blob: 1579eb2bc29f73e15674d70150b61d41193ae389 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3 * Copyright (C) 2013, Intel Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16#include <linux/bitops.h>
17#include <linux/init.h>
18#include <linux/module.h>
19#include <linux/device.h>
20#include <linux/ioport.h>
21#include <linux/errno.h>
22#include <linux/err.h>
23#include <linux/interrupt.h>
24#include <linux/kernel.h>
25#include <linux/pci.h>
26#include <linux/platform_device.h>
27#include <linux/spi/pxa2xx_spi.h>
28#include <linux/spi/spi.h>
29#include <linux/delay.h>
30#include <linux/gpio.h>
31#include <linux/gpio/consumer.h>
32#include <linux/slab.h>
33#include <linux/clk.h>
34#include <linux/pm_runtime.h>
35#include <linux/acpi.h>
36
37#include "spi-pxa2xx.h"
38
39MODULE_AUTHOR("Stephen Street");
40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41MODULE_LICENSE("GPL");
42MODULE_ALIAS("platform:pxa2xx-spi");
43
44#define TIMOUT_DFLT 1000
45
46/*
47 * for testing SSCR1 changes that require SSP restart, basically
48 * everything except the service and interrupt enables, the pxa270 developer
49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
50 * list, but the PXA255 dev man says all bits without really meaning the
51 * service and interrupt enables
52 */
53#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
54 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
56 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
57 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59
60#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
61 | QUARK_X1000_SSCR1_EFWR \
62 | QUARK_X1000_SSCR1_RFT \
63 | QUARK_X1000_SSCR1_TFT \
64 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65
66#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
71 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
72
73#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
74#define LPSS_CS_CONTROL_SW_MODE BIT(0)
75#define LPSS_CS_CONTROL_CS_HIGH BIT(1)
76#define LPSS_CAPS_CS_EN_SHIFT 9
77#define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
78
79#define LPSS_PRIV_CLOCK_GATE 0x38
80#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
81#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
82
83struct lpss_config {
84 /* LPSS offset from drv_data->ioaddr */
85 unsigned offset;
86 /* Register offsets from drv_data->lpss_base or -1 */
87 int reg_general;
88 int reg_ssp;
89 int reg_cs_ctrl;
90 int reg_capabilities;
91 /* FIFO thresholds */
92 u32 rx_threshold;
93 u32 tx_threshold_lo;
94 u32 tx_threshold_hi;
95 /* Chip select control */
96 unsigned cs_sel_shift;
97 unsigned cs_sel_mask;
98 unsigned cs_num;
99 /* Quirks */
100 unsigned cs_clk_stays_gated : 1;
101};
102
103/* Keep these sorted with enum pxa_ssp_type */
104static const struct lpss_config lpss_platforms[] = {
105 { /* LPSS_LPT_SSP */
106 .offset = 0x800,
107 .reg_general = 0x08,
108 .reg_ssp = 0x0c,
109 .reg_cs_ctrl = 0x18,
110 .reg_capabilities = -1,
111 .rx_threshold = 64,
112 .tx_threshold_lo = 160,
113 .tx_threshold_hi = 224,
114 },
115 { /* LPSS_BYT_SSP */
116 .offset = 0x400,
117 .reg_general = 0x08,
118 .reg_ssp = 0x0c,
119 .reg_cs_ctrl = 0x18,
120 .reg_capabilities = -1,
121 .rx_threshold = 64,
122 .tx_threshold_lo = 160,
123 .tx_threshold_hi = 224,
124 },
125 { /* LPSS_BSW_SSP */
126 .offset = 0x400,
127 .reg_general = 0x08,
128 .reg_ssp = 0x0c,
129 .reg_cs_ctrl = 0x18,
130 .reg_capabilities = -1,
131 .rx_threshold = 64,
132 .tx_threshold_lo = 160,
133 .tx_threshold_hi = 224,
134 .cs_sel_shift = 2,
135 .cs_sel_mask = 1 << 2,
136 .cs_num = 2,
137 },
138 { /* LPSS_SPT_SSP */
139 .offset = 0x200,
140 .reg_general = -1,
141 .reg_ssp = 0x20,
142 .reg_cs_ctrl = 0x24,
143 .reg_capabilities = -1,
144 .rx_threshold = 1,
145 .tx_threshold_lo = 32,
146 .tx_threshold_hi = 56,
147 },
148 { /* LPSS_BXT_SSP */
149 .offset = 0x200,
150 .reg_general = -1,
151 .reg_ssp = 0x20,
152 .reg_cs_ctrl = 0x24,
153 .reg_capabilities = 0xfc,
154 .rx_threshold = 1,
155 .tx_threshold_lo = 16,
156 .tx_threshold_hi = 48,
157 .cs_sel_shift = 8,
158 .cs_sel_mask = 3 << 8,
159 .cs_clk_stays_gated = true,
160 },
161 { /* LPSS_CNL_SSP */
162 .offset = 0x200,
163 .reg_general = -1,
164 .reg_ssp = 0x20,
165 .reg_cs_ctrl = 0x24,
166 .reg_capabilities = 0xfc,
167 .rx_threshold = 1,
168 .tx_threshold_lo = 32,
169 .tx_threshold_hi = 56,
170 .cs_sel_shift = 8,
171 .cs_sel_mask = 3 << 8,
172 .cs_clk_stays_gated = true,
173 },
174};
175
176static inline const struct lpss_config
177*lpss_get_config(const struct driver_data *drv_data)
178{
179 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
180}
181
182static bool is_lpss_ssp(const struct driver_data *drv_data)
183{
184 switch (drv_data->ssp_type) {
185 case LPSS_LPT_SSP:
186 case LPSS_BYT_SSP:
187 case LPSS_BSW_SSP:
188 case LPSS_SPT_SSP:
189 case LPSS_BXT_SSP:
190 case LPSS_CNL_SSP:
191 return true;
192 default:
193 return false;
194 }
195}
196
197static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
198{
199 return drv_data->ssp_type == QUARK_X1000_SSP;
200}
201
202static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
203{
204 switch (drv_data->ssp_type) {
205 case QUARK_X1000_SSP:
206 return QUARK_X1000_SSCR1_CHANGE_MASK;
207 case CE4100_SSP:
208 return CE4100_SSCR1_CHANGE_MASK;
209 default:
210 return SSCR1_CHANGE_MASK;
211 }
212}
213
214static u32
215pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
216{
217 switch (drv_data->ssp_type) {
218 case QUARK_X1000_SSP:
219 return RX_THRESH_QUARK_X1000_DFLT;
220 case CE4100_SSP:
221 return RX_THRESH_CE4100_DFLT;
222 default:
223 return RX_THRESH_DFLT;
224 }
225}
226
227static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
228{
229 u32 mask;
230
231 switch (drv_data->ssp_type) {
232 case QUARK_X1000_SSP:
233 mask = QUARK_X1000_SSSR_TFL_MASK;
234 break;
235 case CE4100_SSP:
236 mask = CE4100_SSSR_TFL_MASK;
237 break;
238 default:
239 mask = SSSR_TFL_MASK;
240 break;
241 }
242
243 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
244}
245
246static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
247 u32 *sccr1_reg)
248{
249 u32 mask;
250
251 switch (drv_data->ssp_type) {
252 case QUARK_X1000_SSP:
253 mask = QUARK_X1000_SSCR1_RFT;
254 break;
255 case CE4100_SSP:
256 mask = CE4100_SSCR1_RFT;
257 break;
258 default:
259 mask = SSCR1_RFT;
260 break;
261 }
262 *sccr1_reg &= ~mask;
263}
264
265static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
266 u32 *sccr1_reg, u32 threshold)
267{
268 switch (drv_data->ssp_type) {
269 case QUARK_X1000_SSP:
270 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
271 break;
272 case CE4100_SSP:
273 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
274 break;
275 default:
276 *sccr1_reg |= SSCR1_RxTresh(threshold);
277 break;
278 }
279}
280
281static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
282 u32 clk_div, u8 bits)
283{
284 switch (drv_data->ssp_type) {
285 case QUARK_X1000_SSP:
286 return clk_div
287 | QUARK_X1000_SSCR0_Motorola
288 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
289 | SSCR0_SSE;
290 default:
291 return clk_div
292 | SSCR0_Motorola
293 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
294 | SSCR0_SSE
295 | (bits > 16 ? SSCR0_EDSS : 0);
296 }
297}
298
299/*
300 * Read and write LPSS SSP private registers. Caller must first check that
301 * is_lpss_ssp() returns true before these can be called.
