blob: 1081810b3e3fed77411958ee559eb2888791031d [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * RocketPort device driver for Linux
3 *
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23/*
24 * Kernel Synchronization:
25 *
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
29 *
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
37 *
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
40 */
41
42/****** Defines ******/
43#define ROCKET_PARANOIA_CHECK
44#define ROCKET_DISABLE_SIMUSAGE
45
46#undef ROCKET_SOFT_FLOW
47#undef ROCKET_DEBUG_OPEN
48#undef ROCKET_DEBUG_INTR
49#undef ROCKET_DEBUG_WRITE
50#undef ROCKET_DEBUG_FLOW
51#undef ROCKET_DEBUG_THROTTLE
52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53#undef ROCKET_DEBUG_RECEIVE
54#undef ROCKET_DEBUG_HANGUP
55#undef REV_PCI_ORDER
56#undef ROCKET_DEBUG_IO
57
58#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */
59
60/****** Kernel includes ******/
61
62#include <linux/module.h>
63#include <linux/errno.h>
64#include <linux/major.h>
65#include <linux/kernel.h>
66#include <linux/signal.h>
67#include <linux/slab.h>
68#include <linux/mm.h>
69#include <linux/sched.h>
70#include <linux/timer.h>
71#include <linux/interrupt.h>
72#include <linux/tty.h>
73#include <linux/tty_driver.h>
74#include <linux/tty_flip.h>
75#include <linux/serial.h>
76#include <linux/string.h>
77#include <linux/fcntl.h>
78#include <linux/ptrace.h>
79#include <linux/mutex.h>
80#include <linux/ioport.h>
81#include <linux/delay.h>
82#include <linux/completion.h>
83#include <linux/wait.h>
84#include <linux/pci.h>
85#include <linux/uaccess.h>
86#include <linux/atomic.h>
87#include <asm/unaligned.h>
88#include <linux/bitops.h>
89#include <linux/spinlock.h>
90#include <linux/init.h>
91
92/****** RocketPort includes ******/
93
94#include "rocket_int.h"
95#include "rocket.h"
96
97#define ROCKET_VERSION "2.09"
98#define ROCKET_DATE "12-June-2003"
99
100/****** RocketPort Local Variables ******/
101
102static void rp_do_poll(unsigned long dummy);
103
104static struct tty_driver *rocket_driver;
105
106static struct rocket_version driver_version = {
107 ROCKET_VERSION, ROCKET_DATE
108};
109
110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
112 /* eg. Bit 0 indicates port 0 has xmit data, ... */
113static atomic_t rp_num_ports_open; /* Number of serial ports open */
114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
117static unsigned long board2;
118static unsigned long board3;
119static unsigned long board4;
120static unsigned long controller;
121static bool support_low_speed;
122static unsigned long modem1;
123static unsigned long modem2;
124static unsigned long modem3;
125static unsigned long modem4;
126static unsigned long pc104_1[8];
127static unsigned long pc104_2[8];
128static unsigned long pc104_3[8];
129static unsigned long pc104_4[8];
130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
133static unsigned long rcktpt_io_addr[NUM_BOARDS];
134static int rcktpt_type[NUM_BOARDS];
135static int is_PCI[NUM_BOARDS];
136static rocketModel_t rocketModel[NUM_BOARDS];
137static int max_board;
138static const struct tty_port_operations rocket_port_ops;
139
140/*
141 * The following arrays define the interrupt bits corresponding to each AIOP.
142 * These bits are different between the ISA and regular PCI boards and the
143 * Universal PCI boards.
144 */
145
146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
147 AIOP_INTR_BIT_0,
148 AIOP_INTR_BIT_1,
149 AIOP_INTR_BIT_2,
150 AIOP_INTR_BIT_3
151};
152
153#ifdef CONFIG_PCI
154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
155 UPCI_AIOP_INTR_BIT_0,
156 UPCI_AIOP_INTR_BIT_1,
157 UPCI_AIOP_INTR_BIT_2,
158 UPCI_AIOP_INTR_BIT_3
159};
160#endif
161
162static Byte_t RData[RDATASIZE] = {
163 0x00, 0x09, 0xf6, 0x82,
164 0x02, 0x09, 0x86, 0xfb,
165 0x04, 0x09, 0x00, 0x0a,
166 0x06, 0x09, 0x01, 0x0a,
167 0x08, 0x09, 0x8a, 0x13,
168 0x0a, 0x09, 0xc5, 0x11,
169 0x0c, 0x09, 0x86, 0x85,
170 0x0e, 0x09, 0x20, 0x0a,
171 0x10, 0x09, 0x21, 0x0a,
172 0x12, 0x09, 0x41, 0xff,
173 0x14, 0x09, 0x82, 0x00,
174 0x16, 0x09, 0x82, 0x7b,
175 0x18, 0x09, 0x8a, 0x7d,
176 0x1a, 0x09, 0x88, 0x81,
177 0x1c, 0x09, 0x86, 0x7a,
178 0x1e, 0x09, 0x84, 0x81,
179 0x20, 0x09, 0x82, 0x7c,
180 0x22, 0x09, 0x0a, 0x0a
181};
182
183static Byte_t RRegData[RREGDATASIZE] = {
184 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
185 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
186 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
187 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
188 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
189 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
190 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
191 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
192 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
193 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
194 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
195 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
196 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
197};
198
199static CONTROLLER_T sController[CTL_SIZE] = {
200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
206 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
207 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
208};
209
210static Byte_t sBitMapClrTbl[8] = {
211 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
212};
213
214static Byte_t sBitMapSetTbl[8] = {
215 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
216};
217
218static int sClockPrescale = 0x14;
219
220/*
221 * Line number is the ttySIx number (x), the Minor number. We
222 * assign them sequentially, starting at zero. The following
223 * array keeps track of the line number assigned to a given board/aiop/channel.
224 */
225static unsigned char lineNumbers[MAX_RP_PORTS];
226static unsigned long nextLineNumber;
227
228/***** RocketPort Static Prototypes *********/
229static int __init init_ISA(int i);
230static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
231static void rp_flush_buffer(struct tty_struct *tty);
232static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
233static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
234static void rp_start(struct tty_struct *tty);
235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
236 int ChanNum);
237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
238static void sFlushRxFIFO(CHANNEL_T * ChP);
239static void sFlushTxFIFO(CHANNEL_T * ChP);
240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
246 ByteIO_t * AiopIOList, int AiopIOListSize,
247 int IRQNum, Byte_t Frequency, int PeriodicOnly);
248static int sReadAiopID(ByteIO_t io);
249static int sReadAiopNumChan(WordIO_t io);
250
251MODULE_AUTHOR("Theodore Ts'o");
252MODULE_DESCRIPTION("Comtrol RocketPort driver");
253module_param_hw(board1, ulong, ioport, 0);
254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
255module_param_hw(board2, ulong, ioport, 0);
256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
257module_param_hw(board3, ulong, ioport, 0);
258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
259module_param_hw(board4, ulong, ioport, 0);
260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
261module_param_hw(controller, ulong, ioport, 0);
262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
263module_param(support_low_speed, bool, 0);
264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
265module_param(modem1, ulong, 0);
266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
267module_param(modem2, ulong, 0);
268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
269module_param(modem3, ulong, 0);
270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
271module_param(modem4, ulong, 0);
272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
273module_param_array(pc104_1, ulong, NULL, 0);
274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
275module_param_array(pc104_2, ulong, NULL, 0);
276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
277module_param_array(pc104_3, ulong, NULL, 0);
278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
279module_param_array(pc104_4, ulong, NULL, 0);
280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
281
282static int __init rp_init(void);
283static void rp_cleanup_module(void);
284
285module_init(rp_init);
286module_exit(rp_cleanup_module);
287
288
289MODULE_LICENSE("Dual BSD/GPL");
290
291/*************************************************************************/
292/* Module code starts here */
293
294static inline int rocket_paranoia_check(struct r_port *info,
295 const char *routine)
296{
297#ifdef ROCKET_PARANOIA_CHECK
298 if (!info)
299 return 1;
300 if (info->magic != RPORT_MAGIC) {
301 printk(KERN_WARNING "Warning: bad magic number for rocketport "
302 "struct in %s\n", routine);
303 return 1;
304 }
305#endif
306 return 0;
307}
308
309
310/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
311 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
312 * tty layer.
313 */
314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
315 unsigned int ChanStatus)
316{
317 unsigned int CharNStat;
318 int ToRecv, wRecv, space;
319 unsigned char *cbuf;
320
321 ToRecv = sGetRxCnt(cp);
322#ifdef ROCKET_DEBUG_INTR
323 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
324#endif
325 if (ToRecv == 0)
326 return;
327
328 /*
329 * if status indicates there are errored characters in the
330 * FIFO, then enter status mode (a word in FIFO holds
331 * character and status).
332 */
333 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
334 if (!(ChanStatus & STATMODE)) {
335#ifdef ROCKET_DEBUG_RECEIVE
336 printk(KERN_INFO "Entering STATMODE...\n");
337#endif
338 ChanStatus |= STATMODE;
339 sEnRxStatusMode(cp);
340 }
341 }
342
343 /*
344 * if we previously entered status mode, then read down the
345 * FIFO one word at a time, pulling apart the character and
346 * the status. Update error counters depending on status
347 */
348 if (ChanStatus & STATMODE) {
349#ifdef ROCKET_DEBUG_RECEIVE
350 printk(KERN_INFO "Ignore %x, read %x...\n",
351 info->ignore_status_mask, info->read_status_mask);
352#endif
353 while (ToRecv) {
354 char flag;
355
356 CharNStat = sInW(sGetTxRxDataIO(cp));
357#ifdef ROCKET_DEBUG_RECEIVE
358 printk(KERN_INFO "%x...\n", CharNStat);
359#endif
360 if (CharNStat & STMBREAKH)
361 CharNStat &= ~(STMFRAMEH | STMPARITYH);
362 if (CharNStat & info->ignore_status_mask) {
363 ToRecv--;
364 continue;
365 }
366 CharNStat &= info->read_status_mask;
367 if (CharNStat & STMBREAKH)
368 flag = TTY_BREAK;
369 else if (CharNStat & STMPARITYH)
370 flag = TTY_PARITY;
371 else if (CharNStat & STMFRAMEH)
372 flag = TTY_FRAME;
373 else if (CharNStat & STMRCVROVRH)
374 flag = TTY_OVERRUN;
375 else
376 flag = TTY_NORMAL;
377 tty_insert_flip_char(&info->port, CharNStat & 0xff,
378 flag);
379 ToRecv--;
380 }
381
382 /*
383 * after we've emptied the FIFO in status mode, turn
384 * status mode back off
385 */
386 if (sGetRxCnt(cp) == 0) {
387#ifdef ROCKET_DEBUG_RECEIVE
388 printk(KERN_INFO "Status mode off.\n");
389#endif
390 sDisRxStatusMode(cp);
391 }
392 } else {
393 /*
394 * we aren't in status mode, so read down the FIFO two
395 * characters at time by doing repeated word IO
396 * transfer.
