rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * xHCI host controller driver |
| 3 | * |
| 4 | * Copyright (C) 2008 Intel Corp. |
| 5 | * |
| 6 | * Author: Sarah Sharp |
| 7 | * Some code borrowed from the Linux EHCI driver. |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License version 2 as |
| 11 | * published by the Free Software Foundation. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, but |
| 14 | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 15 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 16 | * for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, write to the Free Software Foundation, |
| 20 | * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 21 | */ |
| 22 | |
| 23 | #include <linux/usb.h> |
| 24 | #include <linux/pci.h> |
| 25 | #include <linux/slab.h> |
| 26 | #include <linux/dmapool.h> |
| 27 | #include <linux/dma-mapping.h> |
| 28 | |
| 29 | #include "xhci.h" |
| 30 | #include "xhci-trace.h" |
| 31 | |
| 32 | /* |
| 33 | * Allocates a generic ring segment from the ring pool, sets the dma address, |
| 34 | * initializes the segment to zero, and sets the private next pointer to NULL. |
| 35 | * |
| 36 | * Section 4.11.1.1: |
| 37 | * "All components of all Command and Transfer TRBs shall be initialized to '0'" |
| 38 | */ |
| 39 | static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, |
| 40 | unsigned int cycle_state, |
| 41 | unsigned int max_packet, |
| 42 | gfp_t flags) |
| 43 | { |
| 44 | struct xhci_segment *seg; |
| 45 | dma_addr_t dma; |
| 46 | int i; |
| 47 | |
| 48 | seg = kzalloc(sizeof *seg, flags); |
| 49 | if (!seg) |
| 50 | return NULL; |
| 51 | |
| 52 | seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); |
| 53 | if (!seg->trbs) { |
| 54 | kfree(seg); |
| 55 | return NULL; |
| 56 | } |
| 57 | |
| 58 | if (max_packet) { |
| 59 | seg->bounce_buf = kzalloc(max_packet, flags); |
| 60 | if (!seg->bounce_buf) { |
| 61 | dma_pool_free(xhci->segment_pool, seg->trbs, dma); |
| 62 | kfree(seg); |
| 63 | return NULL; |
| 64 | } |
| 65 | } |
| 66 | /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ |
| 67 | if (cycle_state == 0) { |
| 68 | for (i = 0; i < TRBS_PER_SEGMENT; i++) |
| 69 | seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); |
| 70 | } |
| 71 | seg->dma = dma; |
| 72 | seg->next = NULL; |
| 73 | |
| 74 | return seg; |
| 75 | } |
| 76 | |
| 77 | static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) |
| 78 | { |
| 79 | if (seg->trbs) { |
| 80 | dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); |
| 81 | seg->trbs = NULL; |
| 82 | } |
| 83 | kfree(seg->bounce_buf); |
| 84 | kfree(seg); |
| 85 | } |
| 86 | |
| 87 | static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, |
| 88 | struct xhci_segment *first) |
| 89 | { |
| 90 | struct xhci_segment *seg; |
| 91 | |
| 92 | seg = first->next; |
| 93 | while (seg != first) { |
| 94 | struct xhci_segment *next = seg->next; |
| 95 | xhci_segment_free(xhci, seg); |
| 96 | seg = next; |
| 97 | } |
| 98 | xhci_segment_free(xhci, first); |
| 99 | } |
| 100 | |
| 101 | /* |
| 102 | * Make the prev segment point to the next segment. |
| 103 | * |
| 104 | * Change the last TRB in the prev segment to be a Link TRB which points to the |
| 105 | * DMA address of the next segment. The caller needs to set any Link TRB |
| 106 | * related flags, such as End TRB, Toggle Cycle, and no snoop. |
| 107 | */ |
| 108 | static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, |
| 109 | struct xhci_segment *next, enum xhci_ring_type type) |
| 110 | { |
| 111 | u32 val; |
| 112 | |
| 113 | if (!prev || !next) |
| 114 | return; |
| 115 | prev->next = next; |
| 116 | if (type != TYPE_EVENT) { |
| 117 | prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = |
| 118 | cpu_to_le64(next->dma); |
| 119 | |
| 120 | /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ |
| 121 | val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); |
| 122 | val &= ~TRB_TYPE_BITMASK; |
| 123 | val |= TRB_TYPE(TRB_LINK); |
| 124 | /* Always set the chain bit with 0.95 hardware */ |
| 125 | /* Set chain bit for isoc rings on AMD 0.96 host */ |
| 126 | if (xhci_link_trb_quirk(xhci) || |
| 127 | (type == TYPE_ISOC && |
| 128 | (xhci->quirks & XHCI_AMD_0x96_HOST))) |
| 129 | val |= TRB_CHAIN; |
| 130 | prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * Link the ring to the new segments. |
| 136 | * Set Toggle Cycle for the new ring if needed. |
| 137 | */ |
| 138 | static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, |
| 139 | struct xhci_segment *first, struct xhci_segment *last, |
| 140 | unsigned int num_segs) |
| 141 | { |
| 142 | struct xhci_segment *next; |
| 143 | |
| 144 | if (!ring || !first || !last) |
| 145 | return; |
| 146 | |
| 147 | next = ring->enq_seg->next; |
| 148 | xhci_link_segments(xhci, ring->enq_seg, first, ring->type); |
| 149 | xhci_link_segments(xhci, last, next, ring->type); |
| 150 | ring->num_segs += num_segs; |
| 151 | ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; |
| 152 | |
| 153 | if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { |
| 154 | ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control |
| 155 | &= ~cpu_to_le32(LINK_TOGGLE); |
| 156 | last->trbs[TRBS_PER_SEGMENT-1].link.control |
| 157 | |= cpu_to_le32(LINK_TOGGLE); |
| 158 | ring->last_seg = last; |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | /* |
| 163 | * We need a radix tree for mapping physical addresses of TRBs to which stream |
| 164 | * ID they belong to. We need to do this because the host controller won't tell |
| 165 | * us which stream ring the TRB came from. We could store the stream ID in an |
| 166 | * event data TRB, but that doesn't help us for the cancellation case, since the |
| 167 | * endpoint may stop before it reaches that event data TRB. |
| 168 | * |
| 169 | * The radix tree maps the upper portion of the TRB DMA address to a ring |
| 170 | * segment that has the same upper portion of DMA addresses. For example, say I |
| 171 | * have segments of size 1KB, that are always 1KB aligned. A segment may |
| 172 | * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the |
| 173 | * key to the stream ID is 0x43244. I can use the DMA address of the TRB to |
| 174 | * pass the radix tree a key to get the right stream ID: |
| 175 | * |
| 176 | * 0x10c90fff >> 10 = 0x43243 |
| 177 | * 0x10c912c0 >> 10 = 0x43244 |
| 178 | * 0x10c91400 >> 10 = 0x43245 |
| 179 | * |
| 180 | * Obviously, only those TRBs with DMA addresses that are within the segment |
| 181 | * will make the radix tree return the stream ID for that ring. |
| 182 | * |
| 183 | * Caveats for the radix tree: |
| 184 | * |
| 185 | * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an |
| 186 | * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be |
| 187 | * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the |
| 188 | * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit |
| 189 | * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit |
| 190 | * extended systems (where the DMA address can be bigger than 32-bits), |
| 191 | * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. |
| 192 | */ |
| 193 | static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, |
| 194 | struct xhci_ring *ring, |
| 195 | struct xhci_segment *seg, |
| 196 | gfp_t mem_flags) |
| 197 | { |
| 198 | unsigned long key; |
| 199 | int ret; |
| 200 | |
| 201 | key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); |
| 202 | /* Skip any segments that were already added. */ |
| 203 | if (radix_tree_lookup(trb_address_map, key)) |
| 204 | return 0; |
| 205 | |
| 206 | ret = radix_tree_maybe_preload(mem_flags); |
| 207 | if (ret) |
| 208 | return ret; |
| 209 | ret = radix_tree_insert(trb_address_map, |
| 210 | key, ring); |
| 211 | radix_tree_preload_end(); |
| 212 | return ret; |
| 213 | } |
| 214 | |
| 215 | static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, |
| 216 | struct xhci_segment *seg) |
| 217 | { |
| 218 | unsigned long key; |
| 219 | |
| 220 | key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); |
| 221 | if (radix_tree_lookup(trb_address_map, key)) |
| 222 | radix_tree_delete(trb_address_map, key); |
| 223 | } |
| 224 | |
| 225 | static int xhci_update_stream_segment_mapping( |
| 226 | struct radix_tree_root *trb_address_map, |
| 227 | struct xhci_ring *ring, |
| 228 | struct xhci_segment *first_seg, |
| 229 | struct xhci_segment *last_seg, |
| 230 | gfp_t mem_flags) |
| 231 | { |
| 232 | struct xhci_segment *seg; |
| 233 | struct xhci_segment *failed_seg; |
| 234 | int ret; |
| 235 | |
| 236 | if (WARN_ON_ONCE(trb_address_map == NULL)) |
| 237 | return 0; |
| 238 | |
| 239 | seg = first_seg; |
| 240 | do { |
| 241 | ret = xhci_insert_segment_mapping(trb_address_map, |
| 242 | ring, seg, mem_flags); |
| 243 | if (ret) |
| 244 | goto remove_streams; |
| 245 | if (seg == last_seg) |
| 246 | return 0; |
| 247 | seg = seg->next; |
| 248 | } while (seg != first_seg); |
| 249 | |
| 250 | return 0; |
| 251 | |
| 252 | remove_streams: |
| 253 | failed_seg = seg; |
| 254 | seg = first_seg; |
| 255 | do { |
| 256 | xhci_remove_segment_mapping(trb_address_map, seg); |
| 257 | if (seg == failed_seg) |
| 258 | return ret; |
| 259 | seg = seg->next; |
| 260 | } while (seg != first_seg); |
| 261 | |
| 262 | return ret; |
| 263 | } |
| 264 | |
| 265 | static void xhci_remove_stream_mapping(struct xhci_ring *ring) |
| 266 | { |
| 267 | struct xhci_segment *seg; |
| 268 | |
| 269 | if (WARN_ON_ONCE(ring->trb_address_map == NULL)) |
| 270 | return; |
| 271 | |
| 272 | seg = ring->first_seg; |
| 273 | do { |
| 274 | xhci_remove_segment_mapping(ring->trb_address_map, seg); |
| 275 | seg = seg->next; |
| 276 | } while (seg != ring->first_seg); |
| 277 | } |
| 278 | |
| 279 | static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) |
| 280 | { |
| 281 | return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, |
| 282 | ring->first_seg, ring->last_seg, mem_flags); |
| 283 | } |
| 284 | |
| 285 | /* XXX: Do we need the hcd structure in all these functions? */ |
| 286 | void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) |
| 287 | { |
| 288 | if (!ring) |
| 289 | return; |
| 290 | |
| 291 | trace_xhci_ring_free(ring); |
| 292 | |
| 293 | if (ring->first_seg) { |
| 294 | if (ring->type == TYPE_STREAM) |
| 295 | xhci_remove_stream_mapping(ring); |
| 296 | xhci_free_segments_for_ring(xhci, ring->first_seg); |
| 297 | } |
| 298 | |
| 299 | kfree(ring); |
| 300 | } |
| 301 | |
| 302 | static void xhci_initialize_ring_info(struct xhci_ring *ring, |
| 303 | unsigned int cycle_state) |
| 304 | { |
| 305 | /* The ring is empty, so the enqueue pointer == dequeue pointer */ |
| 306 | ring->enqueue = ring->first_seg->trbs; |
| 307 | ring->enq_seg = ring->first_seg; |
| 308 | ring->dequeue = ring->enqueue; |
| 309 | ring->deq_seg = ring->first_seg; |
| 310 | /* The ring is initialized to 0. The producer must write 1 to the cycle |
| 311 | * bit to handover ownership of the TRB, so PCS = 1. The consumer must |
| 312 | * compare CCS to the cycle bit to check ownership, so CCS = 1. |
| 313 | * |
| 314 | * New rings are initialized with cycle state equal to 1; if we are |
| 315 | * handling ring expansion, set the cycle state equal to the old ring. |
| 316 | */ |
| 317 | ring->cycle_state = cycle_state; |
| 318 | |
| 319 | /* |
| 320 | * Each segment has a link TRB, and leave an extra TRB for SW |
| 321 | * accounting purpose |
| 322 | */ |
| 323 | ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; |
| 324 | } |
| 325 | |
| 326 | /* Allocate segments and link them for a ring */ |
| 327 | static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, |
| 328 | struct xhci_segment **first, struct xhci_segment **last, |
| 329 | unsigned int num_segs, unsigned int cycle_state, |
| 330 | enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) |
| 331 | { |
| 332 | struct xhci_segment *prev; |
| 333 | |
| 334 | prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); |
| 335 | if (!prev) |
| 336 | return -ENOMEM; |
| 337 | num_segs--; |
| 338 | |
| 339 | *first = prev; |
| 340 | while (num_segs > 0) { |
| 341 | struct xhci_segment *next; |
| 342 | |
| 343 | next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); |
| 344 | if (!next) { |
| 345 | prev = *first; |
| 346 | while (prev) { |
