blob: 49bdd0f8d06a08c405563df776e94373097611f2 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Driver for AMBA serial ports
3 *
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5 *
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 *
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
30 */
31
32
33#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34#define SUPPORT_SYSRQ
35#endif
36
37#include <linux/module.h>
38#include <linux/ioport.h>
39#include <linux/init.h>
40#include <linux/console.h>
41#include <linux/sysrq.h>
42#include <linux/device.h>
43#include <linux/tty.h>
44#include <linux/tty_flip.h>
45#include <linux/serial_core.h>
46#include <linux/serial.h>
47#include <linux/amba/bus.h>
48#include <linux/amba/serial.h>
49#include <linux/clk.h>
50#include <linux/slab.h>
51#include <linux/dmaengine.h>
52#include <linux/dma-mapping.h>
53#include <linux/scatterlist.h>
54#include <linux/delay.h>
55#include <linux/types.h>
56#include <linux/of.h>
57#include <linux/of_device.h>
58#include <linux/pinctrl/consumer.h>
59#include <linux/sizes.h>
60#include <linux/io.h>
61#include <linux/acpi.h>
62
63#include "amba-pl011.h"
64
65#define UART_NR 14
66
67#define SERIAL_AMBA_MAJOR 204
68#define SERIAL_AMBA_MINOR 64
69#define SERIAL_AMBA_NR UART_NR
70
71#define AMBA_ISR_PASS_LIMIT 256
72
73#define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74#define UART_DUMMY_DR_RX (1 << 16)
75
76static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
77 [REG_DR] = UART01x_DR,
78 [REG_FR] = UART01x_FR,
79 [REG_LCRH_RX] = UART011_LCRH,
80 [REG_LCRH_TX] = UART011_LCRH,
81 [REG_IBRD] = UART011_IBRD,
82 [REG_FBRD] = UART011_FBRD,
83 [REG_CR] = UART011_CR,
84 [REG_IFLS] = UART011_IFLS,
85 [REG_IMSC] = UART011_IMSC,
86 [REG_RIS] = UART011_RIS,
87 [REG_MIS] = UART011_MIS,
88 [REG_ICR] = UART011_ICR,
89 [REG_DMACR] = UART011_DMACR,
90};
91
92/* There is by now at least one vendor with differing details, so handle it */
93struct vendor_data {
94 const u16 *reg_offset;
95 unsigned int ifls;
96 unsigned int fr_busy;
97 unsigned int fr_dsr;
98 unsigned int fr_cts;
99 unsigned int fr_ri;
100 unsigned int inv_fr;
101 bool access_32b;
102 bool oversampling;
103 bool dma_threshold;
104 bool cts_event_workaround;
105 bool always_enabled;
106 bool fixed_options;
107
108 unsigned int (*get_fifosize)(struct amba_device *dev);
109};
110
111static unsigned int get_fifosize_arm(struct amba_device *dev)
112{
113 return amba_rev(dev) < 3 ? 16 : 32;
114}
115
116static struct vendor_data vendor_arm = {
117 .reg_offset = pl011_std_offsets,
118 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
119 .fr_busy = UART01x_FR_BUSY,
120 .fr_dsr = UART01x_FR_DSR,
121 .fr_cts = UART01x_FR_CTS,
122 .fr_ri = UART011_FR_RI,
123 .oversampling = false,
124 .dma_threshold = false,
125 .cts_event_workaround = false,
126 .always_enabled = false,
127 .fixed_options = false,
128 .get_fifosize = get_fifosize_arm,
129};
130
131static const struct vendor_data vendor_sbsa = {
132 .reg_offset = pl011_std_offsets,
133 .fr_busy = UART01x_FR_BUSY,
134 .fr_dsr = UART01x_FR_DSR,
135 .fr_cts = UART01x_FR_CTS,
136 .fr_ri = UART011_FR_RI,
137 .access_32b = true,
138 .oversampling = false,
139 .dma_threshold = false,
140 .cts_event_workaround = false,
141 .always_enabled = true,
142 .fixed_options = true,
143};
144
145#ifdef CONFIG_ACPI_SPCR_TABLE
146static const struct vendor_data vendor_qdt_qdf2400_e44 = {
147 .reg_offset = pl011_std_offsets,
148 .fr_busy = UART011_FR_TXFE,
149 .fr_dsr = UART01x_FR_DSR,
150 .fr_cts = UART01x_FR_CTS,
151 .fr_ri = UART011_FR_RI,
152 .inv_fr = UART011_FR_TXFE,
153 .access_32b = true,
154 .oversampling = false,
155 .dma_threshold = false,
156 .cts_event_workaround = false,
157 .always_enabled = true,
158 .fixed_options = true,
159};
160#endif
161
162static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
163 [REG_DR] = UART01x_DR,
164 [REG_ST_DMAWM] = ST_UART011_DMAWM,
165 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
166 [REG_FR] = UART01x_FR,
167 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
168 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
169 [REG_IBRD] = UART011_IBRD,
170 [REG_FBRD] = UART011_FBRD,
171 [REG_CR] = UART011_CR,
172 [REG_IFLS] = UART011_IFLS,
173 [REG_IMSC] = UART011_IMSC,
174 [REG_RIS] = UART011_RIS,
175 [REG_MIS] = UART011_MIS,
176 [REG_ICR] = UART011_ICR,
177 [REG_DMACR] = UART011_DMACR,
178 [REG_ST_XFCR] = ST_UART011_XFCR,
179 [REG_ST_XON1] = ST_UART011_XON1,
180 [REG_ST_XON2] = ST_UART011_XON2,
181 [REG_ST_XOFF1] = ST_UART011_XOFF1,
182 [REG_ST_XOFF2] = ST_UART011_XOFF2,
183 [REG_ST_ITCR] = ST_UART011_ITCR,
184 [REG_ST_ITIP] = ST_UART011_ITIP,
185 [REG_ST_ABCR] = ST_UART011_ABCR,
186 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
187};
188
189static unsigned int get_fifosize_st(struct amba_device *dev)
190{
191 return 64;
192}
193
194static struct vendor_data vendor_st = {
195 .reg_offset = pl011_st_offsets,
196 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
197 .fr_busy = UART01x_FR_BUSY,
198 .fr_dsr = UART01x_FR_DSR,
199 .fr_cts = UART01x_FR_CTS,
200 .fr_ri = UART011_FR_RI,
201 .oversampling = true,
202 .dma_threshold = true,
203 .cts_event_workaround = true,
204 .always_enabled = false,
205 .fixed_options = false,
206 .get_fifosize = get_fifosize_st,
207};
208
209static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
210 [REG_DR] = ZX_UART011_DR,
211 [REG_FR] = ZX_UART011_FR,
212 [REG_LCRH_RX] = ZX_UART011_LCRH,
213 [REG_LCRH_TX] = ZX_UART011_LCRH,
214 [REG_IBRD] = ZX_UART011_IBRD,
215 [REG_FBRD] = ZX_UART011_FBRD,
216 [REG_CR] = ZX_UART011_CR,
217 [REG_IFLS] = ZX_UART011_IFLS,
218 [REG_IMSC] = ZX_UART011_IMSC,
219 [REG_RIS] = ZX_UART011_RIS,
220 [REG_MIS] = ZX_UART011_MIS,
221 [REG_ICR] = ZX_UART011_ICR,
222 [REG_DMACR] = ZX_UART011_DMACR,
223};
224
225static unsigned int get_fifosize_zte(struct amba_device *dev)
226{
227 return 16;
228}
229
230static struct vendor_data vendor_zte = {
231 .reg_offset = pl011_zte_offsets,
232 .access_32b = true,
233 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
234 .fr_busy = ZX_UART01x_FR_BUSY,
235 .fr_dsr = ZX_UART01x_FR_DSR,
236 .fr_cts = ZX_UART01x_FR_CTS,
237 .fr_ri = ZX_UART011_FR_RI,
238 .get_fifosize = get_fifosize_zte,
239};
240
241/* Deals with DMA transactions */
242
243struct pl011_sgbuf {
244 struct scatterlist sg;
245 char *buf;
246};
247
248struct pl011_dmarx_data {
249 struct dma_chan *chan;
250 struct completion complete;
251 bool use_buf_b;
252 struct pl011_sgbuf sgbuf_a;
253 struct pl011_sgbuf sgbuf_b;
254 dma_cookie_t cookie;
255 bool running;
256 struct timer_list timer;
257 unsigned int last_residue;
258 unsigned long last_jiffies;
259 bool auto_poll_rate;
260 unsigned int poll_rate;
261 unsigned int poll_timeout;
262};
263
264struct pl011_dmatx_data {
265 struct dma_chan *chan;
266 struct scatterlist sg;
267 char *buf;
268 bool queued;
269};
270
271/*
272 * We wrap our port structure around the generic uart_port.
273 */
274struct uart_amba_port {
275 struct uart_port port;
276 const u16 *reg_offset;
277 struct clk *clk;
278 const struct vendor_data *vendor;
279 unsigned int dmacr; /* dma control reg */
280 unsigned int im; /* interrupt mask */
281 unsigned int old_status;
282 unsigned int fifosize; /* vendor-specific */
283 unsigned int old_cr; /* state during shutdown */
284 bool autorts;
285 unsigned int fixed_baud; /* vendor-set fixed baud rate */
286 char type[12];
287#ifdef CONFIG_DMA_ENGINE
288 /* DMA stuff */
289 bool using_tx_dma;
290 bool using_rx_dma;
291 struct pl011_dmarx_data dmarx;
292 struct pl011_dmatx_data dmatx;
293 bool dma_probed;
294#endif
295};
296
297static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
298 unsigned int reg)
299{
300 return uap->reg_offset[reg];
301}
302
303static unsigned int pl011_read(const struct uart_amba_port *uap,
304 unsigned int reg)
305{
306 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
307
308 return (uap->port.iotype == UPIO_MEM32) ?
309 readl_relaxed(addr) : readw_relaxed(addr);
310}
311
312static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
313 unsigned int reg)
314{
315 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
316
317 if (uap->port.iotype == UPIO_MEM32)
318 writel_relaxed(val, addr);
319 else
320 writew_relaxed(val, addr);
321}
322
323/*
324 * Reads up to 256 characters from the FIFO or until it's empty and
325 * inserts them into the TTY layer. Returns the number of characters
326 * read from the FIFO.
