blob: 70452c881e562d00ce6dfc6e121e9d06299806ca [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
24#include <linux/pci.h>
25#include <linux/slab.h>
26#include <linux/dmapool.h>
27#include <linux/dma-mapping.h>
28
29#include "xhci.h"
30#include "xhci-trace.h"
31
32/*
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
35 *
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38 */
39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state,
41 unsigned int max_packet,
42 gfp_t flags)
43{
44 struct xhci_segment *seg;
45 dma_addr_t dma;
46 int i;
47
48 seg = kzalloc(sizeof *seg, flags);
49 if (!seg)
50 return NULL;
51
52 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53 if (!seg->trbs) {
54 kfree(seg);
55 return NULL;
56 }
57
58 if (max_packet) {
59 seg->bounce_buf = kzalloc(max_packet, flags);
60 if (!seg->bounce_buf) {
61 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62 kfree(seg);
63 return NULL;
64 }
65 }
66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67 if (cycle_state == 0) {
68 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70 }
71 seg->dma = dma;
72 seg->next = NULL;
73
74 return seg;
75}
76
77static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78{
79 if (seg->trbs) {
80 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81 seg->trbs = NULL;
82 }
83 kfree(seg->bounce_buf);
84 kfree(seg);
85}
86
87static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88 struct xhci_segment *first)
89{
90 struct xhci_segment *seg;
91
92 seg = first->next;
93 while (seg != first) {
94 struct xhci_segment *next = seg->next;
95 xhci_segment_free(xhci, seg);
96 seg = next;
97 }
98 xhci_segment_free(xhci, first);
99}
100
101/*
102 * Make the prev segment point to the next segment.
103 *
104 * Change the last TRB in the prev segment to be a Link TRB which points to the
105 * DMA address of the next segment. The caller needs to set any Link TRB
106 * related flags, such as End TRB, Toggle Cycle, and no snoop.
107 */
108static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109 struct xhci_segment *next, enum xhci_ring_type type)
110{
111 u32 val;
112
113 if (!prev || !next)
114 return;
115 prev->next = next;
116 if (type != TYPE_EVENT) {
117 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118 cpu_to_le64(next->dma);
119
120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122 val &= ~TRB_TYPE_BITMASK;
123 val |= TRB_TYPE(TRB_LINK);
124 /* Always set the chain bit with 0.95 hardware */
125 /* Set chain bit for isoc rings on AMD 0.96 host */
126 if (xhci_link_trb_quirk(xhci) ||
127 (type == TYPE_ISOC &&
128 (xhci->quirks & XHCI_AMD_0x96_HOST)))
129 val |= TRB_CHAIN;
130 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131 }
132}
133
134/*
135 * Link the ring to the new segments.
136 * Set Toggle Cycle for the new ring if needed.
137 */
138static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139 struct xhci_segment *first, struct xhci_segment *last,
140 unsigned int num_segs)
141{
142 struct xhci_segment *next;
143
144 if (!ring || !first || !last)
145 return;
146
147 next = ring->enq_seg->next;
148 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149 xhci_link_segments(xhci, last, next, ring->type);
150 ring->num_segs += num_segs;
151 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152
153 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155 &= ~cpu_to_le32(LINK_TOGGLE);
156 last->trbs[TRBS_PER_SEGMENT-1].link.control
157 |= cpu_to_le32(LINK_TOGGLE);
158 ring->last_seg = last;
159 }
160}
161
162/*
163 * We need a radix tree for mapping physical addresses of TRBs to which stream
164 * ID they belong to. We need to do this because the host controller won't tell
165 * us which stream ring the TRB came from. We could store the stream ID in an
166 * event data TRB, but that doesn't help us for the cancellation case, since the
167 * endpoint may stop before it reaches that event data TRB.
168 *
169 * The radix tree maps the upper portion of the TRB DMA address to a ring
170 * segment that has the same upper portion of DMA addresses. For example, say I
171 * have segments of size 1KB, that are always 1KB aligned. A segment may
172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
174 * pass the radix tree a key to get the right stream ID:
175 *
176 * 0x10c90fff >> 10 = 0x43243
177 * 0x10c912c0 >> 10 = 0x43244
178 * 0x10c91400 >> 10 = 0x43245
179 *
180 * Obviously, only those TRBs with DMA addresses that are within the segment
181 * will make the radix tree return the stream ID for that ring.
182 *
183 * Caveats for the radix tree:
184 *
185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
190 * extended systems (where the DMA address can be bigger than 32-bits),
191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
192 */
193static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194 struct xhci_ring *ring,
195 struct xhci_segment *seg,
196 gfp_t mem_flags)
197{
198 unsigned long key;
199 int ret;
200
201 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202 /* Skip any segments that were already added. */
203 if (radix_tree_lookup(trb_address_map, key))
204 return 0;
205
206 ret = radix_tree_maybe_preload(mem_flags);
207 if (ret)
208 return ret;
209 ret = radix_tree_insert(trb_address_map,
210 key, ring);
211 radix_tree_preload_end();
212 return ret;
213}
214
215static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216 struct xhci_segment *seg)
217{
218 unsigned long key;
219
220 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221 if (radix_tree_lookup(trb_address_map, key))
222 radix_tree_delete(trb_address_map, key);
223}
224
225static int xhci_update_stream_segment_mapping(
226 struct radix_tree_root *trb_address_map,
227 struct xhci_ring *ring,
228 struct xhci_segment *first_seg,
229 struct xhci_segment *last_seg,
230 gfp_t mem_flags)
231{
232 struct xhci_segment *seg;
233 struct xhci_segment *failed_seg;
234 int ret;
235
236 if (WARN_ON_ONCE(trb_address_map == NULL))
237 return 0;
238
239 seg = first_seg;
240 do {
241 ret = xhci_insert_segment_mapping(trb_address_map,
242 ring, seg, mem_flags);
243 if (ret)
244 goto remove_streams;
245 if (seg == last_seg)
246 return 0;
247 seg = seg->next;
248 } while (seg != first_seg);
249
250 return 0;
251
252remove_streams:
253 failed_seg = seg;
254 seg = first_seg;
255 do {
256 xhci_remove_segment_mapping(trb_address_map, seg);
257 if (seg == failed_seg)
258 return ret;
259 seg = seg->next;
260 } while (seg != first_seg);
261
262 return ret;
263}
264
265static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266{
267 struct xhci_segment *seg;
268
269 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270 return;
271
272 seg = ring->first_seg;
273 do {
274 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275 seg = seg->next;
276 } while (seg != ring->first_seg);
277}
278
279static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280{
281 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282 ring->first_seg, ring->last_seg, mem_flags);
283}
284
285/* XXX: Do we need the hcd structure in all these functions? */
286void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287{
288 if (!ring)
289 return;
290
291 trace_xhci_ring_free(ring);
292
293 if (ring->first_seg) {
294 if (ring->type == TYPE_STREAM)
295 xhci_remove_stream_mapping(ring);
296 xhci_free_segments_for_ring(xhci, ring->first_seg);
297 }
298
299 kfree(ring);
300}
301
302static void xhci_initialize_ring_info(struct xhci_ring *ring,
303 unsigned int cycle_state)
304{
305 /* The ring is empty, so the enqueue pointer == dequeue pointer */
306 ring->enqueue = ring->first_seg->trbs;
307 ring->enq_seg = ring->first_seg;
308 ring->dequeue = ring->enqueue;
309 ring->deq_seg = ring->first_seg;
310 /* The ring is initialized to 0. The producer must write 1 to the cycle
311 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
312 * compare CCS to the cycle bit to check ownership, so CCS = 1.
313 *
314 * New rings are initialized with cycle state equal to 1; if we are
315 * handling ring expansion, set the cycle state equal to the old ring.
316 */
317 ring->cycle_state = cycle_state;
318
319 /*
320 * Each segment has a link TRB, and leave an extra TRB for SW
321 * accounting purpose
322 */
323 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
324}
325
326/* Allocate segments and link them for a ring */
327static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
328 struct xhci_segment **first, struct xhci_segment **last,
329 unsigned int num_segs, unsigned int cycle_state,
330 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
331{
332 struct xhci_segment *prev;
333
334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 if (!prev)
336 return -ENOMEM;
337 num_segs--;
338
339 *first = prev;
340 while (num_segs > 0) {
341 struct xhci_segment *next;
342
343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 if (!next) {
345 prev = *first;
346 while (prev) {
347 next = prev->next;
348 xhci_segment_free(xhci, prev);
349 prev = next;
350 }
351 return -ENOMEM;
352 }
353 xhci_link_segments(xhci, prev, next, type);
354
355 prev = next;
356 num_segs--;
357 }
358 xhci_link_segments(xhci, prev, *first, type);
359 *last = prev;
360
361 return 0;
362}
363
364/**
365 * Create a new ring with zero or more segments.
366 *
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
370 */
371static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 unsigned int num_segs, unsigned int cycle_state,
373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374{
375 struct xhci_ring *ring;
376 int ret;
377
378 ring = kzalloc(sizeof *(ring), flags);
379 if (!ring)
380 return NULL;
381
382 ring->num_segs = num_segs;
383 ring->bounce_buf_len = max_packet;
384 INIT_LIST_HEAD(&ring->td_list);
385 ring->type = type;
386 if (num_segs == 0)
387 return ring;
388
389 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
390 &ring->last_seg, num_segs, cycle_state, type,
391 max_packet, flags);
392 if (ret)
393 goto fail;
394
395 /* Only event ring does not use link TRB */
396 if (type != TYPE_EVENT) {
397 /* See section 4.9.2.1 and 6.4.4.1 */
398 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
399 cpu_to_le32(LINK_TOGGLE);
400 }
401 xhci_initialize_ring_info(ring, cycle_state);
402 trace_xhci_ring_alloc(ring);
403 return ring;
404
405fail:
406 kfree(ring);
407 return NULL;
408}
409
410void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
411 struct xhci_virt_device *virt_dev,
412 unsigned int ep_index)
413{
414 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415 virt_dev->eps[ep_index].ring = NULL;
416}
417
418/*
419 * Expand an existing ring.