397 */
398 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
399 if (space < ToRecv) {
400#ifdef ROCKET_DEBUG_RECEIVE
401 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
402#endif
403 if (space <= 0)
404 return;
405 ToRecv = space;
406 }
407 wRecv = ToRecv >> 1;
408 if (wRecv)
409 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
410 if (ToRecv & 1)
411 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
412 }
413 /* Push the data up to the tty layer */
414 tty_flip_buffer_push(&info->port);
415}
416
417/*
418 * Serial port transmit data function. Called from the timer polling loop as a
419 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
420 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
421 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
422 */
423static void rp_do_transmit(struct r_port *info)
424{
425 int c;
426 CHANNEL_t *cp = &info->channel;
427 struct tty_struct *tty;
428 unsigned long flags;
429
430#ifdef ROCKET_DEBUG_INTR
431 printk(KERN_DEBUG "%s\n", __func__);
432#endif
433 if (!info)
434 return;
435 tty = tty_port_tty_get(&info->port);
436
437 if (tty == NULL) {
438 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
439 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
440 return;
441 }
442
443 spin_lock_irqsave(&info->slock, flags);
444 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
445
446 /* Loop sending data to FIFO until done or FIFO full */
447 while (1) {
448 if (tty->stopped)
449 break;
450 c = min(info->xmit_fifo_room, info->xmit_cnt);
451 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
452 if (c <= 0 || info->xmit_fifo_room <= 0)
453 break;
454 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
455 if (c & 1)
456 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
457 info->xmit_tail += c;
458 info->xmit_tail &= XMIT_BUF_SIZE - 1;
459 info->xmit_cnt -= c;
460 info->xmit_fifo_room -= c;
461#ifdef ROCKET_DEBUG_INTR
462 printk(KERN_INFO "tx %d chars...\n", c);
463#endif
464 }
465
466 if (info->xmit_cnt == 0)
467 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
468
469 if (info->xmit_cnt < WAKEUP_CHARS) {
470 tty_wakeup(tty);
471#ifdef ROCKETPORT_HAVE_POLL_WAIT
472 wake_up_interruptible(&tty->poll_wait);
473#endif
474 }
475
476 spin_unlock_irqrestore(&info->slock, flags);
477 tty_kref_put(tty);
478
479#ifdef ROCKET_DEBUG_INTR
480 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
481 info->xmit_tail, info->xmit_fifo_room);
482#endif
483}
484
485/*
486 * Called when a serial port signals it has read data in it's RX FIFO.
487 * It checks what interrupts are pending and services them, including
488 * receiving serial data.
489 */
490static void rp_handle_port(struct r_port *info)
491{
492 CHANNEL_t *cp;
493 unsigned int IntMask, ChanStatus;
494
495 if (!info)
496 return;
497
498 if (!tty_port_initialized(&info->port)) {
499 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
500 "info->flags & NOT_INIT\n");
501 return;
502 }
503
504 cp = &info->channel;
505
506 IntMask = sGetChanIntID(cp) & info->intmask;
507#ifdef ROCKET_DEBUG_INTR
508 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
509#endif
510 ChanStatus = sGetChanStatus(cp);
511 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
512 rp_do_receive(info, cp, ChanStatus);
513 }
514 if (IntMask & DELTA_CD) { /* CD change */
515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
516 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
517 (ChanStatus & CD_ACT) ? "on" : "off");
518#endif
519 if (!(ChanStatus & CD_ACT) && info->cd_status) {
520#ifdef ROCKET_DEBUG_HANGUP
521 printk(KERN_INFO "CD drop, calling hangup.\n");
522#endif
523 tty_port_tty_hangup(&info->port, false);
524 }
525 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
526 wake_up_interruptible(&info->port.open_wait);
527 }
528#ifdef ROCKET_DEBUG_INTR
529 if (IntMask & DELTA_CTS) { /* CTS change */
530 printk(KERN_INFO "CTS change...\n");
531 }
532 if (IntMask & DELTA_DSR) { /* DSR change */
533 printk(KERN_INFO "DSR change...\n");
534 }
535#endif
536}
537
538/*
539 * The top level polling routine. Repeats every 1/100 HZ (10ms).
540 */
541static void rp_do_poll(unsigned long dummy)
542{
543 CONTROLLER_t *ctlp;
544 int ctrl, aiop, ch, line;
545 unsigned int xmitmask, i;
546 unsigned int CtlMask;
547 unsigned char AiopMask;
548 Word_t bit;
549
550 /* Walk through all the boards (ctrl's) */
551 for (ctrl = 0; ctrl < max_board; ctrl++) {
552 if (rcktpt_io_addr[ctrl] <= 0)
553 continue;
554
555 /* Get a ptr to the board's control struct */
556 ctlp = sCtlNumToCtlPtr(ctrl);
557
558 /* Get the interrupt status from the board */
559#ifdef CONFIG_PCI
560 if (ctlp->BusType == isPCI)
561 CtlMask = sPCIGetControllerIntStatus(ctlp);
562 else
563#endif
564 CtlMask = sGetControllerIntStatus(ctlp);
565
566 /* Check if any AIOP read bits are set */
567 for (aiop = 0; CtlMask; aiop++) {
568 bit = ctlp->AiopIntrBits[aiop];
569 if (CtlMask & bit) {
570 CtlMask &= ~bit;
571 AiopMask = sGetAiopIntStatus(ctlp, aiop);
572
573 /* Check if any port read bits are set */
574 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
575 if (AiopMask & 1) {
576
577 /* Get the line number (/dev/ttyRx number). */
578 /* Read the data from the port. */
579 line = GetLineNumber(ctrl, aiop, ch);
580 rp_handle_port(rp_table[line]);
581 }
582 }
583 }
584 }
585
586 xmitmask = xmit_flags[ctrl];
587
588 /*
589 * xmit_flags contains bit-significant flags, indicating there is data
590 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
591 * 1, ... (32 total possible). The variable i has the aiop and ch
592 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
593 */
594 if (xmitmask) {
595 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
596 if (xmitmask & (1 << i)) {
597 aiop = (i & 0x18) >> 3;
598 ch = i & 0x07;
599 line = GetLineNumber(ctrl, aiop, ch);
600 rp_do_transmit(rp_table[line]);
601 }
602 }
603 }
604 }
605
606 /*
607 * Reset the timer so we get called at the next clock tick (10ms).
608 */
609 if (atomic_read(&rp_num_ports_open))
610 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
611}
612
613/*
614 * Initializes the r_port structure for a port, as well as enabling the port on
615 * the board.
616 * Inputs: board, aiop, chan numbers
617 */
618static void __init
619init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
620{
621 unsigned rocketMode;
622 struct r_port *info;
623 int line;
624 CONTROLLER_T *ctlp;
625
626 /* Get the next available line number */
627 line = SetLineNumber(board, aiop, chan);
628
629 ctlp = sCtlNumToCtlPtr(board);
630
631 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
632 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
633 if (!info) {
634 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
635 line);
636 return;
637 }
638
639 info->magic = RPORT_MAGIC;
640 info->line = line;
641 info->ctlp = ctlp;
642 info->board = board;
643 info->aiop = aiop;
644 info->chan = chan;
645 tty_port_init(&info->port);
646 info->port.ops = &rocket_port_ops;
647 info->flags &= ~ROCKET_MODE_MASK;
648 if (board < ARRAY_SIZE(pc104) && line < ARRAY_SIZE(pc104_1))
649 switch (pc104[board][line]) {
650 case 422:
651 info->flags |= ROCKET_MODE_RS422;
652 break;
653 case 485:
654 info->flags |= ROCKET_MODE_RS485;
655 break;
656 case 232:
657 default:
658 info->flags |= ROCKET_MODE_RS232;
659 break;
660 }
661 else
662 info->flags |= ROCKET_MODE_RS232;
663
664 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
665 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
666 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
667 board, aiop, chan);
668 tty_port_destroy(&info->port);
669 kfree(info);
670 return;
671 }
672
673 rocketMode = info->flags & ROCKET_MODE_MASK;
674
675 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
676 sEnRTSToggle(&info->channel);
677 else
678 sDisRTSToggle(&info->channel);
679
680 if (ctlp->boardType == ROCKET_TYPE_PC104) {
681 switch (rocketMode) {
682 case ROCKET_MODE_RS485:
683 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
684 break;
685 case ROCKET_MODE_RS422:
686 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
687 break;
688 case ROCKET_MODE_RS232:
689 default:
690 if (info->flags & ROCKET_RTS_TOGGLE)
691 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
692 else
693 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
694 break;
695 }
696 }
697 spin_lock_init(&info->slock);
698 mutex_init(&info->write_mtx);
699 rp_table[line] = info;
700 tty_port_register_device(&info->port, rocket_driver, line,
701 pci_dev ? &pci_dev->dev : NULL);
702}
703
704/*
705 * Configures a rocketport port according to its termio settings. Called from
706 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
707 */
708static void configure_r_port(struct tty_struct *tty, struct r_port *info,
709 struct ktermios *old_termios)
710{
711 unsigned cflag;
712 unsigned long flags;
713 unsigned rocketMode;
714 int bits, baud, divisor;
715 CHANNEL_t *cp;
716 struct ktermios *t = &tty->termios;
717
718 cp = &info->channel;
719 cflag = t->c_cflag;
720
721 /* Byte size and parity */
722 if ((cflag & CSIZE) == CS8) {
723 sSetData8(cp);
724 bits = 10;
725 } else {
726 sSetData7(cp);
727 bits = 9;
728 }
729 if (cflag & CSTOPB) {
730 sSetStop2(cp);
731 bits++;
732 } else {
733 sSetStop1(cp);
734 }
735
736 if (cflag & PARENB) {
737 sEnParity(cp);
738 bits++;
739 if (cflag & PARODD) {
740 sSetOddParity(cp);
741 } else {
742 sSetEvenParity(cp);
743 }
744 } else {
745 sDisParity(cp);
746 }
747
748 /* baud rate */
749 baud = tty_get_baud_rate(tty);
750 if (!baud)
751 baud = 9600;
752 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
753 if ((divisor >= 8192 || divisor < 0) && old_termios) {
754 baud = tty_termios_baud_rate(old_termios);
755 if (!baud)
756 baud = 9600;
757 divisor = (rp_baud_base[info->board] / baud) - 1;
758 }
759 if (divisor >= 8192 || divisor < 0) {
760 baud = 9600;
761 divisor = (rp_baud_base[info->board] / baud) - 1;
762 }
763 info->cps = baud / bits;
764 sSetBaud(cp, divisor);
765
766 /* FIXME: Should really back compute a baud rate from the divisor */
767 tty_encode_baud_rate(tty, baud, baud);
768
769 if (cflag & CRTSCTS) {
770 info->intmask |= DELTA_CTS;
771 sEnCTSFlowCtl(cp);
772 } else {
773 info->intmask &= ~DELTA_CTS;
774 sDisCTSFlowCtl(cp);
775 }
776 if (cflag & CLOCAL) {
777 info->intmask &= ~DELTA_CD;
778 } else {
779 spin_lock_irqsave(&info->slock, flags);
780 if (sGetChanStatus(cp) & CD_ACT)
781 info->cd_status = 1;
782 else
783 info->cd_status = 0;
784 info->intmask |= DELTA_CD;
785 spin_unlock_irqrestore(&info->slock, flags);
786 }
787
788 /*
789 * Handle software flow control in the board
790 */
791#ifdef ROCKET_SOFT_FLOW
792 if (I_IXON(tty)) {
793 sEnTxSoftFlowCtl(cp);
794 if (I_IXANY(tty)) {
795 sEnIXANY(cp);
796 } else {
797 sDisIXANY(cp);
798 }
799 sSetTxXONChar(cp, START_CHAR(tty));
800 sSetTxXOFFChar(cp, STOP_CHAR(tty));
801 } else {
802 sDisTxSoftFlowCtl(cp);
803 sDisIXANY(cp);
804 sClrTxXOFF(cp);
805 }
806#endif
807
808 /*
809 * Set up ignore/read mask words
810 */
811 info->read_status_mask = STMRCVROVRH | 0xFF;
812 if (I_INPCK(tty))
813 info->read_status_mask |= STMFRAMEH | STMPARITYH;
814 if (I_BRKINT(tty) || I_PARMRK(tty))
815 info->read_status_mask |= STMBREAKH;
816
817 /*
818 * Characters to ignore
819 */
820 info->ignore_status_mask = 0;
821 if (I_IGNPAR(tty))
822 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
823 if (I_IGNBRK(tty)) {
824 info->ignore_status_mask |= STMBREAKH;
825 /*
826 * If we're ignoring parity and break indicators,
827 * ignore overruns too. (For real raw support).