327 */
328static int pl011_fifo_to_tty(struct uart_amba_port *uap)
329{
330 u16 status;
331 unsigned int ch, flag, max_count = 256;
332 int fifotaken = 0;
333
334 while (max_count--) {
335 status = pl011_read(uap, REG_FR);
336 if (status & UART01x_FR_RXFE)
337 break;
338
339 /* Take chars from the FIFO and update status */
340 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
341 flag = TTY_NORMAL;
342 uap->port.icount.rx++;
343 fifotaken++;
344
345 if (unlikely(ch & UART_DR_ERROR)) {
346 if (ch & UART011_DR_BE) {
347 ch &= ~(UART011_DR_FE | UART011_DR_PE);
348 uap->port.icount.brk++;
349 if (uart_handle_break(&uap->port))
350 continue;
351 } else if (ch & UART011_DR_PE)
352 uap->port.icount.parity++;
353 else if (ch & UART011_DR_FE)
354 uap->port.icount.frame++;
355 if (ch & UART011_DR_OE)
356 uap->port.icount.overrun++;
357
358 ch &= uap->port.read_status_mask;
359
360 if (ch & UART011_DR_BE)
361 flag = TTY_BREAK;
362 else if (ch & UART011_DR_PE)
363 flag = TTY_PARITY;
364 else if (ch & UART011_DR_FE)
365 flag = TTY_FRAME;
366 }
367
368 if (uart_handle_sysrq_char(&uap->port, ch & 255))
369 continue;
370
371 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
372 }
373
374 return fifotaken;
375}
376
377
378/*
379 * All the DMA operation mode stuff goes inside this ifdef.
380 * This assumes that you have a generic DMA device interface,
381 * no custom DMA interfaces are supported.
382 */
383#ifdef CONFIG_DMA_ENGINE
384
385#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
386
387static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
388 enum dma_data_direction dir)
389{
390 dma_addr_t dma_addr;
391
392 sg->buf = dma_alloc_coherent(chan->device->dev,
393 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
394 if (!sg->buf)
395 return -ENOMEM;
396
397 sg_init_table(&sg->sg, 1);
398 sg_set_page(&sg->sg, phys_to_page(dma_addr),
399 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
400 sg_dma_address(&sg->sg) = dma_addr;
401 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
402
403 return 0;
404}
405
406static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
407 enum dma_data_direction dir)
408{
409 if (sg->buf) {
410 dma_free_coherent(chan->device->dev,
411 PL011_DMA_BUFFER_SIZE, sg->buf,
412 sg_dma_address(&sg->sg));
413 }
414}
415
416static void pl011_dma_probe(struct uart_amba_port *uap)
417{
418 /* DMA is the sole user of the platform data right now */
419 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
420 struct device *dev = uap->port.dev;
421 struct dma_slave_config tx_conf = {
422 .dst_addr = uap->port.mapbase +
423 pl011_reg_to_offset(uap, REG_DR),
424 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
425 .direction = DMA_MEM_TO_DEV,
426 .dst_maxburst = uap->fifosize >> 1,
427 .device_fc = false,
428 };
429 struct dma_chan *chan;
430 dma_cap_mask_t mask;
431
432 uap->dma_probed = true;
433 chan = dma_request_slave_channel_reason(dev, "tx");
434 if (IS_ERR(chan)) {
435 if (PTR_ERR(chan) == -EPROBE_DEFER) {
436 uap->dma_probed = false;
437 return;
438 }
439
440 /* We need platform data */
441 if (!plat || !plat->dma_filter) {
442 dev_info(uap->port.dev, "no DMA platform data\n");
443 return;
444 }
445
446 /* Try to acquire a generic DMA engine slave TX channel */
447 dma_cap_zero(mask);
448 dma_cap_set(DMA_SLAVE, mask);
449
450 chan = dma_request_channel(mask, plat->dma_filter,
451 plat->dma_tx_param);
452 if (!chan) {
453 dev_err(uap->port.dev, "no TX DMA channel!\n");
454 return;
455 }
456 }
457
458 dmaengine_slave_config(chan, &tx_conf);
459 uap->dmatx.chan = chan;
460
461 dev_info(uap->port.dev, "DMA channel TX %s\n",
462 dma_chan_name(uap->dmatx.chan));
463
464 /* Optionally make use of an RX channel as well */
465 chan = dma_request_slave_channel(dev, "rx");
466
467 if (!chan && plat && plat->dma_rx_param) {
468 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
469
470 if (!chan) {
471 dev_err(uap->port.dev, "no RX DMA channel!\n");
472 return;
473 }
474 }
475
476 if (chan) {
477 struct dma_slave_config rx_conf = {
478 .src_addr = uap->port.mapbase +
479 pl011_reg_to_offset(uap, REG_DR),
480 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
481 .direction = DMA_DEV_TO_MEM,
482 .src_maxburst = uap->fifosize >> 2,
483 .device_fc = false,
484 };
485 struct dma_slave_caps caps;
486
487 /*
488 * Some DMA controllers provide information on their capabilities.
489 * If the controller does, check for suitable residue processing
490 * otherwise assime all is well.
491 */
492 if (0 == dma_get_slave_caps(chan, &caps)) {
493 if (caps.residue_granularity ==
494 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
495 dma_release_channel(chan);
496 dev_info(uap->port.dev,
497 "RX DMA disabled - no residue processing\n");
498 return;
499 }
500 }
501 dmaengine_slave_config(chan, &rx_conf);
502 uap->dmarx.chan = chan;
503
504 uap->dmarx.auto_poll_rate = false;
505 if (plat && plat->dma_rx_poll_enable) {
506 /* Set poll rate if specified. */
507 if (plat->dma_rx_poll_rate) {
508 uap->dmarx.auto_poll_rate = false;
509 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
510 } else {
511 /*
512 * 100 ms defaults to poll rate if not
513 * specified. This will be adjusted with
514 * the baud rate at set_termios.
515 */
516 uap->dmarx.auto_poll_rate = true;
517 uap->dmarx.poll_rate = 100;
518 }
519 /* 3 secs defaults poll_timeout if not specified. */
520 if (plat->dma_rx_poll_timeout)
521 uap->dmarx.poll_timeout =
522 plat->dma_rx_poll_timeout;
523 else
524 uap->dmarx.poll_timeout = 3000;
525 } else if (!plat && dev->of_node) {
526 uap->dmarx.auto_poll_rate = of_property_read_bool(
527 dev->of_node, "auto-poll");
528 if (uap->dmarx.auto_poll_rate) {
529 u32 x;
530
531 if (0 == of_property_read_u32(dev->of_node,
532 "poll-rate-ms", &x))
533 uap->dmarx.poll_rate = x;
534 else
535 uap->dmarx.poll_rate = 100;
536 if (0 == of_property_read_u32(dev->of_node,
537 "poll-timeout-ms", &x))
538 uap->dmarx.poll_timeout = x;
539 else
540 uap->dmarx.poll_timeout = 3000;
541 }
542 }
543 dev_info(uap->port.dev, "DMA channel RX %s\n",
544 dma_chan_name(uap->dmarx.chan));
545 }
546}
547
548static void pl011_dma_remove(struct uart_amba_port *uap)
549{
550 if (uap->dmatx.chan)
551 dma_release_channel(uap->dmatx.chan);
552 if (uap->dmarx.chan)
553 dma_release_channel(uap->dmarx.chan);
554}
555
556/* Forward declare these for the refill routine */
557static int pl011_dma_tx_refill(struct uart_amba_port *uap);
558static void pl011_start_tx_pio(struct uart_amba_port *uap);
559
560/*
561 * The current DMA TX buffer has been sent.
562 * Try to queue up another DMA buffer.
563 */
564static void pl011_dma_tx_callback(void *data)
565{
566 struct uart_amba_port *uap = data;
567 struct pl011_dmatx_data *dmatx = &uap->dmatx;
568 unsigned long flags;
569 u16 dmacr;
570
571 spin_lock_irqsave(&uap->port.lock, flags);
572 if (uap->dmatx.queued)
573 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
574 DMA_TO_DEVICE);
575
576 dmacr = uap->dmacr;
577 uap->dmacr = dmacr & ~UART011_TXDMAE;
578 pl011_write(uap->dmacr, uap, REG_DMACR);
579
580 /*
581 * If TX DMA was disabled, it means that we've stopped the DMA for
582 * some reason (eg, XOFF received, or we want to send an X-char.)
583 *
584 * Note: we need to be careful here of a potential race between DMA
585 * and the rest of the driver - if the driver disables TX DMA while
586 * a TX buffer completing, we must update the tx queued status to
587 * get further refills (hence we check dmacr).
588 */
589 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
590 uart_circ_empty(&uap->port.state->xmit)) {
591 uap->dmatx.queued = false;
592 spin_unlock_irqrestore(&uap->port.lock, flags);
593 return;
594 }
595
596 if (pl011_dma_tx_refill(uap) <= 0)
597 /*
598 * We didn't queue a DMA buffer for some reason, but we
599 * have data pending to be sent. Re-enable the TX IRQ.
600 */
601 pl011_start_tx_pio(uap);
602
603 spin_unlock_irqrestore(&uap->port.lock, flags);
604}
605
606/*
607 * Try to refill the TX DMA buffer.
608 * Locking: called with port lock held and IRQs disabled.
609 * Returns:
610 * 1 if we queued up a TX DMA buffer.
611 * 0 if we didn't want to handle this by DMA
612 * <0 on error
613 */
614static int pl011_dma_tx_refill(struct uart_amba_port *uap)
615{
616 struct pl011_dmatx_data *dmatx = &uap->dmatx;
617 struct dma_chan *chan = dmatx->chan;
618 struct dma_device *dma_dev = chan->device;
619 struct dma_async_tx_descriptor *desc;
620 struct circ_buf *xmit = &uap->port.state->xmit;
621 unsigned int count;
622
623 /*
624 * Try to avoid the overhead involved in using DMA if the
625 * transaction fits in the first half of the FIFO, by using
626 * the standard interrupt handling. This ensures that we
627 * issue a uart_write_wakeup() at the appropriate time.
628 */
629 count = uart_circ_chars_pending(xmit);
630 if (count < (uap->fifosize >> 1)) {
631 uap->dmatx.queued = false;
632 return 0;
633 }
634
635 /*
636 * Bodge: don't send the last character by DMA, as this
637 * will prevent XON from notifying us to restart DMA.
638 */
639 count -= 1;
640
641 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
642 if (count > PL011_DMA_BUFFER_SIZE)
643 count = PL011_DMA_BUFFER_SIZE;
644
645 if (xmit->tail < xmit->head)
646 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
647 else {
648 size_t first = UART_XMIT_SIZE - xmit->tail;
649 size_t second;
650
651 if (first > count)
652 first = count;
653 second = count - first;
654
655 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
656 if (second)
657 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
658 }
659
660 dmatx->sg.length = count;
661
662 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
663 uap->dmatx.queued = false;
664 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
665 return -EBUSY;
666 }
667
668 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
669 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
670 if (!desc) {
671 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
672 uap->dmatx.queued = false;
673 /*
674 * If DMA cannot be used right now, we complete this
675 * transaction via IRQ and let the TTY layer retry.
