blob: 51278f8bd3ab31221f4c958611793f607f7c1d9d [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/* Virtio ring implementation.
2 *
3 * Copyright 2007 Rusty Russell IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19#include <linux/virtio.h>
20#include <linux/virtio_ring.h>
21#include <linux/virtio_config.h>
22#include <linux/device.h>
23#include <linux/slab.h>
24#include <linux/module.h>
25#include <linux/hrtimer.h>
26#include <linux/kmemleak.h>
27#include <linux/dma-mapping.h>
28#include <xen/xen.h>
29
30#ifdef DEBUG
31/* For development, we want to crash whenever the ring is screwed. */
32#define BAD_RING(_vq, fmt, args...) \
33 do { \
34 dev_err(&(_vq)->vq.vdev->dev, \
35 "%s:"fmt, (_vq)->vq.name, ##args); \
36 BUG(); \
37 } while (0)
38/* Caller is supposed to guarantee no reentry. */
39#define START_USE(_vq) \
40 do { \
41 if ((_vq)->in_use) \
42 panic("%s:in_use = %i\n", \
43 (_vq)->vq.name, (_vq)->in_use); \
44 (_vq)->in_use = __LINE__; \
45 } while (0)
46#define END_USE(_vq) \
47 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
48#else
49#define BAD_RING(_vq, fmt, args...) \
50 do { \
51 dev_err(&_vq->vq.vdev->dev, \
52 "%s:"fmt, (_vq)->vq.name, ##args); \
53 (_vq)->broken = true; \
54 } while (0)
55#define START_USE(vq)
56#define END_USE(vq)
57#endif
58
59struct vring_desc_state {
60 void *data; /* Data for callback. */
61 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */
62};
63
64struct vring_virtqueue {
65 struct virtqueue vq;
66
67 /* Actual memory layout for this queue */
68 struct vring vring;
69
70 /* Can we use weak barriers? */
71 bool weak_barriers;
72
73 /* Other side has made a mess, don't try any more. */
74 bool broken;
75
76 /* Host supports indirect buffers */
77 bool indirect;
78
79 /* Host publishes avail event idx */
80 bool event;
81
82 /* Head of free buffer list. */
83 unsigned int free_head;
84 /* Number we've added since last sync. */
85 unsigned int num_added;
86
87 /* Last used index we've seen. */
88 u16 last_used_idx;
89
90 /* Last written value to avail->flags */
91 u16 avail_flags_shadow;
92
93 /* Last written value to avail->idx in guest byte order */
94 u16 avail_idx_shadow;
95
96 /* How to notify other side. FIXME: commonalize hcalls! */
97 bool (*notify)(struct virtqueue *vq);
98
99 /* DMA, allocation, and size information */
100 bool we_own_ring;
101 size_t queue_size_in_bytes;
102 dma_addr_t queue_dma_addr;
103
104#ifdef DEBUG
105 /* They're supposed to lock for us. */
106 unsigned int in_use;
107
108 /* Figure out if their kicks are too delayed. */
109 bool last_add_time_valid;
110 ktime_t last_add_time;
111#endif
112
113 /* Per-descriptor state. */
114 struct vring_desc_state desc_state[];
115};
116
117#define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
118
119/*
120 * Modern virtio devices have feature bits to specify whether they need a
121 * quirk and bypass the IOMMU. If not there, just use the DMA API.
122 *
123 * If there, the interaction between virtio and DMA API is messy.
124 *
125 * On most systems with virtio, physical addresses match bus addresses,
126 * and it doesn't particularly matter whether we use the DMA API.
127 *
128 * On some systems, including Xen and any system with a physical device
129 * that speaks virtio behind a physical IOMMU, we must use the DMA API
130 * for virtio DMA to work at all.
131 *
132 * On other systems, including SPARC and PPC64, virtio-pci devices are
133 * enumerated as though they are behind an IOMMU, but the virtio host
134 * ignores the IOMMU, so we must either pretend that the IOMMU isn't
135 * there or somehow map everything as the identity.
136 *
137 * For the time being, we preserve historic behavior and bypass the DMA
138 * API.
139 *
140 * TODO: install a per-device DMA ops structure that does the right thing
141 * taking into account all the above quirks, and use the DMA API
142 * unconditionally on data path.
143 */
144
145static bool vring_use_dma_api(struct virtio_device *vdev)
146{
147 if (!virtio_has_iommu_quirk(vdev))
148 return true;
149
150 /* Otherwise, we are left to guess. */
151 /*
152 * In theory, it's possible to have a buggy QEMU-supposed
153 * emulated Q35 IOMMU and Xen enabled at the same time. On
154 * such a configuration, virtio has never worked and will
155 * not work without an even larger kludge. Instead, enable
156 * the DMA API if we're a Xen guest, which at least allows
157 * all of the sensible Xen configurations to work correctly.
