blob: aa2103682808423d5571fc405b88d94f4c8b47b3 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/* Faraday FOTG210 EHCI-like driver
2 *
3 * Copyright (c) 2013 Faraday Technology Corporation
4 *
5 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
6 * Feng-Hsin Chiang <john453@faraday-tech.com>
7 * Po-Yu Chuang <ratbert.chuang@gmail.com>
8 *
9 * Most of code borrowed from the Linux-3.7 EHCI driver
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software Foundation,
23 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25#include <linux/module.h>
26#include <linux/device.h>
27#include <linux/dmapool.h>
28#include <linux/kernel.h>
29#include <linux/delay.h>
30#include <linux/ioport.h>
31#include <linux/sched.h>
32#include <linux/vmalloc.h>
33#include <linux/errno.h>
34#include <linux/init.h>
35#include <linux/hrtimer.h>
36#include <linux/list.h>
37#include <linux/interrupt.h>
38#include <linux/usb.h>
39#include <linux/usb/hcd.h>
40#include <linux/moduleparam.h>
41#include <linux/dma-mapping.h>
42#include <linux/debugfs.h>
43#include <linux/slab.h>
44#include <linux/uaccess.h>
45#include <linux/platform_device.h>
46#include <linux/io.h>
47
48#include <asm/byteorder.h>
49#include <asm/irq.h>
50#include <asm/unaligned.h>
51
52#define DRIVER_AUTHOR "Yuan-Hsin Chen"
53#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
54static const char hcd_name[] = "fotg210_hcd";
55
56#undef FOTG210_URB_TRACE
57#define FOTG210_STATS
58
59/* magic numbers that can affect system performance */
60#define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
61#define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
62#define FOTG210_TUNE_RL_TT 0
63#define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
64#define FOTG210_TUNE_MULT_TT 1
65
66/* Some drivers think it's safe to schedule isochronous transfers more than 256
67 * ms into the future (partly as a result of an old bug in the scheduling
68 * code). In an attempt to avoid trouble, we will use a minimum scheduling
69 * length of 512 frames instead of 256.
70 */
71#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
72
73/* Initial IRQ latency: faster than hw default */
74static int log2_irq_thresh; /* 0 to 6 */
75module_param(log2_irq_thresh, int, S_IRUGO);
76MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
77
78/* initial park setting: slower than hw default */
79static unsigned park;
80module_param(park, uint, S_IRUGO);
81MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
82
83/* for link power management(LPM) feature */
84static unsigned int hird;
85module_param(hird, int, S_IRUGO);
86MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
87
88#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
89
90#include "fotg210.h"
91
92#define fotg210_dbg(fotg210, fmt, args...) \
93 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
94#define fotg210_err(fotg210, fmt, args...) \
95 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
96#define fotg210_info(fotg210, fmt, args...) \
97 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
98#define fotg210_warn(fotg210, fmt, args...) \
99 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
100
101/* check the values in the HCSPARAMS register (host controller _Structural_
102 * parameters) see EHCI spec, Table 2-4 for each value
103 */
104static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
105{
106 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
107
108 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
109 HCS_N_PORTS(params));
110}
111
112/* check the values in the HCCPARAMS register (host controller _Capability_
113 * parameters) see EHCI Spec, Table 2-5 for each value
114 */
115static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
116{
117 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
118
119 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
120 params,
121 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
122 HCC_CANPARK(params) ? " park" : "");
123}
124
125static void __maybe_unused
126dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
127{
128 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
129 hc32_to_cpup(fotg210, &qtd->hw_next),
130 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
131 hc32_to_cpup(fotg210, &qtd->hw_token),
132 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
133 if (qtd->hw_buf[1])
134 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
135 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
136 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
137 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
138 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
139}
140
141static void __maybe_unused
142dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
143{
144 struct fotg210_qh_hw *hw = qh->hw;
145
146 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
147 hw->hw_next, hw->hw_info1, hw->hw_info2,
148 hw->hw_current);
149
150 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
151}
152
153static void __maybe_unused
154dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
155{
156 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
157 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
158 itd->urb);
159
160 fotg210_dbg(fotg210,
161 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
162 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
163 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
164 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
165 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
166 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
167 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
168 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
169 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
170
171 fotg210_dbg(fotg210,
172 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
173 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
174 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
175 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
176 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
177 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
178 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
179 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
180
181 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
182 itd->index[0], itd->index[1], itd->index[2],
183 itd->index[3], itd->index[4], itd->index[5],
184 itd->index[6], itd->index[7]);
185}
186
187static int __maybe_unused
188dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
189{
190 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
191 label, label[0] ? " " : "", status,
192 (status & STS_ASS) ? " Async" : "",
193 (status & STS_PSS) ? " Periodic" : "",
194 (status & STS_RECL) ? " Recl" : "",
195 (status & STS_HALT) ? " Halt" : "",
196 (status & STS_IAA) ? " IAA" : "",
197 (status & STS_FATAL) ? " FATAL" : "",
198 (status & STS_FLR) ? " FLR" : "",
199 (status & STS_PCD) ? " PCD" : "",
200 (status & STS_ERR) ? " ERR" : "",
201 (status & STS_INT) ? " INT" : "");
202}
203
204static int __maybe_unused
205dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
206{
207 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
208 label, label[0] ? " " : "", enable,
209 (enable & STS_IAA) ? " IAA" : "",
210 (enable & STS_FATAL) ? " FATAL" : "",
211 (enable & STS_FLR) ? " FLR" : "",
212 (enable & STS_PCD) ? " PCD" : "",
213 (enable & STS_ERR) ? " ERR" : "",
214 (enable & STS_INT) ? " INT" : "");
215}
216
217static const char *const fls_strings[] = { "1024", "512", "256", "??" };
218
219static int dbg_command_buf(char *buf, unsigned len, const char *label,
220 u32 command)
221{
222 return scnprintf(buf, len,
223 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
224 label, label[0] ? " " : "", command,
225 (command & CMD_PARK) ? " park" : "(park)",
226 CMD_PARK_CNT(command),
227 (command >> 16) & 0x3f,
228 (command & CMD_IAAD) ? " IAAD" : "",
229 (command & CMD_ASE) ? " Async" : "",
230 (command & CMD_PSE) ? " Periodic" : "",
231 fls_strings[(command >> 2) & 0x3],
232 (command & CMD_RESET) ? " Reset" : "",
233 (command & CMD_RUN) ? "RUN" : "HALT");
234}
235
236static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
237 u32 status)
238{
239 char *sig;
240
241 /* signaling state */
242 switch (status & (3 << 10)) {
243 case 0 << 10:
244 sig = "se0";
245 break;
246 case 1 << 10:
247 sig = "k";
248 break; /* low speed */
249 case 2 << 10:
250 sig = "j";
251 break;
252 default:
253 sig = "?";
254 break;
255 }
256
257 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
258 label, label[0] ? " " : "", port, status,
259 status >> 25, /*device address */
260 sig,
261 (status & PORT_RESET) ? " RESET" : "",
262 (status & PORT_SUSPEND) ? " SUSPEND" : "",
263 (status & PORT_RESUME) ? " RESUME" : "",
264 (status & PORT_PEC) ? " PEC" : "",
265 (status & PORT_PE) ? " PE" : "",
266 (status & PORT_CSC) ? " CSC" : "",
267 (status & PORT_CONNECT) ? " CONNECT" : "");
268
269 return buf;
270}
271
272/* functions have the "wrong" filename when they're output... */
273#define dbg_status(fotg210, label, status) { \
274 char _buf[80]; \
275 dbg_status_buf(_buf, sizeof(_buf), label, status); \
276 fotg210_dbg(fotg210, "%s\n", _buf); \
277}
278
279#define dbg_cmd(fotg210, label, command) { \
280 char _buf[80]; \
281 dbg_command_buf(_buf, sizeof(_buf), label, command); \
282 fotg210_dbg(fotg210, "%s\n", _buf); \
283}
284
285#define dbg_port(fotg210, label, port, status) { \
286 char _buf[80]; \
287 fotg210_dbg(fotg210, "%s\n", \
288 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
289}
290
291/* troubleshooting help: expose state in debugfs */
292static int debug_async_open(struct inode *, struct file *);
293static int debug_periodic_open(struct inode *, struct file *);
294static int debug_registers_open(struct inode *, struct file *);
295static int debug_async_open(struct inode *, struct file *);
296
297static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
298static int debug_close(struct inode *, struct file *);
299
300static const struct file_operations debug_async_fops = {
301 .owner = THIS_MODULE,
302 .open = debug_async_open,
303 .read = debug_output,
304 .release = debug_close,
305 .llseek = default_llseek,
306};
307static const struct file_operations debug_periodic_fops = {
308 .owner = THIS_MODULE,
309 .open = debug_periodic_open,
310 .read = debug_output,
311 .release = debug_close,
312 .llseek = default_llseek,
313};
314static const struct file_operations debug_registers_fops = {
315 .owner = THIS_MODULE,
316 .open = debug_registers_open,
317 .read = debug_output,
318 .release = debug_close,
319 .llseek = default_llseek,
320};
321
322static struct dentry *fotg210_debug_root;
323
324struct debug_buffer {
325 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
326 struct usb_bus *bus;
327 struct mutex mutex; /* protect filling of buffer */
328 size_t count; /* number of characters filled into buffer */
329 char *output_buf;
330 size_t alloc_size;
331};
332
333static inline char speed_char(u32 scratch)
334{
335 switch (scratch & (3 << 12)) {
336 case QH_FULL_SPEED:
337 return 'f';
338
339 case QH_LOW_SPEED:
340 return 'l';
341
342 case QH_HIGH_SPEED:
343 return 'h';
344
345 default:
346 return '?';
347 }
348}
349
350static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
351{
352 __u32 v = hc32_to_cpu(fotg210, token);
353
354 if (v & QTD_STS_ACTIVE)
355 return '*';
356 if (v & QTD_STS_HALT)
357 return '-';
358 if (!IS_SHORT_READ(v))
359 return ' ';
360 /* tries to advance through hw_alt_next */
361 return '/';
362}
363
364static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
365 char **nextp, unsigned *sizep)
366{
367 u32 scratch;
368 u32 hw_curr;
369 struct fotg210_qtd *td;
370 unsigned temp;
371 unsigned size = *sizep;
372 char *next = *nextp;
373 char mark;
374 __le32 list_end = FOTG210_LIST_END(fotg210);
375 struct fotg210_qh_hw *hw = qh->hw;
376
377 if (hw->hw_qtd_next == list_end) /* NEC does this */
378 mark = '@';
379 else
380 mark = token_mark(fotg210, hw->hw_token);
381 if (mark == '/') { /* qh_alt_next controls qh advance? */
382 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
383 fotg210->async->hw->hw_alt_next)
384 mark = '#'; /* blocked */
385 else if (hw->hw_alt_next == list_end)
386 mark = '.'; /* use hw_qtd_next */
387 /* else alt_next points to some other qtd */
388 }
389 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
390 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
391 temp = scnprintf(next, size,
392 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
393 qh, scratch & 0x007f,
394 speed_char(scratch),
395 (scratch >> 8) & 0x000f,
396 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
397 hc32_to_cpup(fotg210, &hw->hw_token), mark,
398 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
399 ? "data1" : "data0",
400 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
401 size -= temp;
402 next += temp;
403
404 /* hc may be modifying the list as we read it ... */
405 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
406 scratch = hc32_to_cpup(fotg210, &td->hw_token);
407 mark = ' ';
408 if (hw_curr == td->qtd_dma)
409 mark = '*';
410 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
411 mark = '+';
412 else if (QTD_LENGTH(scratch)) {
413 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
414 mark = '#';
415 else if (td->hw_alt_next != list_end)
416 mark = '/';
417 }
418 temp = snprintf(next, size,
419 "\n\t%p%c%s len=%d %08x urb %p",
420 td, mark, ({ char *tmp;
421 switch ((scratch>>8)&0x03) {
422 case 0:
423 tmp = "out";
424 break;
425 case 1:
426 tmp = "in";
427 break;
428 case 2:
429 tmp = "setup";
430 break;
431 default:
432 tmp = "?";
433 break;
434 } tmp; }),
435 (scratch >> 16) & 0x7fff,
436 scratch,
437 td->urb);
438 if (size < temp)
439 temp = size;
440 size -= temp;
441 next += temp;
442 if (temp == size)
443 goto done;
444 }
445
446 temp = snprintf(next, size, "\n");
447 if (size < temp)
448 temp = size;
449
450 size -= temp;
451 next += temp;
452
453done:
454 *sizep = size;
455 *nextp = next;
456}
457
458static ssize_t fill_async_buffer(struct debug_buffer *buf)
459{
460 struct usb_hcd *hcd;
461 struct fotg210_hcd *fotg210;
462 unsigned long flags;
463 unsigned temp, size;
464 char *next;
465 struct fotg210_qh *qh;
466
467 hcd = bus_to_hcd(buf->bus);
468 fotg210 = hcd_to_fotg210(hcd);
469 next = buf->output_buf;
470 size = buf->alloc_size;
471
472 *next = 0;
473
474 /* dumps a snapshot of the async schedule.
475 * usually empty except for long-term bulk reads, or head.
476 * one QH per line, and TDs we know about
477 */
478 spin_lock_irqsave(&fotg210->lock, flags);
479 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
480 qh = qh->qh_next.qh)
481 qh_lines(fotg210, qh, &next, &size);
482 if (fotg210->async_unlink && size > 0) {
483 temp = scnprintf(next, size, "\nunlink =\n");
484 size -= temp;
485 next += temp;
486
487 for (qh = fotg210->async_unlink; size > 0 && qh;
488 qh = qh->unlink_next)
489 qh_lines(fotg210, qh, &next, &size);
490 }
491 spin_unlock_irqrestore(&fotg210->lock, flags);
492
493 return strlen(buf->output_buf);
494}
495
496/* count tds, get ep direction */
497static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
498 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
499{
500 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
501 struct fotg210_qtd *qtd;
502 char *type = "";
503 unsigned temp = 0;
504
505 /* count tds, get ep direction */
506 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
507 temp++;
508 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
509 case 0:
510 type = "out";
511 continue;
512 case 1:
513 type = "in";
514 continue;
515 }
516 }
517
518 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
519 speed_char(scratch), scratch & 0x007f,
520 (scratch >> 8) & 0x000f, type, qh->usecs,
521 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
522}
523
524#define DBG_SCHED_LIMIT 64
525static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
526{
527 struct usb_hcd *hcd;
528 struct fotg210_hcd *fotg210;
529 unsigned long flags;
530 union fotg210_shadow p, *seen;
531 unsigned temp, size, seen_count;
532 char *next;
533 unsigned i;
534 __hc32 tag;
535
536 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
537 if (!seen)
538 return 0;
539
540 seen_count = 0;
541
542 hcd = bus_to_hcd(buf->bus);
543 fotg210 = hcd_to_fotg210(hcd);
544 next = buf->output_buf;
545 size = buf->alloc_size;
546
547 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
548 size -= temp;
549 next += temp;
550
551 /* dump a snapshot of the periodic schedule.
552 * iso changes, interrupt usually doesn't.
553 */
554 spin_lock_irqsave(&fotg210->lock, flags);
555 for (i = 0; i < fotg210->periodic_size; i++) {
556 p = fotg210->pshadow[i];
557 if (likely(!p.ptr))
558 continue;
559
560 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
561
562 temp = scnprintf(next, size, "%4d: ", i);
563 size -= temp;
564 next += temp;
565
566 do {
567 struct fotg210_qh_hw *hw;
568
569 switch (hc32_to_cpu(fotg210, tag)) {
570 case Q_TYPE_QH:
571 hw = p.qh->hw;
572 temp = scnprintf(next, size, " qh%d-%04x/%p",
573 p.qh->period,
574 hc32_to_cpup(fotg210,
575 &hw->hw_info2)
576 /* uframe masks */
577 & (QH_CMASK | QH_SMASK),
578 p.qh);
579 size -= temp;
580 next += temp;
581 /* don't repeat what follows this qh */
582 for (temp = 0; temp < seen_count; temp++) {
583 if (seen[temp].ptr != p.ptr)
584 continue;
585 if (p.qh->qh_next.ptr) {
586 temp = scnprintf(next, size,
587 " ...");
588 size -= temp;
589 next += temp;
590 }
591 break;
592 }
593 /* show more info the first time around */
594 if (temp == seen_count) {
595 temp = output_buf_tds_dir(next,
596 fotg210, hw,
597 p.qh, size);
598
599 if (seen_count < DBG_SCHED_LIMIT)
600 seen[seen_count++].qh = p.qh;
601 } else
602 temp = 0;
603 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
604 p = p.qh->qh_next;
605 break;
606 case Q_TYPE_FSTN:
607 temp = scnprintf(next, size,
608 " fstn-%8x/%p",
609 p.fstn->hw_prev, p.fstn);
610 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
611 p = p.fstn->fstn_next;
612 break;
613 case Q_TYPE_ITD:
614 temp = scnprintf(next, size,
615 " itd/%p", p.itd);
616 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
617 p = p.itd->itd_next;
618 break;
619 }
620 size -= temp;
621 next += temp;
622 } while (p.ptr);
623
624 temp = scnprintf(next, size, "\n");
625 size -= temp;
626 next += temp;
627 }
628 spin_unlock_irqrestore(&fotg210->lock, flags);
629 kfree(seen);
630
631 return buf->alloc_size - size;
632}
633#undef DBG_SCHED_LIMIT
634
635static const char *rh_state_string(struct fotg210_hcd *fotg210)
636{
637 switch (fotg210->rh_state) {
638 case FOTG210_RH_HALTED:
639 return "halted";
640 case FOTG210_RH_SUSPENDED:
641 return "suspended";
642 case FOTG210_RH_RUNNING:
643 return "running";
644 case FOTG210_RH_STOPPING:
645 return "stopping";
646 }
647 return "?";
648}
649
650static ssize_t fill_registers_buffer(struct debug_buffer *buf)
651{
652 struct usb_hcd *hcd;
653 struct fotg210_hcd *fotg210;
654 unsigned long flags;
655 unsigned temp, size, i;
656 char *next, scratch[80];
657 static const char fmt[] = "%*s\n";
658 static const char label[] = "";
659
660 hcd = bus_to_hcd(buf->bus);
661 fotg210 = hcd_to_fotg210(hcd);
662 next = buf->output_buf;
663 size = buf->alloc_size;
664
665 spin_lock_irqsave(&fotg210->lock, flags);
666
667 if (!HCD_HW_ACCESSIBLE(hcd)) {
668 size = scnprintf(next, size,
669 "bus %s, device %s\n"
670 "%s\n"
671 "SUSPENDED(no register access)\n",
672 hcd->self.controller->bus->name,
673 dev_name(hcd->self.controller),
674 hcd->product_desc);
675 goto done;
676 }
677
678 /* Capability Registers */
679 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
680 &fotg210->caps->hc_capbase));
681 temp = scnprintf(next, size,
682 "bus %s, device %s\n"
683 "%s\n"
684 "EHCI %x.%02x, rh state %s\n",
685 hcd->self.controller->bus->name,
686 dev_name(hcd->self.controller),
687 hcd->product_desc,
688 i >> 8, i & 0x0ff, rh_state_string(fotg210));
689 size -= temp;
690 next += temp;
691
692 /* FIXME interpret both types of params */
693 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
694 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
695 size -= temp;
696 next += temp;
697
698 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
699 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
700 size -= temp;
701 next += temp;
702
703 /* Operational Registers */
704 temp = dbg_status_buf(scratch, sizeof(scratch), label,
705 fotg210_readl(fotg210, &fotg210->regs->status));
706 temp = scnprintf(next, size, fmt, temp, scratch);
707 size -= temp;
708 next += temp;
709
710 temp = dbg_command_buf(scratch, sizeof(scratch), label,
711 fotg210_readl(fotg210, &fotg210->regs->command));
712 temp = scnprintf(next, size, fmt, temp, scratch);
713 size -= temp;
714 next += temp;
715
716 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
717 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
718 temp = scnprintf(next, size, fmt, temp, scratch);
719 size -= temp;
720 next += temp;
721
722 temp = scnprintf(next, size, "uframe %04x\n",
723 fotg210_read_frame_index(fotg210));
724 size -= temp;
725 next += temp;
726
727 if (fotg210->async_unlink) {
728 temp = scnprintf(next, size, "async unlink qh %p\n",
729 fotg210->async_unlink);
730 size -= temp;
731 next += temp;
732 }
733
734#ifdef FOTG210_STATS
735 temp = scnprintf(next, size,
736 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
737 fotg210->stats.normal, fotg210->stats.error,
738 fotg210->stats.iaa, fotg210->stats.lost_iaa);
739 size -= temp;
740 next += temp;
741
742 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
743 fotg210->stats.complete, fotg210->stats.unlink);
744 size -= temp;
745 next += temp;
746#endif
747
748done:
749 spin_unlock_irqrestore(&fotg210->lock, flags);
750
751 return buf->alloc_size - size;
752}
753
754static struct debug_buffer
755*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
756{
757 struct debug_buffer *buf;
758
759 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
760
761 if (buf) {
762 buf->bus = bus;
763 buf->fill_func = fill_func;
764 mutex_init(&buf->mutex);
765 buf->alloc_size = PAGE_SIZE;
766 }
767
768 return buf;
769}
770
771static int fill_buffer(struct debug_buffer *buf)
772{
773 int ret = 0;
774
775 if (!buf->output_buf)
776 buf->output_buf = vmalloc(buf->alloc_size);
777
778 if (!buf->output_buf) {
779 ret = -ENOMEM;
780 goto out;
781 }
782
783 ret = buf->fill_func(buf);
784
785 if (ret >= 0) {
786 buf->count = ret;
787 ret = 0;
788 }
789
790out:
791 return ret;
792}
793
794static ssize_t debug_output(struct file *file, char __user *user_buf,
795 size_t len, loff_t *offset)
796{
797 struct debug_buffer *buf = file->private_data;
798 int ret = 0;
799
800 mutex_lock(&buf->mutex);
801 if (buf->count == 0) {
802 ret = fill_buffer(buf);
803 if (ret != 0) {
804 mutex_unlock(&buf->mutex);
805 goto out;
806 }
807 }
808 mutex_unlock(&buf->mutex);
809
810 ret = simple_read_from_buffer(user_buf, len, offset,
811 buf->output_buf, buf->count);
812
813out:
814 return ret;
815
816}
817
818static int debug_close(struct inode *inode, struct file *file)
819{
820 struct debug_buffer *buf = file->private_data;
821
822 if (buf) {
823 vfree(buf->output_buf);
824 kfree(buf);
825 }
826
827 return 0;
828}
829static int debug_async_open(struct inode *inode, struct file *file)
830{
831 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
832
833 return file->private_data ? 0 : -ENOMEM;
834}
835
836static int debug_periodic_open(struct inode *inode, struct file *file)
837{
838 struct debug_buffer *buf;
839
840 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
841 if (!buf)
842 return -ENOMEM;
843
844 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
845 file->private_data = buf;
846 return 0;
847}
848
849static int debug_registers_open(struct inode *inode, struct file *file)
850{
851 file->private_data = alloc_buffer(inode->i_private,
852 fill_registers_buffer);
853
854 return file->private_data ? 0 : -ENOMEM;
855}
856
857static inline void create_debug_files(struct fotg210_hcd *fotg210)
858{
859 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
860
861 fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
862 fotg210_debug_root);
863 if (!fotg210->debug_dir)
864 return;
865
866 if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
867 &debug_async_fops))
868 goto file_error;
869
870 if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
871 &debug_periodic_fops))
872 goto file_error;
873
874 if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
875 &debug_registers_fops))
876 goto file_error;
877
878 return;
879
880file_error:
881 debugfs_remove_recursive(fotg210->debug_dir);
882}
883
884static inline void remove_debug_files(struct fotg210_hcd *fotg210)
885{
886 debugfs_remove_recursive(fotg210->debug_dir);
887}
888
889/* handshake - spin reading hc until handshake completes or fails
890 * @ptr: address of hc register to be read
891 * @mask: bits to look at in result of read
892 * @done: value of those bits when handshake succeeds
893 * @usec: timeout in microseconds
894 *
895 * Returns negative errno, or zero on success
896 *
897 * Success happens when the "mask" bits have the specified value (hardware
898 * handshake done). There are two failure modes: "usec" have passed (major
899 * hardware flakeout), or the register reads as all-ones (hardware removed).
