rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2011 Fujitsu. All rights reserved. |
| 3 | * Written by Miao Xie <miaox@cn.fujitsu.com> |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public |
| 7 | * License v2 as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 12 | * General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public |
| 15 | * License along with this program; if not, write to the |
| 16 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 17 | * Boston, MA 021110-1307, USA. |
| 18 | */ |
| 19 | |
| 20 | #include <linux/slab.h> |
| 21 | #include <linux/sched/mm.h> |
| 22 | #include "delayed-inode.h" |
| 23 | #include "disk-io.h" |
| 24 | #include "transaction.h" |
| 25 | #include "ctree.h" |
| 26 | |
| 27 | #define BTRFS_DELAYED_WRITEBACK 512 |
| 28 | #define BTRFS_DELAYED_BACKGROUND 128 |
| 29 | #define BTRFS_DELAYED_BATCH 16 |
| 30 | |
| 31 | static struct kmem_cache *delayed_node_cache; |
| 32 | |
| 33 | int __init btrfs_delayed_inode_init(void) |
| 34 | { |
| 35 | delayed_node_cache = kmem_cache_create("btrfs_delayed_node", |
| 36 | sizeof(struct btrfs_delayed_node), |
| 37 | 0, |
| 38 | SLAB_MEM_SPREAD, |
| 39 | NULL); |
| 40 | if (!delayed_node_cache) |
| 41 | return -ENOMEM; |
| 42 | return 0; |
| 43 | } |
| 44 | |
| 45 | void btrfs_delayed_inode_exit(void) |
| 46 | { |
| 47 | kmem_cache_destroy(delayed_node_cache); |
| 48 | } |
| 49 | |
| 50 | static inline void btrfs_init_delayed_node( |
| 51 | struct btrfs_delayed_node *delayed_node, |
| 52 | struct btrfs_root *root, u64 inode_id) |
| 53 | { |
| 54 | delayed_node->root = root; |
| 55 | delayed_node->inode_id = inode_id; |
| 56 | refcount_set(&delayed_node->refs, 0); |
| 57 | delayed_node->ins_root = RB_ROOT; |
| 58 | delayed_node->del_root = RB_ROOT; |
| 59 | mutex_init(&delayed_node->mutex); |
| 60 | INIT_LIST_HEAD(&delayed_node->n_list); |
| 61 | INIT_LIST_HEAD(&delayed_node->p_list); |
| 62 | } |
| 63 | |
| 64 | static inline int btrfs_is_continuous_delayed_item( |
| 65 | struct btrfs_delayed_item *item1, |
| 66 | struct btrfs_delayed_item *item2) |
| 67 | { |
| 68 | if (item1->key.type == BTRFS_DIR_INDEX_KEY && |
| 69 | item1->key.objectid == item2->key.objectid && |
| 70 | item1->key.type == item2->key.type && |
| 71 | item1->key.offset + 1 == item2->key.offset) |
| 72 | return 1; |
| 73 | return 0; |
| 74 | } |
| 75 | |
| 76 | static struct btrfs_delayed_node *btrfs_get_delayed_node( |
| 77 | struct btrfs_inode *btrfs_inode) |
| 78 | { |
| 79 | struct btrfs_root *root = btrfs_inode->root; |
| 80 | u64 ino = btrfs_ino(btrfs_inode); |
| 81 | struct btrfs_delayed_node *node; |
| 82 | |
| 83 | node = READ_ONCE(btrfs_inode->delayed_node); |
| 84 | if (node) { |
| 85 | refcount_inc(&node->refs); |
| 86 | return node; |
| 87 | } |
| 88 | |
| 89 | spin_lock(&root->inode_lock); |
| 90 | node = radix_tree_lookup(&root->delayed_nodes_tree, ino); |
| 91 | |
| 92 | if (node) { |
| 93 | if (btrfs_inode->delayed_node) { |
| 94 | refcount_inc(&node->refs); /* can be accessed */ |
| 95 | BUG_ON(btrfs_inode->delayed_node != node); |
| 96 | spin_unlock(&root->inode_lock); |
| 97 | return node; |
| 98 | } |
| 99 | |
| 100 | /* |
| 101 | * It's possible that we're racing into the middle of removing |
| 102 | * this node from the radix tree. In this case, the refcount |
| 103 | * was zero and it should never go back to one. Just return |
| 104 | * NULL like it was never in the radix at all; our release |
| 105 | * function is in the process of removing it. |
| 106 | * |
| 107 | * Some implementations of refcount_inc refuse to bump the |
| 108 | * refcount once it has hit zero. If we don't do this dance |
| 109 | * here, refcount_inc() may decide to just WARN_ONCE() instead |
| 110 | * of actually bumping the refcount. |
| 111 | * |
| 112 | * If this node is properly in the radix, we want to bump the |
| 113 | * refcount twice, once for the inode and once for this get |
| 114 | * operation. |
| 115 | */ |
| 116 | if (refcount_inc_not_zero(&node->refs)) { |
| 117 | refcount_inc(&node->refs); |
| 118 | btrfs_inode->delayed_node = node; |
| 119 | } else { |
| 120 | node = NULL; |
| 121 | } |
| 122 | |
| 123 | spin_unlock(&root->inode_lock); |
| 124 | return node; |
| 125 | } |
| 126 | spin_unlock(&root->inode_lock); |
| 127 | |
| 128 | return NULL; |
| 129 | } |
| 130 | |
| 131 | /* Will return either the node or PTR_ERR(-ENOMEM) */ |
| 132 | static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( |
| 133 | struct btrfs_inode *btrfs_inode) |
| 134 | { |
| 135 | struct btrfs_delayed_node *node; |
| 136 | struct btrfs_root *root = btrfs_inode->root; |
| 137 | u64 ino = btrfs_ino(btrfs_inode); |
| 138 | int ret; |
| 139 | |
| 140 | again: |
| 141 | node = btrfs_get_delayed_node(btrfs_inode); |
| 142 | if (node) |
| 143 | return node; |
| 144 | |
| 145 | node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); |
| 146 | if (!node) |
| 147 | return ERR_PTR(-ENOMEM); |
| 148 | btrfs_init_delayed_node(node, root, ino); |
| 149 | |
| 150 | /* cached in the btrfs inode and can be accessed */ |
| 151 | refcount_set(&node->refs, 2); |
| 152 | |
| 153 | ret = radix_tree_preload(GFP_NOFS); |
| 154 | if (ret) { |
| 155 | kmem_cache_free(delayed_node_cache, node); |
| 156 | return ERR_PTR(ret); |
| 157 | } |
| 158 | |
| 159 | spin_lock(&root->inode_lock); |
| 160 | ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); |
| 161 | if (ret == -EEXIST) { |
| 162 | spin_unlock(&root->inode_lock); |
| 163 | kmem_cache_free(delayed_node_cache, node); |
| 164 | radix_tree_preload_end(); |
| 165 | goto again; |
| 166 | } |
| 167 | btrfs_inode->delayed_node = node; |
| 168 | spin_unlock(&root->inode_lock); |
| 169 | radix_tree_preload_end(); |
| 170 | |
| 171 | return node; |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Call it when holding delayed_node->mutex |
| 176 | * |
| 177 | * If mod = 1, add this node into the prepared list. |
| 178 | */ |
| 179 | static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, |
| 180 | struct btrfs_delayed_node *node, |
| 181 | int mod) |
| 182 | { |
| 183 | spin_lock(&root->lock); |
| 184 | if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { |
| 185 | if (!list_empty(&node->p_list)) |
| 186 | list_move_tail(&node->p_list, &root->prepare_list); |
| 187 | else if (mod) |
| 188 | list_add_tail(&node->p_list, &root->prepare_list); |
| 189 | } else { |
| 190 | list_add_tail(&node->n_list, &root->node_list); |
| 191 | list_add_tail(&node->p_list, &root->prepare_list); |
| 192 | refcount_inc(&node->refs); /* inserted into list */ |
| 193 | root->nodes++; |
| 194 | set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); |
| 195 | } |
| 196 | spin_unlock(&root->lock); |
| 197 | } |
| 198 | |
| 199 | /* Call it when holding delayed_node->mutex */ |
| 200 | static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, |
| 201 | struct btrfs_delayed_node *node) |
| 202 | { |
| 203 | spin_lock(&root->lock); |
| 204 | if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { |
| 205 | root->nodes--; |
| 206 | refcount_dec(&node->refs); /* not in the list */ |
| 207 | list_del_init(&node->n_list); |
| 208 | if (!list_empty(&node->p_list)) |
| 209 | list_del_init(&node->p_list); |
| 210 | clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); |
| 211 | } |
| 212 | spin_unlock(&root->lock); |
| 213 | } |
| 214 | |
| 215 | static struct btrfs_delayed_node *btrfs_first_delayed_node( |
| 216 | struct btrfs_delayed_root *delayed_root) |
| 217 | { |
| 218 | struct list_head *p; |
| 219 | struct btrfs_delayed_node *node = NULL; |
| 220 | |
| 221 | spin_lock(&delayed_root->lock); |
| 222 | if (list_empty(&delayed_root->node_list)) |
| 223 | goto out; |
| 224 | |
| 225 | p = delayed_root->node_list.next; |
| 226 | node = list_entry(p, struct btrfs_delayed_node, n_list); |
| 227 | refcount_inc(&node->refs); |
| 228 | out: |
| 229 | spin_unlock(&delayed_root->lock); |
| 230 | |
| 231 | return node; |
| 232 | } |
| 233 | |
| 234 | static struct btrfs_delayed_node *btrfs_next_delayed_node( |
| 235 | struct btrfs_delayed_node *node) |
| 236 | { |
| 237 | struct btrfs_delayed_root *delayed_root; |
| 238 | struct list_head *p; |
| 239 | struct btrfs_delayed_node *next = NULL; |
| 240 | |
| 241 | delayed_root = node->root->fs_info->delayed_root; |
| 242 | spin_lock(&delayed_root->lock); |
| 243 | if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { |
| 244 | /* not in the list */ |
| 245 | if (list_empty(&delayed_root->node_list)) |
| 246 | goto out; |
| 247 | p = delayed_root->node_list.next; |
| 248 | } else if (list_is_last(&node->n_list, &delayed_root->node_list)) |
| 249 | goto out; |
| 250 | else |
| 251 | p = node->n_list.next; |
| 252 | |
| 253 | next = list_entry(p, struct btrfs_delayed_node, n_list); |
| 254 | refcount_inc(&next->refs); |