| 347 | next = prev->next; |
| 348 | xhci_segment_free(xhci, prev); |
| 349 | prev = next; |
| 350 | } |
| 351 | return -ENOMEM; |
| 352 | } |
| 353 | xhci_link_segments(xhci, prev, next, type); |
| 354 | |
| 355 | prev = next; |
| 356 | num_segs--; |
| 357 | } |
| 358 | xhci_link_segments(xhci, prev, *first, type); |
| 359 | *last = prev; |
| 360 | |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | /** |
| 365 | * Create a new ring with zero or more segments. |
| 366 | * |
| 367 | * Link each segment together into a ring. |
| 368 | * Set the end flag and the cycle toggle bit on the last segment. |
| 369 | * See section 4.9.1 and figures 15 and 16. |
| 370 | */ |
| 371 | static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, |
| 372 | unsigned int num_segs, unsigned int cycle_state, |
| 373 | enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) |
| 374 | { |
| 375 | struct xhci_ring *ring; |
| 376 | int ret; |
| 377 | |
| 378 | ring = kzalloc(sizeof *(ring), flags); |
| 379 | if (!ring) |
| 380 | return NULL; |
| 381 | |
| 382 | ring->num_segs = num_segs; |
| 383 | ring->bounce_buf_len = max_packet; |
| 384 | INIT_LIST_HEAD(&ring->td_list); |
| 385 | ring->type = type; |
| 386 | if (num_segs == 0) |
| 387 | return ring; |
| 388 | |
| 389 | ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, |
| 390 | &ring->last_seg, num_segs, cycle_state, type, |
| 391 | max_packet, flags); |
| 392 | if (ret) |
| 393 | goto fail; |
| 394 | |
| 395 | /* Only event ring does not use link TRB */ |
| 396 | if (type != TYPE_EVENT) { |
| 397 | /* See section 4.9.2.1 and 6.4.4.1 */ |
| 398 | ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= |
| 399 | cpu_to_le32(LINK_TOGGLE); |
| 400 | } |
| 401 | xhci_initialize_ring_info(ring, cycle_state); |
| 402 | trace_xhci_ring_alloc(ring); |
| 403 | return ring; |
| 404 | |
| 405 | fail: |
| 406 | kfree(ring); |
| 407 | return NULL; |
| 408 | } |
| 409 | |
| 410 | void xhci_free_endpoint_ring(struct xhci_hcd *xhci, |
| 411 | struct xhci_virt_device *virt_dev, |
| 412 | unsigned int ep_index) |
| 413 | { |
| 414 | xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); |
| 415 | virt_dev->eps[ep_index].ring = NULL; |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * Expand an existing ring. |
| 420 | * Allocate a new ring which has same segment numbers and link the two rings. |
| 421 | */ |
| 422 | int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, |
| 423 | unsigned int num_trbs, gfp_t flags) |
| 424 | { |
| 425 | struct xhci_segment *first; |
| 426 | struct xhci_segment *last; |
| 427 | unsigned int num_segs; |
| 428 | unsigned int num_segs_needed; |
| 429 | int ret; |
| 430 | |
| 431 | num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) / |
| 432 | (TRBS_PER_SEGMENT - 1); |
| 433 | |
| 434 | /* Allocate number of segments we needed, or double the ring size */ |
| 435 | num_segs = ring->num_segs > num_segs_needed ? |
| 436 | ring->num_segs : num_segs_needed; |
| 437 | |
| 438 | ret = xhci_alloc_segments_for_ring(xhci, &first, &last, |
| 439 | num_segs, ring->cycle_state, ring->type, |
| 440 | ring->bounce_buf_len, flags); |
| 441 | if (ret) |
| 442 | return -ENOMEM; |
| 443 | |
| 444 | if (ring->type == TYPE_STREAM) |
| 445 | ret = xhci_update_stream_segment_mapping(ring->trb_address_map, |
| 446 | ring, first, last, flags); |
| 447 | if (ret) { |
| 448 | struct xhci_segment *next; |
| 449 | do { |
| 450 | next = first->next; |
| 451 | xhci_segment_free(xhci, first); |
| 452 | if (first == last) |
| 453 | break; |
| 454 | first = next; |
| 455 | } while (true); |
| 456 | return ret; |
| 457 | } |
| 458 | |
| 459 | xhci_link_rings(xhci, ring, first, last, num_segs); |
| 460 | trace_xhci_ring_expansion(ring); |
| 461 | xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, |
| 462 | "ring expansion succeed, now has %d segments", |
| 463 | ring->num_segs); |
| 464 | |
| 465 | return 0; |
| 466 | } |
| 467 | |
| 468 | #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32) |
| 469 | |
| 470 | static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, |
| 471 | int type, gfp_t flags) |
| 472 | { |
| 473 | struct xhci_container_ctx *ctx; |
| 474 | |
| 475 | if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) |
| 476 | return NULL; |
| 477 | |
| 478 | ctx = kzalloc(sizeof(*ctx), flags); |
| 479 | if (!ctx) |
| 480 | return NULL; |
| 481 | |
| 482 | ctx->type = type; |
| 483 | ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; |
| 484 | if (type == XHCI_CTX_TYPE_INPUT) |
| 485 | ctx->size += CTX_SIZE(xhci->hcc_params); |
| 486 | |
| 487 | ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); |
| 488 | if (!ctx->bytes) { |
| 489 | kfree(ctx); |
| 490 | return NULL; |
| 491 | } |
| 492 | return ctx; |
| 493 | } |
| 494 | |
| 495 | static void xhci_free_container_ctx(struct xhci_hcd *xhci, |
| 496 | struct xhci_container_ctx *ctx) |
| 497 | { |
| 498 | if (!ctx) |
| 499 | return; |
| 500 | dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); |
| 501 | kfree(ctx); |
| 502 | } |
| 503 | |
| 504 | struct xhci_input_control_ctx *xhci_get_input_control_ctx( |
| 505 | struct xhci_container_ctx *ctx) |
| 506 | { |
| 507 | if (ctx->type != XHCI_CTX_TYPE_INPUT) |
| 508 | return NULL; |
| 509 | |
| 510 | return (struct xhci_input_control_ctx *)ctx->bytes; |
| 511 | } |
| 512 | |
| 513 | struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, |
| 514 | struct xhci_container_ctx *ctx) |
| 515 | { |
| 516 | if (ctx->type == XHCI_CTX_TYPE_DEVICE) |
| 517 | return (struct xhci_slot_ctx *)ctx->bytes; |
| 518 | |
| 519 | return (struct xhci_slot_ctx *) |
| 520 | (ctx->bytes + CTX_SIZE(xhci->hcc_params)); |
| 521 | } |
| 522 | |
| 523 | struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, |
| 524 | struct xhci_container_ctx *ctx, |
| 525 | unsigned int ep_index) |
| 526 | { |
| 527 | /* increment ep index by offset of start of ep ctx array */ |
| 528 | ep_index++; |
| 529 | if (ctx->type == XHCI_CTX_TYPE_INPUT) |
| 530 | ep_index++; |
| 531 | |
| 532 | return (struct xhci_ep_ctx *) |
| 533 | (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); |
| 534 | } |
| 535 | |
| 536 | |
| 537 | /***************** Streams structures manipulation *************************/ |
| 538 | |
| 539 | static void xhci_free_stream_ctx(struct xhci_hcd *xhci, |
| 540 | unsigned int num_stream_ctxs, |
| 541 | struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) |
| 542 | { |
| 543 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 544 | size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; |
| 545 | |
| 546 | if (size > MEDIUM_STREAM_ARRAY_SIZE) |
| 547 | dma_free_coherent(dev, size, |
| 548 | stream_ctx, dma); |
| 549 | else if (size <= SMALL_STREAM_ARRAY_SIZE) |
| 550 | return dma_pool_free(xhci->small_streams_pool, |
| 551 | stream_ctx, dma); |
| 552 | else |
| 553 | return dma_pool_free(xhci->medium_streams_pool, |
| 554 | stream_ctx, dma); |
| 555 | } |
| 556 | |
| 557 | /* |
| 558 | * The stream context array for each endpoint with bulk streams enabled can |
| 559 | * vary in size, based on: |
| 560 | * - how many streams the endpoint supports, |
| 561 | * - the maximum primary stream array size the host controller supports, |
| 562 | * - and how many streams the device driver asks for. |
| 563 | * |
| 564 | * The stream context array must be a power of 2, and can be as small as |
| 565 | * 64 bytes or as large as 1MB. |
| 566 | */ |
| 567 | static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, |
| 568 | unsigned int num_stream_ctxs, dma_addr_t *dma, |
| 569 | gfp_t mem_flags) |
| 570 | { |
| 571 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 572 | size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; |
| 573 | |
| 574 | if (size > MEDIUM_STREAM_ARRAY_SIZE) |
| 575 | return dma_alloc_coherent(dev, size, |
| 576 | dma, mem_flags); |
| 577 | else if (size <= SMALL_STREAM_ARRAY_SIZE) |
| 578 | return dma_pool_alloc(xhci->small_streams_pool, |
| 579 | mem_flags, dma); |
| 580 | else |
| 581 | return dma_pool_alloc(xhci->medium_streams_pool, |
| 582 | mem_flags, dma); |
| 583 | } |
| 584 | |
| 585 | struct xhci_ring *xhci_dma_to_transfer_ring( |
| 586 | struct xhci_virt_ep *ep, |
| 587 | u64 address) |
| 588 | { |
| 589 | if (ep->ep_state & EP_HAS_STREAMS) |
| 590 | return radix_tree_lookup(&ep->stream_info->trb_address_map, |
| 591 | address >> TRB_SEGMENT_SHIFT); |
| 592 | return ep->ring; |
| 593 | } |
| 594 | |
| 595 | struct xhci_ring *xhci_stream_id_to_ring( |
| 596 | struct xhci_virt_device *dev, |
| 597 | unsigned int ep_index, |
| 598 | unsigned int stream_id) |
| 599 | { |
| 600 | struct xhci_virt_ep *ep = &dev->eps[ep_index]; |
| 601 | |
| 602 | if (stream_id == 0) |
| 603 | return ep->ring; |
| 604 | if (!ep->stream_info) |
| 605 | return NULL; |
| 606 | |
| 607 | if (stream_id >= ep->stream_info->num_streams) |
| 608 | return NULL; |
| 609 | return ep->stream_info->stream_rings[stream_id]; |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * Change an endpoint's internal structure so it supports stream IDs. The |
| 614 | * number of requested streams includes stream 0, which cannot be used by device |
| 615 | * drivers. |
| 616 | * |
| 617 | * The number of stream contexts in the stream context array may be bigger than |
| 618 | * the number of streams the driver wants to use. This is because the number of |
| 619 | * stream context array entries must be a power of two. |
| 620 | */ |
| 621 | struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, |
| 622 | unsigned int num_stream_ctxs, |
| 623 | unsigned int num_streams, |
| 624 | unsigned int max_packet, gfp_t mem_flags) |
| 625 | { |
| 626 | struct xhci_stream_info *stream_info; |
| 627 | u32 cur_stream; |
| 628 | struct xhci_ring *cur_ring; |
| 629 | u64 addr; |
| 630 | int ret; |
| 631 | |
| 632 | xhci_dbg(xhci, "Allocating %u streams and %u " |
| 633 | "stream context array entries.\n", |
| 634 | num_streams, num_stream_ctxs); |
| 635 | if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { |
| 636 | xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); |
| 637 | return NULL; |
| 638 | } |
| 639 | xhci->cmd_ring_reserved_trbs++; |
| 640 | |
| 641 | stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags); |
| 642 | if (!stream_info) |
| 643 | goto cleanup_trbs; |
| 644 | |
| 645 | stream_info->num_streams = num_streams; |
| 646 | stream_info->num_stream_ctxs = num_stream_ctxs; |
| 647 | |
| 648 | /* Initialize the array of virtual pointers to stream rings. */ |
| 649 | stream_info->stream_rings = kzalloc( |
| 650 | sizeof(struct xhci_ring *)*num_streams, |
| 651 | mem_flags); |
| 652 | if (!stream_info->stream_rings) |
| 653 | goto cleanup_info; |
| 654 | |
| 655 | /* Initialize the array of DMA addresses for stream rings for the HW. */ |
| 656 | stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, |
| 657 | num_stream_ctxs, &stream_info->ctx_array_dma, |
| 658 | mem_flags); |
| 659 | if (!stream_info->stream_ctx_array) |
| 660 | goto cleanup_ctx; |
| 661 | memset(stream_info->stream_ctx_array, 0, |
| 662 | sizeof(struct xhci_stream_ctx)*num_stream_ctxs); |
| 663 | |
| 664 | /* Allocate everything needed to free the stream rings later */ |
| 665 | stream_info->free_streams_command = |
| 666 | xhci_alloc_command(xhci, true, true, mem_flags); |
| 667 | if (!stream_info->free_streams_command) |
| 668 | goto cleanup_ctx; |
| 669 | |
| 670 | INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); |
| 671 | |
| 672 | /* Allocate rings for all the streams that the driver will use, |
| 673 | * and add their segment DMA addresses to the radix tree. |
| 674 | * Stream 0 is reserved. |
| 675 | */ |
| 676 | |
| 677 | for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { |
| 678 | stream_info->stream_rings[cur_stream] = |
| 679 | xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, |
| 680 | mem_flags); |
| 681 | cur_ring = stream_info->stream_rings[cur_stream]; |
| 682 | if (!cur_ring) |
| 683 | goto cleanup_rings; |
| 684 | cur_ring->stream_id = cur_stream; |
| 685 | cur_ring->trb_address_map = &stream_info->trb_address_map; |
| 686 | /* Set deq ptr, cycle bit, and stream context type */ |
| 687 | addr = cur_ring->first_seg->dma | |
| 688 | SCT_FOR_CTX(SCT_PRI_TR) | |
| 689 | cur_ring->cycle_state; |
| 690 | stream_info->stream_ctx_array[cur_stream].stream_ring = |