900 *
901 * That last failure should_only happen in cases like physical cardbus eject
902 * before driver shutdown. But it also seems to be caused by bugs in cardbus
903 * bridge shutdown: shutting down the bridge before the devices using it.
904 */
905static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
906 u32 mask, u32 done, int usec)
907{
908 u32 result;
909
910 do {
911 result = fotg210_readl(fotg210, ptr);
912 if (result == ~(u32)0) /* card removed */
913 return -ENODEV;
914 result &= mask;
915 if (result == done)
916 return 0;
917 udelay(1);
918 usec--;
919 } while (usec > 0);
920 return -ETIMEDOUT;
921}
922
923/* Force HC to halt state from unknown (EHCI spec section 2.3).
924 * Must be called with interrupts enabled and the lock not held.
925 */
926static int fotg210_halt(struct fotg210_hcd *fotg210)
927{
928 u32 temp;
929
930 spin_lock_irq(&fotg210->lock);
931
932 /* disable any irqs left enabled by previous code */
933 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
934
935 /*
936 * This routine gets called during probe before fotg210->command
937 * has been initialized, so we can't rely on its value.
938 */
939 fotg210->command &= ~CMD_RUN;
940 temp = fotg210_readl(fotg210, &fotg210->regs->command);
941 temp &= ~(CMD_RUN | CMD_IAAD);
942 fotg210_writel(fotg210, temp, &fotg210->regs->command);
943
944 spin_unlock_irq(&fotg210->lock);
945 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
946
947 return handshake(fotg210, &fotg210->regs->status,
948 STS_HALT, STS_HALT, 16 * 125);
949}
950
951/* Reset a non-running (STS_HALT == 1) controller.
952 * Must be called with interrupts enabled and the lock not held.
953 */
954static int fotg210_reset(struct fotg210_hcd *fotg210)
955{
956 int retval;
957 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
958
959 /* If the EHCI debug controller is active, special care must be
960 * taken before and after a host controller reset
961 */
962 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
963 fotg210->debug = NULL;
964
965 command |= CMD_RESET;
966 dbg_cmd(fotg210, "reset", command);
967 fotg210_writel(fotg210, command, &fotg210->regs->command);
968 fotg210->rh_state = FOTG210_RH_HALTED;
969 fotg210->next_statechange = jiffies;
970 retval = handshake(fotg210, &fotg210->regs->command,
971 CMD_RESET, 0, 250 * 1000);
972
973 if (retval)
974 return retval;
975
976 if (fotg210->debug)
977 dbgp_external_startup(fotg210_to_hcd(fotg210));
978
979 fotg210->port_c_suspend = fotg210->suspended_ports =
980 fotg210->resuming_ports = 0;
981 return retval;
982}
983
984/* Idle the controller (turn off the schedules).
985 * Must be called with interrupts enabled and the lock not held.
986 */
987static void fotg210_quiesce(struct fotg210_hcd *fotg210)
988{
989 u32 temp;
990
991 if (fotg210->rh_state != FOTG210_RH_RUNNING)
992 return;
993
994 /* wait for any schedule enables/disables to take effect */
995 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
996 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
997 16 * 125);
998
999 /* then disable anything that's still active */
1000 spin_lock_irq(&fotg210->lock);
1001 fotg210->command &= ~(CMD_ASE | CMD_PSE);
1002 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1003 spin_unlock_irq(&fotg210->lock);
1004
1005 /* hardware can take 16 microframes to turn off ... */
1006 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1007 16 * 125);
1008}
1009
1010static void end_unlink_async(struct fotg210_hcd *fotg210);
1011static void unlink_empty_async(struct fotg210_hcd *fotg210);
1012static void fotg210_work(struct fotg210_hcd *fotg210);
1013static void start_unlink_intr(struct fotg210_hcd *fotg210,
1014 struct fotg210_qh *qh);
1015static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1016
1017/* Set a bit in the USBCMD register */
1018static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1019{
1020 fotg210->command |= bit;
1021 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1022
1023 /* unblock posted write */
1024 fotg210_readl(fotg210, &fotg210->regs->command);
1025}
1026
1027/* Clear a bit in the USBCMD register */
1028static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1029{
1030 fotg210->command &= ~bit;
1031 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1032
1033 /* unblock posted write */
1034 fotg210_readl(fotg210, &fotg210->regs->command);
1035}
1036
1037/* EHCI timer support... Now using hrtimers.
1038 *
1039 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1040 * the timer routine runs, it checks each possible event; events that are
1041 * currently enabled and whose expiration time has passed get handled.
1042 * The set of enabled events is stored as a collection of bitflags in
1043 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1044 * increasing delay values (ranging between 1 ms and 100 ms).
1045 *
1046 * Rather than implementing a sorted list or tree of all pending events,
1047 * we keep track only of the lowest-numbered pending event, in
1048 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1049 * expiration time is set to the timeout value for this event.
1050 *
1051 * As a result, events might not get handled right away; the actual delay
1052 * could be anywhere up to twice the requested delay. This doesn't
1053 * matter, because none of the events are especially time-critical. The
1054 * ones that matter most all have a delay of 1 ms, so they will be
1055 * handled after 2 ms at most, which is okay. In addition to this, we
1056 * allow for an expiration range of 1 ms.
1057 */
1058
1059/* Delay lengths for the hrtimer event types.
1060 * Keep this list sorted by delay length, in the same order as
1061 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1062 */
1063static unsigned event_delays_ns[] = {
1064 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1065 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1066 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1067 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1068 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1069 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1070 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1071 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1072 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1073 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1074};
1075
1076/* Enable a pending hrtimer event */
1077static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1078 bool resched)
1079{
1080 ktime_t *timeout = &fotg210->hr_timeouts[event];
1081
1082 if (resched)
1083 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1084 fotg210->enabled_hrtimer_events |= (1 << event);
1085
1086 /* Track only the lowest-numbered pending event */
1087 if (event < fotg210->next_hrtimer_event) {
1088 fotg210->next_hrtimer_event = event;
1089 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1090 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1091 }
1092}
1093
1094
1095/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1096static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1097{
1098 unsigned actual, want;
1099
1100 /* Don't enable anything if the controller isn't running (e.g., died) */
1101 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1102 return;
1103
1104 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1105 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1106
1107 if (want != actual) {
1108
1109 /* Poll again later, but give up after about 20 ms */
1110 if (fotg210->ASS_poll_count++ < 20) {
1111 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1112 true);
1113 return;
1114 }
1115 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1116 want, actual);
1117 }
1118 fotg210->ASS_poll_count = 0;
1119
1120 /* The status is up-to-date; restart or stop the schedule as needed */
1121 if (want == 0) { /* Stopped */
1122 if (fotg210->async_count > 0)
1123 fotg210_set_command_bit(fotg210, CMD_ASE);
1124
1125 } else { /* Running */
1126 if (fotg210->async_count == 0) {
1127
1128 /* Turn off the schedule after a while */
1129 fotg210_enable_event(fotg210,
1130 FOTG210_HRTIMER_DISABLE_ASYNC,
1131 true);
1132 }
1133 }
1134}
1135
1136/* Turn off the async schedule after a brief delay */
1137static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1138{
1139 fotg210_clear_command_bit(fotg210, CMD_ASE);
1140}
1141
1142
1143/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1144static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1145{
1146 unsigned actual, want;
1147
1148 /* Don't do anything if the controller isn't running (e.g., died) */
1149 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1150 return;
1151
1152 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1153 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1154
1155 if (want != actual) {
1156
1157 /* Poll again later, but give up after about 20 ms */
1158 if (fotg210->PSS_poll_count++ < 20) {
1159 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1160 true);
1161 return;
1162 }
1163 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1164 want, actual);
1165 }
1166 fotg210->PSS_poll_count = 0;
1167
1168 /* The status is up-to-date; restart or stop the schedule as needed */
1169 if (want == 0) { /* Stopped */
1170 if (fotg210->periodic_count > 0)
1171 fotg210_set_command_bit(fotg210, CMD_PSE);
1172
1173 } else { /* Running */
1174 if (fotg210->periodic_count == 0) {
1175
1176 /* Turn off the schedule after a while */
1177 fotg210_enable_event(fotg210,
1178 FOTG210_HRTIMER_DISABLE_PERIODIC,
1179 true);
1180 }
1181 }
1182}
1183
1184/* Turn off the periodic schedule after a brief delay */
1185static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1186{
1187 fotg210_clear_command_bit(fotg210, CMD_PSE);
1188}
1189
1190
1191/* Poll the STS_HALT status bit; see when a dead controller stops */
1192static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1193{
1194 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1195
1196 /* Give up after a few milliseconds */
1197 if (fotg210->died_poll_count++ < 5) {
1198 /* Try again later */
1199 fotg210_enable_event(fotg210,
1200 FOTG210_HRTIMER_POLL_DEAD, true);
1201 return;
1202 }
1203 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1204 }
1205
1206 /* Clean up the mess */
1207 fotg210->rh_state = FOTG210_RH_HALTED;
1208 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1209 fotg210_work(fotg210);
1210 end_unlink_async(fotg210);
1211
1212 /* Not in process context, so don't try to reset the controller */
1213}
1214
1215
1216/* Handle unlinked interrupt QHs once they are gone from the hardware */
1217static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1218{
1219 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1220
1221 /*
1222 * Process all the QHs on the intr_unlink list that were added
1223 * before the current unlink cycle began. The list is in
1224 * temporal order, so stop when we reach the first entry in the
1225 * current cycle. But if the root hub isn't running then
1226 * process all the QHs on the list.
1227 */
1228 fotg210->intr_unlinking = true;
1229 while (fotg210->intr_unlink) {
1230 struct fotg210_qh *qh = fotg210->intr_unlink;
1231
1232 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1233 break;
1234 fotg210->intr_unlink = qh->unlink_next;
1235 qh->unlink_next = NULL;
1236 end_unlink_intr(fotg210, qh);
1237 }
1238
1239 /* Handle remaining entries later */
1240 if (fotg210->intr_unlink) {
1241 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1242 true);
1243 ++fotg210->intr_unlink_cycle;
1244 }
1245 fotg210->intr_unlinking = false;
1246}
1247
1248
1249/* Start another free-iTDs/siTDs cycle */
1250static void start_free_itds(struct fotg210_hcd *fotg210)
1251{
1252 if (!(fotg210->enabled_hrtimer_events &
1253 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1254 fotg210->last_itd_to_free = list_entry(
1255 fotg210->cached_itd_list.prev,
1256 struct fotg210_itd, itd_list);
1257 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1258 }
1259}
1260
1261/* Wait for controller to stop using old iTDs and siTDs */
1262static void end_free_itds(struct fotg210_hcd *fotg210)
1263{
1264 struct fotg210_itd *itd, *n;
1265
1266 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1267 fotg210->last_itd_to_free = NULL;
1268
1269 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1270 list_del(&itd->itd_list);
1271 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1272 if (itd == fotg210->last_itd_to_free)
1273 break;
1274 }
1275
1276 if (!list_empty(&fotg210->cached_itd_list))
1277 start_free_itds(fotg210);
1278}
1279
1280
1281/* Handle lost (or very late) IAA interrupts */
1282static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1283{
1284 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1285 return;
1286
1287 /*
1288 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1289 * So we need this watchdog, but must protect it against both
1290 * (a) SMP races against real IAA firing and retriggering, and
1291 * (b) clean HC shutdown, when IAA watchdog was pending.
1292 */
1293 if (fotg210->async_iaa) {
1294 u32 cmd, status;
1295
1296 /* If we get here, IAA is *REALLY* late. It's barely
1297 * conceivable that the system is so busy that CMD_IAAD
1298 * is still legitimately set, so let's be sure it's
1299 * clear before we read STS_IAA. (The HC should clear
1300 * CMD_IAAD when it sets STS_IAA.)
1301 */
1302 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1303
1304 /*
1305 * If IAA is set here it either legitimately triggered
1306 * after the watchdog timer expired (_way_ late, so we'll
1307 * still count it as lost) ... or a silicon erratum:
1308 * - VIA seems to set IAA without triggering the IRQ;
1309 * - IAAD potentially cleared without setting IAA.
1310 */
1311 status = fotg210_readl(fotg210, &fotg210->regs->status);
1312 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1313 COUNT(fotg210->stats.lost_iaa);
1314 fotg210_writel(fotg210, STS_IAA,
1315 &fotg210->regs->status);
1316 }
1317
1318 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1319 status, cmd);
1320 end_unlink_async(fotg210);
1321 }
1322}
1323
1324
1325/* Enable the I/O watchdog, if appropriate */
1326static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1327{
1328 /* Not needed if the controller isn't running or it's already enabled */
1329 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1330 (fotg210->enabled_hrtimer_events &
1331 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1332 return;
1333
1334 /*
1335 * Isochronous transfers always need the watchdog.
1336 * For other sorts we use it only if the flag is set.
1337 */
1338 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1339 fotg210->async_count + fotg210->intr_count > 0))
1340 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1341 true);
1342}
1343
1344
1345/* Handler functions for the hrtimer event types.
1346 * Keep this array in the same order as the event types indexed by
1347 * enum fotg210_hrtimer_event in fotg210.h.
1348 */
1349static void (*event_handlers[])(struct fotg210_hcd *) = {
1350 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1351 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1352 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1353 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1354 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1355 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1356 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1357 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1358 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1359 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1360};
1361
1362static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1363{
1364 struct fotg210_hcd *fotg210 =
1365 container_of(t, struct fotg210_hcd, hrtimer);
1366 ktime_t now;
1367 unsigned long events;
1368 unsigned long flags;
1369 unsigned e;
1370
1371 spin_lock_irqsave(&fotg210->lock, flags);
1372
1373 events = fotg210->enabled_hrtimer_events;
1374 fotg210->enabled_hrtimer_events = 0;
1375 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1376
1377 /*
1378 * Check each pending event. If its time has expired, handle
1379 * the event; otherwise re-enable it.
1380 */
1381 now = ktime_get();
1382 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1383 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1384 event_handlers[e](fotg210);
1385 else
1386 fotg210_enable_event(fotg210, e, false);
1387 }
1388
1389 spin_unlock_irqrestore(&fotg210->lock, flags);
1390 return HRTIMER_NORESTART;
1391}
1392
1393#define fotg210_bus_suspend NULL
1394#define fotg210_bus_resume NULL
1395
1396static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1397 u32 __iomem *status_reg, int port_status)
1398{
1399 if (!(port_status & PORT_CONNECT))
1400 return port_status;
1401
1402 /* if reset finished and it's still not enabled -- handoff */
1403 if (!(port_status & PORT_PE))
1404 /* with integrated TT, there's nobody to hand it to! */
1405 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1406 index + 1);
1407 else
1408 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1409 index + 1);
1410
1411 return port_status;
1412}
1413
1414
1415/* build "status change" packet (one or two bytes) from HC registers */
1416
1417static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1418{
1419 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1420 u32 temp, status;
1421 u32 mask;
1422 int retval = 1;
1423 unsigned long flags;
1424
1425 /* init status to no-changes */
1426 buf[0] = 0;
1427
1428 /* Inform the core about resumes-in-progress by returning
1429 * a non-zero value even if there are no status changes.
1430 */
1431 status = fotg210->resuming_ports;
1432
1433 mask = PORT_CSC | PORT_PEC;
1434 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1435
1436 /* no hub change reports (bit 0) for now (power, ...) */
1437
1438 /* port N changes (bit N)? */
1439 spin_lock_irqsave(&fotg210->lock, flags);
1440
1441 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1442
1443 /*
1444 * Return status information even for ports with OWNER set.
1445 * Otherwise hub_wq wouldn't see the disconnect event when a
1446 * high-speed device is switched over to the companion
1447 * controller by the user.
1448 */
1449
1450 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1451 (fotg210->reset_done[0] &&
1452 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1453 buf[0] |= 1 << 1;
1454 status = STS_PCD;
1455 }
1456 /* FIXME autosuspend idle root hubs */
1457 spin_unlock_irqrestore(&fotg210->lock, flags);
1458 return status ? retval : 0;
1459}
1460
1461static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1462 struct usb_hub_descriptor *desc)
1463{
1464 int ports = HCS_N_PORTS(fotg210->hcs_params);
1465 u16 temp;
1466
1467 desc->bDescriptorType = USB_DT_HUB;
1468 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1469 desc->bHubContrCurrent = 0;
1470
1471 desc->bNbrPorts = ports;
1472 temp = 1 + (ports / 8);
1473 desc->bDescLength = 7 + 2 * temp;
1474
1475 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1476 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1477 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1478
1479 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1480 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1481 desc->wHubCharacteristics = cpu_to_le16(temp);
1482}
1483
1484static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1485 u16 wIndex, char *buf, u16 wLength)
1486{
1487 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1488 int ports = HCS_N_PORTS(fotg210->hcs_params);
1489 u32 __iomem *status_reg = &fotg210->regs->port_status;
1490 u32 temp, temp1, status;
1491 unsigned long flags;
1492 int retval = 0;
1493 unsigned selector;
1494
1495 /*
1496 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1497 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1498 * (track current state ourselves) ... blink for diagnostics,
1499 * power, "this is the one", etc. EHCI spec supports this.
1500 */
1501
1502 spin_lock_irqsave(&fotg210->lock, flags);
1503 switch (typeReq) {
1504 case ClearHubFeature:
1505 switch (wValue) {
1506 case C_HUB_LOCAL_POWER:
1507 case C_HUB_OVER_CURRENT:
1508 /* no hub-wide feature/status flags */
1509 break;
1510 default:
1511 goto error;
1512 }
1513 break;
1514 case ClearPortFeature:
1515 if (!wIndex || wIndex > ports)
1516 goto error;
1517 wIndex--;
1518 temp = fotg210_readl(fotg210, status_reg);
1519 temp &= ~PORT_RWC_BITS;
1520
1521 /*
1522 * Even if OWNER is set, so the port is owned by the
1523 * companion controller, hub_wq needs to be able to clear
1524 * the port-change status bits (especially
1525 * USB_PORT_STAT_C_CONNECTION).