158 */
159 if (xen_domain())
160 return true;
161
162 return false;
163}
164
165/*
166 * The DMA ops on various arches are rather gnarly right now, and
167 * making all of the arch DMA ops work on the vring device itself
168 * is a mess. For now, we use the parent device for DMA ops.
169 */
170static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
171{
172 return vq->vq.vdev->dev.parent;
173}
174
175/* Map one sg entry. */
176static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
177 struct scatterlist *sg,
178 enum dma_data_direction direction)
179{
180 if (!vring_use_dma_api(vq->vq.vdev))
181 return (dma_addr_t)sg_phys(sg);
182
183 /*
184 * We can't use dma_map_sg, because we don't use scatterlists in
185 * the way it expects (we don't guarantee that the scatterlist
186 * will exist for the lifetime of the mapping).
187 */
188 return dma_map_page(vring_dma_dev(vq),
189 sg_page(sg), sg->offset, sg->length,
190 direction);
191}
192
193static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
194 void *cpu_addr, size_t size,
195 enum dma_data_direction direction)
196{
197 if (!vring_use_dma_api(vq->vq.vdev))
198 return (dma_addr_t)virt_to_phys(cpu_addr);
199
200 return dma_map_single(vring_dma_dev(vq),
201 cpu_addr, size, direction);
202}
203
204static void vring_unmap_one(const struct vring_virtqueue *vq,
205 struct vring_desc *desc)
206{
207 u16 flags;
208
209 if (!vring_use_dma_api(vq->vq.vdev))
210 return;
211
212 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
213
214 if (flags & VRING_DESC_F_INDIRECT) {
215 dma_unmap_single(vring_dma_dev(vq),
216 virtio64_to_cpu(vq->vq.vdev, desc->addr),
217 virtio32_to_cpu(vq->vq.vdev, desc->len),
218 (flags & VRING_DESC_F_WRITE) ?
219 DMA_FROM_DEVICE : DMA_TO_DEVICE);
220 } else {
221 dma_unmap_page(vring_dma_dev(vq),
222 virtio64_to_cpu(vq->vq.vdev, desc->addr),
223 virtio32_to_cpu(vq->vq.vdev, desc->len),
224 (flags & VRING_DESC_F_WRITE) ?
225 DMA_FROM_DEVICE : DMA_TO_DEVICE);
226 }
227}
228
229static int vring_mapping_error(const struct vring_virtqueue *vq,
230 dma_addr_t addr)
231{
232 if (!vring_use_dma_api(vq->vq.vdev))
233 return 0;
234
235 return dma_mapping_error(vring_dma_dev(vq), addr);
236}
237
238static struct vring_desc *alloc_indirect(struct virtqueue *_vq,
239 unsigned int total_sg, gfp_t gfp)
240{
241 struct vring_desc *desc;
242 unsigned int i;
243
244 /*
245 * We require lowmem mappings for the descriptors because
246 * otherwise virt_to_phys will give us bogus addresses in the
247 * virtqueue.
248 */
249 gfp &= ~__GFP_HIGHMEM;
250
251 desc = kmalloc(total_sg * sizeof(struct vring_desc), gfp);
252 if (!desc)
253 return NULL;
254
255 for (i = 0; i < total_sg; i++)
256 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
257 return desc;
258}
259
260static inline int virtqueue_add(struct virtqueue *_vq,
261 struct scatterlist *sgs[],
262 unsigned int total_sg,
263 unsigned int out_sgs,
264 unsigned int in_sgs,
265 void *data,
266 void *ctx,
267 gfp_t gfp)
268{
269 struct vring_virtqueue *vq = to_vvq(_vq);
270 struct scatterlist *sg;
271 struct vring_desc *desc;
272 unsigned int i, n, avail, descs_used, uninitialized_var(prev), err_idx;
273 int head;
274 bool indirect;
275
276 START_USE(vq);
277
278 BUG_ON(data == NULL);
279 BUG_ON(ctx && vq->indirect);
280
281 if (unlikely(vq->broken)) {
282 END_USE(vq);
283 return -EIO;
284 }
285
286#ifdef DEBUG
287 {
288 ktime_t now = ktime_get();
289
290 /* No kick or get, with .1 second between? Warn. */
291 if (vq->last_add_time_valid)
292 WARN_ON(ktime_to_ms(ktime_sub(now, vq->last_add_time))
293 > 100);
294 vq->last_add_time = now;
295 vq->last_add_time_valid = true;
296 }
297#endif
298
299 BUG_ON(total_sg == 0);
300
301 head = vq->free_head;
302
303 /* If the host supports indirect descriptor tables, and we have multiple
304 * buffers, then go indirect. FIXME: tune this threshold */
305 if (vq->indirect && total_sg > 1 && vq->vq.num_free)
306 desc = alloc_indirect(_vq, total_sg, gfp);
307 else {
308 desc = NULL;
309 WARN_ON_ONCE(total_sg > vq->vring.num && !vq->indirect);
310 }
311
312 if (desc) {
313 /* Use a single buffer which doesn't continue */
314 indirect = true;
315 /* Set up rest to use this indirect table. */
316 i = 0;
317 descs_used = 1;
318 } else {
319 indirect = false;
320 desc = vq->vring.desc;
321 i = head;
322 descs_used = total_sg;
323 }
324
325 if (vq->vq.num_free < descs_used) {
326 pr_debug("Can't add buf len %i - avail = %i\n",
327 descs_used, vq->vq.num_free);
328 /* FIXME: for historical reasons, we force a notify here if