302 */
303static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
304{
305 WARN_ON(!drv_data->lpss_base);
306 return readl(drv_data->lpss_base + offset);
307}
308
309static void __lpss_ssp_write_priv(struct driver_data *drv_data,
310 unsigned offset, u32 value)
311{
312 WARN_ON(!drv_data->lpss_base);
313 writel(value, drv_data->lpss_base + offset);
314}
315
316/*
317 * lpss_ssp_setup - perform LPSS SSP specific setup
318 * @drv_data: pointer to the driver private data
319 *
320 * Perform LPSS SSP specific setup. This function must be called first if
321 * one is going to use LPSS SSP private registers.
322 */
323static void lpss_ssp_setup(struct driver_data *drv_data)
324{
325 const struct lpss_config *config;
326 u32 value;
327
328 config = lpss_get_config(drv_data);
329 drv_data->lpss_base = drv_data->ioaddr + config->offset;
330
331 /* Enable software chip select control */
332 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
333 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
334 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
335 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
336
337 /* Enable multiblock DMA transfers */
338 if (drv_data->master_info->enable_dma) {
339 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
340
341 if (config->reg_general >= 0) {
342 value = __lpss_ssp_read_priv(drv_data,
343 config->reg_general);
344 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
345 __lpss_ssp_write_priv(drv_data,
346 config->reg_general, value);
347 }
348 }
349}
350
351static void lpss_ssp_select_cs(struct driver_data *drv_data,
352 const struct lpss_config *config)
353{
354 u32 value, cs;
355
356 if (!config->cs_sel_mask)
357 return;
358
359 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
360
361 cs = drv_data->master->cur_msg->spi->chip_select;
362 cs <<= config->cs_sel_shift;
363 if (cs != (value & config->cs_sel_mask)) {
364 /*
365 * When switching another chip select output active the
366 * output must be selected first and wait 2 ssp_clk cycles
367 * before changing state to active. Otherwise a short
368 * glitch will occur on the previous chip select since
369 * output select is latched but state control is not.
370 */
371 value &= ~config->cs_sel_mask;
372 value |= cs;
373 __lpss_ssp_write_priv(drv_data,
374 config->reg_cs_ctrl, value);
375 ndelay(1000000000 /
376 (drv_data->master->max_speed_hz / 2));
377 }
378}
379
380static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
381{
382 const struct lpss_config *config;
383 u32 value;
384
385 config = lpss_get_config(drv_data);
386
387 if (enable)
388 lpss_ssp_select_cs(drv_data, config);
389
390 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
391 if (enable)
392 value &= ~LPSS_CS_CONTROL_CS_HIGH;
393 else
394 value |= LPSS_CS_CONTROL_CS_HIGH;
395 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
396 if (config->cs_clk_stays_gated) {
397 u32 clkgate;
398
399 /*
400 * Changing CS alone when dynamic clock gating is on won't
401 * actually flip CS at that time. This ruins SPI transfers
402 * that specify delays, or have no data. Toggle the clock mode
403 * to force on briefly to poke the CS pin to move.
404 */
405 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
406 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
407 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
408
409 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
410 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
411 }
412}
413
414static void cs_assert(struct driver_data *drv_data)
415{
416 struct chip_data *chip =
417 spi_get_ctldata(drv_data->master->cur_msg->spi);
418
419 if (drv_data->ssp_type == CE4100_SSP) {
420 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
421 return;
422 }
423
424 if (chip->cs_control) {
425 chip->cs_control(PXA2XX_CS_ASSERT);
426 return;
427 }
428
429 if (chip->gpiod_cs) {
430 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
431 return;
432 }
433
434 if (is_lpss_ssp(drv_data))
435 lpss_ssp_cs_control(drv_data, true);
436}
437
438static void cs_deassert(struct driver_data *drv_data)
439{
440 struct chip_data *chip =
441 spi_get_ctldata(drv_data->master->cur_msg->spi);
442
443 if (drv_data->ssp_type == CE4100_SSP)
444 return;
445
446 if (chip->cs_control) {
447 chip->cs_control(PXA2XX_CS_DEASSERT);
448 return;
449 }
450
451 if (chip->gpiod_cs) {
452 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
453 return;
454 }
455
456 if (is_lpss_ssp(drv_data))
457 lpss_ssp_cs_control(drv_data, false);
458}
459
460int pxa2xx_spi_flush(struct driver_data *drv_data)
461{
462 unsigned long limit = loops_per_jiffy << 1;
463
464 do {
465 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
466 pxa2xx_spi_read(drv_data, SSDR);
467 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
468 write_SSSR_CS(drv_data, SSSR_ROR);
469
470 return limit;
471}
472
473static int null_writer(struct driver_data *drv_data)
474{
475 u8 n_bytes = drv_data->n_bytes;
476
477 if (pxa2xx_spi_txfifo_full(drv_data)
478 || (drv_data->tx == drv_data->tx_end))
479 return 0;
480
481 pxa2xx_spi_write(drv_data, SSDR, 0);
482 drv_data->tx += n_bytes;
483
484 return 1;
485}
486
487static int null_reader(struct driver_data *drv_data)
488{
489 u8 n_bytes = drv_data->n_bytes;
490
491 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
492 && (drv_data->rx < drv_data->rx_end)) {
493 pxa2xx_spi_read(drv_data, SSDR);
494 drv_data->rx += n_bytes;
495 }
496
497 return drv_data->rx == drv_data->rx_end;
498}
499
500static int u8_writer(struct driver_data *drv_data)
501{
502 if (pxa2xx_spi_txfifo_full(drv_data)
503 || (drv_data->tx == drv_data->tx_end))
504 return 0;
505
506 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
507 ++drv_data->tx;
508
509 return 1;
510}
511
512static int u8_reader(struct driver_data *drv_data)
513{
514 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
515 && (drv_data->rx < drv_data->rx_end)) {
516 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
517 ++drv_data->rx;
518 }
519
520 return drv_data->rx == drv_data->rx_end;
521}
522
523static int u16_writer(struct driver_data *drv_data)
524{
525 if (pxa2xx_spi_txfifo_full(drv_data)
526 || (drv_data->tx == drv_data->tx_end))
527 return 0;
528
529 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
530 drv_data->tx += 2;
531
532 return 1;
533}
534
535static int u16_reader(struct driver_data *drv_data)
536{
537 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
538 && (drv_data->rx < drv_data->rx_end)) {
539 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
540 drv_data->rx += 2;
541 }
542
543 return drv_data->rx == drv_data->rx_end;
544}
545
546static int u32_writer(struct driver_data *drv_data)
547{
548 if (pxa2xx_spi_txfifo_full(drv_data)
549 || (drv_data->tx == drv_data->tx_end))
550 return 0;
551
552 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
553 drv_data->tx += 4;
554
555 return 1;
556}
557
558static int u32_reader(struct driver_data *drv_data)
559{
560 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