1526 */
1527
1528 switch (wValue) {
1529 case USB_PORT_FEAT_ENABLE:
1530 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1531 break;
1532 case USB_PORT_FEAT_C_ENABLE:
1533 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1534 break;
1535 case USB_PORT_FEAT_SUSPEND:
1536 if (temp & PORT_RESET)
1537 goto error;
1538 if (!(temp & PORT_SUSPEND))
1539 break;
1540 if ((temp & PORT_PE) == 0)
1541 goto error;
1542
1543 /* resume signaling for 20 msec */
1544 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1545 fotg210->reset_done[wIndex] = jiffies
1546 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1547 break;
1548 case USB_PORT_FEAT_C_SUSPEND:
1549 clear_bit(wIndex, &fotg210->port_c_suspend);
1550 break;
1551 case USB_PORT_FEAT_C_CONNECTION:
1552 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1553 break;
1554 case USB_PORT_FEAT_C_OVER_CURRENT:
1555 fotg210_writel(fotg210, temp | OTGISR_OVC,
1556 &fotg210->regs->otgisr);
1557 break;
1558 case USB_PORT_FEAT_C_RESET:
1559 /* GetPortStatus clears reset */
1560 break;
1561 default:
1562 goto error;
1563 }
1564 fotg210_readl(fotg210, &fotg210->regs->command);
1565 break;
1566 case GetHubDescriptor:
1567 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1568 buf);
1569 break;
1570 case GetHubStatus:
1571 /* no hub-wide feature/status flags */
1572 memset(buf, 0, 4);
1573 /*cpu_to_le32s ((u32 *) buf); */
1574 break;
1575 case GetPortStatus:
1576 if (!wIndex || wIndex > ports)
1577 goto error;
1578 wIndex--;
1579 status = 0;
1580 temp = fotg210_readl(fotg210, status_reg);
1581
1582 /* wPortChange bits */
1583 if (temp & PORT_CSC)
1584 status |= USB_PORT_STAT_C_CONNECTION << 16;
1585 if (temp & PORT_PEC)
1586 status |= USB_PORT_STAT_C_ENABLE << 16;
1587
1588 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1589 if (temp1 & OTGISR_OVC)
1590 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1591
1592 /* whoever resumes must GetPortStatus to complete it!! */
1593 if (temp & PORT_RESUME) {
1594
1595 /* Remote Wakeup received? */
1596 if (!fotg210->reset_done[wIndex]) {
1597 /* resume signaling for 20 msec */
1598 fotg210->reset_done[wIndex] = jiffies
1599 + msecs_to_jiffies(20);
1600 /* check the port again */
1601 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1602 fotg210->reset_done[wIndex]);
1603 }
1604
1605 /* resume completed? */
1606 else if (time_after_eq(jiffies,
1607 fotg210->reset_done[wIndex])) {
1608 clear_bit(wIndex, &fotg210->suspended_ports);
1609 set_bit(wIndex, &fotg210->port_c_suspend);
1610 fotg210->reset_done[wIndex] = 0;
1611
1612 /* stop resume signaling */
1613 temp = fotg210_readl(fotg210, status_reg);
1614 fotg210_writel(fotg210, temp &
1615 ~(PORT_RWC_BITS | PORT_RESUME),
1616 status_reg);
1617 clear_bit(wIndex, &fotg210->resuming_ports);
1618 retval = handshake(fotg210, status_reg,
1619 PORT_RESUME, 0, 2000);/* 2ms */
1620 if (retval != 0) {
1621 fotg210_err(fotg210,
1622 "port %d resume error %d\n",
1623 wIndex + 1, retval);
1624 goto error;
1625 }
1626 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1627 }
1628 }
1629
1630 /* whoever resets must GetPortStatus to complete it!! */
1631 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1632 fotg210->reset_done[wIndex])) {
1633 status |= USB_PORT_STAT_C_RESET << 16;
1634 fotg210->reset_done[wIndex] = 0;
1635 clear_bit(wIndex, &fotg210->resuming_ports);
1636
1637 /* force reset to complete */
1638 fotg210_writel(fotg210,
1639 temp & ~(PORT_RWC_BITS | PORT_RESET),
1640 status_reg);
1641 /* REVISIT: some hardware needs 550+ usec to clear
1642 * this bit; seems too long to spin routinely...
1643 */
1644 retval = handshake(fotg210, status_reg,
1645 PORT_RESET, 0, 1000);
1646 if (retval != 0) {
1647 fotg210_err(fotg210, "port %d reset error %d\n",
1648 wIndex + 1, retval);
1649 goto error;
1650 }
1651
1652 /* see what we found out */
1653 temp = check_reset_complete(fotg210, wIndex, status_reg,
1654 fotg210_readl(fotg210, status_reg));
1655
1656 /* restart schedule */
1657 fotg210->command |= CMD_RUN;
1658 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1659 }
1660
1661 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1662 fotg210->reset_done[wIndex] = 0;
1663 clear_bit(wIndex, &fotg210->resuming_ports);
1664 }
1665
1666 /* transfer dedicated ports to the companion hc */
1667 if ((temp & PORT_CONNECT) &&
1668 test_bit(wIndex, &fotg210->companion_ports)) {
1669 temp &= ~PORT_RWC_BITS;
1670 fotg210_writel(fotg210, temp, status_reg);
1671 fotg210_dbg(fotg210, "port %d --> companion\n",
1672 wIndex + 1);
1673 temp = fotg210_readl(fotg210, status_reg);
1674 }
1675
1676 /*
1677 * Even if OWNER is set, there's no harm letting hub_wq
1678 * see the wPortStatus values (they should all be 0 except
1679 * for PORT_POWER anyway).
1680 */
1681
1682 if (temp & PORT_CONNECT) {
1683 status |= USB_PORT_STAT_CONNECTION;
1684 status |= fotg210_port_speed(fotg210, temp);
1685 }
1686 if (temp & PORT_PE)
1687 status |= USB_PORT_STAT_ENABLE;
1688
1689 /* maybe the port was unsuspended without our knowledge */
1690 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1691 status |= USB_PORT_STAT_SUSPEND;
1692 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1693 clear_bit(wIndex, &fotg210->suspended_ports);
1694 clear_bit(wIndex, &fotg210->resuming_ports);
1695 fotg210->reset_done[wIndex] = 0;
1696 if (temp & PORT_PE)
1697 set_bit(wIndex, &fotg210->port_c_suspend);
1698 }
1699
1700 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1701 if (temp1 & OTGISR_OVC)
1702 status |= USB_PORT_STAT_OVERCURRENT;
1703 if (temp & PORT_RESET)
1704 status |= USB_PORT_STAT_RESET;
1705 if (test_bit(wIndex, &fotg210->port_c_suspend))
1706 status |= USB_PORT_STAT_C_SUSPEND << 16;
1707
1708 if (status & ~0xffff) /* only if wPortChange is interesting */
1709 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1710 put_unaligned_le32(status, buf);
1711 break;
1712 case SetHubFeature:
1713 switch (wValue) {
1714 case C_HUB_LOCAL_POWER:
1715 case C_HUB_OVER_CURRENT:
1716 /* no hub-wide feature/status flags */
1717 break;
1718 default:
1719 goto error;
1720 }
1721 break;
1722 case SetPortFeature:
1723 selector = wIndex >> 8;
1724 wIndex &= 0xff;
1725
1726 if (!wIndex || wIndex > ports)
1727 goto error;
1728 wIndex--;
1729 temp = fotg210_readl(fotg210, status_reg);
1730 temp &= ~PORT_RWC_BITS;
1731 switch (wValue) {
1732 case USB_PORT_FEAT_SUSPEND:
1733 if ((temp & PORT_PE) == 0
1734 || (temp & PORT_RESET) != 0)
1735 goto error;
1736
1737 /* After above check the port must be connected.
1738 * Set appropriate bit thus could put phy into low power
1739 * mode if we have hostpc feature
1740 */
1741 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1742 status_reg);
1743 set_bit(wIndex, &fotg210->suspended_ports);
1744 break;
1745 case USB_PORT_FEAT_RESET:
1746 if (temp & PORT_RESUME)
1747 goto error;
1748 /* line status bits may report this as low speed,
1749 * which can be fine if this root hub has a
1750 * transaction translator built in.
1751 */
1752 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1753 temp |= PORT_RESET;
1754 temp &= ~PORT_PE;
1755
1756 /*
1757 * caller must wait, then call GetPortStatus
1758 * usb 2.0 spec says 50 ms resets on root
1759 */
1760 fotg210->reset_done[wIndex] = jiffies
1761 + msecs_to_jiffies(50);
1762 fotg210_writel(fotg210, temp, status_reg);
1763 break;
1764
1765 /* For downstream facing ports (these): one hub port is put
1766 * into test mode according to USB2 11.24.2.13, then the hub
1767 * must be reset (which for root hub now means rmmod+modprobe,
1768 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1769 * about the EHCI-specific stuff.
1770 */
1771 case USB_PORT_FEAT_TEST:
1772 if (!selector || selector > 5)
1773 goto error;
1774 spin_unlock_irqrestore(&fotg210->lock, flags);
1775 fotg210_quiesce(fotg210);
1776 spin_lock_irqsave(&fotg210->lock, flags);
1777
1778 /* Put all enabled ports into suspend */
1779 temp = fotg210_readl(fotg210, status_reg) &
1780 ~PORT_RWC_BITS;
1781 if (temp & PORT_PE)
1782 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1783 status_reg);
1784
1785 spin_unlock_irqrestore(&fotg210->lock, flags);
1786 fotg210_halt(fotg210);
1787 spin_lock_irqsave(&fotg210->lock, flags);
1788
1789 temp = fotg210_readl(fotg210, status_reg);
1790 temp |= selector << 16;
1791 fotg210_writel(fotg210, temp, status_reg);
1792 break;
1793
1794 default:
1795 goto error;
1796 }
1797 fotg210_readl(fotg210, &fotg210->regs->command);
1798 break;
1799
1800 default:
1801error:
1802 /* "stall" on error */
1803 retval = -EPIPE;
1804 }
1805 spin_unlock_irqrestore(&fotg210->lock, flags);
1806 return retval;
1807}
1808
1809static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1810 int portnum)
1811{
1812 return;
1813}
1814
1815static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1816 int portnum)
1817{
1818 return 0;
1819}
1820
1821/* There's basically three types of memory:
1822 * - data used only by the HCD ... kmalloc is fine
1823 * - async and periodic schedules, shared by HC and HCD ... these
1824 * need to use dma_pool or dma_alloc_coherent
1825 * - driver buffers, read/written by HC ... single shot DMA mapped
1826 *
1827 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1828 * No memory seen by this driver is pageable.
1829 */
1830
1831/* Allocate the key transfer structures from the previously allocated pool */
1832static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1833 struct fotg210_qtd *qtd, dma_addr_t dma)
1834{
1835 memset(qtd, 0, sizeof(*qtd));
1836 qtd->qtd_dma = dma;
1837 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1838 qtd->hw_next = FOTG210_LIST_END(fotg210);
1839 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1840 INIT_LIST_HEAD(&qtd->qtd_list);
1841}
1842
1843static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1844 gfp_t flags)
1845{
1846 struct fotg210_qtd *qtd;
1847 dma_addr_t dma;
1848
1849 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1850 if (qtd != NULL)
1851 fotg210_qtd_init(fotg210, qtd, dma);
1852
1853 return qtd;
1854}
1855
1856static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1857 struct fotg210_qtd *qtd)
1858{
1859 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1860}
1861
1862
1863static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1864{
1865 /* clean qtds first, and know this is not linked */
1866 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1867 fotg210_dbg(fotg210, "unused qh not empty!\n");
1868 BUG();
1869 }
1870 if (qh->dummy)
1871 fotg210_qtd_free(fotg210, qh->dummy);
1872 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1873 kfree(qh);
1874}
1875
1876static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1877 gfp_t flags)
1878{
1879 struct fotg210_qh *qh;
1880 dma_addr_t dma;
1881
1882 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1883 if (!qh)
1884 goto done;
1885 qh->hw = (struct fotg210_qh_hw *)
1886 dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1887 if (!qh->hw)
1888 goto fail;
1889 memset(qh->hw, 0, sizeof(*qh->hw));
1890 qh->qh_dma = dma;
1891 INIT_LIST_HEAD(&qh->qtd_list);
1892
1893 /* dummy td enables safe urb queuing */
1894 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1895 if (qh->dummy == NULL) {
1896 fotg210_dbg(fotg210, "no dummy td\n");
1897 goto fail1;
1898 }
1899done:
1900 return qh;
1901fail1:
1902 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1903fail:
1904 kfree(qh);
1905 return NULL;
1906}
1907
1908/* The queue heads and transfer descriptors are managed from pools tied
1909 * to each of the "per device" structures.
1910 * This is the initialisation and cleanup code.
1911 */
1912
1913static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1914{
1915 if (fotg210->async)
1916 qh_destroy(fotg210, fotg210->async);
1917 fotg210->async = NULL;
1918
1919 if (fotg210->dummy)
1920 qh_destroy(fotg210, fotg210->dummy);
1921 fotg210->dummy = NULL;
1922
1923 /* DMA consistent memory and pools */
1924 dma_pool_destroy(fotg210->qtd_pool);
1925 fotg210->qtd_pool = NULL;
1926
1927 dma_pool_destroy(fotg210->qh_pool);
1928 fotg210->qh_pool = NULL;
1929
1930 dma_pool_destroy(fotg210->itd_pool);
1931 fotg210->itd_pool = NULL;
1932
1933 if (fotg210->periodic)
1934 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1935 fotg210->periodic_size * sizeof(u32),
1936 fotg210->periodic, fotg210->periodic_dma);
1937 fotg210->periodic = NULL;
1938
1939 /* shadow periodic table */
1940 kfree(fotg210->pshadow);
1941 fotg210->pshadow = NULL;
1942}
1943
1944/* remember to add cleanup code (above) if you add anything here */
1945static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1946{
1947 int i;
1948
1949 /* QTDs for control/bulk/intr transfers */
1950 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1951 fotg210_to_hcd(fotg210)->self.controller,
1952 sizeof(struct fotg210_qtd),
1953 32 /* byte alignment (for hw parts) */,
1954 4096 /* can't cross 4K */);
1955 if (!fotg210->qtd_pool)
1956 goto fail;
1957
1958 /* QHs for control/bulk/intr transfers */
1959 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1960 fotg210_to_hcd(fotg210)->self.controller,
1961 sizeof(struct fotg210_qh_hw),
1962 32 /* byte alignment (for hw parts) */,
1963 4096 /* can't cross 4K */);
1964 if (!fotg210->qh_pool)
1965 goto fail;
1966
1967 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1968 if (!fotg210->async)
1969 goto fail;
1970
1971 /* ITD for high speed ISO transfers */
1972 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1973 fotg210_to_hcd(fotg210)->self.controller,
1974 sizeof(struct fotg210_itd),
1975 64 /* byte alignment (for hw parts) */,
1976 4096 /* can't cross 4K */);
1977 if (!fotg210->itd_pool)
1978 goto fail;
1979
1980 /* Hardware periodic table */
1981 fotg210->periodic = (__le32 *)
1982 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1983 fotg210->periodic_size * sizeof(__le32),
1984 &fotg210->periodic_dma, 0);
1985 if (fotg210->periodic == NULL)
1986 goto fail;
1987
1988 for (i = 0; i < fotg210->periodic_size; i++)
1989 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1990
1991 /* software shadow of hardware table */
1992 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1993 flags);
1994 if (fotg210->pshadow != NULL)
1995 return 0;
1996
1997fail:
1998 fotg210_dbg(fotg210, "couldn't init memory\n");
1999 fotg210_mem_cleanup(fotg210);
2000 return -ENOMEM;
2001}
2002/* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
2003 *
2004 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
2005 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2006 * buffers needed for the larger number). We use one QH per endpoint, queue
2007 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
2008 *
2009 * ISO traffic uses "ISO TD" (itd) records, and (along with
2010 * interrupts) needs careful scheduling. Performance improvements can be
2011 * an ongoing challenge. That's in "ehci-sched.c".
2012 *
2013 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2014 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2015 * (b) special fields in qh entries or (c) split iso entries. TTs will
2016 * buffer low/full speed data so the host collects it at high speed.
2017 */
2018
2019/* fill a qtd, returning how much of the buffer we were able to queue up */
2020static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2021 dma_addr_t buf, size_t len, int token, int maxpacket)
2022{
2023 int i, count;
2024 u64 addr = buf;
2025
2026 /* one buffer entry per 4K ... first might be short or unaligned */
2027 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2028 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2029 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2030 if (likely(len < count)) /* ... iff needed */
2031 count = len;
2032 else {
2033 buf += 0x1000;
2034 buf &= ~0x0fff;
2035
2036 /* per-qtd limit: from 16K to 20K (best alignment) */
2037 for (i = 1; count < len && i < 5; i++) {
2038 addr = buf;
2039 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2040 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2041 (u32)(addr >> 32));
2042 buf += 0x1000;
2043 if ((count + 0x1000) < len)
2044 count += 0x1000;
2045 else
2046 count = len;
2047 }
2048
2049 /* short packets may only terminate transfers */
2050 if (count != len)
2051 count -= (count % maxpacket);
2052 }
2053 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2054 qtd->length = count;
2055
2056 return count;
2057}
2058
2059static inline void qh_update(struct fotg210_hcd *fotg210,
2060 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2061{
2062 struct fotg210_qh_hw *hw = qh->hw;
2063
2064 /* writes to an active overlay are unsafe */
2065 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2066
2067 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2068 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2069
2070 /* Except for control endpoints, we make hardware maintain data
2071 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2072 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2073 * ever clear it.
2074 */
2075 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2076 unsigned is_out, epnum;
2077
2078 is_out = qh->is_out;
2079 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2080 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2081 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2082 usb_settoggle(qh->dev, epnum, is_out, 1);
2083 }
2084 }
2085
2086 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2087}
2088
2089/* if it weren't for a common silicon quirk (writing the dummy into the qh
2090 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2091 * recovery (including urb dequeue) would need software changes to a QH...
2092 */
2093static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2094{
2095 struct fotg210_qtd *qtd;
2096
2097 if (list_empty(&qh->qtd_list))
2098 qtd = qh->dummy;
2099 else {
2100 qtd = list_entry(qh->qtd_list.next,
2101 struct fotg210_qtd, qtd_list);
2102 /*
2103 * first qtd may already be partially processed.
2104 * If we come here during unlink, the QH overlay region
2105 * might have reference to the just unlinked qtd. The
2106 * qtd is updated in qh_completions(). Update the QH
2107 * overlay here.
2108 */
2109 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2110 qh->hw->hw_qtd_next = qtd->hw_next;
2111 qtd = NULL;
2112 }
2113 }
2114
2115 if (qtd)
2116 qh_update(fotg210, qh, qtd);
2117}
2118
2119static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2120
2121static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2122 struct usb_host_endpoint *ep)
2123{
2124 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2125 struct fotg210_qh *qh = ep->hcpriv;
2126 unsigned long flags;
2127
2128 spin_lock_irqsave(&fotg210->lock, flags);
2129 qh->clearing_tt = 0;
2130 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2131 && fotg210->rh_state == FOTG210_RH_RUNNING)
2132 qh_link_async(fotg210, qh);
2133 spin_unlock_irqrestore(&fotg210->lock, flags);
2134}
2135
2136static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2137 struct fotg210_qh *qh, struct urb *urb, u32 token)
2138{
2139
2140 /* If an async split transaction gets an error or is unlinked,
2141 * the TT buffer may be left in an indeterminate state. We
2142 * have to clear the TT buffer.
2143 *
2144 * Note: this routine is never called for Isochronous transfers.
2145 */
2146 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2147 struct usb_device *tt = urb->dev->tt->hub;
2148
2149 dev_dbg(&tt->dev,
2150 "clear tt buffer port %d, a%d ep%d t%08x\n",
2151 urb->dev->ttport, urb->dev->devnum,
2152 usb_pipeendpoint(urb->pipe), token);
2153
2154 if (urb->dev->tt->hub !=
2155 fotg210_to_hcd(fotg210)->self.root_hub) {
2156 if (usb_hub_clear_tt_buffer(urb) == 0)
2157 qh->clearing_tt = 1;
2158 }
2159 }
2160}
2161
2162static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2163 size_t length, u32 token)
2164{
2165 int status = -EINPROGRESS;
2166
2167 /* count IN/OUT bytes, not SETUP (even short packets) */
2168 if (likely(QTD_PID(token) != 2))
2169 urb->actual_length += length - QTD_LENGTH(token);
2170
2171 /* don't modify error codes */
2172 if (unlikely(urb->unlinked))
2173 return status;
2174
2175 /* force cleanup after short read; not always an error */
2176 if (unlikely(IS_SHORT_READ(token)))
2177 status = -EREMOTEIO;
2178
2179 /* serious "can't proceed" faults reported by the hardware */
2180 if (token & QTD_STS_HALT) {
2181 if (token & QTD_STS_BABBLE) {
2182 /* FIXME "must" disable babbling device's port too */
2183 status = -EOVERFLOW;
2184 /* CERR nonzero + halt --> stall */
2185 } else if (QTD_CERR(token)) {
2186 status = -EPIPE;
2187
2188 /* In theory, more than one of the following bits can be set
2189 * since they are sticky and the transaction is retried.
2190 * Which to test first is rather arbitrary.
2191 */
2192 } else if (token & QTD_STS_MMF) {
2193 /* fs/ls interrupt xfer missed the complete-split */
2194 status = -EPROTO;
2195 } else if (token & QTD_STS_DBE) {
2196 status = (QTD_PID(token) == 1) /* IN ? */
2197 ? -ENOSR /* hc couldn't read data */
2198 : -ECOMM; /* hc couldn't write data */
2199 } else if (token & QTD_STS_XACT) {
2200 /* timeout, bad CRC, wrong PID, etc */
2201 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2202 urb->dev->devpath,
2203 usb_pipeendpoint(urb->pipe),
2204 usb_pipein(urb->pipe) ? "in" : "out");
2205 status = -EPROTO;
2206 } else { /* unknown */
2207 status = -EPROTO;
2208 }
2209
2210 fotg210_dbg(fotg210,
2211 "dev%d ep%d%s qtd token %08x --> status %d\n",
2212 usb_pipedevice(urb->pipe),
2213 usb_pipeendpoint(urb->pipe),
2214 usb_pipein(urb->pipe) ? "in" : "out",
2215 token, status);
2216 }
2217
2218 return status;
2219}
2220
2221static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2222 int status)
2223__releases(fotg210->lock)
2224__acquires(fotg210->lock)
2225{
2226 if (likely(urb->hcpriv != NULL)) {
2227 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2228
2229 /* S-mask in a QH means it's an interrupt urb */
2230 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2231
2232 /* ... update hc-wide periodic stats (for usbfs) */
2233 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2234 }
2235 }
2236
2237 if (unlikely(urb->unlinked)) {
2238 COUNT(fotg210->stats.unlink);
2239 } else {
2240 /* report non-error and short read status as zero */
2241 if (status == -EINPROGRESS || status == -EREMOTEIO)
2242 status = 0;
2243 COUNT(fotg210->stats.complete);
2244 }
2245
2246#ifdef FOTG210_URB_TRACE
2247 fotg210_dbg(fotg210,
2248 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2249 __func__, urb->dev->devpath, urb,
2250 usb_pipeendpoint(urb->pipe),
2251 usb_pipein(urb->pipe) ? "in" : "out",
2252 status,
2253 urb->actual_length, urb->transfer_buffer_length);
2254#endif
2255
2256 /* complete() can reenter this HCD */
2257 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2258 spin_unlock(&fotg210->lock);
2259 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2260 spin_lock(&fotg210->lock);
2261}
2262
2263static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2264
2265/* Process and free completed qtds for a qh, returning URBs to drivers.
2266 * Chases up to qh->hw_current. Returns number of completions called,
2267 * indicating how much "real" work we did.
