rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public |
| 6 | * License v2 as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 11 | * General Public License for more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public |
| 14 | * License along with this program; if not, write to the |
| 15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 16 | * Boston, MA 021110-1307, USA. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/fs.h> |
| 20 | #include <linux/blkdev.h> |
| 21 | #include <linux/scatterlist.h> |
| 22 | #include <linux/swap.h> |
| 23 | #include <linux/radix-tree.h> |
| 24 | #include <linux/writeback.h> |
| 25 | #include <linux/buffer_head.h> |
| 26 | #include <linux/workqueue.h> |
| 27 | #include <linux/kthread.h> |
| 28 | #include <linux/slab.h> |
| 29 | #include <linux/migrate.h> |
| 30 | #include <linux/ratelimit.h> |
| 31 | #include <linux/uuid.h> |
| 32 | #include <linux/semaphore.h> |
| 33 | #include <asm/unaligned.h> |
| 34 | #include "ctree.h" |
| 35 | #include "disk-io.h" |
| 36 | #include "hash.h" |
| 37 | #include "transaction.h" |
| 38 | #include "btrfs_inode.h" |
| 39 | #include "volumes.h" |
| 40 | #include "print-tree.h" |
| 41 | #include "locking.h" |
| 42 | #include "tree-log.h" |
| 43 | #include "free-space-cache.h" |
| 44 | #include "free-space-tree.h" |
| 45 | #include "inode-map.h" |
| 46 | #include "check-integrity.h" |
| 47 | #include "rcu-string.h" |
| 48 | #include "dev-replace.h" |
| 49 | #include "raid56.h" |
| 50 | #include "sysfs.h" |
| 51 | #include "qgroup.h" |
| 52 | #include "compression.h" |
| 53 | #include "tree-checker.h" |
| 54 | |
| 55 | #ifdef CONFIG_X86 |
| 56 | #include <asm/cpufeature.h> |
| 57 | #endif |
| 58 | |
| 59 | #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ |
| 60 | BTRFS_HEADER_FLAG_RELOC |\ |
| 61 | BTRFS_SUPER_FLAG_ERROR |\ |
| 62 | BTRFS_SUPER_FLAG_SEEDING |\ |
| 63 | BTRFS_SUPER_FLAG_METADUMP |\ |
| 64 | BTRFS_SUPER_FLAG_METADUMP_V2) |
| 65 | |
| 66 | static const struct extent_io_ops btree_extent_io_ops; |
| 67 | static void end_workqueue_fn(struct btrfs_work *work); |
| 68 | static void free_fs_root(struct btrfs_root *root); |
| 69 | static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info); |
| 70 | static void btrfs_destroy_ordered_extents(struct btrfs_root *root); |
| 71 | static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, |
| 72 | struct btrfs_fs_info *fs_info); |
| 73 | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); |
| 74 | static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, |
| 75 | struct extent_io_tree *dirty_pages, |
| 76 | int mark); |
| 77 | static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, |
| 78 | struct extent_io_tree *pinned_extents); |
| 79 | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); |
| 80 | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); |
| 81 | |
| 82 | /* |
| 83 | * btrfs_end_io_wq structs are used to do processing in task context when an IO |
| 84 | * is complete. This is used during reads to verify checksums, and it is used |
| 85 | * by writes to insert metadata for new file extents after IO is complete. |
| 86 | */ |
| 87 | struct btrfs_end_io_wq { |
| 88 | struct bio *bio; |
| 89 | bio_end_io_t *end_io; |
| 90 | void *private; |
| 91 | struct btrfs_fs_info *info; |
| 92 | blk_status_t status; |
| 93 | enum btrfs_wq_endio_type metadata; |
| 94 | struct btrfs_work work; |
| 95 | }; |
| 96 | |
| 97 | static struct kmem_cache *btrfs_end_io_wq_cache; |
| 98 | |
| 99 | int __init btrfs_end_io_wq_init(void) |
| 100 | { |
| 101 | btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", |
| 102 | sizeof(struct btrfs_end_io_wq), |
| 103 | 0, |
| 104 | SLAB_MEM_SPREAD, |
| 105 | NULL); |
| 106 | if (!btrfs_end_io_wq_cache) |
| 107 | return -ENOMEM; |
| 108 | return 0; |
| 109 | } |
| 110 | |
| 111 | void btrfs_end_io_wq_exit(void) |
| 112 | { |
| 113 | kmem_cache_destroy(btrfs_end_io_wq_cache); |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * async submit bios are used to offload expensive checksumming |
| 118 | * onto the worker threads. They checksum file and metadata bios |
| 119 | * just before they are sent down the IO stack. |
| 120 | */ |
| 121 | struct async_submit_bio { |
| 122 | void *private_data; |
| 123 | struct btrfs_fs_info *fs_info; |
| 124 | struct bio *bio; |
| 125 | extent_submit_bio_hook_t *submit_bio_start; |
| 126 | extent_submit_bio_hook_t *submit_bio_done; |
| 127 | int mirror_num; |
| 128 | unsigned long bio_flags; |
| 129 | /* |
| 130 | * bio_offset is optional, can be used if the pages in the bio |
| 131 | * can't tell us where in the file the bio should go |
| 132 | */ |
| 133 | u64 bio_offset; |
| 134 | struct btrfs_work work; |
| 135 | blk_status_t status; |
| 136 | }; |
| 137 | |
| 138 | /* |
| 139 | * Lockdep class keys for extent_buffer->lock's in this root. For a given |
| 140 | * eb, the lockdep key is determined by the btrfs_root it belongs to and |
| 141 | * the level the eb occupies in the tree. |
| 142 | * |
| 143 | * Different roots are used for different purposes and may nest inside each |
| 144 | * other and they require separate keysets. As lockdep keys should be |
| 145 | * static, assign keysets according to the purpose of the root as indicated |
| 146 | * by btrfs_root->objectid. This ensures that all special purpose roots |
| 147 | * have separate keysets. |
| 148 | * |
| 149 | * Lock-nesting across peer nodes is always done with the immediate parent |
| 150 | * node locked thus preventing deadlock. As lockdep doesn't know this, use |
| 151 | * subclass to avoid triggering lockdep warning in such cases. |
| 152 | * |
| 153 | * The key is set by the readpage_end_io_hook after the buffer has passed |
| 154 | * csum validation but before the pages are unlocked. It is also set by |
| 155 | * btrfs_init_new_buffer on freshly allocated blocks. |
| 156 | * |
| 157 | * We also add a check to make sure the highest level of the tree is the |
| 158 | * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code |
| 159 | * needs update as well. |
| 160 | */ |
| 161 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| 162 | # if BTRFS_MAX_LEVEL != 8 |
| 163 | # error |
| 164 | # endif |
| 165 | |
| 166 | static struct btrfs_lockdep_keyset { |
| 167 | u64 id; /* root objectid */ |
| 168 | const char *name_stem; /* lock name stem */ |
| 169 | char names[BTRFS_MAX_LEVEL + 1][20]; |
| 170 | struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; |