329 * there are outgoing parts to the buffer. Presumably the
330 * host should service the ring ASAP. */
331 if (out_sgs)
332 vq->notify(&vq->vq);
333 if (indirect)
334 kfree(desc);
335 END_USE(vq);
336 return -ENOSPC;
337 }
338
339 for (n = 0; n < out_sgs; n++) {
340 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
341 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
342 if (vring_mapping_error(vq, addr))
343 goto unmap_release;
344
345 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
346 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
347 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
348 prev = i;
349 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
350 }
351 }
352 for (; n < (out_sgs + in_sgs); n++) {
353 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
354 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
355 if (vring_mapping_error(vq, addr))
356 goto unmap_release;
357
358 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE);
359 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
360 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
361 prev = i;
362 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
363 }
364 }
365 /* Last one doesn't continue. */
366 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
367
368 if (indirect) {
369 /* Now that the indirect table is filled in, map it. */
370 dma_addr_t addr = vring_map_single(
371 vq, desc, total_sg * sizeof(struct vring_desc),
372 DMA_TO_DEVICE);
373 if (vring_mapping_error(vq, addr))
374 goto unmap_release;
375
376 vq->vring.desc[head].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_INDIRECT);
377 vq->vring.desc[head].addr = cpu_to_virtio64(_vq->vdev, addr);
378
379 vq->vring.desc[head].len = cpu_to_virtio32(_vq->vdev, total_sg * sizeof(struct vring_desc));
380 }
381
382 /* We're using some buffers from the free list. */
383 vq->vq.num_free -= descs_used;
384
385 /* Update free pointer */
386 if (indirect)
387 vq->free_head = virtio16_to_cpu(_vq->vdev, vq->vring.desc[head].next);
388 else
389 vq->free_head = i;
390
391 /* Store token and indirect buffer state. */
392 vq->desc_state[head].data = data;
393 if (indirect)
394 vq->desc_state[head].indir_desc = desc;
395 else
396 vq->desc_state[head].indir_desc = ctx;
397
398 /* Put entry in available array (but don't update avail->idx until they
399 * do sync). */
400 avail = vq->avail_idx_shadow & (vq->vring.num - 1);
401 vq->vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
402
403 /* Descriptors and available array need to be set before we expose the
404 * new available array entries. */
405 virtio_wmb(vq->weak_barriers);
406 vq->avail_idx_shadow++;
407 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow);
408 vq->num_added++;
409
410 pr_debug("Added buffer head %i to %p\n", head, vq);
411 END_USE(vq);
412
413 /* This is very unlikely, but theoretically possible. Kick
414 * just in case. */
415 if (unlikely(vq->num_added == (1 << 16) - 1))
416 virtqueue_kick(_vq);
417
418 return 0;
419
420unmap_release:
421 err_idx = i;
422 i = head;
423
424 for (n = 0; n < total_sg; n++) {
425 if (i == err_idx)
426 break;
427 vring_unmap_one(vq, &desc[i]);
428 i = virtio16_to_cpu(_vq->vdev, vq->vring.desc[i].next);
429 }
430
431 if (indirect)
432 kfree(desc);
433
434 END_USE(vq);
435 return -ENOMEM;
436}
437
438/**
439 * virtqueue_add_sgs - expose buffers to other end
440 * @vq: the struct virtqueue we're talking about.
441 * @sgs: array of terminated scatterlists.
442 * @out_num: the number of scatterlists readable by other side
443 * @in_num: the number of scatterlists which are writable (after readable ones)
444 * @data: the token identifying the buffer.
445 * @gfp: how to do memory allocations (if necessary).
446 *
447 * Caller must ensure we don't call this with other virtqueue operations
448 * at the same time (except where noted).
449 *
450 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
451 */
452int virtqueue_add_sgs(struct virtqueue *_vq,
453 struct scatterlist *sgs[],
454 unsigned int out_sgs,
455 unsigned int in_sgs,
456 void *data,
457 gfp_t gfp)
458{
459 unsigned int i, total_sg = 0;
460
461 /* Count them first. */
462 for (i = 0; i < out_sgs + in_sgs; i++) {
463 struct scatterlist *sg;
464 for (sg = sgs[i]; sg; sg = sg_next(sg))
465 total_sg++;
466 }
467 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
468 data, NULL, gfp);
469}
470EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
471
472/**
473 * virtqueue_add_outbuf - expose output buffers to other end
474 * @vq: the struct virtqueue we're talking about.