828 */
829 if (I_IGNPAR(tty))
830 info->ignore_status_mask |= STMRCVROVRH;
831 }
832
833 rocketMode = info->flags & ROCKET_MODE_MASK;
834
835 if ((info->flags & ROCKET_RTS_TOGGLE)
836 || (rocketMode == ROCKET_MODE_RS485))
837 sEnRTSToggle(cp);
838 else
839 sDisRTSToggle(cp);
840
841 sSetRTS(&info->channel);
842
843 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
844 switch (rocketMode) {
845 case ROCKET_MODE_RS485:
846 sSetInterfaceMode(cp, InterfaceModeRS485);
847 break;
848 case ROCKET_MODE_RS422:
849 sSetInterfaceMode(cp, InterfaceModeRS422);
850 break;
851 case ROCKET_MODE_RS232:
852 default:
853 if (info->flags & ROCKET_RTS_TOGGLE)
854 sSetInterfaceMode(cp, InterfaceModeRS232T);
855 else
856 sSetInterfaceMode(cp, InterfaceModeRS232);
857 break;
858 }
859 }
860}
861
862static int carrier_raised(struct tty_port *port)
863{
864 struct r_port *info = container_of(port, struct r_port, port);
865 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
866}
867
868static void dtr_rts(struct tty_port *port, int on)
869{
870 struct r_port *info = container_of(port, struct r_port, port);
871 if (on) {
872 sSetDTR(&info->channel);
873 sSetRTS(&info->channel);
874 } else {
875 sClrDTR(&info->channel);
876 sClrRTS(&info->channel);
877 }
878}
879
880/*
881 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
882 * port's r_port struct. Initializes the port hardware.
883 */
884static int rp_open(struct tty_struct *tty, struct file *filp)
885{
886 struct r_port *info;
887 struct tty_port *port;
888 int retval;
889 CHANNEL_t *cp;
890 unsigned long page;
891
892 info = rp_table[tty->index];
893 if (info == NULL)
894 return -ENXIO;
895 port = &info->port;
896
897 page = __get_free_page(GFP_KERNEL);
898 if (!page)
899 return -ENOMEM;
900
901 /*
902 * We must not sleep from here until the port is marked fully in use.
903 */
904 if (info->xmit_buf)
905 free_page(page);
906 else
907 info->xmit_buf = (unsigned char *) page;
908
909 tty->driver_data = info;
910 tty_port_tty_set(port, tty);
911
912 if (port->count++ == 0) {
913 atomic_inc(&rp_num_ports_open);
914
915#ifdef ROCKET_DEBUG_OPEN
916 printk(KERN_INFO "rocket mod++ = %d...\n",
917 atomic_read(&rp_num_ports_open));
918#endif
919 }
920#ifdef ROCKET_DEBUG_OPEN
921 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
922#endif
923
924 /*
925 * Info->count is now 1; so it's safe to sleep now.
926 */
927 if (!tty_port_initialized(port)) {
928 cp = &info->channel;
929 sSetRxTrigger(cp, TRIG_1);
930 if (sGetChanStatus(cp) & CD_ACT)
931 info->cd_status = 1;
932 else
933 info->cd_status = 0;
934 sDisRxStatusMode(cp);
935 sFlushRxFIFO(cp);
936 sFlushTxFIFO(cp);
937
938 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
939 sSetRxTrigger(cp, TRIG_1);
940
941 sGetChanStatus(cp);
942 sDisRxStatusMode(cp);
943 sClrTxXOFF(cp);
944
945 sDisCTSFlowCtl(cp);
946 sDisTxSoftFlowCtl(cp);
947
948 sEnRxFIFO(cp);
949 sEnTransmit(cp);
950
951 tty_port_set_initialized(&info->port, 1);
952
953 configure_r_port(tty, info, NULL);
954 if (C_BAUD(tty)) {
955 sSetDTR(cp);
956 sSetRTS(cp);
957 }
958 }
959 /* Starts (or resets) the maint polling loop */
960 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
961
962 retval = tty_port_block_til_ready(port, tty, filp);
963 if (retval) {
964#ifdef ROCKET_DEBUG_OPEN
965 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
966#endif
967 return retval;
968 }
969 return 0;
970}
971
972/*
973 * Exception handler that closes a serial port. info->port.count is considered critical.
974 */
975static void rp_close(struct tty_struct *tty, struct file *filp)
976{
977 struct r_port *info = tty->driver_data;
978 struct tty_port *port = &info->port;
979 int timeout;
980 CHANNEL_t *cp;
981
982 if (rocket_paranoia_check(info, "rp_close"))
983 return;
984
985#ifdef ROCKET_DEBUG_OPEN
986 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
987#endif
988
989 if (tty_port_close_start(port, tty, filp) == 0)
990 return;
991
992 mutex_lock(&port->mutex);
993 cp = &info->channel;
994 /*
995 * Before we drop DTR, make sure the UART transmitter
996 * has completely drained; this is especially
997 * important if there is a transmit FIFO!
998 */
999 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1000 if (timeout == 0)
1001 timeout = 1;
1002 rp_wait_until_sent(tty, timeout);
1003 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1004
1005 sDisTransmit(cp);
1006 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1007 sDisCTSFlowCtl(cp);
1008 sDisTxSoftFlowCtl(cp);
1009 sClrTxXOFF(cp);
1010 sFlushRxFIFO(cp);
1011 sFlushTxFIFO(cp);
1012 sClrRTS(cp);
1013 if (C_HUPCL(tty))
1014 sClrDTR(cp);
1015
1016 rp_flush_buffer(tty);
1017
1018 tty_ldisc_flush(tty);
1019
1020 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1021
1022 /* We can't yet use tty_port_close_end as the buffer handling in this
1023 driver is a bit different to the usual */
1024
1025 if (port->blocked_open) {
1026 if (port->close_delay) {
1027 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1028 }
1029 wake_up_interruptible(&port->open_wait);
1030 } else {
1031 if (info->xmit_buf) {
1032 free_page((unsigned long) info->xmit_buf);
1033 info->xmit_buf = NULL;
1034 }
1035 }
1036 spin_lock_irq(&port->lock);
1037 tty->closing = 0;
1038 spin_unlock_irq(&port->lock);
1039 tty_port_set_initialized(port, 0);
1040 tty_port_set_active(port, 0);
1041 mutex_unlock(&port->mutex);
1042 tty_port_tty_set(port, NULL);
1043
1044 atomic_dec(&rp_num_ports_open);
1045
1046#ifdef ROCKET_DEBUG_OPEN
1047 printk(KERN_INFO "rocket mod-- = %d...\n",
1048 atomic_read(&rp_num_ports_open));
1049 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1050#endif
1051
1052}
1053
1054static void rp_set_termios(struct tty_struct *tty,
1055 struct ktermios *old_termios)
1056{
1057 struct r_port *info = tty->driver_data;
1058 CHANNEL_t *cp;
1059 unsigned cflag;
1060
1061 if (rocket_paranoia_check(info, "rp_set_termios"))
1062 return;
1063
1064 cflag = tty->termios.c_cflag;
1065
1066 /*
1067 * This driver doesn't support CS5 or CS6
1068 */
1069 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1070 tty->termios.c_cflag =
1071 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1072 /* Or CMSPAR */
1073 tty->termios.c_cflag &= ~CMSPAR;
1074
1075 configure_r_port(tty, info, old_termios);
1076
1077 cp = &info->channel;
1078
1079 /* Handle transition to B0 status */
1080 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1081 sClrDTR(cp);
1082 sClrRTS(cp);
1083 }
1084
1085 /* Handle transition away from B0 status */
1086 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1087 sSetRTS(cp);
1088 sSetDTR(cp);
1089 }
1090
1091 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1092 rp_start(tty);
1093}
1094
1095static int rp_break(struct tty_struct *tty, int break_state)
1096{
1097 struct r_port *info = tty->driver_data;
1098 unsigned long flags;
1099
1100 if (rocket_paranoia_check(info, "rp_break"))
1101 return -EINVAL;
1102
1103 spin_lock_irqsave(&info->slock, flags);
1104 if (break_state == -1)
1105 sSendBreak(&info->channel);
1106 else
1107 sClrBreak(&info->channel);
1108 spin_unlock_irqrestore(&info->slock, flags);
1109 return 0;
1110}
1111
1112/*
1113 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1114 * the UPCI boards was added, it was decided to make this a function because
1115 * the macro was getting too complicated. All cases except the first one
1116 * (UPCIRingInd) are taken directly from the original macro.
1117 */
1118static int sGetChanRI(CHANNEL_T * ChP)
1119{
1120 CONTROLLER_t *CtlP = ChP->CtlP;
1121 int ChanNum = ChP->ChanNum;
1122 int RingInd = 0;
1123
1124 if (CtlP->UPCIRingInd)
1125 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1126 else if (CtlP->AltChanRingIndicator)
1127 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1128 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1129 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1130
1131 return RingInd;
1132}
1133
1134/********************************************************************************************/
1135/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1136
1137/*
1138 * Returns the state of the serial modem control lines. These next 2 functions
1139 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1140 */
1141static int rp_tiocmget(struct tty_struct *tty)
1142{
1143 struct r_port *info = tty->driver_data;
1144 unsigned int control, result, ChanStatus;
1145
1146 ChanStatus = sGetChanStatusLo(&info->channel);
1147 control = info->channel.TxControl[3];
1148 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1149 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1150 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1151 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1152 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1153 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1154
1155 return result;
1156}
1157
1158/*
1159 * Sets the modem control lines
1160 */
1161static int rp_tiocmset(struct tty_struct *tty,
1162 unsigned int set, unsigned int clear)
1163{
1164 struct r_port *info = tty->driver_data;
1165
1166 if (set & TIOCM_RTS)
1167 info->channel.TxControl[3] |= SET_RTS;
1168 if (set & TIOCM_DTR)
1169 info->channel.TxControl[3] |= SET_DTR;
1170 if (clear & TIOCM_RTS)
1171 info->channel.TxControl[3] &= ~SET_RTS;
1172 if (clear & TIOCM_DTR)
1173 info->channel.TxControl[3] &= ~SET_DTR;
1174
1175 out32(info->channel.IndexAddr, info->channel.TxControl);
1176 return 0;
1177}
1178
1179static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1180{
1181 struct rocket_config tmp;
1182
1183 memset(&tmp, 0, sizeof (tmp));
1184 mutex_lock(&info->port.mutex);
1185 tmp.line = info->line;
1186 tmp.flags = info->flags;
1187 tmp.close_delay = info->port.close_delay;
1188 tmp.closing_wait = info->port.closing_wait;
1189 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1190 mutex_unlock(&info->port.mutex);
1191
1192 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1193 return -EFAULT;
1194 return 0;
1195}
1196
1197static int set_config(struct tty_struct *tty, struct r_port *info,
1198 struct rocket_config __user *new_info)
1199{
1200 struct rocket_config new_serial;
1201
1202 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1203 return -EFAULT;
1204
1205 mutex_lock(&info->port.mutex);
1206 if (!capable(CAP_SYS_ADMIN))
1207 {
1208 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1209 mutex_unlock(&info->port.mutex);
1210 return -EPERM;
1211 }
1212 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1213 mutex_unlock(&info->port.mutex);
1214 return 0;
1215 }
1216
1217 if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) {
1218 /* warn about deprecation, unless clearing */
1219 if (new_serial.flags & ROCKET_SPD_MASK)
1220 dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n");
1221 }
1222
1223 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1224 info->port.close_delay = new_serial.close_delay;
1225 info->port.closing_wait = new_serial.closing_wait;
1226
1227 mutex_unlock(&info->port.mutex);
1228
1229 configure_r_port(tty, info, NULL);
1230 return 0;
1231}
1232
1233/*
1234 * This function fills in a rocket_ports struct with information
1235 * about what boards/ports are in the system. This info is passed
1236 * to user space. See setrocket.c where the info is used to create
1237 * the /dev/ttyRx ports.