| 171 | } btrfs_lockdep_keysets[] = { |
| 172 | { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, |
| 173 | { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, |
| 174 | { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, |
| 175 | { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, |
| 176 | { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, |
| 177 | { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, |
| 178 | { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, |
| 179 | { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, |
| 180 | { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, |
| 181 | { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, |
| 182 | { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, |
| 183 | { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, |
| 184 | { .id = 0, .name_stem = "tree" }, |
| 185 | }; |
| 186 | |
| 187 | void __init btrfs_init_lockdep(void) |
| 188 | { |
| 189 | int i, j; |
| 190 | |
| 191 | /* initialize lockdep class names */ |
| 192 | for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { |
| 193 | struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; |
| 194 | |
| 195 | for (j = 0; j < ARRAY_SIZE(ks->names); j++) |
| 196 | snprintf(ks->names[j], sizeof(ks->names[j]), |
| 197 | "btrfs-%s-%02d", ks->name_stem, j); |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, |
| 202 | int level) |
| 203 | { |
| 204 | struct btrfs_lockdep_keyset *ks; |
| 205 | |
| 206 | BUG_ON(level >= ARRAY_SIZE(ks->keys)); |
| 207 | |
| 208 | /* find the matching keyset, id 0 is the default entry */ |
| 209 | for (ks = btrfs_lockdep_keysets; ks->id; ks++) |
| 210 | if (ks->id == objectid) |
| 211 | break; |
| 212 | |
| 213 | lockdep_set_class_and_name(&eb->lock, |
| 214 | &ks->keys[level], ks->names[level]); |
| 215 | } |
| 216 | |
| 217 | #endif |
| 218 | |
| 219 | /* |
| 220 | * extents on the btree inode are pretty simple, there's one extent |
| 221 | * that covers the entire device |
| 222 | */ |
| 223 | static struct extent_map *btree_get_extent(struct btrfs_inode *inode, |
| 224 | struct page *page, size_t pg_offset, u64 start, u64 len, |
| 225 | int create) |
| 226 | { |
| 227 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); |
| 228 | struct extent_map_tree *em_tree = &inode->extent_tree; |
| 229 | struct extent_map *em; |
| 230 | int ret; |
| 231 | |
| 232 | read_lock(&em_tree->lock); |
| 233 | em = lookup_extent_mapping(em_tree, start, len); |
| 234 | if (em) { |
| 235 | em->bdev = fs_info->fs_devices->latest_bdev; |
| 236 | read_unlock(&em_tree->lock); |
| 237 | goto out; |
| 238 | } |
| 239 | read_unlock(&em_tree->lock); |
| 240 | |
| 241 | em = alloc_extent_map(); |
| 242 | if (!em) { |
| 243 | em = ERR_PTR(-ENOMEM); |
| 244 | goto out; |
| 245 | } |
| 246 | em->start = 0; |
| 247 | em->len = (u64)-1; |
| 248 | em->block_len = (u64)-1; |
| 249 | em->block_start = 0; |
| 250 | em->bdev = fs_info->fs_devices->latest_bdev; |
| 251 | |
| 252 | write_lock(&em_tree->lock); |
| 253 | ret = add_extent_mapping(em_tree, em, 0); |
| 254 | if (ret == -EEXIST) { |
| 255 | free_extent_map(em); |
| 256 | em = lookup_extent_mapping(em_tree, start, len); |
| 257 | if (!em) |
| 258 | em = ERR_PTR(-EIO); |
| 259 | } else if (ret) { |
| 260 | free_extent_map(em); |
| 261 | em = ERR_PTR(ret); |
| 262 | } |
| 263 | write_unlock(&em_tree->lock); |
| 264 | |
| 265 | out: |
| 266 | return em; |
| 267 | } |
| 268 | |
| 269 | u32 btrfs_csum_data(const char *data, u32 seed, size_t len) |
| 270 | { |
| 271 | return btrfs_crc32c(seed, data, len); |
| 272 | } |
| 273 | |
| 274 | void btrfs_csum_final(u32 crc, u8 *result) |
| 275 | { |
| 276 | put_unaligned_le32(~crc, result); |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * compute the csum for a btree block, and either verify it or write it |
| 281 | * into the csum field of the block. |
| 282 | */ |
| 283 | static int csum_tree_block(struct btrfs_fs_info *fs_info, |
| 284 | struct extent_buffer *buf, |
| 285 | int verify) |
| 286 | { |
| 287 | u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); |
| 288 | char *result = NULL; |
| 289 | unsigned long len; |
| 290 | unsigned long cur_len; |
| 291 | unsigned long offset = BTRFS_CSUM_SIZE; |
| 292 | char *kaddr; |
| 293 | unsigned long map_start; |
| 294 | unsigned long map_len; |
| 295 | int err; |
| 296 | u32 crc = ~(u32)0; |
| 297 | unsigned long inline_result; |
| 298 | |
| 299 | len = buf->len - offset; |
| 300 | while (len > 0) { |
| 301 | err = map_private_extent_buffer(buf, offset, 32, |
| 302 | &kaddr, &map_start, &map_len); |
| 303 | if (err) |
| 304 | return err; |
| 305 | cur_len = min(len, map_len - (offset - map_start)); |
| 306 | crc = btrfs_csum_data(kaddr + offset - map_start, |
| 307 | crc, cur_len); |
| 308 | len -= cur_len; |
| 309 | offset += cur_len; |
| 310 | } |
| 311 | if (csum_size > sizeof(inline_result)) { |
| 312 | result = kzalloc(csum_size, GFP_NOFS); |
| 313 | if (!result) |
| 314 | return -ENOMEM; |
| 315 | } else { |
| 316 | result = (char *)&inline_result; |
| 317 | } |
| 318 | |
| 319 | btrfs_csum_final(crc, result); |
| 320 | |
| 321 | if (verify) { |
| 322 | if (memcmp_extent_buffer(buf, result, 0, csum_size)) { |
| 323 | u32 val; |
| 324 | u32 found = 0; |
| 325 | memcpy(&found, result, csum_size); |
| 326 | |
| 327 | read_extent_buffer(buf, &val, 0, csum_size); |
| 328 | btrfs_warn_rl(fs_info, |
| 329 | "%s checksum verify failed on %llu wanted %X found %X level %d", |
| 330 | fs_info->sb->s_id, buf->start, |
| 331 | val, found, btrfs_header_level(buf)); |
| 332 | if (result != (char *)&inline_result) |
| 333 | kfree(result); |
| 334 | return -EUCLEAN; |
| 335 | } |
| 336 | } else { |
| 337 | write_extent_buffer(buf, result, 0, csum_size); |
| 338 | } |
| 339 | if (result != (char *)&inline_result) |
| 340 | kfree(result); |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * we can't consider a given block up to date unless the transid of the |
| 346 | * block matches the transid in the parent node's pointer. This is how we |
| 347 | * detect blocks that either didn't get written at all or got written |
| 348 | * in the wrong place. |
| 349 | */ |
| 350 | static int verify_parent_transid(struct extent_io_tree *io_tree, |
| 351 | struct extent_buffer *eb, u64 parent_transid, |
| 352 | int atomic) |
| 353 | { |
| 354 | struct extent_state *cached_state = NULL; |
| 355 | int ret; |
| 356 | bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); |
| 357 | |