676 */
677 dev_dbg(uap->port.dev, "TX DMA busy\n");
678 return -EBUSY;
679 }
680
681 /* Some data to go along to the callback */
682 desc->callback = pl011_dma_tx_callback;
683 desc->callback_param = uap;
684
685 /* All errors should happen at prepare time */
686 dmaengine_submit(desc);
687
688 /* Fire the DMA transaction */
689 dma_dev->device_issue_pending(chan);
690
691 uap->dmacr |= UART011_TXDMAE;
692 pl011_write(uap->dmacr, uap, REG_DMACR);
693 uap->dmatx.queued = true;
694
695 /*
696 * Now we know that DMA will fire, so advance the ring buffer
697 * with the stuff we just dispatched.
698 */
699 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
700 uap->port.icount.tx += count;
701
702 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
703 uart_write_wakeup(&uap->port);
704
705 return 1;
706}
707
708/*
709 * We received a transmit interrupt without a pending X-char but with
710 * pending characters.
711 * Locking: called with port lock held and IRQs disabled.
712 * Returns:
713 * false if we want to use PIO to transmit
714 * true if we queued a DMA buffer
715 */
716static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
717{
718 if (!uap->using_tx_dma)
719 return false;
720
721 /*
722 * If we already have a TX buffer queued, but received a
723 * TX interrupt, it will be because we've just sent an X-char.
724 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
725 */
726 if (uap->dmatx.queued) {
727 uap->dmacr |= UART011_TXDMAE;
728 pl011_write(uap->dmacr, uap, REG_DMACR);
729 uap->im &= ~UART011_TXIM;
730 pl011_write(uap->im, uap, REG_IMSC);
731 return true;
732 }
733
734 /*
735 * We don't have a TX buffer queued, so try to queue one.
736 * If we successfully queued a buffer, mask the TX IRQ.
737 */
738 if (pl011_dma_tx_refill(uap) > 0) {
739 uap->im &= ~UART011_TXIM;
740 pl011_write(uap->im, uap, REG_IMSC);
741 return true;
742 }
743 return false;
744}
745
746/*
747 * Stop the DMA transmit (eg, due to received XOFF).
748 * Locking: called with port lock held and IRQs disabled.
749 */
750static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
751{
752 if (uap->dmatx.queued) {
753 uap->dmacr &= ~UART011_TXDMAE;
754 pl011_write(uap->dmacr, uap, REG_DMACR);
755 }
756}
757
758/*
759 * Try to start a DMA transmit, or in the case of an XON/OFF
760 * character queued for send, try to get that character out ASAP.
761 * Locking: called with port lock held and IRQs disabled.
762 * Returns:
763 * false if we want the TX IRQ to be enabled
764 * true if we have a buffer queued
765 */
766static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
767{
768 u16 dmacr;
769
770 if (!uap->using_tx_dma)
771 return false;
772
773 if (!uap->port.x_char) {
774 /* no X-char, try to push chars out in DMA mode */
775 bool ret = true;
776
777 if (!uap->dmatx.queued) {
778 if (pl011_dma_tx_refill(uap) > 0) {
779 uap->im &= ~UART011_TXIM;
780 pl011_write(uap->im, uap, REG_IMSC);
781 } else
782 ret = false;
783 } else if (!(uap->dmacr & UART011_TXDMAE)) {
784 uap->dmacr |= UART011_TXDMAE;
785 pl011_write(uap->dmacr, uap, REG_DMACR);
786 }
787 return ret;
788 }
789
790 /*
791 * We have an X-char to send. Disable DMA to prevent it loading
792 * the TX fifo, and then see if we can stuff it into the FIFO.
793 */
794 dmacr = uap->dmacr;
795 uap->dmacr &= ~UART011_TXDMAE;
796 pl011_write(uap->dmacr, uap, REG_DMACR);
797
798 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
799 /*
800 * No space in the FIFO, so enable the transmit interrupt
801 * so we know when there is space. Note that once we've
802 * loaded the character, we should just re-enable DMA.
803 */
804 return false;
805 }
806
807 pl011_write(uap->port.x_char, uap, REG_DR);
808 uap->port.icount.tx++;
809 uap->port.x_char = 0;
810
811 /* Success - restore the DMA state */
812 uap->dmacr = dmacr;
813 pl011_write(dmacr, uap, REG_DMACR);
814
815 return true;
816}
817
818/*
819 * Flush the transmit buffer.
820 * Locking: called with port lock held and IRQs disabled.
821 */
822static void pl011_dma_flush_buffer(struct uart_port *port)
823__releases(&uap->port.lock)
824__acquires(&uap->port.lock)
825{
826 struct uart_amba_port *uap =
827 container_of(port, struct uart_amba_port, port);
828
829 if (!uap->using_tx_dma)
830 return;
831
832 dmaengine_terminate_async(uap->dmatx.chan);
833
834 if (uap->dmatx.queued) {
835 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
836 DMA_TO_DEVICE);
837 uap->dmatx.queued = false;
838 uap->dmacr &= ~UART011_TXDMAE;
839 pl011_write(uap->dmacr, uap, REG_DMACR);
840 }
841}
842
843static void pl011_dma_rx_callback(void *data);
844
845static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
846{
847 struct dma_chan *rxchan = uap->dmarx.chan;
848 struct pl011_dmarx_data *dmarx = &uap->dmarx;
849 struct dma_async_tx_descriptor *desc;
850 struct pl011_sgbuf *sgbuf;
851
852 if (!rxchan)
853 return -EIO;
854
855 /* Start the RX DMA job */
856 sgbuf = uap->dmarx.use_buf_b ?
857 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
858 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
859 DMA_DEV_TO_MEM,
860 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
861 /*
862 * If the DMA engine is busy and cannot prepare a
863 * channel, no big deal, the driver will fall back
864 * to interrupt mode as a result of this error code.
865 */
866 if (!desc) {
867 uap->dmarx.running = false;
868 dmaengine_terminate_all(rxchan);
869 return -EBUSY;
870 }
871
872 /* Some data to go along to the callback */
873 desc->callback = pl011_dma_rx_callback;
874 desc->callback_param = uap;
875 dmarx->cookie = dmaengine_submit(desc);
876 dma_async_issue_pending(rxchan);
877
878 uap->dmacr |= UART011_RXDMAE;
879 pl011_write(uap->dmacr, uap, REG_DMACR);
880 uap->dmarx.running = true;
881
882 uap->im &= ~UART011_RXIM;
883 pl011_write(uap->im, uap, REG_IMSC);
884
885 return 0;
886}
887
888/*
889 * This is called when either the DMA job is complete, or
890 * the FIFO timeout interrupt occurred. This must be called
891 * with the port spinlock uap->port.lock held.
892 */
893static void pl011_dma_rx_chars(struct uart_amba_port *uap,
894 u32 pending, bool use_buf_b,
895 bool readfifo)
896{
897 struct tty_port *port = &uap->port.state->port;
898 struct pl011_sgbuf *sgbuf = use_buf_b ?
899 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
900 int dma_count = 0;
901 u32 fifotaken = 0; /* only used for vdbg() */
902
903 struct pl011_dmarx_data *dmarx = &uap->dmarx;
904 int dmataken = 0;
905
906 if (uap->dmarx.poll_rate) {
907 /* The data can be taken by polling */
908 dmataken = sgbuf->sg.length - dmarx->last_residue;
909 /* Recalculate the pending size */
910 if (pending >= dmataken)
911 pending -= dmataken;
912 }
913
914 /* Pick the remain data from the DMA */
915 if (pending) {
916
917 /*
918 * First take all chars in the DMA pipe, then look in the FIFO.
919 * Note that tty_insert_flip_buf() tries to take as many chars
920 * as it can.
921 */
922 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
923 pending);
924
925 uap->port.icount.rx += dma_count;
926 if (dma_count < pending)
927 dev_warn(uap->port.dev,
928 "couldn't insert all characters (TTY is full?)\n");
929 }
930
931 /* Reset the last_residue for Rx DMA poll */
932 if (uap->dmarx.poll_rate)
933 dmarx->last_residue = sgbuf->sg.length;
934
935 /*
936 * Only continue with trying to read the FIFO if all DMA chars have
937 * been taken first.
938 */
939 if (dma_count == pending && readfifo) {
940 /* Clear any error flags */
941 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
942 UART011_FEIS, uap, REG_ICR);
943
944 /*
945 * If we read all the DMA'd characters, and we had an
946 * incomplete buffer, that could be due to an rx error, or
947 * maybe we just timed out. Read any pending chars and check
948 * the error status.
949 *
950 * Error conditions will only occur in the FIFO, these will
951 * trigger an immediate interrupt and stop the DMA job, so we
952 * will always find the error in the FIFO, never in the DMA
953 * buffer.
954 */
955 fifotaken = pl011_fifo_to_tty(uap);
956 }
957
958 spin_unlock(&uap->port.lock);
959 dev_vdbg(uap->port.dev,
960 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
961 dma_count, fifotaken);
962 tty_flip_buffer_push(port);
963 spin_lock(&uap->port.lock);
964}
965
966static void pl011_dma_rx_irq(struct uart_amba_port *uap)
967{
968 struct pl011_dmarx_data *dmarx = &uap->dmarx;
969 struct dma_chan *rxchan = dmarx->chan;
970 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
971 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
972 size_t pending;
973 struct dma_tx_state state;
974 enum dma_status dmastat;
975
976 /*
977 * Pause the transfer so we can trust the current counter,
978 * do this before we pause the PL011 block, else we may
979 * overflow the FIFO.
980 */
981 if (dmaengine_pause(rxchan))
982 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
983 dmastat = rxchan->device->device_tx_status(rxchan,
984 dmarx->cookie, &state);
985 if (dmastat != DMA_PAUSED)
986 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
987
988 /* Disable RX DMA - incoming data will wait in the FIFO */
989 uap->dmacr &= ~UART011_RXDMAE;
990 pl011_write(uap->dmacr, uap, REG_DMACR);
991 uap->dmarx.running = false;
992
993 pending = sgbuf->sg.length - state.residue;
994 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
995 /* Then we terminate the transfer - we now know our residue */
996 dmaengine_terminate_all(rxchan);
997
998 /*
999 * This will take the chars we have so far and insert
1000 * into the framework.
1001 */
1002 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
1003
1004 /* Switch buffer & re-trigger DMA job */
1005 dmarx->use_buf_b = !dmarx->use_buf_b;
1006 if (pl011_dma_rx_trigger_dma(uap)) {
1007 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1008 "fall back to interrupt mode\n");
1009 uap->im |= UART011_RXIM;
1010 pl011_write(uap->im, uap, REG_IMSC);
1011 }
1012}
1013
1014static void pl011_dma_rx_callback(void *data)
1015{
1016 struct uart_amba_port *uap = data;
1017 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1018 struct dma_chan *rxchan = dmarx->chan;
1019 bool lastbuf = dmarx->use_buf_b;
1020 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1021 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
1022 size_t pending;
1023 struct dma_tx_state state;
1024 int ret;
1025
1026 /*
1027 * This completion interrupt occurs typically when the
1028 * RX buffer is totally stuffed but no timeout has yet
1029 * occurred. When that happens, we just want the RX
1030 * routine to flush out the secondary DMA buffer while
1031 * we immediately trigger the next DMA job.