420 * Allocate a new ring which has same segment numbers and link the two rings.
421 */
422int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
423 unsigned int num_trbs, gfp_t flags)
424{
425 struct xhci_segment *first;
426 struct xhci_segment *last;
427 unsigned int num_segs;
428 unsigned int num_segs_needed;
429 int ret;
430
431 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
432 (TRBS_PER_SEGMENT - 1);
433
434 /* Allocate number of segments we needed, or double the ring size */
435 num_segs = ring->num_segs > num_segs_needed ?
436 ring->num_segs : num_segs_needed;
437
438 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
439 num_segs, ring->cycle_state, ring->type,
440 ring->bounce_buf_len, flags);
441 if (ret)
442 return -ENOMEM;
443
444 if (ring->type == TYPE_STREAM)
445 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446 ring, first, last, flags);
447 if (ret) {
448 struct xhci_segment *next;
449 do {
450 next = first->next;
451 xhci_segment_free(xhci, first);
452 if (first == last)
453 break;
454 first = next;
455 } while (true);
456 return ret;
457 }
458
459 xhci_link_rings(xhci, ring, first, last, num_segs);
460 trace_xhci_ring_expansion(ring);
461 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
462 "ring expansion succeed, now has %d segments",
463 ring->num_segs);
464
465 return 0;
466}
467
468#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
469
470static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
471 int type, gfp_t flags)
472{
473 struct xhci_container_ctx *ctx;
474
475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476 return NULL;
477
478 ctx = kzalloc(sizeof(*ctx), flags);
479 if (!ctx)
480 return NULL;
481
482 ctx->type = type;
483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 if (type == XHCI_CTX_TYPE_INPUT)
485 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488 if (!ctx->bytes) {
489 kfree(ctx);
490 return NULL;
491 }
492 return ctx;
493}
494
495static void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 struct xhci_container_ctx *ctx)
497{
498 if (!ctx)
499 return;
500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501 kfree(ctx);
502}
503
504struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 struct xhci_container_ctx *ctx)
506{
507 if (ctx->type != XHCI_CTX_TYPE_INPUT)
508 return NULL;
509
510 return (struct xhci_input_control_ctx *)ctx->bytes;
511}
512
513struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 struct xhci_container_ctx *ctx)
515{
516 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 return (struct xhci_slot_ctx *)ctx->bytes;
518
519 return (struct xhci_slot_ctx *)
520 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521}
522
523struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 struct xhci_container_ctx *ctx,
525 unsigned int ep_index)
526{
527 /* increment ep index by offset of start of ep ctx array */
528 ep_index++;
529 if (ctx->type == XHCI_CTX_TYPE_INPUT)
530 ep_index++;
531
532 return (struct xhci_ep_ctx *)
533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534}
535
536
537/***************** Streams structures manipulation *************************/
538
539static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 unsigned int num_stream_ctxs,
541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542{
543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546 if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 dma_free_coherent(dev, size,
548 stream_ctx, dma);
549 else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 return dma_pool_free(xhci->small_streams_pool,
551 stream_ctx, dma);
552 else
553 return dma_pool_free(xhci->medium_streams_pool,
554 stream_ctx, dma);
555}
556
557/*
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 * - how many streams the endpoint supports,
561 * - the maximum primary stream array size the host controller supports,
562 * - and how many streams the device driver asks for.
563 *
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
566 */
567static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 unsigned int num_stream_ctxs, dma_addr_t *dma,
569 gfp_t mem_flags)
570{
571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574 if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 return dma_alloc_coherent(dev, size,
576 dma, mem_flags);
577 else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 return dma_pool_alloc(xhci->small_streams_pool,
579 mem_flags, dma);
580 else
581 return dma_pool_alloc(xhci->medium_streams_pool,
582 mem_flags, dma);
583}
584
585struct xhci_ring *xhci_dma_to_transfer_ring(
586 struct xhci_virt_ep *ep,
587 u64 address)
588{
589 if (ep->ep_state & EP_HAS_STREAMS)
590 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 address >> TRB_SEGMENT_SHIFT);
592 return ep->ring;
593}
594
595struct xhci_ring *xhci_stream_id_to_ring(
596 struct xhci_virt_device *dev,
597 unsigned int ep_index,
598 unsigned int stream_id)
599{
600 struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602 if (stream_id == 0)
603 return ep->ring;
604 if (!ep->stream_info)
605 return NULL;
606
607 if (stream_id >= ep->stream_info->num_streams)
608 return NULL;
609 return ep->stream_info->stream_rings[stream_id];
610}
611
612/*
613 * Change an endpoint's internal structure so it supports stream IDs. The
614 * number of requested streams includes stream 0, which cannot be used by device
615 * drivers.
616 *
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use. This is because the number of
619 * stream context array entries must be a power of two.
620 */
621struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 unsigned int num_stream_ctxs,
623 unsigned int num_streams,
624 unsigned int max_packet, gfp_t mem_flags)
625{
626 struct xhci_stream_info *stream_info;
627 u32 cur_stream;
628 struct xhci_ring *cur_ring;
629 u64 addr;
630 int ret;
631
632 xhci_dbg(xhci, "Allocating %u streams and %u "
633 "stream context array entries.\n",
634 num_streams, num_stream_ctxs);
635 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
636 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
637 return NULL;
638 }
639 xhci->cmd_ring_reserved_trbs++;
640
641 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
642 if (!stream_info)
643 goto cleanup_trbs;
644
645 stream_info->num_streams = num_streams;
646 stream_info->num_stream_ctxs = num_stream_ctxs;
647
648 /* Initialize the array of virtual pointers to stream rings. */
649 stream_info->stream_rings = kzalloc(
650 sizeof(struct xhci_ring *)*num_streams,
651 mem_flags);
652 if (!stream_info->stream_rings)
653 goto cleanup_info;
654
655 /* Initialize the array of DMA addresses for stream rings for the HW. */
656 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
657 num_stream_ctxs, &stream_info->ctx_array_dma,
658 mem_flags);
659 if (!stream_info->stream_ctx_array)
660 goto cleanup_ctx;
661 memset(stream_info->stream_ctx_array, 0,
662 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
663
664 /* Allocate everything needed to free the stream rings later */
665 stream_info->free_streams_command =
666 xhci_alloc_command(xhci, true, true, mem_flags);
667 if (!stream_info->free_streams_command)
668 goto cleanup_ctx;
669
670 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
671
672 /* Allocate rings for all the streams that the driver will use,
673 * and add their segment DMA addresses to the radix tree.
674 * Stream 0 is reserved.
675 */
676
677 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
678 stream_info->stream_rings[cur_stream] =
679 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
680 mem_flags);
681 cur_ring = stream_info->stream_rings[cur_stream];
682 if (!cur_ring)
683 goto cleanup_rings;
684 cur_ring->stream_id = cur_stream;
685 cur_ring->trb_address_map = &stream_info->trb_address_map;
686 /* Set deq ptr, cycle bit, and stream context type */
687 addr = cur_ring->first_seg->dma |
688 SCT_FOR_CTX(SCT_PRI_TR) |
689 cur_ring->cycle_state;
690 stream_info->stream_ctx_array[cur_stream].stream_ring =
691 cpu_to_le64(addr);
692 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
693 cur_stream, (unsigned long long) addr);
694
695 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
696 if (ret) {
697 xhci_ring_free(xhci, cur_ring);
698 stream_info->stream_rings[cur_stream] = NULL;
699 goto cleanup_rings;
700 }
701 }
702 /* Leave the other unused stream ring pointers in the stream context
703 * array initialized to zero. This will cause the xHC to give us an
704 * error if the device asks for a stream ID we don't have setup (if it
705 * was any other way, the host controller would assume the ring is
706 * "empty" and wait forever for data to be queued to that stream ID).
707 */
708
709 return stream_info;
710
711cleanup_rings:
712 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
713 cur_ring = stream_info->stream_rings[cur_stream];
714 if (cur_ring) {
715 xhci_ring_free(xhci, cur_ring);
716 stream_info->stream_rings[cur_stream] = NULL;
717 }
718 }
719 xhci_free_command(xhci, stream_info->free_streams_command);
720cleanup_ctx:
721 kfree(stream_info->stream_rings);
722cleanup_info:
723 kfree(stream_info);
724cleanup_trbs:
725 xhci->cmd_ring_reserved_trbs--;
726 return NULL;
727}
728/*
729 * Sets the MaxPStreams field and the Linear Stream Array field.
730 * Sets the dequeue pointer to the stream context array.
731 */
732void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
733 struct xhci_ep_ctx *ep_ctx,
734 struct xhci_stream_info *stream_info)
735{
736 u32 max_primary_streams;
737 /* MaxPStreams is the number of stream context array entries, not the
738 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
739 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
740 */
741 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
742 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
743 "Setting number of stream ctx array entries to %u",
744 1 << (max_primary_streams + 1));
745 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
746 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
747 | EP_HAS_LSA);
748 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
749}
750
751/*
752 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
753 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
754 * not at the beginning of the ring).