| 358 | if (!parent_transid || btrfs_header_generation(eb) == parent_transid) |
| 359 | return 0; |
| 360 | |
| 361 | if (atomic) |
| 362 | return -EAGAIN; |
| 363 | |
| 364 | if (need_lock) { |
| 365 | btrfs_tree_read_lock(eb); |
| 366 | btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); |
| 367 | } |
| 368 | |
| 369 | lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, |
| 370 | &cached_state); |
| 371 | if (extent_buffer_uptodate(eb) && |
| 372 | btrfs_header_generation(eb) == parent_transid) { |
| 373 | ret = 0; |
| 374 | goto out; |
| 375 | } |
| 376 | btrfs_err_rl(eb->fs_info, |
| 377 | "parent transid verify failed on %llu wanted %llu found %llu", |
| 378 | eb->start, |
| 379 | parent_transid, btrfs_header_generation(eb)); |
| 380 | ret = 1; |
| 381 | |
| 382 | /* |
| 383 | * Things reading via commit roots that don't have normal protection, |
| 384 | * like send, can have a really old block in cache that may point at a |
| 385 | * block that has been freed and re-allocated. So don't clear uptodate |
| 386 | * if we find an eb that is under IO (dirty/writeback) because we could |
| 387 | * end up reading in the stale data and then writing it back out and |
| 388 | * making everybody very sad. |
| 389 | */ |
| 390 | if (!extent_buffer_under_io(eb)) |
| 391 | clear_extent_buffer_uptodate(eb); |
| 392 | out: |
| 393 | unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, |
| 394 | &cached_state, GFP_NOFS); |
| 395 | if (need_lock) |
| 396 | btrfs_tree_read_unlock_blocking(eb); |
| 397 | return ret; |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * Return 0 if the superblock checksum type matches the checksum value of that |
| 402 | * algorithm. Pass the raw disk superblock data. |
| 403 | */ |
| 404 | static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, |
| 405 | char *raw_disk_sb) |
| 406 | { |
| 407 | struct btrfs_super_block *disk_sb = |
| 408 | (struct btrfs_super_block *)raw_disk_sb; |
| 409 | u16 csum_type = btrfs_super_csum_type(disk_sb); |
| 410 | int ret = 0; |
| 411 | |
| 412 | if (csum_type == BTRFS_CSUM_TYPE_CRC32) { |
| 413 | u32 crc = ~(u32)0; |
| 414 | const int csum_size = sizeof(crc); |
| 415 | char result[csum_size]; |
| 416 | |
| 417 | /* |
| 418 | * The super_block structure does not span the whole |
| 419 | * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space |
| 420 | * is filled with zeros and is included in the checksum. |
| 421 | */ |
| 422 | crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, |
| 423 | crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); |
| 424 | btrfs_csum_final(crc, result); |
| 425 | |
| 426 | if (memcmp(raw_disk_sb, result, csum_size)) |
| 427 | ret = 1; |
| 428 | } |
| 429 | |
| 430 | if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { |
| 431 | btrfs_err(fs_info, "unsupported checksum algorithm %u", |
| 432 | csum_type); |
| 433 | ret = 1; |
| 434 | } |
| 435 | |
| 436 | return ret; |
| 437 | } |
| 438 | |
| 439 | /* |
| 440 | * helper to read a given tree block, doing retries as required when |
| 441 | * the checksums don't match and we have alternate mirrors to try. |
| 442 | */ |
| 443 | static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, |
| 444 | struct extent_buffer *eb, |
| 445 | u64 parent_transid) |
| 446 | { |
| 447 | struct extent_io_tree *io_tree; |
| 448 | int failed = 0; |
| 449 | int ret; |
| 450 | int num_copies = 0; |
| 451 | int mirror_num = 0; |
| 452 | int failed_mirror = 0; |
| 453 | |
| 454 | io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; |
| 455 | while (1) { |
| 456 | clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); |
| 457 | ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, |
| 458 | btree_get_extent, mirror_num); |
| 459 | if (!ret) { |
| 460 | if (!verify_parent_transid(io_tree, eb, |
| 461 | parent_transid, 0)) |
| 462 | break; |
| 463 | else |
| 464 | ret = -EIO; |
| 465 | } |
| 466 | |
| 467 | num_copies = btrfs_num_copies(fs_info, |
| 468 | eb->start, eb->len); |
| 469 | if (num_copies == 1) |
| 470 | break; |
| 471 | |
| 472 | if (!failed_mirror) { |
| 473 | failed = 1; |
| 474 | failed_mirror = eb->read_mirror; |
| 475 | } |
| 476 | |
| 477 | mirror_num++; |
| 478 | if (mirror_num == failed_mirror) |
| 479 | mirror_num++; |
| 480 | |
| 481 | if (mirror_num > num_copies) |
| 482 | break; |
| 483 | } |
| 484 | |
| 485 | if (failed && !ret && failed_mirror) |
| 486 | repair_eb_io_failure(fs_info, eb, failed_mirror); |
| 487 | |
| 488 | return ret; |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * checksum a dirty tree block before IO. This has extra checks to make sure |
| 493 | * we only fill in the checksum field in the first page of a multi-page block |
| 494 | */ |
| 495 | |
| 496 | static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) |
| 497 | { |
| 498 | u64 start = page_offset(page); |
| 499 | u64 found_start; |
| 500 | struct extent_buffer *eb; |
| 501 | |
| 502 | eb = (struct extent_buffer *)page->private; |
| 503 | if (page != eb->pages[0]) |
| 504 | return 0; |
| 505 | |
| 506 | found_start = btrfs_header_bytenr(eb); |
| 507 | /* |
| 508 | * Please do not consolidate these warnings into a single if. |
| 509 | * It is useful to know what went wrong. |
| 510 | */ |
| 511 | if (WARN_ON(found_start != start)) |
| 512 | return -EUCLEAN; |
| 513 | if (WARN_ON(!PageUptodate(page))) |
| 514 | return -EUCLEAN; |
| 515 | |
| 516 | ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, |
| 517 | btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); |
| 518 | |
| 519 | return csum_tree_block(fs_info, eb, 0); |
| 520 | } |
| 521 | |
| 522 | static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, |
| 523 | struct extent_buffer *eb) |
| 524 | { |
| 525 | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| 526 | u8 fsid[BTRFS_FSID_SIZE]; |
| 527 | int ret = 1; |
| 528 | |
| 529 | read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); |
| 530 | while (fs_devices) { |
| 531 | if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { |
| 532 | ret = 0; |
| 533 | break; |
| 534 | } |
| 535 | fs_devices = fs_devices->seed; |
| 536 | } |
| 537 | return ret; |
| 538 | } |
| 539 | |
| 540 | static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, |
| 541 | u64 phy_offset, struct page *page, |
| 542 | u64 start, u64 end, int mirror) |
| 543 | { |
| 544 | u64 found_start; |
| 545 | int found_level; |
| 546 | struct extent_buffer *eb; |
| 547 | struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; |
