
7999 failcount++;
8000 }
8001 cmd_free(h, c);
8002 }
8003 dev_warn(&h->pdev->dev,
8004 "failed %d commands in fail_all\n", failcount);
8005}
8006
8007static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8008{
8009 int cpu;
8010
8011 for_each_online_cpu(cpu) {
8012 u32 *lockup_detected;
8013 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8014 *lockup_detected = value;
8015 }
8016 wmb(); /* be sure the per-cpu variables are out to memory */
8017}
8018
8019static void controller_lockup_detected(struct ctlr_info *h)
8020{
8021 unsigned long flags;
8022 u32 lockup_detected;
8023
8024 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8025 spin_lock_irqsave(&h->lock, flags);
8026 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8027 if (!lockup_detected) {
8028 /* no heartbeat, but controller gave us a zero. */
8029 dev_warn(&h->pdev->dev,
8030 "lockup detected after %d but scratchpad register is zero\n",
8031 h->heartbeat_sample_interval / HZ);
8032 lockup_detected = 0xffffffff;
8033 }
8034 set_lockup_detected_for_all_cpus(h, lockup_detected);
8035 spin_unlock_irqrestore(&h->lock, flags);
8036 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8037 lockup_detected, h->heartbeat_sample_interval / HZ);
8038 pci_disable_device(h->pdev);
8039 fail_all_outstanding_cmds(h);
8040}
8041
8042static int detect_controller_lockup(struct ctlr_info *h)
8043{
8044 u64 now;
8045 u32 heartbeat;
8046 unsigned long flags;
8047
8048 now = get_jiffies_64();
8049 /* If we've received an interrupt recently, we're ok. */
8050 if (time_after64(h->last_intr_timestamp +
8051 (h->heartbeat_sample_interval), now))
8052 return false;
8053
8054 /*
8055 * If we've already checked the heartbeat recently, we're ok.
8056 * This could happen if someone sends us a signal. We
8057 * otherwise don't care about signals in this thread.
8058 */
8059 if (time_after64(h->last_heartbeat_timestamp +
8060 (h->heartbeat_sample_interval), now))
8061 return false;
8062
8063 /* If heartbeat has not changed since we last looked, we're not ok. */
8064 spin_lock_irqsave(&h->lock, flags);
8065 heartbeat = readl(&h->cfgtable->HeartBeat);
8066 spin_unlock_irqrestore(&h->lock, flags);
8067 if (h->last_heartbeat == heartbeat) {
8068 controller_lockup_detected(h);
8069 return true;
8070 }
8071
8072 /* We're ok. */
8073 h->last_heartbeat = heartbeat;
8074 h->last_heartbeat_timestamp = now;
8075 return false;
8076}
8077
8078static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8079{
8080 int i;
8081 char *event_type;
8082
8083 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8084 return;
8085
8086 /* Ask the controller to clear the events we're handling. */
8087 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8088 | CFGTBL_Trans_io_accel2)) &&
8089 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8090 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8091
8092 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8093 event_type = "state change";
8094 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8095 event_type = "configuration change";
8096 /* Stop sending new RAID offload reqs via the IO accelerator */
8097 scsi_block_requests(h->scsi_host);
8098 for (i = 0; i < h->ndevices; i++) {
8099 h->dev[i]->offload_enabled = 0;
8100 h->dev[i]->offload_to_be_enabled = 0;
8101 }
8102 hpsa_drain_accel_commands(h);
8103 /* Set 'accelerator path config change' bit */
8104 dev_warn(&h->pdev->dev,
8105 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8106 h->events, event_type);
8107 writel(h->events, &(h->cfgtable->clear_event_notify));
8108 /* Set the "clear event notify field update" bit 6 */
8109 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8110 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8111 hpsa_wait_for_clear_event_notify_ack(h);
8112 scsi_unblock_requests(h->scsi_host);
8113 } else {
8114 /* Acknowledge controller notification events. */
8115 writel(h->events, &(h->cfgtable->clear_event_notify));
8116 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8117 hpsa_wait_for_clear_event_notify_ack(h);
8118#if 0
8119 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8120 hpsa_wait_for_mode_change_ack(h);
8121#endif
8122 }
8123 return;
8124}
8125
8126/* Check a register on the controller to see if there are configuration
8127 * changes (added/changed/removed logical drives, etc.) which mean that
8128 * we should rescan the controller for devices.
8129 * Also check flag for driver-initiated rescan.
8130 */
8131static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8132{
8133 if (h->drv_req_rescan) {
8134 h->drv_req_rescan = 0;
8135 return 1;
8136 }
8137
8138 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8139 return 0;
8140
8141 h->events = readl(&(h->cfgtable->event_notify));
8142 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8143}
8144
8145/*
8146 * Check if any of the offline devices have become ready
8147 */
8148static int hpsa_offline_devices_ready(struct ctlr_info *h)
8149{
8150 unsigned long flags;
8151 struct offline_device_entry *d;
8152 struct list_head *this, *tmp;
8153
8154 spin_lock_irqsave(&h->offline_device_lock, flags);
8155 list_for_each_safe(this, tmp, &h->offline_device_list) {
8156 d = list_entry(this, struct offline_device_entry,
8157 offline_list);
8158 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8159 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8160 spin_lock_irqsave(&h->offline_device_lock, flags);
8161 list_del(&d->offline_list);
8162 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8163 return 1;
8164 }
8165 spin_lock_irqsave(&h->offline_device_lock, flags);
8166 }
8167 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8168 return 0;
8169}
8170
8171static int hpsa_luns_changed(struct ctlr_info *h)
8172{
8173 int rc = 1; /* assume there are changes */
8174 struct ReportLUNdata *logdev = NULL;
8175
8176 /* if we can't find out if lun data has changed,
8177 * assume that it has.