| 691 | cpu_to_le64(addr); |
| 692 | xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", |
| 693 | cur_stream, (unsigned long long) addr); |
| 694 | |
| 695 | ret = xhci_update_stream_mapping(cur_ring, mem_flags); |
| 696 | if (ret) { |
| 697 | xhci_ring_free(xhci, cur_ring); |
| 698 | stream_info->stream_rings[cur_stream] = NULL; |
| 699 | goto cleanup_rings; |
| 700 | } |
| 701 | } |
| 702 | /* Leave the other unused stream ring pointers in the stream context |
| 703 | * array initialized to zero. This will cause the xHC to give us an |
| 704 | * error if the device asks for a stream ID we don't have setup (if it |
| 705 | * was any other way, the host controller would assume the ring is |
| 706 | * "empty" and wait forever for data to be queued to that stream ID). |
| 707 | */ |
| 708 | |
| 709 | return stream_info; |
| 710 | |
| 711 | cleanup_rings: |
| 712 | for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { |
| 713 | cur_ring = stream_info->stream_rings[cur_stream]; |
| 714 | if (cur_ring) { |
| 715 | xhci_ring_free(xhci, cur_ring); |
| 716 | stream_info->stream_rings[cur_stream] = NULL; |
| 717 | } |
| 718 | } |
| 719 | xhci_free_command(xhci, stream_info->free_streams_command); |
| 720 | cleanup_ctx: |
| 721 | kfree(stream_info->stream_rings); |
| 722 | cleanup_info: |
| 723 | kfree(stream_info); |
| 724 | cleanup_trbs: |
| 725 | xhci->cmd_ring_reserved_trbs--; |
| 726 | return NULL; |
| 727 | } |
| 728 | /* |
| 729 | * Sets the MaxPStreams field and the Linear Stream Array field. |
| 730 | * Sets the dequeue pointer to the stream context array. |
| 731 | */ |
| 732 | void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, |
| 733 | struct xhci_ep_ctx *ep_ctx, |
| 734 | struct xhci_stream_info *stream_info) |
| 735 | { |
| 736 | u32 max_primary_streams; |
| 737 | /* MaxPStreams is the number of stream context array entries, not the |
| 738 | * number we're actually using. Must be in 2^(MaxPstreams + 1) format. |
| 739 | * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. |
| 740 | */ |
| 741 | max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; |
| 742 | xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, |
| 743 | "Setting number of stream ctx array entries to %u", |
| 744 | 1 << (max_primary_streams + 1)); |
| 745 | ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); |
| 746 | ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) |
| 747 | | EP_HAS_LSA); |
| 748 | ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); |
| 749 | } |
| 750 | |
| 751 | /* |
| 752 | * Sets the MaxPStreams field and the Linear Stream Array field to 0. |
| 753 | * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, |
| 754 | * not at the beginning of the ring). |
| 755 | */ |
| 756 | void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, |
| 757 | struct xhci_virt_ep *ep) |
| 758 | { |
| 759 | dma_addr_t addr; |
| 760 | ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); |
| 761 | addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); |
| 762 | ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); |
| 763 | } |
| 764 | |
| 765 | /* Frees all stream contexts associated with the endpoint, |
| 766 | * |
| 767 | * Caller should fix the endpoint context streams fields. |
| 768 | */ |
| 769 | void xhci_free_stream_info(struct xhci_hcd *xhci, |
| 770 | struct xhci_stream_info *stream_info) |
| 771 | { |
| 772 | int cur_stream; |
| 773 | struct xhci_ring *cur_ring; |
| 774 | |
| 775 | if (!stream_info) |
| 776 | return; |
| 777 | |
| 778 | for (cur_stream = 1; cur_stream < stream_info->num_streams; |
| 779 | cur_stream++) { |
| 780 | cur_ring = stream_info->stream_rings[cur_stream]; |
| 781 | if (cur_ring) { |
| 782 | xhci_ring_free(xhci, cur_ring); |
| 783 | stream_info->stream_rings[cur_stream] = NULL; |
| 784 | } |
| 785 | } |
| 786 | xhci_free_command(xhci, stream_info->free_streams_command); |
| 787 | xhci->cmd_ring_reserved_trbs--; |
| 788 | if (stream_info->stream_ctx_array) |
| 789 | xhci_free_stream_ctx(xhci, |
| 790 | stream_info->num_stream_ctxs, |
| 791 | stream_info->stream_ctx_array, |
| 792 | stream_info->ctx_array_dma); |
| 793 | |
| 794 | kfree(stream_info->stream_rings); |
| 795 | kfree(stream_info); |
| 796 | } |
| 797 | |
| 798 | |
| 799 | /***************** Device context manipulation *************************/ |
| 800 | |
| 801 | static void xhci_init_endpoint_timer(struct xhci_hcd *xhci, |
| 802 | struct xhci_virt_ep *ep) |
| 803 | { |
| 804 | setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog, |
| 805 | (unsigned long)ep); |
| 806 | ep->xhci = xhci; |
| 807 | } |
| 808 | |
| 809 | static void xhci_free_tt_info(struct xhci_hcd *xhci, |
| 810 | struct xhci_virt_device *virt_dev, |
| 811 | int slot_id) |
| 812 | { |
| 813 | struct list_head *tt_list_head; |
| 814 | struct xhci_tt_bw_info *tt_info, *next; |
| 815 | bool slot_found = false; |
| 816 | |
| 817 | /* If the device never made it past the Set Address stage, |
| 818 | * it may not have the real_port set correctly. |
| 819 | */ |
| 820 | if (virt_dev->real_port == 0 || |
| 821 | virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { |
| 822 | xhci_dbg(xhci, "Bad real port.\n"); |
| 823 | return; |
| 824 | } |
| 825 | |
| 826 | tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); |
| 827 | list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { |
| 828 | /* Multi-TT hubs will have more than one entry */ |
| 829 | if (tt_info->slot_id == slot_id) { |
| 830 | slot_found = true; |
| 831 | list_del(&tt_info->tt_list); |
| 832 | kfree(tt_info); |
| 833 | } else if (slot_found) { |
| 834 | break; |
| 835 | } |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | int xhci_alloc_tt_info(struct xhci_hcd *xhci, |
| 840 | struct xhci_virt_device *virt_dev, |
| 841 | struct usb_device *hdev, |
| 842 | struct usb_tt *tt, gfp_t mem_flags) |
| 843 | { |
| 844 | struct xhci_tt_bw_info *tt_info; |
| 845 | unsigned int num_ports; |
| 846 | int i, j; |
| 847 | |
| 848 | if (!tt->multi) |
| 849 | num_ports = 1; |
| 850 | else |
| 851 | num_ports = hdev->maxchild; |
| 852 | |
| 853 | for (i = 0; i < num_ports; i++, tt_info++) { |
| 854 | struct xhci_interval_bw_table *bw_table; |
| 855 | |
| 856 | tt_info = kzalloc(sizeof(*tt_info), mem_flags); |
| 857 | if (!tt_info) |
| 858 | goto free_tts; |
| 859 | INIT_LIST_HEAD(&tt_info->tt_list); |
| 860 | list_add(&tt_info->tt_list, |
| 861 | &xhci->rh_bw[virt_dev->real_port - 1].tts); |
| 862 | tt_info->slot_id = virt_dev->udev->slot_id; |
| 863 | if (tt->multi) |
| 864 | tt_info->ttport = i+1; |
| 865 | bw_table = &tt_info->bw_table; |
| 866 | for (j = 0; j < XHCI_MAX_INTERVAL; j++) |
| 867 | INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); |
| 868 | } |
| 869 | return 0; |
| 870 | |
| 871 | free_tts: |
| 872 | xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); |
| 873 | return -ENOMEM; |
| 874 | } |
| 875 | |
| 876 | |
| 877 | /* All the xhci_tds in the ring's TD list should be freed at this point. |
| 878 | * Should be called with xhci->lock held if there is any chance the TT lists |
| 879 | * will be manipulated by the configure endpoint, allocate device, or update |
| 880 | * hub functions while this function is removing the TT entries from the list. |
| 881 | */ |
| 882 | void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) |
| 883 | { |
| 884 | struct xhci_virt_device *dev; |
| 885 | int i; |
| 886 | int old_active_eps = 0; |
| 887 | |
| 888 | /* Slot ID 0 is reserved */ |
| 889 | if (slot_id == 0 || !xhci->devs[slot_id]) |
| 890 | return; |
| 891 | |
| 892 | dev = xhci->devs[slot_id]; |
| 893 | |
| 894 | xhci->dcbaa->dev_context_ptrs[slot_id] = 0; |
| 895 | if (!dev) |
| 896 | return; |
| 897 | |
| 898 | trace_xhci_free_virt_device(dev); |
| 899 | |
| 900 | if (dev->tt_info) |
| 901 | old_active_eps = dev->tt_info->active_eps; |
| 902 | |
| 903 | for (i = 0; i < 31; i++) { |
| 904 | if (dev->eps[i].ring) |
| 905 | xhci_ring_free(xhci, dev->eps[i].ring); |
| 906 | if (dev->eps[i].stream_info) |
| 907 | xhci_free_stream_info(xhci, |
| 908 | dev->eps[i].stream_info); |
| 909 | /* Endpoints on the TT/root port lists should have been removed |
| 910 | * when usb_disable_device() was called for the device. |
| 911 | * We can't drop them anyway, because the udev might have gone |
| 912 | * away by this point, and we can't tell what speed it was. |
| 913 | */ |
| 914 | if (!list_empty(&dev->eps[i].bw_endpoint_list)) |
| 915 | xhci_warn(xhci, "Slot %u endpoint %u " |
| 916 | "not removed from BW list!\n", |
| 917 | slot_id, i); |
| 918 | } |
| 919 | /* If this is a hub, free the TT(s) from the TT list */ |
| 920 | xhci_free_tt_info(xhci, dev, slot_id); |
| 921 | /* If necessary, update the number of active TTs on this root port */ |
| 922 | xhci_update_tt_active_eps(xhci, dev, old_active_eps); |
| 923 | |
| 924 | if (dev->in_ctx) |
| 925 | xhci_free_container_ctx(xhci, dev->in_ctx); |
| 926 | if (dev->out_ctx) |
| 927 | xhci_free_container_ctx(xhci, dev->out_ctx); |
| 928 | |
| 929 | if (dev->udev && dev->udev->slot_id) |
| 930 | dev->udev->slot_id = 0; |
| 931 | kfree(xhci->devs[slot_id]); |
| 932 | xhci->devs[slot_id] = NULL; |
| 933 | } |
| 934 | |
| 935 | /* |
| 936 | * Free a virt_device structure. |
| 937 | * If the virt_device added a tt_info (a hub) and has children pointing to |
| 938 | * that tt_info, then free the child first. Recursive. |
| 939 | * We can't rely on udev at this point to find child-parent relationships. |
| 940 | */ |
| 941 | void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) |
| 942 | { |
| 943 | struct xhci_virt_device *vdev; |
| 944 | struct list_head *tt_list_head; |
| 945 | struct xhci_tt_bw_info *tt_info, *next; |
| 946 | int i; |
| 947 | |
| 948 | vdev = xhci->devs[slot_id]; |
| 949 | if (!vdev) |
| 950 | return; |
| 951 | |
| 952 | if (vdev->real_port == 0 || |
| 953 | vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { |
| 954 | xhci_dbg(xhci, "Bad vdev->real_port.\n"); |
| 955 | goto out; |
| 956 | } |
| 957 | |
| 958 | tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); |
| 959 | list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { |
| 960 | /* is this a hub device that added a tt_info to the tts list */ |
| 961 | if (tt_info->slot_id == slot_id) { |
| 962 | /* are any devices using this tt_info? */ |
| 963 | for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { |
| 964 | vdev = xhci->devs[i]; |
| 965 | if (vdev && (vdev->tt_info == tt_info)) |
| 966 | xhci_free_virt_devices_depth_first( |
| 967 | xhci, i); |
| 968 | } |
| 969 | } |
| 970 | } |
| 971 | out: |
| 972 | /* we are now at a leaf device */ |
| 973 | xhci_free_virt_device(xhci, slot_id); |
| 974 | } |
| 975 | |
| 976 | int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, |
| 977 | struct usb_device *udev, gfp_t flags) |
| 978 | { |
| 979 | struct xhci_virt_device *dev; |
| 980 | int i; |
| 981 | |
| 982 | /* Slot ID 0 is reserved */ |
| 983 | if (slot_id == 0 || xhci->devs[slot_id]) { |
| 984 | xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); |
| 985 | return 0; |
| 986 | } |
| 987 | |
| 988 | dev = kzalloc(sizeof(*dev), flags); |
| 989 | if (!dev) |
| 990 | return 0; |
| 991 | |
| 992 | /* Allocate the (output) device context that will be used in the HC. */ |
| 993 | dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); |
| 994 | if (!dev->out_ctx) |
| 995 | goto fail; |
| 996 | |
| 997 | xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, |
| 998 | (unsigned long long)dev->out_ctx->dma); |
| 999 | |
| 1000 | /* Allocate the (input) device context for address device command */ |
| 1001 | dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); |
| 1002 | if (!dev->in_ctx) |
| 1003 | goto fail; |
| 1004 | |
| 1005 | xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, |
| 1006 | (unsigned long long)dev->in_ctx->dma); |
| 1007 | |
| 1008 | /* Initialize the cancellation list and watchdog timers for each ep */ |
| 1009 | for (i = 0; i < 31; i++) { |
| 1010 | xhci_init_endpoint_timer(xhci, &dev->eps[i]); |
| 1011 | INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); |
| 1012 | INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); |
| 1013 | } |
| 1014 | |
| 1015 | /* Allocate endpoint 0 ring */ |
| 1016 | dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); |
| 1017 | if (!dev->eps[0].ring) |