561 && (drv_data->rx < drv_data->rx_end)) {
562 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
563 drv_data->rx += 4;
564 }
565
566 return drv_data->rx == drv_data->rx_end;
567}
568
569void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
570{
571 struct spi_message *msg = drv_data->master->cur_msg;
572 struct spi_transfer *trans = drv_data->cur_transfer;
573
574 /* Move to next transfer */
575 if (trans->transfer_list.next != &msg->transfers) {
576 drv_data->cur_transfer =
577 list_entry(trans->transfer_list.next,
578 struct spi_transfer,
579 transfer_list);
580 return RUNNING_STATE;
581 } else
582 return DONE_STATE;
583}
584
585/* caller already set message->status; dma and pio irqs are blocked */
586static void giveback(struct driver_data *drv_data)
587{
588 struct spi_transfer* last_transfer;
589 struct spi_message *msg;
590 unsigned long timeout;
591
592 msg = drv_data->master->cur_msg;
593 drv_data->cur_transfer = NULL;
594
595 last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
596 transfer_list);
597
598 /* Delay if requested before any change in chip select */
599 if (last_transfer->delay_usecs)
600 udelay(last_transfer->delay_usecs);
601
602 /* Wait until SSP becomes idle before deasserting the CS */
603 timeout = jiffies + msecs_to_jiffies(10);
604 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
605 !time_after(jiffies, timeout))
606 cpu_relax();
607
608 /* Drop chip select UNLESS cs_change is true or we are returning
609 * a message with an error, or next message is for another chip
610 */
611 if (!last_transfer->cs_change)
612 cs_deassert(drv_data);
613 else {
614 struct spi_message *next_msg;
615
616 /* Holding of cs was hinted, but we need to make sure
617 * the next message is for the same chip. Don't waste
618 * time with the following tests unless this was hinted.
619 *
620 * We cannot postpone this until pump_messages, because
621 * after calling msg->complete (below) the driver that
622 * sent the current message could be unloaded, which
623 * could invalidate the cs_control() callback...
624 */
625
626 /* get a pointer to the next message, if any */
627 next_msg = spi_get_next_queued_message(drv_data->master);
628
629 /* see if the next and current messages point
630 * to the same chip
631 */
632 if ((next_msg && next_msg->spi != msg->spi) ||
633 msg->state == ERROR_STATE)
634 cs_deassert(drv_data);
635 }
636
637 spi_finalize_current_message(drv_data->master);
638}
639
640static void reset_sccr1(struct driver_data *drv_data)
641{
642 struct chip_data *chip =
643 spi_get_ctldata(drv_data->master->cur_msg->spi);
644 u32 sccr1_reg;
645
646 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
647 switch (drv_data->ssp_type) {
648 case QUARK_X1000_SSP:
649 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
650 break;
651 case CE4100_SSP:
652 sccr1_reg &= ~CE4100_SSCR1_RFT;
653 break;
654 default:
655 sccr1_reg &= ~SSCR1_RFT;
656 break;
657 }
658 sccr1_reg |= chip->threshold;
659 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
660}
661
662static void int_error_stop(struct driver_data *drv_data, const char* msg)
663{
664 /* Stop and reset SSP */
665 write_SSSR_CS(drv_data, drv_data->clear_sr);
666 reset_sccr1(drv_data);
667 if (!pxa25x_ssp_comp(drv_data))
668 pxa2xx_spi_write(drv_data, SSTO, 0);
669 pxa2xx_spi_flush(drv_data);
670 pxa2xx_spi_write(drv_data, SSCR0,
671 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
672
673 dev_err(&drv_data->pdev->dev, "%s\n", msg);
674
675 drv_data->master->cur_msg->state = ERROR_STATE;
676 tasklet_schedule(&drv_data->pump_transfers);
677}
678
679static void int_transfer_complete(struct driver_data *drv_data)
680{
681 /* Clear and disable interrupts */
682 write_SSSR_CS(drv_data, drv_data->clear_sr);
683 reset_sccr1(drv_data);
684 if (!pxa25x_ssp_comp(drv_data))
685 pxa2xx_spi_write(drv_data, SSTO, 0);
686
687 /* Update total byte transferred return count actual bytes read */
688 drv_data->master->cur_msg->actual_length += drv_data->len -
689 (drv_data->rx_end - drv_data->rx);
690
691 /* Transfer delays and chip select release are
692 * handled in pump_transfers or giveback
693 */
694
695 /* Move to next transfer */
696 drv_data->master->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
697
698 /* Schedule transfer tasklet */
699 tasklet_schedule(&drv_data->pump_transfers);
700}
701
702static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
703{
704 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
705 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
706
707 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
708
709 if (irq_status & SSSR_ROR) {
710 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
711 return IRQ_HANDLED;
712 }
713
714 if (irq_status & SSSR_TINT) {
715 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
716 if (drv_data->read(drv_data)) {
717 int_transfer_complete(drv_data);
718 return IRQ_HANDLED;
719 }
720 }
721
722 /* Drain rx fifo, Fill tx fifo and prevent overruns */
723 do {
724 if (drv_data->read(drv_data)) {
725 int_transfer_complete(drv_data);
726 return IRQ_HANDLED;
727 }
728 } while (drv_data->write(drv_data));
729
730 if (drv_data->read(drv_data)) {
731 int_transfer_complete(drv_data);
732 return IRQ_HANDLED;
733 }
734
735 if (drv_data->tx == drv_data->tx_end) {
736 u32 bytes_left;
737 u32 sccr1_reg;
738
739 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
740 sccr1_reg &= ~SSCR1_TIE;
741
742 /*
743 * PXA25x_SSP has no timeout, set up rx threshould for the
744 * remaining RX bytes.
745 */
746 if (pxa25x_ssp_comp(drv_data)) {
747 u32 rx_thre;
748
749 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
750
751 bytes_left = drv_data->rx_end - drv_data->rx;
752 switch (drv_data->n_bytes) {
753 case 4:
754 bytes_left >>= 1;
755 case 2:
756 bytes_left >>= 1;
757 }
758
759 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
760 if (rx_thre > bytes_left)
761 rx_thre = bytes_left;
762
763 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
764 }
765 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
766 }
767
768 /* We did something */
769 return IRQ_HANDLED;
770}
771
772static void handle_bad_msg(struct driver_data *drv_data)
773{
774 pxa2xx_spi_write(drv_data, SSCR0,
775 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
776 pxa2xx_spi_write(drv_data, SSCR1,
777 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
778 if (!pxa25x_ssp_comp(drv_data))
779 pxa2xx_spi_write(drv_data, SSTO, 0);
780 write_SSSR_CS(drv_data, drv_data->clear_sr);
781
782 dev_err(&drv_data->pdev->dev,
783 "bad message state in interrupt handler\n");
784}
785
786static irqreturn_t ssp_int(int irq, void *dev_id)
787{
788 struct driver_data *drv_data = dev_id;
789 u32 sccr1_reg;
790 u32 mask = drv_data->mask_sr;
791 u32 status;
792
793 /*
794 * The IRQ might be shared with other peripherals so we must first
795 * check that are we RPM suspended or not. If we are we assume that
796 * the IRQ was not for us (we shouldn't be RPM suspended when the
797 * interrupt is enabled).