1238 */
1239static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1240{
1241 struct rocket_ports tmp;
1242 int board;
1243
1244 memset(&tmp, 0, sizeof (tmp));
1245 tmp.tty_major = rocket_driver->major;
1246
1247 for (board = 0; board < 4; board++) {
1248 tmp.rocketModel[board].model = rocketModel[board].model;
1249 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1250 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1251 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1252 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1253 }
1254 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1255 return -EFAULT;
1256 return 0;
1257}
1258
1259static int reset_rm2(struct r_port *info, void __user *arg)
1260{
1261 int reset;
1262
1263 if (!capable(CAP_SYS_ADMIN))
1264 return -EPERM;
1265
1266 if (copy_from_user(&reset, arg, sizeof (int)))
1267 return -EFAULT;
1268 if (reset)
1269 reset = 1;
1270
1271 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1272 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1273 return -EINVAL;
1274
1275 if (info->ctlp->BusType == isISA)
1276 sModemReset(info->ctlp, info->chan, reset);
1277 else
1278 sPCIModemReset(info->ctlp, info->chan, reset);
1279
1280 return 0;
1281}
1282
1283static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1284{
1285 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1286 return -EFAULT;
1287 return 0;
1288}
1289
1290/* IOCTL call handler into the driver */
1291static int rp_ioctl(struct tty_struct *tty,
1292 unsigned int cmd, unsigned long arg)
1293{
1294 struct r_port *info = tty->driver_data;
1295 void __user *argp = (void __user *)arg;
1296 int ret = 0;
1297
1298 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1299 return -ENXIO;
1300
1301 switch (cmd) {
1302 case RCKP_GET_STRUCT:
1303 if (copy_to_user(argp, info, sizeof (struct r_port)))
1304 ret = -EFAULT;
1305 break;
1306 case RCKP_GET_CONFIG:
1307 ret = get_config(info, argp);
1308 break;
1309 case RCKP_SET_CONFIG:
1310 ret = set_config(tty, info, argp);
1311 break;
1312 case RCKP_GET_PORTS:
1313 ret = get_ports(info, argp);
1314 break;
1315 case RCKP_RESET_RM2:
1316 ret = reset_rm2(info, argp);
1317 break;
1318 case RCKP_GET_VERSION:
1319 ret = get_version(info, argp);
1320 break;
1321 default:
1322 ret = -ENOIOCTLCMD;
1323 }
1324 return ret;
1325}
1326
1327static void rp_send_xchar(struct tty_struct *tty, char ch)
1328{
1329 struct r_port *info = tty->driver_data;
1330 CHANNEL_t *cp;
1331
1332 if (rocket_paranoia_check(info, "rp_send_xchar"))
1333 return;
1334
1335 cp = &info->channel;
1336 if (sGetTxCnt(cp))
1337 sWriteTxPrioByte(cp, ch);
1338 else
1339 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1340}
1341
1342static void rp_throttle(struct tty_struct *tty)
1343{
1344 struct r_port *info = tty->driver_data;
1345
1346#ifdef ROCKET_DEBUG_THROTTLE
1347 printk(KERN_INFO "throttle %s ....\n", tty->name);
1348#endif
1349
1350 if (rocket_paranoia_check(info, "rp_throttle"))
1351 return;
1352
1353 if (I_IXOFF(tty))
1354 rp_send_xchar(tty, STOP_CHAR(tty));
1355
1356 sClrRTS(&info->channel);
1357}
1358
1359static void rp_unthrottle(struct tty_struct *tty)
1360{
1361 struct r_port *info = tty->driver_data;
1362#ifdef ROCKET_DEBUG_THROTTLE
1363 printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1364#endif
1365
1366 if (rocket_paranoia_check(info, "rp_unthrottle"))
1367 return;
1368
1369 if (I_IXOFF(tty))
1370 rp_send_xchar(tty, START_CHAR(tty));
1371
1372 sSetRTS(&info->channel);
1373}
1374
1375/*
1376 * ------------------------------------------------------------
1377 * rp_stop() and rp_start()
1378 *
1379 * This routines are called before setting or resetting tty->stopped.
1380 * They enable or disable transmitter interrupts, as necessary.
1381 * ------------------------------------------------------------
1382 */
1383static void rp_stop(struct tty_struct *tty)
1384{
1385 struct r_port *info = tty->driver_data;
1386
1387#ifdef ROCKET_DEBUG_FLOW
1388 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1389 info->xmit_cnt, info->xmit_fifo_room);
1390#endif
1391
1392 if (rocket_paranoia_check(info, "rp_stop"))
1393 return;
1394
1395 if (sGetTxCnt(&info->channel))
1396 sDisTransmit(&info->channel);
1397}
1398
1399static void rp_start(struct tty_struct *tty)
1400{
1401 struct r_port *info = tty->driver_data;
1402
1403#ifdef ROCKET_DEBUG_FLOW
1404 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1405 info->xmit_cnt, info->xmit_fifo_room);
1406#endif
1407
1408 if (rocket_paranoia_check(info, "rp_stop"))
1409 return;
1410
1411 sEnTransmit(&info->channel);
1412 set_bit((info->aiop * 8) + info->chan,
1413 (void *) &xmit_flags[info->board]);
1414}
1415
1416/*
1417 * rp_wait_until_sent() --- wait until the transmitter is empty
1418 */
1419static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1420{
1421 struct r_port *info = tty->driver_data;
1422 CHANNEL_t *cp;
1423 unsigned long orig_jiffies;
1424 int check_time, exit_time;
1425 int txcnt;
1426
1427 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1428 return;
1429
1430 cp = &info->channel;
1431
1432 orig_jiffies = jiffies;
1433#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1434 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1435 jiffies);
1436 printk(KERN_INFO "cps=%d...\n", info->cps);
1437#endif
1438 while (1) {
1439 txcnt = sGetTxCnt(cp);
1440 if (!txcnt) {
1441 if (sGetChanStatusLo(cp) & TXSHRMT)
1442 break;
1443 check_time = (HZ / info->cps) / 5;
1444 } else {
1445 check_time = HZ * txcnt / info->cps;
1446 }
1447 if (timeout) {
1448 exit_time = orig_jiffies + timeout - jiffies;
1449 if (exit_time <= 0)
1450 break;
1451 if (exit_time < check_time)
1452 check_time = exit_time;
1453 }
1454 if (check_time == 0)
1455 check_time = 1;
1456#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1457 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1458 jiffies, check_time);
1459#endif
1460 msleep_interruptible(jiffies_to_msecs(check_time));
1461 if (signal_pending(current))
1462 break;
1463 }
1464 __set_current_state(TASK_RUNNING);
1465#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1466 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1467#endif
1468}
1469
1470/*
1471 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1472 */
1473static void rp_hangup(struct tty_struct *tty)
1474{
1475 CHANNEL_t *cp;
1476 struct r_port *info = tty->driver_data;
1477 unsigned long flags;
1478
1479 if (rocket_paranoia_check(info, "rp_hangup"))
1480 return;
1481
1482#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1483 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1484#endif
1485 rp_flush_buffer(tty);
1486 spin_lock_irqsave(&info->port.lock, flags);
1487 if (info->port.count)
1488 atomic_dec(&rp_num_ports_open);
1489 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1490 spin_unlock_irqrestore(&info->port.lock, flags);
1491
1492 tty_port_hangup(&info->port);
1493
1494 cp = &info->channel;
1495 sDisRxFIFO(cp);
1496 sDisTransmit(cp);
1497 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1498 sDisCTSFlowCtl(cp);
1499 sDisTxSoftFlowCtl(cp);
1500 sClrTxXOFF(cp);
1501 tty_port_set_initialized(&info->port, 0);
1502
1503 wake_up_interruptible(&info->port.open_wait);
1504}
1505
1506/*
1507 * Exception handler - write char routine. The RocketPort driver uses a
1508 * double-buffering strategy, with the twist that if the in-memory CPU
1509 * buffer is empty, and there's space in the transmit FIFO, the
1510 * writing routines will write directly to transmit FIFO.
1511 * Write buffer and counters protected by spinlocks
1512 */
1513static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1514{
1515 struct r_port *info = tty->driver_data;
1516 CHANNEL_t *cp;
1517 unsigned long flags;
1518
1519 if (rocket_paranoia_check(info, "rp_put_char"))
1520 return 0;
1521
1522 /*
1523 * Grab the port write mutex, locking out other processes that try to
1524 * write to this port
1525 */
1526 mutex_lock(&info->write_mtx);
1527
1528#ifdef ROCKET_DEBUG_WRITE
1529 printk(KERN_INFO "rp_put_char %c...\n", ch);
1530#endif
1531
1532 spin_lock_irqsave(&info->slock, flags);
1533 cp = &info->channel;
1534
1535 if (!tty->stopped && info->xmit_fifo_room == 0)
1536 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1537
1538 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1539 info->xmit_buf[info->xmit_head++] = ch;
1540 info->xmit_head &= XMIT_BUF_SIZE - 1;
1541 info->xmit_cnt++;
1542 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1543 } else {
1544 sOutB(sGetTxRxDataIO(cp), ch);
1545 info->xmit_fifo_room--;
1546 }
1547 spin_unlock_irqrestore(&info->slock, flags);
1548 mutex_unlock(&info->write_mtx);
1549 return 1;
1550}
1551
1552/*
1553 * Exception handler - write routine, called when user app writes to the device.
1554 * A per port write mutex is used to protect from another process writing to
1555 * this port at the same time. This other process could be running on the other CPU
1556 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1557 * Spinlocks protect the info xmit members.
1558 */
1559static int rp_write(struct tty_struct *tty,
1560 const unsigned char *buf, int count)
1561{
1562 struct r_port *info = tty->driver_data;
1563 CHANNEL_t *cp;
1564 const unsigned char *b;
1565 int c, retval = 0;
1566 unsigned long flags;
1567
1568 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1569 return 0;
1570
1571 if (mutex_lock_interruptible(&info->write_mtx))
1572 return -ERESTARTSYS;
1573
1574#ifdef ROCKET_DEBUG_WRITE
1575 printk(KERN_INFO "rp_write %d chars...\n", count);
1576#endif
1577 cp = &info->channel;
1578
1579 if (!tty->stopped && info->xmit_fifo_room < count)
1580 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1581
1582 /*
1583 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1584 * into FIFO. Use the write queue for temp storage.
1585 */
1586 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1587 c = min(count, info->xmit_fifo_room);
1588 b = buf;
1589
1590 /* Push data into FIFO, 2 bytes at a time */
1591 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1592
1593 /* If there is a byte remaining, write it */
1594 if (c & 1)
1595 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1596
1597 retval += c;
1598 buf += c;
1599 count -= c;
1600
1601 spin_lock_irqsave(&info->slock, flags);
1602 info->xmit_fifo_room -= c;
1603 spin_unlock_irqrestore(&info->slock, flags);
1604 }
1605
1606 /* If count is zero, we wrote it all and are done */
1607 if (!count)
1608 goto end;
1609
1610 /* Write remaining data into the port's xmit_buf */
1611 while (1) {
1612 /* Hung up ? */
1613 if (!tty_port_active(&info->port))
1614 goto end;
1615 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1616 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1617 if (c <= 0)
1618 break;
1619
1620 b = buf;
1621 memcpy(info->xmit_buf + info->xmit_head, b, c);
1622
1623 spin_lock_irqsave(&info->slock, flags);
1624 info->xmit_head =
1625 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1626 info->xmit_cnt += c;
1627 spin_unlock_irqrestore(&info->slock, flags);
1628
1629 buf += c;
1630 count -= c;
1631 retval += c;
1632 }
1633
1634 if ((retval > 0) && !tty->stopped)
1635 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1636
1637end:
1638 if (info->xmit_cnt < WAKEUP_CHARS) {
1639 tty_wakeup(tty);
1640#ifdef ROCKETPORT_HAVE_POLL_WAIT
1641 wake_up_interruptible(&tty->poll_wait);
1642#endif
1643 }
1644 mutex_unlock(&info->write_mtx);
1645 return retval;
1646}
1647
1648/*
1649 * Return the number of characters that can be sent. We estimate
1650 * only using the in-memory transmit buffer only, and ignore the
1651 * potential space in the transmit FIFO.