| 1018 | goto fail; |
| 1019 | |
| 1020 | dev->udev = udev; |
| 1021 | |
| 1022 | /* Point to output device context in dcbaa. */ |
| 1023 | xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); |
| 1024 | xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", |
| 1025 | slot_id, |
| 1026 | &xhci->dcbaa->dev_context_ptrs[slot_id], |
| 1027 | le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); |
| 1028 | |
| 1029 | trace_xhci_alloc_virt_device(dev); |
| 1030 | |
| 1031 | xhci->devs[slot_id] = dev; |
| 1032 | |
| 1033 | return 1; |
| 1034 | fail: |
| 1035 | |
| 1036 | if (dev->in_ctx) |
| 1037 | xhci_free_container_ctx(xhci, dev->in_ctx); |
| 1038 | if (dev->out_ctx) |
| 1039 | xhci_free_container_ctx(xhci, dev->out_ctx); |
| 1040 | kfree(dev); |
| 1041 | |
| 1042 | return 0; |
| 1043 | } |
| 1044 | |
| 1045 | void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, |
| 1046 | struct usb_device *udev) |
| 1047 | { |
| 1048 | struct xhci_virt_device *virt_dev; |
| 1049 | struct xhci_ep_ctx *ep0_ctx; |
| 1050 | struct xhci_ring *ep_ring; |
| 1051 | |
| 1052 | virt_dev = xhci->devs[udev->slot_id]; |
| 1053 | ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); |
| 1054 | ep_ring = virt_dev->eps[0].ring; |
| 1055 | /* |
| 1056 | * FIXME we don't keep track of the dequeue pointer very well after a |
| 1057 | * Set TR dequeue pointer, so we're setting the dequeue pointer of the |
| 1058 | * host to our enqueue pointer. This should only be called after a |
| 1059 | * configured device has reset, so all control transfers should have |
| 1060 | * been completed or cancelled before the reset. |
| 1061 | */ |
| 1062 | ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, |
| 1063 | ep_ring->enqueue) |
| 1064 | | ep_ring->cycle_state); |
| 1065 | } |
| 1066 | |
| 1067 | /* |
| 1068 | * The xHCI roothub may have ports of differing speeds in any order in the port |
| 1069 | * status registers. xhci->port_array provides an array of the port speed for |
| 1070 | * each offset into the port status registers. |
| 1071 | * |
| 1072 | * The xHCI hardware wants to know the roothub port number that the USB device |
| 1073 | * is attached to (or the roothub port its ancestor hub is attached to). All we |
| 1074 | * know is the index of that port under either the USB 2.0 or the USB 3.0 |
| 1075 | * roothub, but that doesn't give us the real index into the HW port status |
| 1076 | * registers. Call xhci_find_raw_port_number() to get real index. |
| 1077 | */ |
| 1078 | static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, |
| 1079 | struct usb_device *udev) |
| 1080 | { |
| 1081 | struct usb_device *top_dev; |
| 1082 | struct usb_hcd *hcd; |
| 1083 | |
| 1084 | if (udev->speed >= USB_SPEED_SUPER) |
| 1085 | hcd = xhci->shared_hcd; |
| 1086 | else |
| 1087 | hcd = xhci->main_hcd; |
| 1088 | |
| 1089 | for (top_dev = udev; top_dev->parent && top_dev->parent->parent; |
| 1090 | top_dev = top_dev->parent) |
| 1091 | /* Found device below root hub */; |
| 1092 | |
| 1093 | return xhci_find_raw_port_number(hcd, top_dev->portnum); |
| 1094 | } |
| 1095 | |
| 1096 | /* Setup an xHCI virtual device for a Set Address command */ |
| 1097 | int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) |
| 1098 | { |
| 1099 | struct xhci_virt_device *dev; |
| 1100 | struct xhci_ep_ctx *ep0_ctx; |
| 1101 | struct xhci_slot_ctx *slot_ctx; |
| 1102 | u32 port_num; |
| 1103 | u32 max_packets; |
| 1104 | struct usb_device *top_dev; |
| 1105 | |
| 1106 | dev = xhci->devs[udev->slot_id]; |
| 1107 | /* Slot ID 0 is reserved */ |
| 1108 | if (udev->slot_id == 0 || !dev) { |
| 1109 | xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", |
| 1110 | udev->slot_id); |
| 1111 | return -EINVAL; |
| 1112 | } |
| 1113 | ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); |
| 1114 | slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); |
| 1115 | |
| 1116 | /* 3) Only the control endpoint is valid - one endpoint context */ |
| 1117 | slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); |
| 1118 | switch (udev->speed) { |
| 1119 | case USB_SPEED_SUPER_PLUS: |
| 1120 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); |
| 1121 | max_packets = MAX_PACKET(512); |
| 1122 | break; |
| 1123 | case USB_SPEED_SUPER: |
| 1124 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); |
| 1125 | max_packets = MAX_PACKET(512); |
| 1126 | break; |
| 1127 | case USB_SPEED_HIGH: |
| 1128 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); |
| 1129 | max_packets = MAX_PACKET(64); |
| 1130 | break; |
| 1131 | /* USB core guesses at a 64-byte max packet first for FS devices */ |
| 1132 | case USB_SPEED_FULL: |
| 1133 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); |
| 1134 | max_packets = MAX_PACKET(64); |
| 1135 | break; |
| 1136 | case USB_SPEED_LOW: |
| 1137 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); |
| 1138 | max_packets = MAX_PACKET(8); |
| 1139 | break; |
| 1140 | case USB_SPEED_WIRELESS: |
| 1141 | xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); |
| 1142 | return -EINVAL; |
| 1143 | break; |
| 1144 | default: |
| 1145 | /* Speed was set earlier, this shouldn't happen. */ |
| 1146 | return -EINVAL; |
| 1147 | } |
| 1148 | /* Find the root hub port this device is under */ |
| 1149 | port_num = xhci_find_real_port_number(xhci, udev); |
| 1150 | if (!port_num) |
| 1151 | return -EINVAL; |
| 1152 | slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); |
| 1153 | /* Set the port number in the virtual_device to the faked port number */ |
| 1154 | for (top_dev = udev; top_dev->parent && top_dev->parent->parent; |
| 1155 | top_dev = top_dev->parent) |
| 1156 | /* Found device below root hub */; |
| 1157 | dev->fake_port = top_dev->portnum; |
| 1158 | dev->real_port = port_num; |
| 1159 | xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); |
| 1160 | xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); |
| 1161 | |
| 1162 | /* Find the right bandwidth table that this device will be a part of. |
| 1163 | * If this is a full speed device attached directly to a root port (or a |
| 1164 | * decendent of one), it counts as a primary bandwidth domain, not a |
| 1165 | * secondary bandwidth domain under a TT. An xhci_tt_info structure |
| 1166 | * will never be created for the HS root hub. |
| 1167 | */ |
| 1168 | if (!udev->tt || !udev->tt->hub->parent) { |
| 1169 | dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; |
| 1170 | } else { |
| 1171 | struct xhci_root_port_bw_info *rh_bw; |
| 1172 | struct xhci_tt_bw_info *tt_bw; |
| 1173 | |
| 1174 | rh_bw = &xhci->rh_bw[port_num - 1]; |
| 1175 | /* Find the right TT. */ |
| 1176 | list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { |
| 1177 | if (tt_bw->slot_id != udev->tt->hub->slot_id) |
| 1178 | continue; |
| 1179 | |
| 1180 | if (!dev->udev->tt->multi || |
| 1181 | (udev->tt->multi && |
| 1182 | tt_bw->ttport == dev->udev->ttport)) { |
| 1183 | dev->bw_table = &tt_bw->bw_table; |
| 1184 | dev->tt_info = tt_bw; |
| 1185 | break; |
| 1186 | } |
| 1187 | } |
| 1188 | if (!dev->tt_info) |
| 1189 | xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); |
| 1190 | } |
| 1191 | |
| 1192 | /* Is this a LS/FS device under an external HS hub? */ |
| 1193 | if (udev->tt && udev->tt->hub->parent) { |
| 1194 | slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | |
| 1195 | (udev->ttport << 8)); |
| 1196 | if (udev->tt->multi) |
| 1197 | slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); |
| 1198 | } |
| 1199 | xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); |
| 1200 | xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); |
| 1201 | |
| 1202 | /* Step 4 - ring already allocated */ |
| 1203 | /* Step 5 */ |
| 1204 | ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); |
| 1205 | |
| 1206 | /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ |
| 1207 | ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | |
| 1208 | max_packets); |
| 1209 | |
| 1210 | ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | |
| 1211 | dev->eps[0].ring->cycle_state); |
| 1212 | |
| 1213 | trace_xhci_setup_addressable_virt_device(dev); |
| 1214 | |
| 1215 | /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ |
| 1216 | |
| 1217 | return 0; |
| 1218 | } |
| 1219 | |
| 1220 | /* |
| 1221 | * Convert interval expressed as 2^(bInterval - 1) == interval into |
| 1222 | * straight exponent value 2^n == interval. |
| 1223 | * |
| 1224 | */ |
| 1225 | static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, |
| 1226 | struct usb_host_endpoint *ep) |
| 1227 | { |
| 1228 | unsigned int interval; |
| 1229 | |
| 1230 | interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; |
| 1231 | if (interval != ep->desc.bInterval - 1) |
| 1232 | dev_warn(&udev->dev, |
| 1233 | "ep %#x - rounding interval to %d %sframes\n", |
| 1234 | ep->desc.bEndpointAddress, |
| 1235 | 1 << interval, |
| 1236 | udev->speed == USB_SPEED_FULL ? "" : "micro"); |
| 1237 | |
| 1238 | if (udev->speed == USB_SPEED_FULL) { |
| 1239 | /* |
| 1240 | * Full speed isoc endpoints specify interval in frames, |
| 1241 | * not microframes. We are using microframes everywhere, |
| 1242 | * so adjust accordingly. |
| 1243 | */ |
| 1244 | interval += 3; /* 1 frame = 2^3 uframes */ |
| 1245 | } |
| 1246 | |
| 1247 | return interval; |
| 1248 | } |
| 1249 | |
| 1250 | /* |
| 1251 | * Convert bInterval expressed in microframes (in 1-255 range) to exponent of |
| 1252 | * microframes, rounded down to nearest power of 2. |
| 1253 | */ |
| 1254 | static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, |
| 1255 | struct usb_host_endpoint *ep, unsigned int desc_interval, |
| 1256 | unsigned int min_exponent, unsigned int max_exponent) |
| 1257 | { |
| 1258 | unsigned int interval; |
| 1259 | |
| 1260 | interval = fls(desc_interval) - 1; |
| 1261 | interval = clamp_val(interval, min_exponent, max_exponent); |
| 1262 | if ((1 << interval) != desc_interval) |
| 1263 | dev_dbg(&udev->dev, |
| 1264 | "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", |
| 1265 | ep->desc.bEndpointAddress, |
| 1266 | 1 << interval, |
| 1267 | desc_interval); |
| 1268 | |
| 1269 | return interval; |
| 1270 | } |
| 1271 | |
| 1272 | static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, |
| 1273 | struct usb_host_endpoint *ep) |
| 1274 | { |
| 1275 | if (ep->desc.bInterval == 0) |
| 1276 | return 0; |
| 1277 | return xhci_microframes_to_exponent(udev, ep, |
| 1278 | ep->desc.bInterval, 0, 15); |
| 1279 | } |
| 1280 | |
| 1281 | |
| 1282 | static unsigned int xhci_parse_frame_interval(struct usb_device *udev, |
| 1283 | struct usb_host_endpoint *ep) |
| 1284 | { |
| 1285 | return xhci_microframes_to_exponent(udev, ep, |
| 1286 | ep->desc.bInterval * 8, 3, 10); |
| 1287 | } |
| 1288 | |
| 1289 | /* Return the polling or NAK interval. |
| 1290 | * |
| 1291 | * The polling interval is expressed in "microframes". If xHCI's Interval field |
| 1292 | * is set to N, it will service the endpoint every 2^(Interval)*125us. |
| 1293 | * |
| 1294 | * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval |
| 1295 | * is set to 0. |
| 1296 | */ |
| 1297 | static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, |
| 1298 | struct usb_host_endpoint *ep) |
| 1299 | { |
| 1300 | unsigned int interval = 0; |
| 1301 | |
| 1302 | switch (udev->speed) { |
| 1303 | case USB_SPEED_HIGH: |
| 1304 | /* Max NAK rate */ |
| 1305 | if (usb_endpoint_xfer_control(&ep->desc) || |
| 1306 | usb_endpoint_xfer_bulk(&ep->desc)) { |
| 1307 | interval = xhci_parse_microframe_interval(udev, ep); |
| 1308 | break; |
| 1309 | } |
| 1310 | /* Fall through - SS and HS isoc/int have same decoding */ |
| 1311 | |
| 1312 | case USB_SPEED_SUPER_PLUS: |
| 1313 | case USB_SPEED_SUPER: |
| 1314 | if (usb_endpoint_xfer_int(&ep->desc) || |
| 1315 | usb_endpoint_xfer_isoc(&ep->desc)) { |
| 1316 | interval = xhci_parse_exponent_interval(udev, ep); |
| 1317 | } |
| 1318 | break; |
| 1319 | |
| 1320 | case USB_SPEED_FULL: |
| 1321 | if (usb_endpoint_xfer_isoc(&ep->desc)) { |
| 1322 | interval = xhci_parse_exponent_interval(udev, ep); |
| 1323 | break; |
| 1324 | } |
| 1325 | /* |
| 1326 | * Fall through for interrupt endpoint interval decoding |
| 1327 | * since it uses the same rules as low speed interrupt |
| 1328 | * endpoints. |
| 1329 | */ |