798 */
799 if (pm_runtime_suspended(&drv_data->pdev->dev))
800 return IRQ_NONE;
801
802 /*
803 * If the device is not yet in RPM suspended state and we get an
804 * interrupt that is meant for another device, check if status bits
805 * are all set to one. That means that the device is already
806 * powered off.
807 */
808 status = pxa2xx_spi_read(drv_data, SSSR);
809 if (status == ~0)
810 return IRQ_NONE;
811
812 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
813
814 /* Ignore possible writes if we don't need to write */
815 if (!(sccr1_reg & SSCR1_TIE))
816 mask &= ~SSSR_TFS;
817
818 /* Ignore RX timeout interrupt if it is disabled */
819 if (!(sccr1_reg & SSCR1_TINTE))
820 mask &= ~SSSR_TINT;
821
822 if (!(status & mask))
823 return IRQ_NONE;
824
825 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
826 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
827
828 if (!drv_data->master->cur_msg) {
829 handle_bad_msg(drv_data);
830 /* Never fail */
831 return IRQ_HANDLED;
832 }
833
834 return drv_data->transfer_handler(drv_data);
835}
836
837/*
838 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
839 * input frequency by fractions of 2^24. It also has a divider by 5.
840 *
841 * There are formulas to get baud rate value for given input frequency and
842 * divider parameters, such as DDS_CLK_RATE and SCR:
843 *
844 * Fsys = 200MHz
845 *
846 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
847 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
848 *
849 * DDS_CLK_RATE either 2^n or 2^n / 5.
850 * SCR is in range 0 .. 255
851 *
852 * Divisor = 5^i * 2^j * 2 * k
853 * i = [0, 1] i = 1 iff j = 0 or j > 3
854 * j = [0, 23] j = 0 iff i = 1
855 * k = [1, 256]
856 * Special case: j = 0, i = 1: Divisor = 2 / 5
857 *
858 * Accordingly to the specification the recommended values for DDS_CLK_RATE
859 * are:
860 * Case 1: 2^n, n = [0, 23]
861 * Case 2: 2^24 * 2 / 5 (0x666666)
862 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
863 *
864 * In all cases the lowest possible value is better.
865 *
866 * The function calculates parameters for all cases and chooses the one closest
867 * to the asked baud rate.
868 */
869static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
870{
871 unsigned long xtal = 200000000;
872 unsigned long fref = xtal / 2; /* mandatory division by 2,
873 see (2) */
874 /* case 3 */
875 unsigned long fref1 = fref / 2; /* case 1 */
876 unsigned long fref2 = fref * 2 / 5; /* case 2 */
877 unsigned long scale;
878 unsigned long q, q1, q2;
879 long r, r1, r2;
880 u32 mul;
881
882 /* Case 1 */
883
884 /* Set initial value for DDS_CLK_RATE */
885 mul = (1 << 24) >> 1;
886
887 /* Calculate initial quot */
888 q1 = DIV_ROUND_UP(fref1, rate);
889
890 /* Scale q1 if it's too big */
891 if (q1 > 256) {
892 /* Scale q1 to range [1, 512] */
893 scale = fls_long(q1 - 1);
894 if (scale > 9) {
895 q1 >>= scale - 9;
896 mul >>= scale - 9;
897 }
898
899 /* Round the result if we have a remainder */
900 q1 += q1 & 1;
901 }
902
903 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
904 scale = __ffs(q1);
905 q1 >>= scale;
906 mul >>= scale;
907
908 /* Get the remainder */
909 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
910
911 /* Case 2 */
912
913 q2 = DIV_ROUND_UP(fref2, rate);
914 r2 = abs(fref2 / q2 - rate);
915
916 /*
917 * Choose the best between two: less remainder we have the better. We
918 * can't go case 2 if q2 is greater than 256 since SCR register can
919 * hold only values 0 .. 255.
920 */
921 if (r2 >= r1 || q2 > 256) {
922 /* case 1 is better */
923 r = r1;
924 q = q1;
925 } else {
926 /* case 2 is better */
927 r = r2;
928 q = q2;
929 mul = (1 << 24) * 2 / 5;
930 }
931
932 /* Check case 3 only if the divisor is big enough */
933 if (fref / rate >= 80) {
934 u64 fssp;
935 u32 m;
936
937 /* Calculate initial quot */
938 q1 = DIV_ROUND_UP(fref, rate);
939 m = (1 << 24) / q1;
940
941 /* Get the remainder */
942 fssp = (u64)fref * m;
943 do_div(fssp, 1 << 24);
944 r1 = abs(fssp - rate);
945
946 /* Choose this one if it suits better */
947 if (r1 < r) {
948 /* case 3 is better */
949 q = 1;
950 mul = m;
951 }
952 }
953
954 *dds = mul;
955 return q - 1;
956}
957
958static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
959{
960 unsigned long ssp_clk = drv_data->master->max_speed_hz;
961 const struct ssp_device *ssp = drv_data->ssp;
962
963 rate = min_t(int, ssp_clk, rate);
964
965 /*
966 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
967 * that the SSP transmission rate can be greater than the device rate
968 */
969 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
970 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
971 else
972 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff;
973}
974
975static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
976 int rate)
977{
978 struct chip_data *chip =
979 spi_get_ctldata(drv_data->master->cur_msg->spi);
980 unsigned int clk_div;
981
982 switch (drv_data->ssp_type) {
983 case QUARK_X1000_SSP:
984 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
985 break;
986 default:
987 clk_div = ssp_get_clk_div(drv_data, rate);
988 break;
989 }
990 return clk_div << 8;
991}
992
993static bool pxa2xx_spi_can_dma(struct spi_master *master,
994 struct spi_device *spi,
995 struct spi_transfer *xfer)
996{
997 struct chip_data *chip = spi_get_ctldata(spi);
998
999 return chip->enable_dma &&
1000 xfer->len <= MAX_DMA_LEN &&
1001 xfer->len >= chip->dma_burst_size;
1002}
1003
1004static void pump_transfers(unsigned long data)
1005{
1006 struct driver_data *drv_data = (struct driver_data *)data;
1007 struct spi_master *master = drv_data->master;
1008 struct spi_message *message = master->cur_msg;
1009 struct chip_data *chip = spi_get_ctldata(message->spi);
1010 u32 dma_thresh = chip->dma_threshold;
1011 u32 dma_burst = chip->dma_burst_size;
1012 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
1013 struct spi_transfer *transfer;
1014 struct spi_transfer *previous;
1015 u32 clk_div;
1016 u8 bits;
1017 u32 speed;
1018 u32 cr0;
1019 u32 cr1;
1020 int err;
1021 int dma_mapped;
1022
1023 /* Get current state information */
1024 transfer = drv_data->cur_transfer;
1025
1026 /* Handle for abort */
1027 if (message->state == ERROR_STATE) {
1028 message->status = -EIO;
1029 giveback(drv_data);
1030 return;
1031 }
1032
1033 /* Handle end of message */
1034 if (message->state == DONE_STATE) {
1035 message->status = 0;
1036 giveback(drv_data);
1037 return;
1038 }
1039
1040 /* Delay if requested at end of transfer before CS change */
1041 if (message->state == RUNNING_STATE) {
1042 previous = list_entry(transfer->transfer_list.prev,
1043 struct spi_transfer,
1044 transfer_list);
1045 if (previous->delay_usecs)
1046 udelay(previous->delay_usecs);
1047
1048 /* Drop chip select only if cs_change is requested */
