blob: 416fb50a5378c5fd74b2438275f13363f9b2830e [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include <linux/sched/mm.h>
22#include "delayed-inode.h"
23#include "disk-io.h"
24#include "transaction.h"
25#include "ctree.h"
26
27#define BTRFS_DELAYED_WRITEBACK 512
28#define BTRFS_DELAYED_BACKGROUND 128
29#define BTRFS_DELAYED_BATCH 16
30
31static struct kmem_cache *delayed_node_cache;
32
33int __init btrfs_delayed_inode_init(void)
34{
35 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
36 sizeof(struct btrfs_delayed_node),
37 0,
38 SLAB_MEM_SPREAD,
39 NULL);
40 if (!delayed_node_cache)
41 return -ENOMEM;
42 return 0;
43}
44
45void btrfs_delayed_inode_exit(void)
46{
47 kmem_cache_destroy(delayed_node_cache);
48}
49
50static inline void btrfs_init_delayed_node(
51 struct btrfs_delayed_node *delayed_node,
52 struct btrfs_root *root, u64 inode_id)
53{
54 delayed_node->root = root;
55 delayed_node->inode_id = inode_id;
56 refcount_set(&delayed_node->refs, 0);
57 delayed_node->ins_root = RB_ROOT;
58 delayed_node->del_root = RB_ROOT;
59 mutex_init(&delayed_node->mutex);
60 INIT_LIST_HEAD(&delayed_node->n_list);
61 INIT_LIST_HEAD(&delayed_node->p_list);
62}
63
64static inline int btrfs_is_continuous_delayed_item(
65 struct btrfs_delayed_item *item1,
66 struct btrfs_delayed_item *item2)
67{
68 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
69 item1->key.objectid == item2->key.objectid &&
70 item1->key.type == item2->key.type &&
71 item1->key.offset + 1 == item2->key.offset)
72 return 1;
73 return 0;
74}
75
76static struct btrfs_delayed_node *btrfs_get_delayed_node(
77 struct btrfs_inode *btrfs_inode)
78{
79 struct btrfs_root *root = btrfs_inode->root;
80 u64 ino = btrfs_ino(btrfs_inode);
81 struct btrfs_delayed_node *node;
82
83 node = READ_ONCE(btrfs_inode->delayed_node);
84 if (node) {
85 refcount_inc(&node->refs);
86 return node;
87 }
88
89 spin_lock(&root->inode_lock);
90 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
91
92 if (node) {
93 if (btrfs_inode->delayed_node) {
94 refcount_inc(&node->refs); /* can be accessed */
95 BUG_ON(btrfs_inode->delayed_node != node);
96 spin_unlock(&root->inode_lock);
97 return node;
98 }
99
100 /*
101 * It's possible that we're racing into the middle of removing
102 * this node from the radix tree. In this case, the refcount
103 * was zero and it should never go back to one. Just return
104 * NULL like it was never in the radix at all; our release
105 * function is in the process of removing it.
106 *
107 * Some implementations of refcount_inc refuse to bump the
108 * refcount once it has hit zero. If we don't do this dance
109 * here, refcount_inc() may decide to just WARN_ONCE() instead
110 * of actually bumping the refcount.
111 *
112 * If this node is properly in the radix, we want to bump the
113 * refcount twice, once for the inode and once for this get
114 * operation.
115 */
116 if (refcount_inc_not_zero(&node->refs)) {
117 refcount_inc(&node->refs);
118 btrfs_inode->delayed_node = node;
119 } else {
120 node = NULL;
121 }
122
123 spin_unlock(&root->inode_lock);
124 return node;
125 }
126 spin_unlock(&root->inode_lock);
127
128 return NULL;
129}
130
131/* Will return either the node or PTR_ERR(-ENOMEM) */
132static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
133 struct btrfs_inode *btrfs_inode)
134{
135 struct btrfs_delayed_node *node;
136 struct btrfs_root *root = btrfs_inode->root;
137 u64 ino = btrfs_ino(btrfs_inode);
138 int ret;
139
140again:
141 node = btrfs_get_delayed_node(btrfs_inode);
142 if (node)
143 return node;
144
145 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
146 if (!node)
147 return ERR_PTR(-ENOMEM);
148 btrfs_init_delayed_node(node, root, ino);
149
150 /* cached in the btrfs inode and can be accessed */
151 refcount_set(&node->refs, 2);
152
153 ret = radix_tree_preload(GFP_NOFS);
154 if (ret) {
155 kmem_cache_free(delayed_node_cache, node);
156 return ERR_PTR(ret);
157 }
158
159 spin_lock(&root->inode_lock);
160 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
161 if (ret == -EEXIST) {
162 spin_unlock(&root->inode_lock);
163 kmem_cache_free(delayed_node_cache, node);
164 radix_tree_preload_end();
165 goto again;
166 }
167 btrfs_inode->delayed_node = node;
168 spin_unlock(&root->inode_lock);
169 radix_tree_preload_end();
170
171 return node;
172}
173
174/*
175 * Call it when holding delayed_node->mutex
176 *
177 * If mod = 1, add this node into the prepared list.
178 */
179static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
180 struct btrfs_delayed_node *node,
181 int mod)
182{
183 spin_lock(&root->lock);
184 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
185 if (!list_empty(&node->p_list))
186 list_move_tail(&node->p_list, &root->prepare_list);
187 else if (mod)
188 list_add_tail(&node->p_list, &root->prepare_list);
189 } else {
190 list_add_tail(&node->n_list, &root->node_list);
191 list_add_tail(&node->p_list, &root->prepare_list);
192 refcount_inc(&node->refs); /* inserted into list */
193 root->nodes++;
194 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 }
196 spin_unlock(&root->lock);
197}
198
199/* Call it when holding delayed_node->mutex */
200static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
201 struct btrfs_delayed_node *node)
202{
203 spin_lock(&root->lock);
204 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
205 root->nodes--;
206 refcount_dec(&node->refs); /* not in the list */
207 list_del_init(&node->n_list);
208 if (!list_empty(&node->p_list))
209 list_del_init(&node->p_list);
210 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
211 }
212 spin_unlock(&root->lock);
213}
214
215static struct btrfs_delayed_node *btrfs_first_delayed_node(
216 struct btrfs_delayed_root *delayed_root)
217{
218 struct list_head *p;
219 struct btrfs_delayed_node *node = NULL;
220
221 spin_lock(&delayed_root->lock);
222 if (list_empty(&delayed_root->node_list))
223 goto out;
224
225 p = delayed_root->node_list.next;
226 node = list_entry(p, struct btrfs_delayed_node, n_list);
227 refcount_inc(&node->refs);
228out:
229 spin_unlock(&delayed_root->lock);
230
231 return node;
232}
233
234static struct btrfs_delayed_node *btrfs_next_delayed_node(
235 struct btrfs_delayed_node *node)
236{
237 struct btrfs_delayed_root *delayed_root;
238 struct list_head *p;
239 struct btrfs_delayed_node *next = NULL;
240
241 delayed_root = node->root->fs_info->delayed_root;
242 spin_lock(&delayed_root->lock);
243 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
244 /* not in the list */
245 if (list_empty(&delayed_root->node_list))
246 goto out;
247 p = delayed_root->node_list.next;
248 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
249 goto out;
250 else
251 p = node->n_list.next;
252
253 next = list_entry(p, struct btrfs_delayed_node, n_list);
254 refcount_inc(&next->refs);
255out:
256 spin_unlock(&delayed_root->lock);
257
258 return next;
259}
260
261static void __btrfs_release_delayed_node(
262 struct btrfs_delayed_node *delayed_node,
263 int mod)
264{
265 struct btrfs_delayed_root *delayed_root;
266
267 if (!delayed_node)
268 return;
269
270 delayed_root = delayed_node->root->fs_info->delayed_root;
271
272 mutex_lock(&delayed_node->mutex);
273 if (delayed_node->count)
274 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
275 else
276 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
277 mutex_unlock(&delayed_node->mutex);
278
279 if (refcount_dec_and_test(&delayed_node->refs)) {
280 struct btrfs_root *root = delayed_node->root;
281
282 spin_lock(&root->inode_lock);
283 /*
284 * Once our refcount goes to zero, nobody is allowed to bump it
285 * back up. We can delete it now.