8178 */
8179
8180 if (!h->lastlogicals)
8181 return rc;
8182
8183 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8184 if (!logdev)
8185 return rc;
8186
8187 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8188 dev_warn(&h->pdev->dev,
8189 "report luns failed, can't track lun changes.\n");
8190 goto out;
8191 }
8192 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8193 dev_info(&h->pdev->dev,
8194 "Lun changes detected.\n");
8195 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8196 goto out;
8197 } else
8198 rc = 0; /* no changes detected. */
8199out:
8200 kfree(logdev);
8201 return rc;
8202}
8203
8204static void hpsa_perform_rescan(struct ctlr_info *h)
8205{
8206 struct Scsi_Host *sh = NULL;
8207 unsigned long flags;
8208
8209 /*
8210 * Do the scan after the reset
8211 */
8212 spin_lock_irqsave(&h->reset_lock, flags);
8213 if (h->reset_in_progress) {
8214 h->drv_req_rescan = 1;
8215 spin_unlock_irqrestore(&h->reset_lock, flags);
8216 return;
8217 }
8218 spin_unlock_irqrestore(&h->reset_lock, flags);
8219
8220 sh = scsi_host_get(h->scsi_host);
8221 if (sh != NULL) {
8222 hpsa_scan_start(sh);
8223 scsi_host_put(sh);
8224 h->drv_req_rescan = 0;
8225 }
8226}
8227
8228/*
8229 * watch for controller events
8230 */
8231static void hpsa_event_monitor_worker(struct work_struct *work)
8232{
8233 struct ctlr_info *h = container_of(to_delayed_work(work),
8234 struct ctlr_info, event_monitor_work);
8235 unsigned long flags;
8236
8237 spin_lock_irqsave(&h->lock, flags);
8238 if (h->remove_in_progress) {
8239 spin_unlock_irqrestore(&h->lock, flags);
8240 return;
8241 }
8242 spin_unlock_irqrestore(&h->lock, flags);
8243
8244 if (hpsa_ctlr_needs_rescan(h)) {
8245 hpsa_ack_ctlr_events(h);
8246 hpsa_perform_rescan(h);
8247 }
8248
8249 spin_lock_irqsave(&h->lock, flags);
8250 if (!h->remove_in_progress)
8251 schedule_delayed_work(&h->event_monitor_work,
8252 HPSA_EVENT_MONITOR_INTERVAL);
8253 spin_unlock_irqrestore(&h->lock, flags);
8254}
8255
8256static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8257{
8258 unsigned long flags;
8259 struct ctlr_info *h = container_of(to_delayed_work(work),
8260 struct ctlr_info, rescan_ctlr_work);
8261
8262 spin_lock_irqsave(&h->lock, flags);
8263 if (h->remove_in_progress) {
8264 spin_unlock_irqrestore(&h->lock, flags);
8265 return;
8266 }
8267 spin_unlock_irqrestore(&h->lock, flags);
8268
8269 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8270 hpsa_perform_rescan(h);
8271 } else if (h->discovery_polling) {
8272 hpsa_disable_rld_caching(h);
8273 if (hpsa_luns_changed(h)) {
8274 dev_info(&h->pdev->dev,
8275 "driver discovery polling rescan.\n");
8276 hpsa_perform_rescan(h);
8277 }
8278 }
8279 spin_lock_irqsave(&h->lock, flags);
8280 if (!h->remove_in_progress)
8281 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8282 h->heartbeat_sample_interval);
8283 spin_unlock_irqrestore(&h->lock, flags);
8284}
8285
8286static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8287{
8288 unsigned long flags;
8289 struct ctlr_info *h = container_of(to_delayed_work(work),
8290 struct ctlr_info, monitor_ctlr_work);
8291
8292 detect_controller_lockup(h);
8293 if (lockup_detected(h))
8294 return;
8295
8296 spin_lock_irqsave(&h->lock, flags);
8297 if (!h->remove_in_progress)
8298 schedule_delayed_work(&h->monitor_ctlr_work,
8299 h->heartbeat_sample_interval);
8300 spin_unlock_irqrestore(&h->lock, flags);
8301}
8302
8303static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8304 char *name)
8305{
8306 struct workqueue_struct *wq = NULL;
8307
8308 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8309 if (!wq)
8310 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8311
8312 return wq;
8313}
8314
8315static void hpda_free_ctlr_info(struct ctlr_info *h)
8316{
8317 kfree(h->reply_map);
8318 kfree(h);
8319}
8320
8321static struct ctlr_info *hpda_alloc_ctlr_info(void)
8322{
8323 struct ctlr_info *h;
8324
8325 h = kzalloc(sizeof(*h), GFP_KERNEL);
8326 if (!h)
8327 return NULL;
8328
8329 h->reply_map = kzalloc(sizeof(*h->reply_map) * nr_cpu_ids, GFP_KERNEL);
8330 if (!h->reply_map) {
8331 kfree(h);
8332 return NULL;
8333 }
8334 return h;
8335}
8336
8337static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8338{
8339 int dac, rc;
8340 struct ctlr_info *h;
8341 int try_soft_reset = 0;
8342 unsigned long flags;
8343 u32 board_id;
8344
8345 if (number_of_controllers == 0)
8346 printk(KERN_INFO DRIVER_NAME "\n");
8347
8348 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8349 if (rc < 0) {
8350 dev_warn(&pdev->dev, "Board ID not found\n");
8351 return rc;
8352 }
8353
8354 rc = hpsa_init_reset_devices(pdev, board_id);
8355 if (rc) {
8356 if (rc != -ENOTSUPP)
8357 return rc;
8358 /* If the reset fails in a particular way (it has no way to do
8359 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8360 * a soft reset once we get the controller configured up to the
8361 * point that it can accept a command.
8362 */
8363 try_soft_reset = 1;
8364 rc = 0;
8365 }
8366
8367reinit_after_soft_reset:
8368
8369 /* Command structures must be aligned on a 32-byte boundary because
8370 * the 5 lower bits of the address are used by the hardware. and by
8371 * the driver. See comments in hpsa.h for more info.
8372 */
8373 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8374 h = hpda_alloc_ctlr_info();
8375 if (!h) {
8376 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8377 return -ENOMEM;
8378 }
8379
8380 h->pdev = pdev;
8381
8382 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8383 INIT_LIST_HEAD(&h->offline_device_list);
8384 spin_lock_init(&h->lock);
8385 spin_lock_init(&h->offline_device_lock);
8386 spin_lock_init(&h->scan_lock);
8387 spin_lock_init(&h->reset_lock);
8388 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8389
8390 /* Allocate and clear per-cpu variable lockup_detected */
8391 h->lockup_detected = alloc_percpu(u32);
8392 if (!h->lockup_detected) {
8393 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8394 rc = -ENOMEM;
8395 goto clean1; /* aer/h */
8396 }
8397 set_lockup_detected_for_all_cpus(h, 0);
8398
8399 rc = hpsa_pci_init(h);
8400 if (rc)
8401 goto clean2; /* lu, aer/h */
8402
8403 /* relies on h-> settings made by hpsa_pci_init, including
8404 * interrupt_mode h->intr */
8405 rc = hpsa_scsi_host_alloc(h);
8406 if (rc)
8407 goto clean2_5; /* pci, lu, aer/h */
8408
8409 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8410 h->ctlr = number_of_controllers;
8411 number_of_controllers++;
8412
8413 /* configure PCI DMA stuff */
8414 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8415 if (rc == 0) {
8416 dac = 1;
8417 } else {
8418 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8419 if (rc == 0) {
8420 dac = 0;
8421 } else {
8422 dev_err(&pdev->dev, "no suitable DMA available\n");
8423 goto clean3; /* shost, pci, lu, aer/h */
8424 }
8425 }
8426
8427 /* make sure the board interrupts are off */
8428 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8429
8430 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8431 if (rc)
8432 goto clean3; /* shost, pci, lu, aer/h */
8433 rc = hpsa_alloc_cmd_pool(h);
8434 if (rc)
8435 goto clean4; /* irq, shost, pci, lu, aer/h */
8436 rc = hpsa_alloc_sg_chain_blocks(h);
8437 if (rc)
8438 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8439 init_waitqueue_head(&h->scan_wait_queue);
8440 init_waitqueue_head(&h->event_sync_wait_queue);
8441 mutex_init(&h->reset_mutex);
8442 h->scan_finished = 1; /* no scan currently in progress */
8443 h->scan_waiting = 0;
8444
8445 pci_set_drvdata(pdev, h);
8446 h->ndevices = 0;
8447
8448 spin_lock_init(&h->devlock);
8449 rc = hpsa_put_ctlr_into_performant_mode(h);
8450 if (rc)
8451 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8452
8453 /* create the resubmit workqueue */
8454 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8455 if (!h->rescan_ctlr_wq) {
8456 rc = -ENOMEM;
8457 goto clean7;
8458 }
8459
8460 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8461 if (!h->resubmit_wq) {
8462 rc = -ENOMEM;
8463 goto clean7; /* aer/h */
8464 }
8465
8466 /*
8467 * At this point, the controller is ready to take commands.
