blob: acc8eeed73f076f379fbb506b0ee08efbeec0434 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * SPI init/core code
3 *
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18#include <linux/kernel.h>
19#include <linux/device.h>
20#include <linux/init.h>
21#include <linux/cache.h>
22#include <linux/dma-mapping.h>
23#include <linux/dmaengine.h>
24#include <linux/mutex.h>
25#include <linux/of_device.h>
26#include <linux/of_irq.h>
27#include <linux/clk/clk-conf.h>
28#include <linux/slab.h>
29#include <linux/mod_devicetable.h>
30#include <linux/spi/spi.h>
31#include <linux/of_gpio.h>
32#include <linux/pm_runtime.h>
33#include <linux/pm_domain.h>
34#include <linux/property.h>
35#include <linux/export.h>
36#include <linux/sched/rt.h>
37#include <uapi/linux/sched/types.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/ioport.h>
41#include <linux/acpi.h>
42#include <linux/highmem.h>
43#include <linux/idr.h>
44#include <linux/platform_data/x86/apple.h>
45
46#define CREATE_TRACE_POINTS
47#include <trace/events/spi.h>
48
49static DEFINE_IDR(spi_master_idr);
50
51static void spidev_release(struct device *dev)
52{
53 struct spi_device *spi = to_spi_device(dev);
54
55 /* spi controllers may cleanup for released devices */
56 if (spi->controller->cleanup)
57 spi->controller->cleanup(spi);
58
59 spi_controller_put(spi->controller);
60 kfree(spi);
61}
62
63static ssize_t
64modalias_show(struct device *dev, struct device_attribute *a, char *buf)
65{
66 const struct spi_device *spi = to_spi_device(dev);
67 int len;
68
69 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
70 if (len != -ENODEV)
71 return len;
72
73 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
74}
75static DEVICE_ATTR_RO(modalias);
76
77#define SPI_STATISTICS_ATTRS(field, file) \
78static ssize_t spi_controller_##field##_show(struct device *dev, \
79 struct device_attribute *attr, \
80 char *buf) \
81{ \
82 struct spi_controller *ctlr = container_of(dev, \
83 struct spi_controller, dev); \
84 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
85} \
86static struct device_attribute dev_attr_spi_controller_##field = { \
87 .attr = { .name = file, .mode = 0444 }, \
88 .show = spi_controller_##field##_show, \
89}; \
90static ssize_t spi_device_##field##_show(struct device *dev, \
91 struct device_attribute *attr, \
92 char *buf) \
93{ \
94 struct spi_device *spi = to_spi_device(dev); \
95 return spi_statistics_##field##_show(&spi->statistics, buf); \
96} \
97static struct device_attribute dev_attr_spi_device_##field = { \
98 .attr = { .name = file, .mode = 0444 }, \
99 .show = spi_device_##field##_show, \
100}
101
102#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
103static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
104 char *buf) \
105{ \
106 unsigned long flags; \
107 ssize_t len; \
108 spin_lock_irqsave(&stat->lock, flags); \
109 len = sprintf(buf, format_string, stat->field); \
110 spin_unlock_irqrestore(&stat->lock, flags); \
111 return len; \
112} \
113SPI_STATISTICS_ATTRS(name, file)
114
115#define SPI_STATISTICS_SHOW(field, format_string) \
116 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
117 field, format_string)
118
119SPI_STATISTICS_SHOW(messages, "%lu");
120SPI_STATISTICS_SHOW(transfers, "%lu");
121SPI_STATISTICS_SHOW(errors, "%lu");
122SPI_STATISTICS_SHOW(timedout, "%lu");
123
124SPI_STATISTICS_SHOW(spi_sync, "%lu");
125SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
126SPI_STATISTICS_SHOW(spi_async, "%lu");
127
128SPI_STATISTICS_SHOW(bytes, "%llu");
129SPI_STATISTICS_SHOW(bytes_rx, "%llu");
130SPI_STATISTICS_SHOW(bytes_tx, "%llu");
131
132#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
133 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
134 "transfer_bytes_histo_" number, \
135 transfer_bytes_histo[index], "%lu")
136SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
137SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
138SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
139SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
140SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
141SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
142SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
143SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
144SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
145SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
146SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
147SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
148SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
149SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
150SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
151SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
152SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
153
154SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
155
156static struct attribute *spi_dev_attrs[] = {
157 &dev_attr_modalias.attr,
158 NULL,
159};
160
161static const struct attribute_group spi_dev_group = {
162 .attrs = spi_dev_attrs,
163};
164
165static struct attribute *spi_device_statistics_attrs[] = {
166 &dev_attr_spi_device_messages.attr,
167 &dev_attr_spi_device_transfers.attr,
168 &dev_attr_spi_device_errors.attr,
169 &dev_attr_spi_device_timedout.attr,
170 &dev_attr_spi_device_spi_sync.attr,
171 &dev_attr_spi_device_spi_sync_immediate.attr,
172 &dev_attr_spi_device_spi_async.attr,
173 &dev_attr_spi_device_bytes.attr,
174 &dev_attr_spi_device_bytes_rx.attr,
175 &dev_attr_spi_device_bytes_tx.attr,
176 &dev_attr_spi_device_transfer_bytes_histo0.attr,
177 &dev_attr_spi_device_transfer_bytes_histo1.attr,
178 &dev_attr_spi_device_transfer_bytes_histo2.attr,
179 &dev_attr_spi_device_transfer_bytes_histo3.attr,
180 &dev_attr_spi_device_transfer_bytes_histo4.attr,
181 &dev_attr_spi_device_transfer_bytes_histo5.attr,
182 &dev_attr_spi_device_transfer_bytes_histo6.attr,
183 &dev_attr_spi_device_transfer_bytes_histo7.attr,
184 &dev_attr_spi_device_transfer_bytes_histo8.attr,
185 &dev_attr_spi_device_transfer_bytes_histo9.attr,
186 &dev_attr_spi_device_transfer_bytes_histo10.attr,
187 &dev_attr_spi_device_transfer_bytes_histo11.attr,
188 &dev_attr_spi_device_transfer_bytes_histo12.attr,
189 &dev_attr_spi_device_transfer_bytes_histo13.attr,
190 &dev_attr_spi_device_transfer_bytes_histo14.attr,
191 &dev_attr_spi_device_transfer_bytes_histo15.attr,
192 &dev_attr_spi_device_transfer_bytes_histo16.attr,
193 &dev_attr_spi_device_transfers_split_maxsize.attr,
194 NULL,
195};
196
197static const struct attribute_group spi_device_statistics_group = {
198 .name = "statistics",
199 .attrs = spi_device_statistics_attrs,
200};
201
202static const struct attribute_group *spi_dev_groups[] = {
203 &spi_dev_group,
204 &spi_device_statistics_group,
205 NULL,
206};
207
208static struct attribute *spi_controller_statistics_attrs[] = {
209 &dev_attr_spi_controller_messages.attr,
210 &dev_attr_spi_controller_transfers.attr,
211 &dev_attr_spi_controller_errors.attr,
212 &dev_attr_spi_controller_timedout.attr,
213 &dev_attr_spi_controller_spi_sync.attr,
214 &dev_attr_spi_controller_spi_sync_immediate.attr,
215 &dev_attr_spi_controller_spi_async.attr,
216 &dev_attr_spi_controller_bytes.attr,
217 &dev_attr_spi_controller_bytes_rx.attr,
218 &dev_attr_spi_controller_bytes_tx.attr,
219 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
220 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
221 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
222 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
223 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
224 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
225 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
226 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
227 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
228 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
229 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
230 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
231 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
232 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
233 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
234 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
235 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
236 &dev_attr_spi_controller_transfers_split_maxsize.attr,
237 NULL,
238};
239
240static const struct attribute_group spi_controller_statistics_group = {
241 .name = "statistics",
242 .attrs = spi_controller_statistics_attrs,
243};
244
245static const struct attribute_group *spi_master_groups[] = {
246 &spi_controller_statistics_group,
247 NULL,
248};
249
250void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
251 struct spi_transfer *xfer,
252 struct spi_controller *ctlr)
253{
254 unsigned long flags;
255 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
256
257 if (l2len < 0)
258 l2len = 0;
259
260 spin_lock_irqsave(&stats->lock, flags);
261
262 stats->transfers++;
263 stats->transfer_bytes_histo[l2len]++;
264
265 stats->bytes += xfer->len;
266 if ((xfer->tx_buf) &&
267 (xfer->tx_buf != ctlr->dummy_tx))
268 stats->bytes_tx += xfer->len;
269 if ((xfer->rx_buf) &&
270 (xfer->rx_buf != ctlr->dummy_rx))
271 stats->bytes_rx += xfer->len;
272
273 spin_unlock_irqrestore(&stats->lock, flags);
274}
275EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
276
277/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
278 * and the sysfs version makes coldplug work too.
279 */
280
281static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
282 const struct spi_device *sdev)
283{
284 while (id->name[0]) {
285 if (!strcmp(sdev->modalias, id->name))
286 return id;
287 id++;
288 }
289 return NULL;
290}
291
292const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
293{
294 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
295
296 return spi_match_id(sdrv->id_table, sdev);
297}
298EXPORT_SYMBOL_GPL(spi_get_device_id);
299
300static int spi_match_device(struct device *dev, struct device_driver *drv)
301{
302 const struct spi_device *spi = to_spi_device(dev);
303 const struct spi_driver *sdrv = to_spi_driver(drv);
304
305 /* Attempt an OF style match */
306 if (of_driver_match_device(dev, drv))
307 return 1;
308
309 /* Then try ACPI */
310 if (acpi_driver_match_device(dev, drv))
311 return 1;
312
313 if (sdrv->id_table)
314 return !!spi_match_id(sdrv->id_table, spi);
315
316 return strcmp(spi->modalias, drv->name) == 0;
317}
318
319static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
320{
321 const struct spi_device *spi = to_spi_device(dev);
322 int rc;
323
324 rc = acpi_device_uevent_modalias(dev, env);
325 if (rc != -ENODEV)
326 return rc;
327
328 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
329}
330
331struct bus_type spi_bus_type = {
332 .name = "spi",
333 .dev_groups = spi_dev_groups,
334 .match = spi_match_device,
335 .uevent = spi_uevent,
336};
337EXPORT_SYMBOL_GPL(spi_bus_type);
338
339
340static int spi_drv_probe(struct device *dev)
341{
342 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
343 struct spi_device *spi = to_spi_device(dev);
344 int ret;
345
346 ret = of_clk_set_defaults(dev->of_node, false);
347 if (ret)
348 return ret;
349
350 if (dev->of_node) {
351 spi->irq = of_irq_get(dev->of_node, 0);
352 if (spi->irq == -EPROBE_DEFER)
353 return -EPROBE_DEFER;
354 if (spi->irq < 0)
355 spi->irq = 0;
356 }
357
358 ret = dev_pm_domain_attach(dev, true);
359 if (ret != -EPROBE_DEFER) {
360 ret = sdrv->probe(spi);
361 if (ret)
362 dev_pm_domain_detach(dev, true);
363 }
364
365 return ret;
366}
367
368static int spi_drv_remove(struct device *dev)
369{
370 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
371 int ret;
372
373 ret = sdrv->remove(to_spi_device(dev));
374 dev_pm_domain_detach(dev, true);
375
376 return ret;
377}
378
379static void spi_drv_shutdown(struct device *dev)
380{
381 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
382
383 sdrv->shutdown(to_spi_device(dev));
384}
385
386/**
387 * __spi_register_driver - register a SPI driver
388 * @owner: owner module of the driver to register
389 * @sdrv: the driver to register
390 * Context: can sleep
391 *
392 * Return: zero on success, else a negative error code.
393 */
394int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
395{
396 sdrv->driver.owner = owner;
397 sdrv->driver.bus = &spi_bus_type;
398 if (sdrv->probe)
399 sdrv->driver.probe = spi_drv_probe;
400 if (sdrv->remove)
401 sdrv->driver.remove = spi_drv_remove;
402 if (sdrv->shutdown)
403 sdrv->driver.shutdown = spi_drv_shutdown;
404 return driver_register(&sdrv->driver);
405}
406EXPORT_SYMBOL_GPL(__spi_register_driver);
407
408/*-------------------------------------------------------------------------*/
409
410/* SPI devices should normally not be created by SPI device drivers; that
411 * would make them board-specific. Similarly with SPI controller drivers.
412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
413 * with other readonly (flashable) information about mainboard devices.
414 */
415
416struct boardinfo {
417 struct list_head list;
418 struct spi_board_info board_info;
419};
420
421static LIST_HEAD(board_list);
422static LIST_HEAD(spi_controller_list);
423
424/*
425 * Used to protect add/del opertion for board_info list and
426 * spi_controller list, and their matching process
427 * also used to protect object of type struct idr
428 */
429static DEFINE_MUTEX(board_lock);
430
431/*
432 * Prevents addition of devices with same chip select and
433 * addition of devices below an unregistering controller.
434 */
435static DEFINE_MUTEX(spi_add_lock);
436
437/**
438 * spi_alloc_device - Allocate a new SPI device
439 * @ctlr: Controller to which device is connected
440 * Context: can sleep
441 *
442 * Allows a driver to allocate and initialize a spi_device without
443 * registering it immediately. This allows a driver to directly
444 * fill the spi_device with device parameters before calling
445 * spi_add_device() on it.
446 *
447 * Caller is responsible to call spi_add_device() on the returned
448 * spi_device structure to add it to the SPI controller. If the caller
449 * needs to discard the spi_device without adding it, then it should
450 * call spi_dev_put() on it.