286 */
287 ASSERT(refcount_read(&delayed_node->refs) == 0);
288 radix_tree_delete(&root->delayed_nodes_tree,
289 delayed_node->inode_id);
290 spin_unlock(&root->inode_lock);
291 kmem_cache_free(delayed_node_cache, delayed_node);
292 }
293}
294
295static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
296{
297 __btrfs_release_delayed_node(node, 0);
298}
299
300static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
301 struct btrfs_delayed_root *delayed_root)
302{
303 struct list_head *p;
304 struct btrfs_delayed_node *node = NULL;
305
306 spin_lock(&delayed_root->lock);
307 if (list_empty(&delayed_root->prepare_list))
308 goto out;
309
310 p = delayed_root->prepare_list.next;
311 list_del_init(p);
312 node = list_entry(p, struct btrfs_delayed_node, p_list);
313 refcount_inc(&node->refs);
314out:
315 spin_unlock(&delayed_root->lock);
316
317 return node;
318}
319
320static inline void btrfs_release_prepared_delayed_node(
321 struct btrfs_delayed_node *node)
322{
323 __btrfs_release_delayed_node(node, 1);
324}
325
326static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
327{
328 struct btrfs_delayed_item *item;
329 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
330 if (item) {
331 item->data_len = data_len;
332 item->ins_or_del = 0;
333 item->bytes_reserved = 0;
334 item->delayed_node = NULL;
335 refcount_set(&item->refs, 1);
336 }
337 return item;
338}
339
340/*
341 * __btrfs_lookup_delayed_item - look up the delayed item by key
342 * @delayed_node: pointer to the delayed node
343 * @key: the key to look up
344 * @prev: used to store the prev item if the right item isn't found
345 * @next: used to store the next item if the right item isn't found
346 *
347 * Note: if we don't find the right item, we will return the prev item and
348 * the next item.
349 */
350static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
351 struct rb_root *root,
352 struct btrfs_key *key,
353 struct btrfs_delayed_item **prev,
354 struct btrfs_delayed_item **next)
355{
356 struct rb_node *node, *prev_node = NULL;
357 struct btrfs_delayed_item *delayed_item = NULL;
358 int ret = 0;
359
360 node = root->rb_node;
361
362 while (node) {
363 delayed_item = rb_entry(node, struct btrfs_delayed_item,
364 rb_node);
365 prev_node = node;
366 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
367 if (ret < 0)
368 node = node->rb_right;
369 else if (ret > 0)
370 node = node->rb_left;
371 else
372 return delayed_item;
373 }
374
375 if (prev) {
376 if (!prev_node)
377 *prev = NULL;
378 else if (ret < 0)
379 *prev = delayed_item;
380 else if ((node = rb_prev(prev_node)) != NULL) {
381 *prev = rb_entry(node, struct btrfs_delayed_item,
382 rb_node);
383 } else
384 *prev = NULL;
385 }
386
387 if (next) {
388 if (!prev_node)
389 *next = NULL;
390 else if (ret > 0)
391 *next = delayed_item;
392 else if ((node = rb_next(prev_node)) != NULL) {
393 *next = rb_entry(node, struct btrfs_delayed_item,
394 rb_node);
395 } else
396 *next = NULL;
397 }
398 return NULL;
399}
400
401static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
402 struct btrfs_delayed_node *delayed_node,
403 struct btrfs_key *key)
404{
405 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
406 NULL, NULL);
407}
408
409static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
410 struct btrfs_delayed_item *ins,
411 int action)
412{
413 struct rb_node **p, *node;
414 struct rb_node *parent_node = NULL;
415 struct rb_root *root;
416 struct btrfs_delayed_item *item;
417 int cmp;
418
419 if (action == BTRFS_DELAYED_INSERTION_ITEM)
420 root = &delayed_node->ins_root;
421 else if (action == BTRFS_DELAYED_DELETION_ITEM)
422 root = &delayed_node->del_root;
423 else
424 BUG();
425 p = &root->rb_node;
426 node = &ins->rb_node;
427
428 while (*p) {
429 parent_node = *p;
430 item = rb_entry(parent_node, struct btrfs_delayed_item,
431 rb_node);
432
433 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
434 if (cmp < 0)
435 p = &(*p)->rb_right;
436 else if (cmp > 0)
437 p = &(*p)->rb_left;
438 else
439 return -EEXIST;
440 }
441
442 rb_link_node(node, parent_node, p);
443 rb_insert_color(node, root);
444 ins->delayed_node = delayed_node;
445 ins->ins_or_del = action;
446
447 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
448 action == BTRFS_DELAYED_INSERTION_ITEM &&
449 ins->key.offset >= delayed_node->index_cnt)
450 delayed_node->index_cnt = ins->key.offset + 1;
451
452 delayed_node->count++;
453 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
454 return 0;
455}
456
457static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
458 struct btrfs_delayed_item *item)
459{
460 return __btrfs_add_delayed_item(node, item,
461 BTRFS_DELAYED_INSERTION_ITEM);
462}
463
464static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
465 struct btrfs_delayed_item *item)
466{
467 return __btrfs_add_delayed_item(node, item,
468 BTRFS_DELAYED_DELETION_ITEM);
469}
470
471static void finish_one_item(struct btrfs_delayed_root *delayed_root)
472{
473 int seq = atomic_inc_return(&delayed_root->items_seq);
474
475 /*
476 * atomic_dec_return implies a barrier for waitqueue_active
477 */
478 if ((atomic_dec_return(&delayed_root->items) <
479 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
480 waitqueue_active(&delayed_root->wait))
481 wake_up(&delayed_root->wait);
482}
483
484static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
485{
486 struct rb_root *root;
487 struct btrfs_delayed_root *delayed_root;
488
489 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
490
491 BUG_ON(!delayed_root);
492 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
493 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
494
495 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
496 root = &delayed_item->delayed_node->ins_root;
497 else
498 root = &delayed_item->delayed_node->del_root;
499
500 rb_erase(&delayed_item->rb_node, root);
501 delayed_item->delayed_node->count--;
502
503 finish_one_item(delayed_root);
504}
505
506static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
507{
508 if (item) {
509 __btrfs_remove_delayed_item(item);
510 if (refcount_dec_and_test(&item->refs))
511 kfree(item);
512 }
513}
514
515static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
516 struct btrfs_delayed_node *delayed_node)
517{
518 struct rb_node *p;
519 struct btrfs_delayed_item *item = NULL;
520
521 p = rb_first(&delayed_node->ins_root);
522 if (p)
523 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
524
525 return item;
526}
527
528static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
529 struct btrfs_delayed_node *delayed_node)
530{
531 struct rb_node *p;
532 struct btrfs_delayed_item *item = NULL;
533
534 p = rb_first(&delayed_node->del_root);
535 if (p)
536 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
537
538 return item;
539}
540
541static struct btrfs_delayed_item *__btrfs_next_delayed_item(
542 struct btrfs_delayed_item *item)