475 * @sg: scatterlist (must be well-formed and terminated!)
476 * @num: the number of entries in @sg readable by other side
477 * @data: the token identifying the buffer.
478 * @gfp: how to do memory allocations (if necessary).
479 *
480 * Caller must ensure we don't call this with other virtqueue operations
481 * at the same time (except where noted).
482 *
483 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
484 */
485int virtqueue_add_outbuf(struct virtqueue *vq,
486 struct scatterlist *sg, unsigned int num,
487 void *data,
488 gfp_t gfp)
489{
490 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
491}
492EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
493
494/**
495 * virtqueue_add_inbuf - expose input buffers to other end
496 * @vq: the struct virtqueue we're talking about.
497 * @sg: scatterlist (must be well-formed and terminated!)
498 * @num: the number of entries in @sg writable by other side
499 * @data: the token identifying the buffer.
500 * @gfp: how to do memory allocations (if necessary).
501 *
502 * Caller must ensure we don't call this with other virtqueue operations
503 * at the same time (except where noted).
504 *
505 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
506 */
507int virtqueue_add_inbuf(struct virtqueue *vq,
508 struct scatterlist *sg, unsigned int num,
509 void *data,
510 gfp_t gfp)
511{
512 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
513}
514EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
515
516/**
517 * virtqueue_add_inbuf_ctx - expose input buffers to other end
518 * @vq: the struct virtqueue we're talking about.
519 * @sg: scatterlist (must be well-formed and terminated!)
520 * @num: the number of entries in @sg writable by other side
521 * @data: the token identifying the buffer.
522 * @ctx: extra context for the token
523 * @gfp: how to do memory allocations (if necessary).
524 *
525 * Caller must ensure we don't call this with other virtqueue operations
526 * at the same time (except where noted).
527 *
528 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
529 */
530int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
531 struct scatterlist *sg, unsigned int num,
532 void *data,
533 void *ctx,
534 gfp_t gfp)
535{
536 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
537}
538EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
539
540/**
541 * virtqueue_kick_prepare - first half of split virtqueue_kick call.
542 * @vq: the struct virtqueue
543 *
544 * Instead of virtqueue_kick(), you can do:
545 * if (virtqueue_kick_prepare(vq))
546 * virtqueue_notify(vq);
547 *
548 * This is sometimes useful because the virtqueue_kick_prepare() needs
549 * to be serialized, but the actual virtqueue_notify() call does not.
550 */
551bool virtqueue_kick_prepare(struct virtqueue *_vq)
552{
553 struct vring_virtqueue *vq = to_vvq(_vq);
554 u16 new, old;
555 bool needs_kick;
556
557 START_USE(vq);
558 /* We need to expose available array entries before checking avail
559 * event. */
560 virtio_mb(vq->weak_barriers);
561
562 old = vq->avail_idx_shadow - vq->num_added;
563 new = vq->avail_idx_shadow;
564 vq->num_added = 0;
565
566#ifdef DEBUG
567 if (vq->last_add_time_valid) {
568 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(),
569 vq->last_add_time)) > 100);
570 }
571 vq->last_add_time_valid = false;
572#endif
573
574 if (vq->event) {
575 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, vring_avail_event(&vq->vring)),
576 new, old);
577 } else {
578 needs_kick = !(vq->vring.used->flags & cpu_to_virtio16(_vq->vdev, VRING_USED_F_NO_NOTIFY));
579 }
580 END_USE(vq);
581 return needs_kick;
582}
583EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
584
585/**
586 * virtqueue_notify - second half of split virtqueue_kick call.
587 * @vq: the struct virtqueue
588 *
589 * This does not need to be serialized.
590 *
591 * Returns false if host notify failed or queue is broken, otherwise true.
592 */
593bool virtqueue_notify(struct virtqueue *_vq)
594{
595 struct vring_virtqueue *vq = to_vvq(_vq);
596
597 if (unlikely(vq->broken))
598 return false;
599
600 /* Prod other side to tell it about changes. */
601 if (!vq->notify(_vq)) {
602 vq->broken = true;
603 return false;
604 }
605 return true;
606}
607EXPORT_SYMBOL_GPL(virtqueue_notify);
608
609/**
610 * virtqueue_kick - update after add_buf
611 * @vq: the struct virtqueue
612 *
613 * After one or more virtqueue_add_* calls, invoke this to kick
614 * the other side.
615 *
616 * Caller must ensure we don't call this with other virtqueue
617 * operations at the same time (except where noted).
618 *
619 * Returns false if kick failed, otherwise true.