451 *
452 * Return: a pointer to the new device, or NULL.
453 */
454struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
455{
456 struct spi_device *spi;
457
458 if (!spi_controller_get(ctlr))
459 return NULL;
460
461 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
462 if (!spi) {
463 spi_controller_put(ctlr);
464 return NULL;
465 }
466
467 spi->master = spi->controller = ctlr;
468 spi->dev.parent = &ctlr->dev;
469 spi->dev.bus = &spi_bus_type;
470 spi->dev.release = spidev_release;
471 spi->cs_gpio = -ENOENT;
472
473 spin_lock_init(&spi->statistics.lock);
474
475 device_initialize(&spi->dev);
476 return spi;
477}
478EXPORT_SYMBOL_GPL(spi_alloc_device);
479
480static void spi_dev_set_name(struct spi_device *spi)
481{
482 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
483
484 if (adev) {
485 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
486 return;
487 }
488
489 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
490 spi->chip_select);
491}
492
493static int spi_dev_check(struct device *dev, void *data)
494{
495 struct spi_device *spi = to_spi_device(dev);
496 struct spi_device *new_spi = data;
497
498 if (spi->controller == new_spi->controller &&
499 spi->chip_select == new_spi->chip_select)
500 return -EBUSY;
501 return 0;
502}
503
504/**
505 * spi_add_device - Add spi_device allocated with spi_alloc_device
506 * @spi: spi_device to register
507 *
508 * Companion function to spi_alloc_device. Devices allocated with
509 * spi_alloc_device can be added onto the spi bus with this function.
510 *
511 * Return: 0 on success; negative errno on failure
512 */
513int spi_add_device(struct spi_device *spi)
514{
515 struct spi_controller *ctlr = spi->controller;
516 struct device *dev = ctlr->dev.parent;
517 int status;
518
519 /* Chipselects are numbered 0..max; validate. */
520 if (spi->chip_select >= ctlr->num_chipselect) {
521 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
522 ctlr->num_chipselect);
523 return -EINVAL;
524 }
525
526 /* Set the bus ID string */
527 spi_dev_set_name(spi);
528
529 /* We need to make sure there's no other device with this
530 * chipselect **BEFORE** we call setup(), else we'll trash
531 * its configuration. Lock against concurrent add() calls.
532 */
533 mutex_lock(&spi_add_lock);
534
535 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
536 if (status) {
537 dev_err(dev, "chipselect %d already in use\n",
538 spi->chip_select);
539 goto done;
540 }
541
542 /* Controller may unregister concurrently */
543 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
544 !device_is_registered(&ctlr->dev)) {
545 status = -ENODEV;
546 goto done;
547 }
548
549 if (ctlr->cs_gpios)
550 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
551
552 /* Drivers may modify this initial i/o setup, but will
553 * normally rely on the device being setup. Devices
554 * using SPI_CS_HIGH can't coexist well otherwise...
555 */
556 status = spi_setup(spi);
557 if (status < 0) {
558 dev_err(dev, "can't setup %s, status %d\n",
559 dev_name(&spi->dev), status);
560 goto done;
561 }
562
563 /* Device may be bound to an active driver when this returns */
564 status = device_add(&spi->dev);
565 if (status < 0)
566 dev_err(dev, "can't add %s, status %d\n",
567 dev_name(&spi->dev), status);
568 else
569 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
570
571done:
572 mutex_unlock(&spi_add_lock);
573 return status;
574}
575EXPORT_SYMBOL_GPL(spi_add_device);
576
577/**
578 * spi_new_device - instantiate one new SPI device
579 * @ctlr: Controller to which device is connected
580 * @chip: Describes the SPI device
581 * Context: can sleep
582 *
583 * On typical mainboards, this is purely internal; and it's not needed
584 * after board init creates the hard-wired devices. Some development
585 * platforms may not be able to use spi_register_board_info though, and
586 * this is exported so that for example a USB or parport based adapter
587 * driver could add devices (which it would learn about out-of-band).
588 *
589 * Return: the new device, or NULL.
590 */
591struct spi_device *spi_new_device(struct spi_controller *ctlr,
592 struct spi_board_info *chip)
593{
594 struct spi_device *proxy;
595 int status;
596
597 /* NOTE: caller did any chip->bus_num checks necessary.
598 *
599 * Also, unless we change the return value convention to use
600 * error-or-pointer (not NULL-or-pointer), troubleshootability
601 * suggests syslogged diagnostics are best here (ugh).
602 */
603
604 proxy = spi_alloc_device(ctlr);
605 if (!proxy)
606 return NULL;
607
608 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
609
610 proxy->chip_select = chip->chip_select;
611 proxy->max_speed_hz = chip->max_speed_hz;
612 proxy->mode = chip->mode;
613 proxy->irq = chip->irq;
614 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
615 proxy->dev.platform_data = (void *) chip->platform_data;
616 proxy->controller_data = chip->controller_data;
617 proxy->controller_state = NULL;
618
619 if (chip->properties) {
620 status = device_add_properties(&proxy->dev, chip->properties);
621 if (status) {
622 dev_err(&ctlr->dev,
623 "failed to add properties to '%s': %d\n",
624 chip->modalias, status);
625 goto err_dev_put;
626 }
627 }
628
629 status = spi_add_device(proxy);
630 if (status < 0)
631 goto err_remove_props;
632
633 return proxy;
634
635err_remove_props:
636 if (chip->properties)
637 device_remove_properties(&proxy->dev);
638err_dev_put:
639 spi_dev_put(proxy);
640 return NULL;
641}
642EXPORT_SYMBOL_GPL(spi_new_device);
643
644/**
645 * spi_unregister_device - unregister a single SPI device
646 * @spi: spi_device to unregister
647 *
648 * Start making the passed SPI device vanish. Normally this would be handled
649 * by spi_unregister_controller().
650 */
651void spi_unregister_device(struct spi_device *spi)
652{
653 if (!spi)
654 return;
655
656 if (spi->dev.of_node) {
657 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
658 of_node_put(spi->dev.of_node);
659 }
660 if (ACPI_COMPANION(&spi->dev))
661 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
662 device_unregister(&spi->dev);
663}
664EXPORT_SYMBOL_GPL(spi_unregister_device);
665
666static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
667 struct spi_board_info *bi)
668{
669 struct spi_device *dev;
670
671 if (ctlr->bus_num != bi->bus_num)
672 return;
673
674 dev = spi_new_device(ctlr, bi);
675 if (!dev)
676 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
677 bi->modalias);
678}
679
680/**
681 * spi_register_board_info - register SPI devices for a given board
682 * @info: array of chip descriptors
683 * @n: how many descriptors are provided
684 * Context: can sleep
685 *
686 * Board-specific early init code calls this (probably during arch_initcall)
687 * with segments of the SPI device table. Any device nodes are created later,
688 * after the relevant parent SPI controller (bus_num) is defined. We keep
689 * this table of devices forever, so that reloading a controller driver will
690 * not make Linux forget about these hard-wired devices.
691 *
692 * Other code can also call this, e.g. a particular add-on board might provide
693 * SPI devices through its expansion connector, so code initializing that board
694 * would naturally declare its SPI devices.
695 *
696 * The board info passed can safely be __initdata ... but be careful of
697 * any embedded pointers (platform_data, etc), they're copied as-is.
698 * Device properties are deep-copied though.
699 *
700 * Return: zero on success, else a negative error code.
701 */
702int spi_register_board_info(struct spi_board_info const *info, unsigned n)
703{
704 struct boardinfo *bi;
705 int i;
706
707 if (!n)
708 return 0;
709
710 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
711 if (!bi)
712 return -ENOMEM;
713
714 for (i = 0; i < n; i++, bi++, info++) {
715 struct spi_controller *ctlr;
716
717 memcpy(&bi->board_info, info, sizeof(*info));
718 if (info->properties) {
719 bi->board_info.properties =
720 property_entries_dup(info->properties);
721 if (IS_ERR(bi->board_info.properties))
722 return PTR_ERR(bi->board_info.properties);
723 }
724
725 mutex_lock(&board_lock);
726 list_add_tail(&bi->list, &board_list);
727 list_for_each_entry(ctlr, &spi_controller_list, list)
728 spi_match_controller_to_boardinfo(ctlr,
729 &bi->board_info);
730 mutex_unlock(&board_lock);
731 }
732
733 return 0;
734}
735
736/*-------------------------------------------------------------------------*/
737
738static void spi_set_cs(struct spi_device *spi, bool enable)
739{
740 if (spi->mode & SPI_CS_HIGH)
741 enable = !enable;
742
743 if (gpio_is_valid(spi->cs_gpio)) {
744 gpio_set_value(spi->cs_gpio, !enable);
745 /* Some SPI masters need both GPIO CS & slave_select */
746 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
747 spi->controller->set_cs)
748 spi->controller->set_cs(spi, !enable);
749 } else if (spi->controller->set_cs) {
750 spi->controller->set_cs(spi, !enable);
751 }
752}
753
754#ifdef CONFIG_HAS_DMA
755static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
756 struct sg_table *sgt, void *buf, size_t len,
757 enum dma_data_direction dir)
758{
759 const bool vmalloced_buf = is_vmalloc_addr(buf);
760 unsigned int max_seg_size = dma_get_max_seg_size(dev);
761#ifdef CONFIG_HIGHMEM
762 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
763 (unsigned long)buf < (PKMAP_BASE +
764 (LAST_PKMAP * PAGE_SIZE)));
765#else
766 const bool kmap_buf = false;
767#endif
768 int desc_len;
769 int sgs;
770 struct page *vm_page;
771 struct scatterlist *sg;
772 void *sg_buf;
773 size_t min;
774 int i, ret;
775
776 if (vmalloced_buf || kmap_buf) {
777 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
778 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
779 } else if (virt_addr_valid(buf)) {
780 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
781 sgs = DIV_ROUND_UP(len, desc_len);
782 } else {
783 return -EINVAL;
784 }
785
786 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
787 if (ret != 0)
788 return ret;
789
790 sg = &sgt->sgl[0];
791 for (i = 0; i < sgs; i++) {
792
793 if (vmalloced_buf || kmap_buf) {
794 /*
795 * Next scatterlist entry size is the minimum between
796 * the desc_len and the remaining buffer length that
797 * fits in a page.
798 */
799 min = min_t(size_t, desc_len,
800 min_t(size_t, len,
801 PAGE_SIZE - offset_in_page(buf)));
802 if (vmalloced_buf)
803 vm_page = vmalloc_to_page(buf);
804 else
805 vm_page = kmap_to_page(buf);
806 if (!vm_page) {
807 sg_free_table(sgt);
808 return -ENOMEM;
809 }
810 sg_set_page(sg, vm_page,
811 min, offset_in_page(buf));
812 } else {
813 min = min_t(size_t, len, desc_len);
814 sg_buf = buf;
815 sg_set_buf(sg, sg_buf, min);
816 }
817
818 buf += min;
819 len -= min;
820 sg = sg_next(sg);
821 }
822
823 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
824 if (!ret)
825 ret = -ENOMEM;
826 if (ret < 0) {
827 sg_free_table(sgt);
828 return ret;
829 }
830
831 sgt->nents = ret;
832
833 return 0;
834}
835
836static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
837 struct sg_table *sgt, enum dma_data_direction dir)
838{
839 if (sgt->orig_nents) {
840 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
841 sg_free_table(sgt);
842 }
843}
844
845static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
846{
847 struct device *tx_dev, *rx_dev;
848 struct spi_transfer *xfer;
849 int ret;
850
851 if (!ctlr->can_dma)
852 return 0;
853
854 if (ctlr->dma_tx)
855 tx_dev = ctlr->dma_tx->device->dev;
856 else
857 tx_dev = ctlr->dev.parent;
858
859 if (ctlr->dma_rx)
860 rx_dev = ctlr->dma_rx->device->dev;
861 else
862 rx_dev = ctlr->dev.parent;
863
864 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
865 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
866 continue;
867
868 if (xfer->tx_buf != NULL) {
869 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
870 (void *)xfer->tx_buf, xfer->len,
871 DMA_TO_DEVICE);
872 if (ret != 0)
873 return ret;
874 }
875
876 if (xfer->rx_buf != NULL) {
877 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
878 xfer->rx_buf, xfer->len,
879 DMA_FROM_DEVICE);
880 if (ret != 0) {
881 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
882 DMA_TO_DEVICE);
883 return ret;
884 }
885 }
886 }
887
888 ctlr->cur_msg_mapped = true;
889
890 return 0;
891}
892
893static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
894{
895 struct spi_transfer *xfer;
896 struct device *tx_dev, *rx_dev;
897
898 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
899 return 0;
900
901 if (ctlr->dma_tx)
902 tx_dev = ctlr->dma_tx->device->dev;
903 else
904 tx_dev = ctlr->dev.parent;
905
906 if (ctlr->dma_rx)
907 rx_dev = ctlr->dma_rx->device->dev;
908 else
909 rx_dev = ctlr->dev.parent;
910
911 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
912 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
913 continue;
914
915 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
916 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
917 }
918
919 return 0;
920}
921#else /* !CONFIG_HAS_DMA */
922static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
923 struct sg_table *sgt, void *buf, size_t len,
924 enum dma_data_direction dir)
925{
926 return -EINVAL;
927}
928
929static inline void spi_unmap_buf(struct spi_controller *ctlr,
930 struct device *dev, struct sg_table *sgt,
931 enum dma_data_direction dir)
932{
933}
934
935static inline int __spi_map_msg(struct spi_controller *ctlr,
936 struct spi_message *msg)
937{
938 return 0;
939}
940
941static inline int __spi_unmap_msg(struct spi_controller *ctlr,
942 struct spi_message *msg)
943{
944 return 0;
945}
946#endif /* !CONFIG_HAS_DMA */
947
948static inline int spi_unmap_msg(struct spi_controller *ctlr,
949 struct spi_message *msg)
950{
951 struct spi_transfer *xfer;
952
953 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
954 /*
955 * Restore the original value of tx_buf or rx_buf if they are
956 * NULL.