543{
544 struct rb_node *p;
545 struct btrfs_delayed_item *next = NULL;
546
547 p = rb_next(&item->rb_node);
548 if (p)
549 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
550
551 return next;
552}
553
554static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
555 struct btrfs_fs_info *fs_info,
556 struct btrfs_delayed_item *item)
557{
558 struct btrfs_block_rsv *src_rsv;
559 struct btrfs_block_rsv *dst_rsv;
560 u64 num_bytes;
561 int ret;
562
563 if (!trans->bytes_reserved)
564 return 0;
565
566 src_rsv = trans->block_rsv;
567 dst_rsv = &fs_info->delayed_block_rsv;
568
569 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
570 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
571 if (!ret) {
572 trace_btrfs_space_reservation(fs_info, "delayed_item",
573 item->key.objectid,
574 num_bytes, 1);
575 item->bytes_reserved = num_bytes;
576 }
577
578 return ret;
579}
580
581static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
582 struct btrfs_delayed_item *item)
583{
584 struct btrfs_block_rsv *rsv;
585
586 if (!item->bytes_reserved)
587 return;
588
589 rsv = &fs_info->delayed_block_rsv;
590 trace_btrfs_space_reservation(fs_info, "delayed_item",
591 item->key.objectid, item->bytes_reserved,
592 0);
593 btrfs_block_rsv_release(fs_info, rsv,
594 item->bytes_reserved);
595}
596
597static int btrfs_delayed_inode_reserve_metadata(
598 struct btrfs_trans_handle *trans,
599 struct btrfs_root *root,
600 struct btrfs_inode *inode,
601 struct btrfs_delayed_node *node)
602{
603 struct btrfs_fs_info *fs_info = root->fs_info;
604 struct btrfs_block_rsv *src_rsv;
605 struct btrfs_block_rsv *dst_rsv;
606 u64 num_bytes;
607 int ret;
608 bool release = false;
609
610 src_rsv = trans->block_rsv;
611 dst_rsv = &fs_info->delayed_block_rsv;
612
613 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
614
615 /*
616 * If our block_rsv is the delalloc block reserve then check and see if
617 * we have our extra reservation for updating the inode. If not fall
618 * through and try to reserve space quickly.
619 *
620 * We used to try and steal from the delalloc block rsv or the global
621 * reserve, but we'd steal a full reservation, which isn't kind. We are
622 * here through delalloc which means we've likely just cowed down close
623 * to the leaf that contains the inode, so we would steal less just
624 * doing the fallback inode update, so if we do end up having to steal
625 * from the global block rsv we hopefully only steal one or two blocks
626 * worth which is less likely to hurt us.
627 */
628 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
629 spin_lock(&inode->lock);
630 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
631 &inode->runtime_flags))
632 release = true;
633 else
634 src_rsv = NULL;
635 spin_unlock(&inode->lock);
636 }
637
638 /*
639 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
640 * which doesn't reserve space for speed. This is a problem since we
641 * still need to reserve space for this update, so try to reserve the
642 * space.
643 *
644 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
645 * we're accounted for.
646 */
647 if (!src_rsv || (!trans->bytes_reserved &&
648 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
649 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
650 BTRFS_RESERVE_NO_FLUSH);
651 /*
652 * Since we're under a transaction reserve_metadata_bytes could
653 * try to commit the transaction which will make it return
654 * EAGAIN to make us stop the transaction we have, so return
655 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
656 */
657 if (ret == -EAGAIN)
658 ret = -ENOSPC;
659 if (!ret) {
660 node->bytes_reserved = num_bytes;
661 trace_btrfs_space_reservation(fs_info,
662 "delayed_inode",
663 btrfs_ino(inode),
664 num_bytes, 1);
665 }
666 return ret;
667 }
668
669 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
670
671 /*
672 * Migrate only takes a reservation, it doesn't touch the size of the
673 * block_rsv. This is to simplify people who don't normally have things
674 * migrated from their block rsv. If they go to release their
675 * reservation, that will decrease the size as well, so if migrate
676 * reduced size we'd end up with a negative size. But for the
677 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
678 * but we could in fact do this reserve/migrate dance several times
679 * between the time we did the original reservation and we'd clean it
680 * up. So to take care of this, release the space for the meta
681 * reservation here. I think it may be time for a documentation page on
682 * how block rsvs. work.
683 */
684 if (!ret) {
685 trace_btrfs_space_reservation(fs_info, "delayed_inode",
686 btrfs_ino(inode), num_bytes, 1);
687 node->bytes_reserved = num_bytes;
688 }
689
690 if (release) {
691 trace_btrfs_space_reservation(fs_info, "delalloc",
692 btrfs_ino(inode), num_bytes, 0);
693 btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
694 }
695
696 return ret;
697}
698
699static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
700 struct btrfs_delayed_node *node)
701{
702 struct btrfs_block_rsv *rsv;
703
704 if (!node->bytes_reserved)
705 return;
706
707 rsv = &fs_info->delayed_block_rsv;
708 trace_btrfs_space_reservation(fs_info, "delayed_inode",
709 node->inode_id, node->bytes_reserved, 0);
710 btrfs_block_rsv_release(fs_info, rsv,
711 node->bytes_reserved);
712 node->bytes_reserved = 0;
713}
714
715/*
716 * This helper will insert some continuous items into the same leaf according
717 * to the free space of the leaf.
718 */
719static int btrfs_batch_insert_items(struct btrfs_root *root,
720 struct btrfs_path *path,
721 struct btrfs_delayed_item *item)
722{
723 struct btrfs_fs_info *fs_info = root->fs_info;
724 struct btrfs_delayed_item *curr, *next;
725 int free_space;
726 int total_data_size = 0, total_size = 0;
727 struct extent_buffer *leaf;
728 char *data_ptr;
729 struct btrfs_key *keys;
730 u32 *data_size;
731 struct list_head head;
732 int slot;
733 int nitems;
734 int i;
735 int ret = 0;
736
737 BUG_ON(!path->nodes[0]);
738
739 leaf = path->nodes[0];
740 free_space = btrfs_leaf_free_space(fs_info, leaf);
741 INIT_LIST_HEAD(&head);
742
743 next = item;
744 nitems = 0;
745
746 /*
747 * count the number of the continuous items that we can insert in batch
748 */
749 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
750 free_space) {
751 total_data_size += next->data_len;
752 total_size += next->data_len + sizeof(struct btrfs_item);
753 list_add_tail(&next->tree_list, &head);
754 nitems++;
755
756 curr = next;
757 next = __btrfs_next_delayed_item(curr);
758 if (!next)
759 break;
760
761 if (!btrfs_is_continuous_delayed_item(curr, next))
762 break;
763 }
764
765 if (!nitems) {
766 ret = 0;
767 goto out;
768 }
769
770 /*
771 * we need allocate some memory space, but it might cause the task
772 * to sleep, so we set all locked nodes in the path to blocking locks
773 * first.