| 1330 | |
| 1331 | case USB_SPEED_LOW: |
| 1332 | if (usb_endpoint_xfer_int(&ep->desc) || |
| 1333 | usb_endpoint_xfer_isoc(&ep->desc)) { |
| 1334 | |
| 1335 | interval = xhci_parse_frame_interval(udev, ep); |
| 1336 | } |
| 1337 | break; |
| 1338 | |
| 1339 | default: |
| 1340 | BUG(); |
| 1341 | } |
| 1342 | return interval; |
| 1343 | } |
| 1344 | |
| 1345 | /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. |
| 1346 | * High speed endpoint descriptors can define "the number of additional |
| 1347 | * transaction opportunities per microframe", but that goes in the Max Burst |
| 1348 | * endpoint context field. |
| 1349 | */ |
| 1350 | static u32 xhci_get_endpoint_mult(struct usb_device *udev, |
| 1351 | struct usb_host_endpoint *ep) |
| 1352 | { |
| 1353 | if (udev->speed < USB_SPEED_SUPER || |
| 1354 | !usb_endpoint_xfer_isoc(&ep->desc)) |
| 1355 | return 0; |
| 1356 | return ep->ss_ep_comp.bmAttributes; |
| 1357 | } |
| 1358 | |
| 1359 | static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, |
| 1360 | struct usb_host_endpoint *ep) |
| 1361 | { |
| 1362 | /* Super speed and Plus have max burst in ep companion desc */ |
| 1363 | if (udev->speed >= USB_SPEED_SUPER) |
| 1364 | return ep->ss_ep_comp.bMaxBurst; |
| 1365 | |
| 1366 | if (udev->speed == USB_SPEED_HIGH && |
| 1367 | (usb_endpoint_xfer_isoc(&ep->desc) || |
| 1368 | usb_endpoint_xfer_int(&ep->desc))) |
| 1369 | return usb_endpoint_maxp_mult(&ep->desc) - 1; |
| 1370 | |
| 1371 | return 0; |
| 1372 | } |
| 1373 | |
| 1374 | static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) |
| 1375 | { |
| 1376 | int in; |
| 1377 | |
| 1378 | in = usb_endpoint_dir_in(&ep->desc); |
| 1379 | |
| 1380 | switch (usb_endpoint_type(&ep->desc)) { |
| 1381 | case USB_ENDPOINT_XFER_CONTROL: |
| 1382 | return CTRL_EP; |
| 1383 | case USB_ENDPOINT_XFER_BULK: |
| 1384 | return in ? BULK_IN_EP : BULK_OUT_EP; |
| 1385 | case USB_ENDPOINT_XFER_ISOC: |
| 1386 | return in ? ISOC_IN_EP : ISOC_OUT_EP; |
| 1387 | case USB_ENDPOINT_XFER_INT: |
| 1388 | return in ? INT_IN_EP : INT_OUT_EP; |
| 1389 | } |
| 1390 | return 0; |
| 1391 | } |
| 1392 | |
| 1393 | /* Return the maximum endpoint service interval time (ESIT) payload. |
| 1394 | * Basically, this is the maxpacket size, multiplied by the burst size |
| 1395 | * and mult size. |
| 1396 | */ |
| 1397 | static u32 xhci_get_max_esit_payload(struct usb_device *udev, |
| 1398 | struct usb_host_endpoint *ep) |
| 1399 | { |
| 1400 | int max_burst; |
| 1401 | int max_packet; |
| 1402 | |
| 1403 | /* Only applies for interrupt or isochronous endpoints */ |
| 1404 | if (usb_endpoint_xfer_control(&ep->desc) || |
| 1405 | usb_endpoint_xfer_bulk(&ep->desc)) |
| 1406 | return 0; |
| 1407 | |
| 1408 | /* SuperSpeedPlus Isoc ep sending over 48k per esit */ |
| 1409 | if ((udev->speed >= USB_SPEED_SUPER_PLUS) && |
| 1410 | USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) |
| 1411 | return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); |
| 1412 | /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ |
| 1413 | else if (udev->speed >= USB_SPEED_SUPER) |
| 1414 | return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); |
| 1415 | |
| 1416 | max_packet = usb_endpoint_maxp(&ep->desc); |
| 1417 | max_burst = usb_endpoint_maxp_mult(&ep->desc); |
| 1418 | /* A 0 in max burst means 1 transfer per ESIT */ |
| 1419 | return max_packet * max_burst; |
| 1420 | } |
| 1421 | |
| 1422 | /* Set up an endpoint with one ring segment. Do not allocate stream rings. |
| 1423 | * Drivers will have to call usb_alloc_streams() to do that. |
| 1424 | */ |
| 1425 | int xhci_endpoint_init(struct xhci_hcd *xhci, |
| 1426 | struct xhci_virt_device *virt_dev, |
| 1427 | struct usb_device *udev, |
| 1428 | struct usb_host_endpoint *ep, |
| 1429 | gfp_t mem_flags) |
| 1430 | { |
| 1431 | unsigned int ep_index; |
| 1432 | struct xhci_ep_ctx *ep_ctx; |
| 1433 | struct xhci_ring *ep_ring; |
| 1434 | unsigned int max_packet; |
| 1435 | enum xhci_ring_type ring_type; |
| 1436 | u32 max_esit_payload; |
| 1437 | u32 endpoint_type; |
| 1438 | unsigned int max_burst; |
| 1439 | unsigned int interval; |
| 1440 | unsigned int mult; |
| 1441 | unsigned int avg_trb_len; |
| 1442 | unsigned int err_count = 0; |
| 1443 | |
| 1444 | ep_index = xhci_get_endpoint_index(&ep->desc); |
| 1445 | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); |
| 1446 | |
| 1447 | endpoint_type = xhci_get_endpoint_type(ep); |
| 1448 | if (!endpoint_type) |
| 1449 | return -EINVAL; |
| 1450 | |
| 1451 | ring_type = usb_endpoint_type(&ep->desc); |
| 1452 | |
| 1453 | /* |
| 1454 | * Get values to fill the endpoint context, mostly from ep descriptor. |
| 1455 | * The average TRB buffer lengt for bulk endpoints is unclear as we |
| 1456 | * have no clue on scatter gather list entry size. For Isoc and Int, |
| 1457 | * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. |
| 1458 | */ |
| 1459 | max_esit_payload = xhci_get_max_esit_payload(udev, ep); |
| 1460 | interval = xhci_get_endpoint_interval(udev, ep); |
| 1461 | |
| 1462 | /* Periodic endpoint bInterval limit quirk */ |
| 1463 | if (usb_endpoint_xfer_int(&ep->desc) || |
| 1464 | usb_endpoint_xfer_isoc(&ep->desc)) { |
| 1465 | if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && |
| 1466 | udev->speed >= USB_SPEED_HIGH && |
| 1467 | interval >= 7) { |
| 1468 | interval = 6; |
| 1469 | } |
| 1470 | } |
| 1471 | |
| 1472 | mult = xhci_get_endpoint_mult(udev, ep); |
| 1473 | max_packet = usb_endpoint_maxp(&ep->desc); |
| 1474 | max_burst = xhci_get_endpoint_max_burst(udev, ep); |
| 1475 | avg_trb_len = max_esit_payload; |
| 1476 | |
| 1477 | /* FIXME dig Mult and streams info out of ep companion desc */ |
| 1478 | |
| 1479 | /* Allow 3 retries for everything but isoc, set CErr = 3 */ |
| 1480 | if (!usb_endpoint_xfer_isoc(&ep->desc)) |
| 1481 | err_count = 3; |
| 1482 | /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ |
| 1483 | if (usb_endpoint_xfer_bulk(&ep->desc)) { |
| 1484 | if (udev->speed == USB_SPEED_HIGH) |
| 1485 | max_packet = 512; |
| 1486 | if (udev->speed == USB_SPEED_FULL) { |
| 1487 | max_packet = rounddown_pow_of_two(max_packet); |
| 1488 | max_packet = clamp_val(max_packet, 8, 64); |
| 1489 | } |
| 1490 | } |
| 1491 | /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ |
| 1492 | if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) |
| 1493 | avg_trb_len = 8; |
| 1494 | /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ |
| 1495 | if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) |
| 1496 | mult = 0; |
| 1497 | |
| 1498 | /* Set up the endpoint ring */ |
| 1499 | virt_dev->eps[ep_index].new_ring = |
| 1500 | xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); |
| 1501 | if (!virt_dev->eps[ep_index].new_ring) |
| 1502 | return -ENOMEM; |
| 1503 | |
| 1504 | virt_dev->eps[ep_index].skip = false; |
| 1505 | ep_ring = virt_dev->eps[ep_index].new_ring; |
| 1506 | |
| 1507 | /* Fill the endpoint context */ |
| 1508 | ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | |
| 1509 | EP_INTERVAL(interval) | |
| 1510 | EP_MULT(mult)); |
| 1511 | ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | |
| 1512 | MAX_PACKET(max_packet) | |
| 1513 | MAX_BURST(max_burst) | |
| 1514 | ERROR_COUNT(err_count)); |
| 1515 | ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | |
| 1516 | ep_ring->cycle_state); |
| 1517 | |
| 1518 | ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | |
| 1519 | EP_AVG_TRB_LENGTH(avg_trb_len)); |
| 1520 | |
| 1521 | /* FIXME Debug endpoint context */ |
| 1522 | return 0; |
| 1523 | } |
| 1524 | |
| 1525 | void xhci_endpoint_zero(struct xhci_hcd *xhci, |
| 1526 | struct xhci_virt_device *virt_dev, |
| 1527 | struct usb_host_endpoint *ep) |
| 1528 | { |
| 1529 | unsigned int ep_index; |
| 1530 | struct xhci_ep_ctx *ep_ctx; |
| 1531 | |
| 1532 | ep_index = xhci_get_endpoint_index(&ep->desc); |
| 1533 | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); |
| 1534 | |
| 1535 | ep_ctx->ep_info = 0; |
| 1536 | ep_ctx->ep_info2 = 0; |
| 1537 | ep_ctx->deq = 0; |
| 1538 | ep_ctx->tx_info = 0; |
| 1539 | /* Don't free the endpoint ring until the set interface or configuration |
| 1540 | * request succeeds. |
| 1541 | */ |
| 1542 | } |
| 1543 | |
| 1544 | void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) |
| 1545 | { |
| 1546 | bw_info->ep_interval = 0; |
| 1547 | bw_info->mult = 0; |
| 1548 | bw_info->num_packets = 0; |
| 1549 | bw_info->max_packet_size = 0; |
| 1550 | bw_info->type = 0; |
| 1551 | bw_info->max_esit_payload = 0; |
| 1552 | } |
| 1553 | |
| 1554 | void xhci_update_bw_info(struct xhci_hcd *xhci, |
| 1555 | struct xhci_container_ctx *in_ctx, |
| 1556 | struct xhci_input_control_ctx *ctrl_ctx, |
| 1557 | struct xhci_virt_device *virt_dev) |
| 1558 | { |
| 1559 | struct xhci_bw_info *bw_info; |
| 1560 | struct xhci_ep_ctx *ep_ctx; |
| 1561 | unsigned int ep_type; |
| 1562 | int i; |
| 1563 | |
| 1564 | for (i = 1; i < 31; i++) { |
| 1565 | bw_info = &virt_dev->eps[i].bw_info; |
| 1566 | |
| 1567 | /* We can't tell what endpoint type is being dropped, but |
| 1568 | * unconditionally clearing the bandwidth info for non-periodic |
| 1569 | * endpoints should be harmless because the info will never be |
| 1570 | * set in the first place. |
| 1571 | */ |
| 1572 | if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { |
| 1573 | /* Dropped endpoint */ |
| 1574 | xhci_clear_endpoint_bw_info(bw_info); |
| 1575 | continue; |
| 1576 | } |
| 1577 | |
| 1578 | if (EP_IS_ADDED(ctrl_ctx, i)) { |
| 1579 | ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); |
| 1580 | ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); |
| 1581 | |
| 1582 | /* Ignore non-periodic endpoints */ |
| 1583 | if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && |
| 1584 | ep_type != ISOC_IN_EP && |
| 1585 | ep_type != INT_IN_EP) |
| 1586 | continue; |
| 1587 | |
| 1588 | /* Added or changed endpoint */ |
| 1589 | bw_info->ep_interval = CTX_TO_EP_INTERVAL( |
| 1590 | le32_to_cpu(ep_ctx->ep_info)); |
| 1591 | /* Number of packets and mult are zero-based in the |
| 1592 | * input context, but we want one-based for the |
| 1593 | * interval table. |
| 1594 | */ |
| 1595 | bw_info->mult = CTX_TO_EP_MULT( |
| 1596 | le32_to_cpu(ep_ctx->ep_info)) + 1; |
| 1597 | bw_info->num_packets = CTX_TO_MAX_BURST( |
| 1598 | le32_to_cpu(ep_ctx->ep_info2)) + 1; |
| 1599 | bw_info->max_packet_size = MAX_PACKET_DECODED( |
| 1600 | le32_to_cpu(ep_ctx->ep_info2)); |
| 1601 | bw_info->type = ep_type; |
| 1602 | bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( |
| 1603 | le32_to_cpu(ep_ctx->tx_info)); |
| 1604 | } |
| 1605 | } |
| 1606 | } |
| 1607 | |
| 1608 | /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. |
| 1609 | * Useful when you want to change one particular aspect of the endpoint and then |
| 1610 | * issue a configure endpoint command. |
| 1611 | */ |
| 1612 | void xhci_endpoint_copy(struct xhci_hcd *xhci, |
| 1613 | struct xhci_container_ctx *in_ctx, |
| 1614 | struct xhci_container_ctx *out_ctx, |
| 1615 | unsigned int ep_index) |
| 1616 | { |
| 1617 | struct xhci_ep_ctx *out_ep_ctx; |
| 1618 | struct xhci_ep_ctx *in_ep_ctx; |
| 1619 | |
| 1620 | out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); |
| 1621 | in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); |
| 1622 | |
| 1623 | in_ep_ctx->ep_info = out_ep_ctx->ep_info; |
| 1624 | in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; |
| 1625 | in_ep_ctx->deq = out_ep_ctx->deq; |
| 1626 | in_ep_ctx->tx_info = out_ep_ctx->tx_info; |
| 1627 | } |
| 1628 | |
| 1629 | /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. |
| 1630 | * Useful when you want to change one particular aspect of the endpoint and then |
| 1631 | * issue a configure endpoint command. Only the context entries field matters, |
| 1632 | * but we'll copy the whole thing anyway. |
| 1633 | */ |
| 1634 | void xhci_slot_copy(struct xhci_hcd *xhci, |
| 1635 | struct xhci_container_ctx *in_ctx, |
| 1636 | struct xhci_container_ctx *out_ctx) |
| 1637 | { |
| 1638 | struct xhci_slot_ctx *in_slot_ctx; |
| 1639 | struct xhci_slot_ctx *out_slot_ctx; |
| 1640 | |
| 1641 | in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); |
| 1642 | out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); |
| 1643 | |