957 */
958 if (xfer->tx_buf == ctlr->dummy_tx)
959 xfer->tx_buf = NULL;
960 if (xfer->rx_buf == ctlr->dummy_rx)
961 xfer->rx_buf = NULL;
962 }
963
964 return __spi_unmap_msg(ctlr, msg);
965}
966
967static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
968{
969 struct spi_transfer *xfer;
970 void *tmp;
971 unsigned int max_tx, max_rx;
972
973 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
974 max_tx = 0;
975 max_rx = 0;
976
977 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
978 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
979 !xfer->tx_buf)
980 max_tx = max(xfer->len, max_tx);
981 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
982 !xfer->rx_buf)
983 max_rx = max(xfer->len, max_rx);
984 }
985
986 if (max_tx) {
987 tmp = krealloc(ctlr->dummy_tx, max_tx,
988 GFP_KERNEL | GFP_DMA);
989 if (!tmp)
990 return -ENOMEM;
991 ctlr->dummy_tx = tmp;
992 memset(tmp, 0, max_tx);
993 }
994
995 if (max_rx) {
996 tmp = krealloc(ctlr->dummy_rx, max_rx,
997 GFP_KERNEL | GFP_DMA);
998 if (!tmp)
999 return -ENOMEM;
1000 ctlr->dummy_rx = tmp;
1001 }
1002
1003 if (max_tx || max_rx) {
1004 list_for_each_entry(xfer, &msg->transfers,
1005 transfer_list) {
1006 if (!xfer->len)
1007 continue;
1008 if (!xfer->tx_buf)
1009 xfer->tx_buf = ctlr->dummy_tx;
1010 if (!xfer->rx_buf)
1011 xfer->rx_buf = ctlr->dummy_rx;
1012 }
1013 }
1014 }
1015
1016 return __spi_map_msg(ctlr, msg);
1017}
1018
1019/*
1020 * spi_transfer_one_message - Default implementation of transfer_one_message()
1021 *
1022 * This is a standard implementation of transfer_one_message() for
1023 * drivers which implement a transfer_one() operation. It provides
1024 * standard handling of delays and chip select management.
1025 */
1026static int spi_transfer_one_message(struct spi_controller *ctlr,
1027 struct spi_message *msg)
1028{
1029 struct spi_transfer *xfer;
1030 bool keep_cs = false;
1031 int ret = 0;
1032 unsigned long long ms = 1;
1033 struct spi_statistics *statm = &ctlr->statistics;
1034 struct spi_statistics *stats = &msg->spi->statistics;
1035
1036 spi_set_cs(msg->spi, true);
1037
1038 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1039 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1040
1041 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1042 trace_spi_transfer_start(msg, xfer);
1043
1044 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1045 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1046
1047 if (xfer->tx_buf || xfer->rx_buf) {
1048 reinit_completion(&ctlr->xfer_completion);
1049
1050 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1051 if (ret < 0) {
1052 SPI_STATISTICS_INCREMENT_FIELD(statm,
1053 errors);
1054 SPI_STATISTICS_INCREMENT_FIELD(stats,
1055 errors);
1056 dev_err(&msg->spi->dev,
1057 "SPI transfer failed: %d\n", ret);
1058 goto out;
1059 }
1060
1061 if (ret > 0) {
1062 ret = 0;
1063 ms = 8LL * 1000LL * xfer->len;
1064 do_div(ms, xfer->speed_hz);
1065 ms += ms + 200; /* some tolerance */
1066
1067 if (ms > UINT_MAX)
1068 ms = UINT_MAX;
1069
1070 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1071 msecs_to_jiffies(ms));
1072 }
1073
1074 if (ms == 0) {
1075 SPI_STATISTICS_INCREMENT_FIELD(statm,
1076 timedout);
1077 SPI_STATISTICS_INCREMENT_FIELD(stats,
1078 timedout);
1079 dev_err(&msg->spi->dev,
1080 "SPI transfer timed out\n");
1081 msg->status = -ETIMEDOUT;
1082 }
1083 } else {
1084 if (xfer->len)
1085 dev_err(&msg->spi->dev,
1086 "Bufferless transfer has length %u\n",
1087 xfer->len);
1088 }
1089
1090 trace_spi_transfer_stop(msg, xfer);
1091
1092 if (msg->status != -EINPROGRESS)
1093 goto out;
1094
1095 if (xfer->delay_usecs) {
1096 u16 us = xfer->delay_usecs;
1097
1098 if (us <= 10)
1099 udelay(us);
1100 else
1101 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1102 }
1103
1104 if (xfer->cs_change) {
1105 if (list_is_last(&xfer->transfer_list,
1106 &msg->transfers)) {
1107 keep_cs = true;
1108 } else {
1109 spi_set_cs(msg->spi, false);
1110 udelay(10);
1111 spi_set_cs(msg->spi, true);
1112 }
1113 }
1114
1115 msg->actual_length += xfer->len;
1116 }
1117
1118out:
1119 if (ret != 0 || !keep_cs)
1120 spi_set_cs(msg->spi, false);
1121
1122 if (msg->status == -EINPROGRESS)
1123 msg->status = ret;
1124
1125 if (msg->status && ctlr->handle_err)
1126 ctlr->handle_err(ctlr, msg);
1127
1128 spi_finalize_current_message(ctlr);
1129
1130 return ret;
1131}
1132
1133/**
1134 * spi_finalize_current_transfer - report completion of a transfer
1135 * @ctlr: the controller reporting completion
1136 *
1137 * Called by SPI drivers using the core transfer_one_message()
1138 * implementation to notify it that the current interrupt driven
1139 * transfer has finished and the next one may be scheduled.
1140 */
1141void spi_finalize_current_transfer(struct spi_controller *ctlr)
1142{
1143 complete(&ctlr->xfer_completion);
1144}
1145EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1146
1147/**
1148 * __spi_pump_messages - function which processes spi message queue
1149 * @ctlr: controller to process queue for
1150 * @in_kthread: true if we are in the context of the message pump thread
1151 *
1152 * This function checks if there is any spi message in the queue that
1153 * needs processing and if so call out to the driver to initialize hardware
1154 * and transfer each message.
1155 *
1156 * Note that it is called both from the kthread itself and also from
1157 * inside spi_sync(); the queue extraction handling at the top of the
1158 * function should deal with this safely.
1159 */
1160static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1161{
1162 unsigned long flags;
1163 bool was_busy = false;
1164 int ret;
1165
1166 /* Lock queue */
1167 spin_lock_irqsave(&ctlr->queue_lock, flags);
1168
1169 /* Make sure we are not already running a message */
1170 if (ctlr->cur_msg) {
1171 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1172 return;
1173 }
1174
1175 /* If another context is idling the device then defer */
1176 if (ctlr->idling) {
1177 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1178 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1179 return;
1180 }
1181
1182 /* Check if the queue is idle */
1183 if (list_empty(&ctlr->queue) || !ctlr->running) {
1184 if (!ctlr->busy) {
1185 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1186 return;
1187 }
1188
1189 /* Only do teardown in the thread */
1190 if (!in_kthread) {
1191 kthread_queue_work(&ctlr->kworker,
1192 &ctlr->pump_messages);
1193 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1194 return;
1195 }
1196
1197 ctlr->busy = false;
1198 ctlr->idling = true;
1199 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1200
1201 kfree(ctlr->dummy_rx);
1202 ctlr->dummy_rx = NULL;
1203 kfree(ctlr->dummy_tx);
1204 ctlr->dummy_tx = NULL;
1205 if (ctlr->unprepare_transfer_hardware &&
1206 ctlr->unprepare_transfer_hardware(ctlr))
1207 dev_err(&ctlr->dev,
1208 "failed to unprepare transfer hardware\n");
1209 if (ctlr->auto_runtime_pm) {
1210 pm_runtime_mark_last_busy(ctlr->dev.parent);
1211 pm_runtime_put_autosuspend(ctlr->dev.parent);
1212 }
1213 trace_spi_controller_idle(ctlr);
1214
1215 spin_lock_irqsave(&ctlr->queue_lock, flags);
1216 ctlr->idling = false;
1217 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1218 return;
1219 }
1220
1221 /* Extract head of queue */
1222 ctlr->cur_msg =
1223 list_first_entry(&ctlr->queue, struct spi_message, queue);
1224
1225 list_del_init(&ctlr->cur_msg->queue);
1226 if (ctlr->busy)
1227 was_busy = true;
1228 else
1229 ctlr->busy = true;
1230 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1231
1232 mutex_lock(&ctlr->io_mutex);
1233
1234 if (!was_busy && ctlr->auto_runtime_pm) {
1235 ret = pm_runtime_get_sync(ctlr->dev.parent);
1236 if (ret < 0) {
1237 pm_runtime_put_noidle(ctlr->dev.parent);
1238 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1239 ret);
1240 mutex_unlock(&ctlr->io_mutex);
1241 return;
1242 }
1243 }
1244
1245 if (!was_busy)
1246 trace_spi_controller_busy(ctlr);
1247
1248 if (!was_busy && ctlr->prepare_transfer_hardware) {
1249 ret = ctlr->prepare_transfer_hardware(ctlr);
1250 if (ret) {
1251 dev_err(&ctlr->dev,
1252 "failed to prepare transfer hardware\n");
1253
1254 if (ctlr->auto_runtime_pm)
1255 pm_runtime_put(ctlr->dev.parent);
1256 mutex_unlock(&ctlr->io_mutex);
1257 return;
1258 }
1259 }
1260
1261 trace_spi_message_start(ctlr->cur_msg);
1262
1263 if (ctlr->prepare_message) {
1264 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1265 if (ret) {
1266 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1267 ret);
1268 ctlr->cur_msg->status = ret;
1269 spi_finalize_current_message(ctlr);
1270 goto out;
1271 }
1272 ctlr->cur_msg_prepared = true;
1273 }
1274
1275 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1276 if (ret) {
1277 ctlr->cur_msg->status = ret;
1278 spi_finalize_current_message(ctlr);
1279 goto out;
1280 }
1281
1282 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1283 if (ret) {
1284 dev_err(&ctlr->dev,
1285 "failed to transfer one message from queue\n");
1286 goto out;
1287 }
1288
1289out:
1290 mutex_unlock(&ctlr->io_mutex);
1291
1292 /* Prod the scheduler in case transfer_one() was busy waiting */
1293 if (!ret)
1294 cond_resched();
1295}
1296
1297/**
1298 * spi_pump_messages - kthread work function which processes spi message queue
1299 * @work: pointer to kthread work struct contained in the controller struct
1300 */
1301static void spi_pump_messages(struct kthread_work *work)
1302{
1303 struct spi_controller *ctlr =
1304 container_of(work, struct spi_controller, pump_messages);
1305
1306 __spi_pump_messages(ctlr, true);
1307}
1308
1309static int spi_init_queue(struct spi_controller *ctlr)
1310{
1311 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1312
1313 ctlr->running = false;
1314 ctlr->busy = false;
1315
1316 kthread_init_worker(&ctlr->kworker);
1317 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1318 "%s", dev_name(&ctlr->dev));
1319 if (IS_ERR(ctlr->kworker_task)) {
1320 dev_err(&ctlr->dev, "failed to create message pump task\n");
1321 return PTR_ERR(ctlr->kworker_task);
1322 }
1323 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1324
1325 /*
1326 * Controller config will indicate if this controller should run the
1327 * message pump with high (realtime) priority to reduce the transfer
1328 * latency on the bus by minimising the delay between a transfer
1329 * request and the scheduling of the message pump thread. Without this
1330 * setting the message pump thread will remain at default priority.
1331 */
1332 if (ctlr->rt) {
1333 dev_info(&ctlr->dev,
1334 "will run message pump with realtime priority\n");
1335 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1336 }
1337
1338 return 0;
1339}
1340
1341/**
1342 * spi_get_next_queued_message() - called by driver to check for queued
1343 * messages
1344 * @ctlr: the controller to check for queued messages
1345 *
1346 * If there are more messages in the queue, the next message is returned from
1347 * this call.
1348 *
1349 * Return: the next message in the queue, else NULL if the queue is empty.
1350 */
1351struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1352{
1353 struct spi_message *next;
1354 unsigned long flags;
1355
1356 /* get a pointer to the next message, if any */
1357 spin_lock_irqsave(&ctlr->queue_lock, flags);
1358 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1359 queue);
1360 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1361
1362 return next;
1363}
1364EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1365
1366/**
1367 * spi_finalize_current_message() - the current message is complete
1368 * @ctlr: the controller to return the message to
1369 *
1370 * Called by the driver to notify the core that the message in the front of the
1371 * queue is complete and can be removed from the queue.