| 255 | out: |
| 256 | spin_unlock(&delayed_root->lock); |
| 257 | |
| 258 | return next; |
| 259 | } |
| 260 | |
| 261 | static void __btrfs_release_delayed_node( |
| 262 | struct btrfs_delayed_node *delayed_node, |
| 263 | int mod) |
| 264 | { |
| 265 | struct btrfs_delayed_root *delayed_root; |
| 266 | |
| 267 | if (!delayed_node) |
| 268 | return; |
| 269 | |
| 270 | delayed_root = delayed_node->root->fs_info->delayed_root; |
| 271 | |
| 272 | mutex_lock(&delayed_node->mutex); |
| 273 | if (delayed_node->count) |
| 274 | btrfs_queue_delayed_node(delayed_root, delayed_node, mod); |
| 275 | else |
| 276 | btrfs_dequeue_delayed_node(delayed_root, delayed_node); |
| 277 | mutex_unlock(&delayed_node->mutex); |
| 278 | |
| 279 | if (refcount_dec_and_test(&delayed_node->refs)) { |
| 280 | struct btrfs_root *root = delayed_node->root; |
| 281 | |
| 282 | spin_lock(&root->inode_lock); |
| 283 | /* |
| 284 | * Once our refcount goes to zero, nobody is allowed to bump it |
| 285 | * back up. We can delete it now. |
| 286 | */ |
| 287 | ASSERT(refcount_read(&delayed_node->refs) == 0); |
| 288 | radix_tree_delete(&root->delayed_nodes_tree, |
| 289 | delayed_node->inode_id); |
| 290 | spin_unlock(&root->inode_lock); |
| 291 | kmem_cache_free(delayed_node_cache, delayed_node); |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) |
| 296 | { |
| 297 | __btrfs_release_delayed_node(node, 0); |
| 298 | } |
| 299 | |
| 300 | static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( |
| 301 | struct btrfs_delayed_root *delayed_root) |
| 302 | { |
| 303 | struct list_head *p; |
| 304 | struct btrfs_delayed_node *node = NULL; |
| 305 | |
| 306 | spin_lock(&delayed_root->lock); |
| 307 | if (list_empty(&delayed_root->prepare_list)) |
| 308 | goto out; |
| 309 | |
| 310 | p = delayed_root->prepare_list.next; |
| 311 | list_del_init(p); |
| 312 | node = list_entry(p, struct btrfs_delayed_node, p_list); |
| 313 | refcount_inc(&node->refs); |
| 314 | out: |
| 315 | spin_unlock(&delayed_root->lock); |
| 316 | |
| 317 | return node; |
| 318 | } |
| 319 | |
| 320 | static inline void btrfs_release_prepared_delayed_node( |
| 321 | struct btrfs_delayed_node *node) |
| 322 | { |
| 323 | __btrfs_release_delayed_node(node, 1); |
| 324 | } |
| 325 | |
| 326 | static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) |
| 327 | { |
| 328 | struct btrfs_delayed_item *item; |
| 329 | item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); |
| 330 | if (item) { |
| 331 | item->data_len = data_len; |
| 332 | item->ins_or_del = 0; |
| 333 | item->bytes_reserved = 0; |
| 334 | item->delayed_node = NULL; |
| 335 | refcount_set(&item->refs, 1); |
| 336 | } |
| 337 | return item; |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * __btrfs_lookup_delayed_item - look up the delayed item by key |
| 342 | * @delayed_node: pointer to the delayed node |
| 343 | * @key: the key to look up |
| 344 | * @prev: used to store the prev item if the right item isn't found |
| 345 | * @next: used to store the next item if the right item isn't found |
| 346 | * |
| 347 | * Note: if we don't find the right item, we will return the prev item and |
| 348 | * the next item. |
| 349 | */ |
| 350 | static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( |
| 351 | struct rb_root *root, |
| 352 | struct btrfs_key *key, |
| 353 | struct btrfs_delayed_item **prev, |
| 354 | struct btrfs_delayed_item **next) |
| 355 | { |
| 356 | struct rb_node *node, *prev_node = NULL; |
| 357 | struct btrfs_delayed_item *delayed_item = NULL; |
| 358 | int ret = 0; |
| 359 | |
| 360 | node = root->rb_node; |
| 361 | |
| 362 | while (node) { |
| 363 | delayed_item = rb_entry(node, struct btrfs_delayed_item, |
| 364 | rb_node); |
| 365 | prev_node = node; |
| 366 | ret = btrfs_comp_cpu_keys(&delayed_item->key, key); |
| 367 | if (ret < 0) |
| 368 | node = node->rb_right; |
| 369 | else if (ret > 0) |
| 370 | node = node->rb_left; |
| 371 | else |
| 372 | return delayed_item; |
| 373 | } |
| 374 | |
| 375 | if (prev) { |
| 376 | if (!prev_node) |
| 377 | *prev = NULL; |
| 378 | else if (ret < 0) |
| 379 | *prev = delayed_item; |
| 380 | else if ((node = rb_prev(prev_node)) != NULL) { |
| 381 | *prev = rb_entry(node, struct btrfs_delayed_item, |
| 382 | rb_node); |
| 383 | } else |
| 384 | *prev = NULL; |
| 385 | } |
| 386 | |
| 387 | if (next) { |
| 388 | if (!prev_node) |
| 389 | *next = NULL; |
| 390 | else if (ret > 0) |
| 391 | *next = delayed_item; |
| 392 | else if ((node = rb_next(prev_node)) != NULL) { |
| 393 | *next = rb_entry(node, struct btrfs_delayed_item, |
| 394 | rb_node); |
| 395 | } else |
| 396 | *next = NULL; |
| 397 | } |
| 398 | return NULL; |
| 399 | } |
| 400 | |
| 401 | static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( |
| 402 | struct btrfs_delayed_node *delayed_node, |
| 403 | struct btrfs_key *key) |
| 404 | { |
| 405 | return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, |
| 406 | NULL, NULL); |
| 407 | } |
| 408 | |
| 409 | static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, |
| 410 | struct btrfs_delayed_item *ins, |
| 411 | int action) |
| 412 | { |
| 413 | struct rb_node **p, *node; |
| 414 | struct rb_node *parent_node = NULL; |
| 415 | struct rb_root *root; |
| 416 | struct btrfs_delayed_item *item; |
| 417 | int cmp; |
| 418 | |
| 419 | if (action == BTRFS_DELAYED_INSERTION_ITEM) |
| 420 | root = &delayed_node->ins_root; |
| 421 | else if (action == BTRFS_DELAYED_DELETION_ITEM) |
| 422 | root = &delayed_node->del_root; |
| 423 | else |
| 424 | BUG(); |
| 425 | p = &root->rb_node; |
| 426 | node = &ins->rb_node; |
| 427 | |
| 428 | while (*p) { |
| 429 | parent_node = *p; |
| 430 | item = rb_entry(parent_node, struct btrfs_delayed_item, |
| 431 | rb_node); |
| 432 | |
| 433 | cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); |
| 434 | if (cmp < 0) |
| 435 | p = &(*p)->rb_right; |
| 436 | else if (cmp > 0) |
| 437 | p = &(*p)->rb_left; |
| 438 | else |
| 439 | return -EEXIST; |
| 440 | } |
| 441 | |
| 442 | rb_link_node(node, parent_node, p); |
| 443 | rb_insert_color(node, root); |
| 444 | ins->delayed_node = delayed_node; |
| 445 | ins->ins_or_del = action; |
| 446 | |
| 447 | if (ins->key.type == BTRFS_DIR_INDEX_KEY && |
| 448 | action == BTRFS_DELAYED_INSERTION_ITEM && |
| 449 | ins->key.offset >= delayed_node->index_cnt) |
| 450 | delayed_node->index_cnt = ins->key.offset + 1; |
| 451 | |
| 452 | delayed_node->count++; |
| 453 | atomic_inc(&delayed_node->root->fs_info->delayed_root->items); |
| 454 | return 0; |
| 455 | } |
| 456 | |
| 457 | static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, |
| 458 | struct btrfs_delayed_item *item) |
| 459 | { |
| 460 | return __btrfs_add_delayed_item(node, item, |
| 461 | BTRFS_DELAYED_INSERTION_ITEM); |
| 462 | } |
| 463 | |
| 464 | static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, |
| 465 | struct btrfs_delayed_item *item) |
| 466 | { |
| 467 | return __btrfs_add_delayed_item(node, item, |
| 468 | BTRFS_DELAYED_DELETION_ITEM); |
| 469 | } |
| 470 | |
| 471 | static void finish_one_item(struct btrfs_delayed_root *delayed_root) |
| 472 | { |
| 473 | int seq = atomic_inc_return(&delayed_root->items_seq); |
| 474 | |
| 475 | /* |
| 476 | * atomic_dec_return implies a barrier for waitqueue_active |
| 477 | */ |
| 478 | if ((atomic_dec_return(&delayed_root->items) < |
| 479 | BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && |
| 480 | waitqueue_active(&delayed_root->wait)) |
| 481 | wake_up(&delayed_root->wait); |
| 482 | } |
| 483 | |
| 484 | static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) |
| 485 | { |
| 486 | struct rb_root *root; |
| 487 | struct btrfs_delayed_root *delayed_root; |
| 488 | |
| 489 | delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; |
| 490 | |
| 491 | BUG_ON(!delayed_root); |
| 492 | BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && |
| 493 | delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); |
| 494 | |
| 495 | if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) |
| 496 | root = &delayed_item->delayed_node->ins_root; |
| 497 | else |
| 498 | root = &delayed_item->delayed_node->del_root; |
| 499 | |
| 500 | rb_erase(&delayed_item->rb_node, root); |
| 501 | delayed_item->delayed_node->count--; |
| 502 | |
| 503 | finish_one_item(delayed_root); |
| 504 | } |
| 505 | |
| 506 | static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) |
| 507 | { |
| 508 | if (item) { |
| 509 | __btrfs_remove_delayed_item(item); |
| 510 | if (refcount_dec_and_test(&item->refs)) |
| 511 | kfree(item); |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( |
| 516 | struct btrfs_delayed_node *delayed_node) |
| 517 | { |
| 518 | struct rb_node *p; |
| 519 | struct btrfs_delayed_item *item = NULL; |
| 520 | |
| 521 | p = rb_first(&delayed_node->ins_root); |