| 548 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 549 | int ret = 0; |
| 550 | int reads_done; |
| 551 | |
| 552 | if (!page->private) |
| 553 | goto out; |
| 554 | |
| 555 | eb = (struct extent_buffer *)page->private; |
| 556 | |
| 557 | /* the pending IO might have been the only thing that kept this buffer |
| 558 | * in memory. Make sure we have a ref for all this other checks |
| 559 | */ |
| 560 | extent_buffer_get(eb); |
| 561 | |
| 562 | reads_done = atomic_dec_and_test(&eb->io_pages); |
| 563 | if (!reads_done) |
| 564 | goto err; |
| 565 | |
| 566 | eb->read_mirror = mirror; |
| 567 | if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { |
| 568 | ret = -EIO; |
| 569 | goto err; |
| 570 | } |
| 571 | |
| 572 | found_start = btrfs_header_bytenr(eb); |
| 573 | if (found_start != eb->start) { |
| 574 | btrfs_err_rl(fs_info, "bad tree block start %llu %llu", |
| 575 | found_start, eb->start); |
| 576 | ret = -EIO; |
| 577 | goto err; |
| 578 | } |
| 579 | if (check_tree_block_fsid(fs_info, eb)) { |
| 580 | btrfs_err_rl(fs_info, "bad fsid on block %llu", |
| 581 | eb->start); |
| 582 | ret = -EIO; |
| 583 | goto err; |
| 584 | } |
| 585 | found_level = btrfs_header_level(eb); |
| 586 | if (found_level >= BTRFS_MAX_LEVEL) { |
| 587 | btrfs_err(fs_info, "bad tree block level %d", |
| 588 | (int)btrfs_header_level(eb)); |
| 589 | ret = -EIO; |
| 590 | goto err; |
| 591 | } |
| 592 | |
| 593 | btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), |
| 594 | eb, found_level); |
| 595 | |
| 596 | ret = csum_tree_block(fs_info, eb, 1); |
| 597 | if (ret) |
| 598 | goto err; |
| 599 | |
| 600 | /* |
| 601 | * If this is a leaf block and it is corrupt, set the corrupt bit so |
| 602 | * that we don't try and read the other copies of this block, just |
| 603 | * return -EIO. |
| 604 | */ |
| 605 | if (found_level == 0 && btrfs_check_leaf_full(root, eb)) { |
| 606 | set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); |
| 607 | ret = -EIO; |
| 608 | } |
| 609 | |
| 610 | if (found_level > 0 && btrfs_check_node(root, eb)) |
| 611 | ret = -EIO; |
| 612 | |
| 613 | if (!ret) |
| 614 | set_extent_buffer_uptodate(eb); |
| 615 | err: |
| 616 | if (reads_done && |
| 617 | test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) |
| 618 | btree_readahead_hook(eb, ret); |
| 619 | |
| 620 | if (ret) { |
| 621 | /* |
| 622 | * our io error hook is going to dec the io pages |
| 623 | * again, we have to make sure it has something |
| 624 | * to decrement |
| 625 | */ |
| 626 | atomic_inc(&eb->io_pages); |
| 627 | clear_extent_buffer_uptodate(eb); |
| 628 | } |
| 629 | free_extent_buffer(eb); |
| 630 | out: |
| 631 | return ret; |
| 632 | } |
| 633 | |
| 634 | static int btree_io_failed_hook(struct page *page, int failed_mirror) |
| 635 | { |
| 636 | struct extent_buffer *eb; |
| 637 | |
| 638 | eb = (struct extent_buffer *)page->private; |
| 639 | set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); |
| 640 | eb->read_mirror = failed_mirror; |
| 641 | atomic_dec(&eb->io_pages); |
| 642 | if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) |
| 643 | btree_readahead_hook(eb, -EIO); |
| 644 | return -EIO; /* we fixed nothing */ |
| 645 | } |
| 646 | |
| 647 | static void end_workqueue_bio(struct bio *bio) |
| 648 | { |
| 649 | struct btrfs_end_io_wq *end_io_wq = bio->bi_private; |
| 650 | struct btrfs_fs_info *fs_info; |
| 651 | struct btrfs_workqueue *wq; |
| 652 | btrfs_work_func_t func; |
| 653 | |
| 654 | fs_info = end_io_wq->info; |
| 655 | end_io_wq->status = bio->bi_status; |
| 656 | |
| 657 | if (bio_op(bio) == REQ_OP_WRITE) { |
| 658 | if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { |
| 659 | wq = fs_info->endio_meta_write_workers; |
| 660 | func = btrfs_endio_meta_write_helper; |
| 661 | } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { |
| 662 | wq = fs_info->endio_freespace_worker; |
| 663 | func = btrfs_freespace_write_helper; |
| 664 | } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { |
| 665 | wq = fs_info->endio_raid56_workers; |
| 666 | func = btrfs_endio_raid56_helper; |
| 667 | } else { |
| 668 | wq = fs_info->endio_write_workers; |
| 669 | func = btrfs_endio_write_helper; |
| 670 | } |
| 671 | } else { |
| 672 | if (unlikely(end_io_wq->metadata == |
| 673 | BTRFS_WQ_ENDIO_DIO_REPAIR)) { |
| 674 | wq = fs_info->endio_repair_workers; |
| 675 | func = btrfs_endio_repair_helper; |
| 676 | } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { |
| 677 | wq = fs_info->endio_raid56_workers; |
| 678 | func = btrfs_endio_raid56_helper; |
| 679 | } else if (end_io_wq->metadata) { |
| 680 | wq = fs_info->endio_meta_workers; |
| 681 | func = btrfs_endio_meta_helper; |
| 682 | } else { |
| 683 | wq = fs_info->endio_workers; |
| 684 | func = btrfs_endio_helper; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); |
| 689 | btrfs_queue_work(wq, &end_io_wq->work); |
| 690 | } |
| 691 | |
| 692 | blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, |
| 693 | enum btrfs_wq_endio_type metadata) |
| 694 | { |
| 695 | struct btrfs_end_io_wq *end_io_wq; |
| 696 | |
| 697 | end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); |
| 698 | if (!end_io_wq) |
| 699 | return BLK_STS_RESOURCE; |
| 700 | |
| 701 | end_io_wq->private = bio->bi_private; |
| 702 | end_io_wq->end_io = bio->bi_end_io; |
| 703 | end_io_wq->info = info; |
| 704 | end_io_wq->status = 0; |
| 705 | end_io_wq->bio = bio; |
| 706 | end_io_wq->metadata = metadata; |
| 707 | |
| 708 | bio->bi_private = end_io_wq; |
| 709 | bio->bi_end_io = end_workqueue_bio; |
| 710 | return 0; |
| 711 | } |
| 712 | |
| 713 | unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) |
| 714 | { |
| 715 | unsigned long limit = min_t(unsigned long, |
| 716 | info->thread_pool_size, |
| 717 | info->fs_devices->open_devices); |
| 718 | return 256 * limit; |
| 719 | } |
| 720 | |
| 721 | static void run_one_async_start(struct btrfs_work *work) |
| 722 | { |
| 723 | struct async_submit_bio *async; |
| 724 | blk_status_t ret; |
| 725 | |
| 726 | async = container_of(work, struct async_submit_bio, work); |
| 727 | ret = async->submit_bio_start(async->private_data, async->bio, |
| 728 | async->mirror_num, async->bio_flags, |
| 729 | async->bio_offset); |
| 730 | if (ret) |
| 731 | async->status = ret; |
| 732 | } |
| 733 | |
| 734 | static void run_one_async_done(struct btrfs_work *work) |
| 735 | { |
| 736 | struct btrfs_fs_info *fs_info; |
| 737 | struct async_submit_bio *async; |
| 738 | int limit; |
| 739 | |