774 */
775 btrfs_set_path_blocking(path);
776
777 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
778 if (!keys) {
779 ret = -ENOMEM;
780 goto out;
781 }
782
783 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
784 if (!data_size) {
785 ret = -ENOMEM;
786 goto error;
787 }
788
789 /* get keys of all the delayed items */
790 i = 0;
791 list_for_each_entry(next, &head, tree_list) {
792 keys[i] = next->key;
793 data_size[i] = next->data_len;
794 i++;
795 }
796
797 /* reset all the locked nodes in the patch to spinning locks. */
798 btrfs_clear_path_blocking(path, NULL, 0);
799
800 /* insert the keys of the items */
801 setup_items_for_insert(root, path, keys, data_size,
802 total_data_size, total_size, nitems);
803
804 /* insert the dir index items */
805 slot = path->slots[0];
806 list_for_each_entry_safe(curr, next, &head, tree_list) {
807 data_ptr = btrfs_item_ptr(leaf, slot, char);
808 write_extent_buffer(leaf, &curr->data,
809 (unsigned long)data_ptr,
810 curr->data_len);
811 slot++;
812
813 btrfs_delayed_item_release_metadata(fs_info, curr);
814
815 list_del(&curr->tree_list);
816 btrfs_release_delayed_item(curr);
817 }
818
819error:
820 kfree(data_size);
821 kfree(keys);
822out:
823 return ret;
824}
825
826/*
827 * This helper can just do simple insertion that needn't extend item for new
828 * data, such as directory name index insertion, inode insertion.
829 */
830static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
831 struct btrfs_root *root,
832 struct btrfs_path *path,
833 struct btrfs_delayed_item *delayed_item)
834{
835 struct btrfs_fs_info *fs_info = root->fs_info;
836 struct extent_buffer *leaf;
837 unsigned int nofs_flag;
838 char *ptr;
839 int ret;
840
841 nofs_flag = memalloc_nofs_save();
842 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
843 delayed_item->data_len);
844 memalloc_nofs_restore(nofs_flag);
845 if (ret < 0 && ret != -EEXIST)
846 return ret;
847
848 leaf = path->nodes[0];
849
850 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
851
852 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
853 delayed_item->data_len);
854 btrfs_mark_buffer_dirty(leaf);
855
856 btrfs_delayed_item_release_metadata(fs_info, delayed_item);
857 return 0;
858}
859
860/*
861 * we insert an item first, then if there are some continuous items, we try
862 * to insert those items into the same leaf.
863 */
864static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
865 struct btrfs_path *path,
866 struct btrfs_root *root,
867 struct btrfs_delayed_node *node)
868{
869 struct btrfs_delayed_item *curr, *prev;
870 int ret = 0;
871
872do_again:
873 mutex_lock(&node->mutex);
874 curr = __btrfs_first_delayed_insertion_item(node);
875 if (!curr)
876 goto insert_end;
877
878 ret = btrfs_insert_delayed_item(trans, root, path, curr);
879 if (ret < 0) {
880 btrfs_release_path(path);
881 goto insert_end;
882 }
883
884 prev = curr;
885 curr = __btrfs_next_delayed_item(prev);
886 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
887 /* insert the continuous items into the same leaf */
888 path->slots[0]++;
889 btrfs_batch_insert_items(root, path, curr);
890 }
891 btrfs_release_delayed_item(prev);
892 btrfs_mark_buffer_dirty(path->nodes[0]);
893
894 btrfs_release_path(path);
895 mutex_unlock(&node->mutex);
896 goto do_again;
897
898insert_end:
899 mutex_unlock(&node->mutex);
900 return ret;
901}
902
903static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
904 struct btrfs_root *root,
905 struct btrfs_path *path,
906 struct btrfs_delayed_item *item)
907{
908 struct btrfs_fs_info *fs_info = root->fs_info;
909 struct btrfs_delayed_item *curr, *next;
910 struct extent_buffer *leaf;
911 struct btrfs_key key;
912 struct list_head head;
913 int nitems, i, last_item;
914 int ret = 0;
915
916 BUG_ON(!path->nodes[0]);
917
918 leaf = path->nodes[0];
919
920 i = path->slots[0];
921 last_item = btrfs_header_nritems(leaf) - 1;
922 if (i > last_item)
923 return -ENOENT; /* FIXME: Is errno suitable? */
924
925 next = item;
926 INIT_LIST_HEAD(&head);
927 btrfs_item_key_to_cpu(leaf, &key, i);
928 nitems = 0;
929 /*
930 * count the number of the dir index items that we can delete in batch
931 */
932 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
933 list_add_tail(&next->tree_list, &head);
934 nitems++;
935
936 curr = next;
937 next = __btrfs_next_delayed_item(curr);
938 if (!next)
939 break;
940
941 if (!btrfs_is_continuous_delayed_item(curr, next))
942 break;
943
944 i++;
945 if (i > last_item)
946 break;
947 btrfs_item_key_to_cpu(leaf, &key, i);
948 }
949
950 if (!nitems)
951 return 0;
952
953 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
954 if (ret)
955 goto out;
956
957 list_for_each_entry_safe(curr, next, &head, tree_list) {
958 btrfs_delayed_item_release_metadata(fs_info, curr);
959 list_del(&curr->tree_list);
960 btrfs_release_delayed_item(curr);
961 }
962
963out:
964 return ret;
965}
966
967static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
968 struct btrfs_path *path,
969 struct btrfs_root *root,
970 struct btrfs_delayed_node *node)
971{
972 struct btrfs_delayed_item *curr, *prev;
973 unsigned int nofs_flag;
974 int ret = 0;
975
976do_again:
977 mutex_lock(&node->mutex);
978 curr = __btrfs_first_delayed_deletion_item(node);
979 if (!curr)
980 goto delete_fail;
981
982 nofs_flag = memalloc_nofs_save();
983 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
984 memalloc_nofs_restore(nofs_flag);
985 if (ret < 0)
986 goto delete_fail;
987 else if (ret > 0) {
988 /*
989 * can't find the item which the node points to, so this node
990 * is invalid, just drop it.