1049 if (previous->cs_change)
1050 cs_deassert(drv_data);
1051 }
1052
1053 /* Check if we can DMA this transfer */
1054 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
1055
1056 /* reject already-mapped transfers; PIO won't always work */
1057 if (message->is_dma_mapped
1058 || transfer->rx_dma || transfer->tx_dma) {
1059 dev_err(&drv_data->pdev->dev,
1060 "pump_transfers: mapped transfer length of "
1061 "%u is greater than %d\n",
1062 transfer->len, MAX_DMA_LEN);
1063 message->status = -EINVAL;
1064 giveback(drv_data);
1065 return;
1066 }
1067
1068 /* warn ... we force this to PIO mode */
1069 dev_warn_ratelimited(&message->spi->dev,
1070 "pump_transfers: DMA disabled for transfer length %ld "
1071 "greater than %d\n",
1072 (long)drv_data->len, MAX_DMA_LEN);
1073 }
1074
1075 /* Setup the transfer state based on the type of transfer */
1076 if (pxa2xx_spi_flush(drv_data) == 0) {
1077 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1078 message->status = -EIO;
1079 giveback(drv_data);
1080 return;
1081 }
1082 drv_data->n_bytes = chip->n_bytes;
1083 drv_data->tx = (void *)transfer->tx_buf;
1084 drv_data->tx_end = drv_data->tx + transfer->len;
1085 drv_data->rx = transfer->rx_buf;
1086 drv_data->rx_end = drv_data->rx + transfer->len;
1087 drv_data->len = transfer->len;
1088 drv_data->write = drv_data->tx ? chip->write : null_writer;
1089 drv_data->read = drv_data->rx ? chip->read : null_reader;
1090
1091 /* Change speed and bit per word on a per transfer */
1092 bits = transfer->bits_per_word;
1093 speed = transfer->speed_hz;
1094
1095 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1096
1097 if (bits <= 8) {
1098 drv_data->n_bytes = 1;
1099 drv_data->read = drv_data->read != null_reader ?
1100 u8_reader : null_reader;
1101 drv_data->write = drv_data->write != null_writer ?
1102 u8_writer : null_writer;
1103 } else if (bits <= 16) {
1104 drv_data->n_bytes = 2;
1105 drv_data->read = drv_data->read != null_reader ?
1106 u16_reader : null_reader;
1107 drv_data->write = drv_data->write != null_writer ?
1108 u16_writer : null_writer;
1109 } else if (bits <= 32) {
1110 drv_data->n_bytes = 4;
1111 drv_data->read = drv_data->read != null_reader ?
1112 u32_reader : null_reader;
1113 drv_data->write = drv_data->write != null_writer ?
1114 u32_writer : null_writer;
1115 }
1116 /*
1117 * if bits/word is changed in dma mode, then must check the
1118 * thresholds and burst also
1119 */
1120 if (chip->enable_dma) {
1121 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1122 message->spi,
1123 bits, &dma_burst,
1124 &dma_thresh))
1125 dev_warn_ratelimited(&message->spi->dev,
1126 "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1127 }
1128
1129 message->state = RUNNING_STATE;
1130
1131 dma_mapped = master->can_dma &&
1132 master->can_dma(master, message->spi, transfer) &&
1133 master->cur_msg_mapped;
1134 if (dma_mapped) {
1135
1136 /* Ensure we have the correct interrupt handler */
1137 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1138
1139 err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1140 if (err) {
1141 message->status = err;
1142 giveback(drv_data);
1143 return;
1144 }
1145
1146 /* Clear status and start DMA engine */
1147 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1148 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1149
1150 pxa2xx_spi_dma_start(drv_data);
1151 } else {
1152 /* Ensure we have the correct interrupt handler */
1153 drv_data->transfer_handler = interrupt_transfer;
1154
1155 /* Clear status */
1156 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1157 write_SSSR_CS(drv_data, drv_data->clear_sr);
1158 }
1159
1160 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1161 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1162 if (!pxa25x_ssp_comp(drv_data))
1163 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1164 master->max_speed_hz
1165 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1166 dma_mapped ? "DMA" : "PIO");
1167 else
1168 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1169 master->max_speed_hz / 2
1170 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1171 dma_mapped ? "DMA" : "PIO");
1172
1173 if (is_lpss_ssp(drv_data)) {
1174 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1175 != chip->lpss_rx_threshold)
1176 pxa2xx_spi_write(drv_data, SSIRF,
1177 chip->lpss_rx_threshold);
1178 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1179 != chip->lpss_tx_threshold)
1180 pxa2xx_spi_write(drv_data, SSITF,
1181 chip->lpss_tx_threshold);
1182 }
1183
1184 if (is_quark_x1000_ssp(drv_data) &&
1185 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1186 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1187
1188 /* see if we need to reload the config registers */
1189 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1190 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1191 != (cr1 & change_mask)) {
1192 /* stop the SSP, and update the other bits */
1193 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1194 if (!pxa25x_ssp_comp(drv_data))
1195 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1196 /* first set CR1 without interrupt and service enables */
1197 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1198 /* restart the SSP */
1199 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1200
1201 } else {
1202 if (!pxa25x_ssp_comp(drv_data))
1203 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1204 }
1205
1206 cs_assert(drv_data);
1207
1208 /* after chip select, release the data by enabling service
1209 * requests and interrupts, without changing any mode bits */
1210 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1211}
1212
1213static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1214 struct spi_message *msg)
1215{
1216 struct driver_data *drv_data = spi_master_get_devdata(master);
1217
1218 /* Initial message state*/
1219 msg->state = START_STATE;
1220 drv_data->cur_transfer = list_entry(msg->transfers.next,
1221 struct spi_transfer,
1222 transfer_list);
1223
1224 /* Mark as busy and launch transfers */
1225 tasklet_schedule(&drv_data->pump_transfers);
1226 return 0;
1227}
1228
1229static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1230{
1231 struct driver_data *drv_data = spi_master_get_devdata(master);
1232
1233 /* Disable the SSP now */
1234 pxa2xx_spi_write(drv_data, SSCR0,
1235 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1236
1237 return 0;
1238}
1239
1240static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1241 struct pxa2xx_spi_chip *chip_info)
1242{
1243 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1244 struct gpio_desc *gpiod;
1245 int err = 0;
1246
1247 if (chip == NULL)
1248 return 0;
1249
1250 if (drv_data->cs_gpiods) {
1251 gpiod = drv_data->cs_gpiods[spi->chip_select];
1252 if (gpiod) {