755 */
756void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
757 struct xhci_virt_ep *ep)
758{
759 dma_addr_t addr;
760 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
761 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
762 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
763}
764
765/* Frees all stream contexts associated with the endpoint,
766 *
767 * Caller should fix the endpoint context streams fields.
768 */
769void xhci_free_stream_info(struct xhci_hcd *xhci,
770 struct xhci_stream_info *stream_info)
771{
772 int cur_stream;
773 struct xhci_ring *cur_ring;
774
775 if (!stream_info)
776 return;
777
778 for (cur_stream = 1; cur_stream < stream_info->num_streams;
779 cur_stream++) {
780 cur_ring = stream_info->stream_rings[cur_stream];
781 if (cur_ring) {
782 xhci_ring_free(xhci, cur_ring);
783 stream_info->stream_rings[cur_stream] = NULL;
784 }
785 }
786 xhci_free_command(xhci, stream_info->free_streams_command);
787 xhci->cmd_ring_reserved_trbs--;
788 if (stream_info->stream_ctx_array)
789 xhci_free_stream_ctx(xhci,
790 stream_info->num_stream_ctxs,
791 stream_info->stream_ctx_array,
792 stream_info->ctx_array_dma);
793
794 kfree(stream_info->stream_rings);
795 kfree(stream_info);
796}
797
798
799/***************** Device context manipulation *************************/
800
801static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
802 struct xhci_virt_ep *ep)
803{
804 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
805 (unsigned long)ep);
806 ep->xhci = xhci;
807}
808
809static void xhci_free_tt_info(struct xhci_hcd *xhci,
810 struct xhci_virt_device *virt_dev,
811 int slot_id)
812{
813 struct list_head *tt_list_head;
814 struct xhci_tt_bw_info *tt_info, *next;
815 bool slot_found = false;
816
817 /* If the device never made it past the Set Address stage,
818 * it may not have the real_port set correctly.
819 */
820 if (virt_dev->real_port == 0 ||
821 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
822 xhci_dbg(xhci, "Bad real port.\n");
823 return;
824 }
825
826 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
827 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
828 /* Multi-TT hubs will have more than one entry */
829 if (tt_info->slot_id == slot_id) {
830 slot_found = true;
831 list_del(&tt_info->tt_list);
832 kfree(tt_info);
833 } else if (slot_found) {
834 break;
835 }
836 }
837}
838
839int xhci_alloc_tt_info(struct xhci_hcd *xhci,
840 struct xhci_virt_device *virt_dev,
841 struct usb_device *hdev,
842 struct usb_tt *tt, gfp_t mem_flags)
843{
844 struct xhci_tt_bw_info *tt_info;
845 unsigned int num_ports;
846 int i, j;
847
848 if (!tt->multi)
849 num_ports = 1;
850 else
851 num_ports = hdev->maxchild;
852
853 for (i = 0; i < num_ports; i++, tt_info++) {
854 struct xhci_interval_bw_table *bw_table;
855
856 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
857 if (!tt_info)
858 goto free_tts;
859 INIT_LIST_HEAD(&tt_info->tt_list);
860 list_add(&tt_info->tt_list,
861 &xhci->rh_bw[virt_dev->real_port - 1].tts);
862 tt_info->slot_id = virt_dev->udev->slot_id;
863 if (tt->multi)
864 tt_info->ttport = i+1;
865 bw_table = &tt_info->bw_table;
866 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
867 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
868 }
869 return 0;
870
871free_tts:
872 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
873 return -ENOMEM;
874}
875
876
877/* All the xhci_tds in the ring's TD list should be freed at this point.
878 * Should be called with xhci->lock held if there is any chance the TT lists
879 * will be manipulated by the configure endpoint, allocate device, or update
880 * hub functions while this function is removing the TT entries from the list.
881 */
882void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
883{
884 struct xhci_virt_device *dev;
885 int i;
886 int old_active_eps = 0;
887
888 /* Slot ID 0 is reserved */
889 if (slot_id == 0 || !xhci->devs[slot_id])
890 return;
891
892 dev = xhci->devs[slot_id];
893
894 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
895 if (!dev)
896 return;
897
898 trace_xhci_free_virt_device(dev);
899
900 if (dev->tt_info)
901 old_active_eps = dev->tt_info->active_eps;
902
903 for (i = 0; i < 31; i++) {
904 if (dev->eps[i].ring)
905 xhci_ring_free(xhci, dev->eps[i].ring);
906 if (dev->eps[i].stream_info)
907 xhci_free_stream_info(xhci,
908 dev->eps[i].stream_info);
909 /* Endpoints on the TT/root port lists should have been removed
910 * when usb_disable_device() was called for the device.
911 * We can't drop them anyway, because the udev might have gone
912 * away by this point, and we can't tell what speed it was.
913 */
914 if (!list_empty(&dev->eps[i].bw_endpoint_list))
915 xhci_warn(xhci, "Slot %u endpoint %u "
916 "not removed from BW list!\n",
917 slot_id, i);
918 }
919 /* If this is a hub, free the TT(s) from the TT list */
920 xhci_free_tt_info(xhci, dev, slot_id);
921 /* If necessary, update the number of active TTs on this root port */
922 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
923
924 if (dev->in_ctx)
925 xhci_free_container_ctx(xhci, dev->in_ctx);
926 if (dev->out_ctx)
927 xhci_free_container_ctx(xhci, dev->out_ctx);
928
929 if (dev->udev && dev->udev->slot_id)
930 dev->udev->slot_id = 0;
931 kfree(xhci->devs[slot_id]);
932 xhci->devs[slot_id] = NULL;
933}
934
935/*
936 * Free a virt_device structure.
937 * If the virt_device added a tt_info (a hub) and has children pointing to
938 * that tt_info, then free the child first. Recursive.
939 * We can't rely on udev at this point to find child-parent relationships.
940 */
941void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
942{
943 struct xhci_virt_device *vdev;
944 struct list_head *tt_list_head;
945 struct xhci_tt_bw_info *tt_info, *next;
946 int i;
947
948 vdev = xhci->devs[slot_id];
949 if (!vdev)
950 return;
951
952 if (vdev->real_port == 0 ||
953 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
954 xhci_dbg(xhci, "Bad vdev->real_port.\n");
955 goto out;
956 }
957
958 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
959 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
960 /* is this a hub device that added a tt_info to the tts list */
961 if (tt_info->slot_id == slot_id) {
962 /* are any devices using this tt_info? */
963 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
964 vdev = xhci->devs[i];
965 if (vdev && (vdev->tt_info == tt_info))
966 xhci_free_virt_devices_depth_first(
967 xhci, i);
968 }
969 }
970 }
971out:
972 /* we are now at a leaf device */
973 xhci_free_virt_device(xhci, slot_id);
974}
975
976int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
977 struct usb_device *udev, gfp_t flags)
978{
979 struct xhci_virt_device *dev;
980 int i;
981
982 /* Slot ID 0 is reserved */
983 if (slot_id == 0 || xhci->devs[slot_id]) {
984 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
985 return 0;
986 }
987
988 dev = kzalloc(sizeof(*dev), flags);
989 if (!dev)
990 return 0;
991
992 /* Allocate the (output) device context that will be used in the HC. */
993 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
994 if (!dev->out_ctx)
995 goto fail;
996
997 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
998 (unsigned long long)dev->out_ctx->dma);
999
1000 /* Allocate the (input) device context for address device command */
1001 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1002 if (!dev->in_ctx)
1003 goto fail;
1004
1005 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1006 (unsigned long long)dev->in_ctx->dma);
1007
1008 /* Initialize the cancellation list and watchdog timers for each ep */
1009 for (i = 0; i < 31; i++) {
1010 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1011 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1012 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1013 }
1014
1015 /* Allocate endpoint 0 ring */
1016 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1017 if (!dev->eps[0].ring)
1018 goto fail;
1019
1020 dev->udev = udev;
1021
1022 /* Point to output device context in dcbaa. */
1023 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1024 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1025 slot_id,
1026 &xhci->dcbaa->dev_context_ptrs[slot_id],
1027 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1028
1029 trace_xhci_alloc_virt_device(dev);
1030
1031 xhci->devs[slot_id] = dev;
1032
1033 return 1;
1034fail:
1035
1036 if (dev->in_ctx)
1037 xhci_free_container_ctx(xhci, dev->in_ctx);
1038 if (dev->out_ctx)
1039 xhci_free_container_ctx(xhci, dev->out_ctx);
1040 kfree(dev);
1041
1042 return 0;
1043}
1044
1045void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1046 struct usb_device *udev)
1047{
1048 struct xhci_virt_device *virt_dev;
1049 struct xhci_ep_ctx *ep0_ctx;
1050 struct xhci_ring *ep_ring;
1051
1052 virt_dev = xhci->devs[udev->slot_id];
1053 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1054 ep_ring = virt_dev->eps[0].ring;
1055 /*
1056 * FIXME we don't keep track of the dequeue pointer very well after a
1057 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1058 * host to our enqueue pointer. This should only be called after a
1059 * configured device has reset, so all control transfers should have
1060 * been completed or cancelled before the reset.
1061 */
1062 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1063 ep_ring->enqueue)
1064 | ep_ring->cycle_state);
1065}
1066
1067/*
1068 * The xHCI roothub may have ports of differing speeds in any order in the port
1069 * status registers. xhci->port_array provides an array of the port speed for
1070 * each offset into the port status registers.