991 */
992 prev = curr;
993 curr = __btrfs_next_delayed_item(prev);
994 btrfs_release_delayed_item(prev);
995 ret = 0;
996 btrfs_release_path(path);
997 if (curr) {
998 mutex_unlock(&node->mutex);
999 goto do_again;
1000 } else
1001 goto delete_fail;
1002 }
1003
1004 btrfs_batch_delete_items(trans, root, path, curr);
1005 btrfs_release_path(path);
1006 mutex_unlock(&node->mutex);
1007 goto do_again;
1008
1009delete_fail:
1010 btrfs_release_path(path);
1011 mutex_unlock(&node->mutex);
1012 return ret;
1013}
1014
1015static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1016{
1017 struct btrfs_delayed_root *delayed_root;
1018
1019 if (delayed_node &&
1020 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1021 BUG_ON(!delayed_node->root);
1022 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1023 delayed_node->count--;
1024
1025 delayed_root = delayed_node->root->fs_info->delayed_root;
1026 finish_one_item(delayed_root);
1027 }
1028}
1029
1030static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1031{
1032 struct btrfs_delayed_root *delayed_root;
1033
1034 ASSERT(delayed_node->root);
1035 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1036 delayed_node->count--;
1037
1038 delayed_root = delayed_node->root->fs_info->delayed_root;
1039 finish_one_item(delayed_root);
1040}
1041
1042static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1043 struct btrfs_root *root,
1044 struct btrfs_path *path,
1045 struct btrfs_delayed_node *node)
1046{
1047 struct btrfs_fs_info *fs_info = root->fs_info;
1048 struct btrfs_key key;
1049 struct btrfs_inode_item *inode_item;
1050 struct extent_buffer *leaf;
1051 unsigned int nofs_flag;
1052 int mod;
1053 int ret;
1054
1055 key.objectid = node->inode_id;
1056 key.type = BTRFS_INODE_ITEM_KEY;
1057 key.offset = 0;
1058
1059 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1060 mod = -1;
1061 else
1062 mod = 1;
1063
1064 nofs_flag = memalloc_nofs_save();
1065 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1066 memalloc_nofs_restore(nofs_flag);
1067 if (ret > 0) {
1068 btrfs_release_path(path);
1069 return -ENOENT;
1070 } else if (ret < 0) {
1071 return ret;
1072 }
1073
1074 leaf = path->nodes[0];
1075 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1076 struct btrfs_inode_item);
1077 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1078 sizeof(struct btrfs_inode_item));
1079 btrfs_mark_buffer_dirty(leaf);
1080
1081 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1082 goto no_iref;
1083
1084 path->slots[0]++;
1085 if (path->slots[0] >= btrfs_header_nritems(leaf))
1086 goto search;
1087again:
1088 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1089 if (key.objectid != node->inode_id)
1090 goto out;
1091
1092 if (key.type != BTRFS_INODE_REF_KEY &&
1093 key.type != BTRFS_INODE_EXTREF_KEY)
1094 goto out;
1095
1096 /*
1097 * Delayed iref deletion is for the inode who has only one link,
1098 * so there is only one iref. The case that several irefs are
1099 * in the same item doesn't exist.
1100 */
1101 btrfs_del_item(trans, root, path);
1102out:
1103 btrfs_release_delayed_iref(node);
1104no_iref:
1105 btrfs_release_path(path);
1106err_out:
1107 btrfs_delayed_inode_release_metadata(fs_info, node);
1108 btrfs_release_delayed_inode(node);
1109
1110 return ret;
1111
1112search:
1113 btrfs_release_path(path);
1114
1115 key.type = BTRFS_INODE_EXTREF_KEY;
1116 key.offset = -1;
1117
1118 nofs_flag = memalloc_nofs_save();
1119 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1120 memalloc_nofs_restore(nofs_flag);
1121 if (ret < 0)
1122 goto err_out;
1123 ASSERT(ret);
1124
1125 ret = 0;
1126 leaf = path->nodes[0];
1127 path->slots[0]--;
1128 goto again;
1129}
1130
1131static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1132 struct btrfs_root *root,
1133 struct btrfs_path *path,
1134 struct btrfs_delayed_node *node)
1135{
1136 int ret;
1137
1138 mutex_lock(&node->mutex);
1139 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1140 mutex_unlock(&node->mutex);
1141 return 0;
1142 }
1143
1144 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1145 mutex_unlock(&node->mutex);
1146 return ret;
1147}
1148
1149static inline int
1150__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1151 struct btrfs_path *path,
1152 struct btrfs_delayed_node *node)
1153{
1154 int ret;
1155
1156 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1157 if (ret)
1158 return ret;
1159
1160 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1161 if (ret)
1162 return ret;
1163
1164 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1165 return ret;
1166}
1167
1168/*
1169 * Called when committing the transaction.
1170 * Returns 0 on success.
1171 * Returns < 0 on error and returns with an aborted transaction with any
1172 * outstanding delayed items cleaned up.
1173 */
1174static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1175 struct btrfs_fs_info *fs_info, int nr)
1176{
1177 struct btrfs_delayed_root *delayed_root;
1178 struct btrfs_delayed_node *curr_node, *prev_node;
1179 struct btrfs_path *path;
1180 struct btrfs_block_rsv *block_rsv;
1181 int ret = 0;
1182 bool count = (nr > 0);
1183
1184 if (trans->aborted)
1185 return -EIO;
1186
1187 path = btrfs_alloc_path();
1188 if (!path)
1189 return -ENOMEM;
1190 path->leave_spinning = 1;
1191
1192 block_rsv = trans->block_rsv;
1193 trans->block_rsv = &fs_info->delayed_block_rsv;
1194
1195 delayed_root = fs_info->delayed_root;
1196
1197 curr_node = btrfs_first_delayed_node(delayed_root);
1198 while (curr_node && (!count || (count && nr--))) {
1199 ret = __btrfs_commit_inode_delayed_items(trans, path,
1200 curr_node);
1201 if (ret) {
1202 btrfs_release_delayed_node(curr_node);
1203 curr_node = NULL;
1204 btrfs_abort_transaction(trans, ret);
1205 break;
1206 }
1207
1208 prev_node = curr_node;
1209 curr_node = btrfs_next_delayed_node(curr_node);
1210 btrfs_release_delayed_node(prev_node);
1211 }
1212
1213 if (curr_node)
1214 btrfs_release_delayed_node(curr_node);
1215 btrfs_free_path(path);
1216 trans->block_rsv = block_rsv;
1217
1218 return ret;
1219}
1220
1221int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1222 struct btrfs_fs_info *fs_info)
1223{
1224 return __btrfs_run_delayed_items(trans, fs_info, -1);
1225}
1226
1227int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1228 struct btrfs_fs_info *fs_info, int nr)
1229{
1230 return __btrfs_run_delayed_items(trans, fs_info, nr);
1231}
1232
1233int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1234 struct btrfs_inode *inode)
1235{
1236 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1237 struct btrfs_path *path;
1238 struct btrfs_block_rsv *block_rsv;
1239 int ret;
1240
1241 if (!delayed_node)
1242 return 0;
1243
1244 mutex_lock(&delayed_node->mutex);
1245 if (!delayed_node->count) {
1246 mutex_unlock(&delayed_node->mutex);
1247 btrfs_release_delayed_node(delayed_node);
1248 return 0;
1249 }
1250 mutex_unlock(&delayed_node->mutex);
1251
1252 path = btrfs_alloc_path();
1253 if (!path) {
1254 btrfs_release_delayed_node(delayed_node);
1255 return -ENOMEM;
1256 }
1257 path->leave_spinning = 1;
1258
1259 block_rsv = trans->block_rsv;
1260 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1261
1262 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1263
1264 btrfs_release_delayed_node(delayed_node);
1265 btrfs_free_path(path);
1266 trans->block_rsv = block_rsv;
1267
1268 return ret;
1269}
1270
1271int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1272{
1273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1274 struct btrfs_trans_handle *trans;
1275 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1276 struct btrfs_path *path;
1277 struct btrfs_block_rsv *block_rsv;
1278 int ret;
1279
1280 if (!delayed_node)
1281 return 0;
1282
1283 mutex_lock(&delayed_node->mutex);
1284 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1285 mutex_unlock(&delayed_node->mutex);
1286 btrfs_release_delayed_node(delayed_node);
1287 return 0;
1288 }