1652 */
1653static int rp_write_room(struct tty_struct *tty)
1654{
1655 struct r_port *info = tty->driver_data;
1656 int ret;
1657
1658 if (rocket_paranoia_check(info, "rp_write_room"))
1659 return 0;
1660
1661 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1662 if (ret < 0)
1663 ret = 0;
1664#ifdef ROCKET_DEBUG_WRITE
1665 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1666#endif
1667 return ret;
1668}
1669
1670/*
1671 * Return the number of characters in the buffer. Again, this only
1672 * counts those characters in the in-memory transmit buffer.
1673 */
1674static int rp_chars_in_buffer(struct tty_struct *tty)
1675{
1676 struct r_port *info = tty->driver_data;
1677
1678 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1679 return 0;
1680
1681#ifdef ROCKET_DEBUG_WRITE
1682 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1683#endif
1684 return info->xmit_cnt;
1685}
1686
1687/*
1688 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1689 * r_port struct for the port. Note that spinlock are used to protect info members,
1690 * do not call this function if the spinlock is already held.
1691 */
1692static void rp_flush_buffer(struct tty_struct *tty)
1693{
1694 struct r_port *info = tty->driver_data;
1695 CHANNEL_t *cp;
1696 unsigned long flags;
1697
1698 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1699 return;
1700
1701 spin_lock_irqsave(&info->slock, flags);
1702 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1703 spin_unlock_irqrestore(&info->slock, flags);
1704
1705#ifdef ROCKETPORT_HAVE_POLL_WAIT
1706 wake_up_interruptible(&tty->poll_wait);
1707#endif
1708 tty_wakeup(tty);
1709
1710 cp = &info->channel;
1711 sFlushTxFIFO(cp);
1712}
1713
1714#ifdef CONFIG_PCI
1715
1716static const struct pci_device_id rocket_pci_ids[] = {
1717 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1718 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1719 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1720 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1721 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1722 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1723 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1724 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1725 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1726 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1727 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1728 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1729 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1730 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1736 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1737 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1738 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1739 { }
1740};
1741MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1742
1743/* Resets the speaker controller on RocketModem II and III devices */
1744static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1745{
1746 ByteIO_t addr;
1747
1748 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1749 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1750 addr = CtlP->AiopIO[0] + 0x4F;
1751 sOutB(addr, 0);
1752 }
1753
1754 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1755 if ((model == MODEL_UPCI_RM3_8PORT)
1756 || (model == MODEL_UPCI_RM3_4PORT)) {
1757 addr = CtlP->AiopIO[0] + 0x88;
1758 sOutB(addr, 0);
1759 }
1760}
1761
1762/***************************************************************************
1763Function: sPCIInitController
1764Purpose: Initialization of controller global registers and controller
1765 structure.
1766Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1767 IRQNum,Frequency,PeriodicOnly)
1768 CONTROLLER_T *CtlP; Ptr to controller structure
1769 int CtlNum; Controller number
1770 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1771 This list must be in the order the AIOPs will be found on the
1772 controller. Once an AIOP in the list is not found, it is
1773 assumed that there are no more AIOPs on the controller.
1774 int AiopIOListSize; Number of addresses in AiopIOList
1775 int IRQNum; Interrupt Request number. Can be any of the following:
1776 0: Disable global interrupts
1777 3: IRQ 3
1778 4: IRQ 4
1779 5: IRQ 5
1780 9: IRQ 9
1781 10: IRQ 10
1782 11: IRQ 11
1783 12: IRQ 12
1784 15: IRQ 15
1785 Byte_t Frequency: A flag identifying the frequency
1786 of the periodic interrupt, can be any one of the following:
1787 FREQ_DIS - periodic interrupt disabled
1788 FREQ_137HZ - 137 Hertz
1789 FREQ_69HZ - 69 Hertz
1790 FREQ_34HZ - 34 Hertz
1791 FREQ_17HZ - 17 Hertz
1792 FREQ_9HZ - 9 Hertz
1793 FREQ_4HZ - 4 Hertz
1794 If IRQNum is set to 0 the Frequency parameter is
1795 overidden, it is forced to a value of FREQ_DIS.
1796 int PeriodicOnly: 1 if all interrupts except the periodic
1797 interrupt are to be blocked.
1798 0 is both the periodic interrupt and
1799 other channel interrupts are allowed.
1800 If IRQNum is set to 0 the PeriodicOnly parameter is
1801 overidden, it is forced to a value of 0.
1802Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
1803 initialization failed.
1804
1805Comments:
1806 If periodic interrupts are to be disabled but AIOP interrupts
1807 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1808
1809 If interrupts are to be completely disabled set IRQNum to 0.
1810
1811 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1812 invalid combination.
1813
1814 This function performs initialization of global interrupt modes,
1815 but it does not actually enable global interrupts. To enable
1816 and disable global interrupts use functions sEnGlobalInt() and
1817 sDisGlobalInt(). Enabling of global interrupts is normally not
1818 done until all other initializations are complete.
1819
1820 Even if interrupts are globally enabled, they must also be
1821 individually enabled for each channel that is to generate
1822 interrupts.
1823
1824Warnings: No range checking on any of the parameters is done.
1825
1826 No context switches are allowed while executing this function.
1827
1828 After this function all AIOPs on the controller are disabled,
1829 they can be enabled with sEnAiop().
1830*/
1831static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1832 ByteIO_t * AiopIOList, int AiopIOListSize,
1833 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1834 int PeriodicOnly, int altChanRingIndicator,
1835 int UPCIRingInd)
1836{
1837 int i;
1838 ByteIO_t io;
1839
1840 CtlP->AltChanRingIndicator = altChanRingIndicator;
1841 CtlP->UPCIRingInd = UPCIRingInd;
1842 CtlP->CtlNum = CtlNum;
1843 CtlP->CtlID = CTLID_0001; /* controller release 1 */
1844 CtlP->BusType = isPCI; /* controller release 1 */
1845
1846 if (ConfigIO) {
1847 CtlP->isUPCI = 1;
1848 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1849 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1850 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1851 } else {
1852 CtlP->isUPCI = 0;
1853 CtlP->PCIIO =
1854 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1855 CtlP->AiopIntrBits = aiop_intr_bits;
1856 }
1857
1858 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
1859 /* Init AIOPs */
1860 CtlP->NumAiop = 0;
1861 for (i = 0; i < AiopIOListSize; i++) {
1862 io = AiopIOList[i];
1863 CtlP->AiopIO[i] = (WordIO_t) io;
1864 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1865
1866 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
1867 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
1868 break; /* done looking for AIOPs */
1869
1870 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1871 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
1872 sOutB(io + _INDX_DATA, sClockPrescale);
1873 CtlP->NumAiop++; /* bump count of AIOPs */
1874 }
1875
1876 if (CtlP->NumAiop == 0)
1877 return (-1);
1878 else
1879 return (CtlP->NumAiop);
1880}
1881
1882/*
1883 * Called when a PCI card is found. Retrieves and stores model information,
1884 * init's aiopic and serial port hardware.
1885 * Inputs: i is the board number (0-n)
1886 */
1887static __init int register_PCI(int i, struct pci_dev *dev)
1888{
1889 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1890 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1891 CONTROLLER_t *ctlp;
1892
1893 int fast_clock = 0;
1894 int altChanRingIndicator = 0;
1895 int ports_per_aiop = 8;
1896 WordIO_t ConfigIO = 0;
1897 ByteIO_t UPCIRingInd = 0;
1898
1899 if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1900 pci_enable_device(dev) || i >= NUM_BOARDS)
1901 return 0;
1902
1903 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1904
1905 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1906 rocketModel[i].loadrm2 = 0;
1907 rocketModel[i].startingPortNumber = nextLineNumber;
1908
1909 /* Depending on the model, set up some config variables */
1910 switch (dev->device) {
1911 case PCI_DEVICE_ID_RP4QUAD:
1912 max_num_aiops = 1;
1913 ports_per_aiop = 4;
1914 rocketModel[i].model = MODEL_RP4QUAD;
1915 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1916 rocketModel[i].numPorts = 4;
1917 break;
1918 case PCI_DEVICE_ID_RP8OCTA:
1919 max_num_aiops = 1;
1920 rocketModel[i].model = MODEL_RP8OCTA;
1921 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1922 rocketModel[i].numPorts = 8;
1923 break;
1924 case PCI_DEVICE_ID_URP8OCTA:
1925 max_num_aiops = 1;
1926 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1927 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1928 rocketModel[i].numPorts = 8;
1929 break;
1930 case PCI_DEVICE_ID_RP8INTF:
1931 max_num_aiops = 1;
1932 rocketModel[i].model = MODEL_RP8INTF;
1933 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1934 rocketModel[i].numPorts = 8;
1935 break;
1936 case PCI_DEVICE_ID_URP8INTF:
1937 max_num_aiops = 1;
1938 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1939 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1940 rocketModel[i].numPorts = 8;
1941 break;
1942 case PCI_DEVICE_ID_RP8J:
1943 max_num_aiops = 1;
1944 rocketModel[i].model = MODEL_RP8J;
1945 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1946 rocketModel[i].numPorts = 8;
1947 break;
1948 case PCI_DEVICE_ID_RP4J:
1949 max_num_aiops = 1;
1950 ports_per_aiop = 4;
1951 rocketModel[i].model = MODEL_RP4J;
1952 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1953 rocketModel[i].numPorts = 4;
1954 break;
1955 case PCI_DEVICE_ID_RP8SNI:
1956 max_num_aiops = 1;
1957 rocketModel[i].model = MODEL_RP8SNI;
1958 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1959 rocketModel[i].numPorts = 8;
1960 break;
1961 case PCI_DEVICE_ID_RP16SNI:
1962 max_num_aiops = 2;
1963 rocketModel[i].model = MODEL_RP16SNI;
1964 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1965 rocketModel[i].numPorts = 16;
1966 break;
1967 case PCI_DEVICE_ID_RP16INTF:
1968 max_num_aiops = 2;
1969 rocketModel[i].model = MODEL_RP16INTF;
1970 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1971 rocketModel[i].numPorts = 16;
1972 break;
1973 case PCI_DEVICE_ID_URP16INTF:
1974 max_num_aiops = 2;
1975 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1976 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1977 rocketModel[i].numPorts = 16;
1978 break;
1979 case PCI_DEVICE_ID_CRP16INTF:
1980 max_num_aiops = 2;
1981 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1982 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1983 rocketModel[i].numPorts = 16;
1984 break;
1985 case PCI_DEVICE_ID_RP32INTF:
1986 max_num_aiops = 4;
1987 rocketModel[i].model = MODEL_RP32INTF;
1988 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1989 rocketModel[i].numPorts = 32;
1990 break;
1991 case PCI_DEVICE_ID_URP32INTF:
1992 max_num_aiops = 4;
1993 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1994 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1995 rocketModel[i].numPorts = 32;
1996 break;
1997 case PCI_DEVICE_ID_RPP4:
1998 max_num_aiops = 1;
1999 ports_per_aiop = 4;
2000 altChanRingIndicator++;
2001 fast_clock++;
2002 rocketModel[i].model = MODEL_RPP4;
2003 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2004 rocketModel[i].numPorts = 4;
2005 break;
2006 case PCI_DEVICE_ID_RPP8:
2007 max_num_aiops = 2;
2008 ports_per_aiop = 4;
2009 altChanRingIndicator++;
2010 fast_clock++;
2011 rocketModel[i].model = MODEL_RPP8;
2012 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2013 rocketModel[i].numPorts = 8;
2014 break;
2015 case PCI_DEVICE_ID_RP2_232:
2016 max_num_aiops = 1;
2017 ports_per_aiop = 2;
2018 altChanRingIndicator++;
2019 fast_clock++;
2020 rocketModel[i].model = MODEL_RP2_232;
2021 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2022 rocketModel[i].numPorts = 2;
2023 break;
2024 case PCI_DEVICE_ID_RP2_422:
2025 max_num_aiops = 1;
2026 ports_per_aiop = 2;
2027 altChanRingIndicator++;
2028 fast_clock++;
2029 rocketModel[i].model = MODEL_RP2_422;
2030 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2031 rocketModel[i].numPorts = 2;
2032 break;
2033 case PCI_DEVICE_ID_RP6M:
2034
2035 max_num_aiops = 1;
2036 ports_per_aiop = 6;
2037
2038 /* If revision is 1, the rocketmodem flash must be loaded.