| 1644 | in_slot_ctx->dev_info = out_slot_ctx->dev_info; |
| 1645 | in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; |
| 1646 | in_slot_ctx->tt_info = out_slot_ctx->tt_info; |
| 1647 | in_slot_ctx->dev_state = out_slot_ctx->dev_state; |
| 1648 | } |
| 1649 | |
| 1650 | /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ |
| 1651 | static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) |
| 1652 | { |
| 1653 | int i; |
| 1654 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 1655 | int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); |
| 1656 | |
| 1657 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 1658 | "Allocating %d scratchpad buffers", num_sp); |
| 1659 | |
| 1660 | if (!num_sp) |
| 1661 | return 0; |
| 1662 | |
| 1663 | xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags); |
| 1664 | if (!xhci->scratchpad) |
| 1665 | goto fail_sp; |
| 1666 | |
| 1667 | xhci->scratchpad->sp_array = dma_alloc_coherent(dev, |
| 1668 | num_sp * sizeof(u64), |
| 1669 | &xhci->scratchpad->sp_dma, flags); |
| 1670 | if (!xhci->scratchpad->sp_array) |
| 1671 | goto fail_sp2; |
| 1672 | |
| 1673 | xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags); |
| 1674 | if (!xhci->scratchpad->sp_buffers) |
| 1675 | goto fail_sp3; |
| 1676 | |
| 1677 | xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); |
| 1678 | for (i = 0; i < num_sp; i++) { |
| 1679 | dma_addr_t dma; |
| 1680 | void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma, |
| 1681 | flags); |
| 1682 | if (!buf) |
| 1683 | goto fail_sp4; |
| 1684 | |
| 1685 | xhci->scratchpad->sp_array[i] = dma; |
| 1686 | xhci->scratchpad->sp_buffers[i] = buf; |
| 1687 | } |
| 1688 | |
| 1689 | return 0; |
| 1690 | |
| 1691 | fail_sp4: |
| 1692 | for (i = i - 1; i >= 0; i--) { |
| 1693 | dma_free_coherent(dev, xhci->page_size, |
| 1694 | xhci->scratchpad->sp_buffers[i], |
| 1695 | xhci->scratchpad->sp_array[i]); |
| 1696 | } |
| 1697 | |
| 1698 | kfree(xhci->scratchpad->sp_buffers); |
| 1699 | |
| 1700 | fail_sp3: |
| 1701 | dma_free_coherent(dev, num_sp * sizeof(u64), |
| 1702 | xhci->scratchpad->sp_array, |
| 1703 | xhci->scratchpad->sp_dma); |
| 1704 | |
| 1705 | fail_sp2: |
| 1706 | kfree(xhci->scratchpad); |
| 1707 | xhci->scratchpad = NULL; |
| 1708 | |
| 1709 | fail_sp: |
| 1710 | return -ENOMEM; |
| 1711 | } |
| 1712 | |
| 1713 | static void scratchpad_free(struct xhci_hcd *xhci) |
| 1714 | { |
| 1715 | int num_sp; |
| 1716 | int i; |
| 1717 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 1718 | |
| 1719 | if (!xhci->scratchpad) |
| 1720 | return; |
| 1721 | |
| 1722 | num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); |
| 1723 | |
| 1724 | for (i = 0; i < num_sp; i++) { |
| 1725 | dma_free_coherent(dev, xhci->page_size, |
| 1726 | xhci->scratchpad->sp_buffers[i], |
| 1727 | xhci->scratchpad->sp_array[i]); |
| 1728 | } |
| 1729 | kfree(xhci->scratchpad->sp_buffers); |
| 1730 | dma_free_coherent(dev, num_sp * sizeof(u64), |
| 1731 | xhci->scratchpad->sp_array, |
| 1732 | xhci->scratchpad->sp_dma); |
| 1733 | kfree(xhci->scratchpad); |
| 1734 | xhci->scratchpad = NULL; |
| 1735 | } |
| 1736 | |
| 1737 | struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, |
| 1738 | bool allocate_in_ctx, bool allocate_completion, |
| 1739 | gfp_t mem_flags) |
| 1740 | { |
| 1741 | struct xhci_command *command; |
| 1742 | |
| 1743 | command = kzalloc(sizeof(*command), mem_flags); |
| 1744 | if (!command) |
| 1745 | return NULL; |
| 1746 | |
| 1747 | if (allocate_in_ctx) { |
| 1748 | command->in_ctx = |
| 1749 | xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, |
| 1750 | mem_flags); |
| 1751 | if (!command->in_ctx) { |
| 1752 | kfree(command); |
| 1753 | return NULL; |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | if (allocate_completion) { |
| 1758 | command->completion = |
| 1759 | kzalloc(sizeof(struct completion), mem_flags); |
| 1760 | if (!command->completion) { |
| 1761 | xhci_free_container_ctx(xhci, command->in_ctx); |
| 1762 | kfree(command); |
| 1763 | return NULL; |
| 1764 | } |
| 1765 | init_completion(command->completion); |
| 1766 | } |
| 1767 | |
| 1768 | command->status = 0; |
| 1769 | INIT_LIST_HEAD(&command->cmd_list); |
| 1770 | return command; |
| 1771 | } |
| 1772 | |
| 1773 | void xhci_urb_free_priv(struct urb_priv *urb_priv) |
| 1774 | { |
| 1775 | kfree(urb_priv); |
| 1776 | } |
| 1777 | |
| 1778 | void xhci_free_command(struct xhci_hcd *xhci, |
| 1779 | struct xhci_command *command) |
| 1780 | { |
| 1781 | xhci_free_container_ctx(xhci, |
| 1782 | command->in_ctx); |
| 1783 | kfree(command->completion); |
| 1784 | kfree(command); |
| 1785 | } |
| 1786 | |
| 1787 | void xhci_mem_cleanup(struct xhci_hcd *xhci) |
| 1788 | { |
| 1789 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 1790 | int size; |
| 1791 | int i, j, num_ports; |
| 1792 | |
| 1793 | cancel_delayed_work_sync(&xhci->cmd_timer); |
| 1794 | |
| 1795 | /* Free the Event Ring Segment Table and the actual Event Ring */ |
| 1796 | size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); |
| 1797 | if (xhci->erst.entries) |
| 1798 | dma_free_coherent(dev, size, |
| 1799 | xhci->erst.entries, xhci->erst.erst_dma_addr); |
| 1800 | xhci->erst.entries = NULL; |
| 1801 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST"); |
| 1802 | if (xhci->event_ring) |
| 1803 | xhci_ring_free(xhci, xhci->event_ring); |
| 1804 | xhci->event_ring = NULL; |
| 1805 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring"); |
| 1806 | |
| 1807 | if (xhci->lpm_command) |
| 1808 | xhci_free_command(xhci, xhci->lpm_command); |
| 1809 | xhci->lpm_command = NULL; |
| 1810 | if (xhci->cmd_ring) |
| 1811 | xhci_ring_free(xhci, xhci->cmd_ring); |
| 1812 | xhci->cmd_ring = NULL; |
| 1813 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); |
| 1814 | xhci_cleanup_command_queue(xhci); |
| 1815 | |
| 1816 | num_ports = HCS_MAX_PORTS(xhci->hcs_params1); |
| 1817 | for (i = 0; i < num_ports && xhci->rh_bw; i++) { |
| 1818 | struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; |
| 1819 | for (j = 0; j < XHCI_MAX_INTERVAL; j++) { |
| 1820 | struct list_head *ep = &bwt->interval_bw[j].endpoints; |
| 1821 | while (!list_empty(ep)) |
| 1822 | list_del_init(ep->next); |
| 1823 | } |
| 1824 | } |
| 1825 | |
| 1826 | for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) |
| 1827 | xhci_free_virt_devices_depth_first(xhci, i); |
| 1828 | |
| 1829 | dma_pool_destroy(xhci->segment_pool); |
| 1830 | xhci->segment_pool = NULL; |
| 1831 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); |
| 1832 | |
| 1833 | dma_pool_destroy(xhci->device_pool); |
| 1834 | xhci->device_pool = NULL; |
| 1835 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); |
| 1836 | |
| 1837 | dma_pool_destroy(xhci->small_streams_pool); |
| 1838 | xhci->small_streams_pool = NULL; |
| 1839 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 1840 | "Freed small stream array pool"); |
| 1841 | |
| 1842 | dma_pool_destroy(xhci->medium_streams_pool); |
| 1843 | xhci->medium_streams_pool = NULL; |
| 1844 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 1845 | "Freed medium stream array pool"); |
| 1846 | |
| 1847 | if (xhci->dcbaa) |
| 1848 | dma_free_coherent(dev, sizeof(*xhci->dcbaa), |
| 1849 | xhci->dcbaa, xhci->dcbaa->dma); |
| 1850 | xhci->dcbaa = NULL; |
| 1851 | |
| 1852 | scratchpad_free(xhci); |
| 1853 | |
| 1854 | if (!xhci->rh_bw) |
| 1855 | goto no_bw; |
| 1856 | |
| 1857 | for (i = 0; i < num_ports; i++) { |
| 1858 | struct xhci_tt_bw_info *tt, *n; |
| 1859 | list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { |
| 1860 | list_del(&tt->tt_list); |
| 1861 | kfree(tt); |
| 1862 | } |
| 1863 | } |
| 1864 | |
| 1865 | no_bw: |
| 1866 | xhci->cmd_ring_reserved_trbs = 0; |
| 1867 | xhci->num_usb2_ports = 0; |
| 1868 | xhci->num_usb3_ports = 0; |
| 1869 | xhci->num_active_eps = 0; |
| 1870 | kfree(xhci->usb2_ports); |
| 1871 | kfree(xhci->usb3_ports); |
| 1872 | kfree(xhci->port_array); |
| 1873 | kfree(xhci->rh_bw); |
| 1874 | kfree(xhci->ext_caps); |
| 1875 | kfree(xhci->usb2_rhub.psi); |
| 1876 | kfree(xhci->usb3_rhub.psi); |
| 1877 | |
| 1878 | xhci->usb2_ports = NULL; |
| 1879 | xhci->usb3_ports = NULL; |
| 1880 | xhci->port_array = NULL; |
| 1881 | xhci->usb2_rhub.psi = NULL; |
| 1882 | xhci->usb3_rhub.psi = NULL; |
| 1883 | xhci->rh_bw = NULL; |
| 1884 | xhci->ext_caps = NULL; |
| 1885 | |
| 1886 | xhci->page_size = 0; |
| 1887 | xhci->page_shift = 0; |
| 1888 | xhci->bus_state[0].bus_suspended = 0; |
| 1889 | xhci->bus_state[1].bus_suspended = 0; |
| 1890 | } |
| 1891 | |
| 1892 | static int xhci_test_trb_in_td(struct xhci_hcd *xhci, |
| 1893 | struct xhci_segment *input_seg, |
| 1894 | union xhci_trb *start_trb, |
| 1895 | union xhci_trb *end_trb, |
| 1896 | dma_addr_t input_dma, |
| 1897 | struct xhci_segment *result_seg, |
| 1898 | char *test_name, int test_number) |
| 1899 | { |
| 1900 | unsigned long long start_dma; |
| 1901 | unsigned long long end_dma; |
| 1902 | struct xhci_segment *seg; |
| 1903 | |
| 1904 | start_dma = xhci_trb_virt_to_dma(input_seg, start_trb); |
| 1905 | end_dma = xhci_trb_virt_to_dma(input_seg, end_trb); |
| 1906 | |
| 1907 | seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false); |
| 1908 | if (seg != result_seg) { |
| 1909 | xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n", |
| 1910 | test_name, test_number); |
| 1911 | xhci_warn(xhci, "Tested TRB math w/ seg %p and " |
| 1912 | "input DMA 0x%llx\n", |
| 1913 | input_seg, |
| 1914 | (unsigned long long) input_dma); |
| 1915 | xhci_warn(xhci, "starting TRB %p (0x%llx DMA), " |
| 1916 | "ending TRB %p (0x%llx DMA)\n", |
| 1917 | start_trb, start_dma, |
| 1918 | end_trb, end_dma); |
| 1919 | xhci_warn(xhci, "Expected seg %p, got seg %p\n", |
| 1920 | result_seg, seg); |
| 1921 | trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, |
| 1922 | true); |
| 1923 | return -1; |
| 1924 | } |
| 1925 | return 0; |
| 1926 | } |
| 1927 | |
| 1928 | /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */ |
| 1929 | static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci) |
| 1930 | { |
| 1931 | struct { |
| 1932 | dma_addr_t input_dma; |
| 1933 | struct xhci_segment *result_seg; |
| 1934 | } simple_test_vector [] = { |
| 1935 | /* A zeroed DMA field should fail */ |
| 1936 | { 0, NULL }, |
| 1937 | /* One TRB before the ring start should fail */ |
| 1938 | { xhci->event_ring->first_seg->dma - 16, NULL }, |
| 1939 | /* One byte before the ring start should fail */ |
| 1940 | { xhci->event_ring->first_seg->dma - 1, NULL }, |
| 1941 | /* Starting TRB should succeed */ |
| 1942 | { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg }, |
| 1943 | /* Ending TRB should succeed */ |
| 1944 | { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16, |
| 1945 | xhci->event_ring->first_seg }, |
| 1946 | /* One byte after the ring end should fail */ |
| 1947 | { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL }, |
| 1948 | /* One TRB after the ring end should fail */ |
| 1949 | { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL }, |
| 1950 | /* An address of all ones should fail */ |
| 1951 | { (dma_addr_t) (~0), NULL }, |
| 1952 | }; |
| 1953 | struct { |
| 1954 | struct xhci_segment *input_seg; |
| 1955 | union xhci_trb *start_trb; |
| 1956 | union xhci_trb *end_trb; |
| 1957 | dma_addr_t input_dma; |
| 1958 | struct xhci_segment *result_seg; |
| 1959 | } complex_test_vector [] = { |
| 1960 | /* Test feeding a valid DMA address from a different ring */ |
| 1961 | { .input_seg = xhci->event_ring->first_seg, |
| 1962 | .start_trb = xhci->event_ring->first_seg->trbs, |
| 1963 | .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], |
| 1964 | .input_dma = xhci->cmd_ring->first_seg->dma, |
| 1965 | .result_seg = NULL, |
| 1966 | }, |
| 1967 | /* Test feeding a valid end TRB from a different ring */ |
| 1968 | { .input_seg = xhci->event_ring->first_seg, |
| 1969 | .start_trb = xhci->event_ring->first_seg->trbs, |
| 1970 | .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], |
| 1971 | .input_dma = xhci->cmd_ring->first_seg->dma, |
| 1972 | .result_seg = NULL, |
| 1973 | }, |
| 1974 | /* Test feeding a valid start and end TRB from a different ring */ |
| 1975 | { .input_seg = xhci->event_ring->first_seg, |
| 1976 | .start_trb = xhci->cmd_ring->first_seg->trbs, |