1032 */
1033 spin_lock_irq(&uap->port.lock);
1034 /*
1035 * Rx data can be taken by the UART interrupts during
1036 * the DMA irq handler. So we check the residue here.
1037 */
1038 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1039 pending = sgbuf->sg.length - state.residue;
1040 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1041 /* Then we terminate the transfer - we now know our residue */
1042 dmaengine_terminate_all(rxchan);
1043
1044 uap->dmarx.running = false;
1045 dmarx->use_buf_b = !lastbuf;
1046 ret = pl011_dma_rx_trigger_dma(uap);
1047
1048 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1049 spin_unlock_irq(&uap->port.lock);
1050 /*
1051 * Do this check after we picked the DMA chars so we don't
1052 * get some IRQ immediately from RX.
1053 */
1054 if (ret) {
1055 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1056 "fall back to interrupt mode\n");
1057 uap->im |= UART011_RXIM;
1058 pl011_write(uap->im, uap, REG_IMSC);
1059 }
1060}
1061
1062/*
1063 * Stop accepting received characters, when we're shutting down or
1064 * suspending this port.
1065 * Locking: called with port lock held and IRQs disabled.
1066 */
1067static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1068{
1069 /* FIXME. Just disable the DMA enable */
1070 uap->dmacr &= ~UART011_RXDMAE;
1071 pl011_write(uap->dmacr, uap, REG_DMACR);
1072}
1073
1074/*
1075 * Timer handler for Rx DMA polling.
1076 * Every polling, It checks the residue in the dma buffer and transfer
1077 * data to the tty. Also, last_residue is updated for the next polling.
1078 */
1079static void pl011_dma_rx_poll(unsigned long args)
1080{
1081 struct uart_amba_port *uap = (struct uart_amba_port *)args;
1082 struct tty_port *port = &uap->port.state->port;
1083 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1084 struct dma_chan *rxchan = uap->dmarx.chan;
1085 unsigned long flags = 0;
1086 unsigned int dmataken = 0;
1087 unsigned int size = 0;
1088 struct pl011_sgbuf *sgbuf;
1089 int dma_count;
1090 struct dma_tx_state state;
1091
1092 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1093 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1094 if (likely(state.residue < dmarx->last_residue)) {
1095 dmataken = sgbuf->sg.length - dmarx->last_residue;
1096 size = dmarx->last_residue - state.residue;
1097 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1098 size);
1099 if (dma_count == size)
1100 dmarx->last_residue = state.residue;
1101 dmarx->last_jiffies = jiffies;
1102 }
1103 tty_flip_buffer_push(port);
1104
1105 /*
1106 * If no data is received in poll_timeout, the driver will fall back
1107 * to interrupt mode. We will retrigger DMA at the first interrupt.
1108 */
1109 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1110 > uap->dmarx.poll_timeout) {
1111
1112 spin_lock_irqsave(&uap->port.lock, flags);
1113 pl011_dma_rx_stop(uap);
1114 uap->im |= UART011_RXIM;
1115 pl011_write(uap->im, uap, REG_IMSC);
1116 spin_unlock_irqrestore(&uap->port.lock, flags);
1117
1118 uap->dmarx.running = false;
1119 dmaengine_terminate_all(rxchan);
1120 del_timer(&uap->dmarx.timer);
1121 } else {
1122 mod_timer(&uap->dmarx.timer,
1123 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1124 }
1125}
1126
1127static void pl011_dma_startup(struct uart_amba_port *uap)
1128{
1129 int ret;
1130
1131 if (!uap->dma_probed)
1132 pl011_dma_probe(uap);
1133
1134 if (!uap->dmatx.chan)
1135 return;
1136
1137 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1138 if (!uap->dmatx.buf) {
1139 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1140 uap->port.fifosize = uap->fifosize;
1141 return;
1142 }
1143
1144 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1145
1146 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1147 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1148 uap->using_tx_dma = true;
1149
1150 if (!uap->dmarx.chan)
1151 goto skip_rx;
1152
1153 /* Allocate and map DMA RX buffers */
1154 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1155 DMA_FROM_DEVICE);
1156 if (ret) {
1157 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1158 "RX buffer A", ret);
1159 goto skip_rx;
1160 }
1161
1162 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1163 DMA_FROM_DEVICE);
1164 if (ret) {
1165 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1166 "RX buffer B", ret);
1167 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1168 DMA_FROM_DEVICE);
1169 goto skip_rx;
1170 }
1171
1172 uap->using_rx_dma = true;
1173
1174skip_rx:
1175 /* Turn on DMA error (RX/TX will be enabled on demand) */
1176 uap->dmacr |= UART011_DMAONERR;
1177 pl011_write(uap->dmacr, uap, REG_DMACR);
1178
1179 /*
1180 * ST Micro variants has some specific dma burst threshold
1181 * compensation. Set this to 16 bytes, so burst will only
1182 * be issued above/below 16 bytes.
1183 */
1184 if (uap->vendor->dma_threshold)
1185 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1186 uap, REG_ST_DMAWM);
1187
1188 if (uap->using_rx_dma) {
1189 if (pl011_dma_rx_trigger_dma(uap))
1190 dev_dbg(uap->port.dev, "could not trigger initial "
1191 "RX DMA job, fall back to interrupt mode\n");
1192 if (uap->dmarx.poll_rate) {
1193 init_timer(&(uap->dmarx.timer));
1194 uap->dmarx.timer.function = pl011_dma_rx_poll;
1195 uap->dmarx.timer.data = (unsigned long)uap;
1196 mod_timer(&uap->dmarx.timer,
1197 jiffies +
1198 msecs_to_jiffies(uap->dmarx.poll_rate));
1199 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1200 uap->dmarx.last_jiffies = jiffies;
1201 }
1202 }
1203}
1204
1205static void pl011_dma_shutdown(struct uart_amba_port *uap)
1206{
1207 if (!(uap->using_tx_dma || uap->using_rx_dma))
1208 return;
1209
1210 /* Disable RX and TX DMA */
1211 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1212 cpu_relax();
1213
1214 spin_lock_irq(&uap->port.lock);
1215 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1216 pl011_write(uap->dmacr, uap, REG_DMACR);
1217 spin_unlock_irq(&uap->port.lock);
1218
1219 if (uap->using_tx_dma) {
1220 /* In theory, this should already be done by pl011_dma_flush_buffer */
1221 dmaengine_terminate_all(uap->dmatx.chan);
1222 if (uap->dmatx.queued) {
1223 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1224 DMA_TO_DEVICE);
1225 uap->dmatx.queued = false;
1226 }
1227
1228 kfree(uap->dmatx.buf);
1229 uap->using_tx_dma = false;
1230 }
1231
1232 if (uap->using_rx_dma) {
1233 dmaengine_terminate_all(uap->dmarx.chan);
1234 /* Clean up the RX DMA */
1235 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1236 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1237 if (uap->dmarx.poll_rate)
1238 del_timer_sync(&uap->dmarx.timer);
1239 uap->using_rx_dma = false;
1240 }
1241}
1242
1243static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1244{
1245 return uap->using_rx_dma;
1246}
1247
1248static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1249{
1250 return uap->using_rx_dma && uap->dmarx.running;
1251}
1252
1253#else
1254/* Blank functions if the DMA engine is not available */
1255static inline void pl011_dma_probe(struct uart_amba_port *uap)
1256{
1257}
1258
1259static inline void pl011_dma_remove(struct uart_amba_port *uap)
1260{
1261}
1262
1263static inline void pl011_dma_startup(struct uart_amba_port *uap)
1264{
1265}
1266
1267static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1268{
1269}
1270
1271static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1272{
1273 return false;
1274}
1275
1276static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1277{
1278}
1279
1280static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1281{
1282 return false;
1283}
1284
1285static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1286{
1287}
1288
1289static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1290{
1291}
1292
1293static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1294{
1295 return -EIO;
1296}
1297
1298static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1299{
1300 return false;
1301}
1302
1303static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1304{
1305 return false;
1306}
1307
1308#define pl011_dma_flush_buffer NULL
1309#endif
1310
1311static void pl011_stop_tx(struct uart_port *port)
1312{
1313 struct uart_amba_port *uap =
1314 container_of(port, struct uart_amba_port, port);
1315
1316 uap->im &= ~UART011_TXIM;
1317 pl011_write(uap->im, uap, REG_IMSC);
1318 pl011_dma_tx_stop(uap);
1319}
1320
1321static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1322
1323/* Start TX with programmed I/O only (no DMA) */
1324static void pl011_start_tx_pio(struct uart_amba_port *uap)
1325{
1326 if (pl011_tx_chars(uap, false)) {
1327 uap->im |= UART011_TXIM;
1328 pl011_write(uap->im, uap, REG_IMSC);
1329 }
1330}
1331
1332static void pl011_start_tx(struct uart_port *port)
1333{
1334 struct uart_amba_port *uap =
1335 container_of(port, struct uart_amba_port, port);
1336
1337 if (!pl011_dma_tx_start(uap))
1338 pl011_start_tx_pio(uap);
1339}
1340
1341static void pl011_stop_rx(struct uart_port *port)
1342{
1343 struct uart_amba_port *uap =
1344 container_of(port, struct uart_amba_port, port);
1345
1346 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1347 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1348 pl011_write(uap->im, uap, REG_IMSC);
1349
1350 pl011_dma_rx_stop(uap);
1351}
1352
1353static void pl011_enable_ms(struct uart_port *port)
1354{
1355 struct uart_amba_port *uap =
1356 container_of(port, struct uart_amba_port, port);
1357
1358 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1359 pl011_write(uap->im, uap, REG_IMSC);
1360}
1361
1362static void pl011_rx_chars(struct uart_amba_port *uap)
1363__releases(&uap->port.lock)
1364__acquires(&uap->port.lock)
1365{
1366 pl011_fifo_to_tty(uap);
1367
1368 spin_unlock(&uap->port.lock);
1369 tty_flip_buffer_push(&uap->port.state->port);
1370 /*
1371 * If we were temporarily out of DMA mode for a while,
1372 * attempt to switch back to DMA mode again.