| 522 | if (p) |
| 523 | item = rb_entry(p, struct btrfs_delayed_item, rb_node); |
| 524 | |
| 525 | return item; |
| 526 | } |
| 527 | |
| 528 | static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( |
| 529 | struct btrfs_delayed_node *delayed_node) |
| 530 | { |
| 531 | struct rb_node *p; |
| 532 | struct btrfs_delayed_item *item = NULL; |
| 533 | |
| 534 | p = rb_first(&delayed_node->del_root); |
| 535 | if (p) |
| 536 | item = rb_entry(p, struct btrfs_delayed_item, rb_node); |
| 537 | |
| 538 | return item; |
| 539 | } |
| 540 | |
| 541 | static struct btrfs_delayed_item *__btrfs_next_delayed_item( |
| 542 | struct btrfs_delayed_item *item) |
| 543 | { |
| 544 | struct rb_node *p; |
| 545 | struct btrfs_delayed_item *next = NULL; |
| 546 | |
| 547 | p = rb_next(&item->rb_node); |
| 548 | if (p) |
| 549 | next = rb_entry(p, struct btrfs_delayed_item, rb_node); |
| 550 | |
| 551 | return next; |
| 552 | } |
| 553 | |
| 554 | static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, |
| 555 | struct btrfs_fs_info *fs_info, |
| 556 | struct btrfs_delayed_item *item) |
| 557 | { |
| 558 | struct btrfs_block_rsv *src_rsv; |
| 559 | struct btrfs_block_rsv *dst_rsv; |
| 560 | u64 num_bytes; |
| 561 | int ret; |
| 562 | |
| 563 | if (!trans->bytes_reserved) |
| 564 | return 0; |
| 565 | |
| 566 | src_rsv = trans->block_rsv; |
| 567 | dst_rsv = &fs_info->delayed_block_rsv; |
| 568 | |
| 569 | num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); |
| 570 | ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); |
| 571 | if (!ret) { |
| 572 | trace_btrfs_space_reservation(fs_info, "delayed_item", |
| 573 | item->key.objectid, |
| 574 | num_bytes, 1); |
| 575 | item->bytes_reserved = num_bytes; |
| 576 | } |
| 577 | |
| 578 | return ret; |
| 579 | } |
| 580 | |
| 581 | static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info, |
| 582 | struct btrfs_delayed_item *item) |
| 583 | { |
| 584 | struct btrfs_block_rsv *rsv; |
| 585 | |
| 586 | if (!item->bytes_reserved) |
| 587 | return; |
| 588 | |
| 589 | rsv = &fs_info->delayed_block_rsv; |
| 590 | trace_btrfs_space_reservation(fs_info, "delayed_item", |
| 591 | item->key.objectid, item->bytes_reserved, |
| 592 | 0); |
| 593 | btrfs_block_rsv_release(fs_info, rsv, |
| 594 | item->bytes_reserved); |
| 595 | } |
| 596 | |
| 597 | static int btrfs_delayed_inode_reserve_metadata( |
| 598 | struct btrfs_trans_handle *trans, |
| 599 | struct btrfs_root *root, |
| 600 | struct btrfs_inode *inode, |
| 601 | struct btrfs_delayed_node *node) |
| 602 | { |
| 603 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 604 | struct btrfs_block_rsv *src_rsv; |
| 605 | struct btrfs_block_rsv *dst_rsv; |
| 606 | u64 num_bytes; |
| 607 | int ret; |
| 608 | bool release = false; |
| 609 | |
| 610 | src_rsv = trans->block_rsv; |
| 611 | dst_rsv = &fs_info->delayed_block_rsv; |
| 612 | |
| 613 | num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); |
| 614 | |
| 615 | /* |
| 616 | * If our block_rsv is the delalloc block reserve then check and see if |
| 617 | * we have our extra reservation for updating the inode. If not fall |
| 618 | * through and try to reserve space quickly. |
| 619 | * |
| 620 | * We used to try and steal from the delalloc block rsv or the global |
| 621 | * reserve, but we'd steal a full reservation, which isn't kind. We are |
| 622 | * here through delalloc which means we've likely just cowed down close |
| 623 | * to the leaf that contains the inode, so we would steal less just |
| 624 | * doing the fallback inode update, so if we do end up having to steal |
| 625 | * from the global block rsv we hopefully only steal one or two blocks |
| 626 | * worth which is less likely to hurt us. |
| 627 | */ |
| 628 | if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) { |
| 629 | spin_lock(&inode->lock); |
| 630 | if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, |
| 631 | &inode->runtime_flags)) |
| 632 | release = true; |
| 633 | else |
| 634 | src_rsv = NULL; |
| 635 | spin_unlock(&inode->lock); |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * btrfs_dirty_inode will update the inode under btrfs_join_transaction |
| 640 | * which doesn't reserve space for speed. This is a problem since we |
| 641 | * still need to reserve space for this update, so try to reserve the |
| 642 | * space. |
| 643 | * |
| 644 | * Now if src_rsv == delalloc_block_rsv we'll let it just steal since |
| 645 | * we're accounted for. |
| 646 | */ |
| 647 | if (!src_rsv || (!trans->bytes_reserved && |
| 648 | src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { |
| 649 | ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, |
| 650 | BTRFS_RESERVE_NO_FLUSH); |
| 651 | /* |
| 652 | * Since we're under a transaction reserve_metadata_bytes could |
| 653 | * try to commit the transaction which will make it return |
| 654 | * EAGAIN to make us stop the transaction we have, so return |
| 655 | * ENOSPC instead so that btrfs_dirty_inode knows what to do. |
| 656 | */ |
| 657 | if (ret == -EAGAIN) |
| 658 | ret = -ENOSPC; |
| 659 | if (!ret) { |
| 660 | node->bytes_reserved = num_bytes; |
| 661 | trace_btrfs_space_reservation(fs_info, |
| 662 | "delayed_inode", |
| 663 | btrfs_ino(inode), |
| 664 | num_bytes, 1); |
| 665 | } |
| 666 | return ret; |
| 667 | } |
| 668 | |
| 669 | ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); |
| 670 | |
| 671 | /* |
| 672 | * Migrate only takes a reservation, it doesn't touch the size of the |
| 673 | * block_rsv. This is to simplify people who don't normally have things |
| 674 | * migrated from their block rsv. If they go to release their |
| 675 | * reservation, that will decrease the size as well, so if migrate |
| 676 | * reduced size we'd end up with a negative size. But for the |
| 677 | * delalloc_meta_reserved stuff we will only know to drop 1 reservation, |
| 678 | * but we could in fact do this reserve/migrate dance several times |
| 679 | * between the time we did the original reservation and we'd clean it |
| 680 | * up. So to take care of this, release the space for the meta |
| 681 | * reservation here. I think it may be time for a documentation page on |
| 682 | * how block rsvs. work. |
| 683 | */ |
| 684 | if (!ret) { |
| 685 | trace_btrfs_space_reservation(fs_info, "delayed_inode", |
| 686 | btrfs_ino(inode), num_bytes, 1); |
| 687 | node->bytes_reserved = num_bytes; |
| 688 | } |
| 689 | |
| 690 | if (release) { |
| 691 | trace_btrfs_space_reservation(fs_info, "delalloc", |
| 692 | btrfs_ino(inode), num_bytes, 0); |
| 693 | btrfs_block_rsv_release(fs_info, src_rsv, num_bytes); |
| 694 | } |
| 695 | |
| 696 | return ret; |
| 697 | } |
| 698 | |
| 699 | static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, |
| 700 | struct btrfs_delayed_node *node) |
| 701 | { |
| 702 | struct btrfs_block_rsv *rsv; |
| 703 | |
| 704 | if (!node->bytes_reserved) |
| 705 | return; |
| 706 | |
| 707 | rsv = &fs_info->delayed_block_rsv; |
| 708 | trace_btrfs_space_reservation(fs_info, "delayed_inode", |
| 709 | node->inode_id, node->bytes_reserved, 0); |
| 710 | btrfs_block_rsv_release(fs_info, rsv, |
| 711 | node->bytes_reserved); |
| 712 | node->bytes_reserved = 0; |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * This helper will insert some continuous items into the same leaf according |
| 717 | * to the free space of the leaf. |
| 718 | */ |
| 719 | static int btrfs_batch_insert_items(struct btrfs_root *root, |
| 720 | struct btrfs_path *path, |
| 721 | struct btrfs_delayed_item *item) |
| 722 | { |
| 723 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 724 | struct btrfs_delayed_item *curr, *next; |
| 725 | int free_space; |
| 726 | int total_data_size = 0, total_size = 0; |
| 727 | struct extent_buffer *leaf; |
| 728 | char *data_ptr; |
| 729 | struct btrfs_key *keys; |
| 730 | u32 *data_size; |
| 731 | struct list_head head; |
| 732 | int slot; |
| 733 | int nitems; |
| 734 | int i; |
| 735 | int ret = 0; |
| 736 | |
| 737 | BUG_ON(!path->nodes[0]); |
| 738 | |
| 739 | leaf = path->nodes[0]; |
| 740 | free_space = btrfs_leaf_free_space(fs_info, leaf); |
| 741 | INIT_LIST_HEAD(&head); |
| 742 | |
| 743 | next = item; |
| 744 | nitems = 0; |
| 745 | |
| 746 | /* |
| 747 | * count the number of the continuous items that we can insert in batch |
| 748 | */ |
| 749 | while (total_size + next->data_len + sizeof(struct btrfs_item) <= |
| 750 | free_space) { |
| 751 | total_data_size += next->data_len; |
| 752 | total_size += next->data_len + sizeof(struct btrfs_item); |
| 753 | list_add_tail(&next->tree_list, &head); |
| 754 | nitems++; |
| 755 | |
| 756 | curr = next; |
| 757 | next = __btrfs_next_delayed_item(curr); |
| 758 | if (!next) |
| 759 | break; |
| 760 | |
| 761 | if (!btrfs_is_continuous_delayed_item(curr, next)) |