2039 * If it is 2 it is a "socketed" version. */
2040 if (dev->revision == 1) {
2041 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2042 rocketModel[i].loadrm2 = 1;
2043 } else {
2044 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2045 }
2046
2047 rocketModel[i].model = MODEL_RP6M;
2048 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2049 rocketModel[i].numPorts = 6;
2050 break;
2051 case PCI_DEVICE_ID_RP4M:
2052 max_num_aiops = 1;
2053 ports_per_aiop = 4;
2054 if (dev->revision == 1) {
2055 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2056 rocketModel[i].loadrm2 = 1;
2057 } else {
2058 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2059 }
2060
2061 rocketModel[i].model = MODEL_RP4M;
2062 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2063 rocketModel[i].numPorts = 4;
2064 break;
2065 default:
2066 max_num_aiops = 0;
2067 break;
2068 }
2069
2070 /*
2071 * Check for UPCI boards.
2072 */
2073
2074 switch (dev->device) {
2075 case PCI_DEVICE_ID_URP32INTF:
2076 case PCI_DEVICE_ID_URP8INTF:
2077 case PCI_DEVICE_ID_URP16INTF:
2078 case PCI_DEVICE_ID_CRP16INTF:
2079 case PCI_DEVICE_ID_URP8OCTA:
2080 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2081 ConfigIO = pci_resource_start(dev, 1);
2082 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2083 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2084
2085 /*
2086 * Check for octa or quad cable.
2087 */
2088 if (!
2089 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2090 PCI_GPIO_CTRL_8PORT)) {
2091 ports_per_aiop = 4;
2092 rocketModel[i].numPorts = 4;
2093 }
2094 }
2095 break;
2096 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2097 max_num_aiops = 1;
2098 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2099 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2100 rocketModel[i].numPorts = 8;
2101 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2102 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2103 ConfigIO = pci_resource_start(dev, 1);
2104 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2105 break;
2106 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2107 max_num_aiops = 1;
2108 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2109 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2110 rocketModel[i].numPorts = 4;
2111 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2112 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2113 ConfigIO = pci_resource_start(dev, 1);
2114 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2115 break;
2116 default:
2117 break;
2118 }
2119
2120 if (fast_clock) {
2121 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2122 rp_baud_base[i] = 921600;
2123 } else {
2124 /*
2125 * If support_low_speed is set, use the slow clock
2126 * prescale, which supports 50 bps
2127 */
2128 if (support_low_speed) {
2129 /* mod 9 (divide by 10) prescale */
2130 sClockPrescale = 0x19;
2131 rp_baud_base[i] = 230400;
2132 } else {
2133 /* mod 4 (divide by 5) prescale */
2134 sClockPrescale = 0x14;
2135 rp_baud_base[i] = 460800;
2136 }
2137 }
2138
2139 for (aiop = 0; aiop < max_num_aiops; aiop++)
2140 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2141 ctlp = sCtlNumToCtlPtr(i);
2142 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2143 for (aiop = 0; aiop < max_num_aiops; aiop++)
2144 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2145
2146 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2147 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2148 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2149 rocketModel[i].startingPortNumber,
2150 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2151
2152 if (num_aiops <= 0) {
2153 rcktpt_io_addr[i] = 0;
2154 return (0);
2155 }
2156 is_PCI[i] = 1;
2157
2158 /* Reset the AIOPIC, init the serial ports */
2159 for (aiop = 0; aiop < num_aiops; aiop++) {
2160 sResetAiopByNum(ctlp, aiop);
2161 num_chan = ports_per_aiop;
2162 for (chan = 0; chan < num_chan; chan++)
2163 init_r_port(i, aiop, chan, dev);
2164 }
2165
2166 /* Rocket modems must be reset */
2167 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2168 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2169 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2170 num_chan = ports_per_aiop;
2171 for (chan = 0; chan < num_chan; chan++)
2172 sPCIModemReset(ctlp, chan, 1);
2173 msleep(500);
2174 for (chan = 0; chan < num_chan; chan++)
2175 sPCIModemReset(ctlp, chan, 0);
2176 msleep(500);
2177 rmSpeakerReset(ctlp, rocketModel[i].model);
2178 }
2179 return (1);
2180}
2181
2182/*
2183 * Probes for PCI cards, inits them if found
2184 * Input: board_found = number of ISA boards already found, or the
2185 * starting board number
2186 * Returns: Number of PCI boards found
2187 */
2188static int __init init_PCI(int boards_found)
2189{
2190 struct pci_dev *dev = NULL;
2191 int count = 0;
2192
2193 /* Work through the PCI device list, pulling out ours */
2194 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2195 if (register_PCI(count + boards_found, dev))
2196 count++;
2197 }
2198 return (count);
2199}
2200
2201#endif /* CONFIG_PCI */
2202
2203/*
2204 * Probes for ISA cards
2205 * Input: i = the board number to look for
2206 * Returns: 1 if board found, 0 else
2207 */
2208static int __init init_ISA(int i)
2209{
2210 int num_aiops, num_chan = 0, total_num_chan = 0;
2211 int aiop, chan;
2212 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2213 CONTROLLER_t *ctlp;
2214 char *type_string;
2215
2216 /* If io_addr is zero, no board configured */
2217 if (rcktpt_io_addr[i] == 0)
2218 return (0);
2219
2220 /* Reserve the IO region */
2221 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2222 printk(KERN_ERR "Unable to reserve IO region for configured "
2223 "ISA RocketPort at address 0x%lx, board not "
2224 "installed...\n", rcktpt_io_addr[i]);
2225 rcktpt_io_addr[i] = 0;
2226 return (0);
2227 }
2228
2229 ctlp = sCtlNumToCtlPtr(i);
2230
2231 ctlp->boardType = rcktpt_type[i];
2232
2233 switch (rcktpt_type[i]) {
2234 case ROCKET_TYPE_PC104:
2235 type_string = "(PC104)";
2236 break;
2237 case ROCKET_TYPE_MODEM:
2238 type_string = "(RocketModem)";
2239 break;
2240 case ROCKET_TYPE_MODEMII:
2241 type_string = "(RocketModem II)";
2242 break;
2243 default:
2244 type_string = "";
2245 break;
2246 }
2247
2248 /*
2249 * If support_low_speed is set, use the slow clock prescale,
2250 * which supports 50 bps
2251 */
2252 if (support_low_speed) {
2253 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2254 rp_baud_base[i] = 230400;
2255 } else {
2256 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2257 rp_baud_base[i] = 460800;
2258 }
2259
2260 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2261 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2262
2263 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2264
2265 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2266 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2267 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2268 }
2269
2270 /* If something went wrong initing the AIOP's release the ISA IO memory */
2271 if (num_aiops <= 0) {
2272 release_region(rcktpt_io_addr[i], 64);
2273 rcktpt_io_addr[i] = 0;
2274 return (0);
2275 }
2276
2277 rocketModel[i].startingPortNumber = nextLineNumber;
2278
2279 for (aiop = 0; aiop < num_aiops; aiop++) {
2280 sResetAiopByNum(ctlp, aiop);
2281 sEnAiop(ctlp, aiop);
2282 num_chan = sGetAiopNumChan(ctlp, aiop);
2283 total_num_chan += num_chan;
2284 for (chan = 0; chan < num_chan; chan++)
2285 init_r_port(i, aiop, chan, NULL);
2286 }
2287 is_PCI[i] = 0;
2288 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2289 num_chan = sGetAiopNumChan(ctlp, 0);
2290 total_num_chan = num_chan;
2291 for (chan = 0; chan < num_chan; chan++)
2292 sModemReset(ctlp, chan, 1);
2293 msleep(500);
2294 for (chan = 0; chan < num_chan; chan++)
2295 sModemReset(ctlp, chan, 0);
2296 msleep(500);
2297 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2298 } else {
2299 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2300 }
2301 rocketModel[i].numPorts = total_num_chan;
2302 rocketModel[i].model = MODEL_ISA;
2303
2304 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2305 i, rcktpt_io_addr[i], num_aiops, type_string);
2306
2307 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2308 rocketModel[i].modelString,
2309 rocketModel[i].startingPortNumber,
2310 rocketModel[i].startingPortNumber +
2311 rocketModel[i].numPorts - 1);
2312
2313 return (1);
2314}
2315
2316static const struct tty_operations rocket_ops = {
2317 .open = rp_open,
2318 .close = rp_close,
2319 .write = rp_write,
2320 .put_char = rp_put_char,
2321 .write_room = rp_write_room,
2322 .chars_in_buffer = rp_chars_in_buffer,
2323 .flush_buffer = rp_flush_buffer,
2324 .ioctl = rp_ioctl,
2325 .throttle = rp_throttle,
2326 .unthrottle = rp_unthrottle,
2327 .set_termios = rp_set_termios,
2328 .stop = rp_stop,
2329 .start = rp_start,
2330 .hangup = rp_hangup,
2331 .break_ctl = rp_break,
2332 .send_xchar = rp_send_xchar,
2333 .wait_until_sent = rp_wait_until_sent,
2334 .tiocmget = rp_tiocmget,
2335 .tiocmset = rp_tiocmset,
2336};
2337
2338static const struct tty_port_operations rocket_port_ops = {
2339 .carrier_raised = carrier_raised,
2340 .dtr_rts = dtr_rts,
2341};
2342
2343/*
2344 * The module "startup" routine; it's run when the module is loaded.
2345 */
2346static int __init rp_init(void)
2347{
2348 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2349
2350 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2351 ROCKET_VERSION, ROCKET_DATE);
2352
2353 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2354 if (!rocket_driver)
2355 goto err;
2356
2357 /*
2358 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2359 * zero, use the default controller IO address of board1 + 0x40.
2360 */
2361 if (board1) {
2362 if (controller == 0)
2363 controller = board1 + 0x40;
2364 } else {
2365 controller = 0; /* Used as a flag, meaning no ISA boards */
2366 }
2367
2368 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2369 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2370 printk(KERN_ERR "Unable to reserve IO region for first "
2371 "configured ISA RocketPort controller 0x%lx. "
2372 "Driver exiting\n", controller);
2373 ret = -EBUSY;
2374 goto err_tty;
2375 }
2376
2377 /* Store ISA variable retrieved from command line or .conf file. */
2378 rcktpt_io_addr[0] = board1;
2379 rcktpt_io_addr[1] = board2;
2380 rcktpt_io_addr[2] = board3;
2381 rcktpt_io_addr[3] = board4;
2382
2383 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2384 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2385 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2386 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2387 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2388 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2389 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2390 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2391
2392 /*
2393 * Set up the tty driver structure and then register this
2394 * driver with the tty layer.