1373 */
1374 if (pl011_dma_rx_available(uap)) {
1375 if (pl011_dma_rx_trigger_dma(uap)) {
1376 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1377 "fall back to interrupt mode again\n");
1378 uap->im |= UART011_RXIM;
1379 pl011_write(uap->im, uap, REG_IMSC);
1380 } else {
1381#ifdef CONFIG_DMA_ENGINE
1382 /* Start Rx DMA poll */
1383 if (uap->dmarx.poll_rate) {
1384 uap->dmarx.last_jiffies = jiffies;
1385 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1386 mod_timer(&uap->dmarx.timer,
1387 jiffies +
1388 msecs_to_jiffies(uap->dmarx.poll_rate));
1389 }
1390#endif
1391 }
1392 }
1393 spin_lock(&uap->port.lock);
1394}
1395
1396static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1397 bool from_irq)
1398{
1399 if (unlikely(!from_irq) &&
1400 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1401 return false; /* unable to transmit character */
1402
1403 pl011_write(c, uap, REG_DR);
1404 uap->port.icount.tx++;
1405
1406 return true;
1407}
1408
1409/* Returns true if tx interrupts have to be (kept) enabled */
1410static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1411{
1412 struct circ_buf *xmit = &uap->port.state->xmit;
1413 int count = uap->fifosize >> 1;
1414
1415 if (uap->port.x_char) {
1416 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1417 return true;
1418 uap->port.x_char = 0;
1419 --count;
1420 }
1421 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1422 pl011_stop_tx(&uap->port);
1423 return false;
1424 }
1425
1426 /* If we are using DMA mode, try to send some characters. */
1427 if (pl011_dma_tx_irq(uap))
1428 return true;
1429
1430 do {
1431 if (likely(from_irq) && count-- == 0)
1432 break;
1433
1434 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1435 break;
1436
1437 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1438 } while (!uart_circ_empty(xmit));
1439
1440 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1441 uart_write_wakeup(&uap->port);
1442
1443 if (uart_circ_empty(xmit)) {
1444 pl011_stop_tx(&uap->port);
1445 return false;
1446 }
1447 return true;
1448}
1449
1450static void pl011_modem_status(struct uart_amba_port *uap)
1451{
1452 unsigned int status, delta;
1453
1454 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1455
1456 delta = status ^ uap->old_status;
1457 uap->old_status = status;
1458
1459 if (!delta)
1460 return;
1461
1462 if (delta & UART01x_FR_DCD)
1463 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1464
1465 if (delta & uap->vendor->fr_dsr)
1466 uap->port.icount.dsr++;
1467
1468 if (delta & uap->vendor->fr_cts)
1469 uart_handle_cts_change(&uap->port,
1470 status & uap->vendor->fr_cts);
1471
1472 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1473}
1474
1475static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1476{
1477 unsigned int dummy_read;
1478
1479 if (!uap->vendor->cts_event_workaround)
1480 return;
1481
1482 /* workaround to make sure that all bits are unlocked.. */
1483 pl011_write(0x00, uap, REG_ICR);
1484
1485 /*
1486 * WA: introduce 26ns(1 uart clk) delay before W1C;
1487 * single apb access will incur 2 pclk(133.12Mhz) delay,
1488 * so add 2 dummy reads
1489 */
1490 dummy_read = pl011_read(uap, REG_ICR);
1491 dummy_read = pl011_read(uap, REG_ICR);
1492}
1493
1494static irqreturn_t pl011_int(int irq, void *dev_id)
1495{
1496 struct uart_amba_port *uap = dev_id;
1497 unsigned long flags;
1498 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1499 u16 imsc;
1500 int handled = 0;
1501
1502 spin_lock_irqsave(&uap->port.lock, flags);
1503 imsc = pl011_read(uap, REG_IMSC);
1504 status = pl011_read(uap, REG_RIS) & imsc;
1505 if (status) {
1506 do {
1507 check_apply_cts_event_workaround(uap);
1508
1509 pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1510 UART011_RXIS),
1511 uap, REG_ICR);
1512
1513 if (status & (UART011_RTIS|UART011_RXIS)) {
1514 if (pl011_dma_rx_running(uap))
1515 pl011_dma_rx_irq(uap);
1516 else
1517 pl011_rx_chars(uap);
1518 }
1519 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1520 UART011_CTSMIS|UART011_RIMIS))
1521 pl011_modem_status(uap);
1522 if (status & UART011_TXIS)
1523 pl011_tx_chars(uap, true);
1524
1525 if (pass_counter-- == 0)
1526 break;
1527
1528 status = pl011_read(uap, REG_RIS) & imsc;
1529 } while (status != 0);
1530 handled = 1;
1531 }
1532
1533 spin_unlock_irqrestore(&uap->port.lock, flags);
1534
1535 return IRQ_RETVAL(handled);
1536}
1537
1538static unsigned int pl011_tx_empty(struct uart_port *port)
1539{
1540 struct uart_amba_port *uap =
1541 container_of(port, struct uart_amba_port, port);
1542
1543 /* Allow feature register bits to be inverted to work around errata */
1544 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1545
1546 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1547 0 : TIOCSER_TEMT;
1548}
1549
1550static unsigned int pl011_get_mctrl(struct uart_port *port)
1551{
1552 struct uart_amba_port *uap =
1553 container_of(port, struct uart_amba_port, port);
1554 unsigned int result = 0;
1555 unsigned int status = pl011_read(uap, REG_FR);
1556
1557#define TIOCMBIT(uartbit, tiocmbit) \
1558 if (status & uartbit) \
1559 result |= tiocmbit
1560
1561 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1562 TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1563 TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1564 TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1565#undef TIOCMBIT
1566 return result;
1567}
1568
1569static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1570{
1571 struct uart_amba_port *uap =
1572 container_of(port, struct uart_amba_port, port);
1573 unsigned int cr;
1574
1575 cr = pl011_read(uap, REG_CR);
1576
1577#define TIOCMBIT(tiocmbit, uartbit) \
1578 if (mctrl & tiocmbit) \
1579 cr |= uartbit; \
1580 else \
1581 cr &= ~uartbit
1582
1583 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1584 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1585 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1586 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1587 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1588
1589 if (uap->autorts) {
1590 /* We need to disable auto-RTS if we want to turn RTS off */
1591 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1592 }
1593#undef TIOCMBIT
1594
1595 pl011_write(cr, uap, REG_CR);
1596}
1597
1598static void pl011_break_ctl(struct uart_port *port, int break_state)
1599{
1600 struct uart_amba_port *uap =
1601 container_of(port, struct uart_amba_port, port);
1602 unsigned long flags;
1603 unsigned int lcr_h;
1604
1605 spin_lock_irqsave(&uap->port.lock, flags);
1606 lcr_h = pl011_read(uap, REG_LCRH_TX);
1607 if (break_state == -1)
1608 lcr_h |= UART01x_LCRH_BRK;
1609 else
1610 lcr_h &= ~UART01x_LCRH_BRK;
1611 pl011_write(lcr_h, uap, REG_LCRH_TX);
1612 spin_unlock_irqrestore(&uap->port.lock, flags);
1613}
1614
1615#ifdef CONFIG_CONSOLE_POLL
1616
1617static void pl011_quiesce_irqs(struct uart_port *port)
1618{
1619 struct uart_amba_port *uap =
1620 container_of(port, struct uart_amba_port, port);
1621
1622 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1623 /*
1624 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1625 * we simply mask it. start_tx() will unmask it.
1626 *
1627 * Note we can race with start_tx(), and if the race happens, the
1628 * polling user might get another interrupt just after we clear it.
1629 * But it should be OK and can happen even w/o the race, e.g.
1630 * controller immediately got some new data and raised the IRQ.
1631 *
1632 * And whoever uses polling routines assumes that it manages the device
1633 * (including tx queue), so we're also fine with start_tx()'s caller
1634 * side.
1635 */
1636 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1637 REG_IMSC);
1638}
1639
1640static int pl011_get_poll_char(struct uart_port *port)
1641{
1642 struct uart_amba_port *uap =
1643 container_of(port, struct uart_amba_port, port);
1644 unsigned int status;
1645
1646 /*
1647 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1648 * debugger.
1649 */
1650 pl011_quiesce_irqs(port);
1651
1652 status = pl011_read(uap, REG_FR);
1653 if (status & UART01x_FR_RXFE)
1654 return NO_POLL_CHAR;
1655
1656 return pl011_read(uap, REG_DR);
1657}
1658
1659static void pl011_put_poll_char(struct uart_port *port,
1660 unsigned char ch)
1661{
1662 struct uart_amba_port *uap =
1663 container_of(port, struct uart_amba_port, port);
1664
1665 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1666 cpu_relax();
1667
1668 pl011_write(ch, uap, REG_DR);
1669}
1670
1671#endif /* CONFIG_CONSOLE_POLL */
1672
1673static int pl011_hwinit(struct uart_port *port)
1674{
1675 struct uart_amba_port *uap =
1676 container_of(port, struct uart_amba_port, port);
1677 int retval;
1678
1679 /* Optionaly enable pins to be muxed in and configured */
1680 pinctrl_pm_select_default_state(port->dev);
1681
1682 /*
1683 * Try to enable the clock producer.
1684 */
1685 retval = clk_prepare_enable(uap->clk);
1686 if (retval)
1687 return retval;
1688
1689 uap->port.uartclk = clk_get_rate(uap->clk);
1690
1691 /* Clear pending error and receive interrupts */
1692 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1693 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1694 uap, REG_ICR);
1695
1696 /*
1697 * Save interrupts enable mask, and enable RX interrupts in case if
1698 * the interrupt is used for NMI entry.
1699 */
1700 uap->im = pl011_read(uap, REG_IMSC);
1701 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1702
1703 if (dev_get_platdata(uap->port.dev)) {
1704 struct amba_pl011_data *plat;
1705
1706 plat = dev_get_platdata(uap->port.dev);
1707 if (plat->init)
1708 plat->init();
1709 }
1710 return 0;
1711}
1712
1713static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1714{
1715 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1716 pl011_reg_to_offset(uap, REG_LCRH_TX);
1717}
1718
1719static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1720{
1721 pl011_write(lcr_h, uap, REG_LCRH_RX);
1722 if (pl011_split_lcrh(uap)) {
1723 int i;
1724 /*
1725 * Wait 10 PCLKs before writing LCRH_TX register,
1726 * to get this delay write read only register 10 times
1727 */
1728 for (i = 0; i < 10; ++i)
1729 pl011_write(0xff, uap, REG_MIS);
1730 pl011_write(lcr_h, uap, REG_LCRH_TX);
1731 }
1732}
1733
1734static int pl011_allocate_irq(struct uart_amba_port *uap)
1735{
1736 pl011_write(uap->im, uap, REG_IMSC);
1737
1738 return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1739}
1740
1741/*
1742 * Enable interrupts, only timeouts when using DMA
1743 * if initial RX DMA job failed, start in interrupt mode
1744 * as well.