620 */
621bool virtqueue_kick(struct virtqueue *vq)
622{
623 if (virtqueue_kick_prepare(vq))
624 return virtqueue_notify(vq);
625 return true;
626}
627EXPORT_SYMBOL_GPL(virtqueue_kick);
628
629static void detach_buf(struct vring_virtqueue *vq, unsigned int head,
630 void **ctx)
631{
632 unsigned int i, j;
633 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
634
635 /* Clear data ptr. */
636 vq->desc_state[head].data = NULL;
637
638 /* Put back on free list: unmap first-level descriptors and find end */
639 i = head;
640
641 while (vq->vring.desc[i].flags & nextflag) {
642 vring_unmap_one(vq, &vq->vring.desc[i]);
643 i = virtio16_to_cpu(vq->vq.vdev, vq->vring.desc[i].next);
644 vq->vq.num_free++;
645 }
646
647 vring_unmap_one(vq, &vq->vring.desc[i]);
648 vq->vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev, vq->free_head);
649 vq->free_head = head;
650
651 /* Plus final descriptor */
652 vq->vq.num_free++;
653
654 if (vq->indirect) {
655 struct vring_desc *indir_desc = vq->desc_state[head].indir_desc;
656 u32 len;
657
658 /* Free the indirect table, if any, now that it's unmapped. */
659 if (!indir_desc)
660 return;
661
662 len = virtio32_to_cpu(vq->vq.vdev, vq->vring.desc[head].len);
663
664 BUG_ON(!(vq->vring.desc[head].flags &
665 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT)));
666 BUG_ON(len == 0 || len % sizeof(struct vring_desc));
667
668 for (j = 0; j < len / sizeof(struct vring_desc); j++)
669 vring_unmap_one(vq, &indir_desc[j]);
670
671 kfree(indir_desc);
672 vq->desc_state[head].indir_desc = NULL;
673 } else if (ctx) {
674 *ctx = vq->desc_state[head].indir_desc;
675 }
676}
677
678static inline bool more_used(const struct vring_virtqueue *vq)
679{
680 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, vq->vring.used->idx);
681}
682
683/**
684 * virtqueue_get_buf - get the next used buffer
685 * @vq: the struct virtqueue we're talking about.
686 * @len: the length written into the buffer
687 *
688 * If the device wrote data into the buffer, @len will be set to the
689 * amount written. This means you don't need to clear the buffer
690 * beforehand to ensure there's no data leakage in the case of short
691 * writes.
692 *
693 * Caller must ensure we don't call this with other virtqueue
694 * operations at the same time (except where noted).
695 *
696 * Returns NULL if there are no used buffers, or the "data" token
697 * handed to virtqueue_add_*().
698 */
699void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
700 void **ctx)
701{
702 struct vring_virtqueue *vq = to_vvq(_vq);
703 void *ret;
704 unsigned int i;
705 u16 last_used;
706
707 START_USE(vq);
708
709 if (unlikely(vq->broken)) {
710 END_USE(vq);
711 return NULL;
712 }
713
714 if (!more_used(vq)) {
715 pr_debug("No more buffers in queue\n");
716 END_USE(vq);
717 return NULL;
718 }
719
720 /* Only get used array entries after they have been exposed by host. */
721 virtio_rmb(vq->weak_barriers);
722
723 last_used = (vq->last_used_idx & (vq->vring.num - 1));
724 i = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].id);
725 *len = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].len);
726
727 if (unlikely(i >= vq->vring.num)) {
728 BAD_RING(vq, "id %u out of range\n", i);
729 return NULL;
730 }
731 if (unlikely(!vq->desc_state[i].data)) {
732 BAD_RING(vq, "id %u is not a head!\n", i);
733 return NULL;
734 }
735
736 /* detach_buf clears data, so grab it now. */
737 ret = vq->desc_state[i].data;
738 detach_buf(vq, i, ctx);
739 vq->last_used_idx++;
740 /* If we expect an interrupt for the next entry, tell host
741 * by writing event index and flush out the write before
742 * the read in the next get_buf call. */
743 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
744 virtio_store_mb(vq->weak_barriers,
745 &vring_used_event(&vq->vring),
746 cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
747
748#ifdef DEBUG
749 vq->last_add_time_valid = false;
750#endif
751
752 END_USE(vq);
753 return ret;
754}
755EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
756
757void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
758{
759 return virtqueue_get_buf_ctx(_vq, len, NULL);
760}
761EXPORT_SYMBOL_GPL(virtqueue_get_buf);
762/**
763 * virtqueue_disable_cb - disable callbacks
764 * @vq: the struct virtqueue we're talking about.
765 *
766 * Note that this is not necessarily synchronous, hence unreliable and only
767 * useful as an optimization.
768 *
769 * Unlike other operations, this need not be serialized.
770 */
771void virtqueue_disable_cb(struct virtqueue *_vq)
772{
773 struct vring_virtqueue *vq = to_vvq(_vq);
774
775 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
776 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
777 if (!vq->event)
778 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
779 }
780
781}
782EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
783
784/**
785 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
786 * @vq: the struct virtqueue we're talking about.
787 *
788 * This re-enables callbacks; it returns current queue state
789 * in an opaque unsigned value. This value should be later tested by
790 * virtqueue_poll, to detect a possible race between the driver checking for
791 * more work, and enabling callbacks.