| 762 | break; |
| 763 | } |
| 764 | |
| 765 | if (!nitems) { |
| 766 | ret = 0; |
| 767 | goto out; |
| 768 | } |
| 769 | |
| 770 | /* |
| 771 | * we need allocate some memory space, but it might cause the task |
| 772 | * to sleep, so we set all locked nodes in the path to blocking locks |
| 773 | * first. |
| 774 | */ |
| 775 | btrfs_set_path_blocking(path); |
| 776 | |
| 777 | keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); |
| 778 | if (!keys) { |
| 779 | ret = -ENOMEM; |
| 780 | goto out; |
| 781 | } |
| 782 | |
| 783 | data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); |
| 784 | if (!data_size) { |
| 785 | ret = -ENOMEM; |
| 786 | goto error; |
| 787 | } |
| 788 | |
| 789 | /* get keys of all the delayed items */ |
| 790 | i = 0; |
| 791 | list_for_each_entry(next, &head, tree_list) { |
| 792 | keys[i] = next->key; |
| 793 | data_size[i] = next->data_len; |
| 794 | i++; |
| 795 | } |
| 796 | |
| 797 | /* reset all the locked nodes in the patch to spinning locks. */ |
| 798 | btrfs_clear_path_blocking(path, NULL, 0); |
| 799 | |
| 800 | /* insert the keys of the items */ |
| 801 | setup_items_for_insert(root, path, keys, data_size, |
| 802 | total_data_size, total_size, nitems); |
| 803 | |
| 804 | /* insert the dir index items */ |
| 805 | slot = path->slots[0]; |
| 806 | list_for_each_entry_safe(curr, next, &head, tree_list) { |
| 807 | data_ptr = btrfs_item_ptr(leaf, slot, char); |
| 808 | write_extent_buffer(leaf, &curr->data, |
| 809 | (unsigned long)data_ptr, |
| 810 | curr->data_len); |
| 811 | slot++; |
| 812 | |
| 813 | btrfs_delayed_item_release_metadata(fs_info, curr); |
| 814 | |
| 815 | list_del(&curr->tree_list); |
| 816 | btrfs_release_delayed_item(curr); |
| 817 | } |
| 818 | |
| 819 | error: |
| 820 | kfree(data_size); |
| 821 | kfree(keys); |
| 822 | out: |
| 823 | return ret; |
| 824 | } |
| 825 | |
| 826 | /* |
| 827 | * This helper can just do simple insertion that needn't extend item for new |
| 828 | * data, such as directory name index insertion, inode insertion. |
| 829 | */ |
| 830 | static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, |
| 831 | struct btrfs_root *root, |
| 832 | struct btrfs_path *path, |
| 833 | struct btrfs_delayed_item *delayed_item) |
| 834 | { |
| 835 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 836 | struct extent_buffer *leaf; |
| 837 | unsigned int nofs_flag; |
| 838 | char *ptr; |
| 839 | int ret; |
| 840 | |
| 841 | nofs_flag = memalloc_nofs_save(); |
| 842 | ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, |
| 843 | delayed_item->data_len); |
| 844 | memalloc_nofs_restore(nofs_flag); |
| 845 | if (ret < 0 && ret != -EEXIST) |
| 846 | return ret; |
| 847 | |
| 848 | leaf = path->nodes[0]; |
| 849 | |
| 850 | ptr = btrfs_item_ptr(leaf, path->slots[0], char); |
| 851 | |
| 852 | write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, |
| 853 | delayed_item->data_len); |
| 854 | btrfs_mark_buffer_dirty(leaf); |
| 855 | |
| 856 | btrfs_delayed_item_release_metadata(fs_info, delayed_item); |
| 857 | return 0; |
| 858 | } |
| 859 | |
| 860 | /* |
| 861 | * we insert an item first, then if there are some continuous items, we try |
| 862 | * to insert those items into the same leaf. |
| 863 | */ |
| 864 | static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, |
| 865 | struct btrfs_path *path, |
| 866 | struct btrfs_root *root, |
| 867 | struct btrfs_delayed_node *node) |
| 868 | { |
| 869 | struct btrfs_delayed_item *curr, *prev; |
| 870 | int ret = 0; |
| 871 | |
| 872 | do_again: |
| 873 | mutex_lock(&node->mutex); |
| 874 | curr = __btrfs_first_delayed_insertion_item(node); |
| 875 | if (!curr) |
| 876 | goto insert_end; |
| 877 | |
| 878 | ret = btrfs_insert_delayed_item(trans, root, path, curr); |
| 879 | if (ret < 0) { |
| 880 | btrfs_release_path(path); |
| 881 | goto insert_end; |
| 882 | } |
| 883 | |
| 884 | prev = curr; |
| 885 | curr = __btrfs_next_delayed_item(prev); |
| 886 | if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { |
| 887 | /* insert the continuous items into the same leaf */ |
| 888 | path->slots[0]++; |
| 889 | btrfs_batch_insert_items(root, path, curr); |
| 890 | } |
| 891 | btrfs_release_delayed_item(prev); |
| 892 | btrfs_mark_buffer_dirty(path->nodes[0]); |
| 893 | |
| 894 | btrfs_release_path(path); |
| 895 | mutex_unlock(&node->mutex); |
| 896 | goto do_again; |
| 897 | |
| 898 | insert_end: |
| 899 | mutex_unlock(&node->mutex); |
| 900 | return ret; |
| 901 | } |
| 902 | |
| 903 | static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, |
| 904 | struct btrfs_root *root, |
| 905 | struct btrfs_path *path, |
| 906 | struct btrfs_delayed_item *item) |
| 907 | { |
| 908 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 909 | struct btrfs_delayed_item *curr, *next; |
| 910 | struct extent_buffer *leaf; |
| 911 | struct btrfs_key key; |
| 912 | struct list_head head; |
| 913 | int nitems, i, last_item; |
| 914 | int ret = 0; |
| 915 | |
| 916 | BUG_ON(!path->nodes[0]); |
| 917 | |
| 918 | leaf = path->nodes[0]; |
| 919 | |
| 920 | i = path->slots[0]; |
| 921 | last_item = btrfs_header_nritems(leaf) - 1; |
| 922 | if (i > last_item) |
| 923 | return -ENOENT; /* FIXME: Is errno suitable? */ |
| 924 | |
| 925 | next = item; |
| 926 | INIT_LIST_HEAD(&head); |
| 927 | btrfs_item_key_to_cpu(leaf, &key, i); |
| 928 | nitems = 0; |
| 929 | /* |
| 930 | * count the number of the dir index items that we can delete in batch |
| 931 | */ |
| 932 | while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { |
| 933 | list_add_tail(&next->tree_list, &head); |
| 934 | nitems++; |
| 935 | |
| 936 | curr = next; |
| 937 | next = __btrfs_next_delayed_item(curr); |
| 938 | if (!next) |
| 939 | break; |
| 940 | |
| 941 | if (!btrfs_is_continuous_delayed_item(curr, next)) |
| 942 | break; |
| 943 | |
| 944 | i++; |
| 945 | if (i > last_item) |
| 946 | break; |
| 947 | btrfs_item_key_to_cpu(leaf, &key, i); |
| 948 | } |
| 949 | |
| 950 | if (!nitems) |
| 951 | return 0; |
| 952 | |
| 953 | ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); |
| 954 | if (ret) |
| 955 | goto out; |
| 956 | |
| 957 | list_for_each_entry_safe(curr, next, &head, tree_list) { |
| 958 | btrfs_delayed_item_release_metadata(fs_info, curr); |
| 959 | list_del(&curr->tree_list); |
| 960 | btrfs_release_delayed_item(curr); |
| 961 | } |
| 962 | |
| 963 | out: |
| 964 | return ret; |
| 965 | } |
| 966 | |
| 967 | static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, |
| 968 | struct btrfs_path *path, |
| 969 | struct btrfs_root *root, |
| 970 | struct btrfs_delayed_node *node) |
| 971 | { |
| 972 | struct btrfs_delayed_item *curr, *prev; |
| 973 | unsigned int nofs_flag; |
| 974 | int ret = 0; |
| 975 | |
| 976 | do_again: |
| 977 | mutex_lock(&node->mutex); |
| 978 | curr = __btrfs_first_delayed_deletion_item(node); |
| 979 | if (!curr) |
| 980 | goto delete_fail; |
| 981 | |
| 982 | nofs_flag = memalloc_nofs_save(); |
| 983 | ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); |
| 984 | memalloc_nofs_restore(nofs_flag); |
| 985 | if (ret < 0) |
| 986 | goto delete_fail; |
| 987 | else if (ret > 0) { |
| 988 | /* |
| 989 | * can't find the item which the node points to, so this node |
| 990 | * is invalid, just drop it. |
| 991 | */ |
| 992 | prev = curr; |
| 993 | curr = __btrfs_next_delayed_item(prev); |
| 994 | btrfs_release_delayed_item(prev); |
| 995 | ret = 0; |
| 996 | btrfs_release_path(path); |
| 997 | if (curr) { |
| 998 | mutex_unlock(&node->mutex); |
| 999 | goto do_again; |
| 1000 | } else |
| 1001 | goto delete_fail; |
| 1002 | } |
| 1003 | |
| 1004 | btrfs_batch_delete_items(trans, root, path, curr); |
| 1005 | btrfs_release_path(path); |
| 1006 | mutex_unlock(&node->mutex); |
| 1007 | goto do_again; |
| 1008 | |
| 1009 | delete_fail: |
| 1010 | btrfs_release_path(path); |
| 1011 | mutex_unlock(&node->mutex); |
| 1012 | return ret; |
| 1013 | } |
| 1014 | |
| 1015 | static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) |
| 1016 | { |
| 1017 | struct btrfs_delayed_root *delayed_root; |
| 1018 | |
| 1019 | if (delayed_node && |
| 1020 | test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| 1021 | BUG_ON(!delayed_node->root); |
| 1022 | clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); |
| 1023 | delayed_node->count--; |
| 1024 | |
| 1025 | delayed_root = delayed_node->root->fs_info->delayed_root; |
| 1026 | finish_one_item(delayed_root); |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) |
| 1031 | { |
| 1032 | struct btrfs_delayed_root *delayed_root; |
| 1033 | |
| 1034 | ASSERT(delayed_node->root); |
| 1035 | clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); |
| 1036 | delayed_node->count--; |
| 1037 | |
| 1038 | delayed_root = delayed_node->root->fs_info->delayed_root; |