8468 * Now, if reset_devices and the hard reset didn't work, try
8469 * the soft reset and see if that works.
8470 */
8471 if (try_soft_reset) {
8472
8473 /* This is kind of gross. We may or may not get a completion
8474 * from the soft reset command, and if we do, then the value
8475 * from the fifo may or may not be valid. So, we wait 10 secs
8476 * after the reset throwing away any completions we get during
8477 * that time. Unregister the interrupt handler and register
8478 * fake ones to scoop up any residual completions.
8479 */
8480 spin_lock_irqsave(&h->lock, flags);
8481 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8482 spin_unlock_irqrestore(&h->lock, flags);
8483 hpsa_free_irqs(h);
8484 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8485 hpsa_intx_discard_completions);
8486 if (rc) {
8487 dev_warn(&h->pdev->dev,
8488 "Failed to request_irq after soft reset.\n");
8489 /*
8490 * cannot goto clean7 or free_irqs will be called
8491 * again. Instead, do its work
8492 */
8493 hpsa_free_performant_mode(h); /* clean7 */
8494 hpsa_free_sg_chain_blocks(h); /* clean6 */
8495 hpsa_free_cmd_pool(h); /* clean5 */
8496 /*
8497 * skip hpsa_free_irqs(h) clean4 since that
8498 * was just called before request_irqs failed
8499 */
8500 goto clean3;
8501 }
8502
8503 rc = hpsa_kdump_soft_reset(h);
8504 if (rc)
8505 /* Neither hard nor soft reset worked, we're hosed. */
8506 goto clean7;
8507
8508 dev_info(&h->pdev->dev, "Board READY.\n");
8509 dev_info(&h->pdev->dev,
8510 "Waiting for stale completions to drain.\n");
8511 h->access.set_intr_mask(h, HPSA_INTR_ON);
8512 msleep(10000);
8513 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8514
8515 rc = controller_reset_failed(h->cfgtable);
8516 if (rc)
8517 dev_info(&h->pdev->dev,
8518 "Soft reset appears to have failed.\n");
8519
8520 /* since the controller's reset, we have to go back and re-init
8521 * everything. Easiest to just forget what we've done and do it
8522 * all over again.
8523 */
8524 hpsa_undo_allocations_after_kdump_soft_reset(h);
8525 try_soft_reset = 0;
8526 if (rc)
8527 /* don't goto clean, we already unallocated */
8528 return -ENODEV;
8529
8530 goto reinit_after_soft_reset;
8531 }
8532
8533 /* Enable Accelerated IO path at driver layer */
8534 h->acciopath_status = 1;
8535 /* Disable discovery polling.*/
8536 h->discovery_polling = 0;
8537
8538
8539 /* Turn the interrupts on so we can service requests */
8540 h->access.set_intr_mask(h, HPSA_INTR_ON);
8541
8542 hpsa_hba_inquiry(h);
8543
8544 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8545 if (!h->lastlogicals)
8546 dev_info(&h->pdev->dev,
8547 "Can't track change to report lun data\n");
8548
8549 /* hook into SCSI subsystem */
8550 rc = hpsa_scsi_add_host(h);
8551 if (rc)
8552 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8553
8554 /* Monitor the controller for firmware lockups */
8555 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8556 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8557 schedule_delayed_work(&h->monitor_ctlr_work,
8558 h->heartbeat_sample_interval);
8559 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8560 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8561 h->heartbeat_sample_interval);
8562 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8563 schedule_delayed_work(&h->event_monitor_work,
8564 HPSA_EVENT_MONITOR_INTERVAL);
8565 return 0;
8566
8567clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8568 hpsa_free_performant_mode(h);
8569 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8570clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8571 hpsa_free_sg_chain_blocks(h);
8572clean5: /* cmd, irq, shost, pci, lu, aer/h */
8573 hpsa_free_cmd_pool(h);
8574clean4: /* irq, shost, pci, lu, aer/h */
8575 hpsa_free_irqs(h);
8576clean3: /* shost, pci, lu, aer/h */
8577 scsi_host_put(h->scsi_host);
8578 h->scsi_host = NULL;
8579clean2_5: /* pci, lu, aer/h */
8580 hpsa_free_pci_init(h);
8581clean2: /* lu, aer/h */
8582 if (h->lockup_detected) {
8583 free_percpu(h->lockup_detected);
8584 h->lockup_detected = NULL;
8585 }
8586clean1: /* wq/aer/h */
8587 if (h->resubmit_wq) {
8588 destroy_workqueue(h->resubmit_wq);
8589 h->resubmit_wq = NULL;
8590 }
8591 if (h->rescan_ctlr_wq) {
8592 destroy_workqueue(h->rescan_ctlr_wq);
8593 h->rescan_ctlr_wq = NULL;
8594 }
8595 kfree(h);
8596 return rc;
8597}
8598
8599static void hpsa_flush_cache(struct ctlr_info *h)
8600{
8601 char *flush_buf;
8602 struct CommandList *c;
8603 int rc;
8604
8605 if (unlikely(lockup_detected(h)))
8606 return;
8607 flush_buf = kzalloc(4, GFP_KERNEL);
8608 if (!flush_buf)
8609 return;
8610
8611 c = cmd_alloc(h);
8612
8613 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8614 RAID_CTLR_LUNID, TYPE_CMD)) {
8615 goto out;
8616 }
8617 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8618 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8619 if (rc)
8620 goto out;
8621 if (c->err_info->CommandStatus != 0)
8622out:
8623 dev_warn(&h->pdev->dev,
8624 "error flushing cache on controller\n");
8625 cmd_free(h, c);
8626 kfree(flush_buf);
8627}
8628
8629/* Make controller gather fresh report lun data each time we
8630 * send down a report luns request
8631 */
8632static void hpsa_disable_rld_caching(struct ctlr_info *h)
8633{
8634 u32 *options;
8635 struct CommandList *c;
8636 int rc;
8637
8638 /* Don't bother trying to set diag options if locked up */
8639 if (unlikely(h->lockup_detected))
8640 return;
8641
8642 options = kzalloc(sizeof(*options), GFP_KERNEL);
8643 if (!options)
8644 return;
8645
8646 c = cmd_alloc(h);
8647
8648 /* first, get the current diag options settings */
8649 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8650 RAID_CTLR_LUNID, TYPE_CMD))
8651 goto errout;
8652
8653 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8654 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8655 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8656 goto errout;
8657
8658 /* Now, set the bit for disabling the RLD caching */
8659 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8660
8661 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8662 RAID_CTLR_LUNID, TYPE_CMD))
8663 goto errout;
8664
8665 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8666 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8667 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8668 goto errout;
8669
8670 /* Now verify that it got set: */
8671 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8672 RAID_CTLR_LUNID, TYPE_CMD))
8673 goto errout;
8674
8675 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8676 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8677 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8678 goto errout;
8679
8680 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8681 goto out;
8682
8683errout:
8684 dev_err(&h->pdev->dev,
8685 "Error: failed to disable report lun data caching.\n");
8686out:
8687 cmd_free(h, c);
8688 kfree(options);
8689}
8690
8691static void __hpsa_shutdown(struct pci_dev *pdev)
8692{
8693 struct ctlr_info *h;
8694
8695 h = pci_get_drvdata(pdev);
8696 /* Turn board interrupts off and send the flush cache command
8697 * sendcmd will turn off interrupt, and send the flush...