1071 *
1072 * The xHCI hardware wants to know the roothub port number that the USB device
1073 * is attached to (or the roothub port its ancestor hub is attached to). All we
1074 * know is the index of that port under either the USB 2.0 or the USB 3.0
1075 * roothub, but that doesn't give us the real index into the HW port status
1076 * registers. Call xhci_find_raw_port_number() to get real index.
1077 */
1078static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1079 struct usb_device *udev)
1080{
1081 struct usb_device *top_dev;
1082 struct usb_hcd *hcd;
1083
1084 if (udev->speed >= USB_SPEED_SUPER)
1085 hcd = xhci->shared_hcd;
1086 else
1087 hcd = xhci->main_hcd;
1088
1089 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1090 top_dev = top_dev->parent)
1091 /* Found device below root hub */;
1092
1093 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1094}
1095
1096/* Setup an xHCI virtual device for a Set Address command */
1097int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1098{
1099 struct xhci_virt_device *dev;
1100 struct xhci_ep_ctx *ep0_ctx;
1101 struct xhci_slot_ctx *slot_ctx;
1102 u32 port_num;
1103 u32 max_packets;
1104 struct usb_device *top_dev;
1105
1106 dev = xhci->devs[udev->slot_id];
1107 /* Slot ID 0 is reserved */
1108 if (udev->slot_id == 0 || !dev) {
1109 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1110 udev->slot_id);
1111 return -EINVAL;
1112 }
1113 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1114 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1115
1116 /* 3) Only the control endpoint is valid - one endpoint context */
1117 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1118 switch (udev->speed) {
1119 case USB_SPEED_SUPER_PLUS:
1120 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1121 max_packets = MAX_PACKET(512);
1122 break;
1123 case USB_SPEED_SUPER:
1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1125 max_packets = MAX_PACKET(512);
1126 break;
1127 case USB_SPEED_HIGH:
1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1129 max_packets = MAX_PACKET(64);
1130 break;
1131 /* USB core guesses at a 64-byte max packet first for FS devices */
1132 case USB_SPEED_FULL:
1133 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1134 max_packets = MAX_PACKET(64);
1135 break;
1136 case USB_SPEED_LOW:
1137 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1138 max_packets = MAX_PACKET(8);
1139 break;
1140 case USB_SPEED_WIRELESS:
1141 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1142 return -EINVAL;
1143 break;
1144 default:
1145 /* Speed was set earlier, this shouldn't happen. */
1146 return -EINVAL;
1147 }
1148 /* Find the root hub port this device is under */
1149 port_num = xhci_find_real_port_number(xhci, udev);
1150 if (!port_num)
1151 return -EINVAL;
1152 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1153 /* Set the port number in the virtual_device to the faked port number */
1154 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1155 top_dev = top_dev->parent)
1156 /* Found device below root hub */;
1157 dev->fake_port = top_dev->portnum;
1158 dev->real_port = port_num;
1159 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1160 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1161
1162 /* Find the right bandwidth table that this device will be a part of.
1163 * If this is a full speed device attached directly to a root port (or a
1164 * decendent of one), it counts as a primary bandwidth domain, not a
1165 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1166 * will never be created for the HS root hub.
1167 */
1168 if (!udev->tt || !udev->tt->hub->parent) {
1169 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1170 } else {
1171 struct xhci_root_port_bw_info *rh_bw;
1172 struct xhci_tt_bw_info *tt_bw;
1173
1174 rh_bw = &xhci->rh_bw[port_num - 1];
1175 /* Find the right TT. */
1176 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1177 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1178 continue;
1179
1180 if (!dev->udev->tt->multi ||
1181 (udev->tt->multi &&
1182 tt_bw->ttport == dev->udev->ttport)) {
1183 dev->bw_table = &tt_bw->bw_table;
1184 dev->tt_info = tt_bw;
1185 break;
1186 }
1187 }
1188 if (!dev->tt_info)
1189 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1190 }
1191
1192 /* Is this a LS/FS device under an external HS hub? */
1193 if (udev->tt && udev->tt->hub->parent) {
1194 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1195 (udev->ttport << 8));
1196 if (udev->tt->multi)
1197 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1198 }
1199 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1200 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1201
1202 /* Step 4 - ring already allocated */
1203 /* Step 5 */
1204 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1205
1206 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1207 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1208 max_packets);
1209
1210 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1211 dev->eps[0].ring->cycle_state);
1212
1213 trace_xhci_setup_addressable_virt_device(dev);
1214
1215 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1216
1217 return 0;
1218}
1219
1220/*
1221 * Convert interval expressed as 2^(bInterval - 1) == interval into
1222 * straight exponent value 2^n == interval.
1223 *
1224 */
1225static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1226 struct usb_host_endpoint *ep)
1227{
1228 unsigned int interval;
1229
1230 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1231 if (interval != ep->desc.bInterval - 1)
1232 dev_warn(&udev->dev,
1233 "ep %#x - rounding interval to %d %sframes\n",
1234 ep->desc.bEndpointAddress,
1235 1 << interval,
1236 udev->speed == USB_SPEED_FULL ? "" : "micro");
1237
1238 if (udev->speed == USB_SPEED_FULL) {
1239 /*
1240 * Full speed isoc endpoints specify interval in frames,
1241 * not microframes. We are using microframes everywhere,
1242 * so adjust accordingly.
1243 */
1244 interval += 3; /* 1 frame = 2^3 uframes */
1245 }
1246
1247 return interval;
1248}
1249
1250/*
1251 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1252 * microframes, rounded down to nearest power of 2.
1253 */
1254static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1255 struct usb_host_endpoint *ep, unsigned int desc_interval,
1256 unsigned int min_exponent, unsigned int max_exponent)
1257{
1258 unsigned int interval;
1259
1260 interval = fls(desc_interval) - 1;
1261 interval = clamp_val(interval, min_exponent, max_exponent);
1262 if ((1 << interval) != desc_interval)
1263 dev_dbg(&udev->dev,
1264 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1265 ep->desc.bEndpointAddress,
1266 1 << interval,
1267 desc_interval);
1268
1269 return interval;
1270}
1271
1272static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1273 struct usb_host_endpoint *ep)
1274{
1275 if (ep->desc.bInterval == 0)
1276 return 0;
1277 return xhci_microframes_to_exponent(udev, ep,
1278 ep->desc.bInterval, 0, 15);
1279}
1280
1281
1282static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1283 struct usb_host_endpoint *ep)
1284{
1285 return xhci_microframes_to_exponent(udev, ep,
1286 ep->desc.bInterval * 8, 3, 10);
1287}
1288
1289/* Return the polling or NAK interval.
1290 *
1291 * The polling interval is expressed in "microframes". If xHCI's Interval field
1292 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1293 *
1294 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1295 * is set to 0.
1296 */
1297static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1298 struct usb_host_endpoint *ep)
1299{
1300 unsigned int interval = 0;
1301
1302 switch (udev->speed) {
1303 case USB_SPEED_HIGH:
1304 /* Max NAK rate */
1305 if (usb_endpoint_xfer_control(&ep->desc) ||
1306 usb_endpoint_xfer_bulk(&ep->desc)) {
1307 interval = xhci_parse_microframe_interval(udev, ep);
1308 break;
1309 }
1310 /* Fall through - SS and HS isoc/int have same decoding */
1311
1312 case USB_SPEED_SUPER_PLUS:
1313 case USB_SPEED_SUPER:
1314 if (usb_endpoint_xfer_int(&ep->desc) ||
1315 usb_endpoint_xfer_isoc(&ep->desc)) {
1316 interval = xhci_parse_exponent_interval(udev, ep);
1317 }
1318 break;
1319
1320 case USB_SPEED_FULL:
1321 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1322 interval = xhci_parse_exponent_interval(udev, ep);
1323 break;
1324 }
1325 /*
1326 * Fall through for interrupt endpoint interval decoding
1327 * since it uses the same rules as low speed interrupt
1328 * endpoints.
1329 */
1330
1331 case USB_SPEED_LOW:
1332 if (usb_endpoint_xfer_int(&ep->desc) ||
1333 usb_endpoint_xfer_isoc(&ep->desc)) {
1334
1335 interval = xhci_parse_frame_interval(udev, ep);
1336 }
1337 break;
1338
1339 default:
1340 BUG();
1341 }
1342 return interval;
1343}
1344
1345/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1346 * High speed endpoint descriptors can define "the number of additional
1347 * transaction opportunities per microframe", but that goes in the Max Burst
1348 * endpoint context field.
1349 */
1350static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1351 struct usb_host_endpoint *ep)
1352{
1353 if (udev->speed < USB_SPEED_SUPER ||
1354 !usb_endpoint_xfer_isoc(&ep->desc))
1355 return 0;
1356 return ep->ss_ep_comp.bmAttributes;
1357}
1358
1359static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1360 struct usb_host_endpoint *ep)
1361{
1362 /* Super speed and Plus have max burst in ep companion desc */
1363 if (udev->speed >= USB_SPEED_SUPER)
1364 return ep->ss_ep_comp.bMaxBurst;
1365
1366 if (udev->speed == USB_SPEED_HIGH &&
1367 (usb_endpoint_xfer_isoc(&ep->desc) ||
1368 usb_endpoint_xfer_int(&ep->desc)))
1369 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1370
1371 return 0;
1372}
1373
1374static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1375{
1376 int in;
1377
1378 in = usb_endpoint_dir_in(&ep->desc);
1379
1380 switch (usb_endpoint_type(&ep->desc)) {
1381 case USB_ENDPOINT_XFER_CONTROL:
1382 return CTRL_EP;
1383 case USB_ENDPOINT_XFER_BULK:
1384 return in ? BULK_IN_EP : BULK_OUT_EP;
1385 case USB_ENDPOINT_XFER_ISOC:
1386 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1387 case USB_ENDPOINT_XFER_INT:
1388 return in ? INT_IN_EP : INT_OUT_EP;
1389 }
1390 return 0;
1391}
1392
1393/* Return the maximum endpoint service interval time (ESIT) payload.