1372 */
1373void spi_finalize_current_message(struct spi_controller *ctlr)
1374{
1375 struct spi_message *mesg;
1376 unsigned long flags;
1377 int ret;
1378
1379 spin_lock_irqsave(&ctlr->queue_lock, flags);
1380 mesg = ctlr->cur_msg;
1381 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1382
1383 spi_unmap_msg(ctlr, mesg);
1384
1385 /* In the prepare_messages callback the spi bus has the opportunity to
1386 * split a transfer to smaller chunks.
1387 * Release splited transfers here since spi_map_msg is done on the
1388 * splited transfers.
1389 */
1390 spi_res_release(ctlr, mesg);
1391
1392 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1393 ret = ctlr->unprepare_message(ctlr, mesg);
1394 if (ret) {
1395 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1396 ret);
1397 }
1398 }
1399
1400 spin_lock_irqsave(&ctlr->queue_lock, flags);
1401 ctlr->cur_msg = NULL;
1402 ctlr->cur_msg_prepared = false;
1403 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1404 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1405
1406 trace_spi_message_done(mesg);
1407
1408 mesg->state = NULL;
1409 if (mesg->complete)
1410 mesg->complete(mesg->context);
1411}
1412EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1413
1414static int spi_start_queue(struct spi_controller *ctlr)
1415{
1416 unsigned long flags;
1417
1418 spin_lock_irqsave(&ctlr->queue_lock, flags);
1419
1420 if (ctlr->running || ctlr->busy) {
1421 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1422 return -EBUSY;
1423 }
1424
1425 ctlr->running = true;
1426 ctlr->cur_msg = NULL;
1427 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1428
1429 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1430
1431 return 0;
1432}
1433
1434static int spi_stop_queue(struct spi_controller *ctlr)
1435{
1436 unsigned long flags;
1437 unsigned limit = 500;
1438 int ret = 0;
1439
1440 spin_lock_irqsave(&ctlr->queue_lock, flags);
1441
1442 /*
1443 * This is a bit lame, but is optimized for the common execution path.
1444 * A wait_queue on the ctlr->busy could be used, but then the common
1445 * execution path (pump_messages) would be required to call wake_up or
1446 * friends on every SPI message. Do this instead.
1447 */
1448 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1449 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1450 usleep_range(10000, 11000);
1451 spin_lock_irqsave(&ctlr->queue_lock, flags);
1452 }
1453
1454 if (!list_empty(&ctlr->queue) || ctlr->busy)
1455 ret = -EBUSY;
1456 else
1457 ctlr->running = false;
1458
1459 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1460
1461 if (ret) {
1462 dev_warn(&ctlr->dev, "could not stop message queue\n");
1463 return ret;
1464 }
1465 return ret;
1466}
1467
1468static int spi_destroy_queue(struct spi_controller *ctlr)
1469{
1470 int ret;
1471
1472 ret = spi_stop_queue(ctlr);
1473
1474 /*
1475 * kthread_flush_worker will block until all work is done.
1476 * If the reason that stop_queue timed out is that the work will never
1477 * finish, then it does no good to call flush/stop thread, so
1478 * return anyway.
1479 */
1480 if (ret) {
1481 dev_err(&ctlr->dev, "problem destroying queue\n");
1482 return ret;
1483 }
1484
1485 kthread_flush_worker(&ctlr->kworker);
1486 kthread_stop(ctlr->kworker_task);
1487
1488 return 0;
1489}
1490
1491static int __spi_queued_transfer(struct spi_device *spi,
1492 struct spi_message *msg,
1493 bool need_pump)
1494{
1495 struct spi_controller *ctlr = spi->controller;
1496 unsigned long flags;
1497
1498 spin_lock_irqsave(&ctlr->queue_lock, flags);
1499
1500 if (!ctlr->running) {
1501 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1502 return -ESHUTDOWN;
1503 }
1504 msg->actual_length = 0;
1505 msg->status = -EINPROGRESS;
1506
1507 list_add_tail(&msg->queue, &ctlr->queue);
1508 if (!ctlr->busy && need_pump)
1509 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1510
1511 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1512 return 0;
1513}
1514
1515/**
1516 * spi_queued_transfer - transfer function for queued transfers
1517 * @spi: spi device which is requesting transfer
1518 * @msg: spi message which is to handled is queued to driver queue
1519 *
1520 * Return: zero on success, else a negative error code.
1521 */
1522static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1523{
1524 return __spi_queued_transfer(spi, msg, true);
1525}
1526
1527static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1528{
1529 int ret;
1530
1531 ctlr->transfer = spi_queued_transfer;
1532 if (!ctlr->transfer_one_message)
1533 ctlr->transfer_one_message = spi_transfer_one_message;
1534
1535 /* Initialize and start queue */
1536 ret = spi_init_queue(ctlr);
1537 if (ret) {
1538 dev_err(&ctlr->dev, "problem initializing queue\n");
1539 goto err_init_queue;
1540 }
1541 ctlr->queued = true;
1542 ret = spi_start_queue(ctlr);
1543 if (ret) {
1544 dev_err(&ctlr->dev, "problem starting queue\n");
1545 goto err_start_queue;
1546 }
1547
1548 return 0;
1549
1550err_start_queue:
1551 spi_destroy_queue(ctlr);
1552err_init_queue:
1553 return ret;
1554}
1555
1556/*-------------------------------------------------------------------------*/
1557
1558#if defined(CONFIG_OF)
1559static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1560 struct device_node *nc)
1561{
1562 u32 value;
1563 int rc;
1564
1565 /* Mode (clock phase/polarity/etc.) */
1566 if (of_property_read_bool(nc, "spi-cpha"))
1567 spi->mode |= SPI_CPHA;
1568 if (of_property_read_bool(nc, "spi-cpol"))
1569 spi->mode |= SPI_CPOL;
1570 if (of_property_read_bool(nc, "spi-cs-high"))
1571 spi->mode |= SPI_CS_HIGH;
1572 if (of_property_read_bool(nc, "spi-3wire"))
1573 spi->mode |= SPI_3WIRE;
1574 if (of_property_read_bool(nc, "spi-lsb-first"))
1575 spi->mode |= SPI_LSB_FIRST;
1576
1577 /* Device DUAL/QUAD mode */
1578 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1579 switch (value) {
1580 case 1:
1581 break;
1582 case 2:
1583 spi->mode |= SPI_TX_DUAL;
1584 break;
1585 case 4:
1586 spi->mode |= SPI_TX_QUAD;
1587 break;
1588 default:
1589 dev_warn(&ctlr->dev,
1590 "spi-tx-bus-width %d not supported\n",
1591 value);
1592 break;
1593 }
1594 }
1595
1596 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1597 switch (value) {
1598 case 1:
1599 break;
1600 case 2:
1601 spi->mode |= SPI_RX_DUAL;
1602 break;
1603 case 4:
1604 spi->mode |= SPI_RX_QUAD;
1605 break;
1606 default:
1607 dev_warn(&ctlr->dev,
1608 "spi-rx-bus-width %d not supported\n",
1609 value);
1610 break;
1611 }
1612 }
1613
1614 if (spi_controller_is_slave(ctlr)) {
1615 if (strcmp(nc->name, "slave")) {
1616 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1617 nc);
1618 return -EINVAL;
1619 }
1620 return 0;
1621 }
1622
1623 /* Device address */
1624 rc = of_property_read_u32(nc, "reg", &value);
1625 if (rc) {
1626 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1627 nc, rc);
1628 return rc;
1629 }
1630 spi->chip_select = value;
1631
1632 /* Device speed */
1633 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1634 if (rc) {
1635 dev_err(&ctlr->dev,
1636 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1637 return rc;
1638 }
1639 spi->max_speed_hz = value;
1640
1641 return 0;
1642}
1643
1644static struct spi_device *
1645of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1646{
1647 struct spi_device *spi;
1648 int rc;
1649
1650 /* Alloc an spi_device */
1651 spi = spi_alloc_device(ctlr);
1652 if (!spi) {
1653 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1654 rc = -ENOMEM;
1655 goto err_out;
1656 }
1657
1658 /* Select device driver */
1659 rc = of_modalias_node(nc, spi->modalias,
1660 sizeof(spi->modalias));
1661 if (rc < 0) {
1662 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1663 goto err_out;
1664 }
1665
1666 rc = of_spi_parse_dt(ctlr, spi, nc);
1667 if (rc)
1668 goto err_out;
1669
1670 /* Store a pointer to the node in the device structure */
1671 of_node_get(nc);
1672 spi->dev.of_node = nc;
1673
1674 /* Register the new device */
1675 rc = spi_add_device(spi);
1676 if (rc) {
1677 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1678 goto err_of_node_put;
1679 }
1680
1681 return spi;
1682
1683err_of_node_put:
1684 of_node_put(nc);
1685err_out:
1686 spi_dev_put(spi);
1687 return ERR_PTR(rc);
1688}
1689
1690/**
1691 * of_register_spi_devices() - Register child devices onto the SPI bus
1692 * @ctlr: Pointer to spi_controller device
1693 *
1694 * Registers an spi_device for each child node of controller node which
1695 * represents a valid SPI slave.
1696 */
1697static void of_register_spi_devices(struct spi_controller *ctlr)
1698{
1699 struct spi_device *spi;
1700 struct device_node *nc;
1701
1702 if (!ctlr->dev.of_node)
1703 return;
1704
1705 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1706 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1707 continue;
1708 spi = of_register_spi_device(ctlr, nc);
1709 if (IS_ERR(spi)) {
1710 dev_warn(&ctlr->dev,
1711 "Failed to create SPI device for %pOF\n", nc);
1712 of_node_clear_flag(nc, OF_POPULATED);
1713 }
1714 }
1715}
1716#else
1717static void of_register_spi_devices(struct spi_controller *ctlr) { }
1718#endif
1719
1720#ifdef CONFIG_ACPI
1721static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1722{
1723 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1724 const union acpi_object *obj;
1725
1726 if (!x86_apple_machine)
1727 return;
1728
1729 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1730 && obj->buffer.length >= 4)
1731 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1732
1733 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1734 && obj->buffer.length == 8)
1735 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1736
1737 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1738 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1739 spi->mode |= SPI_LSB_FIRST;
1740
1741 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1742 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1743 spi->mode |= SPI_CPOL;
1744
1745 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1746 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1747 spi->mode |= SPI_CPHA;
1748}
1749
1750static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1751{
1752 struct spi_device *spi = data;
1753 struct spi_controller *ctlr = spi->controller;
1754
1755 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1756 struct acpi_resource_spi_serialbus *sb;
1757
1758 sb = &ares->data.spi_serial_bus;
1759 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1760 /*
1761 * ACPI DeviceSelection numbering is handled by the
1762 * host controller driver in Windows and can vary
1763 * from driver to driver. In Linux we always expect
1764 * 0 .. max - 1 so we need to ask the driver to
1765 * translate between the two schemes.