| 1977 | .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], |
| 1978 | .input_dma = xhci->cmd_ring->first_seg->dma, |
| 1979 | .result_seg = NULL, |
| 1980 | }, |
| 1981 | /* TRB in this ring, but after this TD */ |
| 1982 | { .input_seg = xhci->event_ring->first_seg, |
| 1983 | .start_trb = &xhci->event_ring->first_seg->trbs[0], |
| 1984 | .end_trb = &xhci->event_ring->first_seg->trbs[3], |
| 1985 | .input_dma = xhci->event_ring->first_seg->dma + 4*16, |
| 1986 | .result_seg = NULL, |
| 1987 | }, |
| 1988 | /* TRB in this ring, but before this TD */ |
| 1989 | { .input_seg = xhci->event_ring->first_seg, |
| 1990 | .start_trb = &xhci->event_ring->first_seg->trbs[3], |
| 1991 | .end_trb = &xhci->event_ring->first_seg->trbs[6], |
| 1992 | .input_dma = xhci->event_ring->first_seg->dma + 2*16, |
| 1993 | .result_seg = NULL, |
| 1994 | }, |
| 1995 | /* TRB in this ring, but after this wrapped TD */ |
| 1996 | { .input_seg = xhci->event_ring->first_seg, |
| 1997 | .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], |
| 1998 | .end_trb = &xhci->event_ring->first_seg->trbs[1], |
| 1999 | .input_dma = xhci->event_ring->first_seg->dma + 2*16, |
| 2000 | .result_seg = NULL, |
| 2001 | }, |
| 2002 | /* TRB in this ring, but before this wrapped TD */ |
| 2003 | { .input_seg = xhci->event_ring->first_seg, |
| 2004 | .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], |
| 2005 | .end_trb = &xhci->event_ring->first_seg->trbs[1], |
| 2006 | .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16, |
| 2007 | .result_seg = NULL, |
| 2008 | }, |
| 2009 | /* TRB not in this ring, and we have a wrapped TD */ |
| 2010 | { .input_seg = xhci->event_ring->first_seg, |
| 2011 | .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3], |
| 2012 | .end_trb = &xhci->event_ring->first_seg->trbs[1], |
| 2013 | .input_dma = xhci->cmd_ring->first_seg->dma + 2*16, |
| 2014 | .result_seg = NULL, |
| 2015 | }, |
| 2016 | }; |
| 2017 | |
| 2018 | unsigned int num_tests; |
| 2019 | int i, ret; |
| 2020 | |
| 2021 | num_tests = ARRAY_SIZE(simple_test_vector); |
| 2022 | for (i = 0; i < num_tests; i++) { |
| 2023 | ret = xhci_test_trb_in_td(xhci, |
| 2024 | xhci->event_ring->first_seg, |
| 2025 | xhci->event_ring->first_seg->trbs, |
| 2026 | &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1], |
| 2027 | simple_test_vector[i].input_dma, |
| 2028 | simple_test_vector[i].result_seg, |
| 2029 | "Simple", i); |
| 2030 | if (ret < 0) |
| 2031 | return ret; |
| 2032 | } |
| 2033 | |
| 2034 | num_tests = ARRAY_SIZE(complex_test_vector); |
| 2035 | for (i = 0; i < num_tests; i++) { |
| 2036 | ret = xhci_test_trb_in_td(xhci, |
| 2037 | complex_test_vector[i].input_seg, |
| 2038 | complex_test_vector[i].start_trb, |
| 2039 | complex_test_vector[i].end_trb, |
| 2040 | complex_test_vector[i].input_dma, |
| 2041 | complex_test_vector[i].result_seg, |
| 2042 | "Complex", i); |
| 2043 | if (ret < 0) |
| 2044 | return ret; |
| 2045 | } |
| 2046 | xhci_dbg(xhci, "TRB math tests passed.\n"); |
| 2047 | return 0; |
| 2048 | } |
| 2049 | |
| 2050 | static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) |
| 2051 | { |
| 2052 | u64 temp; |
| 2053 | dma_addr_t deq; |
| 2054 | |
| 2055 | deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, |
| 2056 | xhci->event_ring->dequeue); |
| 2057 | if (deq == 0 && !in_interrupt()) |
| 2058 | xhci_warn(xhci, "WARN something wrong with SW event ring " |
| 2059 | "dequeue ptr.\n"); |
| 2060 | /* Update HC event ring dequeue pointer */ |
| 2061 | temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); |
| 2062 | temp &= ERST_PTR_MASK; |
| 2063 | /* Don't clear the EHB bit (which is RW1C) because |
| 2064 | * there might be more events to service. |
| 2065 | */ |
| 2066 | temp &= ~ERST_EHB; |
| 2067 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2068 | "// Write event ring dequeue pointer, " |
| 2069 | "preserving EHB bit"); |
| 2070 | xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, |
| 2071 | &xhci->ir_set->erst_dequeue); |
| 2072 | } |
| 2073 | |
| 2074 | static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, |
| 2075 | __le32 __iomem *addr, int max_caps) |
| 2076 | { |
| 2077 | u32 temp, port_offset, port_count; |
| 2078 | int i; |
| 2079 | u8 major_revision, minor_revision; |
| 2080 | struct xhci_hub *rhub; |
| 2081 | |
| 2082 | temp = readl(addr); |
| 2083 | major_revision = XHCI_EXT_PORT_MAJOR(temp); |
| 2084 | minor_revision = XHCI_EXT_PORT_MINOR(temp); |
| 2085 | |
| 2086 | if (major_revision == 0x03) { |
| 2087 | rhub = &xhci->usb3_rhub; |
| 2088 | } else if (major_revision <= 0x02) { |
| 2089 | rhub = &xhci->usb2_rhub; |
| 2090 | } else { |
| 2091 | xhci_warn(xhci, "Ignoring unknown port speed, " |
| 2092 | "Ext Cap %p, revision = 0x%x\n", |
| 2093 | addr, major_revision); |
| 2094 | /* Ignoring port protocol we can't understand. FIXME */ |
| 2095 | return; |
| 2096 | } |
| 2097 | rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); |
| 2098 | |
| 2099 | if (rhub->min_rev < minor_revision) |
| 2100 | rhub->min_rev = minor_revision; |
| 2101 | |
| 2102 | /* Port offset and count in the third dword, see section 7.2 */ |
| 2103 | temp = readl(addr + 2); |
| 2104 | port_offset = XHCI_EXT_PORT_OFF(temp); |
| 2105 | port_count = XHCI_EXT_PORT_COUNT(temp); |
| 2106 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2107 | "Ext Cap %p, port offset = %u, " |
| 2108 | "count = %u, revision = 0x%x", |
| 2109 | addr, port_offset, port_count, major_revision); |
| 2110 | /* Port count includes the current port offset */ |
| 2111 | if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) |
| 2112 | /* WTF? "Valid values are ‘1’ to MaxPorts" */ |
| 2113 | return; |
| 2114 | |
| 2115 | rhub->psi_count = XHCI_EXT_PORT_PSIC(temp); |
| 2116 | if (rhub->psi_count) { |
| 2117 | rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi), |
| 2118 | GFP_KERNEL); |
| 2119 | if (!rhub->psi) |
| 2120 | rhub->psi_count = 0; |
| 2121 | |
| 2122 | rhub->psi_uid_count++; |
| 2123 | for (i = 0; i < rhub->psi_count; i++) { |
| 2124 | rhub->psi[i] = readl(addr + 4 + i); |
| 2125 | |
| 2126 | /* count unique ID values, two consecutive entries can |
| 2127 | * have the same ID if link is assymetric |
| 2128 | */ |
| 2129 | if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) != |
| 2130 | XHCI_EXT_PORT_PSIV(rhub->psi[i - 1]))) |
| 2131 | rhub->psi_uid_count++; |
| 2132 | |
| 2133 | xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", |
| 2134 | XHCI_EXT_PORT_PSIV(rhub->psi[i]), |
| 2135 | XHCI_EXT_PORT_PSIE(rhub->psi[i]), |
| 2136 | XHCI_EXT_PORT_PLT(rhub->psi[i]), |
| 2137 | XHCI_EXT_PORT_PFD(rhub->psi[i]), |
| 2138 | XHCI_EXT_PORT_LP(rhub->psi[i]), |
| 2139 | XHCI_EXT_PORT_PSIM(rhub->psi[i])); |
| 2140 | } |
| 2141 | } |
| 2142 | /* cache usb2 port capabilities */ |
| 2143 | if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) |
| 2144 | xhci->ext_caps[xhci->num_ext_caps++] = temp; |
| 2145 | |
| 2146 | /* Check the host's USB2 LPM capability */ |
| 2147 | if ((xhci->hci_version == 0x96) && (major_revision != 0x03) && |
| 2148 | (temp & XHCI_L1C)) { |
| 2149 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2150 | "xHCI 0.96: support USB2 software lpm"); |
| 2151 | xhci->sw_lpm_support = 1; |
| 2152 | } |
| 2153 | |
| 2154 | if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) { |
| 2155 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2156 | "xHCI 1.0: support USB2 software lpm"); |
| 2157 | xhci->sw_lpm_support = 1; |
| 2158 | if (temp & XHCI_HLC) { |
| 2159 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2160 | "xHCI 1.0: support USB2 hardware lpm"); |
| 2161 | xhci->hw_lpm_support = 1; |
| 2162 | } |
| 2163 | } |
| 2164 | |
| 2165 | port_offset--; |
| 2166 | for (i = port_offset; i < (port_offset + port_count); i++) { |
| 2167 | /* Duplicate entry. Ignore the port if the revisions differ. */ |
| 2168 | if (xhci->port_array[i] != 0) { |
| 2169 | xhci_warn(xhci, "Duplicate port entry, Ext Cap %p," |
| 2170 | " port %u\n", addr, i); |
| 2171 | xhci_warn(xhci, "Port was marked as USB %u, " |
| 2172 | "duplicated as USB %u\n", |
| 2173 | xhci->port_array[i], major_revision); |
| 2174 | /* Only adjust the roothub port counts if we haven't |
| 2175 | * found a similar duplicate. |
| 2176 | */ |
| 2177 | if (xhci->port_array[i] != major_revision && |
| 2178 | xhci->port_array[i] != DUPLICATE_ENTRY) { |
| 2179 | if (xhci->port_array[i] == 0x03) |
| 2180 | xhci->num_usb3_ports--; |
| 2181 | else |
| 2182 | xhci->num_usb2_ports--; |
| 2183 | xhci->port_array[i] = DUPLICATE_ENTRY; |
| 2184 | } |
| 2185 | /* FIXME: Should we disable the port? */ |
| 2186 | continue; |
| 2187 | } |
| 2188 | xhci->port_array[i] = major_revision; |
| 2189 | if (major_revision == 0x03) |
| 2190 | xhci->num_usb3_ports++; |
| 2191 | else |
| 2192 | xhci->num_usb2_ports++; |
| 2193 | } |
| 2194 | /* FIXME: Should we disable ports not in the Extended Capabilities? */ |
| 2195 | } |
| 2196 | |
| 2197 | /* |
| 2198 | * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that |
| 2199 | * specify what speeds each port is supposed to be. We can't count on the port |
| 2200 | * speed bits in the PORTSC register being correct until a device is connected, |
| 2201 | * but we need to set up the two fake roothubs with the correct number of USB |
| 2202 | * 3.0 and USB 2.0 ports at host controller initialization time. |
| 2203 | */ |
| 2204 | static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) |
| 2205 | { |
| 2206 | void __iomem *base; |
| 2207 | u32 offset; |
| 2208 | unsigned int num_ports; |
| 2209 | int i, j, port_index; |
| 2210 | int cap_count = 0; |
| 2211 | u32 cap_start; |
| 2212 | |
| 2213 | num_ports = HCS_MAX_PORTS(xhci->hcs_params1); |
| 2214 | xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags); |
| 2215 | if (!xhci->port_array) |
| 2216 | return -ENOMEM; |
| 2217 | |
| 2218 | xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags); |
| 2219 | if (!xhci->rh_bw) |
| 2220 | return -ENOMEM; |
| 2221 | for (i = 0; i < num_ports; i++) { |
| 2222 | struct xhci_interval_bw_table *bw_table; |
| 2223 | |
| 2224 | INIT_LIST_HEAD(&xhci->rh_bw[i].tts); |
| 2225 | bw_table = &xhci->rh_bw[i].bw_table; |
| 2226 | for (j = 0; j < XHCI_MAX_INTERVAL; j++) |
| 2227 | INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); |
| 2228 | } |
| 2229 | base = &xhci->cap_regs->hc_capbase; |
| 2230 | |
| 2231 | cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); |
| 2232 | if (!cap_start) { |
| 2233 | xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); |
| 2234 | return -ENODEV; |
| 2235 | } |
| 2236 | |
| 2237 | offset = cap_start; |
| 2238 | /* count extended protocol capability entries for later caching */ |
| 2239 | while (offset) { |
| 2240 | cap_count++; |
| 2241 | offset = xhci_find_next_ext_cap(base, offset, |
| 2242 | XHCI_EXT_CAPS_PROTOCOL); |
| 2243 | } |
| 2244 | |
| 2245 | xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags); |
| 2246 | if (!xhci->ext_caps) |
| 2247 | return -ENOMEM; |
| 2248 | |
| 2249 | offset = cap_start; |
| 2250 | |
| 2251 | while (offset) { |
| 2252 | xhci_add_in_port(xhci, num_ports, base + offset, cap_count); |
| 2253 | if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports) |
| 2254 | break; |
| 2255 | offset = xhci_find_next_ext_cap(base, offset, |
| 2256 | XHCI_EXT_CAPS_PROTOCOL); |
| 2257 | } |
| 2258 | |
| 2259 | if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) { |
| 2260 | xhci_warn(xhci, "No ports on the roothubs?\n"); |
| 2261 | return -ENODEV; |
| 2262 | } |
| 2263 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2264 | "Found %u USB 2.0 ports and %u USB 3.0 ports.", |
| 2265 | xhci->num_usb2_ports, xhci->num_usb3_ports); |
| 2266 | |
| 2267 | /* Place limits on the number of roothub ports so that the hub |
| 2268 | * descriptors aren't longer than the USB core will allocate. |
| 2269 | */ |
| 2270 | if (xhci->num_usb3_ports > USB_SS_MAXPORTS) { |
| 2271 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2272 | "Limiting USB 3.0 roothub ports to %u.", |
| 2273 | USB_SS_MAXPORTS); |
| 2274 | xhci->num_usb3_ports = USB_SS_MAXPORTS; |
| 2275 | } |
| 2276 | if (xhci->num_usb2_ports > USB_MAXCHILDREN) { |
| 2277 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2278 | "Limiting USB 2.0 roothub ports to %u.", |
| 2279 | USB_MAXCHILDREN); |