792 *
793 * Caller must ensure we don't call this with other virtqueue
794 * operations at the same time (except where noted).
795 */
796unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
797{
798 struct vring_virtqueue *vq = to_vvq(_vq);
799 u16 last_used_idx;
800
801 START_USE(vq);
802
803 /* We optimistically turn back on interrupts, then check if there was
804 * more to do. */
805 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
806 * either clear the flags bit or point the event index at the next
807 * entry. Always do both to keep code simple. */
808 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
809 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
810 if (!vq->event)
811 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
812 }
813 vring_used_event(&vq->vring) = cpu_to_virtio16(_vq->vdev, last_used_idx = vq->last_used_idx);
814 END_USE(vq);
815 return last_used_idx;
816}
817EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
818
819/**
820 * virtqueue_poll - query pending used buffers
821 * @vq: the struct virtqueue we're talking about.
822 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
823 *
824 * Returns "true" if there are pending used buffers in the queue.
825 *
826 * This does not need to be serialized.
827 */
828bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
829{
830 struct vring_virtqueue *vq = to_vvq(_vq);
831
832 if (unlikely(vq->broken))
833 return false;
834
835 virtio_mb(vq->weak_barriers);
836 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, vq->vring.used->idx);
837}
838EXPORT_SYMBOL_GPL(virtqueue_poll);
839
840/**
841 * virtqueue_enable_cb - restart callbacks after disable_cb.
842 * @vq: the struct virtqueue we're talking about.
843 *
844 * This re-enables callbacks; it returns "false" if there are pending
845 * buffers in the queue, to detect a possible race between the driver
846 * checking for more work, and enabling callbacks.
847 *
848 * Caller must ensure we don't call this with other virtqueue
849 * operations at the same time (except where noted).
850 */
851bool virtqueue_enable_cb(struct virtqueue *_vq)
852{
853 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
854 return !virtqueue_poll(_vq, last_used_idx);
855}
856EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
857
858/**
859 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
860 * @vq: the struct virtqueue we're talking about.
861 *
862 * This re-enables callbacks but hints to the other side to delay
863 * interrupts until most of the available buffers have been processed;
864 * it returns "false" if there are many pending buffers in the queue,
865 * to detect a possible race between the driver checking for more work,
866 * and enabling callbacks.
867 *
868 * Caller must ensure we don't call this with other virtqueue
869 * operations at the same time (except where noted).
870 */
871bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
872{
873 struct vring_virtqueue *vq = to_vvq(_vq);
874 u16 bufs;
875
876 START_USE(vq);
877
878 /* We optimistically turn back on interrupts, then check if there was
879 * more to do. */
880 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
881 * either clear the flags bit or point the event index at the next
882 * entry. Always update the event index to keep code simple. */
883 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
884 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
885 if (!vq->event)
886 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
887 }
888 /* TODO: tune this threshold */
889 bufs = (u16)(vq->avail_idx_shadow - vq->last_used_idx) * 3 / 4;
890
891 virtio_store_mb(vq->weak_barriers,
892 &vring_used_event(&vq->vring),
893 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
894
895 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->vring.used->idx) - vq->last_used_idx) > bufs)) {
896 END_USE(vq);
897 return false;
898 }
899
900 END_USE(vq);
901 return true;
902}
903EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
904
905/**
906 * virtqueue_detach_unused_buf - detach first unused buffer
907 * @vq: the struct virtqueue we're talking about.
908 *
909 * Returns NULL or the "data" token handed to virtqueue_add_*().
910 * This is not valid on an active queue; it is useful only for device
911 * shutdown.