| 1039 | finish_one_item(delayed_root); |
| 1040 | } |
| 1041 | |
| 1042 | static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, |
| 1043 | struct btrfs_root *root, |
| 1044 | struct btrfs_path *path, |
| 1045 | struct btrfs_delayed_node *node) |
| 1046 | { |
| 1047 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 1048 | struct btrfs_key key; |
| 1049 | struct btrfs_inode_item *inode_item; |
| 1050 | struct extent_buffer *leaf; |
| 1051 | unsigned int nofs_flag; |
| 1052 | int mod; |
| 1053 | int ret; |
| 1054 | |
| 1055 | key.objectid = node->inode_id; |
| 1056 | key.type = BTRFS_INODE_ITEM_KEY; |
| 1057 | key.offset = 0; |
| 1058 | |
| 1059 | if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) |
| 1060 | mod = -1; |
| 1061 | else |
| 1062 | mod = 1; |
| 1063 | |
| 1064 | nofs_flag = memalloc_nofs_save(); |
| 1065 | ret = btrfs_lookup_inode(trans, root, path, &key, mod); |
| 1066 | memalloc_nofs_restore(nofs_flag); |
| 1067 | if (ret > 0) { |
| 1068 | btrfs_release_path(path); |
| 1069 | return -ENOENT; |
| 1070 | } else if (ret < 0) { |
| 1071 | return ret; |
| 1072 | } |
| 1073 | |
| 1074 | leaf = path->nodes[0]; |
| 1075 | inode_item = btrfs_item_ptr(leaf, path->slots[0], |
| 1076 | struct btrfs_inode_item); |
| 1077 | write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, |
| 1078 | sizeof(struct btrfs_inode_item)); |
| 1079 | btrfs_mark_buffer_dirty(leaf); |
| 1080 | |
| 1081 | if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) |
| 1082 | goto no_iref; |
| 1083 | |
| 1084 | path->slots[0]++; |
| 1085 | if (path->slots[0] >= btrfs_header_nritems(leaf)) |
| 1086 | goto search; |
| 1087 | again: |
| 1088 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| 1089 | if (key.objectid != node->inode_id) |
| 1090 | goto out; |
| 1091 | |
| 1092 | if (key.type != BTRFS_INODE_REF_KEY && |
| 1093 | key.type != BTRFS_INODE_EXTREF_KEY) |
| 1094 | goto out; |
| 1095 | |
| 1096 | /* |
| 1097 | * Delayed iref deletion is for the inode who has only one link, |
| 1098 | * so there is only one iref. The case that several irefs are |
| 1099 | * in the same item doesn't exist. |
| 1100 | */ |
| 1101 | btrfs_del_item(trans, root, path); |
| 1102 | out: |
| 1103 | btrfs_release_delayed_iref(node); |
| 1104 | no_iref: |
| 1105 | btrfs_release_path(path); |
| 1106 | err_out: |
| 1107 | btrfs_delayed_inode_release_metadata(fs_info, node); |
| 1108 | btrfs_release_delayed_inode(node); |
| 1109 | |
| 1110 | return ret; |
| 1111 | |
| 1112 | search: |
| 1113 | btrfs_release_path(path); |
| 1114 | |
| 1115 | key.type = BTRFS_INODE_EXTREF_KEY; |
| 1116 | key.offset = -1; |
| 1117 | |
| 1118 | nofs_flag = memalloc_nofs_save(); |
| 1119 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| 1120 | memalloc_nofs_restore(nofs_flag); |
| 1121 | if (ret < 0) |
| 1122 | goto err_out; |
| 1123 | ASSERT(ret); |
| 1124 | |
| 1125 | ret = 0; |
| 1126 | leaf = path->nodes[0]; |
| 1127 | path->slots[0]--; |
| 1128 | goto again; |
| 1129 | } |
| 1130 | |
| 1131 | static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, |
| 1132 | struct btrfs_root *root, |
| 1133 | struct btrfs_path *path, |
| 1134 | struct btrfs_delayed_node *node) |
| 1135 | { |
| 1136 | int ret; |
| 1137 | |
| 1138 | mutex_lock(&node->mutex); |
| 1139 | if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { |
| 1140 | mutex_unlock(&node->mutex); |
| 1141 | return 0; |
| 1142 | } |
| 1143 | |
| 1144 | ret = __btrfs_update_delayed_inode(trans, root, path, node); |
| 1145 | mutex_unlock(&node->mutex); |
| 1146 | return ret; |
| 1147 | } |
| 1148 | |
| 1149 | static inline int |
| 1150 | __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, |
| 1151 | struct btrfs_path *path, |
| 1152 | struct btrfs_delayed_node *node) |
| 1153 | { |
| 1154 | int ret; |
| 1155 | |
| 1156 | ret = btrfs_insert_delayed_items(trans, path, node->root, node); |
| 1157 | if (ret) |
| 1158 | return ret; |
| 1159 | |
| 1160 | ret = btrfs_delete_delayed_items(trans, path, node->root, node); |
| 1161 | if (ret) |
| 1162 | return ret; |
| 1163 | |
| 1164 | ret = btrfs_update_delayed_inode(trans, node->root, path, node); |
| 1165 | return ret; |
| 1166 | } |
| 1167 | |
| 1168 | /* |
| 1169 | * Called when committing the transaction. |
| 1170 | * Returns 0 on success. |
| 1171 | * Returns < 0 on error and returns with an aborted transaction with any |
| 1172 | * outstanding delayed items cleaned up. |
| 1173 | */ |
| 1174 | static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, |
| 1175 | struct btrfs_fs_info *fs_info, int nr) |
| 1176 | { |
| 1177 | struct btrfs_delayed_root *delayed_root; |
| 1178 | struct btrfs_delayed_node *curr_node, *prev_node; |
| 1179 | struct btrfs_path *path; |
| 1180 | struct btrfs_block_rsv *block_rsv; |
| 1181 | int ret = 0; |
| 1182 | bool count = (nr > 0); |
| 1183 | |
| 1184 | if (trans->aborted) |
| 1185 | return -EIO; |
| 1186 | |
| 1187 | path = btrfs_alloc_path(); |
| 1188 | if (!path) |
| 1189 | return -ENOMEM; |
| 1190 | path->leave_spinning = 1; |
| 1191 | |
| 1192 | block_rsv = trans->block_rsv; |
| 1193 | trans->block_rsv = &fs_info->delayed_block_rsv; |
| 1194 | |
| 1195 | delayed_root = fs_info->delayed_root; |
| 1196 | |
| 1197 | curr_node = btrfs_first_delayed_node(delayed_root); |
| 1198 | while (curr_node && (!count || (count && nr--))) { |
| 1199 | ret = __btrfs_commit_inode_delayed_items(trans, path, |
| 1200 | curr_node); |
| 1201 | if (ret) { |
| 1202 | btrfs_release_delayed_node(curr_node); |
| 1203 | curr_node = NULL; |
| 1204 | btrfs_abort_transaction(trans, ret); |
| 1205 | break; |
| 1206 | } |
| 1207 | |
| 1208 | prev_node = curr_node; |
| 1209 | curr_node = btrfs_next_delayed_node(curr_node); |
| 1210 | btrfs_release_delayed_node(prev_node); |
| 1211 | } |
| 1212 | |
| 1213 | if (curr_node) |
| 1214 | btrfs_release_delayed_node(curr_node); |
| 1215 | btrfs_free_path(path); |
| 1216 | trans->block_rsv = block_rsv; |
| 1217 | |
| 1218 | return ret; |
| 1219 | } |
| 1220 | |
| 1221 | int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, |
| 1222 | struct btrfs_fs_info *fs_info) |
| 1223 | { |
| 1224 | return __btrfs_run_delayed_items(trans, fs_info, -1); |
| 1225 | } |
| 1226 | |
| 1227 | int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, |
| 1228 | struct btrfs_fs_info *fs_info, int nr) |
| 1229 | { |
| 1230 | return __btrfs_run_delayed_items(trans, fs_info, nr); |
| 1231 | } |
| 1232 | |
| 1233 | int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, |
| 1234 | struct btrfs_inode *inode) |
| 1235 | { |
| 1236 | struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); |
| 1237 | struct btrfs_path *path; |
| 1238 | struct btrfs_block_rsv *block_rsv; |
| 1239 | int ret; |
| 1240 | |
| 1241 | if (!delayed_node) |
| 1242 | return 0; |
| 1243 | |
| 1244 | mutex_lock(&delayed_node->mutex); |
| 1245 | if (!delayed_node->count) { |
| 1246 | mutex_unlock(&delayed_node->mutex); |
| 1247 | btrfs_release_delayed_node(delayed_node); |
| 1248 | return 0; |
| 1249 | } |
| 1250 | mutex_unlock(&delayed_node->mutex); |
| 1251 | |
| 1252 | path = btrfs_alloc_path(); |
| 1253 | if (!path) { |
| 1254 | btrfs_release_delayed_node(delayed_node); |
| 1255 | return -ENOMEM; |
| 1256 | } |
| 1257 | path->leave_spinning = 1; |
| 1258 | |
| 1259 | block_rsv = trans->block_rsv; |
| 1260 | trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; |
| 1261 | |
| 1262 | ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); |
| 1263 | |
| 1264 | btrfs_release_delayed_node(delayed_node); |
| 1265 | btrfs_free_path(path); |
| 1266 | trans->block_rsv = block_rsv; |
| 1267 | |
| 1268 | return ret; |
| 1269 | } |
| 1270 | |
| 1271 | int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) |
| 1272 | { |
| 1273 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); |
| 1274 | struct btrfs_trans_handle *trans; |
| 1275 | struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); |
| 1276 | struct btrfs_path *path; |
| 1277 | struct btrfs_block_rsv *block_rsv; |
| 1278 | int ret; |
| 1279 | |
| 1280 | if (!delayed_node) |
| 1281 | return 0; |
| 1282 | |
| 1283 | mutex_lock(&delayed_node->mutex); |
| 1284 | if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| 1285 | mutex_unlock(&delayed_node->mutex); |
| 1286 | btrfs_release_delayed_node(delayed_node); |
| 1287 | return 0; |
| 1288 | } |
| 1289 | mutex_unlock(&delayed_node->mutex); |
| 1290 | |
| 1291 | trans = btrfs_join_transaction(delayed_node->root); |
| 1292 | if (IS_ERR(trans)) { |
| 1293 | ret = PTR_ERR(trans); |
| 1294 | goto out; |
| 1295 | } |
| 1296 | |
| 1297 | path = btrfs_alloc_path(); |
| 1298 | if (!path) { |
| 1299 | ret = -ENOMEM; |
| 1300 | goto trans_out; |
| 1301 | } |
| 1302 | path->leave_spinning = 1; |
| 1303 | |
| 1304 | block_rsv = trans->block_rsv; |
| 1305 | trans->block_rsv = &fs_info->delayed_block_rsv; |