| 740 | async = container_of(work, struct async_submit_bio, work); |
| 741 | fs_info = async->fs_info; |
| 742 | |
| 743 | limit = btrfs_async_submit_limit(fs_info); |
| 744 | limit = limit * 2 / 3; |
| 745 | |
| 746 | /* |
| 747 | * atomic_dec_return implies a barrier for waitqueue_active |
| 748 | */ |
| 749 | if (atomic_dec_return(&fs_info->nr_async_submits) < limit && |
| 750 | waitqueue_active(&fs_info->async_submit_wait)) |
| 751 | wake_up(&fs_info->async_submit_wait); |
| 752 | |
| 753 | /* If an error occurred we just want to clean up the bio and move on */ |
| 754 | if (async->status) { |
| 755 | async->bio->bi_status = async->status; |
| 756 | bio_endio(async->bio); |
| 757 | return; |
| 758 | } |
| 759 | |
| 760 | async->submit_bio_done(async->private_data, async->bio, async->mirror_num, |
| 761 | async->bio_flags, async->bio_offset); |
| 762 | } |
| 763 | |
| 764 | static void run_one_async_free(struct btrfs_work *work) |
| 765 | { |
| 766 | struct async_submit_bio *async; |
| 767 | |
| 768 | async = container_of(work, struct async_submit_bio, work); |
| 769 | kfree(async); |
| 770 | } |
| 771 | |
| 772 | blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, |
| 773 | int mirror_num, unsigned long bio_flags, |
| 774 | u64 bio_offset, void *private_data, |
| 775 | extent_submit_bio_hook_t *submit_bio_start, |
| 776 | extent_submit_bio_hook_t *submit_bio_done) |
| 777 | { |
| 778 | struct async_submit_bio *async; |
| 779 | |
| 780 | async = kmalloc(sizeof(*async), GFP_NOFS); |
| 781 | if (!async) |
| 782 | return BLK_STS_RESOURCE; |
| 783 | |
| 784 | async->private_data = private_data; |
| 785 | async->fs_info = fs_info; |
| 786 | async->bio = bio; |
| 787 | async->mirror_num = mirror_num; |
| 788 | async->submit_bio_start = submit_bio_start; |
| 789 | async->submit_bio_done = submit_bio_done; |
| 790 | |
| 791 | btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, |
| 792 | run_one_async_done, run_one_async_free); |
| 793 | |
| 794 | async->bio_flags = bio_flags; |
| 795 | async->bio_offset = bio_offset; |
| 796 | |
| 797 | async->status = 0; |
| 798 | |
| 799 | atomic_inc(&fs_info->nr_async_submits); |
| 800 | |
| 801 | if (op_is_sync(bio->bi_opf)) |
| 802 | btrfs_set_work_high_priority(&async->work); |
| 803 | |
| 804 | btrfs_queue_work(fs_info->workers, &async->work); |
| 805 | |
| 806 | while (atomic_read(&fs_info->async_submit_draining) && |
| 807 | atomic_read(&fs_info->nr_async_submits)) { |
| 808 | wait_event(fs_info->async_submit_wait, |
| 809 | (atomic_read(&fs_info->nr_async_submits) == 0)); |
| 810 | } |
| 811 | |
| 812 | return 0; |
| 813 | } |
| 814 | |
| 815 | static blk_status_t btree_csum_one_bio(struct bio *bio) |
| 816 | { |
| 817 | struct bio_vec *bvec; |
| 818 | struct btrfs_root *root; |
| 819 | int i, ret = 0; |
| 820 | |
| 821 | ASSERT(!bio_flagged(bio, BIO_CLONED)); |
| 822 | bio_for_each_segment_all(bvec, bio, i) { |
| 823 | root = BTRFS_I(bvec->bv_page->mapping->host)->root; |
| 824 | ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); |
| 825 | if (ret) |
| 826 | break; |
| 827 | } |
| 828 | |
| 829 | return errno_to_blk_status(ret); |
| 830 | } |
| 831 | |
| 832 | static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio, |
| 833 | int mirror_num, unsigned long bio_flags, |
| 834 | u64 bio_offset) |
| 835 | { |
| 836 | /* |
| 837 | * when we're called for a write, we're already in the async |
| 838 | * submission context. Just jump into btrfs_map_bio |
| 839 | */ |
| 840 | return btree_csum_one_bio(bio); |
| 841 | } |
| 842 | |
| 843 | static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio, |
| 844 | int mirror_num, unsigned long bio_flags, |
| 845 | u64 bio_offset) |
| 846 | { |
| 847 | struct inode *inode = private_data; |
| 848 | blk_status_t ret; |
| 849 | |
| 850 | /* |
| 851 | * when we're called for a write, we're already in the async |
| 852 | * submission context. Just jump into btrfs_map_bio |
| 853 | */ |
| 854 | ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); |
| 855 | if (ret) { |
| 856 | bio->bi_status = ret; |
| 857 | bio_endio(bio); |
| 858 | } |
| 859 | return ret; |
| 860 | } |
| 861 | |
| 862 | static int check_async_write(unsigned long bio_flags) |
| 863 | { |
| 864 | if (bio_flags & EXTENT_BIO_TREE_LOG) |
| 865 | return 0; |
| 866 | #ifdef CONFIG_X86 |
| 867 | if (static_cpu_has(X86_FEATURE_XMM4_2)) |
| 868 | return 0; |
| 869 | #endif |
| 870 | return 1; |
| 871 | } |
| 872 | |
| 873 | static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, |
| 874 | int mirror_num, unsigned long bio_flags, |
| 875 | u64 bio_offset) |
| 876 | { |
| 877 | struct inode *inode = private_data; |
| 878 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 879 | int async = check_async_write(bio_flags); |
| 880 | blk_status_t ret; |
| 881 | |
| 882 | if (bio_op(bio) != REQ_OP_WRITE) { |
| 883 | /* |
| 884 | * called for a read, do the setup so that checksum validation |
| 885 | * can happen in the async kernel threads |
| 886 | */ |
| 887 | ret = btrfs_bio_wq_end_io(fs_info, bio, |
| 888 | BTRFS_WQ_ENDIO_METADATA); |
| 889 | if (ret) |
| 890 | goto out_w_error; |
| 891 | ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); |
| 892 | } else if (!async) { |
| 893 | ret = btree_csum_one_bio(bio); |
| 894 | if (ret) |
| 895 | goto out_w_error; |
| 896 | ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); |
| 897 | } else { |
| 898 | /* |
| 899 | * kthread helpers are used to submit writes so that |
| 900 | * checksumming can happen in parallel across all CPUs |
| 901 | */ |
| 902 | ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, |
| 903 | bio_offset, private_data, |
| 904 | __btree_submit_bio_start, |
| 905 | __btree_submit_bio_done); |
| 906 | } |
| 907 | |
| 908 | if (ret) |
| 909 | goto out_w_error; |
| 910 | return 0; |
| 911 | |
| 912 | out_w_error: |
| 913 | bio->bi_status = ret; |
| 914 | bio_endio(bio); |
| 915 | return ret; |
| 916 | } |
| 917 | |
| 918 | #ifdef CONFIG_MIGRATION |
| 919 | static int btree_migratepage(struct address_space *mapping, |
| 920 | struct page *newpage, struct page *page, |
| 921 | enum migrate_mode mode) |
| 922 | { |
| 923 | /* |
| 924 | * we can't safely write a btree page from here, |
| 925 | * we haven't done the locking hook |
| 926 | */ |
| 927 | if (PageDirty(page)) |
| 928 | return -EAGAIN; |
| 929 | /* |
| 930 | * Buffers may be managed in a filesystem specific way. |
| 931 | * We must have no buffers or drop them. |
| 932 | */ |
| 933 | if (page_has_private(page) && |