1745 */
1746static void pl011_enable_interrupts(struct uart_amba_port *uap)
1747{
1748 unsigned int i;
1749
1750 spin_lock_irq(&uap->port.lock);
1751
1752 /* Clear out any spuriously appearing RX interrupts */
1753 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1754
1755 /*
1756 * RXIS is asserted only when the RX FIFO transitions from below
1757 * to above the trigger threshold. If the RX FIFO is already
1758 * full to the threshold this can't happen and RXIS will now be
1759 * stuck off. Drain the RX FIFO explicitly to fix this:
1760 */
1761 for (i = 0; i < uap->fifosize * 2; ++i) {
1762 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1763 break;
1764
1765 pl011_read(uap, REG_DR);
1766 }
1767
1768 uap->im = UART011_RTIM;
1769 if (!pl011_dma_rx_running(uap))
1770 uap->im |= UART011_RXIM;
1771 pl011_write(uap->im, uap, REG_IMSC);
1772 spin_unlock_irq(&uap->port.lock);
1773}
1774
1775static int pl011_startup(struct uart_port *port)
1776{
1777 struct uart_amba_port *uap =
1778 container_of(port, struct uart_amba_port, port);
1779 unsigned int cr;
1780 int retval;
1781
1782 retval = pl011_hwinit(port);
1783 if (retval)
1784 goto clk_dis;
1785
1786 retval = pl011_allocate_irq(uap);
1787 if (retval)
1788 goto clk_dis;
1789
1790 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1791
1792 spin_lock_irq(&uap->port.lock);
1793
1794 /* restore RTS and DTR */
1795 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1796 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1797 pl011_write(cr, uap, REG_CR);
1798
1799 spin_unlock_irq(&uap->port.lock);
1800
1801 /*
1802 * initialise the old status of the modem signals
1803 */
1804 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1805
1806 /* Startup DMA */
1807 pl011_dma_startup(uap);
1808
1809 pl011_enable_interrupts(uap);
1810
1811 return 0;
1812
1813 clk_dis:
1814 clk_disable_unprepare(uap->clk);
1815 return retval;
1816}
1817
1818static int sbsa_uart_startup(struct uart_port *port)
1819{
1820 struct uart_amba_port *uap =
1821 container_of(port, struct uart_amba_port, port);
1822 int retval;
1823
1824 retval = pl011_hwinit(port);
1825 if (retval)
1826 return retval;
1827
1828 retval = pl011_allocate_irq(uap);
1829 if (retval)
1830 return retval;
1831
1832 /* The SBSA UART does not support any modem status lines. */
1833 uap->old_status = 0;
1834
1835 pl011_enable_interrupts(uap);
1836
1837 return 0;
1838}
1839
1840static void pl011_shutdown_channel(struct uart_amba_port *uap,
1841 unsigned int lcrh)
1842{
1843 unsigned long val;
1844
1845 val = pl011_read(uap, lcrh);
1846 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1847 pl011_write(val, uap, lcrh);
1848}
1849
1850/*
1851 * disable the port. It should not disable RTS and DTR.
1852 * Also RTS and DTR state should be preserved to restore
1853 * it during startup().
1854 */
1855static void pl011_disable_uart(struct uart_amba_port *uap)
1856{
1857 unsigned int cr;
1858
1859 uap->autorts = false;
1860 spin_lock_irq(&uap->port.lock);
1861 cr = pl011_read(uap, REG_CR);
1862 uap->old_cr = cr;
1863 cr &= UART011_CR_RTS | UART011_CR_DTR;
1864 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1865 pl011_write(cr, uap, REG_CR);
1866 spin_unlock_irq(&uap->port.lock);
1867
1868 /*
1869 * disable break condition and fifos
1870 */
1871 pl011_shutdown_channel(uap, REG_LCRH_RX);
1872 if (pl011_split_lcrh(uap))
1873 pl011_shutdown_channel(uap, REG_LCRH_TX);
1874}
1875
1876static void pl011_disable_interrupts(struct uart_amba_port *uap)
1877{
1878 spin_lock_irq(&uap->port.lock);
1879
1880 /* mask all interrupts and clear all pending ones */
1881 uap->im = 0;
1882 pl011_write(uap->im, uap, REG_IMSC);
1883 pl011_write(0xffff, uap, REG_ICR);
1884
1885 spin_unlock_irq(&uap->port.lock);
1886}
1887
1888static void pl011_shutdown(struct uart_port *port)
1889{
1890 struct uart_amba_port *uap =
1891 container_of(port, struct uart_amba_port, port);
1892
1893 pl011_disable_interrupts(uap);
1894
1895 pl011_dma_shutdown(uap);
1896
1897 free_irq(uap->port.irq, uap);
1898
1899 pl011_disable_uart(uap);
1900
1901 /*
1902 * Shut down the clock producer
1903 */
1904 clk_disable_unprepare(uap->clk);
1905 /* Optionally let pins go into sleep states */
1906 pinctrl_pm_select_sleep_state(port->dev);
1907
1908 if (dev_get_platdata(uap->port.dev)) {
1909 struct amba_pl011_data *plat;
1910
1911 plat = dev_get_platdata(uap->port.dev);
1912 if (plat->exit)
1913 plat->exit();
1914 }
1915
1916 if (uap->port.ops->flush_buffer)
1917 uap->port.ops->flush_buffer(port);
1918}
1919
1920static void sbsa_uart_shutdown(struct uart_port *port)
1921{
1922 struct uart_amba_port *uap =
1923 container_of(port, struct uart_amba_port, port);
1924
1925 pl011_disable_interrupts(uap);
1926
1927 free_irq(uap->port.irq, uap);
1928
1929 if (uap->port.ops->flush_buffer)
1930 uap->port.ops->flush_buffer(port);
1931}
1932
1933static void
1934pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1935{
1936 port->read_status_mask = UART011_DR_OE | 255;
1937 if (termios->c_iflag & INPCK)
1938 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1939 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1940 port->read_status_mask |= UART011_DR_BE;
1941
1942 /*
1943 * Characters to ignore
1944 */
1945 port->ignore_status_mask = 0;
1946 if (termios->c_iflag & IGNPAR)
1947 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1948 if (termios->c_iflag & IGNBRK) {
1949 port->ignore_status_mask |= UART011_DR_BE;
1950 /*
1951 * If we're ignoring parity and break indicators,
1952 * ignore overruns too (for real raw support).
1953 */
1954 if (termios->c_iflag & IGNPAR)
1955 port->ignore_status_mask |= UART011_DR_OE;
1956 }
1957
1958 /*
1959 * Ignore all characters if CREAD is not set.
1960 */
1961 if ((termios->c_cflag & CREAD) == 0)
1962 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1963}
1964
1965static void
1966pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1967 struct ktermios *old)
1968{
1969 struct uart_amba_port *uap =
1970 container_of(port, struct uart_amba_port, port);
1971 unsigned int lcr_h, old_cr;
1972 unsigned long flags;
1973 unsigned int baud, quot, clkdiv;
1974
1975 if (uap->vendor->oversampling)
1976 clkdiv = 8;
1977 else
1978 clkdiv = 16;
1979
1980 /*
1981 * Ask the core to calculate the divisor for us.
1982 */
1983 baud = uart_get_baud_rate(port, termios, old, 0,
1984 port->uartclk / clkdiv);
1985#ifdef CONFIG_DMA_ENGINE
1986 /*
1987 * Adjust RX DMA polling rate with baud rate if not specified.
1988 */
1989 if (uap->dmarx.auto_poll_rate)
1990 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1991#endif
1992
1993 if (baud > port->uartclk/16)
1994 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1995 else
1996 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1997
1998 switch (termios->c_cflag & CSIZE) {
1999 case CS5:
2000 lcr_h = UART01x_LCRH_WLEN_5;
2001 break;
2002 case CS6:
2003 lcr_h = UART01x_LCRH_WLEN_6;
2004 break;
2005 case CS7:
2006 lcr_h = UART01x_LCRH_WLEN_7;
2007 break;
2008 default: // CS8
2009 lcr_h = UART01x_LCRH_WLEN_8;
2010 break;
2011 }
2012 if (termios->c_cflag & CSTOPB)
2013 lcr_h |= UART01x_LCRH_STP2;
2014 if (termios->c_cflag & PARENB) {
2015 lcr_h |= UART01x_LCRH_PEN;
2016 if (!(termios->c_cflag & PARODD))
2017 lcr_h |= UART01x_LCRH_EPS;
2018 if (termios->c_cflag & CMSPAR)
2019 lcr_h |= UART011_LCRH_SPS;
2020 }
2021 if (uap->fifosize > 1)
2022 lcr_h |= UART01x_LCRH_FEN;
2023
2024 spin_lock_irqsave(&port->lock, flags);
2025
2026 /*
2027 * Update the per-port timeout.
2028 */
2029 uart_update_timeout(port, termios->c_cflag, baud);
2030
2031 pl011_setup_status_masks(port, termios);
2032
2033 if (UART_ENABLE_MS(port, termios->c_cflag))
2034 pl011_enable_ms(port);
2035
2036 /* first, disable everything */
2037 old_cr = pl011_read(uap, REG_CR);
2038 pl011_write(0, uap, REG_CR);
2039
2040 if (termios->c_cflag & CRTSCTS) {
2041 if (old_cr & UART011_CR_RTS)
2042 old_cr |= UART011_CR_RTSEN;
2043
2044 old_cr |= UART011_CR_CTSEN;
2045 uap->autorts = true;
2046 } else {
2047 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2048 uap->autorts = false;
2049 }
2050
2051 if (uap->vendor->oversampling) {
2052 if (baud > port->uartclk / 16)
2053 old_cr |= ST_UART011_CR_OVSFACT;
2054 else
2055 old_cr &= ~ST_UART011_CR_OVSFACT;
2056 }
2057
2058 /*
2059 * Workaround for the ST Micro oversampling variants to
2060 * increase the bitrate slightly, by lowering the divisor,
2061 * to avoid delayed sampling of start bit at high speeds,
2062 * else we see data corruption.
2063 */
2064 if (uap->vendor->oversampling) {
2065 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2066 quot -= 1;
2067 else if ((baud > 3250000) && (quot > 2))
2068 quot -= 2;
2069 }
2070 /* Set baud rate */
2071 pl011_write(quot & 0x3f, uap, REG_FBRD);
2072 pl011_write(quot >> 6, uap, REG_IBRD);
2073
2074 /*
2075 * ----------v----------v----------v----------v-----
2076 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2077 * REG_FBRD & REG_IBRD.
2078 * ----------^----------^----------^----------^-----
2079 */
2080 pl011_write_lcr_h(uap, lcr_h);
2081 pl011_write(old_cr, uap, REG_CR);
2082
2083 spin_unlock_irqrestore(&port->lock, flags);
2084}
2085
2086static void
2087sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2088 struct ktermios *old)
2089{
2090 struct uart_amba_port *uap =
2091 container_of(port, struct uart_amba_port, port);
2092 unsigned long flags;
2093
2094 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2095
2096 /* The SBSA UART only supports 8n1 without hardware flow control. */
2097 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2098 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2099 termios->c_cflag |= CS8 | CLOCAL;
2100
2101 spin_lock_irqsave(&port->lock, flags);
2102 uart_update_timeout(port, CS8, uap->fixed_baud);
2103 pl011_setup_status_masks(port, termios);
2104 spin_unlock_irqrestore(&port->lock, flags);
2105}
2106
2107static const char *pl011_type(struct uart_port *port)
2108{
2109 struct uart_amba_port *uap =
2110 container_of(port, struct uart_amba_port, port);
2111 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2112}
2113
2114/*
2115 * Release the memory region(s) being used by 'port'
2116 */
2117static void pl011_release_port(struct uart_port *port)
2118{
2119 release_mem_region(port->mapbase, SZ_4K);
2120}
2121
2122/*
2123 * Request the memory region(s) being used by 'port'
2124 */
2125static int pl011_request_port(struct uart_port *port)
2126{
2127 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2128 != NULL ? 0 : -EBUSY;
2129}
2130
2131/*
2132 * Configure/autoconfigure the port.