| 1306 | |
| 1307 | mutex_lock(&delayed_node->mutex); |
| 1308 | if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) |
| 1309 | ret = __btrfs_update_delayed_inode(trans, delayed_node->root, |
| 1310 | path, delayed_node); |
| 1311 | else |
| 1312 | ret = 0; |
| 1313 | mutex_unlock(&delayed_node->mutex); |
| 1314 | |
| 1315 | btrfs_free_path(path); |
| 1316 | trans->block_rsv = block_rsv; |
| 1317 | trans_out: |
| 1318 | btrfs_end_transaction(trans); |
| 1319 | btrfs_btree_balance_dirty(fs_info); |
| 1320 | out: |
| 1321 | btrfs_release_delayed_node(delayed_node); |
| 1322 | |
| 1323 | return ret; |
| 1324 | } |
| 1325 | |
| 1326 | void btrfs_remove_delayed_node(struct btrfs_inode *inode) |
| 1327 | { |
| 1328 | struct btrfs_delayed_node *delayed_node; |
| 1329 | |
| 1330 | delayed_node = READ_ONCE(inode->delayed_node); |
| 1331 | if (!delayed_node) |
| 1332 | return; |
| 1333 | |
| 1334 | inode->delayed_node = NULL; |
| 1335 | btrfs_release_delayed_node(delayed_node); |
| 1336 | } |
| 1337 | |
| 1338 | struct btrfs_async_delayed_work { |
| 1339 | struct btrfs_delayed_root *delayed_root; |
| 1340 | int nr; |
| 1341 | struct btrfs_work work; |
| 1342 | }; |
| 1343 | |
| 1344 | static void btrfs_async_run_delayed_root(struct btrfs_work *work) |
| 1345 | { |
| 1346 | struct btrfs_async_delayed_work *async_work; |
| 1347 | struct btrfs_delayed_root *delayed_root; |
| 1348 | struct btrfs_trans_handle *trans; |
| 1349 | struct btrfs_path *path; |
| 1350 | struct btrfs_delayed_node *delayed_node = NULL; |
| 1351 | struct btrfs_root *root; |
| 1352 | struct btrfs_block_rsv *block_rsv; |
| 1353 | int total_done = 0; |
| 1354 | |
| 1355 | async_work = container_of(work, struct btrfs_async_delayed_work, work); |
| 1356 | delayed_root = async_work->delayed_root; |
| 1357 | |
| 1358 | path = btrfs_alloc_path(); |
| 1359 | if (!path) |
| 1360 | goto out; |
| 1361 | |
| 1362 | again: |
| 1363 | if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2) |
| 1364 | goto free_path; |
| 1365 | |
| 1366 | delayed_node = btrfs_first_prepared_delayed_node(delayed_root); |
| 1367 | if (!delayed_node) |
| 1368 | goto free_path; |
| 1369 | |
| 1370 | path->leave_spinning = 1; |
| 1371 | root = delayed_node->root; |
| 1372 | |
| 1373 | trans = btrfs_join_transaction(root); |
| 1374 | if (IS_ERR(trans)) |
| 1375 | goto release_path; |
| 1376 | |
| 1377 | block_rsv = trans->block_rsv; |
| 1378 | trans->block_rsv = &root->fs_info->delayed_block_rsv; |
| 1379 | |
| 1380 | __btrfs_commit_inode_delayed_items(trans, path, delayed_node); |
| 1381 | |
| 1382 | trans->block_rsv = block_rsv; |
| 1383 | btrfs_end_transaction(trans); |
| 1384 | btrfs_btree_balance_dirty_nodelay(root->fs_info); |
| 1385 | |
| 1386 | release_path: |
| 1387 | btrfs_release_path(path); |
| 1388 | total_done++; |
| 1389 | |
| 1390 | btrfs_release_prepared_delayed_node(delayed_node); |
| 1391 | if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) || |
| 1392 | total_done < async_work->nr) |
| 1393 | goto again; |
| 1394 | |
| 1395 | free_path: |
| 1396 | btrfs_free_path(path); |
| 1397 | out: |
| 1398 | wake_up(&delayed_root->wait); |
| 1399 | kfree(async_work); |
| 1400 | } |
| 1401 | |
| 1402 | |
| 1403 | static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, |
| 1404 | struct btrfs_fs_info *fs_info, int nr) |
| 1405 | { |
| 1406 | struct btrfs_async_delayed_work *async_work; |
| 1407 | |
| 1408 | if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND || |
| 1409 | btrfs_workqueue_normal_congested(fs_info->delayed_workers)) |
| 1410 | return 0; |
| 1411 | |
| 1412 | async_work = kmalloc(sizeof(*async_work), GFP_NOFS); |
| 1413 | if (!async_work) |
| 1414 | return -ENOMEM; |
| 1415 | |
| 1416 | async_work->delayed_root = delayed_root; |
| 1417 | btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, |
| 1418 | btrfs_async_run_delayed_root, NULL, NULL); |
| 1419 | async_work->nr = nr; |
| 1420 | |
| 1421 | btrfs_queue_work(fs_info->delayed_workers, &async_work->work); |
| 1422 | return 0; |
| 1423 | } |
| 1424 | |
| 1425 | void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) |
| 1426 | { |
| 1427 | WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); |
| 1428 | } |
| 1429 | |
| 1430 | static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) |
| 1431 | { |
| 1432 | int val = atomic_read(&delayed_root->items_seq); |
| 1433 | |
| 1434 | if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) |
| 1435 | return 1; |
| 1436 | |
| 1437 | if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) |
| 1438 | return 1; |
| 1439 | |
| 1440 | return 0; |
| 1441 | } |
| 1442 | |
| 1443 | void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) |
| 1444 | { |
| 1445 | struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; |
| 1446 | |
| 1447 | if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) |
| 1448 | return; |
| 1449 | |
| 1450 | if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { |
| 1451 | int seq; |
| 1452 | int ret; |
| 1453 | |
| 1454 | seq = atomic_read(&delayed_root->items_seq); |
| 1455 | |
| 1456 | ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); |
| 1457 | if (ret) |
| 1458 | return; |
| 1459 | |
| 1460 | wait_event_interruptible(delayed_root->wait, |
| 1461 | could_end_wait(delayed_root, seq)); |
| 1462 | return; |
| 1463 | } |
| 1464 | |
| 1465 | btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); |
| 1466 | } |
| 1467 | |
| 1468 | /* Will return 0 or -ENOMEM */ |
| 1469 | int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, |
| 1470 | struct btrfs_fs_info *fs_info, |
| 1471 | const char *name, int name_len, |
| 1472 | struct btrfs_inode *dir, |
| 1473 | struct btrfs_disk_key *disk_key, u8 type, |
| 1474 | u64 index) |
| 1475 | { |
| 1476 | struct btrfs_delayed_node *delayed_node; |
| 1477 | struct btrfs_delayed_item *delayed_item; |
| 1478 | struct btrfs_dir_item *dir_item; |
| 1479 | int ret; |
| 1480 | |
| 1481 | delayed_node = btrfs_get_or_create_delayed_node(dir); |
| 1482 | if (IS_ERR(delayed_node)) |
| 1483 | return PTR_ERR(delayed_node); |
| 1484 | |
| 1485 | delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); |
| 1486 | if (!delayed_item) { |
| 1487 | ret = -ENOMEM; |
| 1488 | goto release_node; |
| 1489 | } |
| 1490 | |
| 1491 | delayed_item->key.objectid = btrfs_ino(dir); |
| 1492 | delayed_item->key.type = BTRFS_DIR_INDEX_KEY; |
| 1493 | delayed_item->key.offset = index; |
| 1494 | |
| 1495 | dir_item = (struct btrfs_dir_item *)delayed_item->data; |
| 1496 | dir_item->location = *disk_key; |
| 1497 | btrfs_set_stack_dir_transid(dir_item, trans->transid); |
| 1498 | btrfs_set_stack_dir_data_len(dir_item, 0); |
| 1499 | btrfs_set_stack_dir_name_len(dir_item, name_len); |
| 1500 | btrfs_set_stack_dir_type(dir_item, type); |
| 1501 | memcpy((char *)(dir_item + 1), name, name_len); |
| 1502 | |
| 1503 | ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item); |
| 1504 | /* |
| 1505 | * we have reserved enough space when we start a new transaction, |
| 1506 | * so reserving metadata failure is impossible |
| 1507 | */ |
| 1508 | BUG_ON(ret); |
| 1509 | |
| 1510 | |
| 1511 | mutex_lock(&delayed_node->mutex); |
| 1512 | ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); |
| 1513 | if (unlikely(ret)) { |
| 1514 | btrfs_err(fs_info, |
| 1515 | "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", |
| 1516 | name_len, name, delayed_node->root->objectid, |
| 1517 | delayed_node->inode_id, ret); |
| 1518 | BUG(); |
| 1519 | } |
| 1520 | mutex_unlock(&delayed_node->mutex); |
| 1521 | |
| 1522 | release_node: |
| 1523 | btrfs_release_delayed_node(delayed_node); |
| 1524 | return ret; |
| 1525 | } |
| 1526 | |
| 1527 | static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, |
| 1528 | struct btrfs_delayed_node *node, |
| 1529 | struct btrfs_key *key) |
| 1530 | { |
| 1531 | struct btrfs_delayed_item *item; |
| 1532 | |
| 1533 | mutex_lock(&node->mutex); |
| 1534 | item = __btrfs_lookup_delayed_insertion_item(node, key); |
| 1535 | if (!item) { |
| 1536 | mutex_unlock(&node->mutex); |
| 1537 | return 1; |
| 1538 | } |
| 1539 | |
| 1540 | btrfs_delayed_item_release_metadata(fs_info, item); |
| 1541 | btrfs_release_delayed_item(item); |
| 1542 | mutex_unlock(&node->mutex); |
| 1543 | return 0; |
| 1544 | } |
| 1545 | |
| 1546 | int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, |
| 1547 | struct btrfs_fs_info *fs_info, |
| 1548 | struct btrfs_inode *dir, u64 index) |
| 1549 | { |
| 1550 | struct btrfs_delayed_node *node; |
| 1551 | struct btrfs_delayed_item *item; |
| 1552 | struct btrfs_key item_key; |
| 1553 | int ret; |
| 1554 | |
| 1555 | node = btrfs_get_or_create_delayed_node(dir); |
| 1556 | if (IS_ERR(node)) |
| 1557 | return PTR_ERR(node); |
| 1558 | |
| 1559 | item_key.objectid = btrfs_ino(dir); |