1289 mutex_unlock(&delayed_node->mutex);
1290
1291 trans = btrfs_join_transaction(delayed_node->root);
1292 if (IS_ERR(trans)) {
1293 ret = PTR_ERR(trans);
1294 goto out;
1295 }
1296
1297 path = btrfs_alloc_path();
1298 if (!path) {
1299 ret = -ENOMEM;
1300 goto trans_out;
1301 }
1302 path->leave_spinning = 1;
1303
1304 block_rsv = trans->block_rsv;
1305 trans->block_rsv = &fs_info->delayed_block_rsv;
1306
1307 mutex_lock(&delayed_node->mutex);
1308 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1309 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1310 path, delayed_node);
1311 else
1312 ret = 0;
1313 mutex_unlock(&delayed_node->mutex);
1314
1315 btrfs_free_path(path);
1316 trans->block_rsv = block_rsv;
1317trans_out:
1318 btrfs_end_transaction(trans);
1319 btrfs_btree_balance_dirty(fs_info);
1320out:
1321 btrfs_release_delayed_node(delayed_node);
1322
1323 return ret;
1324}
1325
1326void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1327{
1328 struct btrfs_delayed_node *delayed_node;
1329
1330 delayed_node = READ_ONCE(inode->delayed_node);
1331 if (!delayed_node)
1332 return;
1333
1334 inode->delayed_node = NULL;
1335 btrfs_release_delayed_node(delayed_node);
1336}
1337
1338struct btrfs_async_delayed_work {
1339 struct btrfs_delayed_root *delayed_root;
1340 int nr;
1341 struct btrfs_work work;
1342};
1343
1344static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1345{
1346 struct btrfs_async_delayed_work *async_work;
1347 struct btrfs_delayed_root *delayed_root;
1348 struct btrfs_trans_handle *trans;
1349 struct btrfs_path *path;
1350 struct btrfs_delayed_node *delayed_node = NULL;
1351 struct btrfs_root *root;
1352 struct btrfs_block_rsv *block_rsv;
1353 int total_done = 0;
1354
1355 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1356 delayed_root = async_work->delayed_root;
1357
1358 path = btrfs_alloc_path();
1359 if (!path)
1360 goto out;
1361
1362again:
1363 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1364 goto free_path;
1365
1366 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1367 if (!delayed_node)
1368 goto free_path;
1369
1370 path->leave_spinning = 1;
1371 root = delayed_node->root;
1372
1373 trans = btrfs_join_transaction(root);
1374 if (IS_ERR(trans))
1375 goto release_path;
1376
1377 block_rsv = trans->block_rsv;
1378 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1379
1380 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1381
1382 trans->block_rsv = block_rsv;
1383 btrfs_end_transaction(trans);
1384 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1385
1386release_path:
1387 btrfs_release_path(path);
1388 total_done++;
1389
1390 btrfs_release_prepared_delayed_node(delayed_node);
1391 if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1392 total_done < async_work->nr)
1393 goto again;
1394
1395free_path:
1396 btrfs_free_path(path);
1397out:
1398 wake_up(&delayed_root->wait);
1399 kfree(async_work);
1400}
1401
1402
1403static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1404 struct btrfs_fs_info *fs_info, int nr)
1405{
1406 struct btrfs_async_delayed_work *async_work;
1407
1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1409 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1410 return 0;
1411
1412 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1413 if (!async_work)
1414 return -ENOMEM;
1415
1416 async_work->delayed_root = delayed_root;
1417 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1418 btrfs_async_run_delayed_root, NULL, NULL);
1419 async_work->nr = nr;
1420
1421 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1422 return 0;
1423}
1424
1425void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1426{
1427 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1428}
1429
1430static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1431{
1432 int val = atomic_read(&delayed_root->items_seq);
1433
1434 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1435 return 1;
1436
1437 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1438 return 1;
1439
1440 return 0;
1441}
1442
1443void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1444{
1445 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1446
1447 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1448 return;
1449
1450 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1451 int seq;
1452 int ret;
1453
1454 seq = atomic_read(&delayed_root->items_seq);
1455
1456 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1457 if (ret)
1458 return;
1459
1460 wait_event_interruptible(delayed_root->wait,
1461 could_end_wait(delayed_root, seq));
1462 return;
1463 }
1464
1465 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1466}
1467
1468/* Will return 0 or -ENOMEM */
1469int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1470 struct btrfs_fs_info *fs_info,
1471 const char *name, int name_len,
1472 struct btrfs_inode *dir,
1473 struct btrfs_disk_key *disk_key, u8 type,
1474 u64 index)
1475{
1476 struct btrfs_delayed_node *delayed_node;
1477 struct btrfs_delayed_item *delayed_item;
1478 struct btrfs_dir_item *dir_item;
1479 int ret;
1480
1481 delayed_node = btrfs_get_or_create_delayed_node(dir);
1482 if (IS_ERR(delayed_node))
1483 return PTR_ERR(delayed_node);
1484
1485 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1486 if (!delayed_item) {
1487 ret = -ENOMEM;
1488 goto release_node;
1489 }
1490
1491 delayed_item->key.objectid = btrfs_ino(dir);
1492 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1493 delayed_item->key.offset = index;
1494
1495 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1496 dir_item->location = *disk_key;
1497 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1498 btrfs_set_stack_dir_data_len(dir_item, 0);
1499 btrfs_set_stack_dir_name_len(dir_item, name_len);
1500 btrfs_set_stack_dir_type(dir_item, type);
1501 memcpy((char *)(dir_item + 1), name, name_len);
1502
1503 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1504 /*
1505 * we have reserved enough space when we start a new transaction,
1506 * so reserving metadata failure is impossible
1507 */
1508 BUG_ON(ret);
1509
1510
1511 mutex_lock(&delayed_node->mutex);
1512 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1513 if (unlikely(ret)) {
1514 btrfs_err(fs_info,
1515 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1516 name_len, name, delayed_node->root->objectid,
1517 delayed_node->inode_id, ret);
1518 BUG();
1519 }
1520 mutex_unlock(&delayed_node->mutex);
1521
1522release_node:
1523 btrfs_release_delayed_node(delayed_node);
1524 return ret;
1525}
1526
1527static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1528 struct btrfs_delayed_node *node,
1529 struct btrfs_key *key)
1530{
1531 struct btrfs_delayed_item *item;
1532
1533 mutex_lock(&node->mutex);
1534 item = __btrfs_lookup_delayed_insertion_item(node, key);
1535 if (!item) {
1536 mutex_unlock(&node->mutex);
1537 return 1;
1538 }
1539
1540 btrfs_delayed_item_release_metadata(fs_info, item);
1541 btrfs_release_delayed_item(item);
1542 mutex_unlock(&node->mutex);
1543 return 0;
1544}
1545
1546int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1547 struct btrfs_fs_info *fs_info,
1548 struct btrfs_inode *dir, u64 index)
1549{
1550 struct btrfs_delayed_node *node;
1551 struct btrfs_delayed_item *item;
1552 struct btrfs_key item_key;
1553 int ret;
1554
1555 node = btrfs_get_or_create_delayed_node(dir);
1556 if (IS_ERR(node))
1557 return PTR_ERR(node);
1558
1559 item_key.objectid = btrfs_ino(dir);
1560 item_key.type = BTRFS_DIR_INDEX_KEY;
1561 item_key.offset = index;
1562
1563 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1564 if (!ret)
1565 goto end;
1566
1567 item = btrfs_alloc_delayed_item(0);
1568 if (!item) {
1569 ret = -ENOMEM;
1570 goto end;
1571 }
1572
1573 item->key = item_key;
1574
1575 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1576 /*
1577 * we have reserved enough space when we start a new transaction,
1578 * so reserving metadata failure is impossible.