| 934 | !try_to_release_page(page, GFP_KERNEL)) |
| 935 | return -EAGAIN; |
| 936 | return migrate_page(mapping, newpage, page, mode); |
| 937 | } |
| 938 | #endif |
| 939 | |
| 940 | |
| 941 | static int btree_writepages(struct address_space *mapping, |
| 942 | struct writeback_control *wbc) |
| 943 | { |
| 944 | struct btrfs_fs_info *fs_info; |
| 945 | int ret; |
| 946 | |
| 947 | if (wbc->sync_mode == WB_SYNC_NONE) { |
| 948 | |
| 949 | if (wbc->for_kupdate) |
| 950 | return 0; |
| 951 | |
| 952 | fs_info = BTRFS_I(mapping->host)->root->fs_info; |
| 953 | /* this is a bit racy, but that's ok */ |
| 954 | ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, |
| 955 | BTRFS_DIRTY_METADATA_THRESH, |
| 956 | fs_info->dirty_metadata_batch); |
| 957 | if (ret < 0) |
| 958 | return 0; |
| 959 | } |
| 960 | return btree_write_cache_pages(mapping, wbc); |
| 961 | } |
| 962 | |
| 963 | static int btree_readpage(struct file *file, struct page *page) |
| 964 | { |
| 965 | struct extent_io_tree *tree; |
| 966 | tree = &BTRFS_I(page->mapping->host)->io_tree; |
| 967 | return extent_read_full_page(tree, page, btree_get_extent, 0); |
| 968 | } |
| 969 | |
| 970 | static int btree_releasepage(struct page *page, gfp_t gfp_flags) |
| 971 | { |
| 972 | if (PageWriteback(page) || PageDirty(page)) |
| 973 | return 0; |
| 974 | |
| 975 | return try_release_extent_buffer(page); |
| 976 | } |
| 977 | |
| 978 | static void btree_invalidatepage(struct page *page, unsigned int offset, |
| 979 | unsigned int length) |
| 980 | { |
| 981 | struct extent_io_tree *tree; |
| 982 | tree = &BTRFS_I(page->mapping->host)->io_tree; |
| 983 | extent_invalidatepage(tree, page, offset); |
| 984 | btree_releasepage(page, GFP_NOFS); |
| 985 | if (PagePrivate(page)) { |
| 986 | btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, |
| 987 | "page private not zero on page %llu", |
| 988 | (unsigned long long)page_offset(page)); |
| 989 | ClearPagePrivate(page); |
| 990 | set_page_private(page, 0); |
| 991 | put_page(page); |
| 992 | } |
| 993 | } |
| 994 | |
| 995 | static int btree_set_page_dirty(struct page *page) |
| 996 | { |
| 997 | #ifdef DEBUG |
| 998 | struct extent_buffer *eb; |
| 999 | |
| 1000 | BUG_ON(!PagePrivate(page)); |
| 1001 | eb = (struct extent_buffer *)page->private; |
| 1002 | BUG_ON(!eb); |
| 1003 | BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); |
| 1004 | BUG_ON(!atomic_read(&eb->refs)); |
| 1005 | btrfs_assert_tree_locked(eb); |
| 1006 | #endif |
| 1007 | return __set_page_dirty_nobuffers(page); |
| 1008 | } |
| 1009 | |
| 1010 | static const struct address_space_operations btree_aops = { |
| 1011 | .readpage = btree_readpage, |
| 1012 | .writepages = btree_writepages, |
| 1013 | .releasepage = btree_releasepage, |
| 1014 | .invalidatepage = btree_invalidatepage, |
| 1015 | #ifdef CONFIG_MIGRATION |
| 1016 | .migratepage = btree_migratepage, |
| 1017 | #endif |
| 1018 | .set_page_dirty = btree_set_page_dirty, |
| 1019 | }; |
| 1020 | |
| 1021 | void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) |
| 1022 | { |
| 1023 | struct extent_buffer *buf = NULL; |
| 1024 | struct inode *btree_inode = fs_info->btree_inode; |
| 1025 | |
| 1026 | buf = btrfs_find_create_tree_block(fs_info, bytenr); |
| 1027 | if (IS_ERR(buf)) |
| 1028 | return; |
| 1029 | read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, |
| 1030 | buf, WAIT_NONE, btree_get_extent, 0); |
| 1031 | free_extent_buffer(buf); |
| 1032 | } |
| 1033 | |
| 1034 | int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, |
| 1035 | int mirror_num, struct extent_buffer **eb) |
| 1036 | { |
| 1037 | struct extent_buffer *buf = NULL; |
| 1038 | struct inode *btree_inode = fs_info->btree_inode; |
| 1039 | struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; |
| 1040 | int ret; |
| 1041 | |
| 1042 | buf = btrfs_find_create_tree_block(fs_info, bytenr); |
| 1043 | if (IS_ERR(buf)) |
| 1044 | return 0; |
| 1045 | |
| 1046 | set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); |
| 1047 | |
| 1048 | ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, |
| 1049 | btree_get_extent, mirror_num); |
| 1050 | if (ret) { |
| 1051 | free_extent_buffer(buf); |
| 1052 | return ret; |
| 1053 | } |
| 1054 | |
| 1055 | if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { |
| 1056 | free_extent_buffer(buf); |
| 1057 | return -EIO; |
| 1058 | } else if (extent_buffer_uptodate(buf)) { |
| 1059 | *eb = buf; |
| 1060 | } else { |
| 1061 | free_extent_buffer(buf); |
| 1062 | } |
| 1063 | return 0; |
| 1064 | } |
| 1065 | |
| 1066 | struct extent_buffer *btrfs_find_create_tree_block( |
| 1067 | struct btrfs_fs_info *fs_info, |
| 1068 | u64 bytenr) |
| 1069 | { |
| 1070 | if (btrfs_is_testing(fs_info)) |
| 1071 | return alloc_test_extent_buffer(fs_info, bytenr); |
| 1072 | return alloc_extent_buffer(fs_info, bytenr); |
| 1073 | } |
| 1074 | |
| 1075 | |
| 1076 | int btrfs_write_tree_block(struct extent_buffer *buf) |
| 1077 | { |
| 1078 | return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, |
| 1079 | buf->start + buf->len - 1); |
| 1080 | } |
| 1081 | |
| 1082 | void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) |
| 1083 | { |
| 1084 | filemap_fdatawait_range(buf->pages[0]->mapping, |
| 1085 | buf->start, buf->start + buf->len - 1); |
| 1086 | } |
| 1087 | |
| 1088 | struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, |
| 1089 | u64 parent_transid) |
| 1090 | { |
| 1091 | struct extent_buffer *buf = NULL; |
| 1092 | int ret; |
| 1093 | |
| 1094 | buf = btrfs_find_create_tree_block(fs_info, bytenr); |
| 1095 | if (IS_ERR(buf)) |
| 1096 | return buf; |
| 1097 | |
| 1098 | ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid); |
| 1099 | if (ret) { |
| 1100 | free_extent_buffer(buf); |
| 1101 | return ERR_PTR(ret); |
| 1102 | } |
| 1103 | return buf; |
| 1104 | |
| 1105 | } |
| 1106 | |
| 1107 | void clean_tree_block(struct btrfs_fs_info *fs_info, |
| 1108 | struct extent_buffer *buf) |
| 1109 | { |
| 1110 | if (btrfs_header_generation(buf) == |
| 1111 | fs_info->running_transaction->transid) { |
| 1112 | btrfs_assert_tree_locked(buf); |
| 1113 | |
| 1114 | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { |
| 1115 | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, |
| 1116 | -buf->len, |
| 1117 | fs_info->dirty_metadata_batch); |
| 1118 | /* ugh, clear_extent_buffer_dirty needs to lock the page */ |
| 1119 | btrfs_set_lock_blocking(buf); |
| 1120 | clear_extent_buffer_dirty(buf); |