| 1560 | item_key.type = BTRFS_DIR_INDEX_KEY; |
| 1561 | item_key.offset = index; |
| 1562 | |
| 1563 | ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key); |
| 1564 | if (!ret) |
| 1565 | goto end; |
| 1566 | |
| 1567 | item = btrfs_alloc_delayed_item(0); |
| 1568 | if (!item) { |
| 1569 | ret = -ENOMEM; |
| 1570 | goto end; |
| 1571 | } |
| 1572 | |
| 1573 | item->key = item_key; |
| 1574 | |
| 1575 | ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item); |
| 1576 | /* |
| 1577 | * we have reserved enough space when we start a new transaction, |
| 1578 | * so reserving metadata failure is impossible. |
| 1579 | */ |
| 1580 | BUG_ON(ret); |
| 1581 | |
| 1582 | mutex_lock(&node->mutex); |
| 1583 | ret = __btrfs_add_delayed_deletion_item(node, item); |
| 1584 | if (unlikely(ret)) { |
| 1585 | btrfs_err(fs_info, |
| 1586 | "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", |
| 1587 | index, node->root->objectid, node->inode_id, ret); |
| 1588 | BUG(); |
| 1589 | } |
| 1590 | mutex_unlock(&node->mutex); |
| 1591 | end: |
| 1592 | btrfs_release_delayed_node(node); |
| 1593 | return ret; |
| 1594 | } |
| 1595 | |
| 1596 | int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) |
| 1597 | { |
| 1598 | struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); |
| 1599 | |
| 1600 | if (!delayed_node) |
| 1601 | return -ENOENT; |
| 1602 | |
| 1603 | /* |
| 1604 | * Since we have held i_mutex of this directory, it is impossible that |
| 1605 | * a new directory index is added into the delayed node and index_cnt |
| 1606 | * is updated now. So we needn't lock the delayed node. |
| 1607 | */ |
| 1608 | if (!delayed_node->index_cnt) { |
| 1609 | btrfs_release_delayed_node(delayed_node); |
| 1610 | return -EINVAL; |
| 1611 | } |
| 1612 | |
| 1613 | inode->index_cnt = delayed_node->index_cnt; |
| 1614 | btrfs_release_delayed_node(delayed_node); |
| 1615 | return 0; |
| 1616 | } |
| 1617 | |
| 1618 | bool btrfs_readdir_get_delayed_items(struct inode *inode, |
| 1619 | struct list_head *ins_list, |
| 1620 | struct list_head *del_list) |
| 1621 | { |
| 1622 | struct btrfs_delayed_node *delayed_node; |
| 1623 | struct btrfs_delayed_item *item; |
| 1624 | |
| 1625 | delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); |
| 1626 | if (!delayed_node) |
| 1627 | return false; |
| 1628 | |
| 1629 | /* |
| 1630 | * We can only do one readdir with delayed items at a time because of |
| 1631 | * item->readdir_list. |
| 1632 | */ |
| 1633 | inode_unlock_shared(inode); |
| 1634 | inode_lock(inode); |
| 1635 | |
| 1636 | mutex_lock(&delayed_node->mutex); |
| 1637 | item = __btrfs_first_delayed_insertion_item(delayed_node); |
| 1638 | while (item) { |
| 1639 | refcount_inc(&item->refs); |
| 1640 | list_add_tail(&item->readdir_list, ins_list); |
| 1641 | item = __btrfs_next_delayed_item(item); |
| 1642 | } |
| 1643 | |
| 1644 | item = __btrfs_first_delayed_deletion_item(delayed_node); |
| 1645 | while (item) { |
| 1646 | refcount_inc(&item->refs); |
| 1647 | list_add_tail(&item->readdir_list, del_list); |
| 1648 | item = __btrfs_next_delayed_item(item); |
| 1649 | } |
| 1650 | mutex_unlock(&delayed_node->mutex); |
| 1651 | /* |
| 1652 | * This delayed node is still cached in the btrfs inode, so refs |
| 1653 | * must be > 1 now, and we needn't check it is going to be freed |
| 1654 | * or not. |
| 1655 | * |
| 1656 | * Besides that, this function is used to read dir, we do not |
| 1657 | * insert/delete delayed items in this period. So we also needn't |
| 1658 | * requeue or dequeue this delayed node. |
| 1659 | */ |
| 1660 | refcount_dec(&delayed_node->refs); |
| 1661 | |
| 1662 | return true; |
| 1663 | } |
| 1664 | |
| 1665 | void btrfs_readdir_put_delayed_items(struct inode *inode, |
| 1666 | struct list_head *ins_list, |
| 1667 | struct list_head *del_list) |
| 1668 | { |
| 1669 | struct btrfs_delayed_item *curr, *next; |
| 1670 | |
| 1671 | list_for_each_entry_safe(curr, next, ins_list, readdir_list) { |
| 1672 | list_del(&curr->readdir_list); |
| 1673 | if (refcount_dec_and_test(&curr->refs)) |
| 1674 | kfree(curr); |
| 1675 | } |
| 1676 | |
| 1677 | list_for_each_entry_safe(curr, next, del_list, readdir_list) { |
| 1678 | list_del(&curr->readdir_list); |
| 1679 | if (refcount_dec_and_test(&curr->refs)) |
| 1680 | kfree(curr); |
| 1681 | } |
| 1682 | |
| 1683 | /* |
| 1684 | * The VFS is going to do up_read(), so we need to downgrade back to a |
| 1685 | * read lock. |
| 1686 | */ |
| 1687 | downgrade_write(&inode->i_rwsem); |
| 1688 | } |
| 1689 | |
| 1690 | int btrfs_should_delete_dir_index(struct list_head *del_list, |
| 1691 | u64 index) |
| 1692 | { |
| 1693 | struct btrfs_delayed_item *curr; |
| 1694 | int ret = 0; |
| 1695 | |
| 1696 | list_for_each_entry(curr, del_list, readdir_list) { |
| 1697 | if (curr->key.offset > index) |
| 1698 | break; |
| 1699 | if (curr->key.offset == index) { |
| 1700 | ret = 1; |
| 1701 | break; |
| 1702 | } |
| 1703 | } |
| 1704 | return ret; |
| 1705 | } |
| 1706 | |
| 1707 | /* |
| 1708 | * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree |
| 1709 | * |
| 1710 | */ |
| 1711 | int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, |
| 1712 | struct list_head *ins_list) |
| 1713 | { |
| 1714 | struct btrfs_dir_item *di; |
| 1715 | struct btrfs_delayed_item *curr, *next; |
| 1716 | struct btrfs_key location; |
| 1717 | char *name; |
| 1718 | int name_len; |
| 1719 | int over = 0; |
| 1720 | unsigned char d_type; |
| 1721 | |
| 1722 | if (list_empty(ins_list)) |
| 1723 | return 0; |
| 1724 | |
| 1725 | /* |
| 1726 | * Changing the data of the delayed item is impossible. So |
| 1727 | * we needn't lock them. And we have held i_mutex of the |
| 1728 | * directory, nobody can delete any directory indexes now. |
| 1729 | */ |
| 1730 | list_for_each_entry_safe(curr, next, ins_list, readdir_list) { |
| 1731 | list_del(&curr->readdir_list); |
| 1732 | |
| 1733 | if (curr->key.offset < ctx->pos) { |
| 1734 | if (refcount_dec_and_test(&curr->refs)) |
| 1735 | kfree(curr); |
| 1736 | continue; |
| 1737 | } |
| 1738 | |
| 1739 | ctx->pos = curr->key.offset; |
| 1740 | |
| 1741 | di = (struct btrfs_dir_item *)curr->data; |
| 1742 | name = (char *)(di + 1); |
| 1743 | name_len = btrfs_stack_dir_name_len(di); |
| 1744 | |
| 1745 | d_type = btrfs_filetype_table[di->type]; |
| 1746 | btrfs_disk_key_to_cpu(&location, &di->location); |
| 1747 | |
| 1748 | over = !dir_emit(ctx, name, name_len, |
| 1749 | location.objectid, d_type); |
| 1750 | |
| 1751 | if (refcount_dec_and_test(&curr->refs)) |
| 1752 | kfree(curr); |
| 1753 | |
| 1754 | if (over) |
| 1755 | return 1; |
| 1756 | ctx->pos++; |
| 1757 | } |
| 1758 | return 0; |
| 1759 | } |
| 1760 | |
| 1761 | static void fill_stack_inode_item(struct btrfs_trans_handle *trans, |
| 1762 | struct btrfs_inode_item *inode_item, |
| 1763 | struct inode *inode) |
| 1764 | { |
| 1765 | btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); |
| 1766 | btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); |
| 1767 | btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); |
| 1768 | btrfs_set_stack_inode_mode(inode_item, inode->i_mode); |
| 1769 | btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); |
| 1770 | btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); |
| 1771 | btrfs_set_stack_inode_generation(inode_item, |
| 1772 | BTRFS_I(inode)->generation); |
| 1773 | btrfs_set_stack_inode_sequence(inode_item, inode->i_version); |
| 1774 | btrfs_set_stack_inode_transid(inode_item, trans->transid); |
| 1775 | btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); |
| 1776 | btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); |
| 1777 | btrfs_set_stack_inode_block_group(inode_item, 0); |
| 1778 | |
| 1779 | btrfs_set_stack_timespec_sec(&inode_item->atime, |
| 1780 | inode->i_atime.tv_sec); |
| 1781 | btrfs_set_stack_timespec_nsec(&inode_item->atime, |
| 1782 | inode->i_atime.tv_nsec); |
| 1783 | |
| 1784 | btrfs_set_stack_timespec_sec(&inode_item->mtime, |
| 1785 | inode->i_mtime.tv_sec); |
| 1786 | btrfs_set_stack_timespec_nsec(&inode_item->mtime, |
| 1787 | inode->i_mtime.tv_nsec); |
| 1788 | |
| 1789 | btrfs_set_stack_timespec_sec(&inode_item->ctime, |
| 1790 | inode->i_ctime.tv_sec); |
| 1791 | btrfs_set_stack_timespec_nsec(&inode_item->ctime, |
| 1792 | inode->i_ctime.tv_nsec); |
| 1793 | |
| 1794 | btrfs_set_stack_timespec_sec(&inode_item->otime, |
| 1795 | BTRFS_I(inode)->i_otime.tv_sec); |
| 1796 | btrfs_set_stack_timespec_nsec(&inode_item->otime, |
| 1797 | BTRFS_I(inode)->i_otime.tv_nsec); |
| 1798 | } |
| 1799 | |
| 1800 | int btrfs_fill_inode(struct inode *inode, u32 *rdev) |
| 1801 | { |
| 1802 | struct btrfs_delayed_node *delayed_node; |
| 1803 | struct btrfs_inode_item *inode_item; |
| 1804 | |