2133 */
2134static void pl011_config_port(struct uart_port *port, int flags)
2135{
2136 if (flags & UART_CONFIG_TYPE) {
2137 port->type = PORT_AMBA;
2138 pl011_request_port(port);
2139 }
2140}
2141
2142/*
2143 * verify the new serial_struct (for TIOCSSERIAL).
2144 */
2145static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2146{
2147 int ret = 0;
2148 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2149 ret = -EINVAL;
2150 if (ser->irq < 0 || ser->irq >= nr_irqs)
2151 ret = -EINVAL;
2152 if (ser->baud_base < 9600)
2153 ret = -EINVAL;
2154 return ret;
2155}
2156
2157static const struct uart_ops amba_pl011_pops = {
2158 .tx_empty = pl011_tx_empty,
2159 .set_mctrl = pl011_set_mctrl,
2160 .get_mctrl = pl011_get_mctrl,
2161 .stop_tx = pl011_stop_tx,
2162 .start_tx = pl011_start_tx,
2163 .stop_rx = pl011_stop_rx,
2164 .enable_ms = pl011_enable_ms,
2165 .break_ctl = pl011_break_ctl,
2166 .startup = pl011_startup,
2167 .shutdown = pl011_shutdown,
2168 .flush_buffer = pl011_dma_flush_buffer,
2169 .set_termios = pl011_set_termios,
2170 .type = pl011_type,
2171 .release_port = pl011_release_port,
2172 .request_port = pl011_request_port,
2173 .config_port = pl011_config_port,
2174 .verify_port = pl011_verify_port,
2175#ifdef CONFIG_CONSOLE_POLL
2176 .poll_init = pl011_hwinit,
2177 .poll_get_char = pl011_get_poll_char,
2178 .poll_put_char = pl011_put_poll_char,
2179#endif
2180};
2181
2182static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2183{
2184}
2185
2186static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2187{
2188 return 0;
2189}
2190
2191static const struct uart_ops sbsa_uart_pops = {
2192 .tx_empty = pl011_tx_empty,
2193 .set_mctrl = sbsa_uart_set_mctrl,
2194 .get_mctrl = sbsa_uart_get_mctrl,
2195 .stop_tx = pl011_stop_tx,
2196 .start_tx = pl011_start_tx,
2197 .stop_rx = pl011_stop_rx,
2198 .startup = sbsa_uart_startup,
2199 .shutdown = sbsa_uart_shutdown,
2200 .set_termios = sbsa_uart_set_termios,
2201 .type = pl011_type,
2202 .release_port = pl011_release_port,
2203 .request_port = pl011_request_port,
2204 .config_port = pl011_config_port,
2205 .verify_port = pl011_verify_port,
2206#ifdef CONFIG_CONSOLE_POLL
2207 .poll_init = pl011_hwinit,
2208 .poll_get_char = pl011_get_poll_char,
2209 .poll_put_char = pl011_put_poll_char,
2210#endif
2211};
2212
2213static struct uart_amba_port *amba_ports[UART_NR];
2214
2215#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2216
2217static void pl011_console_putchar(struct uart_port *port, int ch)
2218{
2219 struct uart_amba_port *uap =
2220 container_of(port, struct uart_amba_port, port);
2221
2222 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2223 cpu_relax();
2224 pl011_write(ch, uap, REG_DR);
2225}
2226
2227static void
2228pl011_console_write(struct console *co, const char *s, unsigned int count)
2229{
2230 struct uart_amba_port *uap = amba_ports[co->index];
2231 unsigned int old_cr = 0, new_cr;
2232 unsigned long flags;
2233 int locked = 1;
2234
2235 clk_enable(uap->clk);
2236
2237 local_irq_save(flags);
2238 if (uap->port.sysrq)
2239 locked = 0;
2240 else if (oops_in_progress)
2241 locked = spin_trylock(&uap->port.lock);
2242 else
2243 spin_lock(&uap->port.lock);
2244
2245 /*
2246 * First save the CR then disable the interrupts
2247 */
2248 if (!uap->vendor->always_enabled) {
2249 old_cr = pl011_read(uap, REG_CR);
2250 new_cr = old_cr & ~UART011_CR_CTSEN;
2251 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2252 pl011_write(new_cr, uap, REG_CR);
2253 }
2254
2255 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2256
2257 /*
2258 * Finally, wait for transmitter to become empty and restore the
2259 * TCR. Allow feature register bits to be inverted to work around
2260 * errata.
2261 */
2262 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2263 & uap->vendor->fr_busy)
2264 cpu_relax();
2265 if (!uap->vendor->always_enabled)
2266 pl011_write(old_cr, uap, REG_CR);
2267
2268 if (locked)
2269 spin_unlock(&uap->port.lock);
2270 local_irq_restore(flags);
2271
2272 clk_disable(uap->clk);
2273}
2274
2275static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2276 int *parity, int *bits)
2277{
2278 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2279 unsigned int lcr_h, ibrd, fbrd;
2280
2281 lcr_h = pl011_read(uap, REG_LCRH_TX);
2282
2283 *parity = 'n';
2284 if (lcr_h & UART01x_LCRH_PEN) {
2285 if (lcr_h & UART01x_LCRH_EPS)
2286 *parity = 'e';
2287 else
2288 *parity = 'o';
2289 }
2290
2291 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2292 *bits = 7;
2293 else
2294 *bits = 8;
2295
2296 ibrd = pl011_read(uap, REG_IBRD);
2297 fbrd = pl011_read(uap, REG_FBRD);
2298
2299 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2300
2301 if (uap->vendor->oversampling) {
2302 if (pl011_read(uap, REG_CR)
2303 & ST_UART011_CR_OVSFACT)
2304 *baud *= 2;
2305 }
2306 }
2307}
2308
2309static int pl011_console_setup(struct console *co, char *options)
2310{
2311 struct uart_amba_port *uap;
2312 int baud = 38400;
2313 int bits = 8;
2314 int parity = 'n';
2315 int flow = 'n';
2316 int ret;
2317
2318 /*
2319 * Check whether an invalid uart number has been specified, and
2320 * if so, search for the first available port that does have
2321 * console support.
2322 */
2323 if (co->index >= UART_NR)
2324 co->index = 0;
2325 uap = amba_ports[co->index];
2326 if (!uap)
2327 return -ENODEV;
2328
2329 /* Allow pins to be muxed in and configured */
2330 pinctrl_pm_select_default_state(uap->port.dev);
2331
2332 ret = clk_prepare(uap->clk);
2333 if (ret)
2334 return ret;
2335
2336 if (dev_get_platdata(uap->port.dev)) {
2337 struct amba_pl011_data *plat;
2338
2339 plat = dev_get_platdata(uap->port.dev);
2340 if (plat->init)
2341 plat->init();
2342 }
2343
2344 uap->port.uartclk = clk_get_rate(uap->clk);
2345
2346 if (uap->vendor->fixed_options) {
2347 baud = uap->fixed_baud;
2348 } else {
2349 if (options)
2350 uart_parse_options(options,
2351 &baud, &parity, &bits, &flow);
2352 else
2353 pl011_console_get_options(uap, &baud, &parity, &bits);
2354 }
2355
2356 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2357}
2358
2359/**
2360 * pl011_console_match - non-standard console matching
2361 * @co: registering console
2362 * @name: name from console command line
2363 * @idx: index from console command line
2364 * @options: ptr to option string from console command line
2365 *
2366 * Only attempts to match console command lines of the form:
2367 * console=pl011,mmio|mmio32,<addr>[,<options>]
2368 * console=pl011,0x<addr>[,<options>]
2369 * This form is used to register an initial earlycon boot console and
2370 * replace it with the amba_console at pl011 driver init.
2371 *
2372 * Performs console setup for a match (as required by interface)
2373 * If no <options> are specified, then assume the h/w is already setup.
2374 *
2375 * Returns 0 if console matches; otherwise non-zero to use default matching
2376 */
2377static int pl011_console_match(struct console *co, char *name, int idx,
2378 char *options)
2379{
2380 unsigned char iotype;
2381 resource_size_t addr;
2382 int i;
2383
2384 /*
2385 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2386 * have a distinct console name, so make sure we check for that.
2387 * The actual implementation of the erratum occurs in the probe
2388 * function.
2389 */
2390 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2391 return -ENODEV;
2392
2393 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2394 return -ENODEV;
2395
2396 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2397 return -ENODEV;
2398
2399 /* try to match the port specified on the command line */
2400 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2401 struct uart_port *port;
2402
2403 if (!amba_ports[i])
2404 continue;
2405
2406 port = &amba_ports[i]->port;
2407
2408 if (port->mapbase != addr)
2409 continue;
2410
2411 co->index = i;
2412 port->cons = co;
2413 return pl011_console_setup(co, options);
2414 }
2415
2416 return -ENODEV;
2417}
2418
2419static struct uart_driver amba_reg;
2420static struct console amba_console = {
2421 .name = "ttyAMA",
2422 .write = pl011_console_write,
2423 .device = uart_console_device,
2424 .setup = pl011_console_setup,
2425 .match = pl011_console_match,
2426 .flags = CON_PRINTBUFFER | CON_ANYTIME,
2427 .index = -1,
2428 .data = &amba_reg,
2429};
2430
2431#define AMBA_CONSOLE (&amba_console)
2432
2433static void qdf2400_e44_putc(struct uart_port *port, int c)
2434{
2435 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2436 cpu_relax();
2437 writel(c, port->membase + UART01x_DR);
2438 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2439 cpu_relax();
2440}
2441
2442static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2443{
2444 struct earlycon_device *dev = con->data;
2445
2446 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2447}
2448
2449static void pl011_putc(struct uart_port *port, int c)
2450{
2451 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2452 cpu_relax();
2453 if (port->iotype == UPIO_MEM32)
2454 writel(c, port->membase + UART01x_DR);
2455 else
2456 writeb(c, port->membase + UART01x_DR);
2457 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2458 cpu_relax();
2459}
2460
2461static void pl011_early_write(struct console *con, const char *s, unsigned n)
2462{
2463 struct earlycon_device *dev = con->data;
2464
2465 uart_console_write(&dev->port, s, n, pl011_putc);
2466}
2467
2468/*
2469 * On non-ACPI systems, earlycon is enabled by specifying
2470 * "earlycon=pl011,<address>" on the kernel command line.
2471 *
2472 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2473 * by specifying only "earlycon" on the command line. Because it requires
2474 * SPCR, the console starts after ACPI is parsed, which is later than a
2475 * traditional early console.
2476 *
2477 * To get the traditional early console that starts before ACPI is parsed,
2478 * specify the full "earlycon=pl011,<address>" option.