| 1121 | } |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) |
| 1126 | { |
| 1127 | struct btrfs_subvolume_writers *writers; |
| 1128 | int ret; |
| 1129 | |
| 1130 | writers = kmalloc(sizeof(*writers), GFP_NOFS); |
| 1131 | if (!writers) |
| 1132 | return ERR_PTR(-ENOMEM); |
| 1133 | |
| 1134 | ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); |
| 1135 | if (ret < 0) { |
| 1136 | kfree(writers); |
| 1137 | return ERR_PTR(ret); |
| 1138 | } |
| 1139 | |
| 1140 | init_waitqueue_head(&writers->wait); |
| 1141 | return writers; |
| 1142 | } |
| 1143 | |
| 1144 | static void |
| 1145 | btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) |
| 1146 | { |
| 1147 | percpu_counter_destroy(&writers->counter); |
| 1148 | kfree(writers); |
| 1149 | } |
| 1150 | |
| 1151 | static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, |
| 1152 | u64 objectid) |
| 1153 | { |
| 1154 | bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); |
| 1155 | root->node = NULL; |
| 1156 | root->commit_root = NULL; |
| 1157 | root->state = 0; |
| 1158 | root->orphan_cleanup_state = 0; |
| 1159 | |
| 1160 | root->objectid = objectid; |
| 1161 | root->last_trans = 0; |
| 1162 | root->highest_objectid = 0; |
| 1163 | root->nr_delalloc_inodes = 0; |
| 1164 | root->nr_ordered_extents = 0; |
| 1165 | root->name = NULL; |
| 1166 | root->inode_tree = RB_ROOT; |
| 1167 | INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); |
| 1168 | root->block_rsv = NULL; |
| 1169 | root->orphan_block_rsv = NULL; |
| 1170 | |
| 1171 | INIT_LIST_HEAD(&root->dirty_list); |
| 1172 | INIT_LIST_HEAD(&root->root_list); |
| 1173 | INIT_LIST_HEAD(&root->delalloc_inodes); |
| 1174 | INIT_LIST_HEAD(&root->delalloc_root); |
| 1175 | INIT_LIST_HEAD(&root->ordered_extents); |
| 1176 | INIT_LIST_HEAD(&root->ordered_root); |
| 1177 | INIT_LIST_HEAD(&root->logged_list[0]); |
| 1178 | INIT_LIST_HEAD(&root->logged_list[1]); |
| 1179 | spin_lock_init(&root->orphan_lock); |
| 1180 | spin_lock_init(&root->inode_lock); |
| 1181 | spin_lock_init(&root->delalloc_lock); |
| 1182 | spin_lock_init(&root->ordered_extent_lock); |
| 1183 | spin_lock_init(&root->accounting_lock); |
| 1184 | spin_lock_init(&root->log_extents_lock[0]); |
| 1185 | spin_lock_init(&root->log_extents_lock[1]); |
| 1186 | mutex_init(&root->objectid_mutex); |
| 1187 | mutex_init(&root->log_mutex); |
| 1188 | mutex_init(&root->ordered_extent_mutex); |
| 1189 | mutex_init(&root->delalloc_mutex); |
| 1190 | init_waitqueue_head(&root->log_writer_wait); |
| 1191 | init_waitqueue_head(&root->log_commit_wait[0]); |
| 1192 | init_waitqueue_head(&root->log_commit_wait[1]); |
| 1193 | INIT_LIST_HEAD(&root->log_ctxs[0]); |
| 1194 | INIT_LIST_HEAD(&root->log_ctxs[1]); |
| 1195 | atomic_set(&root->log_commit[0], 0); |
| 1196 | atomic_set(&root->log_commit[1], 0); |
| 1197 | atomic_set(&root->log_writers, 0); |
| 1198 | atomic_set(&root->log_batch, 0); |
| 1199 | atomic_set(&root->orphan_inodes, 0); |
| 1200 | refcount_set(&root->refs, 1); |
| 1201 | atomic_set(&root->will_be_snapshotted, 0); |
| 1202 | atomic64_set(&root->qgroup_meta_rsv, 0); |
| 1203 | root->log_transid = 0; |
| 1204 | root->log_transid_committed = -1; |
| 1205 | root->last_log_commit = 0; |
| 1206 | if (!dummy) |
| 1207 | extent_io_tree_init(&root->dirty_log_pages, NULL); |
| 1208 | |
| 1209 | memset(&root->root_key, 0, sizeof(root->root_key)); |
| 1210 | memset(&root->root_item, 0, sizeof(root->root_item)); |
| 1211 | memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); |
| 1212 | if (!dummy) |
| 1213 | root->defrag_trans_start = fs_info->generation; |
| 1214 | else |
| 1215 | root->defrag_trans_start = 0; |
| 1216 | root->root_key.objectid = objectid; |
| 1217 | root->anon_dev = 0; |
| 1218 | |
| 1219 | spin_lock_init(&root->root_item_lock); |
| 1220 | } |
| 1221 | |
| 1222 | static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, |
| 1223 | gfp_t flags) |
| 1224 | { |
| 1225 | struct btrfs_root *root = kzalloc(sizeof(*root), flags); |
| 1226 | if (root) |
| 1227 | root->fs_info = fs_info; |
| 1228 | return root; |
| 1229 | } |
| 1230 | |
| 1231 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| 1232 | /* Should only be used by the testing infrastructure */ |
| 1233 | struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) |
| 1234 | { |
| 1235 | struct btrfs_root *root; |
| 1236 | |
| 1237 | if (!fs_info) |
| 1238 | return ERR_PTR(-EINVAL); |
| 1239 | |
| 1240 | root = btrfs_alloc_root(fs_info, GFP_KERNEL); |
| 1241 | if (!root) |
| 1242 | return ERR_PTR(-ENOMEM); |
| 1243 | |
| 1244 | /* We don't use the stripesize in selftest, set it as sectorsize */ |
| 1245 | __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); |
| 1246 | root->alloc_bytenr = 0; |
| 1247 | |
| 1248 | return root; |
| 1249 | } |
| 1250 | #endif |
| 1251 | |
| 1252 | struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, |
| 1253 | struct btrfs_fs_info *fs_info, |
| 1254 | u64 objectid) |
| 1255 | { |
| 1256 | struct extent_buffer *leaf; |
| 1257 | struct btrfs_root *tree_root = fs_info->tree_root; |
| 1258 | struct btrfs_root *root; |
| 1259 | struct btrfs_key key; |
| 1260 | int ret = 0; |
| 1261 | uuid_le uuid; |
| 1262 | |
| 1263 | root = btrfs_alloc_root(fs_info, GFP_KERNEL); |
| 1264 | if (!root) |
| 1265 | return ERR_PTR(-ENOMEM); |
| 1266 | |
| 1267 | __setup_root(root, fs_info, objectid); |
| 1268 | root->root_key.objectid = objectid; |
| 1269 | root->root_key.type = BTRFS_ROOT_ITEM_KEY; |
| 1270 | root->root_key.offset = 0; |
| 1271 | |
| 1272 | leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); |
| 1273 | if (IS_ERR(leaf)) { |
| 1274 | ret = PTR_ERR(leaf); |
| 1275 | leaf = NULL; |
| 1276 | goto fail; |
| 1277 | } |
| 1278 | |
| 1279 | memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); |
| 1280 | btrfs_set_header_bytenr(leaf, leaf->start); |
| 1281 | btrfs_set_header_generation(leaf, trans->transid); |
| 1282 | btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); |
| 1283 | btrfs_set_header_owner(leaf, objectid); |
| 1284 | root->node = leaf; |
| 1285 | |
| 1286 | write_extent_buffer_fsid(leaf, fs_info->fsid); |
| 1287 | write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); |
| 1288 | btrfs_mark_buffer_dirty(leaf); |
| 1289 | |
| 1290 | root->commit_root = btrfs_root_node(root); |
| 1291 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 1292 | |
| 1293 | root->root_item.flags = 0; |
| 1294 | root->root_item.byte_limit = 0; |
| 1295 | btrfs_set_root_bytenr(&root->root_item, leaf->start); |