| 1805 | delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); |
| 1806 | if (!delayed_node) |
| 1807 | return -ENOENT; |
| 1808 | |
| 1809 | mutex_lock(&delayed_node->mutex); |
| 1810 | if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| 1811 | mutex_unlock(&delayed_node->mutex); |
| 1812 | btrfs_release_delayed_node(delayed_node); |
| 1813 | return -ENOENT; |
| 1814 | } |
| 1815 | |
| 1816 | inode_item = &delayed_node->inode_item; |
| 1817 | |
| 1818 | i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); |
| 1819 | i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); |
| 1820 | btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); |
| 1821 | inode->i_mode = btrfs_stack_inode_mode(inode_item); |
| 1822 | set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); |
| 1823 | inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); |
| 1824 | BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); |
| 1825 | BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); |
| 1826 | |
| 1827 | inode->i_version = btrfs_stack_inode_sequence(inode_item); |
| 1828 | inode->i_rdev = 0; |
| 1829 | *rdev = btrfs_stack_inode_rdev(inode_item); |
| 1830 | BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); |
| 1831 | |
| 1832 | inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); |
| 1833 | inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); |
| 1834 | |
| 1835 | inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); |
| 1836 | inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); |
| 1837 | |
| 1838 | inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); |
| 1839 | inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); |
| 1840 | |
| 1841 | BTRFS_I(inode)->i_otime.tv_sec = |
| 1842 | btrfs_stack_timespec_sec(&inode_item->otime); |
| 1843 | BTRFS_I(inode)->i_otime.tv_nsec = |
| 1844 | btrfs_stack_timespec_nsec(&inode_item->otime); |
| 1845 | |
| 1846 | inode->i_generation = BTRFS_I(inode)->generation; |
| 1847 | BTRFS_I(inode)->index_cnt = (u64)-1; |
| 1848 | |
| 1849 | mutex_unlock(&delayed_node->mutex); |
| 1850 | btrfs_release_delayed_node(delayed_node); |
| 1851 | return 0; |
| 1852 | } |
| 1853 | |
| 1854 | int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, |
| 1855 | struct btrfs_root *root, struct inode *inode) |
| 1856 | { |
| 1857 | struct btrfs_delayed_node *delayed_node; |
| 1858 | int ret = 0; |
| 1859 | |
| 1860 | delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); |
| 1861 | if (IS_ERR(delayed_node)) |
| 1862 | return PTR_ERR(delayed_node); |
| 1863 | |
| 1864 | mutex_lock(&delayed_node->mutex); |
| 1865 | if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| 1866 | fill_stack_inode_item(trans, &delayed_node->inode_item, inode); |
| 1867 | goto release_node; |
| 1868 | } |
| 1869 | |
| 1870 | ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), |
| 1871 | delayed_node); |
| 1872 | if (ret) |
| 1873 | goto release_node; |
| 1874 | |
| 1875 | fill_stack_inode_item(trans, &delayed_node->inode_item, inode); |
| 1876 | set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); |
| 1877 | delayed_node->count++; |
| 1878 | atomic_inc(&root->fs_info->delayed_root->items); |
| 1879 | release_node: |
| 1880 | mutex_unlock(&delayed_node->mutex); |
| 1881 | btrfs_release_delayed_node(delayed_node); |
| 1882 | return ret; |
| 1883 | } |
| 1884 | |
| 1885 | int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) |
| 1886 | { |
| 1887 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); |
| 1888 | struct btrfs_delayed_node *delayed_node; |
| 1889 | |
| 1890 | /* |
| 1891 | * we don't do delayed inode updates during log recovery because it |
| 1892 | * leads to enospc problems. This means we also can't do |
| 1893 | * delayed inode refs |
| 1894 | */ |
| 1895 | if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) |
| 1896 | return -EAGAIN; |
| 1897 | |
| 1898 | delayed_node = btrfs_get_or_create_delayed_node(inode); |
| 1899 | if (IS_ERR(delayed_node)) |
| 1900 | return PTR_ERR(delayed_node); |
| 1901 | |
| 1902 | /* |
| 1903 | * We don't reserve space for inode ref deletion is because: |
| 1904 | * - We ONLY do async inode ref deletion for the inode who has only |
| 1905 | * one link(i_nlink == 1), it means there is only one inode ref. |
| 1906 | * And in most case, the inode ref and the inode item are in the |
| 1907 | * same leaf, and we will deal with them at the same time. |
| 1908 | * Since we are sure we will reserve the space for the inode item, |
| 1909 | * it is unnecessary to reserve space for inode ref deletion. |
| 1910 | * - If the inode ref and the inode item are not in the same leaf, |
| 1911 | * We also needn't worry about enospc problem, because we reserve |
| 1912 | * much more space for the inode update than it needs. |
| 1913 | * - At the worst, we can steal some space from the global reservation. |
| 1914 | * It is very rare. |
| 1915 | */ |
| 1916 | mutex_lock(&delayed_node->mutex); |
| 1917 | if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) |
| 1918 | goto release_node; |
| 1919 | |
| 1920 | set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); |
| 1921 | delayed_node->count++; |
| 1922 | atomic_inc(&fs_info->delayed_root->items); |
| 1923 | release_node: |
| 1924 | mutex_unlock(&delayed_node->mutex); |
| 1925 | btrfs_release_delayed_node(delayed_node); |
| 1926 | return 0; |
| 1927 | } |
| 1928 | |
| 1929 | static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) |
| 1930 | { |
| 1931 | struct btrfs_root *root = delayed_node->root; |
| 1932 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 1933 | struct btrfs_delayed_item *curr_item, *prev_item; |
| 1934 | |
| 1935 | mutex_lock(&delayed_node->mutex); |
| 1936 | curr_item = __btrfs_first_delayed_insertion_item(delayed_node); |
| 1937 | while (curr_item) { |
| 1938 | btrfs_delayed_item_release_metadata(fs_info, curr_item); |
| 1939 | prev_item = curr_item; |
| 1940 | curr_item = __btrfs_next_delayed_item(prev_item); |
| 1941 | btrfs_release_delayed_item(prev_item); |
| 1942 | } |
| 1943 | |
| 1944 | curr_item = __btrfs_first_delayed_deletion_item(delayed_node); |
| 1945 | while (curr_item) { |
| 1946 | btrfs_delayed_item_release_metadata(fs_info, curr_item); |
| 1947 | prev_item = curr_item; |
| 1948 | curr_item = __btrfs_next_delayed_item(prev_item); |
| 1949 | btrfs_release_delayed_item(prev_item); |
| 1950 | } |
| 1951 | |
| 1952 | if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) |
| 1953 | btrfs_release_delayed_iref(delayed_node); |
| 1954 | |
| 1955 | if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { |
| 1956 | btrfs_delayed_inode_release_metadata(fs_info, delayed_node); |
| 1957 | btrfs_release_delayed_inode(delayed_node); |
| 1958 | } |
| 1959 | mutex_unlock(&delayed_node->mutex); |
| 1960 | } |
| 1961 | |
| 1962 | void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) |
| 1963 | { |
| 1964 | struct btrfs_delayed_node *delayed_node; |
| 1965 | |
| 1966 | delayed_node = btrfs_get_delayed_node(inode); |
| 1967 | if (!delayed_node) |
| 1968 | return; |
| 1969 | |
| 1970 | __btrfs_kill_delayed_node(delayed_node); |
| 1971 | btrfs_release_delayed_node(delayed_node); |
| 1972 | } |
| 1973 | |
| 1974 | void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) |
| 1975 | { |
| 1976 | u64 inode_id = 0; |
| 1977 | struct btrfs_delayed_node *delayed_nodes[8]; |
| 1978 | int i, n; |
| 1979 | |
| 1980 | while (1) { |
| 1981 | spin_lock(&root->inode_lock); |
| 1982 | n = radix_tree_gang_lookup(&root->delayed_nodes_tree, |
| 1983 | (void **)delayed_nodes, inode_id, |
| 1984 | ARRAY_SIZE(delayed_nodes)); |
| 1985 | if (!n) { |
| 1986 | spin_unlock(&root->inode_lock); |
| 1987 | break; |
| 1988 | } |
| 1989 | |
| 1990 | inode_id = delayed_nodes[n - 1]->inode_id + 1; |
| 1991 | for (i = 0; i < n; i++) { |
| 1992 | /* |
| 1993 | * Don't increase refs in case the node is dead and |
| 1994 | * about to be removed from the tree in the loop below |
| 1995 | */ |
| 1996 | if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) |
| 1997 | delayed_nodes[i] = NULL; |
| 1998 | } |
| 1999 | spin_unlock(&root->inode_lock); |
| 2000 | |
| 2001 | for (i = 0; i < n; i++) { |
| 2002 | if (!delayed_nodes[i]) |
| 2003 | continue; |
| 2004 | __btrfs_kill_delayed_node(delayed_nodes[i]); |
| 2005 | btrfs_release_delayed_node(delayed_nodes[i]); |
| 2006 | } |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) |
| 2011 | { |
| 2012 | struct btrfs_delayed_node *curr_node, *prev_node; |
| 2013 | |
| 2014 | curr_node = btrfs_first_delayed_node(fs_info->delayed_root); |
| 2015 | while (curr_node) { |
| 2016 | __btrfs_kill_delayed_node(curr_node); |
| 2017 | |
| 2018 | prev_node = curr_node; |
| 2019 | curr_node = btrfs_next_delayed_node(curr_node); |
| 2020 | btrfs_release_delayed_node(prev_node); |
| 2021 | } |
| 2022 | } |
| 2023 | |