2268 */
2269static unsigned qh_completions(struct fotg210_hcd *fotg210,
2270 struct fotg210_qh *qh)
2271{
2272 struct fotg210_qtd *last, *end = qh->dummy;
2273 struct fotg210_qtd *qtd, *tmp;
2274 int last_status;
2275 int stopped;
2276 unsigned count = 0;
2277 u8 state;
2278 struct fotg210_qh_hw *hw = qh->hw;
2279
2280 if (unlikely(list_empty(&qh->qtd_list)))
2281 return count;
2282
2283 /* completions (or tasks on other cpus) must never clobber HALT
2284 * till we've gone through and cleaned everything up, even when
2285 * they add urbs to this qh's queue or mark them for unlinking.
2286 *
2287 * NOTE: unlinking expects to be done in queue order.
2288 *
2289 * It's a bug for qh->qh_state to be anything other than
2290 * QH_STATE_IDLE, unless our caller is scan_async() or
2291 * scan_intr().
2292 */
2293 state = qh->qh_state;
2294 qh->qh_state = QH_STATE_COMPLETING;
2295 stopped = (state == QH_STATE_IDLE);
2296
2297rescan:
2298 last = NULL;
2299 last_status = -EINPROGRESS;
2300 qh->needs_rescan = 0;
2301
2302 /* remove de-activated QTDs from front of queue.
2303 * after faults (including short reads), cleanup this urb
2304 * then let the queue advance.
2305 * if queue is stopped, handles unlinks.
2306 */
2307 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2308 struct urb *urb;
2309 u32 token = 0;
2310
2311 urb = qtd->urb;
2312
2313 /* clean up any state from previous QTD ...*/
2314 if (last) {
2315 if (likely(last->urb != urb)) {
2316 fotg210_urb_done(fotg210, last->urb,
2317 last_status);
2318 count++;
2319 last_status = -EINPROGRESS;
2320 }
2321 fotg210_qtd_free(fotg210, last);
2322 last = NULL;
2323 }
2324
2325 /* ignore urbs submitted during completions we reported */
2326 if (qtd == end)
2327 break;
2328
2329 /* hardware copies qtd out of qh overlay */
2330 rmb();
2331 token = hc32_to_cpu(fotg210, qtd->hw_token);
2332
2333 /* always clean up qtds the hc de-activated */
2334retry_xacterr:
2335 if ((token & QTD_STS_ACTIVE) == 0) {
2336
2337 /* Report Data Buffer Error: non-fatal but useful */
2338 if (token & QTD_STS_DBE)
2339 fotg210_dbg(fotg210,
2340 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2341 urb, usb_endpoint_num(&urb->ep->desc),
2342 usb_endpoint_dir_in(&urb->ep->desc)
2343 ? "in" : "out",
2344 urb->transfer_buffer_length, qtd, qh);
2345
2346 /* on STALL, error, and short reads this urb must
2347 * complete and all its qtds must be recycled.
2348 */
2349 if ((token & QTD_STS_HALT) != 0) {
2350
2351 /* retry transaction errors until we
2352 * reach the software xacterr limit
2353 */
2354 if ((token & QTD_STS_XACT) &&
2355 QTD_CERR(token) == 0 &&
2356 ++qh->xacterrs < QH_XACTERR_MAX &&
2357 !urb->unlinked) {
2358 fotg210_dbg(fotg210,
2359 "detected XactErr len %zu/%zu retry %d\n",
2360 qtd->length - QTD_LENGTH(token),
2361 qtd->length,
2362 qh->xacterrs);
2363
2364 /* reset the token in the qtd and the
2365 * qh overlay (which still contains
2366 * the qtd) so that we pick up from
2367 * where we left off
2368 */
2369 token &= ~QTD_STS_HALT;
2370 token |= QTD_STS_ACTIVE |
2371 (FOTG210_TUNE_CERR << 10);
2372 qtd->hw_token = cpu_to_hc32(fotg210,
2373 token);
2374 wmb();
2375 hw->hw_token = cpu_to_hc32(fotg210,
2376 token);
2377 goto retry_xacterr;
2378 }
2379 stopped = 1;
2380
2381 /* magic dummy for some short reads; qh won't advance.
2382 * that silicon quirk can kick in with this dummy too.
2383 *
2384 * other short reads won't stop the queue, including
2385 * control transfers (status stage handles that) or
2386 * most other single-qtd reads ... the queue stops if
2387 * URB_SHORT_NOT_OK was set so the driver submitting
2388 * the urbs could clean it up.
2389 */
2390 } else if (IS_SHORT_READ(token) &&
2391 !(qtd->hw_alt_next &
2392 FOTG210_LIST_END(fotg210))) {
2393 stopped = 1;
2394 }
2395
2396 /* stop scanning when we reach qtds the hc is using */
2397 } else if (likely(!stopped
2398 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2399 break;
2400
2401 /* scan the whole queue for unlinks whenever it stops */
2402 } else {
2403 stopped = 1;
2404
2405 /* cancel everything if we halt, suspend, etc */
2406 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2407 last_status = -ESHUTDOWN;
2408
2409 /* this qtd is active; skip it unless a previous qtd
2410 * for its urb faulted, or its urb was canceled.
2411 */
2412 else if (last_status == -EINPROGRESS && !urb->unlinked)
2413 continue;
2414
2415 /* qh unlinked; token in overlay may be most current */
2416 if (state == QH_STATE_IDLE &&
2417 cpu_to_hc32(fotg210, qtd->qtd_dma)
2418 == hw->hw_current) {
2419 token = hc32_to_cpu(fotg210, hw->hw_token);
2420
2421 /* An unlink may leave an incomplete
2422 * async transaction in the TT buffer.
2423 * We have to clear it.
2424 */
2425 fotg210_clear_tt_buffer(fotg210, qh, urb,
2426 token);
2427 }
2428 }
2429
2430 /* unless we already know the urb's status, collect qtd status
2431 * and update count of bytes transferred. in common short read
2432 * cases with only one data qtd (including control transfers),
2433 * queue processing won't halt. but with two or more qtds (for
2434 * example, with a 32 KB transfer), when the first qtd gets a
2435 * short read the second must be removed by hand.
2436 */
2437 if (last_status == -EINPROGRESS) {
2438 last_status = qtd_copy_status(fotg210, urb,
2439 qtd->length, token);
2440 if (last_status == -EREMOTEIO &&
2441 (qtd->hw_alt_next &
2442 FOTG210_LIST_END(fotg210)))
2443 last_status = -EINPROGRESS;
2444
2445 /* As part of low/full-speed endpoint-halt processing
2446 * we must clear the TT buffer (11.17.5).
2447 */
2448 if (unlikely(last_status != -EINPROGRESS &&
2449 last_status != -EREMOTEIO)) {
2450 /* The TT's in some hubs malfunction when they
2451 * receive this request following a STALL (they
2452 * stop sending isochronous packets). Since a
2453 * STALL can't leave the TT buffer in a busy
2454 * state (if you believe Figures 11-48 - 11-51
2455 * in the USB 2.0 spec), we won't clear the TT
2456 * buffer in this case. Strictly speaking this
2457 * is a violation of the spec.
2458 */
2459 if (last_status != -EPIPE)
2460 fotg210_clear_tt_buffer(fotg210, qh,
2461 urb, token);
2462 }
2463 }
2464
2465 /* if we're removing something not at the queue head,
2466 * patch the hardware queue pointer.
2467 */
2468 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2469 last = list_entry(qtd->qtd_list.prev,
2470 struct fotg210_qtd, qtd_list);
2471 last->hw_next = qtd->hw_next;
2472 }
2473
2474 /* remove qtd; it's recycled after possible urb completion */
2475 list_del(&qtd->qtd_list);
2476 last = qtd;
2477
2478 /* reinit the xacterr counter for the next qtd */
2479 qh->xacterrs = 0;
2480 }
2481
2482 /* last urb's completion might still need calling */
2483 if (likely(last != NULL)) {
2484 fotg210_urb_done(fotg210, last->urb, last_status);
2485 count++;
2486 fotg210_qtd_free(fotg210, last);
2487 }
2488
2489 /* Do we need to rescan for URBs dequeued during a giveback? */
2490 if (unlikely(qh->needs_rescan)) {
2491 /* If the QH is already unlinked, do the rescan now. */
2492 if (state == QH_STATE_IDLE)
2493 goto rescan;
2494
2495 /* Otherwise we have to wait until the QH is fully unlinked.
2496 * Our caller will start an unlink if qh->needs_rescan is
2497 * set. But if an unlink has already started, nothing needs
2498 * to be done.
2499 */
2500 if (state != QH_STATE_LINKED)
2501 qh->needs_rescan = 0;
2502 }
2503
2504 /* restore original state; caller must unlink or relink */
2505 qh->qh_state = state;
2506
2507 /* be sure the hardware's done with the qh before refreshing
2508 * it after fault cleanup, or recovering from silicon wrongly
2509 * overlaying the dummy qtd (which reduces DMA chatter).
2510 */
2511 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2512 switch (state) {
2513 case QH_STATE_IDLE:
2514 qh_refresh(fotg210, qh);
2515 break;
2516 case QH_STATE_LINKED:
2517 /* We won't refresh a QH that's linked (after the HC
2518 * stopped the queue). That avoids a race:
2519 * - HC reads first part of QH;
2520 * - CPU updates that first part and the token;
2521 * - HC reads rest of that QH, including token
2522 * Result: HC gets an inconsistent image, and then
2523 * DMAs to/from the wrong memory (corrupting it).
2524 *
2525 * That should be rare for interrupt transfers,
2526 * except maybe high bandwidth ...
2527 */
2528
2529 /* Tell the caller to start an unlink */
2530 qh->needs_rescan = 1;
2531 break;
2532 /* otherwise, unlink already started */
2533 }
2534 }
2535
2536 return count;
2537}
2538
2539/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2540#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2541/* ... and packet size, for any kind of endpoint descriptor */
2542#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2543
2544/* reverse of qh_urb_transaction: free a list of TDs.
2545 * used for cleanup after errors, before HC sees an URB's TDs.
2546 */
2547static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2548 struct list_head *head)
2549{
2550 struct fotg210_qtd *qtd, *temp;
2551
2552 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2553 list_del(&qtd->qtd_list);
2554 fotg210_qtd_free(fotg210, qtd);
2555 }
2556}
2557
2558/* create a list of filled qtds for this URB; won't link into qh.
2559 */
2560static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2561 struct urb *urb, struct list_head *head, gfp_t flags)
2562{
2563 struct fotg210_qtd *qtd, *qtd_prev;
2564 dma_addr_t buf;
2565 int len, this_sg_len, maxpacket;
2566 int is_input;
2567 u32 token;
2568 int i;
2569 struct scatterlist *sg;
2570
2571 /*
2572 * URBs map to sequences of QTDs: one logical transaction
2573 */
2574 qtd = fotg210_qtd_alloc(fotg210, flags);
2575 if (unlikely(!qtd))
2576 return NULL;
2577 list_add_tail(&qtd->qtd_list, head);
2578 qtd->urb = urb;
2579
2580 token = QTD_STS_ACTIVE;
2581 token |= (FOTG210_TUNE_CERR << 10);
2582 /* for split transactions, SplitXState initialized to zero */
2583
2584 len = urb->transfer_buffer_length;
2585 is_input = usb_pipein(urb->pipe);
2586 if (usb_pipecontrol(urb->pipe)) {
2587 /* SETUP pid */
2588 qtd_fill(fotg210, qtd, urb->setup_dma,
2589 sizeof(struct usb_ctrlrequest),
2590 token | (2 /* "setup" */ << 8), 8);
2591
2592 /* ... and always at least one more pid */
2593 token ^= QTD_TOGGLE;
2594 qtd_prev = qtd;
2595 qtd = fotg210_qtd_alloc(fotg210, flags);
2596 if (unlikely(!qtd))
2597 goto cleanup;
2598 qtd->urb = urb;
2599 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2600 list_add_tail(&qtd->qtd_list, head);
2601
2602 /* for zero length DATA stages, STATUS is always IN */
2603 if (len == 0)
2604 token |= (1 /* "in" */ << 8);
2605 }
2606
2607 /*
2608 * data transfer stage: buffer setup
2609 */
2610 i = urb->num_mapped_sgs;
2611 if (len > 0 && i > 0) {
2612 sg = urb->sg;
2613 buf = sg_dma_address(sg);
2614
2615 /* urb->transfer_buffer_length may be smaller than the
2616 * size of the scatterlist (or vice versa)
2617 */
2618 this_sg_len = min_t(int, sg_dma_len(sg), len);
2619 } else {
2620 sg = NULL;
2621 buf = urb->transfer_dma;
2622 this_sg_len = len;
2623 }
2624
2625 if (is_input)
2626 token |= (1 /* "in" */ << 8);
2627 /* else it's already initted to "out" pid (0 << 8) */
2628
2629 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2630
2631 /*
2632 * buffer gets wrapped in one or more qtds;
2633 * last one may be "short" (including zero len)
2634 * and may serve as a control status ack
2635 */
2636 for (;;) {
2637 int this_qtd_len;
2638
2639 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2640 maxpacket);
2641 this_sg_len -= this_qtd_len;
2642 len -= this_qtd_len;
2643 buf += this_qtd_len;
2644
2645 /*
2646 * short reads advance to a "magic" dummy instead of the next
2647 * qtd ... that forces the queue to stop, for manual cleanup.
2648 * (this will usually be overridden later.)
2649 */
2650 if (is_input)
2651 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2652
2653 /* qh makes control packets use qtd toggle; maybe switch it */
2654 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2655 token ^= QTD_TOGGLE;
2656
2657 if (likely(this_sg_len <= 0)) {
2658 if (--i <= 0 || len <= 0)
2659 break;
2660 sg = sg_next(sg);
2661 buf = sg_dma_address(sg);
2662 this_sg_len = min_t(int, sg_dma_len(sg), len);
2663 }
2664
2665 qtd_prev = qtd;
2666 qtd = fotg210_qtd_alloc(fotg210, flags);
2667 if (unlikely(!qtd))
2668 goto cleanup;
2669 qtd->urb = urb;
2670 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2671 list_add_tail(&qtd->qtd_list, head);
2672 }
2673
2674 /*
2675 * unless the caller requires manual cleanup after short reads,
2676 * have the alt_next mechanism keep the queue running after the
2677 * last data qtd (the only one, for control and most other cases).
2678 */
2679 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2680 usb_pipecontrol(urb->pipe)))
2681 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2682
2683 /*
2684 * control requests may need a terminating data "status" ack;
2685 * other OUT ones may need a terminating short packet
2686 * (zero length).
2687 */
2688 if (likely(urb->transfer_buffer_length != 0)) {
2689 int one_more = 0;
2690
2691 if (usb_pipecontrol(urb->pipe)) {
2692 one_more = 1;
2693 token ^= 0x0100; /* "in" <--> "out" */
2694 token |= QTD_TOGGLE; /* force DATA1 */
2695 } else if (usb_pipeout(urb->pipe)
2696 && (urb->transfer_flags & URB_ZERO_PACKET)
2697 && !(urb->transfer_buffer_length % maxpacket)) {
2698 one_more = 1;
2699 }
2700 if (one_more) {
2701 qtd_prev = qtd;
2702 qtd = fotg210_qtd_alloc(fotg210, flags);
2703 if (unlikely(!qtd))
2704 goto cleanup;
2705 qtd->urb = urb;
2706 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2707 list_add_tail(&qtd->qtd_list, head);
2708
2709 /* never any data in such packets */
2710 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2711 }
2712 }
2713
2714 /* by default, enable interrupt on urb completion */
2715 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2716 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2717 return head;
2718
2719cleanup:
2720 qtd_list_free(fotg210, urb, head);
2721 return NULL;
2722}
2723
2724/* Would be best to create all qh's from config descriptors,
2725 * when each interface/altsetting is established. Unlink
2726 * any previous qh and cancel its urbs first; endpoints are
2727 * implicitly reset then (data toggle too).
2728 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2729*/
2730
2731
2732/* Each QH holds a qtd list; a QH is used for everything except iso.
2733 *
2734 * For interrupt urbs, the scheduler must set the microframe scheduling
2735 * mask(s) each time the QH gets scheduled. For highspeed, that's
2736 * just one microframe in the s-mask. For split interrupt transactions
2737 * there are additional complications: c-mask, maybe FSTNs.
2738 */
2739static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2740 gfp_t flags)
2741{
2742 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2743 u32 info1 = 0, info2 = 0;
2744 int is_input, type;
2745 int maxp = 0;
2746 struct usb_tt *tt = urb->dev->tt;
2747 struct fotg210_qh_hw *hw;
2748
2749 if (!qh)
2750 return qh;
2751
2752 /*
2753 * init endpoint/device data for this QH
2754 */
2755 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2756 info1 |= usb_pipedevice(urb->pipe) << 0;
2757
2758 is_input = usb_pipein(urb->pipe);
2759 type = usb_pipetype(urb->pipe);
2760 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2761
2762 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2763 * acts like up to 3KB, but is built from smaller packets.
2764 */
2765 if (max_packet(maxp) > 1024) {
2766 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2767 max_packet(maxp));
2768 goto done;
2769 }
2770
2771 /* Compute interrupt scheduling parameters just once, and save.
2772 * - allowing for high bandwidth, how many nsec/uframe are used?
2773 * - split transactions need a second CSPLIT uframe; same question
2774 * - splits also need a schedule gap (for full/low speed I/O)
2775 * - qh has a polling interval
2776 *
2777 * For control/bulk requests, the HC or TT handles these.
2778 */
2779 if (type == PIPE_INTERRUPT) {
2780 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2781 is_input, 0,
2782 hb_mult(maxp) * max_packet(maxp)));
2783 qh->start = NO_FRAME;
2784
2785 if (urb->dev->speed == USB_SPEED_HIGH) {
2786 qh->c_usecs = 0;
2787 qh->gap_uf = 0;
2788
2789 qh->period = urb->interval >> 3;
2790 if (qh->period == 0 && urb->interval != 1) {
2791 /* NOTE interval 2 or 4 uframes could work.
2792 * But interval 1 scheduling is simpler, and
2793 * includes high bandwidth.
2794 */
2795 urb->interval = 1;
2796 } else if (qh->period > fotg210->periodic_size) {
2797 qh->period = fotg210->periodic_size;
2798 urb->interval = qh->period << 3;
2799 }
2800 } else {
2801 int think_time;
2802
2803 /* gap is f(FS/LS transfer times) */
2804 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2805 is_input, 0, maxp) / (125 * 1000);
2806
2807 /* FIXME this just approximates SPLIT/CSPLIT times */
2808 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2809 qh->c_usecs = qh->usecs + HS_USECS(0);
2810 qh->usecs = HS_USECS(1);
2811 } else { /* SPLIT+DATA, gap, CSPLIT */
2812 qh->usecs += HS_USECS(1);
2813 qh->c_usecs = HS_USECS(0);
2814 }
2815
2816 think_time = tt ? tt->think_time : 0;
2817 qh->tt_usecs = NS_TO_US(think_time +
2818 usb_calc_bus_time(urb->dev->speed,
2819 is_input, 0, max_packet(maxp)));
2820 qh->period = urb->interval;
2821 if (qh->period > fotg210->periodic_size) {
2822 qh->period = fotg210->periodic_size;
2823 urb->interval = qh->period;
2824 }
2825 }
2826 }
2827
2828 /* support for tt scheduling, and access to toggles */
2829 qh->dev = urb->dev;
2830
2831 /* using TT? */
2832 switch (urb->dev->speed) {
2833 case USB_SPEED_LOW:
2834 info1 |= QH_LOW_SPEED;
2835 /* FALL THROUGH */
2836
2837 case USB_SPEED_FULL:
2838 /* EPS 0 means "full" */
2839 if (type != PIPE_INTERRUPT)
2840 info1 |= (FOTG210_TUNE_RL_TT << 28);
2841 if (type == PIPE_CONTROL) {
2842 info1 |= QH_CONTROL_EP; /* for TT */
2843 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2844 }
2845 info1 |= maxp << 16;
2846
2847 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2848
2849 /* Some Freescale processors have an erratum in which the
2850 * port number in the queue head was 0..N-1 instead of 1..N.
2851 */
2852 if (fotg210_has_fsl_portno_bug(fotg210))
2853 info2 |= (urb->dev->ttport-1) << 23;
2854 else
2855 info2 |= urb->dev->ttport << 23;
2856
2857 /* set the address of the TT; for TDI's integrated
2858 * root hub tt, leave it zeroed.
2859 */
2860 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2861 info2 |= tt->hub->devnum << 16;
2862
2863 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2864
2865 break;
2866
2867 case USB_SPEED_HIGH: /* no TT involved */
2868 info1 |= QH_HIGH_SPEED;
2869 if (type == PIPE_CONTROL) {
2870 info1 |= (FOTG210_TUNE_RL_HS << 28);
2871 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2872 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2873 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2874 } else if (type == PIPE_BULK) {
2875 info1 |= (FOTG210_TUNE_RL_HS << 28);
2876 /* The USB spec says that high speed bulk endpoints
2877 * always use 512 byte maxpacket. But some device
2878 * vendors decided to ignore that, and MSFT is happy
2879 * to help them do so. So now people expect to use
2880 * such nonconformant devices with Linux too; sigh.