1394 * Basically, this is the maxpacket size, multiplied by the burst size
1395 * and mult size.
1396 */
1397static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1398 struct usb_host_endpoint *ep)
1399{
1400 int max_burst;
1401 int max_packet;
1402
1403 /* Only applies for interrupt or isochronous endpoints */
1404 if (usb_endpoint_xfer_control(&ep->desc) ||
1405 usb_endpoint_xfer_bulk(&ep->desc))
1406 return 0;
1407
1408 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1409 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1410 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1411 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1412 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1413 else if (udev->speed >= USB_SPEED_SUPER)
1414 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1415
1416 max_packet = usb_endpoint_maxp(&ep->desc);
1417 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1418 /* A 0 in max burst means 1 transfer per ESIT */
1419 return max_packet * max_burst;
1420}
1421
1422/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1423 * Drivers will have to call usb_alloc_streams() to do that.
1424 */
1425int xhci_endpoint_init(struct xhci_hcd *xhci,
1426 struct xhci_virt_device *virt_dev,
1427 struct usb_device *udev,
1428 struct usb_host_endpoint *ep,
1429 gfp_t mem_flags)
1430{
1431 unsigned int ep_index;
1432 struct xhci_ep_ctx *ep_ctx;
1433 struct xhci_ring *ep_ring;
1434 unsigned int max_packet;
1435 enum xhci_ring_type ring_type;
1436 u32 max_esit_payload;
1437 u32 endpoint_type;
1438 unsigned int max_burst;
1439 unsigned int interval;
1440 unsigned int mult;
1441 unsigned int avg_trb_len;
1442 unsigned int err_count = 0;
1443
1444 ep_index = xhci_get_endpoint_index(&ep->desc);
1445 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1446
1447 endpoint_type = xhci_get_endpoint_type(ep);
1448 if (!endpoint_type)
1449 return -EINVAL;
1450
1451 ring_type = usb_endpoint_type(&ep->desc);
1452
1453 /*
1454 * Get values to fill the endpoint context, mostly from ep descriptor.
1455 * The average TRB buffer lengt for bulk endpoints is unclear as we
1456 * have no clue on scatter gather list entry size. For Isoc and Int,
1457 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1458 */
1459 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1460 interval = xhci_get_endpoint_interval(udev, ep);
1461
1462 /* Periodic endpoint bInterval limit quirk */
1463 if (usb_endpoint_xfer_int(&ep->desc) ||
1464 usb_endpoint_xfer_isoc(&ep->desc)) {
1465 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1466 udev->speed >= USB_SPEED_HIGH &&
1467 interval >= 7) {
1468 interval = 6;
1469 }
1470 }
1471
1472 mult = xhci_get_endpoint_mult(udev, ep);
1473 max_packet = usb_endpoint_maxp(&ep->desc);
1474 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1475 avg_trb_len = max_esit_payload;
1476
1477 /* FIXME dig Mult and streams info out of ep companion desc */
1478
1479 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1480 if (!usb_endpoint_xfer_isoc(&ep->desc))
1481 err_count = 3;
1482 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1483 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1484 if (udev->speed == USB_SPEED_HIGH)
1485 max_packet = 512;
1486 if (udev->speed == USB_SPEED_FULL) {
1487 max_packet = rounddown_pow_of_two(max_packet);
1488 max_packet = clamp_val(max_packet, 8, 64);
1489 }
1490 }
1491 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1492 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1493 avg_trb_len = 8;
1494 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1495 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1496 mult = 0;
1497
1498 /* Set up the endpoint ring */
1499 virt_dev->eps[ep_index].new_ring =
1500 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1501 if (!virt_dev->eps[ep_index].new_ring)
1502 return -ENOMEM;
1503
1504 virt_dev->eps[ep_index].skip = false;
1505 ep_ring = virt_dev->eps[ep_index].new_ring;
1506
1507 /* Fill the endpoint context */
1508 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1509 EP_INTERVAL(interval) |
1510 EP_MULT(mult));
1511 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1512 MAX_PACKET(max_packet) |
1513 MAX_BURST(max_burst) |
1514 ERROR_COUNT(err_count));
1515 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1516 ep_ring->cycle_state);
1517
1518 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1519 EP_AVG_TRB_LENGTH(avg_trb_len));
1520
1521 /* FIXME Debug endpoint context */
1522 return 0;
1523}
1524
1525void xhci_endpoint_zero(struct xhci_hcd *xhci,
1526 struct xhci_virt_device *virt_dev,
1527 struct usb_host_endpoint *ep)
1528{
1529 unsigned int ep_index;
1530 struct xhci_ep_ctx *ep_ctx;
1531
1532 ep_index = xhci_get_endpoint_index(&ep->desc);
1533 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1534
1535 ep_ctx->ep_info = 0;
1536 ep_ctx->ep_info2 = 0;
1537 ep_ctx->deq = 0;
1538 ep_ctx->tx_info = 0;
1539 /* Don't free the endpoint ring until the set interface or configuration
1540 * request succeeds.
1541 */
1542}
1543
1544void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1545{
1546 bw_info->ep_interval = 0;
1547 bw_info->mult = 0;
1548 bw_info->num_packets = 0;
1549 bw_info->max_packet_size = 0;
1550 bw_info->type = 0;
1551 bw_info->max_esit_payload = 0;
1552}
1553
1554void xhci_update_bw_info(struct xhci_hcd *xhci,
1555 struct xhci_container_ctx *in_ctx,
1556 struct xhci_input_control_ctx *ctrl_ctx,
1557 struct xhci_virt_device *virt_dev)
1558{
1559 struct xhci_bw_info *bw_info;
1560 struct xhci_ep_ctx *ep_ctx;
1561 unsigned int ep_type;
1562 int i;
1563
1564 for (i = 1; i < 31; i++) {
1565 bw_info = &virt_dev->eps[i].bw_info;
1566
1567 /* We can't tell what endpoint type is being dropped, but
1568 * unconditionally clearing the bandwidth info for non-periodic
1569 * endpoints should be harmless because the info will never be
1570 * set in the first place.
1571 */
1572 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1573 /* Dropped endpoint */
1574 xhci_clear_endpoint_bw_info(bw_info);
1575 continue;
1576 }
1577
1578 if (EP_IS_ADDED(ctrl_ctx, i)) {
1579 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1580 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1581
1582 /* Ignore non-periodic endpoints */
1583 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1584 ep_type != ISOC_IN_EP &&
1585 ep_type != INT_IN_EP)
1586 continue;
1587
1588 /* Added or changed endpoint */
1589 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1590 le32_to_cpu(ep_ctx->ep_info));
1591 /* Number of packets and mult are zero-based in the
1592 * input context, but we want one-based for the
1593 * interval table.
1594 */
1595 bw_info->mult = CTX_TO_EP_MULT(
1596 le32_to_cpu(ep_ctx->ep_info)) + 1;
1597 bw_info->num_packets = CTX_TO_MAX_BURST(
1598 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1599 bw_info->max_packet_size = MAX_PACKET_DECODED(
1600 le32_to_cpu(ep_ctx->ep_info2));
1601 bw_info->type = ep_type;
1602 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1603 le32_to_cpu(ep_ctx->tx_info));
1604 }
1605 }
1606}
1607
1608/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1609 * Useful when you want to change one particular aspect of the endpoint and then
1610 * issue a configure endpoint command.
1611 */
1612void xhci_endpoint_copy(struct xhci_hcd *xhci,
1613 struct xhci_container_ctx *in_ctx,
1614 struct xhci_container_ctx *out_ctx,
1615 unsigned int ep_index)
1616{
1617 struct xhci_ep_ctx *out_ep_ctx;
1618 struct xhci_ep_ctx *in_ep_ctx;
1619
1620 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1621 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1622
1623 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1624 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1625 in_ep_ctx->deq = out_ep_ctx->deq;
1626 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1627}
1628
1629/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1630 * Useful when you want to change one particular aspect of the endpoint and then
1631 * issue a configure endpoint command. Only the context entries field matters,
1632 * but we'll copy the whole thing anyway.