1253 chip->gpiod_cs = gpiod;
1254 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1255 gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1256 }
1257
1258 return 0;
1259 }
1260
1261 if (chip_info == NULL)
1262 return 0;
1263
1264 /* NOTE: setup() can be called multiple times, possibly with
1265 * different chip_info, release previously requested GPIO
1266 */
1267 if (chip->gpiod_cs) {
1268 gpio_free(desc_to_gpio(chip->gpiod_cs));
1269 chip->gpiod_cs = NULL;
1270 }
1271
1272 /* If (*cs_control) is provided, ignore GPIO chip select */
1273 if (chip_info->cs_control) {
1274 chip->cs_control = chip_info->cs_control;
1275 return 0;
1276 }
1277
1278 if (gpio_is_valid(chip_info->gpio_cs)) {
1279 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1280 if (err) {
1281 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1282 chip_info->gpio_cs);
1283 return err;
1284 }
1285
1286 gpiod = gpio_to_desc(chip_info->gpio_cs);
1287 chip->gpiod_cs = gpiod;
1288 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1289
1290 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1291 }
1292
1293 return err;
1294}
1295
1296static int setup(struct spi_device *spi)
1297{
1298 struct pxa2xx_spi_chip *chip_info;
1299 struct chip_data *chip;
1300 const struct lpss_config *config;
1301 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1302 uint tx_thres, tx_hi_thres, rx_thres;
1303
1304 switch (drv_data->ssp_type) {
1305 case QUARK_X1000_SSP:
1306 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1307 tx_hi_thres = 0;
1308 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1309 break;
1310 case CE4100_SSP:
1311 tx_thres = TX_THRESH_CE4100_DFLT;
1312 tx_hi_thres = 0;
1313 rx_thres = RX_THRESH_CE4100_DFLT;
1314 break;
1315 case LPSS_LPT_SSP:
1316 case LPSS_BYT_SSP:
1317 case LPSS_BSW_SSP:
1318 case LPSS_SPT_SSP:
1319 case LPSS_BXT_SSP:
1320 case LPSS_CNL_SSP:
1321 config = lpss_get_config(drv_data);
1322 tx_thres = config->tx_threshold_lo;
1323 tx_hi_thres = config->tx_threshold_hi;
1324 rx_thres = config->rx_threshold;
1325 break;
1326 default:
1327 tx_thres = TX_THRESH_DFLT;
1328 tx_hi_thres = 0;
1329 rx_thres = RX_THRESH_DFLT;
1330 break;
1331 }
1332
1333 /* Only alloc on first setup */
1334 chip = spi_get_ctldata(spi);
1335 if (!chip) {
1336 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1337 if (!chip)
1338 return -ENOMEM;
1339
1340 if (drv_data->ssp_type == CE4100_SSP) {
1341 if (spi->chip_select > 4) {
1342 dev_err(&spi->dev,
1343 "failed setup: cs number must not be > 4.\n");
1344 kfree(chip);
1345 return -EINVAL;
1346 }
1347
1348 chip->frm = spi->chip_select;
1349 }
1350 chip->enable_dma = drv_data->master_info->enable_dma;
1351 chip->timeout = TIMOUT_DFLT;
1352 }
1353
1354 /* protocol drivers may change the chip settings, so...
1355 * if chip_info exists, use it */
1356 chip_info = spi->controller_data;
1357
1358 /* chip_info isn't always needed */
1359 chip->cr1 = 0;
1360 if (chip_info) {
1361 if (chip_info->timeout)
1362 chip->timeout = chip_info->timeout;
1363 if (chip_info->tx_threshold)
1364 tx_thres = chip_info->tx_threshold;
1365 if (chip_info->tx_hi_threshold)
1366 tx_hi_thres = chip_info->tx_hi_threshold;
1367 if (chip_info->rx_threshold)
1368 rx_thres = chip_info->rx_threshold;
1369 chip->dma_threshold = 0;
1370 if (chip_info->enable_loopback)
1371 chip->cr1 = SSCR1_LBM;
1372 }
1373
1374 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1375 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1376 | SSITF_TxHiThresh(tx_hi_thres);
1377
1378 /* set dma burst and threshold outside of chip_info path so that if
1379 * chip_info goes away after setting chip->enable_dma, the
1380 * burst and threshold can still respond to changes in bits_per_word */
1381 if (chip->enable_dma) {
1382 /* set up legal burst and threshold for dma */
1383 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1384 spi->bits_per_word,
1385 &chip->dma_burst_size,
1386 &chip->dma_threshold)) {
1387 dev_warn(&spi->dev,
1388 "in setup: DMA burst size reduced to match bits_per_word\n");
1389 }
1390 }
1391
1392 switch (drv_data->ssp_type) {
1393 case QUARK_X1000_SSP:
1394 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1395 & QUARK_X1000_SSCR1_RFT)
1396 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1397 & QUARK_X1000_SSCR1_TFT);
1398 break;
1399 case CE4100_SSP:
1400 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1401 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1402 break;
1403 default:
1404 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1405 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1406 break;
1407 }
1408
1409 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1410 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1411 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1412
1413 if (spi->mode & SPI_LOOP)
1414 chip->cr1 |= SSCR1_LBM;
1415
1416 if (spi->bits_per_word <= 8) {
1417 chip->n_bytes = 1;
1418 chip->read = u8_reader;
1419 chip->write = u8_writer;
1420 } else if (spi->bits_per_word <= 16) {
1421 chip->n_bytes = 2;
1422 chip->read = u16_reader;
1423 chip->write = u16_writer;
1424 } else if (spi->bits_per_word <= 32) {
1425 chip->n_bytes = 4;
1426 chip->read = u32_reader;
1427 chip->write = u32_writer;
1428 }
1429
1430 spi_set_ctldata(spi, chip);
1431
1432 if (drv_data->ssp_type == CE4100_SSP)
1433 return 0;
1434
1435 return setup_cs(spi, chip, chip_info);
1436}
1437
1438static void cleanup(struct spi_device *spi)
1439{
1440 struct chip_data *chip = spi_get_ctldata(spi);
1441 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1442
1443 if (!chip)
1444 return;
1445
1446 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1447 chip->gpiod_cs)
1448 gpio_free(desc_to_gpio(chip->gpiod_cs));
1449
1450 kfree(chip);
1451}
1452
1453#ifdef CONFIG_PCI
1454#ifdef CONFIG_ACPI
1455
1456static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1457 { "INT33C0", LPSS_LPT_SSP },
1458 { "INT33C1", LPSS_LPT_SSP },
1459 { "INT3430", LPSS_LPT_SSP },
1460 { "INT3431", LPSS_LPT_SSP },
1461 { "80860F0E", LPSS_BYT_SSP },
1462 { "8086228E", LPSS_BSW_SSP },
1463 { },
1464};
1465MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1466
1467static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1468{
1469 unsigned int devid;
1470 int port_id = -1;
1471
1472 if (adev && adev->pnp.unique_id &&
1473 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1474 port_id = devid;
1475 return port_id;
1476}
1477#else /* !CONFIG_ACPI */
1478static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1479{
1480 return -1;
1481}
1482#endif
1483
1484/*
1485 * PCI IDs of compound devices that integrate both host controller and private
1486 * integrated DMA engine. Please note these are not used in module
1487 * autoloading and probing in this module but matching the LPSS SSP type.