8698 * To write all data in the battery backed cache to disks
8699 */
8700 hpsa_flush_cache(h);
8701 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8702 hpsa_free_irqs(h); /* init_one 4 */
8703 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8704}
8705
8706static void hpsa_shutdown(struct pci_dev *pdev)
8707{
8708 __hpsa_shutdown(pdev);
8709 pci_disable_device(pdev);
8710}
8711
8712static void hpsa_free_device_info(struct ctlr_info *h)
8713{
8714 int i;
8715
8716 for (i = 0; i < h->ndevices; i++) {
8717 kfree(h->dev[i]);
8718 h->dev[i] = NULL;
8719 }
8720}
8721
8722static void hpsa_remove_one(struct pci_dev *pdev)
8723{
8724 struct ctlr_info *h;
8725 unsigned long flags;
8726
8727 if (pci_get_drvdata(pdev) == NULL) {
8728 dev_err(&pdev->dev, "unable to remove device\n");
8729 return;
8730 }
8731 h = pci_get_drvdata(pdev);
8732
8733 /* Get rid of any controller monitoring work items */
8734 spin_lock_irqsave(&h->lock, flags);
8735 h->remove_in_progress = 1;
8736 spin_unlock_irqrestore(&h->lock, flags);
8737 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8738 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8739 cancel_delayed_work_sync(&h->event_monitor_work);
8740 destroy_workqueue(h->rescan_ctlr_wq);
8741 destroy_workqueue(h->resubmit_wq);
8742
8743 hpsa_delete_sas_host(h);
8744
8745 /*
8746 * Call before disabling interrupts.
8747 * scsi_remove_host can trigger I/O operations especially
8748 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8749 * operations which cannot complete and will hang the system.
8750 */
8751 if (h->scsi_host)
8752 scsi_remove_host(h->scsi_host); /* init_one 8 */
8753 /* includes hpsa_free_irqs - init_one 4 */
8754 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8755 __hpsa_shutdown(pdev);
8756
8757 hpsa_free_device_info(h); /* scan */
8758
8759 kfree(h->hba_inquiry_data); /* init_one 10 */
8760 h->hba_inquiry_data = NULL; /* init_one 10 */
8761 hpsa_free_ioaccel2_sg_chain_blocks(h);
8762 hpsa_free_performant_mode(h); /* init_one 7 */
8763 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8764 hpsa_free_cmd_pool(h); /* init_one 5 */
8765 kfree(h->lastlogicals);
8766
8767 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8768
8769 scsi_host_put(h->scsi_host); /* init_one 3 */
8770 h->scsi_host = NULL; /* init_one 3 */
8771
8772 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8773 hpsa_free_pci_init(h); /* init_one 2.5 */
8774
8775 free_percpu(h->lockup_detected); /* init_one 2 */
8776 h->lockup_detected = NULL; /* init_one 2 */
8777 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8778
8779 hpda_free_ctlr_info(h); /* init_one 1 */
8780}
8781
8782static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8783 __attribute__((unused)) pm_message_t state)
8784{
8785 return -ENOSYS;
8786}
8787
8788static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8789{
8790 return -ENOSYS;
8791}
8792
8793static struct pci_driver hpsa_pci_driver = {
8794 .name = HPSA,
8795 .probe = hpsa_init_one,
8796 .remove = hpsa_remove_one,
8797 .id_table = hpsa_pci_device_id, /* id_table */
8798 .shutdown = hpsa_shutdown,
8799 .suspend = hpsa_suspend,
8800 .resume = hpsa_resume,
8801};
8802
8803/* Fill in bucket_map[], given nsgs (the max number of
8804 * scatter gather elements supported) and bucket[],
8805 * which is an array of 8 integers. The bucket[] array
8806 * contains 8 different DMA transfer sizes (in 16
8807 * byte increments) which the controller uses to fetch
8808 * commands. This function fills in bucket_map[], which
8809 * maps a given number of scatter gather elements to one of
8810 * the 8 DMA transfer sizes. The point of it is to allow the
8811 * controller to only do as much DMA as needed to fetch the
8812 * command, with the DMA transfer size encoded in the lower
8813 * bits of the command address.
8814 */
8815static void calc_bucket_map(int bucket[], int num_buckets,
8816 int nsgs, int min_blocks, u32 *bucket_map)
8817{
8818 int i, j, b, size;
8819
8820 /* Note, bucket_map must have nsgs+1 entries. */
8821 for (i = 0; i <= nsgs; i++) {
8822 /* Compute size of a command with i SG entries */
8823 size = i + min_blocks;
8824 b = num_buckets; /* Assume the biggest bucket */
8825 /* Find the bucket that is just big enough */
8826 for (j = 0; j < num_buckets; j++) {
8827 if (bucket[j] >= size) {
8828 b = j;
8829 break;
8830 }
8831 }
8832 /* for a command with i SG entries, use bucket b. */
8833 bucket_map[i] = b;
8834 }
8835}
8836
8837/*
8838 * return -ENODEV on err, 0 on success (or no action)
8839 * allocates numerous items that must be freed later
8840 */
8841static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8842{
8843 int i;
8844 unsigned long register_value;
8845 unsigned long transMethod = CFGTBL_Trans_Performant |
8846 (trans_support & CFGTBL_Trans_use_short_tags) |
8847 CFGTBL_Trans_enable_directed_msix |
8848 (trans_support & (CFGTBL_Trans_io_accel1 |
8849 CFGTBL_Trans_io_accel2));
8850 struct access_method access = SA5_performant_access;
8851
8852 /* This is a bit complicated. There are 8 registers on
8853 * the controller which we write to to tell it 8 different
8854 * sizes of commands which there may be. It's a way of
8855 * reducing the DMA done to fetch each command. Encoded into
8856 * each command's tag are 3 bits which communicate to the controller
8857 * which of the eight sizes that command fits within. The size of
8858 * each command depends on how many scatter gather entries there are.