1766 */
1767 if (ctlr->fw_translate_cs) {
1768 int cs = ctlr->fw_translate_cs(ctlr,
1769 sb->device_selection);
1770 if (cs < 0)
1771 return cs;
1772 spi->chip_select = cs;
1773 } else {
1774 spi->chip_select = sb->device_selection;
1775 }
1776
1777 spi->max_speed_hz = sb->connection_speed;
1778
1779 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1780 spi->mode |= SPI_CPHA;
1781 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1782 spi->mode |= SPI_CPOL;
1783 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1784 spi->mode |= SPI_CS_HIGH;
1785 }
1786 } else if (spi->irq < 0) {
1787 struct resource r;
1788
1789 if (acpi_dev_resource_interrupt(ares, 0, &r))
1790 spi->irq = r.start;
1791 }
1792
1793 /* Always tell the ACPI core to skip this resource */
1794 return 1;
1795}
1796
1797static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1798 struct acpi_device *adev)
1799{
1800 struct list_head resource_list;
1801 struct spi_device *spi;
1802 int ret;
1803
1804 if (acpi_bus_get_status(adev) || !adev->status.present ||
1805 acpi_device_enumerated(adev))
1806 return AE_OK;
1807
1808 spi = spi_alloc_device(ctlr);
1809 if (!spi) {
1810 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1811 dev_name(&adev->dev));
1812 return AE_NO_MEMORY;
1813 }
1814
1815 ACPI_COMPANION_SET(&spi->dev, adev);
1816 spi->irq = -1;
1817
1818 INIT_LIST_HEAD(&resource_list);
1819 ret = acpi_dev_get_resources(adev, &resource_list,
1820 acpi_spi_add_resource, spi);
1821 acpi_dev_free_resource_list(&resource_list);
1822
1823 acpi_spi_parse_apple_properties(spi);
1824
1825 if (ret < 0 || !spi->max_speed_hz) {
1826 spi_dev_put(spi);
1827 return AE_OK;
1828 }
1829
1830 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1831 sizeof(spi->modalias));
1832
1833 if (spi->irq < 0)
1834 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1835
1836 acpi_device_set_enumerated(adev);
1837
1838 adev->power.flags.ignore_parent = true;
1839 if (spi_add_device(spi)) {
1840 adev->power.flags.ignore_parent = false;
1841 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1842 dev_name(&adev->dev));
1843 spi_dev_put(spi);
1844 }
1845
1846 return AE_OK;
1847}
1848
1849static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1850 void *data, void **return_value)
1851{
1852 struct spi_controller *ctlr = data;
1853 struct acpi_device *adev;
1854
1855 if (acpi_bus_get_device(handle, &adev))
1856 return AE_OK;
1857
1858 return acpi_register_spi_device(ctlr, adev);
1859}
1860
1861static void acpi_register_spi_devices(struct spi_controller *ctlr)
1862{
1863 acpi_status status;
1864 acpi_handle handle;
1865
1866 handle = ACPI_HANDLE(ctlr->dev.parent);
1867 if (!handle)
1868 return;
1869
1870 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1871 acpi_spi_add_device, NULL, ctlr, NULL);
1872 if (ACPI_FAILURE(status))
1873 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1874}
1875#else
1876static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1877#endif /* CONFIG_ACPI */
1878
1879static void spi_controller_release(struct device *dev)
1880{
1881 struct spi_controller *ctlr;
1882
1883 ctlr = container_of(dev, struct spi_controller, dev);
1884 kfree(ctlr);
1885}
1886
1887static struct class spi_master_class = {
1888 .name = "spi_master",
1889 .owner = THIS_MODULE,
1890 .dev_release = spi_controller_release,
1891 .dev_groups = spi_master_groups,
1892};
1893
1894#ifdef CONFIG_SPI_SLAVE
1895/**
1896 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1897 * controller
1898 * @spi: device used for the current transfer
1899 */
1900int spi_slave_abort(struct spi_device *spi)
1901{
1902 struct spi_controller *ctlr = spi->controller;
1903
1904 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1905 return ctlr->slave_abort(ctlr);
1906
1907 return -ENOTSUPP;
1908}
1909EXPORT_SYMBOL_GPL(spi_slave_abort);
1910
1911static int match_true(struct device *dev, void *data)
1912{
1913 return 1;
1914}
1915
1916static ssize_t spi_slave_show(struct device *dev,
1917 struct device_attribute *attr, char *buf)
1918{
1919 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1920 dev);
1921 struct device *child;
1922
1923 child = device_find_child(&ctlr->dev, NULL, match_true);
1924 return sprintf(buf, "%s\n",
1925 child ? to_spi_device(child)->modalias : NULL);
1926}
1927
1928static ssize_t spi_slave_store(struct device *dev,
1929 struct device_attribute *attr, const char *buf,
1930 size_t count)
1931{
1932 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1933 dev);
1934 struct spi_device *spi;
1935 struct device *child;
1936 char name[32];
1937 int rc;
1938
1939 rc = sscanf(buf, "%31s", name);
1940 if (rc != 1 || !name[0])
1941 return -EINVAL;
1942
1943 child = device_find_child(&ctlr->dev, NULL, match_true);
1944 if (child) {
1945 /* Remove registered slave */
1946 device_unregister(child);
1947 put_device(child);
1948 }
1949
1950 if (strcmp(name, "(null)")) {
1951 /* Register new slave */
1952 spi = spi_alloc_device(ctlr);
1953 if (!spi)
1954 return -ENOMEM;
1955
1956 strlcpy(spi->modalias, name, sizeof(spi->modalias));
1957
1958 rc = spi_add_device(spi);
1959 if (rc) {
1960 spi_dev_put(spi);
1961 return rc;
1962 }
1963 }
1964
1965 return count;
1966}
1967
1968static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1969
1970static struct attribute *spi_slave_attrs[] = {
1971 &dev_attr_slave.attr,
1972 NULL,
1973};
1974
1975static const struct attribute_group spi_slave_group = {
1976 .attrs = spi_slave_attrs,
1977};
1978
1979static const struct attribute_group *spi_slave_groups[] = {
1980 &spi_controller_statistics_group,
1981 &spi_slave_group,
1982 NULL,
1983};
1984
1985static struct class spi_slave_class = {
1986 .name = "spi_slave",
1987 .owner = THIS_MODULE,
1988 .dev_release = spi_controller_release,
1989 .dev_groups = spi_slave_groups,
1990};
1991#else
1992extern struct class spi_slave_class; /* dummy */
1993#endif
1994
1995/**
1996 * __spi_alloc_controller - allocate an SPI master or slave controller
1997 * @dev: the controller, possibly using the platform_bus
1998 * @size: how much zeroed driver-private data to allocate; the pointer to this
1999 * memory is in the driver_data field of the returned device,
2000 * accessible with spi_controller_get_devdata().
2001 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2002 * slave (true) controller
2003 * Context: can sleep
2004 *
2005 * This call is used only by SPI controller drivers, which are the
2006 * only ones directly touching chip registers. It's how they allocate
2007 * an spi_controller structure, prior to calling spi_register_controller().
2008 *
2009 * This must be called from context that can sleep.
2010 *
2011 * The caller is responsible for assigning the bus number and initializing the
2012 * controller's methods before calling spi_register_controller(); and (after
2013 * errors adding the device) calling spi_controller_put() to prevent a memory
2014 * leak.
2015 *
2016 * Return: the SPI controller structure on success, else NULL.
2017 */
2018struct spi_controller *__spi_alloc_controller(struct device *dev,
2019 unsigned int size, bool slave)
2020{
2021 struct spi_controller *ctlr;
2022
2023 if (!dev)
2024 return NULL;
2025
2026 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2027 if (!ctlr)
2028 return NULL;
2029
2030 device_initialize(&ctlr->dev);
2031 ctlr->bus_num = -1;
2032 ctlr->num_chipselect = 1;
2033 ctlr->slave = slave;
2034 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2035 ctlr->dev.class = &spi_slave_class;
2036 else
2037 ctlr->dev.class = &spi_master_class;
2038 ctlr->dev.parent = dev;
2039 pm_suspend_ignore_children(&ctlr->dev, true);
2040 spi_controller_set_devdata(ctlr, &ctlr[1]);
2041
2042 return ctlr;
2043}
2044EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2045
2046#ifdef CONFIG_OF
2047static int of_spi_register_master(struct spi_controller *ctlr)
2048{
2049 int nb, i, *cs;
2050 struct device_node *np = ctlr->dev.of_node;
2051
2052 if (!np)
2053 return 0;
2054
2055 nb = of_gpio_named_count(np, "cs-gpios");
2056 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2057
2058 /* Return error only for an incorrectly formed cs-gpios property */
2059 if (nb == 0 || nb == -ENOENT)
2060 return 0;
2061 else if (nb < 0)
2062 return nb;
2063
2064 cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2065 GFP_KERNEL);
2066 ctlr->cs_gpios = cs;
2067
2068 if (!ctlr->cs_gpios)
2069 return -ENOMEM;
2070
2071 for (i = 0; i < ctlr->num_chipselect; i++)
2072 cs[i] = -ENOENT;
2073
2074 for (i = 0; i < nb; i++)
2075 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2076
2077 return 0;
2078}
2079#else
2080static int of_spi_register_master(struct spi_controller *ctlr)
2081{
2082 return 0;
2083}
2084#endif
2085
2086/**
2087 * spi_register_controller - register SPI master or slave controller
2088 * @ctlr: initialized master, originally from spi_alloc_master() or
2089 * spi_alloc_slave()
2090 * Context: can sleep
2091 *
2092 * SPI controllers connect to their drivers using some non-SPI bus,
2093 * such as the platform bus. The final stage of probe() in that code
2094 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2095 *
2096 * SPI controllers use board specific (often SOC specific) bus numbers,
2097 * and board-specific addressing for SPI devices combines those numbers
2098 * with chip select numbers. Since SPI does not directly support dynamic
2099 * device identification, boards need configuration tables telling which
2100 * chip is at which address.
2101 *
2102 * This must be called from context that can sleep. It returns zero on
2103 * success, else a negative error code (dropping the controller's refcount).
2104 * After a successful return, the caller is responsible for calling
2105 * spi_unregister_controller().
2106 *
2107 * Return: zero on success, else a negative error code.
2108 */
2109int spi_register_controller(struct spi_controller *ctlr)
2110{
2111 struct device *dev = ctlr->dev.parent;
2112 struct boardinfo *bi;
2113 int status = -ENODEV;
2114 int id, first_dynamic;
2115
2116 if (!dev)
2117 return -ENODEV;
2118
2119 if (!spi_controller_is_slave(ctlr)) {
2120 status = of_spi_register_master(ctlr);
2121 if (status)
2122 return status;
2123 }
2124
2125 /* even if it's just one always-selected device, there must
2126 * be at least one chipselect
2127 */
2128 if (ctlr->num_chipselect == 0)
2129 return -EINVAL;
2130 if (ctlr->bus_num >= 0) {
2131 /* devices with a fixed bus num must check-in with the num */
2132 mutex_lock(&board_lock);
2133 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2134 ctlr->bus_num + 1, GFP_KERNEL);
2135 mutex_unlock(&board_lock);
2136 if (WARN(id < 0, "couldn't get idr"))
2137 return id == -ENOSPC ? -EBUSY : id;
2138 ctlr->bus_num = id;
2139 } else if (ctlr->dev.of_node) {
2140 /* allocate dynamic bus number using Linux idr */
2141 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2142 if (id >= 0) {
2143 ctlr->bus_num = id;
2144 mutex_lock(&board_lock);
2145 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2146 ctlr->bus_num + 1, GFP_KERNEL);
2147 mutex_unlock(&board_lock);
2148 if (WARN(id < 0, "couldn't get idr"))
2149 return id == -ENOSPC ? -EBUSY : id;
2150 }
2151 }
2152 if (ctlr->bus_num < 0) {
2153 first_dynamic = of_alias_get_highest_id("spi");
2154 if (first_dynamic < 0)
2155 first_dynamic = 0;
2156 else
2157 first_dynamic++;
2158
2159 mutex_lock(&board_lock);
2160 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2161 0, GFP_KERNEL);
2162 mutex_unlock(&board_lock);
2163 if (WARN(id < 0, "couldn't get idr"))
2164 return id;
2165 ctlr->bus_num = id;
2166 }
2167 INIT_LIST_HEAD(&ctlr->queue);
2168 spin_lock_init(&ctlr->queue_lock);
2169 spin_lock_init(&ctlr->bus_lock_spinlock);
2170 mutex_init(&ctlr->bus_lock_mutex);
2171 mutex_init(&ctlr->io_mutex);
2172 ctlr->bus_lock_flag = 0;
2173 init_completion(&ctlr->xfer_completion);
2174 if (!ctlr->max_dma_len)
2175 ctlr->max_dma_len = INT_MAX;
2176
2177 /* register the device, then userspace will see it.
2178 * registration fails if the bus ID is in use.
2179 */
2180 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2181 status = device_add(&ctlr->dev);
2182 if (status < 0) {
2183 /* free bus id */
2184 mutex_lock(&board_lock);
2185 idr_remove(&spi_master_idr, ctlr->bus_num);
2186 mutex_unlock(&board_lock);
2187 goto done;
2188 }
2189 dev_dbg(dev, "registered %s %s\n",
2190 spi_controller_is_slave(ctlr) ? "slave" : "master",
2191 dev_name(&ctlr->dev));
2192
2193 /* If we're using a queued driver, start the queue */
2194 if (ctlr->transfer)
2195 dev_info(dev, "controller is unqueued, this is deprecated\n");
2196 else {
2197 status = spi_controller_initialize_queue(ctlr);
2198 if (status) {
2199 device_del(&ctlr->dev);
2200 /* free bus id */
2201 mutex_lock(&board_lock);
2202 idr_remove(&spi_master_idr, ctlr->bus_num);
2203 mutex_unlock(&board_lock);
2204 goto done;
2205 }
2206 }
2207 /* add statistics */
2208 spin_lock_init(&ctlr->statistics.lock);
2209
2210 mutex_lock(&board_lock);
2211 list_add_tail(&ctlr->list, &spi_controller_list);
2212 list_for_each_entry(bi, &board_list, list)
2213 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2214 mutex_unlock(&board_lock);
2215
2216 /* Register devices from the device tree and ACPI */
2217 of_register_spi_devices(ctlr);
2218 acpi_register_spi_devices(ctlr);
2219done:
2220 return status;
2221}
2222EXPORT_SYMBOL_GPL(spi_register_controller);
2223
2224static void devm_spi_unregister(struct device *dev, void *res)
2225{
2226 spi_unregister_controller(*(struct spi_controller **)res);
2227}
2228
2229/**
2230 * devm_spi_register_controller - register managed SPI master or slave
2231 * controller
2232 * @dev: device managing SPI controller
2233 * @ctlr: initialized controller, originally from spi_alloc_master() or
2234 * spi_alloc_slave()
2235 * Context: can sleep
2236 *
2237 * Register a SPI device as with spi_register_controller() which will
2238 * automatically be unregister
2239 *
2240 * Return: zero on success, else a negative error code.
2241 */
2242int devm_spi_register_controller(struct device *dev,
2243 struct spi_controller *ctlr)
2244{
2245 struct spi_controller **ptr;
2246 int ret;
2247
2248 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2249 if (!ptr)
2250 return -ENOMEM;
2251
2252 ret = spi_register_controller(ctlr);
2253 if (!ret) {
2254 *ptr = ctlr;
2255 devres_add(dev, ptr);
2256 } else {
2257 devres_free(ptr);
2258 }
2259
2260 return ret;
2261}
2262EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2263
2264static int __unregister(struct device *dev, void *null)
2265{
2266 spi_unregister_device(to_spi_device(dev));
2267 return 0;
2268}
2269
2270/**
2271 * spi_unregister_controller - unregister SPI master or slave controller
2272 * @ctlr: the controller being unregistered
2273 * Context: can sleep
2274 *
2275 * This call is used only by SPI controller drivers, which are the
2276 * only ones directly touching chip registers.
2277 *
2278 * This must be called from context that can sleep.