1488 */
1489static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1490 /* SPT-LP */
1491 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1492 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1493 /* SPT-H */
1494 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1495 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1496 /* KBL-H */
1497 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1498 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1499 /* BXT A-Step */
1500 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1501 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1502 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1503 /* BXT B-Step */
1504 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1505 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1506 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1507 /* GLK */
1508 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1509 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1510 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1511 /* ICL-LP */
1512 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1513 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1514 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1515 /* APL */
1516 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1517 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1518 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1519 /* CNL-LP */
1520 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1521 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1522 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1523 /* CNL-H */
1524 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1525 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1526 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1527 { },
1528};
1529
1530static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1531{
1532 return param == chan->device->dev;
1533}
1534
1535static struct pxa2xx_spi_master *
1536pxa2xx_spi_init_pdata(struct platform_device *pdev)
1537{
1538 struct pxa2xx_spi_master *pdata;
1539 struct acpi_device *adev;
1540 struct ssp_device *ssp;
1541 struct resource *res;
1542 const struct acpi_device_id *adev_id = NULL;
1543 const struct pci_device_id *pcidev_id = NULL;
1544 int type;
1545
1546 adev = ACPI_COMPANION(&pdev->dev);
1547
1548 if (dev_is_pci(pdev->dev.parent))
1549 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1550 to_pci_dev(pdev->dev.parent));
1551 else if (adev)
1552 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1553 &pdev->dev);
1554 else
1555 return NULL;
1556
1557 if (adev_id)
1558 type = (int)adev_id->driver_data;
1559 else if (pcidev_id)
1560 type = (int)pcidev_id->driver_data;
1561 else
1562 return NULL;
1563
1564 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1565 if (!pdata)
1566 return NULL;
1567
1568 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1569 if (!res)
1570 return NULL;
1571
1572 ssp = &pdata->ssp;
1573
1574 ssp->phys_base = res->start;
1575 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1576 if (IS_ERR(ssp->mmio_base))
1577 return NULL;
1578
1579 if (pcidev_id) {
1580 pdata->tx_param = pdev->dev.parent;
1581 pdata->rx_param = pdev->dev.parent;
1582 pdata->dma_filter = pxa2xx_spi_idma_filter;
1583 }
1584
1585 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1586 if (IS_ERR(ssp->clk))
1587 return NULL;
1588
1589 ssp->irq = platform_get_irq(pdev, 0);
1590 if (ssp->irq < 0)
1591 return NULL;
1592
1593 ssp->type = type;
1594 ssp->pdev = pdev;
1595 ssp->port_id = pxa2xx_spi_get_port_id(adev);
1596
1597 pdata->num_chipselect = 1;
1598 pdata->enable_dma = true;
1599
1600 return pdata;
1601}
1602
1603#else /* !CONFIG_PCI */
1604static inline struct pxa2xx_spi_master *
1605pxa2xx_spi_init_pdata(struct platform_device *pdev)
1606{
1607 return NULL;
1608}
1609#endif
1610
1611static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs)
1612{
1613 struct driver_data *drv_data = spi_master_get_devdata(master);
1614
1615 if (has_acpi_companion(&drv_data->pdev->dev)) {
1616 switch (drv_data->ssp_type) {
1617 /*
1618 * For Atoms the ACPI DeviceSelection used by the Windows
1619 * driver starts from 1 instead of 0 so translate it here
1620 * to match what Linux expects.
1621 */
1622 case LPSS_BYT_SSP:
1623 case LPSS_BSW_SSP:
1624 return cs - 1;
1625
1626 default:
1627 break;
1628 }
1629 }
1630
1631 return cs;
1632}
1633
1634static int pxa2xx_spi_probe(struct platform_device *pdev)
1635{
1636 struct device *dev = &pdev->dev;
1637 struct pxa2xx_spi_master *platform_info;
1638 struct spi_master *master;
1639 struct driver_data *drv_data;
1640 struct ssp_device *ssp;
1641 const struct lpss_config *config;
1642 int status, count;
1643 u32 tmp;
1644
1645 platform_info = dev_get_platdata(dev);
1646 if (!platform_info) {
1647 platform_info = pxa2xx_spi_init_pdata(pdev);
1648 if (!platform_info) {
1649 dev_err(&pdev->dev, "missing platform data\n");
1650 return -ENODEV;
1651 }
1652 }
1653
1654 ssp = pxa_ssp_request(pdev->id, pdev->name);
1655 if (!ssp)
1656 ssp = &platform_info->ssp;
1657
1658 if (!ssp->mmio_base) {
1659 dev_err(&pdev->dev, "failed to get ssp\n");
1660 return -ENODEV;
1661 }
1662
1663 master = spi_alloc_master(dev, sizeof(struct driver_data));
1664 if (!master) {
1665 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1666 pxa_ssp_free(ssp);
1667 return -ENOMEM;
1668 }
1669 drv_data = spi_master_get_devdata(master);
1670 drv_data->master = master;
1671 drv_data->master_info = platform_info;
1672 drv_data->pdev = pdev;
1673 drv_data->ssp = ssp;
1674
1675 master->dev.of_node = pdev->dev.of_node;
1676 /* the spi->mode bits understood by this driver: */
1677 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1678
1679 master->bus_num = ssp->port_id;
1680 master->dma_alignment = DMA_ALIGNMENT;
1681 master->cleanup = cleanup;
1682 master->setup = setup;
1683 master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1684 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1685 master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1686 master->auto_runtime_pm = true;
1687 master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
1688
1689 drv_data->ssp_type = ssp->type;
1690
1691 drv_data->ioaddr = ssp->mmio_base;
1692 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1693 if (pxa25x_ssp_comp(drv_data)) {
1694 switch (drv_data->ssp_type) {
1695 case QUARK_X1000_SSP:
1696 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1697 break;
1698 default:
1699 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1700 break;
1701 }
1702
1703 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1704 drv_data->dma_cr1 = 0;
1705 drv_data->clear_sr = SSSR_ROR;
1706 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1707 } else {
1708 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1709 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1710 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1711 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1712 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1713 }
1714
1715 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1716 drv_data);
1717 if (status < 0) {
1718 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1719 goto out_error_master_alloc;
1720 }
1721
1722 /* Setup DMA if requested */