8859 * Each SG entry requires 16 bytes. The eight registers are programmed
8860 * with the number of 16-byte blocks a command of that size requires.
8861 * The smallest command possible requires 5 such 16 byte blocks.
8862 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8863 * blocks. Note, this only extends to the SG entries contained
8864 * within the command block, and does not extend to chained blocks
8865 * of SG elements. bft[] contains the eight values we write to
8866 * the registers. They are not evenly distributed, but have more
8867 * sizes for small commands, and fewer sizes for larger commands.
8868 */
8869 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8870#define MIN_IOACCEL2_BFT_ENTRY 5
8871#define HPSA_IOACCEL2_HEADER_SZ 4
8872 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8873 13, 14, 15, 16, 17, 18, 19,
8874 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8875 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8876 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8877 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8878 16 * MIN_IOACCEL2_BFT_ENTRY);
8879 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8880 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8881 /* 5 = 1 s/g entry or 4k
8882 * 6 = 2 s/g entry or 8k
8883 * 8 = 4 s/g entry or 16k
8884 * 10 = 6 s/g entry or 24k
8885 */
8886
8887 /* If the controller supports either ioaccel method then
8888 * we can also use the RAID stack submit path that does not
8889 * perform the superfluous readl() after each command submission.
8890 */
8891 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8892 access = SA5_performant_access_no_read;
8893
8894 /* Controller spec: zero out this buffer. */
8895 for (i = 0; i < h->nreply_queues; i++)
8896 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8897
8898 bft[7] = SG_ENTRIES_IN_CMD + 4;
8899 calc_bucket_map(bft, ARRAY_SIZE(bft),
8900 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8901 for (i = 0; i < 8; i++)
8902 writel(bft[i], &h->transtable->BlockFetch[i]);
8903
8904 /* size of controller ring buffer */
8905 writel(h->max_commands, &h->transtable->RepQSize);
8906 writel(h->nreply_queues, &h->transtable->RepQCount);
8907 writel(0, &h->transtable->RepQCtrAddrLow32);
8908 writel(0, &h->transtable->RepQCtrAddrHigh32);
8909
8910 for (i = 0; i < h->nreply_queues; i++) {
8911 writel(0, &h->transtable->RepQAddr[i].upper);
8912 writel(h->reply_queue[i].busaddr,
8913 &h->transtable->RepQAddr[i].lower);
8914 }
8915
8916 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8917 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8918 /*
8919 * enable outbound interrupt coalescing in accelerator mode;
8920 */
8921 if (trans_support & CFGTBL_Trans_io_accel1) {
8922 access = SA5_ioaccel_mode1_access;
8923 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8924 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8925 } else
8926 if (trans_support & CFGTBL_Trans_io_accel2)
8927 access = SA5_ioaccel_mode2_access;
8928 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8929 if (hpsa_wait_for_mode_change_ack(h)) {
8930 dev_err(&h->pdev->dev,
8931 "performant mode problem - doorbell timeout\n");
8932 return -ENODEV;
8933 }
8934 register_value = readl(&(h->cfgtable->TransportActive));
8935 if (!(register_value & CFGTBL_Trans_Performant)) {
8936 dev_err(&h->pdev->dev,
8937 "performant mode problem - transport not active\n");
8938 return -ENODEV;
8939 }
8940 /* Change the access methods to the performant access methods */
8941 h->access = access;
8942 h->transMethod = transMethod;
8943
8944 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8945 (trans_support & CFGTBL_Trans_io_accel2)))
8946 return 0;
8947
8948 if (trans_support & CFGTBL_Trans_io_accel1) {
8949 /* Set up I/O accelerator mode */
8950 for (i = 0; i < h->nreply_queues; i++) {
8951 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8952 h->reply_queue[i].current_entry =
8953 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8954 }
8955 bft[7] = h->ioaccel_maxsg + 8;
8956 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8957 h->ioaccel1_blockFetchTable);
8958
8959 /* initialize all reply queue entries to unused */
8960 for (i = 0; i < h->nreply_queues; i++)
8961 memset(h->reply_queue[i].head,
8962 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8963 h->reply_queue_size);
8964
8965 /* set all the constant fields in the accelerator command
8966 * frames once at init time to save CPU cycles later.
8967 */
8968 for (i = 0; i < h->nr_cmds; i++) {
8969 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8970
8971 cp->function = IOACCEL1_FUNCTION_SCSIIO;
8972 cp->err_info = (u32) (h->errinfo_pool_dhandle +
8973 (i * sizeof(struct ErrorInfo)));
8974 cp->err_info_len = sizeof(struct ErrorInfo);
8975 cp->sgl_offset = IOACCEL1_SGLOFFSET;
8976 cp->host_context_flags =
8977 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8978 cp->timeout_sec = 0;
8979 cp->ReplyQueue = 0;
8980 cp->tag =
8981 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8982 cp->host_addr =
8983 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8984 (i * sizeof(struct io_accel1_cmd)));
8985 }
8986 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8987 u64 cfg_offset, cfg_base_addr_index;
8988 u32 bft2_offset, cfg_base_addr;
8989 int rc;
8990
8991 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8992 &cfg_base_addr_index, &cfg_offset);
8993 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8994 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8995 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8996 4, h->ioaccel2_blockFetchTable);
8997 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8998 BUILD_BUG_ON(offsetof(struct CfgTable,
8999 io_accel_request_size_offset) != 0xb8);
9000 h->ioaccel2_bft2_regs =
9001 remap_pci_mem(pci_resource_start(h->pdev,
9002 cfg_base_addr_index) +
9003 cfg_offset + bft2_offset,
9004 ARRAY_SIZE(bft2) *
9005 sizeof(*h->ioaccel2_bft2_regs));
9006 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9007 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9008 }
9009 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9010 if (hpsa_wait_for_mode_change_ack(h)) {
9011 dev_err(&h->pdev->dev,
9012 "performant mode problem - enabling ioaccel mode\n");
9013 return -ENODEV;
9014 }
9015 return 0;
9016}
9017
9018/* Free ioaccel1 mode command blocks and block fetch table */
9019static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9020{
9021 if (h->ioaccel_cmd_pool) {
9022 pci_free_consistent(h->pdev,
9023 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9024 h->ioaccel_cmd_pool,
9025 h->ioaccel_cmd_pool_dhandle);
9026 h->ioaccel_cmd_pool = NULL;
9027 h->ioaccel_cmd_pool_dhandle = 0;
9028 }
9029 kfree(h->ioaccel1_blockFetchTable);
9030 h->ioaccel1_blockFetchTable = NULL;
9031}
9032
9033/* Allocate ioaccel1 mode command blocks and block fetch table */
9034static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9035{
9036 h->ioaccel_maxsg =
9037 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9038 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9039 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9040
9041 /* Command structures must be aligned on a 128-byte boundary
9042 * because the 7 lower bits of the address are used by the
9043 * hardware.