1579 */
1580 BUG_ON(ret);
1581
1582 mutex_lock(&node->mutex);
1583 ret = __btrfs_add_delayed_deletion_item(node, item);
1584 if (unlikely(ret)) {
1585 btrfs_err(fs_info,
1586 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1587 index, node->root->objectid, node->inode_id, ret);
1588 BUG();
1589 }
1590 mutex_unlock(&node->mutex);
1591end:
1592 btrfs_release_delayed_node(node);
1593 return ret;
1594}
1595
1596int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1597{
1598 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1599
1600 if (!delayed_node)
1601 return -ENOENT;
1602
1603 /*
1604 * Since we have held i_mutex of this directory, it is impossible that
1605 * a new directory index is added into the delayed node and index_cnt
1606 * is updated now. So we needn't lock the delayed node.
1607 */
1608 if (!delayed_node->index_cnt) {
1609 btrfs_release_delayed_node(delayed_node);
1610 return -EINVAL;
1611 }
1612
1613 inode->index_cnt = delayed_node->index_cnt;
1614 btrfs_release_delayed_node(delayed_node);
1615 return 0;
1616}
1617
1618bool btrfs_readdir_get_delayed_items(struct inode *inode,
1619 struct list_head *ins_list,
1620 struct list_head *del_list)
1621{
1622 struct btrfs_delayed_node *delayed_node;
1623 struct btrfs_delayed_item *item;
1624
1625 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1626 if (!delayed_node)
1627 return false;
1628
1629 /*
1630 * We can only do one readdir with delayed items at a time because of
1631 * item->readdir_list.
1632 */
1633 inode_unlock_shared(inode);
1634 inode_lock(inode);
1635
1636 mutex_lock(&delayed_node->mutex);
1637 item = __btrfs_first_delayed_insertion_item(delayed_node);
1638 while (item) {
1639 refcount_inc(&item->refs);
1640 list_add_tail(&item->readdir_list, ins_list);
1641 item = __btrfs_next_delayed_item(item);
1642 }
1643
1644 item = __btrfs_first_delayed_deletion_item(delayed_node);
1645 while (item) {
1646 refcount_inc(&item->refs);
1647 list_add_tail(&item->readdir_list, del_list);
1648 item = __btrfs_next_delayed_item(item);
1649 }
1650 mutex_unlock(&delayed_node->mutex);
1651 /*
1652 * This delayed node is still cached in the btrfs inode, so refs
1653 * must be > 1 now, and we needn't check it is going to be freed
1654 * or not.
1655 *
1656 * Besides that, this function is used to read dir, we do not
1657 * insert/delete delayed items in this period. So we also needn't
1658 * requeue or dequeue this delayed node.
1659 */
1660 refcount_dec(&delayed_node->refs);
1661
1662 return true;
1663}
1664
1665void btrfs_readdir_put_delayed_items(struct inode *inode,
1666 struct list_head *ins_list,
1667 struct list_head *del_list)
1668{
1669 struct btrfs_delayed_item *curr, *next;
1670
1671 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1672 list_del(&curr->readdir_list);
1673 if (refcount_dec_and_test(&curr->refs))
1674 kfree(curr);
1675 }
1676
1677 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1678 list_del(&curr->readdir_list);
1679 if (refcount_dec_and_test(&curr->refs))
1680 kfree(curr);
1681 }
1682
1683 /*
1684 * The VFS is going to do up_read(), so we need to downgrade back to a
1685 * read lock.
1686 */
1687 downgrade_write(&inode->i_rwsem);
1688}
1689
1690int btrfs_should_delete_dir_index(struct list_head *del_list,
1691 u64 index)
1692{
1693 struct btrfs_delayed_item *curr;
1694 int ret = 0;
1695
1696 list_for_each_entry(curr, del_list, readdir_list) {
1697 if (curr->key.offset > index)
1698 break;
1699 if (curr->key.offset == index) {
1700 ret = 1;
1701 break;
1702 }
1703 }
1704 return ret;
1705}
1706
1707/*
1708 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1709 *
1710 */
1711int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1712 struct list_head *ins_list)
1713{
1714 struct btrfs_dir_item *di;
1715 struct btrfs_delayed_item *curr, *next;
1716 struct btrfs_key location;
1717 char *name;
1718 int name_len;
1719 int over = 0;
1720 unsigned char d_type;
1721
1722 if (list_empty(ins_list))
1723 return 0;
1724
1725 /*
1726 * Changing the data of the delayed item is impossible. So
1727 * we needn't lock them. And we have held i_mutex of the
1728 * directory, nobody can delete any directory indexes now.