2395 */
2396
2397 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2398 rocket_driver->name = "ttyR";
2399 rocket_driver->driver_name = "Comtrol RocketPort";
2400 rocket_driver->major = TTY_ROCKET_MAJOR;
2401 rocket_driver->minor_start = 0;
2402 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2403 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2404 rocket_driver->init_termios = tty_std_termios;
2405 rocket_driver->init_termios.c_cflag =
2406 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2407 rocket_driver->init_termios.c_ispeed = 9600;
2408 rocket_driver->init_termios.c_ospeed = 9600;
2409#ifdef ROCKET_SOFT_FLOW
2410 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2411#endif
2412 tty_set_operations(rocket_driver, &rocket_ops);
2413
2414 ret = tty_register_driver(rocket_driver);
2415 if (ret < 0) {
2416 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2417 goto err_controller;
2418 }
2419
2420#ifdef ROCKET_DEBUG_OPEN
2421 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2422#endif
2423
2424 /*
2425 * OK, let's probe each of the controllers looking for boards. Any boards found
2426 * will be initialized here.
2427 */
2428 isa_boards_found = 0;
2429 pci_boards_found = 0;
2430
2431 for (i = 0; i < NUM_BOARDS; i++) {
2432 if (init_ISA(i))
2433 isa_boards_found++;
2434 }
2435
2436#ifdef CONFIG_PCI
2437 if (isa_boards_found < NUM_BOARDS)
2438 pci_boards_found = init_PCI(isa_boards_found);
2439#endif
2440
2441 max_board = pci_boards_found + isa_boards_found;
2442
2443 if (max_board == 0) {
2444 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2445 ret = -ENXIO;
2446 goto err_ttyu;
2447 }
2448
2449 return 0;
2450err_ttyu:
2451 tty_unregister_driver(rocket_driver);
2452err_controller:
2453 if (controller)
2454 release_region(controller, 4);
2455err_tty:
2456 put_tty_driver(rocket_driver);
2457err:
2458 return ret;
2459}
2460
2461
2462static void rp_cleanup_module(void)
2463{
2464 int retval;
2465 int i;
2466
2467 del_timer_sync(&rocket_timer);
2468
2469 retval = tty_unregister_driver(rocket_driver);
2470 if (retval)
2471 printk(KERN_ERR "Error %d while trying to unregister "
2472 "rocketport driver\n", -retval);
2473
2474 for (i = 0; i < MAX_RP_PORTS; i++)
2475 if (rp_table[i]) {
2476 tty_unregister_device(rocket_driver, i);
2477 tty_port_destroy(&rp_table[i]->port);
2478 kfree(rp_table[i]);
2479 }
2480
2481 put_tty_driver(rocket_driver);
2482
2483 for (i = 0; i < NUM_BOARDS; i++) {
2484 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2485 continue;
2486 release_region(rcktpt_io_addr[i], 64);
2487 }
2488 if (controller)
2489 release_region(controller, 4);
2490}
2491
2492/***************************************************************************
2493Function: sInitController
2494Purpose: Initialization of controller global registers and controller
2495 structure.
2496Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2497 IRQNum,Frequency,PeriodicOnly)
2498 CONTROLLER_T *CtlP; Ptr to controller structure
2499 int CtlNum; Controller number
2500 ByteIO_t MudbacIO; Mudbac base I/O address.
2501 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2502 This list must be in the order the AIOPs will be found on the
2503 controller. Once an AIOP in the list is not found, it is
2504 assumed that there are no more AIOPs on the controller.
2505 int AiopIOListSize; Number of addresses in AiopIOList
2506 int IRQNum; Interrupt Request number. Can be any of the following:
2507 0: Disable global interrupts
2508 3: IRQ 3
2509 4: IRQ 4
2510 5: IRQ 5
2511 9: IRQ 9
2512 10: IRQ 10
2513 11: IRQ 11
2514 12: IRQ 12
2515 15: IRQ 15
2516 Byte_t Frequency: A flag identifying the frequency
2517 of the periodic interrupt, can be any one of the following:
2518 FREQ_DIS - periodic interrupt disabled
2519 FREQ_137HZ - 137 Hertz
2520 FREQ_69HZ - 69 Hertz
2521 FREQ_34HZ - 34 Hertz
2522 FREQ_17HZ - 17 Hertz
2523 FREQ_9HZ - 9 Hertz
2524 FREQ_4HZ - 4 Hertz
2525 If IRQNum is set to 0 the Frequency parameter is
2526 overidden, it is forced to a value of FREQ_DIS.
2527 int PeriodicOnly: 1 if all interrupts except the periodic
2528 interrupt are to be blocked.
2529 0 is both the periodic interrupt and
2530 other channel interrupts are allowed.
2531 If IRQNum is set to 0 the PeriodicOnly parameter is
2532 overidden, it is forced to a value of 0.
2533Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2534 initialization failed.
2535
2536Comments:
2537 If periodic interrupts are to be disabled but AIOP interrupts
2538 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2539
2540 If interrupts are to be completely disabled set IRQNum to 0.
2541
2542 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2543 invalid combination.
2544
2545 This function performs initialization of global interrupt modes,
2546 but it does not actually enable global interrupts. To enable
2547 and disable global interrupts use functions sEnGlobalInt() and
2548 sDisGlobalInt(). Enabling of global interrupts is normally not
2549 done until all other initializations are complete.
2550
2551 Even if interrupts are globally enabled, they must also be
2552 individually enabled for each channel that is to generate
2553 interrupts.
2554
2555Warnings: No range checking on any of the parameters is done.
2556
2557 No context switches are allowed while executing this function.
2558
2559 After this function all AIOPs on the controller are disabled,
2560 they can be enabled with sEnAiop().
2561*/
2562static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2563 ByteIO_t * AiopIOList, int AiopIOListSize,
2564 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2565{
2566 int i;
2567 ByteIO_t io;
2568 int done;
2569
2570 CtlP->AiopIntrBits = aiop_intr_bits;
2571 CtlP->AltChanRingIndicator = 0;
2572 CtlP->CtlNum = CtlNum;
2573 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2574 CtlP->BusType = isISA;
2575 CtlP->MBaseIO = MudbacIO;
2576 CtlP->MReg1IO = MudbacIO + 1;
2577 CtlP->MReg2IO = MudbacIO + 2;
2578 CtlP->MReg3IO = MudbacIO + 3;
2579#if 1
2580 CtlP->MReg2 = 0; /* interrupt disable */
2581 CtlP->MReg3 = 0; /* no periodic interrupts */
2582#else
2583 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2584 CtlP->MReg2 = 0; /* interrupt disable */
2585 CtlP->MReg3 = 0; /* no periodic interrupts */
2586 } else {
2587 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2588 CtlP->MReg3 = Frequency; /* set frequency */
2589 if (PeriodicOnly) { /* periodic interrupt only */
2590 CtlP->MReg3 |= PERIODIC_ONLY;
2591 }
2592 }
2593#endif
2594 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2595 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2596 sControllerEOI(CtlP); /* clear EOI if warm init */
2597 /* Init AIOPs */
2598 CtlP->NumAiop = 0;
2599 for (i = done = 0; i < AiopIOListSize; i++) {
2600 io = AiopIOList[i];
2601 CtlP->AiopIO[i] = (WordIO_t) io;
2602 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2603 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2604 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2605 if (done)
2606 continue;
2607 sEnAiop(CtlP, i); /* enable the AIOP */
2608 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2609 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2610 done = 1; /* done looking for AIOPs */
2611 else {
2612 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2613 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2614 sOutB(io + _INDX_DATA, sClockPrescale);
2615 CtlP->NumAiop++; /* bump count of AIOPs */
2616 }
2617 sDisAiop(CtlP, i); /* disable AIOP */
2618 }
2619
2620 if (CtlP->NumAiop == 0)
2621 return (-1);
2622 else
2623 return (CtlP->NumAiop);
2624}
2625
2626/***************************************************************************
2627Function: sReadAiopID
2628Purpose: Read the AIOP idenfication number directly from an AIOP.
2629Call: sReadAiopID(io)
2630 ByteIO_t io: AIOP base I/O address
2631Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2632 is replace by an identifying number.
2633 Flag AIOPID_NULL if no valid AIOP is found
2634Warnings: No context switches are allowed while executing this function.
2635
2636*/
2637static int sReadAiopID(ByteIO_t io)
2638{
2639 Byte_t AiopID; /* ID byte from AIOP */
2640
2641 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2642 sOutB(io + _CMD_REG, 0x0);
2643 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2644 if (AiopID == 0x06)
2645 return (1);
2646 else /* AIOP does not exist */
2647 return (-1);
2648}
2649
2650/***************************************************************************
2651Function: sReadAiopNumChan
2652Purpose: Read the number of channels available in an AIOP directly from
2653 an AIOP.
2654Call: sReadAiopNumChan(io)
2655 WordIO_t io: AIOP base I/O address
2656Return: int: The number of channels available
2657Comments: The number of channels is determined by write/reads from identical
2658 offsets within the SRAM address spaces for channels 0 and 4.
2659 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2660 AIOP, otherwise it is an 8 channel.
2661Warnings: No context switches are allowed while executing this function.
2662*/
2663static int sReadAiopNumChan(WordIO_t io)
2664{
2665 Word_t x;
2666 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2667
2668 /* write to chan 0 SRAM */
2669 out32((DWordIO_t) io + _INDX_ADDR, R);
2670 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2671 x = sInW(io + _INDX_DATA);
2672 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2673 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2674 return (8);
2675 else
2676 return (4);
2677}
2678
2679/***************************************************************************
2680Function: sInitChan
2681Purpose: Initialization of a channel and channel structure
2682Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2683 CONTROLLER_T *CtlP; Ptr to controller structure
2684 CHANNEL_T *ChP; Ptr to channel structure
2685 int AiopNum; AIOP number within controller
2686 int ChanNum; Channel number within AIOP
2687Return: int: 1 if initialization succeeded, 0 if it fails because channel
2688 number exceeds number of channels available in AIOP.
2689Comments: This function must be called before a channel can be used.
2690Warnings: No range checking on any of the parameters is done.