9044 */
9045 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9046 IOACCEL1_COMMANDLIST_ALIGNMENT);
9047 h->ioaccel_cmd_pool =
9048 pci_alloc_consistent(h->pdev,
9049 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9050 &(h->ioaccel_cmd_pool_dhandle));
9051
9052 h->ioaccel1_blockFetchTable =
9053 kmalloc(((h->ioaccel_maxsg + 1) *
9054 sizeof(u32)), GFP_KERNEL);
9055
9056 if ((h->ioaccel_cmd_pool == NULL) ||
9057 (h->ioaccel1_blockFetchTable == NULL))
9058 goto clean_up;
9059
9060 memset(h->ioaccel_cmd_pool, 0,
9061 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9062 return 0;
9063
9064clean_up:
9065 hpsa_free_ioaccel1_cmd_and_bft(h);
9066 return -ENOMEM;
9067}
9068
9069/* Free ioaccel2 mode command blocks and block fetch table */
9070static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9071{
9072 hpsa_free_ioaccel2_sg_chain_blocks(h);
9073
9074 if (h->ioaccel2_cmd_pool) {
9075 pci_free_consistent(h->pdev,
9076 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9077 h->ioaccel2_cmd_pool,
9078 h->ioaccel2_cmd_pool_dhandle);
9079 h->ioaccel2_cmd_pool = NULL;
9080 h->ioaccel2_cmd_pool_dhandle = 0;
9081 }
9082 kfree(h->ioaccel2_blockFetchTable);
9083 h->ioaccel2_blockFetchTable = NULL;
9084}
9085
9086/* Allocate ioaccel2 mode command blocks and block fetch table */
9087static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9088{
9089 int rc;
9090
9091 /* Allocate ioaccel2 mode command blocks and block fetch table */
9092
9093 h->ioaccel_maxsg =
9094 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9095 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9096 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9097
9098 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9099 IOACCEL2_COMMANDLIST_ALIGNMENT);
9100 h->ioaccel2_cmd_pool =
9101 pci_alloc_consistent(h->pdev,
9102 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9103 &(h->ioaccel2_cmd_pool_dhandle));
9104
9105 h->ioaccel2_blockFetchTable =
9106 kmalloc(((h->ioaccel_maxsg + 1) *
9107 sizeof(u32)), GFP_KERNEL);
9108
9109 if ((h->ioaccel2_cmd_pool == NULL) ||
9110 (h->ioaccel2_blockFetchTable == NULL)) {
9111 rc = -ENOMEM;
9112 goto clean_up;
9113 }
9114
9115 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9116 if (rc)
9117 goto clean_up;
9118
9119 memset(h->ioaccel2_cmd_pool, 0,
9120 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9121 return 0;
9122
9123clean_up:
9124 hpsa_free_ioaccel2_cmd_and_bft(h);
9125 return rc;
9126}
9127
9128/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9129static void hpsa_free_performant_mode(struct ctlr_info *h)
9130{
9131 kfree(h->blockFetchTable);
9132 h->blockFetchTable = NULL;
9133 hpsa_free_reply_queues(h);
9134 hpsa_free_ioaccel1_cmd_and_bft(h);
9135 hpsa_free_ioaccel2_cmd_and_bft(h);
9136}
9137
9138/* return -ENODEV on error, 0 on success (or no action)
9139 * allocates numerous items that must be freed later
9140 */
9141static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9142{
9143 u32 trans_support;
9144 unsigned long transMethod = CFGTBL_Trans_Performant |
9145 CFGTBL_Trans_use_short_tags;
9146 int i, rc;
9147
9148 if (hpsa_simple_mode)
9149 return 0;
9150
9151 trans_support = readl(&(h->cfgtable->TransportSupport));
9152 if (!(trans_support & PERFORMANT_MODE))
9153 return 0;
9154
9155 /* Check for I/O accelerator mode support */
9156 if (trans_support & CFGTBL_Trans_io_accel1) {
9157 transMethod |= CFGTBL_Trans_io_accel1 |
9158 CFGTBL_Trans_enable_directed_msix;
9159 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9160 if (rc)
9161 return rc;
9162 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9163 transMethod |= CFGTBL_Trans_io_accel2 |
9164 CFGTBL_Trans_enable_directed_msix;
9165 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9166 if (rc)
9167 return rc;
9168 }
9169
9170 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9171 hpsa_get_max_perf_mode_cmds(h);
9172 /* Performant mode ring buffer and supporting data structures */
9173 h->reply_queue_size = h->max_commands * sizeof(u64);
9174
9175 for (i = 0; i < h->nreply_queues; i++) {
9176 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9177 h->reply_queue_size,
9178 &(h->reply_queue[i].busaddr));
9179 if (!h->reply_queue[i].head) {
9180 rc = -ENOMEM;
9181 goto clean1; /* rq, ioaccel */
9182 }
9183 h->reply_queue[i].size = h->max_commands;
9184 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9185 h->reply_queue[i].current_entry = 0;
9186 }
9187
9188 /* Need a block fetch table for performant mode */
9189 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9190 sizeof(u32)), GFP_KERNEL);
9191 if (!h->blockFetchTable) {
9192 rc = -ENOMEM;
9193 goto clean1; /* rq, ioaccel */
9194 }
9195
9196 rc = hpsa_enter_performant_mode(h, trans_support);
9197 if (rc)
9198 goto clean2; /* bft, rq, ioaccel */
9199 return 0;
9200
9201clean2: /* bft, rq, ioaccel */
9202 kfree(h->blockFetchTable);
9203 h->blockFetchTable = NULL;
9204clean1: /* rq, ioaccel */
9205 hpsa_free_reply_queues(h);
9206 hpsa_free_ioaccel1_cmd_and_bft(h);
9207 hpsa_free_ioaccel2_cmd_and_bft(h);
9208 return rc;
9209}
9210
9211static int is_accelerated_cmd(struct CommandList *c)
9212{
9213 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9214}
9215
9216static void hpsa_drain_accel_commands(struct ctlr_info *h)
9217{
9218 struct CommandList *c = NULL;
9219 int i, accel_cmds_out;
9220 int refcount;
9221
9222 do { /* wait for all outstanding ioaccel commands to drain out */
9223 accel_cmds_out = 0;
9224 for (i = 0; i < h->nr_cmds; i++) {
9225 c = h->cmd_pool + i;
9226 refcount = atomic_inc_return(&c->refcount);
9227 if (refcount > 1) /* Command is allocated */
9228 accel_cmds_out += is_accelerated_cmd(c);
9229 cmd_free(h, c);
9230 }
9231 if (accel_cmds_out <= 0)
9232 break;
9233 msleep(100);
9234 } while (1);
9235}
9236
9237static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9238 struct hpsa_sas_port *hpsa_sas_port)
9239{
9240 struct hpsa_sas_phy *hpsa_sas_phy;
9241 struct sas_phy *phy;
9242
9243 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9244 if (!hpsa_sas_phy)
9245 return NULL;
9246
9247 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9248 hpsa_sas_port->next_phy_index);
9249 if (!phy) {
9250 kfree(hpsa_sas_phy);
9251 return NULL;
9252 }
9253
9254 hpsa_sas_port->next_phy_index++;
9255 hpsa_sas_phy->phy = phy;
9256 hpsa_sas_phy->parent_port = hpsa_sas_port;
9257
9258 return hpsa_sas_phy;
9259}
9260
9261static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9262{
9263 struct sas_phy *phy = hpsa_sas_phy->phy;
9264
9265 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9266 if (hpsa_sas_phy->added_to_port)
9267 list_del(&hpsa_sas_phy->phy_list_entry);
9268 sas_phy_delete(phy);
9269 kfree(hpsa_sas_phy);
9270}
9271
9272static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9273{
9274 int rc;
9275 struct hpsa_sas_port *hpsa_sas_port;
9276 struct sas_phy *phy;
9277 struct sas_identify *identify;
9278
9279 hpsa_sas_port = hpsa_sas_phy->parent_port;
9280 phy = hpsa_sas_phy->phy;
9281
9282 identify = &phy->identify;
9283 memset(identify, 0, sizeof(*identify));
9284 identify->sas_address = hpsa_sas_port->sas_address;