| 2280 | xhci->num_usb2_ports = USB_MAXCHILDREN; |
| 2281 | } |
| 2282 | |
| 2283 | /* |
| 2284 | * Note we could have all USB 3.0 ports, or all USB 2.0 ports. |
| 2285 | * Not sure how the USB core will handle a hub with no ports... |
| 2286 | */ |
| 2287 | if (xhci->num_usb2_ports) { |
| 2288 | xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)* |
| 2289 | xhci->num_usb2_ports, flags); |
| 2290 | if (!xhci->usb2_ports) |
| 2291 | return -ENOMEM; |
| 2292 | |
| 2293 | port_index = 0; |
| 2294 | for (i = 0; i < num_ports; i++) { |
| 2295 | if (xhci->port_array[i] == 0x03 || |
| 2296 | xhci->port_array[i] == 0 || |
| 2297 | xhci->port_array[i] == DUPLICATE_ENTRY) |
| 2298 | continue; |
| 2299 | |
| 2300 | xhci->usb2_ports[port_index] = |
| 2301 | &xhci->op_regs->port_status_base + |
| 2302 | NUM_PORT_REGS*i; |
| 2303 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2304 | "USB 2.0 port at index %u, " |
| 2305 | "addr = %p", i, |
| 2306 | xhci->usb2_ports[port_index]); |
| 2307 | port_index++; |
| 2308 | if (port_index == xhci->num_usb2_ports) |
| 2309 | break; |
| 2310 | } |
| 2311 | } |
| 2312 | if (xhci->num_usb3_ports) { |
| 2313 | xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)* |
| 2314 | xhci->num_usb3_ports, flags); |
| 2315 | if (!xhci->usb3_ports) |
| 2316 | return -ENOMEM; |
| 2317 | |
| 2318 | port_index = 0; |
| 2319 | for (i = 0; i < num_ports; i++) |
| 2320 | if (xhci->port_array[i] == 0x03) { |
| 2321 | xhci->usb3_ports[port_index] = |
| 2322 | &xhci->op_regs->port_status_base + |
| 2323 | NUM_PORT_REGS*i; |
| 2324 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2325 | "USB 3.0 port at index %u, " |
| 2326 | "addr = %p", i, |
| 2327 | xhci->usb3_ports[port_index]); |
| 2328 | port_index++; |
| 2329 | if (port_index == xhci->num_usb3_ports) |
| 2330 | break; |
| 2331 | } |
| 2332 | } |
| 2333 | return 0; |
| 2334 | } |
| 2335 | |
| 2336 | int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) |
| 2337 | { |
| 2338 | dma_addr_t dma; |
| 2339 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 2340 | unsigned int val, val2; |
| 2341 | u64 val_64; |
| 2342 | struct xhci_segment *seg; |
| 2343 | u32 page_size, temp; |
| 2344 | int i; |
| 2345 | |
| 2346 | INIT_LIST_HEAD(&xhci->cmd_list); |
| 2347 | |
| 2348 | /* init command timeout work */ |
| 2349 | INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); |
| 2350 | init_completion(&xhci->cmd_ring_stop_completion); |
| 2351 | |
| 2352 | page_size = readl(&xhci->op_regs->page_size); |
| 2353 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2354 | "Supported page size register = 0x%x", page_size); |
| 2355 | for (i = 0; i < 16; i++) { |
| 2356 | if ((0x1 & page_size) != 0) |
| 2357 | break; |
| 2358 | page_size = page_size >> 1; |
| 2359 | } |
| 2360 | if (i < 16) |
| 2361 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2362 | "Supported page size of %iK", (1 << (i+12)) / 1024); |
| 2363 | else |
| 2364 | xhci_warn(xhci, "WARN: no supported page size\n"); |
| 2365 | /* Use 4K pages, since that's common and the minimum the HC supports */ |
| 2366 | xhci->page_shift = 12; |
| 2367 | xhci->page_size = 1 << xhci->page_shift; |
| 2368 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2369 | "HCD page size set to %iK", xhci->page_size / 1024); |
| 2370 | |
| 2371 | /* |
| 2372 | * Program the Number of Device Slots Enabled field in the CONFIG |
| 2373 | * register with the max value of slots the HC can handle. |
| 2374 | */ |
| 2375 | val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); |
| 2376 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2377 | "// xHC can handle at most %d device slots.", val); |
| 2378 | val2 = readl(&xhci->op_regs->config_reg); |
| 2379 | val |= (val2 & ~HCS_SLOTS_MASK); |
| 2380 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2381 | "// Setting Max device slots reg = 0x%x.", val); |
| 2382 | writel(val, &xhci->op_regs->config_reg); |
| 2383 | |
| 2384 | /* |
| 2385 | * xHCI section 5.4.6 - doorbell array must be |
| 2386 | * "physically contiguous and 64-byte (cache line) aligned". |
| 2387 | */ |
| 2388 | xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, |
| 2389 | flags); |
| 2390 | if (!xhci->dcbaa) |
| 2391 | goto fail; |
| 2392 | memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); |
| 2393 | xhci->dcbaa->dma = dma; |
| 2394 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2395 | "// Device context base array address = 0x%llx (DMA), %p (virt)", |
| 2396 | (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); |
| 2397 | xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); |
| 2398 | |
| 2399 | /* |
| 2400 | * Initialize the ring segment pool. The ring must be a contiguous |
| 2401 | * structure comprised of TRBs. The TRBs must be 16 byte aligned, |
| 2402 | * however, the command ring segment needs 64-byte aligned segments |
| 2403 | * and our use of dma addresses in the trb_address_map radix tree needs |
| 2404 | * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. |
| 2405 | */ |
| 2406 | xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, |
| 2407 | TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); |
| 2408 | |
| 2409 | /* See Table 46 and Note on Figure 55 */ |
| 2410 | xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, |
| 2411 | 2112, 64, xhci->page_size); |
| 2412 | if (!xhci->segment_pool || !xhci->device_pool) |
| 2413 | goto fail; |
| 2414 | |
| 2415 | /* Linear stream context arrays don't have any boundary restrictions, |
| 2416 | * and only need to be 16-byte aligned. |
| 2417 | */ |
| 2418 | xhci->small_streams_pool = |
| 2419 | dma_pool_create("xHCI 256 byte stream ctx arrays", |
| 2420 | dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); |
| 2421 | xhci->medium_streams_pool = |
| 2422 | dma_pool_create("xHCI 1KB stream ctx arrays", |
| 2423 | dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); |
| 2424 | /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE |
| 2425 | * will be allocated with dma_alloc_coherent() |
| 2426 | */ |
| 2427 | |
| 2428 | if (!xhci->small_streams_pool || !xhci->medium_streams_pool) |
| 2429 | goto fail; |
| 2430 | |
| 2431 | /* Set up the command ring to have one segments for now. */ |
| 2432 | xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); |
| 2433 | if (!xhci->cmd_ring) |
| 2434 | goto fail; |
| 2435 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2436 | "Allocated command ring at %p", xhci->cmd_ring); |
| 2437 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx", |
| 2438 | (unsigned long long)xhci->cmd_ring->first_seg->dma); |
| 2439 | |
| 2440 | /* Set the address in the Command Ring Control register */ |
| 2441 | val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); |
| 2442 | val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | |
| 2443 | (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | |
| 2444 | xhci->cmd_ring->cycle_state; |
| 2445 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2446 | "// Setting command ring address to 0x%016llx", val_64); |
| 2447 | xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); |
| 2448 | xhci_dbg_cmd_ptrs(xhci); |
| 2449 | |
| 2450 | xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags); |
| 2451 | if (!xhci->lpm_command) |
| 2452 | goto fail; |
| 2453 | |
| 2454 | /* Reserve one command ring TRB for disabling LPM. |
| 2455 | * Since the USB core grabs the shared usb_bus bandwidth mutex before |
| 2456 | * disabling LPM, we only need to reserve one TRB for all devices. |
| 2457 | */ |
| 2458 | xhci->cmd_ring_reserved_trbs++; |
| 2459 | |
| 2460 | val = readl(&xhci->cap_regs->db_off); |
| 2461 | val &= DBOFF_MASK; |
| 2462 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2463 | "// Doorbell array is located at offset 0x%x" |
| 2464 | " from cap regs base addr", val); |
| 2465 | xhci->dba = (void __iomem *) xhci->cap_regs + val; |
| 2466 | xhci_dbg_regs(xhci); |
| 2467 | xhci_print_run_regs(xhci); |
| 2468 | /* Set ir_set to interrupt register set 0 */ |
| 2469 | xhci->ir_set = &xhci->run_regs->ir_set[0]; |
| 2470 | |
| 2471 | /* |
| 2472 | * Event ring setup: Allocate a normal ring, but also setup |
| 2473 | * the event ring segment table (ERST). Section 4.9.3. |
| 2474 | */ |
| 2475 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring"); |
| 2476 | xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, |
| 2477 | 0, flags); |
| 2478 | if (!xhci->event_ring) |
| 2479 | goto fail; |
| 2480 | if (xhci_check_trb_in_td_math(xhci) < 0) |
| 2481 | goto fail; |
| 2482 | |
| 2483 | xhci->erst.entries = dma_alloc_coherent(dev, |
| 2484 | sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma, |
| 2485 | flags); |
| 2486 | if (!xhci->erst.entries) |
| 2487 | goto fail; |
| 2488 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2489 | "// Allocated event ring segment table at 0x%llx", |
| 2490 | (unsigned long long)dma); |
| 2491 | |
| 2492 | memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); |
| 2493 | xhci->erst.num_entries = ERST_NUM_SEGS; |
| 2494 | xhci->erst.erst_dma_addr = dma; |
| 2495 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2496 | "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx", |
| 2497 | xhci->erst.num_entries, |
| 2498 | xhci->erst.entries, |
| 2499 | (unsigned long long)xhci->erst.erst_dma_addr); |
| 2500 | |
| 2501 | /* set ring base address and size for each segment table entry */ |
| 2502 | for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { |
| 2503 | struct xhci_erst_entry *entry = &xhci->erst.entries[val]; |
| 2504 | entry->seg_addr = cpu_to_le64(seg->dma); |
| 2505 | entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); |
| 2506 | entry->rsvd = 0; |
| 2507 | seg = seg->next; |
| 2508 | } |
| 2509 | |
| 2510 | /* set ERST count with the number of entries in the segment table */ |
| 2511 | val = readl(&xhci->ir_set->erst_size); |
| 2512 | val &= ERST_SIZE_MASK; |
| 2513 | val |= ERST_NUM_SEGS; |
| 2514 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2515 | "// Write ERST size = %i to ir_set 0 (some bits preserved)", |
| 2516 | val); |
| 2517 | writel(val, &xhci->ir_set->erst_size); |
| 2518 | |
| 2519 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2520 | "// Set ERST entries to point to event ring."); |
| 2521 | /* set the segment table base address */ |
| 2522 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2523 | "// Set ERST base address for ir_set 0 = 0x%llx", |
| 2524 | (unsigned long long)xhci->erst.erst_dma_addr); |
| 2525 | val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base); |
| 2526 | val_64 &= ERST_PTR_MASK; |
| 2527 | val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); |
| 2528 | xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base); |
| 2529 | |
| 2530 | /* Set the event ring dequeue address */ |
| 2531 | xhci_set_hc_event_deq(xhci); |
| 2532 | xhci_dbg_trace(xhci, trace_xhci_dbg_init, |
| 2533 | "Wrote ERST address to ir_set 0."); |
| 2534 | xhci_print_ir_set(xhci, 0); |
| 2535 | |
| 2536 | /* |
| 2537 | * XXX: Might need to set the Interrupter Moderation Register to |
| 2538 | * something other than the default (~1ms minimum between interrupts). |
| 2539 | * See section 5.5.1.2. |
| 2540 | */ |
| 2541 | for (i = 0; i < MAX_HC_SLOTS; i++) |
| 2542 | xhci->devs[i] = NULL; |
| 2543 | for (i = 0; i < USB_MAXCHILDREN; i++) { |
| 2544 | xhci->bus_state[0].resume_done[i] = 0; |
| 2545 | xhci->bus_state[1].resume_done[i] = 0; |
| 2546 | /* Only the USB 2.0 completions will ever be used. */ |
| 2547 | init_completion(&xhci->bus_state[1].rexit_done[i]); |
| 2548 | } |
| 2549 | |
| 2550 | if (scratchpad_alloc(xhci, flags)) |
| 2551 | goto fail; |
| 2552 | if (xhci_setup_port_arrays(xhci, flags)) |
| 2553 | goto fail; |
| 2554 | |
| 2555 | /* Enable USB 3.0 device notifications for function remote wake, which |
| 2556 | * is necessary for allowing USB 3.0 devices to do remote wakeup from |
| 2557 | * U3 (device suspend). |
| 2558 | */ |
| 2559 | temp = readl(&xhci->op_regs->dev_notification); |
| 2560 | temp &= ~DEV_NOTE_MASK; |
| 2561 | temp |= DEV_NOTE_FWAKE; |
| 2562 | writel(temp, &xhci->op_regs->dev_notification); |
| 2563 | |
| 2564 | return 0; |
| 2565 | |
| 2566 | fail: |
| 2567 | xhci_halt(xhci); |
| 2568 | xhci_reset(xhci); |
| 2569 | xhci_mem_cleanup(xhci); |
| 2570 | return -ENOMEM; |
| 2571 | } |