2881 */
2882 info1 |= max_packet(maxp) << 16;
2883 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2884 } else { /* PIPE_INTERRUPT */
2885 info1 |= max_packet(maxp) << 16;
2886 info2 |= hb_mult(maxp) << 30;
2887 }
2888 break;
2889 default:
2890 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2891 urb->dev->speed);
2892done:
2893 qh_destroy(fotg210, qh);
2894 return NULL;
2895 }
2896
2897 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2898
2899 /* init as live, toggle clear, advance to dummy */
2900 qh->qh_state = QH_STATE_IDLE;
2901 hw = qh->hw;
2902 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2903 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2904 qh->is_out = !is_input;
2905 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2906 qh_refresh(fotg210, qh);
2907 return qh;
2908}
2909
2910static void enable_async(struct fotg210_hcd *fotg210)
2911{
2912 if (fotg210->async_count++)
2913 return;
2914
2915 /* Stop waiting to turn off the async schedule */
2916 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2917
2918 /* Don't start the schedule until ASS is 0 */
2919 fotg210_poll_ASS(fotg210);
2920 turn_on_io_watchdog(fotg210);
2921}
2922
2923static void disable_async(struct fotg210_hcd *fotg210)
2924{
2925 if (--fotg210->async_count)
2926 return;
2927
2928 /* The async schedule and async_unlink list are supposed to be empty */
2929 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2930
2931 /* Don't turn off the schedule until ASS is 1 */
2932 fotg210_poll_ASS(fotg210);
2933}
2934
2935/* move qh (and its qtds) onto async queue; maybe enable queue. */
2936
2937static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2938{
2939 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2940 struct fotg210_qh *head;
2941
2942 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2943 if (unlikely(qh->clearing_tt))
2944 return;
2945
2946 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2947
2948 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2949 qh_refresh(fotg210, qh);
2950
2951 /* splice right after start */
2952 head = fotg210->async;
2953 qh->qh_next = head->qh_next;
2954 qh->hw->hw_next = head->hw->hw_next;
2955 wmb();
2956
2957 head->qh_next.qh = qh;
2958 head->hw->hw_next = dma;
2959
2960 qh->xacterrs = 0;
2961 qh->qh_state = QH_STATE_LINKED;
2962 /* qtd completions reported later by interrupt */
2963
2964 enable_async(fotg210);
2965}
2966
2967/* For control/bulk/interrupt, return QH with these TDs appended.
2968 * Allocates and initializes the QH if necessary.
2969 * Returns null if it can't allocate a QH it needs to.
2970 * If the QH has TDs (urbs) already, that's great.
2971 */
2972static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2973 struct urb *urb, struct list_head *qtd_list,
2974 int epnum, void **ptr)
2975{
2976 struct fotg210_qh *qh = NULL;
2977 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2978
2979 qh = (struct fotg210_qh *) *ptr;
2980 if (unlikely(qh == NULL)) {
2981 /* can't sleep here, we have fotg210->lock... */
2982 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2983 *ptr = qh;
2984 }
2985 if (likely(qh != NULL)) {
2986 struct fotg210_qtd *qtd;
2987
2988 if (unlikely(list_empty(qtd_list)))
2989 qtd = NULL;
2990 else
2991 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2992 qtd_list);
2993
2994 /* control qh may need patching ... */
2995 if (unlikely(epnum == 0)) {
2996 /* usb_reset_device() briefly reverts to address 0 */
2997 if (usb_pipedevice(urb->pipe) == 0)
2998 qh->hw->hw_info1 &= ~qh_addr_mask;
2999 }
3000
3001 /* just one way to queue requests: swap with the dummy qtd.
3002 * only hc or qh_refresh() ever modify the overlay.
3003 */
3004 if (likely(qtd != NULL)) {
3005 struct fotg210_qtd *dummy;
3006 dma_addr_t dma;
3007 __hc32 token;
3008
3009 /* to avoid racing the HC, use the dummy td instead of
3010 * the first td of our list (becomes new dummy). both
3011 * tds stay deactivated until we're done, when the
3012 * HC is allowed to fetch the old dummy (4.10.2).
3013 */
3014 token = qtd->hw_token;
3015 qtd->hw_token = HALT_BIT(fotg210);
3016
3017 dummy = qh->dummy;
3018
3019 dma = dummy->qtd_dma;
3020 *dummy = *qtd;
3021 dummy->qtd_dma = dma;
3022
3023 list_del(&qtd->qtd_list);
3024 list_add(&dummy->qtd_list, qtd_list);
3025 list_splice_tail(qtd_list, &qh->qtd_list);
3026
3027 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3028 qh->dummy = qtd;
3029
3030 /* hc must see the new dummy at list end */
3031 dma = qtd->qtd_dma;
3032 qtd = list_entry(qh->qtd_list.prev,
3033 struct fotg210_qtd, qtd_list);
3034 qtd->hw_next = QTD_NEXT(fotg210, dma);
3035
3036 /* let the hc process these next qtds */
3037 wmb();
3038 dummy->hw_token = token;
3039
3040 urb->hcpriv = qh;
3041 }
3042 }
3043 return qh;
3044}
3045
3046static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3047 struct list_head *qtd_list, gfp_t mem_flags)
3048{
3049 int epnum;
3050 unsigned long flags;
3051 struct fotg210_qh *qh = NULL;
3052 int rc;
3053
3054 epnum = urb->ep->desc.bEndpointAddress;
3055
3056#ifdef FOTG210_URB_TRACE
3057 {
3058 struct fotg210_qtd *qtd;
3059
3060 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3061 fotg210_dbg(fotg210,
3062 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3063 __func__, urb->dev->devpath, urb,
3064 epnum & 0x0f, (epnum & USB_DIR_IN)
3065 ? "in" : "out",
3066 urb->transfer_buffer_length,
3067 qtd, urb->ep->hcpriv);
3068 }
3069#endif
3070
3071 spin_lock_irqsave(&fotg210->lock, flags);
3072 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3073 rc = -ESHUTDOWN;
3074 goto done;
3075 }
3076 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3077 if (unlikely(rc))
3078 goto done;
3079
3080 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3081 if (unlikely(qh == NULL)) {
3082 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3083 rc = -ENOMEM;
3084 goto done;
3085 }
3086
3087 /* Control/bulk operations through TTs don't need scheduling,
3088 * the HC and TT handle it when the TT has a buffer ready.
3089 */
3090 if (likely(qh->qh_state == QH_STATE_IDLE))
3091 qh_link_async(fotg210, qh);
3092done:
3093 spin_unlock_irqrestore(&fotg210->lock, flags);
3094 if (unlikely(qh == NULL))
3095 qtd_list_free(fotg210, urb, qtd_list);
3096 return rc;
3097}
3098
3099static void single_unlink_async(struct fotg210_hcd *fotg210,
3100 struct fotg210_qh *qh)
3101{
3102 struct fotg210_qh *prev;
3103
3104 /* Add to the end of the list of QHs waiting for the next IAAD */
3105 qh->qh_state = QH_STATE_UNLINK;
3106 if (fotg210->async_unlink)
3107 fotg210->async_unlink_last->unlink_next = qh;
3108 else
3109 fotg210->async_unlink = qh;
3110 fotg210->async_unlink_last = qh;
3111
3112 /* Unlink it from the schedule */
3113 prev = fotg210->async;
3114 while (prev->qh_next.qh != qh)
3115 prev = prev->qh_next.qh;
3116
3117 prev->hw->hw_next = qh->hw->hw_next;
3118 prev->qh_next = qh->qh_next;
3119 if (fotg210->qh_scan_next == qh)
3120 fotg210->qh_scan_next = qh->qh_next.qh;
3121}
3122
3123static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3124{
3125 /*
3126 * Do nothing if an IAA cycle is already running or
3127 * if one will be started shortly.
3128 */
3129 if (fotg210->async_iaa || fotg210->async_unlinking)
3130 return;
3131
3132 /* Do all the waiting QHs at once */
3133 fotg210->async_iaa = fotg210->async_unlink;
3134 fotg210->async_unlink = NULL;
3135
3136 /* If the controller isn't running, we don't have to wait for it */
3137 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3138 if (!nested) /* Avoid recursion */
3139 end_unlink_async(fotg210);
3140
3141 /* Otherwise start a new IAA cycle */
3142 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3143 /* Make sure the unlinks are all visible to the hardware */
3144 wmb();
3145
3146 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3147 &fotg210->regs->command);
3148 fotg210_readl(fotg210, &fotg210->regs->command);
3149 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3150 true);
3151 }
3152}
3153
3154/* the async qh for the qtds being unlinked are now gone from the HC */
3155
3156static void end_unlink_async(struct fotg210_hcd *fotg210)
3157{
3158 struct fotg210_qh *qh;
3159
3160 /* Process the idle QHs */
3161restart:
3162 fotg210->async_unlinking = true;
3163 while (fotg210->async_iaa) {
3164 qh = fotg210->async_iaa;
3165 fotg210->async_iaa = qh->unlink_next;
3166 qh->unlink_next = NULL;
3167
3168 qh->qh_state = QH_STATE_IDLE;
3169 qh->qh_next.qh = NULL;
3170
3171 qh_completions(fotg210, qh);
3172 if (!list_empty(&qh->qtd_list) &&
3173 fotg210->rh_state == FOTG210_RH_RUNNING)
3174 qh_link_async(fotg210, qh);
3175 disable_async(fotg210);
3176 }
3177 fotg210->async_unlinking = false;
3178
3179 /* Start a new IAA cycle if any QHs are waiting for it */
3180 if (fotg210->async_unlink) {
3181 start_iaa_cycle(fotg210, true);
3182 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3183 goto restart;
3184 }
3185}
3186
3187static void unlink_empty_async(struct fotg210_hcd *fotg210)
3188{
3189 struct fotg210_qh *qh, *next;
3190 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3191 bool check_unlinks_later = false;
3192
3193 /* Unlink all the async QHs that have been empty for a timer cycle */
3194 next = fotg210->async->qh_next.qh;
3195 while (next) {
3196 qh = next;
3197 next = qh->qh_next.qh;
3198
3199 if (list_empty(&qh->qtd_list) &&
3200 qh->qh_state == QH_STATE_LINKED) {
3201 if (!stopped && qh->unlink_cycle ==
3202 fotg210->async_unlink_cycle)
3203 check_unlinks_later = true;
3204 else
3205 single_unlink_async(fotg210, qh);
3206 }
3207 }
3208
3209 /* Start a new IAA cycle if any QHs are waiting for it */
3210 if (fotg210->async_unlink)
3211 start_iaa_cycle(fotg210, false);
3212
3213 /* QHs that haven't been empty for long enough will be handled later */
3214 if (check_unlinks_later) {
3215 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3216 true);
3217 ++fotg210->async_unlink_cycle;
3218 }
3219}
3220
3221/* makes sure the async qh will become idle */
3222/* caller must own fotg210->lock */
3223
3224static void start_unlink_async(struct fotg210_hcd *fotg210,
3225 struct fotg210_qh *qh)
3226{
3227 /*
3228 * If the QH isn't linked then there's nothing we can do
3229 * unless we were called during a giveback, in which case
3230 * qh_completions() has to deal with it.
3231 */
3232 if (qh->qh_state != QH_STATE_LINKED) {
3233 if (qh->qh_state == QH_STATE_COMPLETING)
3234 qh->needs_rescan = 1;
3235 return;
3236 }
3237
3238 single_unlink_async(fotg210, qh);
3239 start_iaa_cycle(fotg210, false);
3240}
3241
3242static void scan_async(struct fotg210_hcd *fotg210)
3243{
3244 struct fotg210_qh *qh;
3245 bool check_unlinks_later = false;
3246
3247 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3248 while (fotg210->qh_scan_next) {
3249 qh = fotg210->qh_scan_next;
3250 fotg210->qh_scan_next = qh->qh_next.qh;
3251rescan:
3252 /* clean any finished work for this qh */
3253 if (!list_empty(&qh->qtd_list)) {
3254 int temp;
3255
3256 /*
3257 * Unlinks could happen here; completion reporting
3258 * drops the lock. That's why fotg210->qh_scan_next
3259 * always holds the next qh to scan; if the next qh
3260 * gets unlinked then fotg210->qh_scan_next is adjusted
3261 * in single_unlink_async().
3262 */
3263 temp = qh_completions(fotg210, qh);
3264 if (qh->needs_rescan) {
3265 start_unlink_async(fotg210, qh);
3266 } else if (list_empty(&qh->qtd_list)
3267 && qh->qh_state == QH_STATE_LINKED) {
3268 qh->unlink_cycle = fotg210->async_unlink_cycle;
3269 check_unlinks_later = true;
3270 } else if (temp != 0)
3271 goto rescan;
3272 }
3273 }
3274
3275 /*
3276 * Unlink empty entries, reducing DMA usage as well
3277 * as HCD schedule-scanning costs. Delay for any qh
3278 * we just scanned, there's a not-unusual case that it
3279 * doesn't stay idle for long.
3280 */
3281 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3282 !(fotg210->enabled_hrtimer_events &
3283 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3284 fotg210_enable_event(fotg210,
3285 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3286 ++fotg210->async_unlink_cycle;
3287 }
3288}
3289/* EHCI scheduled transaction support: interrupt, iso, split iso
3290 * These are called "periodic" transactions in the EHCI spec.
3291 *
3292 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3293 * with the "asynchronous" transaction support (control/bulk transfers).
3294 * The only real difference is in how interrupt transfers are scheduled.
3295 *
3296 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3297 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3298 * pre-calculated schedule data to make appending to the queue be quick.
3299 */
3300static int fotg210_get_frame(struct usb_hcd *hcd);
3301
3302/* periodic_next_shadow - return "next" pointer on shadow list
3303 * @periodic: host pointer to qh/itd
3304 * @tag: hardware tag for type of this record
3305 */
3306static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3307 union fotg210_shadow *periodic, __hc32 tag)
3308{
3309 switch (hc32_to_cpu(fotg210, tag)) {
3310 case Q_TYPE_QH:
3311 return &periodic->qh->qh_next;
3312 case Q_TYPE_FSTN:
3313 return &periodic->fstn->fstn_next;
3314 default:
3315 return &periodic->itd->itd_next;
3316 }
3317}
3318
3319static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3320 union fotg210_shadow *periodic, __hc32 tag)
3321{
3322 switch (hc32_to_cpu(fotg210, tag)) {
3323 /* our fotg210_shadow.qh is actually software part */
3324 case Q_TYPE_QH:
3325 return &periodic->qh->hw->hw_next;
3326 /* others are hw parts */
3327 default:
3328 return periodic->hw_next;
3329 }
3330}
3331
3332/* caller must hold fotg210->lock */
3333static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3334 void *ptr)
3335{
3336 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3337 __hc32 *hw_p = &fotg210->periodic[frame];
3338 union fotg210_shadow here = *prev_p;
3339
3340 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3341 while (here.ptr && here.ptr != ptr) {
3342 prev_p = periodic_next_shadow(fotg210, prev_p,
3343 Q_NEXT_TYPE(fotg210, *hw_p));
3344 hw_p = shadow_next_periodic(fotg210, &here,
3345 Q_NEXT_TYPE(fotg210, *hw_p));
3346 here = *prev_p;
3347 }
3348 /* an interrupt entry (at list end) could have been shared */
3349 if (!here.ptr)
3350 return;
3351
3352 /* update shadow and hardware lists ... the old "next" pointers
3353 * from ptr may still be in use, the caller updates them.
3354 */
3355 *prev_p = *periodic_next_shadow(fotg210, &here,
3356 Q_NEXT_TYPE(fotg210, *hw_p));
3357
3358 *hw_p = *shadow_next_periodic(fotg210, &here,
3359 Q_NEXT_TYPE(fotg210, *hw_p));
3360}
3361
3362/* how many of the uframe's 125 usecs are allocated? */
3363static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3364 unsigned frame, unsigned uframe)
3365{
3366 __hc32 *hw_p = &fotg210->periodic[frame];
3367 union fotg210_shadow *q = &fotg210->pshadow[frame];
3368 unsigned usecs = 0;
3369 struct fotg210_qh_hw *hw;
3370
3371 while (q->ptr) {
3372 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3373 case Q_TYPE_QH:
3374 hw = q->qh->hw;
3375 /* is it in the S-mask? */
3376 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3377 usecs += q->qh->usecs;
3378 /* ... or C-mask? */
3379 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3380 1 << (8 + uframe)))
3381 usecs += q->qh->c_usecs;
3382 hw_p = &hw->hw_next;
3383 q = &q->qh->qh_next;
3384 break;
3385 /* case Q_TYPE_FSTN: */
3386 default:
3387 /* for "save place" FSTNs, count the relevant INTR
3388 * bandwidth from the previous frame
3389 */
3390 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3391 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3392
3393 hw_p = &q->fstn->hw_next;
3394 q = &q->fstn->fstn_next;
3395 break;
3396 case Q_TYPE_ITD:
3397 if (q->itd->hw_transaction[uframe])
3398 usecs += q->itd->stream->usecs;
3399 hw_p = &q->itd->hw_next;
3400 q = &q->itd->itd_next;
3401 break;
3402 }
3403 }
3404 if (usecs > fotg210->uframe_periodic_max)
3405 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3406 frame * 8 + uframe, usecs);
3407 return usecs;
3408}
3409
3410static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3411{
3412 if (!dev1->tt || !dev2->tt)
3413 return 0;
3414 if (dev1->tt != dev2->tt)
3415 return 0;
3416 if (dev1->tt->multi)
3417 return dev1->ttport == dev2->ttport;
3418 else
3419 return 1;
3420}
3421
3422/* return true iff the device's transaction translator is available
3423 * for a periodic transfer starting at the specified frame, using
3424 * all the uframes in the mask.
3425 */
3426static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3427 struct usb_device *dev, unsigned frame, u32 uf_mask)
3428{
3429 if (period == 0) /* error */
3430 return 0;
3431
3432 /* note bandwidth wastage: split never follows csplit
3433 * (different dev or endpoint) until the next uframe.
3434 * calling convention doesn't make that distinction.
3435 */
3436 for (; frame < fotg210->periodic_size; frame += period) {
3437 union fotg210_shadow here;
3438 __hc32 type;
3439 struct fotg210_qh_hw *hw;
3440
3441 here = fotg210->pshadow[frame];
3442 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3443 while (here.ptr) {
3444 switch (hc32_to_cpu(fotg210, type)) {
3445 case Q_TYPE_ITD:
3446 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3447 here = here.itd->itd_next;
3448 continue;
3449 case Q_TYPE_QH:
3450 hw = here.qh->hw;
3451 if (same_tt(dev, here.qh->dev)) {
3452 u32 mask;
3453
3454 mask = hc32_to_cpu(fotg210,
3455 hw->hw_info2);
3456 /* "knows" no gap is needed */
3457 mask |= mask >> 8;
3458 if (mask & uf_mask)
3459 break;
3460 }
3461 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3462 here = here.qh->qh_next;
3463 continue;
3464 /* case Q_TYPE_FSTN: */
3465 default:
3466 fotg210_dbg(fotg210,
3467 "periodic frame %d bogus type %d\n",
3468 frame, type);
3469 }
3470
3471 /* collision or error */
3472 return 0;
3473 }
3474 }
3475
3476 /* no collision */
3477 return 1;
3478}
3479
3480static void enable_periodic(struct fotg210_hcd *fotg210)
3481{
3482 if (fotg210->periodic_count++)
3483 return;
3484
3485 /* Stop waiting to turn off the periodic schedule */
3486 fotg210->enabled_hrtimer_events &=
3487 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3488
3489 /* Don't start the schedule until PSS is 0 */
3490 fotg210_poll_PSS(fotg210);
3491 turn_on_io_watchdog(fotg210);
3492}
3493
3494static void disable_periodic(struct fotg210_hcd *fotg210)
3495{
3496 if (--fotg210->periodic_count)
3497 return;
3498
3499 /* Don't turn off the schedule until PSS is 1 */
3500 fotg210_poll_PSS(fotg210);
3501}
3502
3503/* periodic schedule slots have iso tds (normal or split) first, then a
3504 * sparse tree for active interrupt transfers.
3505 *
3506 * this just links in a qh; caller guarantees uframe masks are set right.
3507 * no FSTN support (yet; fotg210 0.96+)
3508 */
3509static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3510{
3511 unsigned i;
3512 unsigned period = qh->period;
3513
3514 dev_dbg(&qh->dev->dev,
3515 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3516 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3517 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3518 qh->c_usecs);
3519
3520 /* high bandwidth, or otherwise every microframe */
3521 if (period == 0)
3522 period = 1;
3523
3524 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3525 union fotg210_shadow *prev = &fotg210->pshadow[i];
3526 __hc32 *hw_p = &fotg210->periodic[i];
3527 union fotg210_shadow here = *prev;
3528 __hc32 type = 0;
3529
3530 /* skip the iso nodes at list head */
3531 while (here.ptr) {
3532 type = Q_NEXT_TYPE(fotg210, *hw_p);
3533 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3534 break;
3535 prev = periodic_next_shadow(fotg210, prev, type);
3536 hw_p = shadow_next_periodic(fotg210, &here, type);
3537 here = *prev;
3538 }
3539
3540 /* sorting each branch by period (slow-->fast)
3541 * enables sharing interior tree nodes
3542 */
3543 while (here.ptr && qh != here.qh) {
3544 if (qh->period > here.qh->period)
3545 break;
3546 prev = &here.qh->qh_next;
3547 hw_p = &here.qh->hw->hw_next;
3548 here = *prev;
3549 }
3550 /* link in this qh, unless some earlier pass did that */
3551 if (qh != here.qh) {
3552 qh->qh_next = here;
3553 if (here.qh)
3554 qh->hw->hw_next = *hw_p;
3555 wmb();
3556 prev->qh = qh;
3557 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3558 }
3559 }
3560 qh->qh_state = QH_STATE_LINKED;
3561 qh->xacterrs = 0;
3562
3563 /* update per-qh bandwidth for usbfs */
3564 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3565 ? ((qh->usecs + qh->c_usecs) / qh->period)
3566 : (qh->usecs * 8);
3567
3568 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3569
3570 /* maybe enable periodic schedule processing */
3571 ++fotg210->intr_count;
3572 enable_periodic(fotg210);
3573}
3574
3575static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3576 struct fotg210_qh *qh)
3577{
3578 unsigned i;
3579 unsigned period;
3580
3581 /*
3582 * If qh is for a low/full-speed device, simply unlinking it
3583 * could interfere with an ongoing split transaction. To unlink
3584 * it safely would require setting the QH_INACTIVATE bit and
3585 * waiting at least one frame, as described in EHCI 4.12.2.5.
3586 *
3587 * We won't bother with any of this. Instead, we assume that the
3588 * only reason for unlinking an interrupt QH while the current URB
3589 * is still active is to dequeue all the URBs (flush the whole
3590 * endpoint queue).
3591 *
3592 * If rebalancing the periodic schedule is ever implemented, this
3593 * approach will no longer be valid.