9285 identify->device_type = SAS_END_DEVICE;
9286 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9287 identify->target_port_protocols = SAS_PROTOCOL_STP;
9288 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9289 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9290 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9291 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9292 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9293
9294 rc = sas_phy_add(hpsa_sas_phy->phy);
9295 if (rc)
9296 return rc;
9297
9298 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9299 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9300 &hpsa_sas_port->phy_list_head);
9301 hpsa_sas_phy->added_to_port = true;
9302
9303 return 0;
9304}
9305
9306static int
9307 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9308 struct sas_rphy *rphy)
9309{
9310 struct sas_identify *identify;
9311
9312 identify = &rphy->identify;
9313 identify->sas_address = hpsa_sas_port->sas_address;
9314 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9315 identify->target_port_protocols = SAS_PROTOCOL_STP;
9316
9317 return sas_rphy_add(rphy);
9318}
9319
9320static struct hpsa_sas_port
9321 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9322 u64 sas_address)
9323{
9324 int rc;
9325 struct hpsa_sas_port *hpsa_sas_port;
9326 struct sas_port *port;
9327
9328 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9329 if (!hpsa_sas_port)
9330 return NULL;
9331
9332 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9333 hpsa_sas_port->parent_node = hpsa_sas_node;
9334
9335 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9336 if (!port)
9337 goto free_hpsa_port;
9338
9339 rc = sas_port_add(port);
9340 if (rc)
9341 goto free_sas_port;
9342
9343 hpsa_sas_port->port = port;
9344 hpsa_sas_port->sas_address = sas_address;
9345 list_add_tail(&hpsa_sas_port->port_list_entry,
9346 &hpsa_sas_node->port_list_head);
9347
9348 return hpsa_sas_port;
9349
9350free_sas_port:
9351 sas_port_free(port);
9352free_hpsa_port:
9353 kfree(hpsa_sas_port);
9354
9355 return NULL;
9356}
9357
9358static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9359{
9360 struct hpsa_sas_phy *hpsa_sas_phy;
9361 struct hpsa_sas_phy *next;
9362
9363 list_for_each_entry_safe(hpsa_sas_phy, next,
9364 &hpsa_sas_port->phy_list_head, phy_list_entry)
9365 hpsa_free_sas_phy(hpsa_sas_phy);
9366
9367 sas_port_delete(hpsa_sas_port->port);
9368 list_del(&hpsa_sas_port->port_list_entry);
9369 kfree(hpsa_sas_port);
9370}
9371
9372static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9373{
9374 struct hpsa_sas_node *hpsa_sas_node;
9375
9376 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9377 if (hpsa_sas_node) {
9378 hpsa_sas_node->parent_dev = parent_dev;
9379 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9380 }
9381
9382 return hpsa_sas_node;
9383}
9384
9385static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9386{
9387 struct hpsa_sas_port *hpsa_sas_port;
9388 struct hpsa_sas_port *next;
9389
9390 if (!hpsa_sas_node)
9391 return;
9392
9393 list_for_each_entry_safe(hpsa_sas_port, next,
9394 &hpsa_sas_node->port_list_head, port_list_entry)
9395 hpsa_free_sas_port(hpsa_sas_port);
9396
9397 kfree(hpsa_sas_node);
9398}
9399
9400static struct hpsa_scsi_dev_t
9401 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9402 struct sas_rphy *rphy)
9403{
9404 int i;
9405 struct hpsa_scsi_dev_t *device;
9406
9407 for (i = 0; i < h->ndevices; i++) {
9408 device = h->dev[i];
9409 if (!device->sas_port)
9410 continue;
9411 if (device->sas_port->rphy == rphy)
9412 return device;
9413 }
9414
9415 return NULL;
9416}
9417
9418static int hpsa_add_sas_host(struct ctlr_info *h)
9419{
9420 int rc;
9421 struct device *parent_dev;
9422 struct hpsa_sas_node *hpsa_sas_node;
9423 struct hpsa_sas_port *hpsa_sas_port;
9424 struct hpsa_sas_phy *hpsa_sas_phy;
9425
9426 parent_dev = &h->scsi_host->shost_gendev;
9427
9428 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9429 if (!hpsa_sas_node)
9430 return -ENOMEM;
9431
9432 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9433 if (!hpsa_sas_port) {
9434 rc = -ENODEV;
9435 goto free_sas_node;
9436 }
9437
9438 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9439 if (!hpsa_sas_phy) {
9440 rc = -ENODEV;
9441 goto free_sas_port;
9442 }
9443
9444 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9445 if (rc)
9446 goto free_sas_phy;
9447
9448 h->sas_host = hpsa_sas_node;
9449
9450 return 0;
9451
9452free_sas_phy:
9453 hpsa_free_sas_phy(hpsa_sas_phy);
9454free_sas_port:
9455 hpsa_free_sas_port(hpsa_sas_port);
9456free_sas_node:
9457 hpsa_free_sas_node(hpsa_sas_node);
9458
9459 return rc;
9460}
9461
9462static void hpsa_delete_sas_host(struct ctlr_info *h)
9463{
9464 hpsa_free_sas_node(h->sas_host);
9465}
9466
9467static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9468 struct hpsa_scsi_dev_t *device)
9469{
9470 int rc;
9471 struct hpsa_sas_port *hpsa_sas_port;
9472 struct sas_rphy *rphy;
9473
9474 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9475 if (!hpsa_sas_port)
9476 return -ENOMEM;
9477
9478 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9479 if (!rphy) {
9480 rc = -ENODEV;
9481 goto free_sas_port;
9482 }
9483
9484 hpsa_sas_port->rphy = rphy;
9485 device->sas_port = hpsa_sas_port;
9486
9487 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9488 if (rc)
9489 goto free_sas_port;
9490
9491 return 0;
9492
9493free_sas_port:
9494 hpsa_free_sas_port(hpsa_sas_port);
9495 device->sas_port = NULL;
9496
9497 return rc;
9498}
9499
9500static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9501{
9502 if (device->sas_port) {
9503 hpsa_free_sas_port(device->sas_port);
9504 device->sas_port = NULL;
9505 }
9506}
9507
9508static int
9509hpsa_sas_get_linkerrors(struct sas_phy *phy)
9510{
9511 return 0;
9512}
9513
9514static int
9515hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9516{
9517 *identifier = 0;
9518 return 0;
9519}
9520
9521static int
9522hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9523{
9524 return -ENXIO;
9525}
9526
9527static int
9528hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9529{
9530 return 0;
9531}
9532
9533static int
9534hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9535{
9536 return 0;
9537}
9538
9539static int
9540hpsa_sas_phy_setup(struct sas_phy *phy)
9541{
9542 return 0;
9543}
9544
9545static void
9546hpsa_sas_phy_release(struct sas_phy *phy)
9547{
9548}
9549
9550static int
9551hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9552{
9553 return -EINVAL;
9554}
9555
9556static struct sas_function_template hpsa_sas_transport_functions = {
9557 .get_linkerrors = hpsa_sas_get_linkerrors,
9558 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9559 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9560 .phy_reset = hpsa_sas_phy_reset,
9561 .phy_enable = hpsa_sas_phy_enable,
9562 .phy_setup = hpsa_sas_phy_setup,
9563 .phy_release = hpsa_sas_phy_release,
9564 .set_phy_speed = hpsa_sas_phy_speed,
9565};
9566
9567/*
9568 * This is it. Register the PCI driver information for the cards we control
9569 * the OS will call our registered routines when it finds one of our cards.