912 */
913void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
914{
915 struct vring_virtqueue *vq = to_vvq(_vq);
916 unsigned int i;
917 void *buf;
918
919 START_USE(vq);
920
921 for (i = 0; i < vq->vring.num; i++) {
922 if (!vq->desc_state[i].data)
923 continue;
924 /* detach_buf clears data, so grab it now. */
925 buf = vq->desc_state[i].data;
926 detach_buf(vq, i, NULL);
927 vq->avail_idx_shadow--;
928 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow);
929 END_USE(vq);
930 return buf;
931 }
932 /* That should have freed everything. */
933 BUG_ON(vq->vq.num_free != vq->vring.num);
934
935 END_USE(vq);
936 return NULL;
937}
938EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
939
940irqreturn_t vring_interrupt(int irq, void *_vq)
941{
942 struct vring_virtqueue *vq = to_vvq(_vq);
943
944 if (!more_used(vq)) {
945 pr_debug("virtqueue interrupt with no work for %p\n", vq);
946 return IRQ_NONE;
947 }
948
949 if (unlikely(vq->broken))
950 return IRQ_HANDLED;
951
952 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
953 if (vq->vq.callback)
954 vq->vq.callback(&vq->vq);
955
956 return IRQ_HANDLED;
957}
958EXPORT_SYMBOL_GPL(vring_interrupt);
959
960struct virtqueue *__vring_new_virtqueue(unsigned int index,
961 struct vring vring,
962 struct virtio_device *vdev,
963 bool weak_barriers,
964 bool context,
965 bool (*notify)(struct virtqueue *),
966 void (*callback)(struct virtqueue *),
967 const char *name)
968{
969 unsigned int i;
970 struct vring_virtqueue *vq;
971
972 vq = kmalloc(sizeof(*vq) + vring.num * sizeof(struct vring_desc_state),
973 GFP_KERNEL);
974 if (!vq)
975 return NULL;
976
977 vq->vring = vring;
978 vq->vq.callback = callback;
979 vq->vq.vdev = vdev;
980 vq->vq.name = name;
981 vq->vq.num_free = vring.num;
982 vq->vq.index = index;
983 vq->we_own_ring = false;
984 vq->queue_dma_addr = 0;
985 vq->queue_size_in_bytes = 0;
986 vq->notify = notify;
987 vq->weak_barriers = weak_barriers;
988 vq->broken = false;
989 vq->last_used_idx = 0;
990 vq->avail_flags_shadow = 0;
991 vq->avail_idx_shadow = 0;
992 vq->num_added = 0;
993 list_add_tail(&vq->vq.list, &vdev->vqs);
994#ifdef DEBUG
995 vq->in_use = false;
996 vq->last_add_time_valid = false;
997#endif
998
999 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
1000 !context;
1001 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1002
1003 /* No callback? Tell other side not to bother us. */
1004 if (!callback) {
1005 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
1006 if (!vq->event)
1007 vq->vring.avail->flags = cpu_to_virtio16(vdev, vq->avail_flags_shadow);
1008 }
1009
1010 /* Put everything in free lists. */
1011 vq->free_head = 0;
1012 for (i = 0; i < vring.num-1; i++)
1013 vq->vring.desc[i].next = cpu_to_virtio16(vdev, i + 1);
1014 memset(vq->desc_state, 0, vring.num * sizeof(struct vring_desc_state));
1015
1016 return &vq->vq;
1017}
1018EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
1019
1020static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
1021 dma_addr_t *dma_handle, gfp_t flag)
1022{
1023 if (vring_use_dma_api(vdev)) {
1024 return dma_alloc_coherent(vdev->dev.parent, size,
1025 dma_handle, flag);
1026 } else {
1027 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
1028 if (queue) {
1029 phys_addr_t phys_addr = virt_to_phys(queue);
1030 *dma_handle = (dma_addr_t)phys_addr;
1031
1032 /*
1033 * Sanity check: make sure we dind't truncate
1034 * the address. The only arches I can find that
1035 * have 64-bit phys_addr_t but 32-bit dma_addr_t
1036 * are certain non-highmem MIPS and x86
1037 * configurations, but these configurations
1038 * should never allocate physical pages above 32
1039 * bits, so this is fine. Just in case, throw a
1040 * warning and abort if we end up with an
1041 * unrepresentable address.
1042 */
1043 if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
1044 free_pages_exact(queue, PAGE_ALIGN(size));
1045 return NULL;
1046 }
1047 }
1048 return queue;
1049 }
1050}
1051
1052static void vring_free_queue(struct virtio_device *vdev, size_t size,
1053 void *queue, dma_addr_t dma_handle)
1054{
1055 if (vring_use_dma_api(vdev)) {
1056 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
1057 } else {
1058 free_pages_exact(queue, PAGE_ALIGN(size));
1059 }
1060}
1061
1062struct virtqueue *vring_create_virtqueue(
1063 unsigned int index,
1064 unsigned int num,
1065 unsigned int vring_align,
1066 struct virtio_device *vdev,
1067 bool weak_barriers,
1068 bool may_reduce_num,
1069 bool context,
1070 bool (*notify)(struct virtqueue *),
1071 void (*callback)(struct virtqueue *),
1072 const char *name)
1073{
1074 struct virtqueue *vq;
1075 void *queue = NULL;
1076 dma_addr_t dma_addr;
1077 size_t queue_size_in_bytes;
1078 struct vring vring;
1079
1080 /* We assume num is a power of 2. */
1081 if (num & (num - 1)) {