2479 */
2480static int __init pl011_early_console_setup(struct earlycon_device *device,
2481 const char *opt)
2482{
2483 if (!device->port.membase)
2484 return -ENODEV;
2485
2486 device->con->write = pl011_early_write;
2487
2488 return 0;
2489}
2490OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2491OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2492
2493/*
2494 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2495 * Erratum 44, traditional earlycon can be enabled by specifying
2496 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2497 *
2498 * Alternatively, you can just specify "earlycon", and the early console
2499 * will be enabled with the information from the SPCR table. In this
2500 * case, the SPCR code will detect the need for the E44 work-around,
2501 * and set the console name to "qdf2400_e44".
2502 */
2503static int __init
2504qdf2400_e44_early_console_setup(struct earlycon_device *device,
2505 const char *opt)
2506{
2507 if (!device->port.membase)
2508 return -ENODEV;
2509
2510 device->con->write = qdf2400_e44_early_write;
2511 return 0;
2512}
2513EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2514
2515#else
2516#define AMBA_CONSOLE NULL
2517#endif
2518
2519static struct uart_driver amba_reg = {
2520 .owner = THIS_MODULE,
2521 .driver_name = "ttyAMA",
2522 .dev_name = "ttyAMA",
2523 .major = SERIAL_AMBA_MAJOR,
2524 .minor = SERIAL_AMBA_MINOR,
2525 .nr = UART_NR,
2526 .cons = AMBA_CONSOLE,
2527};
2528
2529static int pl011_probe_dt_alias(int index, struct device *dev)
2530{
2531 struct device_node *np;
2532 static bool seen_dev_with_alias = false;
2533 static bool seen_dev_without_alias = false;
2534 int ret = index;
2535
2536 if (!IS_ENABLED(CONFIG_OF))
2537 return ret;
2538
2539 np = dev->of_node;
2540 if (!np)
2541 return ret;
2542
2543 ret = of_alias_get_id(np, "serial");
2544 if (ret < 0) {
2545 seen_dev_without_alias = true;
2546 ret = index;
2547 } else {
2548 seen_dev_with_alias = true;
2549 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2550 dev_warn(dev, "requested serial port %d not available.\n", ret);
2551 ret = index;
2552 }
2553 }
2554
2555 if (seen_dev_with_alias && seen_dev_without_alias)
2556 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2557
2558 return ret;
2559}
2560
2561/* unregisters the driver also if no more ports are left */
2562static void pl011_unregister_port(struct uart_amba_port *uap)
2563{
2564 int i;
2565 bool busy = false;
2566
2567 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2568 if (amba_ports[i] == uap)
2569 amba_ports[i] = NULL;
2570 else if (amba_ports[i])
2571 busy = true;
2572 }
2573 pl011_dma_remove(uap);
2574 if (!busy)
2575 uart_unregister_driver(&amba_reg);
2576}
2577
2578static int pl011_find_free_port(void)
2579{
2580 int i;
2581
2582 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2583 if (amba_ports[i] == NULL)
2584 return i;
2585
2586 return -EBUSY;
2587}
2588
2589static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2590 struct resource *mmiobase, int index)
2591{
2592 void __iomem *base;
2593
2594 base = devm_ioremap_resource(dev, mmiobase);
2595 if (IS_ERR(base))
2596 return PTR_ERR(base);
2597
2598 index = pl011_probe_dt_alias(index, dev);
2599
2600 uap->old_cr = 0;
2601 uap->port.dev = dev;
2602 uap->port.mapbase = mmiobase->start;
2603 uap->port.membase = base;
2604 uap->port.fifosize = uap->fifosize;
2605 uap->port.flags = UPF_BOOT_AUTOCONF;
2606 uap->port.line = index;
2607 spin_lock_init(&uap->port.lock);
2608
2609 amba_ports[index] = uap;
2610
2611 return 0;
2612}
2613
2614static int pl011_register_port(struct uart_amba_port *uap)
2615{
2616 int ret, i;
2617
2618 /* Ensure interrupts from this UART are masked and cleared */
2619 pl011_write(0, uap, REG_IMSC);
2620 pl011_write(0xffff, uap, REG_ICR);
2621
2622 if (!amba_reg.state) {
2623 ret = uart_register_driver(&amba_reg);
2624 if (ret < 0) {
2625 dev_err(uap->port.dev,
2626 "Failed to register AMBA-PL011 driver\n");
2627 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2628 if (amba_ports[i] == uap)
2629 amba_ports[i] = NULL;
2630 return ret;
2631 }
2632 }
2633
2634 ret = uart_add_one_port(&amba_reg, &uap->port);
2635 if (ret)
2636 pl011_unregister_port(uap);
2637
2638 return ret;
2639}
2640
2641static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2642{
2643 struct uart_amba_port *uap;
2644 struct vendor_data *vendor = id->data;
2645 int portnr, ret;
2646
2647 portnr = pl011_find_free_port();
2648 if (portnr < 0)
2649 return portnr;
2650
2651 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2652 GFP_KERNEL);
2653 if (!uap)
2654 return -ENOMEM;
2655
2656 uap->clk = devm_clk_get(&dev->dev, NULL);
2657 if (IS_ERR(uap->clk))
2658 return PTR_ERR(uap->clk);
2659
2660 uap->reg_offset = vendor->reg_offset;
2661 uap->vendor = vendor;
2662 uap->fifosize = vendor->get_fifosize(dev);
2663 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2664 uap->port.irq = dev->irq[0];
2665 uap->port.ops = &amba_pl011_pops;
2666
2667 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2668
2669 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2670 if (ret)
2671 return ret;
2672
2673 amba_set_drvdata(dev, uap);
2674
2675 return pl011_register_port(uap);
2676}
2677
2678static int pl011_remove(struct amba_device *dev)
2679{
2680 struct uart_amba_port *uap = amba_get_drvdata(dev);
2681
2682 uart_remove_one_port(&amba_reg, &uap->port);
2683 pl011_unregister_port(uap);
2684 return 0;
2685}
2686
2687#ifdef CONFIG_PM_SLEEP
2688static int pl011_suspend(struct device *dev)
2689{
2690 struct uart_amba_port *uap = dev_get_drvdata(dev);
2691
2692 if (!uap)
2693 return -EINVAL;
2694
2695 return uart_suspend_port(&amba_reg, &uap->port);
2696}
2697
2698static int pl011_resume(struct device *dev)
2699{
2700 struct uart_amba_port *uap = dev_get_drvdata(dev);
2701
2702 if (!uap)
2703 return -EINVAL;
2704
2705 return uart_resume_port(&amba_reg, &uap->port);
2706}
2707#endif
2708
2709static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2710
2711static int sbsa_uart_probe(struct platform_device *pdev)
2712{
2713 struct uart_amba_port *uap;
2714 struct resource *r;
2715 int portnr, ret;
2716 int baudrate;
2717
2718 /*
2719 * Check the mandatory baud rate parameter in the DT node early
2720 * so that we can easily exit with the error.
2721 */
2722 if (pdev->dev.of_node) {
2723 struct device_node *np = pdev->dev.of_node;
2724
2725 ret = of_property_read_u32(np, "current-speed", &baudrate);
2726 if (ret)
2727 return ret;
2728 } else {
2729 baudrate = 115200;
2730 }
2731
2732 portnr = pl011_find_free_port();
2733 if (portnr < 0)
2734 return portnr;
2735
2736 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2737 GFP_KERNEL);
2738 if (!uap)
2739 return -ENOMEM;
2740
2741 ret = platform_get_irq(pdev, 0);
2742 if (ret < 0) {
2743 if (ret != -EPROBE_DEFER)
2744 dev_err(&pdev->dev, "cannot obtain irq\n");
2745 return ret;
2746 }
2747 uap->port.irq = ret;
2748
2749#ifdef CONFIG_ACPI_SPCR_TABLE
2750 if (qdf2400_e44_present) {
2751 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2752 uap->vendor = &vendor_qdt_qdf2400_e44;
2753 } else
2754#endif
2755 uap->vendor = &vendor_sbsa;
2756
2757 uap->reg_offset = uap->vendor->reg_offset;
2758 uap->fifosize = 32;
2759 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2760 uap->port.ops = &sbsa_uart_pops;
2761 uap->fixed_baud = baudrate;
2762
2763 snprintf(uap->type, sizeof(uap->type), "SBSA");
2764
2765 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2766
2767 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2768 if (ret)
2769 return ret;
2770
2771 platform_set_drvdata(pdev, uap);
2772
2773 return pl011_register_port(uap);
2774}
2775
2776static int sbsa_uart_remove(struct platform_device *pdev)
2777{
2778 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2779
2780 uart_remove_one_port(&amba_reg, &uap->port);
2781 pl011_unregister_port(uap);
2782 return 0;
2783}
2784
2785static const struct of_device_id sbsa_uart_of_match[] = {
2786 { .compatible = "arm,sbsa-uart", },
2787 {},
2788};
2789MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2790
2791static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2792 { "ARMH0011", 0 },
2793 {},
2794};
2795MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2796
2797static struct platform_driver arm_sbsa_uart_platform_driver = {
2798 .probe = sbsa_uart_probe,
2799 .remove = sbsa_uart_remove,
2800 .driver = {
2801 .name = "sbsa-uart",
2802 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2803 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2804 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2805 },
2806};
2807
2808static const struct amba_id pl011_ids[] = {
2809 {
2810 .id = 0x00041011,
2811 .mask = 0x000fffff,
2812 .data = &vendor_arm,
2813 },
2814 {
2815 .id = 0x00380802,
2816 .mask = 0x00ffffff,
2817 .data = &vendor_st,
2818 },
2819 {
2820 .id = AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2821 .mask = 0x00ffffff,
2822 .data = &vendor_zte,
2823 },
2824 { 0, 0 },
2825};
2826
2827MODULE_DEVICE_TABLE(amba, pl011_ids);
2828
2829static struct amba_driver pl011_driver = {
2830 .drv = {
2831 .name = "uart-pl011",
2832 .pm = &pl011_dev_pm_ops,
2833 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2834 },
2835 .id_table = pl011_ids,
2836 .probe = pl011_probe,
2837 .remove = pl011_remove,
2838};
2839
2840static int __init pl011_init(void)
2841{
2842 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2843
2844 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2845 pr_warn("could not register SBSA UART platform driver\n");
2846 return amba_driver_register(&pl011_driver);
2847}
2848
2849static void __exit pl011_exit(void)
2850{
2851 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2852 amba_driver_unregister(&pl011_driver);
2853}
2854
2855/*
2856 * While this can be a module, if builtin it's most likely the console
2857 * So let's leave module_exit but move module_init to an earlier place
2858 */
2859arch_initcall(pl011_init);
2860module_exit(pl011_exit);
2861
2862MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2863MODULE_DESCRIPTION("ARM AMBA serial port driver");
2864MODULE_LICENSE("GPL");