2279 */
2280void spi_unregister_controller(struct spi_controller *ctlr)
2281{
2282 struct spi_controller *found;
2283 int id = ctlr->bus_num;
2284
2285 /* Prevent addition of new devices, unregister existing ones */
2286 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2287 mutex_lock(&spi_add_lock);
2288
2289 device_for_each_child(&ctlr->dev, NULL, __unregister);
2290
2291 /* First make sure that this controller was ever added */
2292 mutex_lock(&board_lock);
2293 found = idr_find(&spi_master_idr, id);
2294 mutex_unlock(&board_lock);
2295 if (ctlr->queued) {
2296 if (spi_destroy_queue(ctlr))
2297 dev_err(&ctlr->dev, "queue remove failed\n");
2298 }
2299 mutex_lock(&board_lock);
2300 list_del(&ctlr->list);
2301 mutex_unlock(&board_lock);
2302
2303 device_unregister(&ctlr->dev);
2304 /* free bus id */
2305 mutex_lock(&board_lock);
2306 if (found == ctlr)
2307 idr_remove(&spi_master_idr, id);
2308 mutex_unlock(&board_lock);
2309
2310 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2311 mutex_unlock(&spi_add_lock);
2312}
2313EXPORT_SYMBOL_GPL(spi_unregister_controller);
2314
2315int spi_controller_suspend(struct spi_controller *ctlr)
2316{
2317 int ret;
2318
2319 /* Basically no-ops for non-queued controllers */
2320 if (!ctlr->queued)
2321 return 0;
2322
2323 ret = spi_stop_queue(ctlr);
2324 if (ret)
2325 dev_err(&ctlr->dev, "queue stop failed\n");
2326
2327 return ret;
2328}
2329EXPORT_SYMBOL_GPL(spi_controller_suspend);
2330
2331int spi_controller_resume(struct spi_controller *ctlr)
2332{
2333 int ret;
2334
2335 if (!ctlr->queued)
2336 return 0;
2337
2338 ret = spi_start_queue(ctlr);
2339 if (ret)
2340 dev_err(&ctlr->dev, "queue restart failed\n");
2341
2342 return ret;
2343}
2344EXPORT_SYMBOL_GPL(spi_controller_resume);
2345
2346static int __spi_controller_match(struct device *dev, const void *data)
2347{
2348 struct spi_controller *ctlr;
2349 const u16 *bus_num = data;
2350
2351 ctlr = container_of(dev, struct spi_controller, dev);
2352 return ctlr->bus_num == *bus_num;
2353}
2354
2355/**
2356 * spi_busnum_to_master - look up master associated with bus_num
2357 * @bus_num: the master's bus number
2358 * Context: can sleep
2359 *
2360 * This call may be used with devices that are registered after
2361 * arch init time. It returns a refcounted pointer to the relevant
2362 * spi_controller (which the caller must release), or NULL if there is
2363 * no such master registered.
2364 *
2365 * Return: the SPI master structure on success, else NULL.
2366 */
2367struct spi_controller *spi_busnum_to_master(u16 bus_num)
2368{
2369 struct device *dev;
2370 struct spi_controller *ctlr = NULL;
2371
2372 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2373 __spi_controller_match);
2374 if (dev)
2375 ctlr = container_of(dev, struct spi_controller, dev);
2376 /* reference got in class_find_device */
2377 return ctlr;
2378}
2379EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2380
2381/*-------------------------------------------------------------------------*/
2382
2383/* Core methods for SPI resource management */
2384
2385/**
2386 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2387 * during the processing of a spi_message while using
2388 * spi_transfer_one
2389 * @spi: the spi device for which we allocate memory
2390 * @release: the release code to execute for this resource
2391 * @size: size to alloc and return
2392 * @gfp: GFP allocation flags
2393 *
2394 * Return: the pointer to the allocated data
2395 *
2396 * This may get enhanced in the future to allocate from a memory pool
2397 * of the @spi_device or @spi_controller to avoid repeated allocations.
2398 */
2399void *spi_res_alloc(struct spi_device *spi,
2400 spi_res_release_t release,
2401 size_t size, gfp_t gfp)
2402{
2403 struct spi_res *sres;
2404
2405 sres = kzalloc(sizeof(*sres) + size, gfp);
2406 if (!sres)
2407 return NULL;
2408
2409 INIT_LIST_HEAD(&sres->entry);
2410 sres->release = release;
2411
2412 return sres->data;
2413}
2414EXPORT_SYMBOL_GPL(spi_res_alloc);
2415
2416/**
2417 * spi_res_free - free an spi resource
2418 * @res: pointer to the custom data of a resource
2419 *
2420 */
2421void spi_res_free(void *res)
2422{
2423 struct spi_res *sres = container_of(res, struct spi_res, data);
2424
2425 if (!res)
2426 return;
2427
2428 WARN_ON(!list_empty(&sres->entry));
2429 kfree(sres);
2430}
2431EXPORT_SYMBOL_GPL(spi_res_free);
2432
2433/**
2434 * spi_res_add - add a spi_res to the spi_message
2435 * @message: the spi message
2436 * @res: the spi_resource
2437 */
2438void spi_res_add(struct spi_message *message, void *res)
2439{
2440 struct spi_res *sres = container_of(res, struct spi_res, data);
2441
2442 WARN_ON(!list_empty(&sres->entry));
2443 list_add_tail(&sres->entry, &message->resources);
2444}
2445EXPORT_SYMBOL_GPL(spi_res_add);
2446
2447/**
2448 * spi_res_release - release all spi resources for this message
2449 * @ctlr: the @spi_controller
2450 * @message: the @spi_message
2451 */
2452void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2453{
2454 struct spi_res *res;
2455
2456 while (!list_empty(&message->resources)) {
2457 res = list_last_entry(&message->resources,
2458 struct spi_res, entry);
2459
2460 if (res->release)
2461 res->release(ctlr, message, res->data);
2462
2463 list_del(&res->entry);
2464
2465 kfree(res);
2466 }
2467}
2468EXPORT_SYMBOL_GPL(spi_res_release);
2469
2470/*-------------------------------------------------------------------------*/
2471
2472/* Core methods for spi_message alterations */
2473
2474static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2475 struct spi_message *msg,
2476 void *res)
2477{
2478 struct spi_replaced_transfers *rxfer = res;
2479 size_t i;
2480
2481 /* call extra callback if requested */
2482 if (rxfer->release)
2483 rxfer->release(ctlr, msg, res);
2484
2485 /* insert replaced transfers back into the message */
2486 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2487
2488 /* remove the formerly inserted entries */
2489 for (i = 0; i < rxfer->inserted; i++)
2490 list_del(&rxfer->inserted_transfers[i].transfer_list);
2491}
2492
2493/**
2494 * spi_replace_transfers - replace transfers with several transfers
2495 * and register change with spi_message.resources
2496 * @msg: the spi_message we work upon
2497 * @xfer_first: the first spi_transfer we want to replace
2498 * @remove: number of transfers to remove
2499 * @insert: the number of transfers we want to insert instead
2500 * @release: extra release code necessary in some circumstances
2501 * @extradatasize: extra data to allocate (with alignment guarantees
2502 * of struct @spi_transfer)
2503 * @gfp: gfp flags
2504 *
2505 * Returns: pointer to @spi_replaced_transfers,
2506 * PTR_ERR(...) in case of errors.
2507 */
2508struct spi_replaced_transfers *spi_replace_transfers(
2509 struct spi_message *msg,
2510 struct spi_transfer *xfer_first,
2511 size_t remove,
2512 size_t insert,
2513 spi_replaced_release_t release,
2514 size_t extradatasize,
2515 gfp_t gfp)
2516{
2517 struct spi_replaced_transfers *rxfer;
2518 struct spi_transfer *xfer;
2519 size_t i;
2520
2521 /* allocate the structure using spi_res */
2522 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2523 insert * sizeof(struct spi_transfer)
2524 + sizeof(struct spi_replaced_transfers)
2525 + extradatasize,
2526 gfp);
2527 if (!rxfer)
2528 return ERR_PTR(-ENOMEM);
2529
2530 /* the release code to invoke before running the generic release */
2531 rxfer->release = release;
2532
2533 /* assign extradata */
2534 if (extradatasize)
2535 rxfer->extradata =
2536 &rxfer->inserted_transfers[insert];
2537
2538 /* init the replaced_transfers list */
2539 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2540
2541 /* assign the list_entry after which we should reinsert
2542 * the @replaced_transfers - it may be spi_message.messages!
2543 */
2544 rxfer->replaced_after = xfer_first->transfer_list.prev;
2545
2546 /* remove the requested number of transfers */
2547 for (i = 0; i < remove; i++) {
2548 /* if the entry after replaced_after it is msg->transfers
2549 * then we have been requested to remove more transfers
2550 * than are in the list
2551 */
2552 if (rxfer->replaced_after->next == &msg->transfers) {
2553 dev_err(&msg->spi->dev,
2554 "requested to remove more spi_transfers than are available\n");
2555 /* insert replaced transfers back into the message */
2556 list_splice(&rxfer->replaced_transfers,
2557 rxfer->replaced_after);
2558
2559 /* free the spi_replace_transfer structure */
2560 spi_res_free(rxfer);
2561
2562 /* and return with an error */
2563 return ERR_PTR(-EINVAL);
2564 }
2565
2566 /* remove the entry after replaced_after from list of
2567 * transfers and add it to list of replaced_transfers
2568 */
2569 list_move_tail(rxfer->replaced_after->next,
2570 &rxfer->replaced_transfers);
2571 }
2572
2573 /* create copy of the given xfer with identical settings
2574 * based on the first transfer to get removed
2575 */
2576 for (i = 0; i < insert; i++) {
2577 /* we need to run in reverse order */
2578 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2579
2580 /* copy all spi_transfer data */
2581 memcpy(xfer, xfer_first, sizeof(*xfer));
2582
2583 /* add to list */
2584 list_add(&xfer->transfer_list, rxfer->replaced_after);
2585
2586 /* clear cs_change and delay_usecs for all but the last */
2587 if (i) {
2588 xfer->cs_change = false;
2589 xfer->delay_usecs = 0;
2590 }
2591 }
2592
2593 /* set up inserted */
2594 rxfer->inserted = insert;
2595
2596 /* and register it with spi_res/spi_message */
2597 spi_res_add(msg, rxfer);
2598
2599 return rxfer;
2600}
2601EXPORT_SYMBOL_GPL(spi_replace_transfers);
2602
2603static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2604 struct spi_message *msg,
2605 struct spi_transfer **xferp,
2606 size_t maxsize,
2607 gfp_t gfp)
2608{
2609 struct spi_transfer *xfer = *xferp, *xfers;
2610 struct spi_replaced_transfers *srt;
2611 size_t offset;
2612 size_t count, i;
2613
2614 /* warn once about this fact that we are splitting a transfer */
2615 dev_warn_once(&msg->spi->dev,
2616 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2617 xfer->len, maxsize);
2618
2619 /* calculate how many we have to replace */
2620 count = DIV_ROUND_UP(xfer->len, maxsize);
2621
2622 /* create replacement */
2623 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2624 if (IS_ERR(srt))
2625 return PTR_ERR(srt);
2626 xfers = srt->inserted_transfers;
2627
2628 /* now handle each of those newly inserted spi_transfers
2629 * note that the replacements spi_transfers all are preset
2630 * to the same values as *xferp, so tx_buf, rx_buf and len
2631 * are all identical (as well as most others)
2632 * so we just have to fix up len and the pointers.
2633 *
2634 * this also includes support for the depreciated
2635 * spi_message.is_dma_mapped interface
2636 */
2637
2638 /* the first transfer just needs the length modified, so we
2639 * run it outside the loop
2640 */
2641 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2642
2643 /* all the others need rx_buf/tx_buf also set */
2644 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2645 /* update rx_buf, tx_buf and dma */
2646 if (xfers[i].rx_buf)
2647 xfers[i].rx_buf += offset;
2648 if (xfers[i].rx_dma)
2649 xfers[i].rx_dma += offset;
2650 if (xfers[i].tx_buf)
2651 xfers[i].tx_buf += offset;
2652 if (xfers[i].tx_dma)
2653 xfers[i].tx_dma += offset;
2654
2655 /* update length */
2656 xfers[i].len = min(maxsize, xfers[i].len - offset);
2657 }
2658
2659 /* we set up xferp to the last entry we have inserted,
2660 * so that we skip those already split transfers
2661 */
2662 *xferp = &xfers[count - 1];
2663
2664 /* increment statistics counters */
2665 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2666 transfers_split_maxsize);
2667 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2668 transfers_split_maxsize);
2669
2670 return 0;
2671}
2672
2673/**
2674 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2675 * when an individual transfer exceeds a
2676 * certain size
2677 * @ctlr: the @spi_controller for this transfer
2678 * @msg: the @spi_message to transform
2679 * @maxsize: the maximum when to apply this
2680 * @gfp: GFP allocation flags
2681 *
2682 * Return: status of transformation
2683 */
2684int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2685 struct spi_message *msg,
2686 size_t maxsize,
2687 gfp_t gfp)
2688{
2689 struct spi_transfer *xfer;
2690 int ret;
2691
2692 /* iterate over the transfer_list,
2693 * but note that xfer is advanced to the last transfer inserted
2694 * to avoid checking sizes again unnecessarily (also xfer does
2695 * potentiall belong to a different list by the time the
2696 * replacement has happened
2697 */
2698 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2699 if (xfer->len > maxsize) {
2700 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2701 maxsize, gfp);
2702 if (ret)
2703 return ret;
2704 }
2705 }
2706
2707 return 0;
2708}
2709EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2710
2711/*-------------------------------------------------------------------------*/
2712
2713/* Core methods for SPI controller protocol drivers. Some of the
2714 * other core methods are currently defined as inline functions.