3594 */
3595
3596 /* high bandwidth, or otherwise part of every microframe */
3597 period = qh->period;
3598 if (!period)
3599 period = 1;
3600
3601 for (i = qh->start; i < fotg210->periodic_size; i += period)
3602 periodic_unlink(fotg210, i, qh);
3603
3604 /* update per-qh bandwidth for usbfs */
3605 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3606 ? ((qh->usecs + qh->c_usecs) / qh->period)
3607 : (qh->usecs * 8);
3608
3609 dev_dbg(&qh->dev->dev,
3610 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3611 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3612 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3613 qh->c_usecs);
3614
3615 /* qh->qh_next still "live" to HC */
3616 qh->qh_state = QH_STATE_UNLINK;
3617 qh->qh_next.ptr = NULL;
3618
3619 if (fotg210->qh_scan_next == qh)
3620 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3621 struct fotg210_qh, intr_node);
3622 list_del(&qh->intr_node);
3623}
3624
3625static void start_unlink_intr(struct fotg210_hcd *fotg210,
3626 struct fotg210_qh *qh)
3627{
3628 /* If the QH isn't linked then there's nothing we can do
3629 * unless we were called during a giveback, in which case
3630 * qh_completions() has to deal with it.
3631 */
3632 if (qh->qh_state != QH_STATE_LINKED) {
3633 if (qh->qh_state == QH_STATE_COMPLETING)
3634 qh->needs_rescan = 1;
3635 return;
3636 }
3637
3638 qh_unlink_periodic(fotg210, qh);
3639
3640 /* Make sure the unlinks are visible before starting the timer */
3641 wmb();
3642
3643 /*
3644 * The EHCI spec doesn't say how long it takes the controller to
3645 * stop accessing an unlinked interrupt QH. The timer delay is
3646 * 9 uframes; presumably that will be long enough.
3647 */
3648 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3649
3650 /* New entries go at the end of the intr_unlink list */
3651 if (fotg210->intr_unlink)
3652 fotg210->intr_unlink_last->unlink_next = qh;
3653 else
3654 fotg210->intr_unlink = qh;
3655 fotg210->intr_unlink_last = qh;
3656
3657 if (fotg210->intr_unlinking)
3658 ; /* Avoid recursive calls */
3659 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3660 fotg210_handle_intr_unlinks(fotg210);
3661 else if (fotg210->intr_unlink == qh) {
3662 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3663 true);
3664 ++fotg210->intr_unlink_cycle;
3665 }
3666}
3667
3668static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3669{
3670 struct fotg210_qh_hw *hw = qh->hw;
3671 int rc;
3672
3673 qh->qh_state = QH_STATE_IDLE;
3674 hw->hw_next = FOTG210_LIST_END(fotg210);
3675
3676 qh_completions(fotg210, qh);
3677
3678 /* reschedule QH iff another request is queued */
3679 if (!list_empty(&qh->qtd_list) &&
3680 fotg210->rh_state == FOTG210_RH_RUNNING) {
3681 rc = qh_schedule(fotg210, qh);
3682
3683 /* An error here likely indicates handshake failure
3684 * or no space left in the schedule. Neither fault
3685 * should happen often ...
3686 *
3687 * FIXME kill the now-dysfunctional queued urbs
3688 */
3689 if (rc != 0)
3690 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3691 qh, rc);
3692 }
3693
3694 /* maybe turn off periodic schedule */
3695 --fotg210->intr_count;
3696 disable_periodic(fotg210);
3697}
3698
3699static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3700 unsigned uframe, unsigned period, unsigned usecs)
3701{
3702 int claimed;
3703
3704 /* complete split running into next frame?
3705 * given FSTN support, we could sometimes check...
3706 */
3707 if (uframe >= 8)
3708 return 0;
3709
3710 /* convert "usecs we need" to "max already claimed" */
3711 usecs = fotg210->uframe_periodic_max - usecs;
3712
3713 /* we "know" 2 and 4 uframe intervals were rejected; so
3714 * for period 0, check _every_ microframe in the schedule.
3715 */
3716 if (unlikely(period == 0)) {
3717 do {
3718 for (uframe = 0; uframe < 7; uframe++) {
3719 claimed = periodic_usecs(fotg210, frame,
3720 uframe);
3721 if (claimed > usecs)
3722 return 0;
3723 }
3724 } while ((frame += 1) < fotg210->periodic_size);
3725
3726 /* just check the specified uframe, at that period */
3727 } else {
3728 do {
3729 claimed = periodic_usecs(fotg210, frame, uframe);
3730 if (claimed > usecs)
3731 return 0;
3732 } while ((frame += period) < fotg210->periodic_size);
3733 }
3734
3735 /* success! */
3736 return 1;
3737}
3738
3739static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3740 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3741{
3742 int retval = -ENOSPC;
3743 u8 mask = 0;
3744
3745 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3746 goto done;
3747
3748 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3749 goto done;
3750 if (!qh->c_usecs) {
3751 retval = 0;
3752 *c_maskp = 0;
3753 goto done;
3754 }
3755
3756 /* Make sure this tt's buffer is also available for CSPLITs.
3757 * We pessimize a bit; probably the typical full speed case
3758 * doesn't need the second CSPLIT.
3759 *
3760 * NOTE: both SPLIT and CSPLIT could be checked in just
3761 * one smart pass...
3762 */
3763 mask = 0x03 << (uframe + qh->gap_uf);
3764 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3765
3766 mask |= 1 << uframe;
3767 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3768 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3769 qh->period, qh->c_usecs))
3770 goto done;
3771 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3772 qh->period, qh->c_usecs))
3773 goto done;
3774 retval = 0;
3775 }
3776done:
3777 return retval;
3778}
3779
3780/* "first fit" scheduling policy used the first time through,
3781 * or when the previous schedule slot can't be re-used.
3782 */
3783static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3784{
3785 int status;
3786 unsigned uframe;
3787 __hc32 c_mask;
3788 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3789 struct fotg210_qh_hw *hw = qh->hw;
3790
3791 qh_refresh(fotg210, qh);
3792 hw->hw_next = FOTG210_LIST_END(fotg210);
3793 frame = qh->start;
3794
3795 /* reuse the previous schedule slots, if we can */
3796 if (frame < qh->period) {
3797 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3798 status = check_intr_schedule(fotg210, frame, --uframe,
3799 qh, &c_mask);
3800 } else {
3801 uframe = 0;
3802 c_mask = 0;
3803 status = -ENOSPC;
3804 }
3805
3806 /* else scan the schedule to find a group of slots such that all
3807 * uframes have enough periodic bandwidth available.
3808 */
3809 if (status) {
3810 /* "normal" case, uframing flexible except with splits */
3811 if (qh->period) {
3812 int i;
3813
3814 for (i = qh->period; status && i > 0; --i) {
3815 frame = ++fotg210->random_frame % qh->period;
3816 for (uframe = 0; uframe < 8; uframe++) {
3817 status = check_intr_schedule(fotg210,
3818 frame, uframe, qh,
3819 &c_mask);
3820 if (status == 0)
3821 break;
3822 }
3823 }
3824
3825 /* qh->period == 0 means every uframe */
3826 } else {
3827 frame = 0;
3828 status = check_intr_schedule(fotg210, 0, 0, qh,
3829 &c_mask);
3830 }
3831 if (status)
3832 goto done;
3833 qh->start = frame;
3834
3835 /* reset S-frame and (maybe) C-frame masks */
3836 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3837 hw->hw_info2 |= qh->period
3838 ? cpu_to_hc32(fotg210, 1 << uframe)
3839 : cpu_to_hc32(fotg210, QH_SMASK);
3840 hw->hw_info2 |= c_mask;
3841 } else
3842 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3843
3844 /* stuff into the periodic schedule */
3845 qh_link_periodic(fotg210, qh);
3846done:
3847 return status;
3848}
3849
3850static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3851 struct list_head *qtd_list, gfp_t mem_flags)
3852{
3853 unsigned epnum;
3854 unsigned long flags;
3855 struct fotg210_qh *qh;
3856 int status;
3857 struct list_head empty;
3858
3859 /* get endpoint and transfer/schedule data */
3860 epnum = urb->ep->desc.bEndpointAddress;
3861
3862 spin_lock_irqsave(&fotg210->lock, flags);
3863
3864 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3865 status = -ESHUTDOWN;
3866 goto done_not_linked;
3867 }
3868 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3869 if (unlikely(status))
3870 goto done_not_linked;
3871
3872 /* get qh and force any scheduling errors */
3873 INIT_LIST_HEAD(&empty);
3874 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3875 if (qh == NULL) {
3876 status = -ENOMEM;
3877 goto done;
3878 }
3879 if (qh->qh_state == QH_STATE_IDLE) {
3880 status = qh_schedule(fotg210, qh);
3881 if (status)
3882 goto done;
3883 }
3884
3885 /* then queue the urb's tds to the qh */
3886 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3887 BUG_ON(qh == NULL);
3888
3889 /* ... update usbfs periodic stats */
3890 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3891
3892done:
3893 if (unlikely(status))
3894 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3895done_not_linked:
3896 spin_unlock_irqrestore(&fotg210->lock, flags);
3897 if (status)
3898 qtd_list_free(fotg210, urb, qtd_list);
3899
3900 return status;
3901}
3902
3903static void scan_intr(struct fotg210_hcd *fotg210)
3904{
3905 struct fotg210_qh *qh;
3906
3907 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3908 &fotg210->intr_qh_list, intr_node) {
3909rescan:
3910 /* clean any finished work for this qh */
3911 if (!list_empty(&qh->qtd_list)) {
3912 int temp;
3913
3914 /*
3915 * Unlinks could happen here; completion reporting
3916 * drops the lock. That's why fotg210->qh_scan_next
3917 * always holds the next qh to scan; if the next qh
3918 * gets unlinked then fotg210->qh_scan_next is adjusted
3919 * in qh_unlink_periodic().
3920 */
3921 temp = qh_completions(fotg210, qh);
3922 if (unlikely(qh->needs_rescan ||
3923 (list_empty(&qh->qtd_list) &&
3924 qh->qh_state == QH_STATE_LINKED)))
3925 start_unlink_intr(fotg210, qh);
3926 else if (temp != 0)
3927 goto rescan;
3928 }
3929 }
3930}
3931
3932/* fotg210_iso_stream ops work with both ITD and SITD */
3933
3934static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3935{
3936 struct fotg210_iso_stream *stream;
3937
3938 stream = kzalloc(sizeof(*stream), mem_flags);
3939 if (likely(stream != NULL)) {
3940 INIT_LIST_HEAD(&stream->td_list);
3941 INIT_LIST_HEAD(&stream->free_list);
3942 stream->next_uframe = -1;
3943 }
3944 return stream;
3945}
3946
3947static void iso_stream_init(struct fotg210_hcd *fotg210,
3948 struct fotg210_iso_stream *stream, struct usb_device *dev,
3949 int pipe, unsigned interval)
3950{
3951 u32 buf1;
3952 unsigned epnum, maxp;
3953 int is_input;
3954 long bandwidth;
3955 unsigned multi;
3956
3957 /*
3958 * this might be a "high bandwidth" highspeed endpoint,
3959 * as encoded in the ep descriptor's wMaxPacket field
3960 */
3961 epnum = usb_pipeendpoint(pipe);
3962 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3963 maxp = usb_maxpacket(dev, pipe, !is_input);
3964 if (is_input)
3965 buf1 = (1 << 11);
3966 else
3967 buf1 = 0;
3968
3969 maxp = max_packet(maxp);
3970 multi = hb_mult(maxp);
3971 buf1 |= maxp;
3972 maxp *= multi;
3973
3974 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3975 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3976 stream->buf2 = cpu_to_hc32(fotg210, multi);
3977
3978 /* usbfs wants to report the average usecs per frame tied up
3979 * when transfers on this endpoint are scheduled ...
3980 */
3981 if (dev->speed == USB_SPEED_FULL) {
3982 interval <<= 3;
3983 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3984 is_input, 1, maxp));
3985 stream->usecs /= 8;
3986 } else {
3987 stream->highspeed = 1;
3988 stream->usecs = HS_USECS_ISO(maxp);
3989 }
3990 bandwidth = stream->usecs * 8;
3991 bandwidth /= interval;
3992
3993 stream->bandwidth = bandwidth;
3994 stream->udev = dev;
3995 stream->bEndpointAddress = is_input | epnum;
3996 stream->interval = interval;
3997 stream->maxp = maxp;
3998}
3999
4000static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
4001 struct urb *urb)
4002{
4003 unsigned epnum;
4004 struct fotg210_iso_stream *stream;
4005 struct usb_host_endpoint *ep;
4006 unsigned long flags;
4007
4008 epnum = usb_pipeendpoint(urb->pipe);
4009 if (usb_pipein(urb->pipe))
4010 ep = urb->dev->ep_in[epnum];
4011 else
4012 ep = urb->dev->ep_out[epnum];
4013
4014 spin_lock_irqsave(&fotg210->lock, flags);
4015 stream = ep->hcpriv;
4016
4017 if (unlikely(stream == NULL)) {
4018 stream = iso_stream_alloc(GFP_ATOMIC);
4019 if (likely(stream != NULL)) {
4020 ep->hcpriv = stream;
4021 stream->ep = ep;
4022 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4023 urb->interval);
4024 }
4025
4026 /* if dev->ep[epnum] is a QH, hw is set */
4027 } else if (unlikely(stream->hw != NULL)) {
4028 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4029 urb->dev->devpath, epnum,
4030 usb_pipein(urb->pipe) ? "in" : "out");
4031 stream = NULL;
4032 }
4033
4034 spin_unlock_irqrestore(&fotg210->lock, flags);
4035 return stream;
4036}
4037
4038/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4039
4040static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4041 gfp_t mem_flags)
4042{
4043 struct fotg210_iso_sched *iso_sched;
4044 int size = sizeof(*iso_sched);
4045
4046 size += packets * sizeof(struct fotg210_iso_packet);
4047 iso_sched = kzalloc(size, mem_flags);
4048 if (likely(iso_sched != NULL))
4049 INIT_LIST_HEAD(&iso_sched->td_list);
4050
4051 return iso_sched;
4052}
4053
4054static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4055 struct fotg210_iso_sched *iso_sched,
4056 struct fotg210_iso_stream *stream, struct urb *urb)
4057{
4058 unsigned i;
4059 dma_addr_t dma = urb->transfer_dma;
4060
4061 /* how many uframes are needed for these transfers */
4062 iso_sched->span = urb->number_of_packets * stream->interval;
4063
4064 /* figure out per-uframe itd fields that we'll need later
4065 * when we fit new itds into the schedule.
4066 */
4067 for (i = 0; i < urb->number_of_packets; i++) {
4068 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4069 unsigned length;
4070 dma_addr_t buf;
4071 u32 trans;
4072
4073 length = urb->iso_frame_desc[i].length;
4074 buf = dma + urb->iso_frame_desc[i].offset;
4075
4076 trans = FOTG210_ISOC_ACTIVE;
4077 trans |= buf & 0x0fff;
4078 if (unlikely(((i + 1) == urb->number_of_packets))
4079 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4080 trans |= FOTG210_ITD_IOC;
4081 trans |= length << 16;
4082 uframe->transaction = cpu_to_hc32(fotg210, trans);
4083
4084 /* might need to cross a buffer page within a uframe */
4085 uframe->bufp = (buf & ~(u64)0x0fff);
4086 buf += length;
4087 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4088 uframe->cross = 1;
4089 }
4090}
4091
4092static void iso_sched_free(struct fotg210_iso_stream *stream,
4093 struct fotg210_iso_sched *iso_sched)
4094{
4095 if (!iso_sched)
4096 return;
4097 /* caller must hold fotg210->lock!*/
4098 list_splice(&iso_sched->td_list, &stream->free_list);
4099 kfree(iso_sched);
4100}
4101
4102static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4103 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4104{
4105 struct fotg210_itd *itd;
4106 dma_addr_t itd_dma;
4107 int i;
4108 unsigned num_itds;
4109 struct fotg210_iso_sched *sched;
4110 unsigned long flags;
4111
4112 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4113 if (unlikely(sched == NULL))
4114 return -ENOMEM;
4115
4116 itd_sched_init(fotg210, sched, stream, urb);
4117
4118 if (urb->interval < 8)
4119 num_itds = 1 + (sched->span + 7) / 8;
4120 else
4121 num_itds = urb->number_of_packets;
4122
4123 /* allocate/init ITDs */
4124 spin_lock_irqsave(&fotg210->lock, flags);
4125 for (i = 0; i < num_itds; i++) {
4126
4127 /*
4128 * Use iTDs from the free list, but not iTDs that may
4129 * still be in use by the hardware.
4130 */
4131 if (likely(!list_empty(&stream->free_list))) {
4132 itd = list_first_entry(&stream->free_list,
4133 struct fotg210_itd, itd_list);
4134 if (itd->frame == fotg210->now_frame)
4135 goto alloc_itd;
4136 list_del(&itd->itd_list);
4137 itd_dma = itd->itd_dma;
4138 } else {
4139alloc_itd:
4140 spin_unlock_irqrestore(&fotg210->lock, flags);
4141 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4142 &itd_dma);
4143 spin_lock_irqsave(&fotg210->lock, flags);
4144 if (!itd) {
4145 iso_sched_free(stream, sched);
4146 spin_unlock_irqrestore(&fotg210->lock, flags);
4147 return -ENOMEM;
4148 }
4149 }
4150
4151 memset(itd, 0, sizeof(*itd));
4152 itd->itd_dma = itd_dma;
4153 list_add(&itd->itd_list, &sched->td_list);
4154 }
4155 spin_unlock_irqrestore(&fotg210->lock, flags);
4156
4157 /* temporarily store schedule info in hcpriv */
4158 urb->hcpriv = sched;
4159 urb->error_count = 0;
4160 return 0;
4161}
4162
4163static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4164 u8 usecs, u32 period)
4165{
4166 uframe %= period;
4167 do {
4168 /* can't commit more than uframe_periodic_max usec */
4169 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4170 > (fotg210->uframe_periodic_max - usecs))
4171 return 0;
4172
4173 /* we know urb->interval is 2^N uframes */
4174 uframe += period;
4175 } while (uframe < mod);
4176 return 1;
4177}
4178
4179/* This scheduler plans almost as far into the future as it has actual
4180 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4181 * "as small as possible" to be cache-friendlier.) That limits the size
4182 * transfers you can stream reliably; avoid more than 64 msec per urb.
4183 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4184 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4185 * and other factors); or more than about 230 msec total (for portability,
4186 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4187 */
4188
4189#define SCHEDULE_SLOP 80 /* microframes */
4190
4191static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4192 struct fotg210_iso_stream *stream)
4193{
4194 u32 now, next, start, period, span;
4195 int status;
4196 unsigned mod = fotg210->periodic_size << 3;
4197 struct fotg210_iso_sched *sched = urb->hcpriv;
4198
4199 period = urb->interval;
4200 span = sched->span;
4201
4202 if (span > mod - SCHEDULE_SLOP) {
4203 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4204 status = -EFBIG;
4205 goto fail;
4206 }
4207
4208 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4209
4210 /* Typical case: reuse current schedule, stream is still active.
4211 * Hopefully there are no gaps from the host falling behind
4212 * (irq delays etc), but if there are we'll take the next
4213 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4214 */
4215 if (likely(!list_empty(&stream->td_list))) {
4216 u32 excess;
4217
4218 /* For high speed devices, allow scheduling within the
4219 * isochronous scheduling threshold. For full speed devices
4220 * and Intel PCI-based controllers, don't (work around for
4221 * Intel ICH9 bug).
4222 */
4223 if (!stream->highspeed && fotg210->fs_i_thresh)
4224 next = now + fotg210->i_thresh;
4225 else
4226 next = now;
4227
4228 /* Fell behind (by up to twice the slop amount)?
4229 * We decide based on the time of the last currently-scheduled
4230 * slot, not the time of the next available slot.
4231 */
4232 excess = (stream->next_uframe - period - next) & (mod - 1);
4233 if (excess >= mod - 2 * SCHEDULE_SLOP)
4234 start = next + excess - mod + period *
4235 DIV_ROUND_UP(mod - excess, period);
4236 else
4237 start = next + excess + period;
4238 if (start - now >= mod) {
4239 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4240 urb, start - now - period, period,
4241 mod);
4242 status = -EFBIG;
4243 goto fail;
4244 }
4245 }
4246
4247 /* need to schedule; when's the next (u)frame we could start?
4248 * this is bigger than fotg210->i_thresh allows; scheduling itself
4249 * isn't free, the slop should handle reasonably slow cpus. it
4250 * can also help high bandwidth if the dma and irq loads don't
4251 * jump until after the queue is primed.
4252 */
4253 else {
4254 int done = 0;
4255
4256 start = SCHEDULE_SLOP + (now & ~0x07);
4257
4258 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4259
4260 /* find a uframe slot with enough bandwidth.
4261 * Early uframes are more precious because full-speed
4262 * iso IN transfers can't use late uframes,
4263 * and therefore they should be allocated last.