1633 */
1634void xhci_slot_copy(struct xhci_hcd *xhci,
1635 struct xhci_container_ctx *in_ctx,
1636 struct xhci_container_ctx *out_ctx)
1637{
1638 struct xhci_slot_ctx *in_slot_ctx;
1639 struct xhci_slot_ctx *out_slot_ctx;
1640
1641 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1642 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1643
1644 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1645 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1646 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1647 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1648}
1649
1650/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1651static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1652{
1653 int i;
1654 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1655 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1656
1657 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1658 "Allocating %d scratchpad buffers", num_sp);
1659
1660 if (!num_sp)
1661 return 0;
1662
1663 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1664 if (!xhci->scratchpad)
1665 goto fail_sp;
1666
1667 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1668 num_sp * sizeof(u64),
1669 &xhci->scratchpad->sp_dma, flags);
1670 if (!xhci->scratchpad->sp_array)
1671 goto fail_sp2;
1672
1673 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1674 if (!xhci->scratchpad->sp_buffers)
1675 goto fail_sp3;
1676
1677 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1678 for (i = 0; i < num_sp; i++) {
1679 dma_addr_t dma;
1680 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1681 flags);
1682 if (!buf)
1683 goto fail_sp4;
1684
1685 xhci->scratchpad->sp_array[i] = dma;
1686 xhci->scratchpad->sp_buffers[i] = buf;
1687 }
1688
1689 return 0;
1690
1691 fail_sp4:
1692 for (i = i - 1; i >= 0; i--) {
1693 dma_free_coherent(dev, xhci->page_size,
1694 xhci->scratchpad->sp_buffers[i],
1695 xhci->scratchpad->sp_array[i]);
1696 }
1697
1698 kfree(xhci->scratchpad->sp_buffers);
1699
1700 fail_sp3:
1701 dma_free_coherent(dev, num_sp * sizeof(u64),
1702 xhci->scratchpad->sp_array,
1703 xhci->scratchpad->sp_dma);
1704
1705 fail_sp2:
1706 kfree(xhci->scratchpad);
1707 xhci->scratchpad = NULL;
1708
1709 fail_sp:
1710 return -ENOMEM;
1711}
1712
1713static void scratchpad_free(struct xhci_hcd *xhci)
1714{
1715 int num_sp;
1716 int i;
1717 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1718
1719 if (!xhci->scratchpad)
1720 return;
1721
1722 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1723
1724 for (i = 0; i < num_sp; i++) {
1725 dma_free_coherent(dev, xhci->page_size,
1726 xhci->scratchpad->sp_buffers[i],
1727 xhci->scratchpad->sp_array[i]);
1728 }
1729 kfree(xhci->scratchpad->sp_buffers);
1730 dma_free_coherent(dev, num_sp * sizeof(u64),
1731 xhci->scratchpad->sp_array,
1732 xhci->scratchpad->sp_dma);
1733 kfree(xhci->scratchpad);
1734 xhci->scratchpad = NULL;
1735}
1736
1737struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1738 bool allocate_in_ctx, bool allocate_completion,
1739 gfp_t mem_flags)
1740{
1741 struct xhci_command *command;
1742
1743 command = kzalloc(sizeof(*command), mem_flags);
1744 if (!command)
1745 return NULL;
1746
1747 if (allocate_in_ctx) {
1748 command->in_ctx =
1749 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1750 mem_flags);
1751 if (!command->in_ctx) {
1752 kfree(command);
1753 return NULL;
1754 }
1755 }
1756
1757 if (allocate_completion) {
1758 command->completion =
1759 kzalloc(sizeof(struct completion), mem_flags);
1760 if (!command->completion) {
1761 xhci_free_container_ctx(xhci, command->in_ctx);
1762 kfree(command);
1763 return NULL;
1764 }
1765 init_completion(command->completion);
1766 }
1767
1768 command->status = 0;
1769 INIT_LIST_HEAD(&command->cmd_list);
1770 return command;
1771}
1772
1773void xhci_urb_free_priv(struct urb_priv *urb_priv)
1774{
1775 kfree(urb_priv);
1776}
1777
1778void xhci_free_command(struct xhci_hcd *xhci,
1779 struct xhci_command *command)
1780{
1781 xhci_free_container_ctx(xhci,
1782 command->in_ctx);
1783 kfree(command->completion);
1784 kfree(command);
1785}
1786
1787void xhci_mem_cleanup(struct xhci_hcd *xhci)
1788{
1789 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1790 int size;
1791 int i, j, num_ports;
1792
1793 cancel_delayed_work_sync(&xhci->cmd_timer);
1794
1795 /* Free the Event Ring Segment Table and the actual Event Ring */
1796 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1797 if (xhci->erst.entries)
1798 dma_free_coherent(dev, size,
1799 xhci->erst.entries, xhci->erst.erst_dma_addr);
1800 xhci->erst.entries = NULL;
1801 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1802 if (xhci->event_ring)
1803 xhci_ring_free(xhci, xhci->event_ring);
1804 xhci->event_ring = NULL;
1805 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1806
1807 if (xhci->lpm_command)
1808 xhci_free_command(xhci, xhci->lpm_command);
1809 xhci->lpm_command = NULL;
1810 if (xhci->cmd_ring)
1811 xhci_ring_free(xhci, xhci->cmd_ring);
1812 xhci->cmd_ring = NULL;
1813 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1814 xhci_cleanup_command_queue(xhci);
1815
1816 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1817 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1818 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1819 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1820 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1821 while (!list_empty(ep))
1822 list_del_init(ep->next);
1823 }
1824 }
1825
1826 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1827 xhci_free_virt_devices_depth_first(xhci, i);
1828
1829 dma_pool_destroy(xhci->segment_pool);
1830 xhci->segment_pool = NULL;
1831 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1832
1833 dma_pool_destroy(xhci->device_pool);
1834 xhci->device_pool = NULL;
1835 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1836
1837 dma_pool_destroy(xhci->small_streams_pool);
1838 xhci->small_streams_pool = NULL;
1839 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1840 "Freed small stream array pool");
1841
1842 dma_pool_destroy(xhci->medium_streams_pool);
1843 xhci->medium_streams_pool = NULL;
1844 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1845 "Freed medium stream array pool");
1846
1847 if (xhci->dcbaa)
1848 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1849 xhci->dcbaa, xhci->dcbaa->dma);
1850 xhci->dcbaa = NULL;
1851
1852 scratchpad_free(xhci);
1853
1854 if (!xhci->rh_bw)
1855 goto no_bw;
1856
1857 for (i = 0; i < num_ports; i++) {
1858 struct xhci_tt_bw_info *tt, *n;
1859 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1860 list_del(&tt->tt_list);
1861 kfree(tt);
1862 }
1863 }
1864
1865no_bw:
1866 xhci->cmd_ring_reserved_trbs = 0;
1867 xhci->num_usb2_ports = 0;
1868 xhci->num_usb3_ports = 0;
1869 xhci->num_active_eps = 0;
1870 kfree(xhci->usb2_ports);
1871 kfree(xhci->usb3_ports);
1872 kfree(xhci->port_array);
1873 kfree(xhci->rh_bw);
1874 kfree(xhci->ext_caps);
1875 kfree(xhci->usb2_rhub.psi);
1876 kfree(xhci->usb3_rhub.psi);
1877
1878 xhci->usb2_ports = NULL;
1879 xhci->usb3_ports = NULL;
1880 xhci->port_array = NULL;
1881 xhci->usb2_rhub.psi = NULL;
1882 xhci->usb3_rhub.psi = NULL;
1883 xhci->rh_bw = NULL;
1884 xhci->ext_caps = NULL;
1885
1886 xhci->page_size = 0;
1887 xhci->page_shift = 0;
1888 xhci->bus_state[0].bus_suspended = 0;
1889 xhci->bus_state[1].bus_suspended = 0;
1890}
1891
1892static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1893 struct xhci_segment *input_seg,
1894 union xhci_trb *start_trb,
1895 union xhci_trb *end_trb,
1896 dma_addr_t input_dma,
1897 struct xhci_segment *result_seg,
1898 char *test_name, int test_number)
1899{
1900 unsigned long long start_dma;
1901 unsigned long long end_dma;
1902 struct xhci_segment *seg;
1903
1904 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1905 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1906
1907 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1908 if (seg != result_seg) {
1909 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1910 test_name, test_number);
1911 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1912 "input DMA 0x%llx\n",
1913 input_seg,
1914 (unsigned long long) input_dma);
1915 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1916 "ending TRB %p (0x%llx DMA)\n",
1917 start_trb, start_dma,
1918 end_trb, end_dma);
1919 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1920 result_seg, seg);
1921 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1922 true);
1923 return -1;
1924 }
1925 return 0;
1926}
1927
1928/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1929static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1930{
1931 struct {
1932 dma_addr_t input_dma;
1933 struct xhci_segment *result_seg;
1934 } simple_test_vector [] = {
1935 /* A zeroed DMA field should fail */
1936 { 0, NULL },
1937 /* One TRB before the ring start should fail */
1938 { xhci->event_ring->first_seg->dma - 16, NULL },
1939 /* One byte before the ring start should fail */
1940 { xhci->event_ring->first_seg->dma - 1, NULL },
1941 /* Starting TRB should succeed */
1942 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1943 /* Ending TRB should succeed */
1944 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1945 xhci->event_ring->first_seg },
1946 /* One byte after the ring end should fail */
1947 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1948 /* One TRB after the ring end should fail */
1949 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1950 /* An address of all ones should fail */
1951 { (dma_addr_t) (~0), NULL },
1952 };
1953 struct {
1954 struct xhci_segment *input_seg;
1955 union xhci_trb *start_trb;
1956 union xhci_trb *end_trb;
1957 dma_addr_t input_dma;
1958 struct xhci_segment *result_seg;
1959 } complex_test_vector [] = {
1960 /* Test feeding a valid DMA address from a different ring */
1961 { .input_seg = xhci->event_ring->first_seg,
1962 .start_trb = xhci->event_ring->first_seg->trbs,
1963 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1964 .input_dma = xhci->cmd_ring->first_seg->dma,
1965 .result_seg = NULL,
1966 },
1967 /* Test feeding a valid end TRB from a different ring */
1968 { .input_seg = xhci->event_ring->first_seg,
1969 .start_trb = xhci->event_ring->first_seg->trbs,
1970 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1971 .input_dma = xhci->cmd_ring->first_seg->dma,
1972 .result_seg = NULL,
1973 },
1974 /* Test feeding a valid start and end TRB from a different ring */
1975 { .input_seg = xhci->event_ring->first_seg,
1976 .start_trb = xhci->cmd_ring->first_seg->trbs,
1977 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1978 .input_dma = xhci->cmd_ring->first_seg->dma,