1729 */
1730 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1731 list_del(&curr->readdir_list);
1732
1733 if (curr->key.offset < ctx->pos) {
1734 if (refcount_dec_and_test(&curr->refs))
1735 kfree(curr);
1736 continue;
1737 }
1738
1739 ctx->pos = curr->key.offset;
1740
1741 di = (struct btrfs_dir_item *)curr->data;
1742 name = (char *)(di + 1);
1743 name_len = btrfs_stack_dir_name_len(di);
1744
1745 d_type = btrfs_filetype_table[di->type];
1746 btrfs_disk_key_to_cpu(&location, &di->location);
1747
1748 over = !dir_emit(ctx, name, name_len,
1749 location.objectid, d_type);
1750
1751 if (refcount_dec_and_test(&curr->refs))
1752 kfree(curr);
1753
1754 if (over)
1755 return 1;
1756 ctx->pos++;
1757 }
1758 return 0;
1759}
1760
1761static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1762 struct btrfs_inode_item *inode_item,
1763 struct inode *inode)
1764{
1765 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1766 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1767 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1768 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1769 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1770 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1771 btrfs_set_stack_inode_generation(inode_item,
1772 BTRFS_I(inode)->generation);
1773 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1774 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1775 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1776 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1777 btrfs_set_stack_inode_block_group(inode_item, 0);
1778
1779 btrfs_set_stack_timespec_sec(&inode_item->atime,
1780 inode->i_atime.tv_sec);
1781 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1782 inode->i_atime.tv_nsec);
1783
1784 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1785 inode->i_mtime.tv_sec);
1786 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1787 inode->i_mtime.tv_nsec);
1788
1789 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1790 inode->i_ctime.tv_sec);
1791 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1792 inode->i_ctime.tv_nsec);
1793
1794 btrfs_set_stack_timespec_sec(&inode_item->otime,
1795 BTRFS_I(inode)->i_otime.tv_sec);
1796 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1797 BTRFS_I(inode)->i_otime.tv_nsec);
1798}
1799
1800int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1801{
1802 struct btrfs_delayed_node *delayed_node;
1803 struct btrfs_inode_item *inode_item;
1804
1805 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1806 if (!delayed_node)
1807 return -ENOENT;
1808
1809 mutex_lock(&delayed_node->mutex);
1810 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1811 mutex_unlock(&delayed_node->mutex);
1812 btrfs_release_delayed_node(delayed_node);
1813 return -ENOENT;
1814 }
1815
1816 inode_item = &delayed_node->inode_item;
1817
1818 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1819 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1820 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1821 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1822 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1823 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1824 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1825 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1826
1827 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1828 inode->i_rdev = 0;
1829 *rdev = btrfs_stack_inode_rdev(inode_item);
1830 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1831
1832 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1833 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1834
1835 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1836 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1837
1838 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1839 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1840
1841 BTRFS_I(inode)->i_otime.tv_sec =
1842 btrfs_stack_timespec_sec(&inode_item->otime);
1843 BTRFS_I(inode)->i_otime.tv_nsec =
1844 btrfs_stack_timespec_nsec(&inode_item->otime);
1845
1846 inode->i_generation = BTRFS_I(inode)->generation;
1847 BTRFS_I(inode)->index_cnt = (u64)-1;
1848
1849 mutex_unlock(&delayed_node->mutex);
1850 btrfs_release_delayed_node(delayed_node);
1851 return 0;
1852}
1853
1854int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1855 struct btrfs_root *root, struct inode *inode)
1856{
1857 struct btrfs_delayed_node *delayed_node;
1858 int ret = 0;
1859
1860 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1861 if (IS_ERR(delayed_node))
1862 return PTR_ERR(delayed_node);
1863
1864 mutex_lock(&delayed_node->mutex);
1865 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1866 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1867 goto release_node;
1868 }
1869
1870 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1871 delayed_node);
1872 if (ret)
1873 goto release_node;
1874
1875 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1876 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1877 delayed_node->count++;
1878 atomic_inc(&root->fs_info->delayed_root->items);
1879release_node:
1880 mutex_unlock(&delayed_node->mutex);
1881 btrfs_release_delayed_node(delayed_node);
1882 return ret;
1883}
1884
1885int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1886{
1887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1888 struct btrfs_delayed_node *delayed_node;
1889
1890 /*
1891 * we don't do delayed inode updates during log recovery because it
1892 * leads to enospc problems. This means we also can't do
1893 * delayed inode refs
1894 */
1895 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1896 return -EAGAIN;
1897
1898 delayed_node = btrfs_get_or_create_delayed_node(inode);
1899 if (IS_ERR(delayed_node))
1900 return PTR_ERR(delayed_node);
1901
1902 /*
1903 * We don't reserve space for inode ref deletion is because:
1904 * - We ONLY do async inode ref deletion for the inode who has only
1905 * one link(i_nlink == 1), it means there is only one inode ref.
1906 * And in most case, the inode ref and the inode item are in the
1907 * same leaf, and we will deal with them at the same time.
1908 * Since we are sure we will reserve the space for the inode item,
1909 * it is unnecessary to reserve space for inode ref deletion.
1910 * - If the inode ref and the inode item are not in the same leaf,
1911 * We also needn't worry about enospc problem, because we reserve
1912 * much more space for the inode update than it needs.
1913 * - At the worst, we can steal some space from the global reservation.
1914 * It is very rare.
1915 */
1916 mutex_lock(&delayed_node->mutex);
1917 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1918 goto release_node;
1919
1920 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1921 delayed_node->count++;
1922 atomic_inc(&fs_info->delayed_root->items);
1923release_node:
1924 mutex_unlock(&delayed_node->mutex);
1925 btrfs_release_delayed_node(delayed_node);
1926 return 0;
1927}
1928
1929static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1930{
1931 struct btrfs_root *root = delayed_node->root;
1932 struct btrfs_fs_info *fs_info = root->fs_info;
1933 struct btrfs_delayed_item *curr_item, *prev_item;
1934
1935 mutex_lock(&delayed_node->mutex);
1936 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1937 while (curr_item) {
1938 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1939 prev_item = curr_item;
1940 curr_item = __btrfs_next_delayed_item(prev_item);
1941 btrfs_release_delayed_item(prev_item);
1942 }
1943
1944 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1945 while (curr_item) {
1946 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1947 prev_item = curr_item;
1948 curr_item = __btrfs_next_delayed_item(prev_item);
1949 btrfs_release_delayed_item(prev_item);
1950 }
1951
1952 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1953 btrfs_release_delayed_iref(delayed_node);
1954
1955 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1956 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1957 btrfs_release_delayed_inode(delayed_node);
1958 }
1959 mutex_unlock(&delayed_node->mutex);
1960}
1961
1962void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1963{
1964 struct btrfs_delayed_node *delayed_node;
1965
1966 delayed_node = btrfs_get_delayed_node(inode);
1967 if (!delayed_node)
1968 return;
1969
1970 __btrfs_kill_delayed_node(delayed_node);
1971 btrfs_release_delayed_node(delayed_node);
1972}
1973
1974void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1975{
1976 u64 inode_id = 0;
1977 struct btrfs_delayed_node *delayed_nodes[8];
1978 int i, n;
1979
1980 while (1) {
1981 spin_lock(&root->inode_lock);
1982 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1983 (void **)delayed_nodes, inode_id,
1984 ARRAY_SIZE(delayed_nodes));
1985 if (!n) {
1986 spin_unlock(&root->inode_lock);
1987 break;
1988 }
1989
1990 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1991 for (i = 0; i < n; i++) {
1992 /*
1993 * Don't increase refs in case the node is dead and
1994 * about to be removed from the tree in the loop below
1995 */
1996 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1997 delayed_nodes[i] = NULL;
1998 }
1999 spin_unlock(&root->inode_lock);
2000
2001 for (i = 0; i < n; i++) {
2002 if (!delayed_nodes[i])
2003 continue;
2004 __btrfs_kill_delayed_node(delayed_nodes[i]);
2005 btrfs_release_delayed_node(delayed_nodes[i]);
2006 }
2007 }
2008}
2009
2010void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2011{
2012 struct btrfs_delayed_node *curr_node, *prev_node;
2013
2014 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2015 while (curr_node) {
2016 __btrfs_kill_delayed_node(curr_node);
2017
2018 prev_node = curr_node;
2019 curr_node = btrfs_next_delayed_node(curr_node);
2020 btrfs_release_delayed_node(prev_node);
2021 }
2022}
2023