4264 */
4265 next = start;
4266 start += period;
4267 do {
4268 start--;
4269 /* check schedule: enough space? */
4270 if (itd_slot_ok(fotg210, mod, start,
4271 stream->usecs, period))
4272 done = 1;
4273 } while (start > next && !done);
4274
4275 /* no room in the schedule */
4276 if (!done) {
4277 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4278 urb, now, now + mod);
4279 status = -ENOSPC;
4280 goto fail;
4281 }
4282 }
4283
4284 /* Tried to schedule too far into the future? */
4285 if (unlikely(start - now + span - period >=
4286 mod - 2 * SCHEDULE_SLOP)) {
4287 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4288 urb, start - now, span - period,
4289 mod - 2 * SCHEDULE_SLOP);
4290 status = -EFBIG;
4291 goto fail;
4292 }
4293
4294 stream->next_uframe = start & (mod - 1);
4295
4296 /* report high speed start in uframes; full speed, in frames */
4297 urb->start_frame = stream->next_uframe;
4298 if (!stream->highspeed)
4299 urb->start_frame >>= 3;
4300
4301 /* Make sure scan_isoc() sees these */
4302 if (fotg210->isoc_count == 0)
4303 fotg210->next_frame = now >> 3;
4304 return 0;
4305
4306fail:
4307 iso_sched_free(stream, sched);
4308 urb->hcpriv = NULL;
4309 return status;
4310}
4311
4312static inline void itd_init(struct fotg210_hcd *fotg210,
4313 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4314{
4315 int i;
4316
4317 /* it's been recently zeroed */
4318 itd->hw_next = FOTG210_LIST_END(fotg210);
4319 itd->hw_bufp[0] = stream->buf0;
4320 itd->hw_bufp[1] = stream->buf1;
4321 itd->hw_bufp[2] = stream->buf2;
4322
4323 for (i = 0; i < 8; i++)
4324 itd->index[i] = -1;
4325
4326 /* All other fields are filled when scheduling */
4327}
4328
4329static inline void itd_patch(struct fotg210_hcd *fotg210,
4330 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4331 unsigned index, u16 uframe)
4332{
4333 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4334 unsigned pg = itd->pg;
4335
4336 uframe &= 0x07;
4337 itd->index[uframe] = index;
4338
4339 itd->hw_transaction[uframe] = uf->transaction;
4340 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4341 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4342 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4343
4344 /* iso_frame_desc[].offset must be strictly increasing */
4345 if (unlikely(uf->cross)) {
4346 u64 bufp = uf->bufp + 4096;
4347
4348 itd->pg = ++pg;
4349 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4350 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4351 }
4352}
4353
4354static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4355 struct fotg210_itd *itd)
4356{
4357 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4358 __hc32 *hw_p = &fotg210->periodic[frame];
4359 union fotg210_shadow here = *prev;
4360 __hc32 type = 0;
4361
4362 /* skip any iso nodes which might belong to previous microframes */
4363 while (here.ptr) {
4364 type = Q_NEXT_TYPE(fotg210, *hw_p);
4365 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4366 break;
4367 prev = periodic_next_shadow(fotg210, prev, type);
4368 hw_p = shadow_next_periodic(fotg210, &here, type);
4369 here = *prev;
4370 }
4371
4372 itd->itd_next = here;
4373 itd->hw_next = *hw_p;
4374 prev->itd = itd;
4375 itd->frame = frame;
4376 wmb();
4377 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4378}
4379
4380/* fit urb's itds into the selected schedule slot; activate as needed */
4381static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4382 unsigned mod, struct fotg210_iso_stream *stream)
4383{
4384 int packet;
4385 unsigned next_uframe, uframe, frame;
4386 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4387 struct fotg210_itd *itd;
4388
4389 next_uframe = stream->next_uframe & (mod - 1);
4390
4391 if (unlikely(list_empty(&stream->td_list))) {
4392 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4393 += stream->bandwidth;
4394 fotg210_dbg(fotg210,
4395 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4396 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4397 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4398 urb->interval,
4399 next_uframe >> 3, next_uframe & 0x7);
4400 }
4401
4402 /* fill iTDs uframe by uframe */
4403 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4404 if (itd == NULL) {
4405 /* ASSERT: we have all necessary itds */
4406
4407 /* ASSERT: no itds for this endpoint in this uframe */
4408
4409 itd = list_entry(iso_sched->td_list.next,
4410 struct fotg210_itd, itd_list);
4411 list_move_tail(&itd->itd_list, &stream->td_list);
4412 itd->stream = stream;
4413 itd->urb = urb;
4414 itd_init(fotg210, stream, itd);
4415 }
4416
4417 uframe = next_uframe & 0x07;
4418 frame = next_uframe >> 3;
4419
4420 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4421
4422 next_uframe += stream->interval;
4423 next_uframe &= mod - 1;
4424 packet++;
4425
4426 /* link completed itds into the schedule */
4427 if (((next_uframe >> 3) != frame)
4428 || packet == urb->number_of_packets) {
4429 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4430 itd);
4431 itd = NULL;
4432 }
4433 }
4434 stream->next_uframe = next_uframe;
4435
4436 /* don't need that schedule data any more */
4437 iso_sched_free(stream, iso_sched);
4438 urb->hcpriv = NULL;
4439
4440 ++fotg210->isoc_count;
4441 enable_periodic(fotg210);
4442}
4443
4444#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4445 FOTG210_ISOC_XACTERR)
4446
4447/* Process and recycle a completed ITD. Return true iff its urb completed,
4448 * and hence its completion callback probably added things to the hardware
4449 * schedule.
4450 *
4451 * Note that we carefully avoid recycling this descriptor until after any
4452 * completion callback runs, so that it won't be reused quickly. That is,
4453 * assuming (a) no more than two urbs per frame on this endpoint, and also
4454 * (b) only this endpoint's completions submit URBs. It seems some silicon
4455 * corrupts things if you reuse completed descriptors very quickly...
4456 */
4457static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4458{
4459 struct urb *urb = itd->urb;
4460 struct usb_iso_packet_descriptor *desc;
4461 u32 t;
4462 unsigned uframe;
4463 int urb_index = -1;
4464 struct fotg210_iso_stream *stream = itd->stream;
4465 struct usb_device *dev;
4466 bool retval = false;
4467
4468 /* for each uframe with a packet */
4469 for (uframe = 0; uframe < 8; uframe++) {
4470 if (likely(itd->index[uframe] == -1))
4471 continue;
4472 urb_index = itd->index[uframe];
4473 desc = &urb->iso_frame_desc[urb_index];
4474
4475 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4476 itd->hw_transaction[uframe] = 0;
4477
4478 /* report transfer status */
4479 if (unlikely(t & ISO_ERRS)) {
4480 urb->error_count++;
4481 if (t & FOTG210_ISOC_BUF_ERR)
4482 desc->status = usb_pipein(urb->pipe)
4483 ? -ENOSR /* hc couldn't read */
4484 : -ECOMM; /* hc couldn't write */
4485 else if (t & FOTG210_ISOC_BABBLE)
4486 desc->status = -EOVERFLOW;
4487 else /* (t & FOTG210_ISOC_XACTERR) */
4488 desc->status = -EPROTO;
4489
4490 /* HC need not update length with this error */
4491 if (!(t & FOTG210_ISOC_BABBLE)) {
4492 desc->actual_length =
4493 fotg210_itdlen(urb, desc, t);
4494 urb->actual_length += desc->actual_length;
4495 }
4496 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4497 desc->status = 0;
4498 desc->actual_length = fotg210_itdlen(urb, desc, t);
4499 urb->actual_length += desc->actual_length;
4500 } else {
4501 /* URB was too late */
4502 desc->status = -EXDEV;
4503 }
4504 }
4505
4506 /* handle completion now? */
4507 if (likely((urb_index + 1) != urb->number_of_packets))
4508 goto done;
4509
4510 /* ASSERT: it's really the last itd for this urb
4511 * list_for_each_entry (itd, &stream->td_list, itd_list)
4512 * BUG_ON (itd->urb == urb);
4513 */
4514
4515 /* give urb back to the driver; completion often (re)submits */
4516 dev = urb->dev;
4517 fotg210_urb_done(fotg210, urb, 0);
4518 retval = true;
4519 urb = NULL;
4520
4521 --fotg210->isoc_count;
4522 disable_periodic(fotg210);
4523
4524 if (unlikely(list_is_singular(&stream->td_list))) {
4525 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4526 -= stream->bandwidth;
4527 fotg210_dbg(fotg210,
4528 "deschedule devp %s ep%d%s-iso\n",
4529 dev->devpath, stream->bEndpointAddress & 0x0f,
4530 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4531 }
4532
4533done:
4534 itd->urb = NULL;
4535
4536 /* Add to the end of the free list for later reuse */
4537 list_move_tail(&itd->itd_list, &stream->free_list);
4538
4539 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4540 if (list_empty(&stream->td_list)) {
4541 list_splice_tail_init(&stream->free_list,
4542 &fotg210->cached_itd_list);
4543 start_free_itds(fotg210);
4544 }
4545
4546 return retval;
4547}
4548
4549static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4550 gfp_t mem_flags)
4551{
4552 int status = -EINVAL;
4553 unsigned long flags;
4554 struct fotg210_iso_stream *stream;
4555
4556 /* Get iso_stream head */
4557 stream = iso_stream_find(fotg210, urb);
4558 if (unlikely(stream == NULL)) {
4559 fotg210_dbg(fotg210, "can't get iso stream\n");
4560 return -ENOMEM;
4561 }
4562 if (unlikely(urb->interval != stream->interval &&
4563 fotg210_port_speed(fotg210, 0) ==
4564 USB_PORT_STAT_HIGH_SPEED)) {
4565 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4566 stream->interval, urb->interval);
4567 goto done;
4568 }
4569
4570#ifdef FOTG210_URB_TRACE
4571 fotg210_dbg(fotg210,
4572 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4573 __func__, urb->dev->devpath, urb,
4574 usb_pipeendpoint(urb->pipe),
4575 usb_pipein(urb->pipe) ? "in" : "out",
4576 urb->transfer_buffer_length,
4577 urb->number_of_packets, urb->interval,
4578 stream);
4579#endif
4580
4581 /* allocate ITDs w/o locking anything */
4582 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4583 if (unlikely(status < 0)) {
4584 fotg210_dbg(fotg210, "can't init itds\n");
4585 goto done;
4586 }
4587
4588 /* schedule ... need to lock */
4589 spin_lock_irqsave(&fotg210->lock, flags);
4590 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4591 status = -ESHUTDOWN;
4592 goto done_not_linked;
4593 }
4594 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4595 if (unlikely(status))
4596 goto done_not_linked;
4597 status = iso_stream_schedule(fotg210, urb, stream);
4598 if (likely(status == 0))
4599 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4600 else
4601 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4602done_not_linked:
4603 spin_unlock_irqrestore(&fotg210->lock, flags);
4604done:
4605 return status;
4606}
4607
4608static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4609 unsigned now_frame, bool live)
4610{
4611 unsigned uf;
4612 bool modified;
4613 union fotg210_shadow q, *q_p;
4614 __hc32 type, *hw_p;
4615
4616 /* scan each element in frame's queue for completions */
4617 q_p = &fotg210->pshadow[frame];
4618 hw_p = &fotg210->periodic[frame];
4619 q.ptr = q_p->ptr;
4620 type = Q_NEXT_TYPE(fotg210, *hw_p);
4621 modified = false;
4622
4623 while (q.ptr) {
4624 switch (hc32_to_cpu(fotg210, type)) {
4625 case Q_TYPE_ITD:
4626 /* If this ITD is still active, leave it for
4627 * later processing ... check the next entry.
4628 * No need to check for activity unless the
4629 * frame is current.
4630 */
4631 if (frame == now_frame && live) {
4632 rmb();
4633 for (uf = 0; uf < 8; uf++) {
4634 if (q.itd->hw_transaction[uf] &
4635 ITD_ACTIVE(fotg210))
4636 break;
4637 }
4638 if (uf < 8) {
4639 q_p = &q.itd->itd_next;
4640 hw_p = &q.itd->hw_next;
4641 type = Q_NEXT_TYPE(fotg210,
4642 q.itd->hw_next);
4643 q = *q_p;
4644 break;
4645 }
4646 }
4647
4648 /* Take finished ITDs out of the schedule
4649 * and process them: recycle, maybe report
4650 * URB completion. HC won't cache the
4651 * pointer for much longer, if at all.
4652 */
4653 *q_p = q.itd->itd_next;
4654 *hw_p = q.itd->hw_next;
4655 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4656 wmb();
4657 modified = itd_complete(fotg210, q.itd);
4658 q = *q_p;
4659 break;
4660 default:
4661 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4662 type, frame, q.ptr);
4663 /* FALL THROUGH */
4664 case Q_TYPE_QH:
4665 case Q_TYPE_FSTN:
4666 /* End of the iTDs and siTDs */
4667 q.ptr = NULL;
4668 break;
4669 }
4670
4671 /* assume completion callbacks modify the queue */
4672 if (unlikely(modified && fotg210->isoc_count > 0))
4673 return -EINVAL;
4674 }
4675 return 0;
4676}
4677
4678static void scan_isoc(struct fotg210_hcd *fotg210)
4679{
4680 unsigned uf, now_frame, frame, ret;
4681 unsigned fmask = fotg210->periodic_size - 1;
4682 bool live;
4683
4684 /*
4685 * When running, scan from last scan point up to "now"
4686 * else clean up by scanning everything that's left.
4687 * Touches as few pages as possible: cache-friendly.
4688 */
4689 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4690 uf = fotg210_read_frame_index(fotg210);
4691 now_frame = (uf >> 3) & fmask;
4692 live = true;
4693 } else {
4694 now_frame = (fotg210->next_frame - 1) & fmask;
4695 live = false;
4696 }
4697 fotg210->now_frame = now_frame;
4698
4699 frame = fotg210->next_frame;
4700 for (;;) {
4701 ret = 1;
4702 while (ret != 0)
4703 ret = scan_frame_queue(fotg210, frame,
4704 now_frame, live);
4705
4706 /* Stop when we have reached the current frame */
4707 if (frame == now_frame)
4708 break;
4709 frame = (frame + 1) & fmask;
4710 }
4711 fotg210->next_frame = now_frame;
4712}
4713
4714/* Display / Set uframe_periodic_max
4715 */
4716static ssize_t show_uframe_periodic_max(struct device *dev,
4717 struct device_attribute *attr, char *buf)
4718{
4719 struct fotg210_hcd *fotg210;
4720 int n;
4721
4722 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4723 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4724 return n;
4725}
4726
4727
4728static ssize_t store_uframe_periodic_max(struct device *dev,
4729 struct device_attribute *attr, const char *buf, size_t count)
4730{
4731 struct fotg210_hcd *fotg210;
4732 unsigned uframe_periodic_max;
4733 unsigned frame, uframe;
4734 unsigned short allocated_max;
4735 unsigned long flags;
4736 ssize_t ret;
4737
4738 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4739 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4740 return -EINVAL;
4741
4742 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4743 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4744 uframe_periodic_max);
4745 return -EINVAL;
4746 }
4747
4748 ret = -EINVAL;
4749
4750 /*
4751 * lock, so that our checking does not race with possible periodic
4752 * bandwidth allocation through submitting new urbs.
4753 */
4754 spin_lock_irqsave(&fotg210->lock, flags);
4755
4756 /*
4757 * for request to decrease max periodic bandwidth, we have to check
4758 * every microframe in the schedule to see whether the decrease is
4759 * possible.
4760 */
4761 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4762 allocated_max = 0;
4763
4764 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4765 for (uframe = 0; uframe < 7; ++uframe)
4766 allocated_max = max(allocated_max,
4767 periodic_usecs(fotg210, frame,
4768 uframe));
4769
4770 if (allocated_max > uframe_periodic_max) {
4771 fotg210_info(fotg210,
4772 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4773 allocated_max, uframe_periodic_max);
4774 goto out_unlock;
4775 }
4776 }
4777
4778 /* increasing is always ok */
4779
4780 fotg210_info(fotg210,
4781 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4782 100 * uframe_periodic_max/125, uframe_periodic_max);
4783
4784 if (uframe_periodic_max != 100)
4785 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4786
4787 fotg210->uframe_periodic_max = uframe_periodic_max;
4788 ret = count;
4789
4790out_unlock:
4791 spin_unlock_irqrestore(&fotg210->lock, flags);
4792 return ret;
4793}
4794
4795static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4796 store_uframe_periodic_max);
4797
4798static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4799{
4800 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4801
4802 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4803}
4804
4805static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4806{
4807 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4808
4809 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4810}
4811/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4812 * The firmware seems to think that powering off is a wakeup event!
4813 * This routine turns off remote wakeup and everything else, on all ports.
4814 */
4815static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4816{
4817 u32 __iomem *status_reg = &fotg210->regs->port_status;
4818
4819 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4820}
4821
4822/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4823 * Must be called with interrupts enabled and the lock not held.
4824 */
4825static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4826{
4827 fotg210_halt(fotg210);
4828
4829 spin_lock_irq(&fotg210->lock);
4830 fotg210->rh_state = FOTG210_RH_HALTED;
4831 fotg210_turn_off_all_ports(fotg210);
4832 spin_unlock_irq(&fotg210->lock);
4833}
4834
4835/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4836 * This forcibly disables dma and IRQs, helping kexec and other cases
4837 * where the next system software may expect clean state.
4838 */
4839static void fotg210_shutdown(struct usb_hcd *hcd)
4840{
4841 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4842
4843 spin_lock_irq(&fotg210->lock);
4844 fotg210->shutdown = true;
4845 fotg210->rh_state = FOTG210_RH_STOPPING;
4846 fotg210->enabled_hrtimer_events = 0;
4847 spin_unlock_irq(&fotg210->lock);
4848
4849 fotg210_silence_controller(fotg210);
4850
4851 hrtimer_cancel(&fotg210->hrtimer);
4852}
4853
4854/* fotg210_work is called from some interrupts, timers, and so on.
4855 * it calls driver completion functions, after dropping fotg210->lock.
4856 */
4857static void fotg210_work(struct fotg210_hcd *fotg210)
4858{
4859 /* another CPU may drop fotg210->lock during a schedule scan while
4860 * it reports urb completions. this flag guards against bogus
4861 * attempts at re-entrant schedule scanning.
4862 */
4863 if (fotg210->scanning) {
4864 fotg210->need_rescan = true;
4865 return;
4866 }
4867 fotg210->scanning = true;
4868
4869rescan:
4870 fotg210->need_rescan = false;
4871 if (fotg210->async_count)
4872 scan_async(fotg210);
4873 if (fotg210->intr_count > 0)
4874 scan_intr(fotg210);
4875 if (fotg210->isoc_count > 0)
4876 scan_isoc(fotg210);
4877 if (fotg210->need_rescan)
4878 goto rescan;
4879 fotg210->scanning = false;
4880
4881 /* the IO watchdog guards against hardware or driver bugs that
4882 * misplace IRQs, and should let us run completely without IRQs.
4883 * such lossage has been observed on both VT6202 and VT8235.
4884 */
4885 turn_on_io_watchdog(fotg210);
4886}
4887
4888/* Called when the fotg210_hcd module is removed.
4889 */
4890static void fotg210_stop(struct usb_hcd *hcd)
4891{
4892 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4893
4894 fotg210_dbg(fotg210, "stop\n");
4895
4896 /* no more interrupts ... */
4897
4898 spin_lock_irq(&fotg210->lock);
4899 fotg210->enabled_hrtimer_events = 0;
4900 spin_unlock_irq(&fotg210->lock);
4901
4902 fotg210_quiesce(fotg210);
4903 fotg210_silence_controller(fotg210);
4904 fotg210_reset(fotg210);
4905
4906 hrtimer_cancel(&fotg210->hrtimer);
4907 remove_sysfs_files(fotg210);
4908 remove_debug_files(fotg210);
4909
4910 /* root hub is shut down separately (first, when possible) */
4911 spin_lock_irq(&fotg210->lock);
4912 end_free_itds(fotg210);
4913 spin_unlock_irq(&fotg210->lock);
4914 fotg210_mem_cleanup(fotg210);
4915
4916#ifdef FOTG210_STATS
4917 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4918 fotg210->stats.normal, fotg210->stats.error,
4919 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4920 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4921 fotg210->stats.complete, fotg210->stats.unlink);
4922#endif
4923
4924 dbg_status(fotg210, "fotg210_stop completed",
4925 fotg210_readl(fotg210, &fotg210->regs->status));
4926}
4927
4928/* one-time init, only for memory state */
4929static int hcd_fotg210_init(struct usb_hcd *hcd)
4930{
4931 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4932 u32 temp;
4933 int retval;
4934 u32 hcc_params;
4935 struct fotg210_qh_hw *hw;
4936
4937 spin_lock_init(&fotg210->lock);
4938
4939 /*
4940 * keep io watchdog by default, those good HCDs could turn off it later
4941 */
4942 fotg210->need_io_watchdog = 1;
4943
4944 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4945 fotg210->hrtimer.function = fotg210_hrtimer_func;
4946 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4947
4948 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4949
4950 /*
4951 * by default set standard 80% (== 100 usec/uframe) max periodic
4952 * bandwidth as required by USB 2.0
4953 */
4954 fotg210->uframe_periodic_max = 100;
4955
4956 /*
4957 * hw default: 1K periodic list heads, one per frame.
4958 * periodic_size can shrink by USBCMD update if hcc_params allows.
4959 */
4960 fotg210->periodic_size = DEFAULT_I_TDPS;
4961 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4962 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4963
4964 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4965 /* periodic schedule size can be smaller than default */
4966 switch (FOTG210_TUNE_FLS) {
4967 case 0:
4968 fotg210->periodic_size = 1024;
4969 break;
4970 case 1:
4971 fotg210->periodic_size = 512;
4972 break;
4973 case 2:
4974 fotg210->periodic_size = 256;
4975 break;
4976 default:
4977 BUG();
4978 }
4979 }
4980 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4981 if (retval < 0)
4982 return retval;
4983
4984 /* controllers may cache some of the periodic schedule ... */
4985 fotg210->i_thresh = 2;
4986
4987 /*
4988 * dedicate a qh for the async ring head, since we couldn't unlink
4989 * a 'real' qh without stopping the async schedule [4.8]. use it
4990 * as the 'reclamation list head' too.
4991 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4992 * from automatically advancing to the next td after short reads.
4993 */
4994 fotg210->async->qh_next.qh = NULL;
4995 hw = fotg210->async->hw;
4996 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4997 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4998 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4999 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5000 fotg210->async->qh_state = QH_STATE_LINKED;
5001 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5002
5003 /* clear interrupt enables, set irq latency */
5004 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5005 log2_irq_thresh = 0;
5006 temp = 1 << (16 + log2_irq_thresh);
5007 if (HCC_CANPARK(hcc_params)) {
5008 /* HW default park == 3, on hardware that supports it (like
5009 * NVidia and ALI silicon), maximizes throughput on the async
5010 * schedule by avoiding QH fetches between transfers.
5011 *
5012 * With fast usb storage devices and NForce2, "park" seems to
5013 * make problems: throughput reduction (!), data errors...