1979 .result_seg = NULL,
1980 },
1981 /* TRB in this ring, but after this TD */
1982 { .input_seg = xhci->event_ring->first_seg,
1983 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1984 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1985 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1986 .result_seg = NULL,
1987 },
1988 /* TRB in this ring, but before this TD */
1989 { .input_seg = xhci->event_ring->first_seg,
1990 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1991 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1992 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1993 .result_seg = NULL,
1994 },
1995 /* TRB in this ring, but after this wrapped TD */
1996 { .input_seg = xhci->event_ring->first_seg,
1997 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1998 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1999 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2000 .result_seg = NULL,
2001 },
2002 /* TRB in this ring, but before this wrapped TD */
2003 { .input_seg = xhci->event_ring->first_seg,
2004 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2005 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2006 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2007 .result_seg = NULL,
2008 },
2009 /* TRB not in this ring, and we have a wrapped TD */
2010 { .input_seg = xhci->event_ring->first_seg,
2011 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2012 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2013 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2014 .result_seg = NULL,
2015 },
2016 };
2017
2018 unsigned int num_tests;
2019 int i, ret;
2020
2021 num_tests = ARRAY_SIZE(simple_test_vector);
2022 for (i = 0; i < num_tests; i++) {
2023 ret = xhci_test_trb_in_td(xhci,
2024 xhci->event_ring->first_seg,
2025 xhci->event_ring->first_seg->trbs,
2026 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027 simple_test_vector[i].input_dma,
2028 simple_test_vector[i].result_seg,
2029 "Simple", i);
2030 if (ret < 0)
2031 return ret;
2032 }
2033
2034 num_tests = ARRAY_SIZE(complex_test_vector);
2035 for (i = 0; i < num_tests; i++) {
2036 ret = xhci_test_trb_in_td(xhci,
2037 complex_test_vector[i].input_seg,
2038 complex_test_vector[i].start_trb,
2039 complex_test_vector[i].end_trb,
2040 complex_test_vector[i].input_dma,
2041 complex_test_vector[i].result_seg,
2042 "Complex", i);
2043 if (ret < 0)
2044 return ret;
2045 }
2046 xhci_dbg(xhci, "TRB math tests passed.\n");
2047 return 0;
2048}
2049
2050static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2051{
2052 u64 temp;
2053 dma_addr_t deq;
2054
2055 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2056 xhci->event_ring->dequeue);
2057 if (deq == 0 && !in_interrupt())
2058 xhci_warn(xhci, "WARN something wrong with SW event ring "
2059 "dequeue ptr.\n");
2060 /* Update HC event ring dequeue pointer */
2061 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2062 temp &= ERST_PTR_MASK;
2063 /* Don't clear the EHB bit (which is RW1C) because
2064 * there might be more events to service.
2065 */
2066 temp &= ~ERST_EHB;
2067 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2068 "// Write event ring dequeue pointer, "
2069 "preserving EHB bit");
2070 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2071 &xhci->ir_set->erst_dequeue);
2072}
2073
2074static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2075 __le32 __iomem *addr, int max_caps)
2076{
2077 u32 temp, port_offset, port_count;
2078 int i;
2079 u8 major_revision, minor_revision;
2080 struct xhci_hub *rhub;
2081
2082 temp = readl(addr);
2083 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2084 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2085
2086 if (major_revision == 0x03) {
2087 rhub = &xhci->usb3_rhub;
2088 } else if (major_revision <= 0x02) {
2089 rhub = &xhci->usb2_rhub;
2090 } else {
2091 xhci_warn(xhci, "Ignoring unknown port speed, "
2092 "Ext Cap %p, revision = 0x%x\n",
2093 addr, major_revision);
2094 /* Ignoring port protocol we can't understand. FIXME */
2095 return;
2096 }
2097 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2098
2099 if (rhub->min_rev < minor_revision)
2100 rhub->min_rev = minor_revision;
2101
2102 /* Port offset and count in the third dword, see section 7.2 */
2103 temp = readl(addr + 2);
2104 port_offset = XHCI_EXT_PORT_OFF(temp);
2105 port_count = XHCI_EXT_PORT_COUNT(temp);
2106 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2107 "Ext Cap %p, port offset = %u, "
2108 "count = %u, revision = 0x%x",
2109 addr, port_offset, port_count, major_revision);
2110 /* Port count includes the current port offset */
2111 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2112 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2113 return;
2114
2115 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2116 if (rhub->psi_count) {
2117 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2118 GFP_KERNEL);
2119 if (!rhub->psi)
2120 rhub->psi_count = 0;
2121
2122 rhub->psi_uid_count++;
2123 for (i = 0; i < rhub->psi_count; i++) {
2124 rhub->psi[i] = readl(addr + 4 + i);
2125
2126 /* count unique ID values, two consecutive entries can
2127 * have the same ID if link is assymetric
2128 */
2129 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2130 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2131 rhub->psi_uid_count++;
2132
2133 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2134 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2135 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2136 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2137 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2138 XHCI_EXT_PORT_LP(rhub->psi[i]),
2139 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2140 }
2141 }
2142 /* cache usb2 port capabilities */
2143 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2144 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2145
2146 /* Check the host's USB2 LPM capability */
2147 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2148 (temp & XHCI_L1C)) {
2149 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2150 "xHCI 0.96: support USB2 software lpm");
2151 xhci->sw_lpm_support = 1;
2152 }
2153
2154 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2155 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2156 "xHCI 1.0: support USB2 software lpm");
2157 xhci->sw_lpm_support = 1;
2158 if (temp & XHCI_HLC) {
2159 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2160 "xHCI 1.0: support USB2 hardware lpm");
2161 xhci->hw_lpm_support = 1;
2162 }
2163 }
2164
2165 port_offset--;
2166 for (i = port_offset; i < (port_offset + port_count); i++) {
2167 /* Duplicate entry. Ignore the port if the revisions differ. */
2168 if (xhci->port_array[i] != 0) {
2169 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2170 " port %u\n", addr, i);
2171 xhci_warn(xhci, "Port was marked as USB %u, "
2172 "duplicated as USB %u\n",
2173 xhci->port_array[i], major_revision);
2174 /* Only adjust the roothub port counts if we haven't
2175 * found a similar duplicate.
2176 */
2177 if (xhci->port_array[i] != major_revision &&
2178 xhci->port_array[i] != DUPLICATE_ENTRY) {
2179 if (xhci->port_array[i] == 0x03)
2180 xhci->num_usb3_ports--;
2181 else
2182 xhci->num_usb2_ports--;
2183 xhci->port_array[i] = DUPLICATE_ENTRY;
2184 }
2185 /* FIXME: Should we disable the port? */
2186 continue;
2187 }
2188 xhci->port_array[i] = major_revision;
2189 if (major_revision == 0x03)
2190 xhci->num_usb3_ports++;
2191 else
2192 xhci->num_usb2_ports++;
2193 }
2194 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2195}
2196
2197/*
2198 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2199 * specify what speeds each port is supposed to be. We can't count on the port
2200 * speed bits in the PORTSC register being correct until a device is connected,
2201 * but we need to set up the two fake roothubs with the correct number of USB
2202 * 3.0 and USB 2.0 ports at host controller initialization time.
2203 */
2204static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2205{
2206 void __iomem *base;
2207 u32 offset;
2208 unsigned int num_ports;
2209 int i, j, port_index;
2210 int cap_count = 0;
2211 u32 cap_start;
2212
2213 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2214 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2215 if (!xhci->port_array)
2216 return -ENOMEM;
2217
2218 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2219 if (!xhci->rh_bw)
2220 return -ENOMEM;
2221 for (i = 0; i < num_ports; i++) {
2222 struct xhci_interval_bw_table *bw_table;
2223
2224 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2225 bw_table = &xhci->rh_bw[i].bw_table;
2226 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2227 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2228 }
2229 base = &xhci->cap_regs->hc_capbase;
2230
2231 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2232 if (!cap_start) {
2233 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2234 return -ENODEV;
2235 }
2236
2237 offset = cap_start;
2238 /* count extended protocol capability entries for later caching */
2239 while (offset) {
2240 cap_count++;
2241 offset = xhci_find_next_ext_cap(base, offset,
2242 XHCI_EXT_CAPS_PROTOCOL);
2243 }
2244
2245 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2246 if (!xhci->ext_caps)
2247 return -ENOMEM;
2248
2249 offset = cap_start;
2250
2251 while (offset) {
2252 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2253 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2254 break;
2255 offset = xhci_find_next_ext_cap(base, offset,
2256 XHCI_EXT_CAPS_PROTOCOL);
2257 }
2258
2259 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2260 xhci_warn(xhci, "No ports on the roothubs?\n");
2261 return -ENODEV;
2262 }
2263 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2264 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2265 xhci->num_usb2_ports, xhci->num_usb3_ports);
2266
2267 /* Place limits on the number of roothub ports so that the hub
2268 * descriptors aren't longer than the USB core will allocate.
2269 */
2270 if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2271 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2272 "Limiting USB 3.0 roothub ports to %u.",
2273 USB_SS_MAXPORTS);
2274 xhci->num_usb3_ports = USB_SS_MAXPORTS;
2275 }
2276 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2277 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2278 "Limiting USB 2.0 roothub ports to %u.",
2279 USB_MAXCHILDREN);
2280 xhci->num_usb2_ports = USB_MAXCHILDREN;
2281 }
2282
2283 /*
2284 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2285 * Not sure how the USB core will handle a hub with no ports...