1723 if (platform_info->enable_dma) {
1724 status = pxa2xx_spi_dma_setup(drv_data);
1725 if (status) {
1726 dev_dbg(dev, "no DMA channels available, using PIO\n");
1727 platform_info->enable_dma = false;
1728 } else {
1729 master->can_dma = pxa2xx_spi_can_dma;
1730 master->max_dma_len = MAX_DMA_LEN;
1731 }
1732 }
1733
1734 /* Enable SOC clock */
1735 clk_prepare_enable(ssp->clk);
1736
1737 master->max_speed_hz = clk_get_rate(ssp->clk);
1738
1739 /* Load default SSP configuration */
1740 pxa2xx_spi_write(drv_data, SSCR0, 0);
1741 switch (drv_data->ssp_type) {
1742 case QUARK_X1000_SSP:
1743 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1744 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1745 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1746
1747 /* using the Motorola SPI protocol and use 8 bit frame */
1748 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1749 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1750 break;
1751 case CE4100_SSP:
1752 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1753 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1754 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1755 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1756 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1757 break;
1758 default:
1759 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1760 SSCR1_TxTresh(TX_THRESH_DFLT);
1761 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1762 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1763 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1764 break;
1765 }
1766
1767 if (!pxa25x_ssp_comp(drv_data))
1768 pxa2xx_spi_write(drv_data, SSTO, 0);
1769
1770 if (!is_quark_x1000_ssp(drv_data))
1771 pxa2xx_spi_write(drv_data, SSPSP, 0);
1772
1773 if (is_lpss_ssp(drv_data)) {
1774 lpss_ssp_setup(drv_data);
1775 config = lpss_get_config(drv_data);
1776 if (config->reg_capabilities >= 0) {
1777 tmp = __lpss_ssp_read_priv(drv_data,
1778 config->reg_capabilities);
1779 tmp &= LPSS_CAPS_CS_EN_MASK;
1780 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1781 platform_info->num_chipselect = ffz(tmp);
1782 } else if (config->cs_num) {
1783 platform_info->num_chipselect = config->cs_num;
1784 }
1785 }
1786 master->num_chipselect = platform_info->num_chipselect;
1787
1788 count = gpiod_count(&pdev->dev, "cs");
1789 if (count > 0) {
1790 int i;
1791
1792 master->num_chipselect = max_t(int, count,
1793 master->num_chipselect);
1794
1795 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1796 master->num_chipselect, sizeof(struct gpio_desc *),
1797 GFP_KERNEL);
1798 if (!drv_data->cs_gpiods) {
1799 status = -ENOMEM;
1800 goto out_error_clock_enabled;
1801 }
1802
1803 for (i = 0; i < master->num_chipselect; i++) {
1804 struct gpio_desc *gpiod;
1805
1806 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1807 if (IS_ERR(gpiod)) {
1808 /* Means use native chip select */
1809 if (PTR_ERR(gpiod) == -ENOENT)
1810 continue;
1811
1812 status = (int)PTR_ERR(gpiod);
1813 goto out_error_clock_enabled;
1814 } else {
1815 drv_data->cs_gpiods[i] = gpiod;
1816 }
1817 }
1818 }
1819
1820 tasklet_init(&drv_data->pump_transfers, pump_transfers,
1821 (unsigned long)drv_data);
1822
1823 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1824 pm_runtime_use_autosuspend(&pdev->dev);
1825 pm_runtime_set_active(&pdev->dev);
1826 pm_runtime_enable(&pdev->dev);
1827
1828 /* Register with the SPI framework */
1829 platform_set_drvdata(pdev, drv_data);
1830 status = spi_register_master(master);
1831 if (status != 0) {
1832 dev_err(&pdev->dev, "problem registering spi master\n");
1833 goto out_error_clock_enabled;
1834 }
1835
1836 return status;
1837
1838out_error_clock_enabled:
1839 clk_disable_unprepare(ssp->clk);
1840 pxa2xx_spi_dma_release(drv_data);
1841 free_irq(ssp->irq, drv_data);
1842
1843out_error_master_alloc:
1844 spi_master_put(master);
1845 pxa_ssp_free(ssp);
1846 return status;
1847}
1848
1849static int pxa2xx_spi_remove(struct platform_device *pdev)
1850{
1851 struct driver_data *drv_data = platform_get_drvdata(pdev);
1852 struct ssp_device *ssp;
1853
1854 if (!drv_data)
1855 return 0;
1856 ssp = drv_data->ssp;
1857
1858 pm_runtime_get_sync(&pdev->dev);
1859
1860 spi_unregister_master(drv_data->master);
1861
1862 /* Disable the SSP at the peripheral and SOC level */
1863 pxa2xx_spi_write(drv_data, SSCR0, 0);
1864 clk_disable_unprepare(ssp->clk);
1865
1866 /* Release DMA */
1867 if (drv_data->master_info->enable_dma)
1868 pxa2xx_spi_dma_release(drv_data);
1869
1870 pm_runtime_put_noidle(&pdev->dev);
1871 pm_runtime_disable(&pdev->dev);
1872
1873 /* Release IRQ */
1874 free_irq(ssp->irq, drv_data);
1875
1876 /* Release SSP */
1877 pxa_ssp_free(ssp);
1878
1879 return 0;
1880}
1881
1882static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1883{
1884 int status = 0;
1885
1886 if ((status = pxa2xx_spi_remove(pdev)) != 0)
1887 dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1888}
1889
1890#ifdef CONFIG_PM_SLEEP
1891static int pxa2xx_spi_suspend(struct device *dev)
1892{
1893 struct driver_data *drv_data = dev_get_drvdata(dev);
1894 struct ssp_device *ssp = drv_data->ssp;
1895 int status;
1896
1897 status = spi_master_suspend(drv_data->master);
1898 if (status != 0)
1899 return status;
1900 pxa2xx_spi_write(drv_data, SSCR0, 0);
1901
1902 if (!pm_runtime_suspended(dev))
1903 clk_disable_unprepare(ssp->clk);
1904
1905 return 0;
1906}
1907
1908static int pxa2xx_spi_resume(struct device *dev)
1909{
1910 struct driver_data *drv_data = dev_get_drvdata(dev);
1911 struct ssp_device *ssp = drv_data->ssp;
1912 int status;
1913
1914 /* Enable the SSP clock */
1915 if (!pm_runtime_suspended(dev))
1916 clk_prepare_enable(ssp->clk);
1917
1918 /* Restore LPSS private register bits */
1919 if (is_lpss_ssp(drv_data))
1920 lpss_ssp_setup(drv_data);
1921
1922 /* Start the queue running */
1923 status = spi_master_resume(drv_data->master);
1924 if (status != 0) {
1925 dev_err(dev, "problem starting queue (%d)\n", status);
1926 return status;
1927 }
1928
1929 return 0;
1930}
1931#endif
1932
1933#ifdef CONFIG_PM
1934static int pxa2xx_spi_runtime_suspend(struct device *dev)
1935{
1936 struct driver_data *drv_data = dev_get_drvdata(dev);
1937
1938 clk_disable_unprepare(drv_data->ssp->clk);
1939 return 0;
1940}
1941
1942static int pxa2xx_spi_runtime_resume(struct device *dev)
1943{
1944 struct driver_data *drv_data = dev_get_drvdata(dev);
1945
1946 clk_prepare_enable(drv_data->ssp->clk);
1947 return 0;
1948}
1949#endif
1950
1951static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1952 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1953 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1954 pxa2xx_spi_runtime_resume, NULL)
1955};
1956
1957static struct platform_driver driver = {
1958 .driver = {
1959 .name = "pxa2xx-spi",
1960 .pm = &pxa2xx_spi_pm_ops,
1961 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1962 },
1963 .probe = pxa2xx_spi_probe,
1964 .remove = pxa2xx_spi_remove,
1965 .shutdown = pxa2xx_spi_shutdown,
1966};
1967
1968static int __init pxa2xx_spi_init(void)
1969{
1970 return platform_driver_register(&driver);
1971}
1972subsys_initcall(pxa2xx_spi_init);
1973
1974static void __exit pxa2xx_spi_exit(void)
1975{
1976 platform_driver_unregister(&driver);
1977}
1978module_exit(pxa2xx_spi_exit);