5014 */
5015 if (park) {
5016 park = min_t(unsigned, park, 3);
5017 temp |= CMD_PARK;
5018 temp |= park << 8;
5019 }
5020 fotg210_dbg(fotg210, "park %d\n", park);
5021 }
5022 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5023 /* periodic schedule size can be smaller than default */
5024 temp &= ~(3 << 2);
5025 temp |= (FOTG210_TUNE_FLS << 2);
5026 }
5027 fotg210->command = temp;
5028
5029 /* Accept arbitrarily long scatter-gather lists */
5030 if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5031 hcd->self.sg_tablesize = ~0;
5032 return 0;
5033}
5034
5035/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5036static int fotg210_run(struct usb_hcd *hcd)
5037{
5038 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5039 u32 temp;
5040 u32 hcc_params;
5041
5042 hcd->uses_new_polling = 1;
5043
5044 /* EHCI spec section 4.1 */
5045
5046 fotg210_writel(fotg210, fotg210->periodic_dma,
5047 &fotg210->regs->frame_list);
5048 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5049 &fotg210->regs->async_next);
5050
5051 /*
5052 * hcc_params controls whether fotg210->regs->segment must (!!!)
5053 * be used; it constrains QH/ITD/SITD and QTD locations.
5054 * dma_pool consistent memory always uses segment zero.
5055 * streaming mappings for I/O buffers, like pci_map_single(),
5056 * can return segments above 4GB, if the device allows.
5057 *
5058 * NOTE: the dma mask is visible through dev->dma_mask, so
5059 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5060 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5061 * host side drivers though.
5062 */
5063 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5064
5065 /*
5066 * Philips, Intel, and maybe others need CMD_RUN before the
5067 * root hub will detect new devices (why?); NEC doesn't
5068 */
5069 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5070 fotg210->command |= CMD_RUN;
5071 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5072 dbg_cmd(fotg210, "init", fotg210->command);
5073
5074 /*
5075 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5076 * are explicitly handed to companion controller(s), so no TT is
5077 * involved with the root hub. (Except where one is integrated,
5078 * and there's no companion controller unless maybe for USB OTG.)
5079 *
5080 * Turning on the CF flag will transfer ownership of all ports
5081 * from the companions to the EHCI controller. If any of the
5082 * companions are in the middle of a port reset at the time, it
5083 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5084 * guarantees that no resets are in progress. After we set CF,
5085 * a short delay lets the hardware catch up; new resets shouldn't
5086 * be started before the port switching actions could complete.
5087 */
5088 down_write(&ehci_cf_port_reset_rwsem);
5089 fotg210->rh_state = FOTG210_RH_RUNNING;
5090 /* unblock posted writes */
5091 fotg210_readl(fotg210, &fotg210->regs->command);
5092 usleep_range(5000, 10000);
5093 up_write(&ehci_cf_port_reset_rwsem);
5094 fotg210->last_periodic_enable = ktime_get_real();
5095
5096 temp = HC_VERSION(fotg210,
5097 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5098 fotg210_info(fotg210,
5099 "USB %x.%x started, EHCI %x.%02x\n",
5100 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5101 temp >> 8, temp & 0xff);
5102
5103 fotg210_writel(fotg210, INTR_MASK,
5104 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5105
5106 /* GRR this is run-once init(), being done every time the HC starts.
5107 * So long as they're part of class devices, we can't do it init()
5108 * since the class device isn't created that early.
5109 */
5110 create_debug_files(fotg210);
5111 create_sysfs_files(fotg210);
5112
5113 return 0;
5114}
5115
5116static int fotg210_setup(struct usb_hcd *hcd)
5117{
5118 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5119 int retval;
5120
5121 fotg210->regs = (void __iomem *)fotg210->caps +
5122 HC_LENGTH(fotg210,
5123 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5124 dbg_hcs_params(fotg210, "reset");
5125 dbg_hcc_params(fotg210, "reset");
5126
5127 /* cache this readonly data; minimize chip reads */
5128 fotg210->hcs_params = fotg210_readl(fotg210,
5129 &fotg210->caps->hcs_params);
5130
5131 fotg210->sbrn = HCD_USB2;
5132
5133 /* data structure init */
5134 retval = hcd_fotg210_init(hcd);
5135 if (retval)
5136 return retval;
5137
5138 retval = fotg210_halt(fotg210);
5139 if (retval)
5140 return retval;
5141
5142 fotg210_reset(fotg210);
5143
5144 return 0;
5145}
5146
5147static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5148{
5149 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5150 u32 status, masked_status, pcd_status = 0, cmd;
5151 int bh;
5152
5153 spin_lock(&fotg210->lock);
5154
5155 status = fotg210_readl(fotg210, &fotg210->regs->status);
5156
5157 /* e.g. cardbus physical eject */
5158 if (status == ~(u32) 0) {
5159 fotg210_dbg(fotg210, "device removed\n");
5160 goto dead;
5161 }
5162
5163 /*
5164 * We don't use STS_FLR, but some controllers don't like it to
5165 * remain on, so mask it out along with the other status bits.
5166 */
5167 masked_status = status & (INTR_MASK | STS_FLR);
5168
5169 /* Shared IRQ? */
5170 if (!masked_status ||
5171 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5172 spin_unlock(&fotg210->lock);
5173 return IRQ_NONE;
5174 }
5175
5176 /* clear (just) interrupts */
5177 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5178 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5179 bh = 0;
5180
5181 /* unrequested/ignored: Frame List Rollover */
5182 dbg_status(fotg210, "irq", status);
5183
5184 /* INT, ERR, and IAA interrupt rates can be throttled */
5185
5186 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5187 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5188 if (likely((status & STS_ERR) == 0))
5189 COUNT(fotg210->stats.normal);
5190 else
5191 COUNT(fotg210->stats.error);
5192 bh = 1;
5193 }
5194
5195 /* complete the unlinking of some qh [4.15.2.3] */
5196 if (status & STS_IAA) {
5197
5198 /* Turn off the IAA watchdog */
5199 fotg210->enabled_hrtimer_events &=
5200 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5201
5202 /*
5203 * Mild optimization: Allow another IAAD to reset the
5204 * hrtimer, if one occurs before the next expiration.
5205 * In theory we could always cancel the hrtimer, but
5206 * tests show that about half the time it will be reset
5207 * for some other event anyway.
5208 */
5209 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5210 ++fotg210->next_hrtimer_event;
5211
5212 /* guard against (alleged) silicon errata */
5213 if (cmd & CMD_IAAD)
5214 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5215 if (fotg210->async_iaa) {
5216 COUNT(fotg210->stats.iaa);
5217 end_unlink_async(fotg210);
5218 } else
5219 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5220 }
5221
5222 /* remote wakeup [4.3.1] */
5223 if (status & STS_PCD) {
5224 int pstatus;
5225 u32 __iomem *status_reg = &fotg210->regs->port_status;
5226
5227 /* kick root hub later */
5228 pcd_status = status;
5229
5230 /* resume root hub? */
5231 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5232 usb_hcd_resume_root_hub(hcd);
5233
5234 pstatus = fotg210_readl(fotg210, status_reg);
5235
5236 if (test_bit(0, &fotg210->suspended_ports) &&
5237 ((pstatus & PORT_RESUME) ||
5238 !(pstatus & PORT_SUSPEND)) &&
5239 (pstatus & PORT_PE) &&
5240 fotg210->reset_done[0] == 0) {
5241
5242 /* start 20 msec resume signaling from this port,
5243 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5244 * stop that signaling. Use 5 ms extra for safety,
5245 * like usb_port_resume() does.
5246 */
5247 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5248 set_bit(0, &fotg210->resuming_ports);
5249 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5250 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5251 }
5252 }
5253
5254 /* PCI errors [4.15.2.4] */
5255 if (unlikely((status & STS_FATAL) != 0)) {
5256 fotg210_err(fotg210, "fatal error\n");
5257 dbg_cmd(fotg210, "fatal", cmd);
5258 dbg_status(fotg210, "fatal", status);
5259dead:
5260 usb_hc_died(hcd);
5261
5262 /* Don't let the controller do anything more */
5263 fotg210->shutdown = true;
5264 fotg210->rh_state = FOTG210_RH_STOPPING;
5265 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5266 fotg210_writel(fotg210, fotg210->command,
5267 &fotg210->regs->command);
5268 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5269 fotg210_handle_controller_death(fotg210);
5270
5271 /* Handle completions when the controller stops */
5272 bh = 0;
5273 }
5274
5275 if (bh)
5276 fotg210_work(fotg210);
5277 spin_unlock(&fotg210->lock);
5278 if (pcd_status)
5279 usb_hcd_poll_rh_status(hcd);
5280 return IRQ_HANDLED;
5281}
5282
5283/* non-error returns are a promise to giveback() the urb later
5284 * we drop ownership so next owner (or urb unlink) can get it
5285 *
5286 * urb + dev is in hcd.self.controller.urb_list
5287 * we're queueing TDs onto software and hardware lists
5288 *
5289 * hcd-specific init for hcpriv hasn't been done yet
5290 *
5291 * NOTE: control, bulk, and interrupt share the same code to append TDs
5292 * to a (possibly active) QH, and the same QH scanning code.
5293 */
5294static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5295 gfp_t mem_flags)
5296{
5297 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5298 struct list_head qtd_list;
5299
5300 INIT_LIST_HEAD(&qtd_list);
5301
5302 switch (usb_pipetype(urb->pipe)) {
5303 case PIPE_CONTROL:
5304 /* qh_completions() code doesn't handle all the fault cases
5305 * in multi-TD control transfers. Even 1KB is rare anyway.
5306 */
5307 if (urb->transfer_buffer_length > (16 * 1024))
5308 return -EMSGSIZE;
5309 /* FALLTHROUGH */
5310 /* case PIPE_BULK: */
5311 default:
5312 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5313 return -ENOMEM;
5314 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5315
5316 case PIPE_INTERRUPT:
5317 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5318 return -ENOMEM;
5319 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5320
5321 case PIPE_ISOCHRONOUS:
5322 return itd_submit(fotg210, urb, mem_flags);
5323 }
5324}
5325
5326/* remove from hardware lists
5327 * completions normally happen asynchronously
5328 */
5329
5330static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5331{
5332 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5333 struct fotg210_qh *qh;
5334 unsigned long flags;
5335 int rc;
5336
5337 spin_lock_irqsave(&fotg210->lock, flags);
5338 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5339 if (rc)
5340 goto done;
5341
5342 switch (usb_pipetype(urb->pipe)) {
5343 /* case PIPE_CONTROL: */
5344 /* case PIPE_BULK:*/
5345 default:
5346 qh = (struct fotg210_qh *) urb->hcpriv;
5347 if (!qh)
5348 break;
5349 switch (qh->qh_state) {
5350 case QH_STATE_LINKED:
5351 case QH_STATE_COMPLETING:
5352 start_unlink_async(fotg210, qh);
5353 break;
5354 case QH_STATE_UNLINK:
5355 case QH_STATE_UNLINK_WAIT:
5356 /* already started */
5357 break;
5358 case QH_STATE_IDLE:
5359 /* QH might be waiting for a Clear-TT-Buffer */
5360 qh_completions(fotg210, qh);
5361 break;
5362 }
5363 break;
5364
5365 case PIPE_INTERRUPT:
5366 qh = (struct fotg210_qh *) urb->hcpriv;
5367 if (!qh)
5368 break;
5369 switch (qh->qh_state) {
5370 case QH_STATE_LINKED:
5371 case QH_STATE_COMPLETING:
5372 start_unlink_intr(fotg210, qh);
5373 break;
5374 case QH_STATE_IDLE:
5375 qh_completions(fotg210, qh);
5376 break;
5377 default:
5378 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5379 qh, qh->qh_state);
5380 goto done;
5381 }
5382 break;
5383
5384 case PIPE_ISOCHRONOUS:
5385 /* itd... */
5386
5387 /* wait till next completion, do it then. */
5388 /* completion irqs can wait up to 1024 msec, */
5389 break;
5390 }
5391done:
5392 spin_unlock_irqrestore(&fotg210->lock, flags);
5393 return rc;
5394}
5395
5396/* bulk qh holds the data toggle */
5397
5398static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5399 struct usb_host_endpoint *ep)
5400{
5401 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5402 unsigned long flags;
5403 struct fotg210_qh *qh, *tmp;
5404
5405 /* ASSERT: any requests/urbs are being unlinked */
5406 /* ASSERT: nobody can be submitting urbs for this any more */
5407
5408rescan:
5409 spin_lock_irqsave(&fotg210->lock, flags);
5410 qh = ep->hcpriv;
5411 if (!qh)
5412 goto done;
5413
5414 /* endpoints can be iso streams. for now, we don't
5415 * accelerate iso completions ... so spin a while.
5416 */
5417 if (qh->hw == NULL) {
5418 struct fotg210_iso_stream *stream = ep->hcpriv;
5419
5420 if (!list_empty(&stream->td_list))
5421 goto idle_timeout;
5422
5423 /* BUG_ON(!list_empty(&stream->free_list)); */
5424 kfree(stream);
5425 goto done;
5426 }
5427
5428 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5429 qh->qh_state = QH_STATE_IDLE;
5430 switch (qh->qh_state) {
5431 case QH_STATE_LINKED:
5432 case QH_STATE_COMPLETING:
5433 for (tmp = fotg210->async->qh_next.qh;
5434 tmp && tmp != qh;
5435 tmp = tmp->qh_next.qh)
5436 continue;
5437 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5438 * may already be unlinked.
5439 */
5440 if (tmp)
5441 start_unlink_async(fotg210, qh);
5442 /* FALL THROUGH */
5443 case QH_STATE_UNLINK: /* wait for hw to finish? */
5444 case QH_STATE_UNLINK_WAIT:
5445idle_timeout:
5446 spin_unlock_irqrestore(&fotg210->lock, flags);
5447 schedule_timeout_uninterruptible(1);
5448 goto rescan;
5449 case QH_STATE_IDLE: /* fully unlinked */
5450 if (qh->clearing_tt)
5451 goto idle_timeout;
5452 if (list_empty(&qh->qtd_list)) {
5453 qh_destroy(fotg210, qh);
5454 break;
5455 }
5456 /* else FALL THROUGH */
5457 default:
5458 /* caller was supposed to have unlinked any requests;
5459 * that's not our job. just leak this memory.
5460 */
5461 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5462 qh, ep->desc.bEndpointAddress, qh->qh_state,
5463 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5464 break;
5465 }
5466done:
5467 ep->hcpriv = NULL;
5468 spin_unlock_irqrestore(&fotg210->lock, flags);
5469}
5470
5471static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5472 struct usb_host_endpoint *ep)
5473{
5474 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5475 struct fotg210_qh *qh;
5476 int eptype = usb_endpoint_type(&ep->desc);
5477 int epnum = usb_endpoint_num(&ep->desc);
5478 int is_out = usb_endpoint_dir_out(&ep->desc);
5479 unsigned long flags;
5480
5481 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5482 return;
5483
5484 spin_lock_irqsave(&fotg210->lock, flags);
5485 qh = ep->hcpriv;
5486
5487 /* For Bulk and Interrupt endpoints we maintain the toggle state
5488 * in the hardware; the toggle bits in udev aren't used at all.
5489 * When an endpoint is reset by usb_clear_halt() we must reset
5490 * the toggle bit in the QH.
5491 */
5492 if (qh) {
5493 usb_settoggle(qh->dev, epnum, is_out, 0);
5494 if (!list_empty(&qh->qtd_list)) {
5495 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5496 } else if (qh->qh_state == QH_STATE_LINKED ||
5497 qh->qh_state == QH_STATE_COMPLETING) {
5498
5499 /* The toggle value in the QH can't be updated
5500 * while the QH is active. Unlink it now;
5501 * re-linking will call qh_refresh().
5502 */
5503 if (eptype == USB_ENDPOINT_XFER_BULK)
5504 start_unlink_async(fotg210, qh);
5505 else
5506 start_unlink_intr(fotg210, qh);
5507 }
5508 }
5509 spin_unlock_irqrestore(&fotg210->lock, flags);
5510}
5511
5512static int fotg210_get_frame(struct usb_hcd *hcd)
5513{
5514 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5515
5516 return (fotg210_read_frame_index(fotg210) >> 3) %
5517 fotg210->periodic_size;
5518}
5519
5520/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5521 * because its registers (and irq) are shared between host/gadget/otg
5522 * functions and in order to facilitate role switching we cannot
5523 * give the fotg210 driver exclusive access to those.
5524 */
5525MODULE_DESCRIPTION(DRIVER_DESC);
5526MODULE_AUTHOR(DRIVER_AUTHOR);
5527MODULE_LICENSE("GPL");
5528
5529static const struct hc_driver fotg210_fotg210_hc_driver = {
5530 .description = hcd_name,
5531 .product_desc = "Faraday USB2.0 Host Controller",
5532 .hcd_priv_size = sizeof(struct fotg210_hcd),
5533
5534 /*
5535 * generic hardware linkage
5536 */
5537 .irq = fotg210_irq,
5538 .flags = HCD_MEMORY | HCD_USB2,
5539
5540 /*
5541 * basic lifecycle operations
5542 */
5543 .reset = hcd_fotg210_init,
5544 .start = fotg210_run,
5545 .stop = fotg210_stop,
5546 .shutdown = fotg210_shutdown,
5547
5548 /*
5549 * managing i/o requests and associated device resources
5550 */
5551 .urb_enqueue = fotg210_urb_enqueue,
5552 .urb_dequeue = fotg210_urb_dequeue,
5553 .endpoint_disable = fotg210_endpoint_disable,
5554 .endpoint_reset = fotg210_endpoint_reset,
5555
5556 /*
5557 * scheduling support
5558 */
5559 .get_frame_number = fotg210_get_frame,
5560
5561 /*
5562 * root hub support
5563 */
5564 .hub_status_data = fotg210_hub_status_data,
5565 .hub_control = fotg210_hub_control,
5566 .bus_suspend = fotg210_bus_suspend,
5567 .bus_resume = fotg210_bus_resume,
5568
5569 .relinquish_port = fotg210_relinquish_port,
5570 .port_handed_over = fotg210_port_handed_over,
5571
5572 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5573};
5574
5575static void fotg210_init(struct fotg210_hcd *fotg210)
5576{
5577 u32 value;
5578
5579 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5580 &fotg210->regs->gmir);
5581
5582 value = ioread32(&fotg210->regs->otgcsr);
5583 value &= ~OTGCSR_A_BUS_DROP;
5584 value |= OTGCSR_A_BUS_REQ;
5585 iowrite32(value, &fotg210->regs->otgcsr);
5586}
5587
5588/**
5589 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5590 *
5591 * Allocates basic resources for this USB host controller, and
5592 * then invokes the start() method for the HCD associated with it
5593 * through the hotplug entry's driver_data.
5594 */
5595static int fotg210_hcd_probe(struct platform_device *pdev)
5596{
5597 struct device *dev = &pdev->dev;
5598 struct usb_hcd *hcd;
5599 struct resource *res;
5600 int irq;
5601 int retval = -ENODEV;
5602 struct fotg210_hcd *fotg210;
5603
5604 if (usb_disabled())
5605 return -ENODEV;
5606
5607 pdev->dev.power.power_state = PMSG_ON;
5608
5609 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5610 if (!res) {
5611 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5612 dev_name(dev));
5613 return -ENODEV;
5614 }
5615
5616 irq = res->start;
5617
5618 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5619 dev_name(dev));
5620 if (!hcd) {
5621 dev_err(dev, "failed to create hcd with err %d\n", retval);
5622 retval = -ENOMEM;
5623 goto fail_create_hcd;
5624 }
5625
5626 hcd->has_tt = 1;
5627
5628 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5629 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5630 if (IS_ERR(hcd->regs)) {
5631 retval = PTR_ERR(hcd->regs);
5632 goto failed;
5633 }
5634
5635 hcd->rsrc_start = res->start;
5636 hcd->rsrc_len = resource_size(res);
5637
5638 fotg210 = hcd_to_fotg210(hcd);
5639
5640 fotg210->caps = hcd->regs;
5641
5642 retval = fotg210_setup(hcd);
5643 if (retval)
5644 goto failed;
5645
5646 fotg210_init(fotg210);
5647
5648 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5649 if (retval) {
5650 dev_err(dev, "failed to add hcd with err %d\n", retval);
5651 goto failed;
5652 }
5653 device_wakeup_enable(hcd->self.controller);
5654
5655 return retval;
5656
5657failed:
5658 usb_put_hcd(hcd);
5659fail_create_hcd:
5660 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5661 return retval;
5662}
5663
5664/**
5665 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5666 * @dev: USB Host Controller being removed
5667 *
5668 */
5669static int fotg210_hcd_remove(struct platform_device *pdev)
5670{
5671 struct device *dev = &pdev->dev;
5672 struct usb_hcd *hcd = dev_get_drvdata(dev);
5673
5674 if (!hcd)
5675 return 0;
5676
5677 usb_remove_hcd(hcd);
5678 usb_put_hcd(hcd);
5679
5680 return 0;
5681}
5682
5683static struct platform_driver fotg210_hcd_driver = {
5684 .driver = {
5685 .name = "fotg210-hcd",
5686 },
5687 .probe = fotg210_hcd_probe,
5688 .remove = fotg210_hcd_remove,
5689};
5690
5691static int __init fotg210_hcd_init(void)
5692{
5693 int retval = 0;
5694
5695 if (usb_disabled())
5696 return -ENODEV;
5697
5698 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5699 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5700 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5701 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5702 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5703
5704 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5705 hcd_name, sizeof(struct fotg210_qh),
5706 sizeof(struct fotg210_qtd),
5707 sizeof(struct fotg210_itd));
5708
5709 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5710 if (!fotg210_debug_root) {
5711 retval = -ENOENT;
5712 goto err_debug;
5713 }
5714
5715 retval = platform_driver_register(&fotg210_hcd_driver);
5716 if (retval < 0)
5717 goto clean;
5718 return retval;
5719
5720clean:
5721 debugfs_remove(fotg210_debug_root);
5722 fotg210_debug_root = NULL;
5723err_debug:
5724 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5725 return retval;
5726}
5727module_init(fotg210_hcd_init);
5728
5729static void __exit fotg210_hcd_cleanup(void)
5730{
5731 platform_driver_unregister(&fotg210_hcd_driver);
5732 debugfs_remove(fotg210_debug_root);
5733 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5734}
5735module_exit(fotg210_hcd_cleanup);