1082 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1083 return NULL;
1084 }
1085
1086 /* TODO: allocate each queue chunk individually */
1087 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1088 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1089 &dma_addr,
1090 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1091 if (queue)
1092 break;
1093 if (!may_reduce_num)
1094 return NULL;
1095 }
1096
1097 if (!num)
1098 return NULL;
1099
1100 if (!queue) {
1101 /* Try to get a single page. You are my only hope! */
1102 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1103 &dma_addr, GFP_KERNEL|__GFP_ZERO);
1104 }
1105 if (!queue)
1106 return NULL;
1107
1108 queue_size_in_bytes = vring_size(num, vring_align);
1109 vring_init(&vring, num, queue, vring_align);
1110
1111 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
1112 notify, callback, name);
1113 if (!vq) {
1114 vring_free_queue(vdev, queue_size_in_bytes, queue,
1115 dma_addr);
1116 return NULL;
1117 }
1118
1119 to_vvq(vq)->queue_dma_addr = dma_addr;
1120 to_vvq(vq)->queue_size_in_bytes = queue_size_in_bytes;
1121 to_vvq(vq)->we_own_ring = true;
1122
1123 return vq;
1124}
1125EXPORT_SYMBOL_GPL(vring_create_virtqueue);
1126
1127struct virtqueue *vring_new_virtqueue(unsigned int index,
1128 unsigned int num,
1129 unsigned int vring_align,
1130 struct virtio_device *vdev,
1131 bool weak_barriers,
1132 bool context,
1133 void *pages,
1134 bool (*notify)(struct virtqueue *vq),
1135 void (*callback)(struct virtqueue *vq),
1136 const char *name)
1137{
1138 struct vring vring;
1139 vring_init(&vring, num, pages, vring_align);
1140 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
1141 notify, callback, name);
1142}
1143EXPORT_SYMBOL_GPL(vring_new_virtqueue);
1144
1145void vring_del_virtqueue(struct virtqueue *_vq)
1146{
1147 struct vring_virtqueue *vq = to_vvq(_vq);
1148
1149 if (vq->we_own_ring) {
1150 vring_free_queue(vq->vq.vdev, vq->queue_size_in_bytes,
1151 vq->vring.desc, vq->queue_dma_addr);
1152 }
1153 list_del(&_vq->list);
1154 kfree(vq);
1155}
1156EXPORT_SYMBOL_GPL(vring_del_virtqueue);
1157
1158/* Manipulates transport-specific feature bits. */
1159void vring_transport_features(struct virtio_device *vdev)
1160{
1161 unsigned int i;
1162
1163 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
1164 switch (i) {
1165 case VIRTIO_RING_F_INDIRECT_DESC:
1166 break;
1167 case VIRTIO_RING_F_EVENT_IDX:
1168 break;
1169 case VIRTIO_F_VERSION_1:
1170 break;
1171 case VIRTIO_F_IOMMU_PLATFORM:
1172 break;
1173 default:
1174 /* We don't understand this bit. */
1175 __virtio_clear_bit(vdev, i);
1176 }
1177 }
1178}
1179EXPORT_SYMBOL_GPL(vring_transport_features);
1180
1181/**
1182 * virtqueue_get_vring_size - return the size of the virtqueue's vring
1183 * @vq: the struct virtqueue containing the vring of interest.
1184 *
1185 * Returns the size of the vring. This is mainly used for boasting to
1186 * userspace. Unlike other operations, this need not be serialized.
1187 */
1188unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
1189{
1190
1191 struct vring_virtqueue *vq = to_vvq(_vq);
1192
1193 return vq->vring.num;
1194}
1195EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
1196
1197bool virtqueue_is_broken(struct virtqueue *_vq)
1198{
1199 struct vring_virtqueue *vq = to_vvq(_vq);
1200
1201 return vq->broken;
1202}
1203EXPORT_SYMBOL_GPL(virtqueue_is_broken);
1204
1205/*
1206 * This should prevent the device from being used, allowing drivers to
1207 * recover. You may need to grab appropriate locks to flush.
1208 */
1209void virtio_break_device(struct virtio_device *dev)
1210{
1211 struct virtqueue *_vq;
1212
1213 list_for_each_entry(_vq, &dev->vqs, list) {
1214 struct vring_virtqueue *vq = to_vvq(_vq);
1215 vq->broken = true;
1216 }
1217}
1218EXPORT_SYMBOL_GPL(virtio_break_device);
1219
1220dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
1221{
1222 struct vring_virtqueue *vq = to_vvq(_vq);
1223
1224 BUG_ON(!vq->we_own_ring);
1225
1226 return vq->queue_dma_addr;
1227}
1228EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
1229
1230dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
1231{
1232 struct vring_virtqueue *vq = to_vvq(_vq);
1233
1234 BUG_ON(!vq->we_own_ring);
1235
1236 return vq->queue_dma_addr +
1237 ((char *)vq->vring.avail - (char *)vq->vring.desc);
1238}
1239EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
1240
1241dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
1242{
1243 struct vring_virtqueue *vq = to_vvq(_vq);
1244
1245 BUG_ON(!vq->we_own_ring);
1246
1247 return vq->queue_dma_addr +
1248 ((char *)vq->vring.used - (char *)vq->vring.desc);
1249}
1250EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
1251
1252const struct vring *virtqueue_get_vring(struct virtqueue *vq)
1253{
1254 return &to_vvq(vq)->vring;
1255}
1256EXPORT_SYMBOL_GPL(virtqueue_get_vring);
1257
1258MODULE_LICENSE("GPL");