9570 */
9571static int __init hpsa_init(void)
9572{
9573 int rc;
9574
9575 hpsa_sas_transport_template =
9576 sas_attach_transport(&hpsa_sas_transport_functions);
9577 if (!hpsa_sas_transport_template)
9578 return -ENODEV;
9579
9580 rc = pci_register_driver(&hpsa_pci_driver);
9581
9582 if (rc)
9583 sas_release_transport(hpsa_sas_transport_template);
9584
9585 return rc;
9586}
9587
9588static void __exit hpsa_cleanup(void)
9589{
9590 pci_unregister_driver(&hpsa_pci_driver);
9591 sas_release_transport(hpsa_sas_transport_template);
9592}
9593
9594static void __attribute__((unused)) verify_offsets(void)
9595{
9596#define VERIFY_OFFSET(member, offset) \
9597 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9598
9599 VERIFY_OFFSET(structure_size, 0);
9600 VERIFY_OFFSET(volume_blk_size, 4);
9601 VERIFY_OFFSET(volume_blk_cnt, 8);
9602 VERIFY_OFFSET(phys_blk_shift, 16);
9603 VERIFY_OFFSET(parity_rotation_shift, 17);
9604 VERIFY_OFFSET(strip_size, 18);
9605 VERIFY_OFFSET(disk_starting_blk, 20);
9606 VERIFY_OFFSET(disk_blk_cnt, 28);
9607 VERIFY_OFFSET(data_disks_per_row, 36);
9608 VERIFY_OFFSET(metadata_disks_per_row, 38);
9609 VERIFY_OFFSET(row_cnt, 40);
9610 VERIFY_OFFSET(layout_map_count, 42);
9611 VERIFY_OFFSET(flags, 44);
9612 VERIFY_OFFSET(dekindex, 46);
9613 /* VERIFY_OFFSET(reserved, 48 */
9614 VERIFY_OFFSET(data, 64);
9615
9616#undef VERIFY_OFFSET
9617
9618#define VERIFY_OFFSET(member, offset) \
9619 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9620
9621 VERIFY_OFFSET(IU_type, 0);
9622 VERIFY_OFFSET(direction, 1);
9623 VERIFY_OFFSET(reply_queue, 2);
9624 /* VERIFY_OFFSET(reserved1, 3); */
9625 VERIFY_OFFSET(scsi_nexus, 4);
9626 VERIFY_OFFSET(Tag, 8);
9627 VERIFY_OFFSET(cdb, 16);
9628 VERIFY_OFFSET(cciss_lun, 32);
9629 VERIFY_OFFSET(data_len, 40);
9630 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9631 VERIFY_OFFSET(sg_count, 45);
9632 /* VERIFY_OFFSET(reserved3 */
9633 VERIFY_OFFSET(err_ptr, 48);
9634 VERIFY_OFFSET(err_len, 56);
9635 /* VERIFY_OFFSET(reserved4 */
9636 VERIFY_OFFSET(sg, 64);
9637
9638#undef VERIFY_OFFSET
9639
9640#define VERIFY_OFFSET(member, offset) \
9641 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9642
9643 VERIFY_OFFSET(dev_handle, 0x00);
9644 VERIFY_OFFSET(reserved1, 0x02);
9645 VERIFY_OFFSET(function, 0x03);
9646 VERIFY_OFFSET(reserved2, 0x04);
9647 VERIFY_OFFSET(err_info, 0x0C);
9648 VERIFY_OFFSET(reserved3, 0x10);
9649 VERIFY_OFFSET(err_info_len, 0x12);
9650 VERIFY_OFFSET(reserved4, 0x13);
9651 VERIFY_OFFSET(sgl_offset, 0x14);
9652 VERIFY_OFFSET(reserved5, 0x15);
9653 VERIFY_OFFSET(transfer_len, 0x1C);
9654 VERIFY_OFFSET(reserved6, 0x20);
9655 VERIFY_OFFSET(io_flags, 0x24);
9656 VERIFY_OFFSET(reserved7, 0x26);
9657 VERIFY_OFFSET(LUN, 0x34);
9658 VERIFY_OFFSET(control, 0x3C);
9659 VERIFY_OFFSET(CDB, 0x40);
9660 VERIFY_OFFSET(reserved8, 0x50);
9661 VERIFY_OFFSET(host_context_flags, 0x60);
9662 VERIFY_OFFSET(timeout_sec, 0x62);
9663 VERIFY_OFFSET(ReplyQueue, 0x64);
9664 VERIFY_OFFSET(reserved9, 0x65);
9665 VERIFY_OFFSET(tag, 0x68);
9666 VERIFY_OFFSET(host_addr, 0x70);
9667 VERIFY_OFFSET(CISS_LUN, 0x78);
9668 VERIFY_OFFSET(SG, 0x78 + 8);
9669#undef VERIFY_OFFSET
9670}
9671
9672module_init(hpsa_init);
9673module_exit(hpsa_cleanup);