2715 */
2716
2717static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2718 u8 bits_per_word)
2719{
2720 if (ctlr->bits_per_word_mask) {
2721 /* Only 32 bits fit in the mask */
2722 if (bits_per_word > 32)
2723 return -EINVAL;
2724 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2725 return -EINVAL;
2726 }
2727
2728 return 0;
2729}
2730
2731/**
2732 * spi_setup - setup SPI mode and clock rate
2733 * @spi: the device whose settings are being modified
2734 * Context: can sleep, and no requests are queued to the device
2735 *
2736 * SPI protocol drivers may need to update the transfer mode if the
2737 * device doesn't work with its default. They may likewise need
2738 * to update clock rates or word sizes from initial values. This function
2739 * changes those settings, and must be called from a context that can sleep.
2740 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2741 * effect the next time the device is selected and data is transferred to
2742 * or from it. When this function returns, the spi device is deselected.
2743 *
2744 * Note that this call will fail if the protocol driver specifies an option
2745 * that the underlying controller or its driver does not support. For
2746 * example, not all hardware supports wire transfers using nine bit words,
2747 * LSB-first wire encoding, or active-high chipselects.
2748 *
2749 * Return: zero on success, else a negative error code.
2750 */
2751int spi_setup(struct spi_device *spi)
2752{
2753 unsigned bad_bits, ugly_bits;
2754 int status;
2755
2756 /* check mode to prevent that DUAL and QUAD set at the same time
2757 */
2758 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2759 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2760 dev_err(&spi->dev,
2761 "setup: can not select dual and quad at the same time\n");
2762 return -EINVAL;
2763 }
2764 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2765 */
2766 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2767 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2768 return -EINVAL;
2769 /* help drivers fail *cleanly* when they need options
2770 * that aren't supported with their current controller
2771 */
2772 bad_bits = spi->mode & ~spi->controller->mode_bits;
2773 ugly_bits = bad_bits &
2774 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2775 if (ugly_bits) {
2776 dev_warn(&spi->dev,
2777 "setup: ignoring unsupported mode bits %x\n",
2778 ugly_bits);
2779 spi->mode &= ~ugly_bits;
2780 bad_bits &= ~ugly_bits;
2781 }
2782 if (bad_bits) {
2783 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2784 bad_bits);
2785 return -EINVAL;
2786 }
2787
2788 if (!spi->bits_per_word)
2789 spi->bits_per_word = 8;
2790
2791 status = __spi_validate_bits_per_word(spi->controller,
2792 spi->bits_per_word);
2793 if (status)
2794 return status;
2795
2796 if (!spi->max_speed_hz)
2797 spi->max_speed_hz = spi->controller->max_speed_hz;
2798
2799 if (spi->controller->setup)
2800 status = spi->controller->setup(spi);
2801
2802 spi_set_cs(spi, false);
2803
2804 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2805 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2806 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2807 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2808 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2809 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2810 spi->bits_per_word, spi->max_speed_hz,
2811 status);
2812
2813 return status;
2814}
2815EXPORT_SYMBOL_GPL(spi_setup);
2816
2817static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2818{
2819 struct spi_controller *ctlr = spi->controller;
2820 struct spi_transfer *xfer;
2821 int w_size;
2822
2823 if (list_empty(&message->transfers))
2824 return -EINVAL;
2825
2826 /* Half-duplex links include original MicroWire, and ones with
2827 * only one data pin like SPI_3WIRE (switches direction) or where
2828 * either MOSI or MISO is missing. They can also be caused by
2829 * software limitations.
2830 */
2831 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2832 (spi->mode & SPI_3WIRE)) {
2833 unsigned flags = ctlr->flags;
2834
2835 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2836 if (xfer->rx_buf && xfer->tx_buf)
2837 return -EINVAL;
2838 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2839 return -EINVAL;
2840 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2841 return -EINVAL;
2842 }
2843 }
2844
2845 /**
2846 * Set transfer bits_per_word and max speed as spi device default if
2847 * it is not set for this transfer.
2848 * Set transfer tx_nbits and rx_nbits as single transfer default
2849 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2850 */
2851 message->frame_length = 0;
2852 list_for_each_entry(xfer, &message->transfers, transfer_list) {
2853 message->frame_length += xfer->len;
2854 if (!xfer->bits_per_word)
2855 xfer->bits_per_word = spi->bits_per_word;
2856
2857 if (!xfer->speed_hz)
2858 xfer->speed_hz = spi->max_speed_hz;
2859 if (!xfer->speed_hz)
2860 xfer->speed_hz = ctlr->max_speed_hz;
2861
2862 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2863 xfer->speed_hz = ctlr->max_speed_hz;
2864
2865 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2866 return -EINVAL;
2867
2868 /*
2869 * SPI transfer length should be multiple of SPI word size
2870 * where SPI word size should be power-of-two multiple
2871 */
2872 if (xfer->bits_per_word <= 8)
2873 w_size = 1;
2874 else if (xfer->bits_per_word <= 16)
2875 w_size = 2;
2876 else
2877 w_size = 4;
2878
2879 /* No partial transfers accepted */
2880 if (xfer->len % w_size)
2881 return -EINVAL;
2882
2883 if (xfer->speed_hz && ctlr->min_speed_hz &&
2884 xfer->speed_hz < ctlr->min_speed_hz)
2885 return -EINVAL;
2886
2887 if (xfer->tx_buf && !xfer->tx_nbits)
2888 xfer->tx_nbits = SPI_NBITS_SINGLE;
2889 if (xfer->rx_buf && !xfer->rx_nbits)
2890 xfer->rx_nbits = SPI_NBITS_SINGLE;
2891 /* check transfer tx/rx_nbits:
2892 * 1. check the value matches one of single, dual and quad
2893 * 2. check tx/rx_nbits match the mode in spi_device
2894 */
2895 if (xfer->tx_buf) {
2896 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2897 xfer->tx_nbits != SPI_NBITS_DUAL &&
2898 xfer->tx_nbits != SPI_NBITS_QUAD)
2899 return -EINVAL;
2900 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2901 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2902 return -EINVAL;
2903 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2904 !(spi->mode & SPI_TX_QUAD))
2905 return -EINVAL;
2906 }
2907 /* check transfer rx_nbits */
2908 if (xfer->rx_buf) {
2909 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2910 xfer->rx_nbits != SPI_NBITS_DUAL &&
2911 xfer->rx_nbits != SPI_NBITS_QUAD)
2912 return -EINVAL;
2913 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2914 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2915 return -EINVAL;
2916 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2917 !(spi->mode & SPI_RX_QUAD))
2918 return -EINVAL;
2919 }
2920 }
2921
2922 message->status = -EINPROGRESS;
2923
2924 return 0;
2925}
2926
2927static int __spi_async(struct spi_device *spi, struct spi_message *message)
2928{
2929 struct spi_controller *ctlr = spi->controller;
2930
2931 message->spi = spi;
2932
2933 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2934 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2935
2936 trace_spi_message_submit(message);
2937
2938 return ctlr->transfer(spi, message);
2939}
2940
2941/**
2942 * spi_async - asynchronous SPI transfer
2943 * @spi: device with which data will be exchanged
2944 * @message: describes the data transfers, including completion callback
2945 * Context: any (irqs may be blocked, etc)
2946 *
2947 * This call may be used in_irq and other contexts which can't sleep,
2948 * as well as from task contexts which can sleep.
2949 *
2950 * The completion callback is invoked in a context which can't sleep.
2951 * Before that invocation, the value of message->status is undefined.
2952 * When the callback is issued, message->status holds either zero (to
2953 * indicate complete success) or a negative error code. After that
2954 * callback returns, the driver which issued the transfer request may
2955 * deallocate the associated memory; it's no longer in use by any SPI
2956 * core or controller driver code.
2957 *
2958 * Note that although all messages to a spi_device are handled in
2959 * FIFO order, messages may go to different devices in other orders.
2960 * Some device might be higher priority, or have various "hard" access
2961 * time requirements, for example.
2962 *
2963 * On detection of any fault during the transfer, processing of
2964 * the entire message is aborted, and the device is deselected.
2965 * Until returning from the associated message completion callback,
2966 * no other spi_message queued to that device will be processed.
2967 * (This rule applies equally to all the synchronous transfer calls,
2968 * which are wrappers around this core asynchronous primitive.)
2969 *
2970 * Return: zero on success, else a negative error code.
2971 */
2972int spi_async(struct spi_device *spi, struct spi_message *message)
2973{
2974 struct spi_controller *ctlr = spi->controller;
2975 int ret;
2976 unsigned long flags;
2977
2978 ret = __spi_validate(spi, message);
2979 if (ret != 0)
2980 return ret;
2981
2982 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2983
2984 if (ctlr->bus_lock_flag)
2985 ret = -EBUSY;
2986 else
2987 ret = __spi_async(spi, message);
2988
2989 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2990
2991 return ret;
2992}
2993EXPORT_SYMBOL_GPL(spi_async);
2994
2995/**
2996 * spi_async_locked - version of spi_async with exclusive bus usage
2997 * @spi: device with which data will be exchanged
2998 * @message: describes the data transfers, including completion callback
2999 * Context: any (irqs may be blocked, etc)
3000 *
3001 * This call may be used in_irq and other contexts which can't sleep,
3002 * as well as from task contexts which can sleep.
3003 *
3004 * The completion callback is invoked in a context which can't sleep.
3005 * Before that invocation, the value of message->status is undefined.
3006 * When the callback is issued, message->status holds either zero (to
3007 * indicate complete success) or a negative error code. After that
3008 * callback returns, the driver which issued the transfer request may
3009 * deallocate the associated memory; it's no longer in use by any SPI
3010 * core or controller driver code.
3011 *
3012 * Note that although all messages to a spi_device are handled in
3013 * FIFO order, messages may go to different devices in other orders.
3014 * Some device might be higher priority, or have various "hard" access
3015 * time requirements, for example.
3016 *
3017 * On detection of any fault during the transfer, processing of
3018 * the entire message is aborted, and the device is deselected.
3019 * Until returning from the associated message completion callback,
3020 * no other spi_message queued to that device will be processed.
3021 * (This rule applies equally to all the synchronous transfer calls,
3022 * which are wrappers around this core asynchronous primitive.)
3023 *
3024 * Return: zero on success, else a negative error code.
3025 */
3026int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3027{
3028 struct spi_controller *ctlr = spi->controller;
3029 int ret;
3030 unsigned long flags;
3031
3032 ret = __spi_validate(spi, message);
3033 if (ret != 0)
3034 return ret;
3035
3036 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3037
3038 ret = __spi_async(spi, message);
3039
3040 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3041
3042 return ret;
3043
3044}
3045EXPORT_SYMBOL_GPL(spi_async_locked);
3046
3047
3048int spi_flash_read(struct spi_device *spi,
3049 struct spi_flash_read_message *msg)
3050
3051{
3052 struct spi_controller *master = spi->controller;
3053 struct device *rx_dev = NULL;
3054 int ret;
3055
3056 if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3057 msg->addr_nbits == SPI_NBITS_DUAL) &&
3058 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3059 return -EINVAL;
3060 if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3061 msg->addr_nbits == SPI_NBITS_QUAD) &&
3062 !(spi->mode & SPI_TX_QUAD))
3063 return -EINVAL;
3064 if (msg->data_nbits == SPI_NBITS_DUAL &&
3065 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3066 return -EINVAL;
3067 if (msg->data_nbits == SPI_NBITS_QUAD &&
3068 !(spi->mode & SPI_RX_QUAD))
3069 return -EINVAL;
3070
3071 if (master->auto_runtime_pm) {
3072 ret = pm_runtime_get_sync(master->dev.parent);
3073 if (ret < 0) {
3074 dev_err(&master->dev, "Failed to power device: %d\n",
3075 ret);
3076 return ret;
3077 }
3078 }
3079
3080 mutex_lock(&master->bus_lock_mutex);
3081 mutex_lock(&master->io_mutex);
3082 if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3083 rx_dev = master->dma_rx->device->dev;
3084 ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3085 msg->buf, msg->len,
3086 DMA_FROM_DEVICE);
3087 if (!ret)
3088 msg->cur_msg_mapped = true;
3089 }
3090 ret = master->spi_flash_read(spi, msg);
3091 if (msg->cur_msg_mapped)
3092 spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3093 DMA_FROM_DEVICE);
3094 mutex_unlock(&master->io_mutex);
3095 mutex_unlock(&master->bus_lock_mutex);
3096
3097 if (master->auto_runtime_pm)
3098 pm_runtime_put(master->dev.parent);
3099
3100 return ret;
3101}
3102EXPORT_SYMBOL_GPL(spi_flash_read);
3103
3104/*-------------------------------------------------------------------------*/
3105
3106/* Utility methods for SPI protocol drivers, layered on
3107 * top of the core. Some other utility methods are defined as
3108 * inline functions.
3109 */
3110
3111static void spi_complete(void *arg)
3112{
3113 complete(arg);
3114}
3115
3116static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3117{
3118 DECLARE_COMPLETION_ONSTACK(done);
3119 int status;
3120 struct spi_controller *ctlr = spi->controller;
3121 unsigned long flags;
3122
3123 status = __spi_validate(spi, message);
3124 if (status != 0)
3125 return status;
3126
3127 message->complete = spi_complete;
3128 message->context = &done;
3129 message->spi = spi;
3130
3131 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3132 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3133
3134 /* If we're not using the legacy transfer method then we will
3135 * try to transfer in the calling context so special case.