2286 */
2287 if (xhci->num_usb2_ports) {
2288 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2289 xhci->num_usb2_ports, flags);
2290 if (!xhci->usb2_ports)
2291 return -ENOMEM;
2292
2293 port_index = 0;
2294 for (i = 0; i < num_ports; i++) {
2295 if (xhci->port_array[i] == 0x03 ||
2296 xhci->port_array[i] == 0 ||
2297 xhci->port_array[i] == DUPLICATE_ENTRY)
2298 continue;
2299
2300 xhci->usb2_ports[port_index] =
2301 &xhci->op_regs->port_status_base +
2302 NUM_PORT_REGS*i;
2303 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2304 "USB 2.0 port at index %u, "
2305 "addr = %p", i,
2306 xhci->usb2_ports[port_index]);
2307 port_index++;
2308 if (port_index == xhci->num_usb2_ports)
2309 break;
2310 }
2311 }
2312 if (xhci->num_usb3_ports) {
2313 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2314 xhci->num_usb3_ports, flags);
2315 if (!xhci->usb3_ports)
2316 return -ENOMEM;
2317
2318 port_index = 0;
2319 for (i = 0; i < num_ports; i++)
2320 if (xhci->port_array[i] == 0x03) {
2321 xhci->usb3_ports[port_index] =
2322 &xhci->op_regs->port_status_base +
2323 NUM_PORT_REGS*i;
2324 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2325 "USB 3.0 port at index %u, "
2326 "addr = %p", i,
2327 xhci->usb3_ports[port_index]);
2328 port_index++;
2329 if (port_index == xhci->num_usb3_ports)
2330 break;
2331 }
2332 }
2333 return 0;
2334}
2335
2336int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2337{
2338 dma_addr_t dma;
2339 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2340 unsigned int val, val2;
2341 u64 val_64;
2342 struct xhci_segment *seg;
2343 u32 page_size, temp;
2344 int i;
2345
2346 INIT_LIST_HEAD(&xhci->cmd_list);
2347
2348 /* init command timeout work */
2349 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2350 init_completion(&xhci->cmd_ring_stop_completion);
2351
2352 page_size = readl(&xhci->op_regs->page_size);
2353 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2354 "Supported page size register = 0x%x", page_size);
2355 for (i = 0; i < 16; i++) {
2356 if ((0x1 & page_size) != 0)
2357 break;
2358 page_size = page_size >> 1;
2359 }
2360 if (i < 16)
2361 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2362 "Supported page size of %iK", (1 << (i+12)) / 1024);
2363 else
2364 xhci_warn(xhci, "WARN: no supported page size\n");
2365 /* Use 4K pages, since that's common and the minimum the HC supports */
2366 xhci->page_shift = 12;
2367 xhci->page_size = 1 << xhci->page_shift;
2368 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2369 "HCD page size set to %iK", xhci->page_size / 1024);
2370
2371 /*
2372 * Program the Number of Device Slots Enabled field in the CONFIG
2373 * register with the max value of slots the HC can handle.
2374 */
2375 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2376 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2377 "// xHC can handle at most %d device slots.", val);
2378 val2 = readl(&xhci->op_regs->config_reg);
2379 val |= (val2 & ~HCS_SLOTS_MASK);
2380 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2381 "// Setting Max device slots reg = 0x%x.", val);
2382 writel(val, &xhci->op_regs->config_reg);
2383
2384 /*
2385 * xHCI section 5.4.6 - doorbell array must be
2386 * "physically contiguous and 64-byte (cache line) aligned".
2387 */
2388 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2389 flags);
2390 if (!xhci->dcbaa)
2391 goto fail;
2392 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2393 xhci->dcbaa->dma = dma;
2394 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2395 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2396 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2397 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2398
2399 /*
2400 * Initialize the ring segment pool. The ring must be a contiguous
2401 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2402 * however, the command ring segment needs 64-byte aligned segments
2403 * and our use of dma addresses in the trb_address_map radix tree needs
2404 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2405 */
2406 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2407 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2408
2409 /* See Table 46 and Note on Figure 55 */
2410 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2411 2112, 64, xhci->page_size);
2412 if (!xhci->segment_pool || !xhci->device_pool)
2413 goto fail;
2414
2415 /* Linear stream context arrays don't have any boundary restrictions,
2416 * and only need to be 16-byte aligned.
2417 */
2418 xhci->small_streams_pool =
2419 dma_pool_create("xHCI 256 byte stream ctx arrays",
2420 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2421 xhci->medium_streams_pool =
2422 dma_pool_create("xHCI 1KB stream ctx arrays",
2423 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2424 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2425 * will be allocated with dma_alloc_coherent()
2426 */
2427
2428 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2429 goto fail;
2430
2431 /* Set up the command ring to have one segments for now. */
2432 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2433 if (!xhci->cmd_ring)
2434 goto fail;
2435 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2436 "Allocated command ring at %p", xhci->cmd_ring);
2437 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2438 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2439
2440 /* Set the address in the Command Ring Control register */
2441 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2442 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2443 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2444 xhci->cmd_ring->cycle_state;
2445 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2446 "// Setting command ring address to 0x%016llx", val_64);
2447 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2448 xhci_dbg_cmd_ptrs(xhci);
2449
2450 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2451 if (!xhci->lpm_command)
2452 goto fail;
2453
2454 /* Reserve one command ring TRB for disabling LPM.
2455 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2456 * disabling LPM, we only need to reserve one TRB for all devices.
2457 */
2458 xhci->cmd_ring_reserved_trbs++;
2459
2460 val = readl(&xhci->cap_regs->db_off);
2461 val &= DBOFF_MASK;
2462 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2463 "// Doorbell array is located at offset 0x%x"
2464 " from cap regs base addr", val);
2465 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2466 xhci_dbg_regs(xhci);
2467 xhci_print_run_regs(xhci);
2468 /* Set ir_set to interrupt register set 0 */
2469 xhci->ir_set = &xhci->run_regs->ir_set[0];
2470
2471 /*
2472 * Event ring setup: Allocate a normal ring, but also setup
2473 * the event ring segment table (ERST). Section 4.9.3.
2474 */
2475 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2476 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2477 0, flags);
2478 if (!xhci->event_ring)
2479 goto fail;
2480 if (xhci_check_trb_in_td_math(xhci) < 0)
2481 goto fail;
2482
2483 xhci->erst.entries = dma_alloc_coherent(dev,
2484 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2485 flags);
2486 if (!xhci->erst.entries)
2487 goto fail;
2488 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2489 "// Allocated event ring segment table at 0x%llx",
2490 (unsigned long long)dma);
2491
2492 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2493 xhci->erst.num_entries = ERST_NUM_SEGS;
2494 xhci->erst.erst_dma_addr = dma;
2495 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2497 xhci->erst.num_entries,
2498 xhci->erst.entries,
2499 (unsigned long long)xhci->erst.erst_dma_addr);
2500
2501 /* set ring base address and size for each segment table entry */
2502 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2503 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2504 entry->seg_addr = cpu_to_le64(seg->dma);
2505 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2506 entry->rsvd = 0;
2507 seg = seg->next;
2508 }
2509
2510 /* set ERST count with the number of entries in the segment table */
2511 val = readl(&xhci->ir_set->erst_size);
2512 val &= ERST_SIZE_MASK;
2513 val |= ERST_NUM_SEGS;
2514 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2515 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2516 val);
2517 writel(val, &xhci->ir_set->erst_size);
2518
2519 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2520 "// Set ERST entries to point to event ring.");
2521 /* set the segment table base address */
2522 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2523 "// Set ERST base address for ir_set 0 = 0x%llx",
2524 (unsigned long long)xhci->erst.erst_dma_addr);
2525 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2526 val_64 &= ERST_PTR_MASK;
2527 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2528 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2529
2530 /* Set the event ring dequeue address */
2531 xhci_set_hc_event_deq(xhci);
2532 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2533 "Wrote ERST address to ir_set 0.");
2534 xhci_print_ir_set(xhci, 0);
2535
2536 /*
2537 * XXX: Might need to set the Interrupter Moderation Register to
2538 * something other than the default (~1ms minimum between interrupts).
2539 * See section 5.5.1.2.
2540 */
2541 for (i = 0; i < MAX_HC_SLOTS; i++)
2542 xhci->devs[i] = NULL;
2543 for (i = 0; i < USB_MAXCHILDREN; i++) {
2544 xhci->bus_state[0].resume_done[i] = 0;
2545 xhci->bus_state[1].resume_done[i] = 0;
2546 /* Only the USB 2.0 completions will ever be used. */
2547 init_completion(&xhci->bus_state[1].rexit_done[i]);
2548 }
2549
2550 if (scratchpad_alloc(xhci, flags))
2551 goto fail;
2552 if (xhci_setup_port_arrays(xhci, flags))
2553 goto fail;
2554
2555 /* Enable USB 3.0 device notifications for function remote wake, which
2556 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2557 * U3 (device suspend).
2558 */
2559 temp = readl(&xhci->op_regs->dev_notification);
2560 temp &= ~DEV_NOTE_MASK;
2561 temp |= DEV_NOTE_FWAKE;
2562 writel(temp, &xhci->op_regs->dev_notification);
2563
2564 return 0;
2565
2566fail:
2567 xhci_halt(xhci);
2568 xhci_reset(xhci);
2569 xhci_mem_cleanup(xhci);
2570 return -ENOMEM;
2571}