2691
2692 No context switches are allowed while executing this function.
2693*/
2694static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2695 int ChanNum)
2696{
2697 int i;
2698 WordIO_t AiopIO;
2699 WordIO_t ChIOOff;
2700 Byte_t *ChR;
2701 Word_t ChOff;
2702 static Byte_t R[4];
2703 int brd9600;
2704
2705 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2706 return 0; /* exceeds num chans in AIOP */
2707
2708 /* Channel, AIOP, and controller identifiers */
2709 ChP->CtlP = CtlP;
2710 ChP->ChanID = CtlP->AiopID[AiopNum];
2711 ChP->AiopNum = AiopNum;
2712 ChP->ChanNum = ChanNum;
2713
2714 /* Global direct addresses */
2715 AiopIO = CtlP->AiopIO[AiopNum];
2716 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2717 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2718 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2719 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2720 ChP->IndexData = AiopIO + _INDX_DATA;
2721
2722 /* Channel direct addresses */
2723 ChIOOff = AiopIO + ChP->ChanNum * 2;
2724 ChP->TxRxData = ChIOOff + _TD0;
2725 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2726 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2727 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2728
2729 /* Initialize the channel from the RData array */
2730 for (i = 0; i < RDATASIZE; i += 4) {
2731 R[0] = RData[i];
2732 R[1] = RData[i + 1] + 0x10 * ChanNum;
2733 R[2] = RData[i + 2];
2734 R[3] = RData[i + 3];
2735 out32(ChP->IndexAddr, R);
2736 }
2737
2738 ChR = ChP->R;
2739 for (i = 0; i < RREGDATASIZE; i += 4) {
2740 ChR[i] = RRegData[i];
2741 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2742 ChR[i + 2] = RRegData[i + 2];
2743 ChR[i + 3] = RRegData[i + 3];
2744 }
2745
2746 /* Indexed registers */
2747 ChOff = (Word_t) ChanNum *0x1000;
2748
2749 if (sClockPrescale == 0x14)
2750 brd9600 = 47;
2751 else
2752 brd9600 = 23;
2753
2754 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2755 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2756 ChP->BaudDiv[2] = (Byte_t) brd9600;
2757 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2758 out32(ChP->IndexAddr, ChP->BaudDiv);
2759
2760 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2761 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2762 ChP->TxControl[2] = 0;
2763 ChP->TxControl[3] = 0;
2764 out32(ChP->IndexAddr, ChP->TxControl);
2765
2766 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2767 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2768 ChP->RxControl[2] = 0;
2769 ChP->RxControl[3] = 0;
2770 out32(ChP->IndexAddr, ChP->RxControl);
2771
2772 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2773 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2774 ChP->TxEnables[2] = 0;
2775 ChP->TxEnables[3] = 0;
2776 out32(ChP->IndexAddr, ChP->TxEnables);
2777
2778 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2779 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2780 ChP->TxCompare[2] = 0;
2781 ChP->TxCompare[3] = 0;
2782 out32(ChP->IndexAddr, ChP->TxCompare);
2783
2784 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2785 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2786 ChP->TxReplace1[2] = 0;
2787 ChP->TxReplace1[3] = 0;
2788 out32(ChP->IndexAddr, ChP->TxReplace1);
2789
2790 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2791 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2792 ChP->TxReplace2[2] = 0;
2793 ChP->TxReplace2[3] = 0;
2794 out32(ChP->IndexAddr, ChP->TxReplace2);
2795
2796 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2797 ChP->TxFIFO = ChOff + _TX_FIFO;
2798
2799 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2800 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2801 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2802 sOutW(ChP->IndexData, 0);
2803 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2804 ChP->RxFIFO = ChOff + _RX_FIFO;
2805
2806 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2807 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2808 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2809 sOutW(ChP->IndexData, 0);
2810 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2811 sOutW(ChP->IndexData, 0);
2812 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2813 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2814 sOutB(ChP->IndexData, 0);
2815 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2816 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2817 sOutB(ChP->IndexData, 0);
2818 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2819 sEnRxProcessor(ChP); /* start the Rx processor */
2820
2821 return 1;
2822}
2823
2824/***************************************************************************
2825Function: sStopRxProcessor
2826Purpose: Stop the receive processor from processing a channel.
2827Call: sStopRxProcessor(ChP)
2828 CHANNEL_T *ChP; Ptr to channel structure
2829
2830Comments: The receive processor can be started again with sStartRxProcessor().
2831 This function causes the receive processor to skip over the
2832 stopped channel. It does not stop it from processing other channels.
2833
2834Warnings: No context switches are allowed while executing this function.
2835
2836 Do not leave the receive processor stopped for more than one
2837 character time.
2838
2839 After calling this function a delay of 4 uS is required to ensure
2840 that the receive processor is no longer processing this channel.
2841*/
2842static void sStopRxProcessor(CHANNEL_T * ChP)
2843{
2844 Byte_t R[4];
2845
2846 R[0] = ChP->R[0];
2847 R[1] = ChP->R[1];
2848 R[2] = 0x0a;
2849 R[3] = ChP->R[3];
2850 out32(ChP->IndexAddr, R);
2851}
2852
2853/***************************************************************************
2854Function: sFlushRxFIFO
2855Purpose: Flush the Rx FIFO
2856Call: sFlushRxFIFO(ChP)
2857 CHANNEL_T *ChP; Ptr to channel structure
2858Return: void
2859Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2860 while it is being flushed the receive processor is stopped
2861 and the transmitter is disabled. After these operations a
2862 4 uS delay is done before clearing the pointers to allow
2863 the receive processor to stop. These items are handled inside
2864 this function.
2865Warnings: No context switches are allowed while executing this function.
2866*/
2867static void sFlushRxFIFO(CHANNEL_T * ChP)
2868{
2869 int i;
2870 Byte_t Ch; /* channel number within AIOP */
2871 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2872
2873 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2874 return; /* don't need to flush */
2875
2876 RxFIFOEnabled = 0;
2877 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2878 RxFIFOEnabled = 1;
2879 sDisRxFIFO(ChP); /* disable it */
2880 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2881 sInB(ChP->IntChan); /* depends on bus i/o timing */
2882 }
2883 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2884 Ch = (Byte_t) sGetChanNum(ChP);
2885 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2886 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2887 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2888 sOutW(ChP->IndexData, 0);
2889 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2890 sOutW(ChP->IndexData, 0);
2891 if (RxFIFOEnabled)
2892 sEnRxFIFO(ChP); /* enable Rx FIFO */
2893}
2894
2895/***************************************************************************
2896Function: sFlushTxFIFO
2897Purpose: Flush the Tx FIFO
2898Call: sFlushTxFIFO(ChP)
2899 CHANNEL_T *ChP; Ptr to channel structure
2900Return: void
2901Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2902 while it is being flushed the receive processor is stopped
2903 and the transmitter is disabled. After these operations a
2904 4 uS delay is done before clearing the pointers to allow
2905 the receive processor to stop. These items are handled inside
2906 this function.
2907Warnings: No context switches are allowed while executing this function.
2908*/
2909static void sFlushTxFIFO(CHANNEL_T * ChP)
2910{
2911 int i;
2912 Byte_t Ch; /* channel number within AIOP */
2913 int TxEnabled; /* 1 if transmitter enabled */
2914
2915 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2916 return; /* don't need to flush */
2917
2918 TxEnabled = 0;
2919 if (ChP->TxControl[3] & TX_ENABLE) {
2920 TxEnabled = 1;
2921 sDisTransmit(ChP); /* disable transmitter */
2922 }
2923 sStopRxProcessor(ChP); /* stop Rx processor */
2924 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2925 sInB(ChP->IntChan); /* depends on bus i/o timing */
2926 Ch = (Byte_t) sGetChanNum(ChP);
2927 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2928 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2929 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2930 sOutW(ChP->IndexData, 0);
2931 if (TxEnabled)
2932 sEnTransmit(ChP); /* enable transmitter */
2933 sStartRxProcessor(ChP); /* restart Rx processor */
2934}
2935
2936/***************************************************************************
2937Function: sWriteTxPrioByte
2938Purpose: Write a byte of priority transmit data to a channel
2939Call: sWriteTxPrioByte(ChP,Data)
2940 CHANNEL_T *ChP; Ptr to channel structure
2941 Byte_t Data; The transmit data byte
2942
2943Return: int: 1 if the bytes is successfully written, otherwise 0.
2944
2945Comments: The priority byte is transmitted before any data in the Tx FIFO.
2946
2947Warnings: No context switches are allowed while executing this function.
2948*/
2949static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2950{
2951 Byte_t DWBuf[4]; /* buffer for double word writes */
2952 Word_t *WordPtr; /* must be far because Win SS != DS */
2953 register DWordIO_t IndexAddr;
2954
2955 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2956 IndexAddr = ChP->IndexAddr;
2957 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2958 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2959 return (0); /* nothing sent */
2960
2961 WordPtr = (Word_t *) (&DWBuf[0]);
2962 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2963
2964 DWBuf[2] = Data; /* data byte value */
2965 out32(IndexAddr, DWBuf); /* write it out */
2966
2967 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2968
2969 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2970 DWBuf[3] = 0; /* priority buffer pointer */
2971 out32(IndexAddr, DWBuf); /* write it out */
2972 } else { /* write it to Tx FIFO */
2973
2974 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2975 }
2976 return (1); /* 1 byte sent */
2977}
2978
2979/***************************************************************************
2980Function: sEnInterrupts
2981Purpose: Enable one or more interrupts for a channel
2982Call: sEnInterrupts(ChP,Flags)
2983 CHANNEL_T *ChP; Ptr to channel structure
2984 Word_t Flags: Interrupt enable flags, can be any combination
2985 of the following flags:
2986 TXINT_EN: Interrupt on Tx FIFO empty
2987 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
2988 sSetRxTrigger())
2989 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
2990 MCINT_EN: Interrupt on modem input change
2991 CHANINT_EN: Allow channel interrupt signal to the AIOP's
2992 Interrupt Channel Register.
2993Return: void
2994Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2995 enabled. If an interrupt enable flag is not set in Flags, that
2996 interrupt will not be changed. Interrupts can be disabled with
2997 function sDisInterrupts().
2998
2999 This function sets the appropriate bit for the channel in the AIOP's
3000 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3001 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3002
3003 Interrupts must also be globally enabled before channel interrupts
3004 will be passed on to the host. This is done with function
3005 sEnGlobalInt().
3006
3007 In some cases it may be desirable to disable interrupts globally but
3008 enable channel interrupts. This would allow the global interrupt
3009 status register to be used to determine which AIOPs need service.
3010*/
3011static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3012{
3013 Byte_t Mask; /* Interrupt Mask Register */
3014
3015 ChP->RxControl[2] |=
3016 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3017
3018 out32(ChP->IndexAddr, ChP->RxControl);
3019
3020 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3021
3022 out32(ChP->IndexAddr, ChP->TxControl);
3023
3024 if (Flags & CHANINT_EN) {
3025 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3026 sOutB(ChP->IntMask, Mask);
3027 }
3028}
3029
3030/***************************************************************************
3031Function: sDisInterrupts
3032Purpose: Disable one or more interrupts for a channel
3033Call: sDisInterrupts(ChP,Flags)
3034 CHANNEL_T *ChP; Ptr to channel structure
3035 Word_t Flags: Interrupt flags, can be any combination
3036 of the following flags:
3037 TXINT_EN: Interrupt on Tx FIFO empty
3038 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3039 sSetRxTrigger())
3040 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3041 MCINT_EN: Interrupt on modem input change
3042 CHANINT_EN: Disable channel interrupt signal to the
3043 AIOP's Interrupt Channel Register.
3044Return: void
3045Comments: If an interrupt flag is set in Flags, that interrupt will be
3046 disabled. If an interrupt flag is not set in Flags, that
3047 interrupt will not be changed. Interrupts can be enabled with
3048 function sEnInterrupts().
3049
3050 This function clears the appropriate bit for the channel in the AIOP's
3051 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3052 this channel's bit from being set in the AIOP's Interrupt Channel
3053 Register.
3054*/
3055static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3056{
3057 Byte_t Mask; /* Interrupt Mask Register */
3058
3059 ChP->RxControl[2] &=
3060 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3061 out32(ChP->IndexAddr, ChP->RxControl);
3062 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3063 out32(ChP->IndexAddr, ChP->TxControl);
3064
3065 if (Flags & CHANINT_EN) {
3066 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3067 sOutB(ChP->IntMask, Mask);
3068 }
3069}
3070
3071static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3072{
3073 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3074}
3075
3076/*
3077 * Not an official SSCI function, but how to reset RocketModems.
3078 * ISA bus version
3079 */
3080static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3081{
3082 ByteIO_t addr;
3083 Byte_t val;
3084
3085 addr = CtlP->AiopIO[0] + 0x400;
3086 val = sInB(CtlP->MReg3IO);
3087 /* if AIOP[1] is not enabled, enable it */
3088 if ((val & 2) == 0) {
3089 val = sInB(CtlP->MReg2IO);
3090 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3091 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3092 }
3093
3094 sEnAiop(CtlP, 1);
3095 if (!on)
3096 addr += 8;
3097 sOutB(addr + chan, 0); /* apply or remove reset */
3098 sDisAiop(CtlP, 1);
3099}
3100
3101/*
3102 * Not an official SSCI function, but how to reset RocketModems.
3103 * PCI bus version
3104 */
3105static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3106{
3107 ByteIO_t addr;
3108
3109 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3110 if (!on)
3111 addr += 8;
3112 sOutB(addr + chan, 0); /* apply or remove reset */
3113}
3114
3115/* Returns the line number given the controller (board), aiop and channel number */
3116static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3117{
3118 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3119}
3120
3121/*
3122 * Stores the line number associated with a given controller (board), aiop
3123 * and channel number.
3124 * Returns: The line number assigned
3125 */
3126static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3127{
3128 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3129 return (nextLineNumber - 1);
3130}