3136 * This code would be less tricky if we could remove the
3137 * support for driver implemented message queues.
3138 */
3139 if (ctlr->transfer == spi_queued_transfer) {
3140 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3141
3142 trace_spi_message_submit(message);
3143
3144 status = __spi_queued_transfer(spi, message, false);
3145
3146 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3147 } else {
3148 status = spi_async_locked(spi, message);
3149 }
3150
3151 if (status == 0) {
3152 /* Push out the messages in the calling context if we
3153 * can.
3154 */
3155 if (ctlr->transfer == spi_queued_transfer) {
3156 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3157 spi_sync_immediate);
3158 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3159 spi_sync_immediate);
3160 __spi_pump_messages(ctlr, false);
3161 }
3162
3163 wait_for_completion(&done);
3164 status = message->status;
3165 }
3166 message->context = NULL;
3167 return status;
3168}
3169
3170/**
3171 * spi_sync - blocking/synchronous SPI data transfers
3172 * @spi: device with which data will be exchanged
3173 * @message: describes the data transfers
3174 * Context: can sleep
3175 *
3176 * This call may only be used from a context that may sleep. The sleep
3177 * is non-interruptible, and has no timeout. Low-overhead controller
3178 * drivers may DMA directly into and out of the message buffers.
3179 *
3180 * Note that the SPI device's chip select is active during the message,
3181 * and then is normally disabled between messages. Drivers for some
3182 * frequently-used devices may want to minimize costs of selecting a chip,
3183 * by leaving it selected in anticipation that the next message will go
3184 * to the same chip. (That may increase power usage.)
3185 *
3186 * Also, the caller is guaranteeing that the memory associated with the
3187 * message will not be freed before this call returns.
3188 *
3189 * Return: zero on success, else a negative error code.
3190 */
3191int spi_sync(struct spi_device *spi, struct spi_message *message)
3192{
3193 int ret;
3194
3195 mutex_lock(&spi->controller->bus_lock_mutex);
3196 ret = __spi_sync(spi, message);
3197 mutex_unlock(&spi->controller->bus_lock_mutex);
3198
3199 return ret;
3200}
3201EXPORT_SYMBOL_GPL(spi_sync);
3202
3203/**
3204 * spi_sync_locked - version of spi_sync with exclusive bus usage
3205 * @spi: device with which data will be exchanged
3206 * @message: describes the data transfers
3207 * Context: can sleep
3208 *
3209 * This call may only be used from a context that may sleep. The sleep
3210 * is non-interruptible, and has no timeout. Low-overhead controller
3211 * drivers may DMA directly into and out of the message buffers.
3212 *
3213 * This call should be used by drivers that require exclusive access to the
3214 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3215 * be released by a spi_bus_unlock call when the exclusive access is over.
3216 *
3217 * Return: zero on success, else a negative error code.
3218 */
3219int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3220{
3221 return __spi_sync(spi, message);
3222}
3223EXPORT_SYMBOL_GPL(spi_sync_locked);
3224
3225/**
3226 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3227 * @ctlr: SPI bus master that should be locked for exclusive bus access
3228 * Context: can sleep
3229 *
3230 * This call may only be used from a context that may sleep. The sleep
3231 * is non-interruptible, and has no timeout.
3232 *
3233 * This call should be used by drivers that require exclusive access to the
3234 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3235 * exclusive access is over. Data transfer must be done by spi_sync_locked
3236 * and spi_async_locked calls when the SPI bus lock is held.
3237 *
3238 * Return: always zero.
3239 */
3240int spi_bus_lock(struct spi_controller *ctlr)
3241{
3242 unsigned long flags;
3243
3244 mutex_lock(&ctlr->bus_lock_mutex);
3245
3246 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3247 ctlr->bus_lock_flag = 1;
3248 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3249
3250 /* mutex remains locked until spi_bus_unlock is called */
3251
3252 return 0;
3253}
3254EXPORT_SYMBOL_GPL(spi_bus_lock);
3255
3256/**
3257 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3258 * @ctlr: SPI bus master that was locked for exclusive bus access
3259 * Context: can sleep
3260 *
3261 * This call may only be used from a context that may sleep. The sleep
3262 * is non-interruptible, and has no timeout.
3263 *
3264 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3265 * call.
3266 *
3267 * Return: always zero.
3268 */
3269int spi_bus_unlock(struct spi_controller *ctlr)
3270{
3271 ctlr->bus_lock_flag = 0;
3272
3273 mutex_unlock(&ctlr->bus_lock_mutex);
3274
3275 return 0;
3276}
3277EXPORT_SYMBOL_GPL(spi_bus_unlock);
3278
3279/* portable code must never pass more than 32 bytes */
3280#define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3281
3282static u8 *buf;
3283
3284/**
3285 * spi_write_then_read - SPI synchronous write followed by read
3286 * @spi: device with which data will be exchanged
3287 * @txbuf: data to be written (need not be dma-safe)
3288 * @n_tx: size of txbuf, in bytes
3289 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3290 * @n_rx: size of rxbuf, in bytes
3291 * Context: can sleep
3292 *
3293 * This performs a half duplex MicroWire style transaction with the
3294 * device, sending txbuf and then reading rxbuf. The return value
3295 * is zero for success, else a negative errno status code.
3296 * This call may only be used from a context that may sleep.
3297 *
3298 * Parameters to this routine are always copied using a small buffer;
3299 * portable code should never use this for more than 32 bytes.
3300 * Performance-sensitive or bulk transfer code should instead use
3301 * spi_{async,sync}() calls with dma-safe buffers.
3302 *
3303 * Return: zero on success, else a negative error code.
3304 */
3305int spi_write_then_read(struct spi_device *spi,
3306 const void *txbuf, unsigned n_tx,
3307 void *rxbuf, unsigned n_rx)
3308{
3309 static DEFINE_MUTEX(lock);
3310
3311 int status;
3312 struct spi_message message;
3313 struct spi_transfer x[2];
3314 u8 *local_buf;
3315
3316 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3317 * copying here, (as a pure convenience thing), but we can
3318 * keep heap costs out of the hot path unless someone else is
3319 * using the pre-allocated buffer or the transfer is too large.
3320 */
3321 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3322 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3323 GFP_KERNEL | GFP_DMA);
3324 if (!local_buf)
3325 return -ENOMEM;
3326 } else {
3327 local_buf = buf;
3328 }
3329
3330 spi_message_init(&message);
3331 memset(x, 0, sizeof(x));
3332 if (n_tx) {
3333 x[0].len = n_tx;
3334 spi_message_add_tail(&x[0], &message);
3335 }
3336 if (n_rx) {
3337 x[1].len = n_rx;
3338 spi_message_add_tail(&x[1], &message);
3339 }
3340
3341 memcpy(local_buf, txbuf, n_tx);
3342 x[0].tx_buf = local_buf;
3343 x[1].rx_buf = local_buf + n_tx;
3344
3345 /* do the i/o */
3346 status = spi_sync(spi, &message);
3347 if (status == 0)
3348 memcpy(rxbuf, x[1].rx_buf, n_rx);
3349
3350 if (x[0].tx_buf == buf)
3351 mutex_unlock(&lock);
3352 else
3353 kfree(local_buf);
3354
3355 return status;
3356}
3357EXPORT_SYMBOL_GPL(spi_write_then_read);
3358
3359/*-------------------------------------------------------------------------*/
3360
3361#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3362static int __spi_of_device_match(struct device *dev, void *data)
3363{
3364 return dev->of_node == data;
3365}
3366
3367/* must call put_device() when done with returned spi_device device */
3368static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3369{
3370 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3371 __spi_of_device_match);
3372 return dev ? to_spi_device(dev) : NULL;
3373}
3374
3375static int __spi_of_controller_match(struct device *dev, const void *data)
3376{
3377 return dev->of_node == data;
3378}
3379
3380/* the spi controllers are not using spi_bus, so we find it with another way */
3381static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3382{
3383 struct device *dev;
3384
3385 dev = class_find_device(&spi_master_class, NULL, node,
3386 __spi_of_controller_match);
3387 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3388 dev = class_find_device(&spi_slave_class, NULL, node,
3389 __spi_of_controller_match);
3390 if (!dev)
3391 return NULL;
3392
3393 /* reference got in class_find_device */
3394 return container_of(dev, struct spi_controller, dev);
3395}
3396
3397static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3398 void *arg)
3399{
3400 struct of_reconfig_data *rd = arg;
3401 struct spi_controller *ctlr;
3402 struct spi_device *spi;
3403
3404 switch (of_reconfig_get_state_change(action, arg)) {
3405 case OF_RECONFIG_CHANGE_ADD:
3406 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3407 if (ctlr == NULL)
3408 return NOTIFY_OK; /* not for us */
3409
3410 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3411 put_device(&ctlr->dev);
3412 return NOTIFY_OK;
3413 }
3414
3415 spi = of_register_spi_device(ctlr, rd->dn);
3416 put_device(&ctlr->dev);
3417
3418 if (IS_ERR(spi)) {
3419 pr_err("%s: failed to create for '%pOF'\n",
3420 __func__, rd->dn);
3421 of_node_clear_flag(rd->dn, OF_POPULATED);
3422 return notifier_from_errno(PTR_ERR(spi));
3423 }
3424 break;
3425
3426 case OF_RECONFIG_CHANGE_REMOVE:
3427 /* already depopulated? */
3428 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3429 return NOTIFY_OK;
3430
3431 /* find our device by node */
3432 spi = of_find_spi_device_by_node(rd->dn);
3433 if (spi == NULL)
3434 return NOTIFY_OK; /* no? not meant for us */
3435
3436 /* unregister takes one ref away */
3437 spi_unregister_device(spi);
3438
3439 /* and put the reference of the find */
3440 put_device(&spi->dev);
3441 break;
3442 }
3443
3444 return NOTIFY_OK;
3445}
3446
3447static struct notifier_block spi_of_notifier = {
3448 .notifier_call = of_spi_notify,
3449};
3450#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3451extern struct notifier_block spi_of_notifier;
3452#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3453
3454#if IS_ENABLED(CONFIG_ACPI)
3455static int spi_acpi_controller_match(struct device *dev, const void *data)
3456{
3457 return ACPI_COMPANION(dev->parent) == data;
3458}
3459
3460static int spi_acpi_device_match(struct device *dev, void *data)
3461{
3462 return ACPI_COMPANION(dev) == data;
3463}
3464
3465static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3466{
3467 struct device *dev;
3468
3469 dev = class_find_device(&spi_master_class, NULL, adev,
3470 spi_acpi_controller_match);
3471 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3472 dev = class_find_device(&spi_slave_class, NULL, adev,
3473 spi_acpi_controller_match);
3474 if (!dev)
3475 return NULL;
3476
3477 return container_of(dev, struct spi_controller, dev);
3478}
3479
3480static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3481{
3482 struct device *dev;
3483
3484 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3485
3486 return dev ? to_spi_device(dev) : NULL;
3487}
3488
3489static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3490 void *arg)
3491{
3492 struct acpi_device *adev = arg;
3493 struct spi_controller *ctlr;
3494 struct spi_device *spi;
3495
3496 switch (value) {
3497 case ACPI_RECONFIG_DEVICE_ADD:
3498 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3499 if (!ctlr)
3500 break;
3501
3502 acpi_register_spi_device(ctlr, adev);
3503 put_device(&ctlr->dev);
3504 break;
3505 case ACPI_RECONFIG_DEVICE_REMOVE:
3506 if (!acpi_device_enumerated(adev))
3507 break;
3508
3509 spi = acpi_spi_find_device_by_adev(adev);
3510 if (!spi)
3511 break;
3512
3513 spi_unregister_device(spi);
3514 put_device(&spi->dev);
3515 break;
3516 }
3517
3518 return NOTIFY_OK;
3519}
3520
3521static struct notifier_block spi_acpi_notifier = {
3522 .notifier_call = acpi_spi_notify,
3523};
3524#else
3525extern struct notifier_block spi_acpi_notifier;
3526#endif
3527
3528static int __init spi_init(void)
3529{
3530 int status;
3531
3532 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3533 if (!buf) {
3534 status = -ENOMEM;
3535 goto err0;
3536 }
3537
3538 status = bus_register(&spi_bus_type);
3539 if (status < 0)
3540 goto err1;
3541
3542 status = class_register(&spi_master_class);
3543 if (status < 0)
3544 goto err2;
3545
3546 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3547 status = class_register(&spi_slave_class);
3548 if (status < 0)
3549 goto err3;
3550 }
3551
3552 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3553 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3554 if (IS_ENABLED(CONFIG_ACPI))
3555 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3556
3557 return 0;
3558
3559err3:
3560 class_unregister(&spi_master_class);
3561err2:
3562 bus_unregister(&spi_bus_type);
3563err1:
3564 kfree(buf);
3565 buf = NULL;
3566err0:
3567 return status;
3568}
3569
3570/* board_info is normally registered in arch_initcall(),
3571 * but even essential drivers wait till later
3572 *
3573 * REVISIT only boardinfo really needs static linking. the rest (device and
3574 * driver registration) _could_ be dynamically linked (modular) ... costs
3575 * include needing to have boardinfo data structures be much more public.
3576 */
3577postcore_initcall(spi_init);
3578