| 1296 | btrfs_set_root_generation(&root->root_item, trans->transid); |
| 1297 | btrfs_set_root_level(&root->root_item, 0); |
| 1298 | btrfs_set_root_refs(&root->root_item, 1); |
| 1299 | btrfs_set_root_used(&root->root_item, leaf->len); |
| 1300 | btrfs_set_root_last_snapshot(&root->root_item, 0); |
| 1301 | btrfs_set_root_dirid(&root->root_item, 0); |
| 1302 | uuid_le_gen(&uuid); |
| 1303 | memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); |
| 1304 | root->root_item.drop_level = 0; |
| 1305 | |
| 1306 | key.objectid = objectid; |
| 1307 | key.type = BTRFS_ROOT_ITEM_KEY; |
| 1308 | key.offset = 0; |
| 1309 | ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); |
| 1310 | if (ret) |
| 1311 | goto fail; |
| 1312 | |
| 1313 | btrfs_tree_unlock(leaf); |
| 1314 | |
| 1315 | return root; |
| 1316 | |
| 1317 | fail: |
| 1318 | if (leaf) { |
| 1319 | btrfs_tree_unlock(leaf); |
| 1320 | free_extent_buffer(root->commit_root); |
| 1321 | free_extent_buffer(leaf); |
| 1322 | } |
| 1323 | kfree(root); |
| 1324 | |
| 1325 | return ERR_PTR(ret); |
| 1326 | } |
| 1327 | |
| 1328 | static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, |
| 1329 | struct btrfs_fs_info *fs_info) |
| 1330 | { |
| 1331 | struct btrfs_root *root; |
| 1332 | struct extent_buffer *leaf; |
| 1333 | |
| 1334 | root = btrfs_alloc_root(fs_info, GFP_NOFS); |
| 1335 | if (!root) |
| 1336 | return ERR_PTR(-ENOMEM); |
| 1337 | |
| 1338 | __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); |
| 1339 | |
| 1340 | root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; |
| 1341 | root->root_key.type = BTRFS_ROOT_ITEM_KEY; |
| 1342 | root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; |
| 1343 | |
| 1344 | /* |
| 1345 | * DON'T set REF_COWS for log trees |
| 1346 | * |
| 1347 | * log trees do not get reference counted because they go away |
| 1348 | * before a real commit is actually done. They do store pointers |
| 1349 | * to file data extents, and those reference counts still get |
| 1350 | * updated (along with back refs to the log tree). |
| 1351 | */ |
| 1352 | |
| 1353 | leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, |
| 1354 | NULL, 0, 0, 0); |
| 1355 | if (IS_ERR(leaf)) { |
| 1356 | kfree(root); |
| 1357 | return ERR_CAST(leaf); |
| 1358 | } |
| 1359 | |
| 1360 | memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); |
| 1361 | btrfs_set_header_bytenr(leaf, leaf->start); |
| 1362 | btrfs_set_header_generation(leaf, trans->transid); |
| 1363 | btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); |
| 1364 | btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); |
| 1365 | root->node = leaf; |
| 1366 | |
| 1367 | write_extent_buffer_fsid(root->node, fs_info->fsid); |
| 1368 | btrfs_mark_buffer_dirty(root->node); |
| 1369 | btrfs_tree_unlock(root->node); |
| 1370 | return root; |
| 1371 | } |
| 1372 | |
| 1373 | int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, |
| 1374 | struct btrfs_fs_info *fs_info) |
| 1375 | { |
| 1376 | struct btrfs_root *log_root; |
| 1377 | |
| 1378 | log_root = alloc_log_tree(trans, fs_info); |
| 1379 | if (IS_ERR(log_root)) |
| 1380 | return PTR_ERR(log_root); |
| 1381 | WARN_ON(fs_info->log_root_tree); |
| 1382 | fs_info->log_root_tree = log_root; |
| 1383 | return 0; |
| 1384 | } |
| 1385 | |
| 1386 | int btrfs_add_log_tree(struct btrfs_trans_handle *trans, |
| 1387 | struct btrfs_root *root) |
| 1388 | { |
| 1389 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 1390 | struct btrfs_root *log_root; |
| 1391 | struct btrfs_inode_item *inode_item; |
| 1392 | |
| 1393 | log_root = alloc_log_tree(trans, fs_info); |
| 1394 | if (IS_ERR(log_root)) |
| 1395 | return PTR_ERR(log_root); |
| 1396 | |
| 1397 | log_root->last_trans = trans->transid; |
| 1398 | log_root->root_key.offset = root->root_key.objectid; |
| 1399 | |
| 1400 | inode_item = &log_root->root_item.inode; |
| 1401 | btrfs_set_stack_inode_generation(inode_item, 1); |
| 1402 | btrfs_set_stack_inode_size(inode_item, 3); |
| 1403 | btrfs_set_stack_inode_nlink(inode_item, 1); |
| 1404 | btrfs_set_stack_inode_nbytes(inode_item, |
| 1405 | fs_info->nodesize); |
| 1406 | btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); |
| 1407 | |
| 1408 | btrfs_set_root_node(&log_root->root_item, log_root->node); |
| 1409 | |
| 1410 | WARN_ON(root->log_root); |
| 1411 | root->log_root = log_root; |
| 1412 | root->log_transid = 0; |
| 1413 | root->log_transid_committed = -1; |
| 1414 | root->last_log_commit = 0; |
| 1415 | return 0; |
| 1416 | } |
| 1417 | |
| 1418 | static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, |
| 1419 | struct btrfs_key *key) |
| 1420 | { |
| 1421 | struct btrfs_root *root; |
| 1422 | struct btrfs_fs_info *fs_info = tree_root->fs_info; |
| 1423 | struct btrfs_path *path; |
| 1424 | u64 generation; |
| 1425 | int ret; |
| 1426 | |
| 1427 | path = btrfs_alloc_path(); |
| 1428 | if (!path) |
| 1429 | return ERR_PTR(-ENOMEM); |
| 1430 | |
| 1431 | root = btrfs_alloc_root(fs_info, GFP_NOFS); |
| 1432 | if (!root) { |
| 1433 | ret = -ENOMEM; |
| 1434 | goto alloc_fail; |
| 1435 | } |
| 1436 | |
| 1437 | __setup_root(root, fs_info, key->objectid); |
| 1438 | |
| 1439 | ret = btrfs_find_root(tree_root, key, path, |
| 1440 | &root->root_item, &root->root_key); |
| 1441 | if (ret) { |
| 1442 | if (ret > 0) |
| 1443 | ret = -ENOENT; |
| 1444 | goto find_fail; |
| 1445 | } |
| 1446 | |
| 1447 | generation = btrfs_root_generation(&root->root_item); |
| 1448 | root->node = read_tree_block(fs_info, |
| 1449 | btrfs_root_bytenr(&root->root_item), |
| 1450 | generation); |
| 1451 | if (IS_ERR(root->node)) { |
| 1452 | ret = PTR_ERR(root->node); |
| 1453 | goto find_fail; |
| 1454 | } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { |
| 1455 | ret = -EIO; |
| 1456 | free_extent_buffer(root->node); |
| 1457 | goto find_fail; |
| 1458 | } |
| 1459 | root->commit_root = btrfs_root_node(root); |
| 1460 | out: |
| 1461 | btrfs_free_path(path); |
| 1462 | return root; |
| 1463 | |
| 1464 | find_fail: |
| 1465 | kfree(root); |
| 1466 | alloc_fail: |
| 1467 | root = ERR_PTR(ret); |
| 1468 | goto out; |
| 1469 | } |
| 1470 | |
| 1471 | struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, |
| 1472 | struct btrfs_key *location) |
| 1473 | { |
| 1474 | struct btrfs_root *root; |
| 1475 | |
| 1476 | root = btrfs_read_tree_root(tree_root, location); |
| 1477 | if (IS_ERR(root)) |
| 1478 | return root; |
| 1479 | |
| 1480 | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| 1481 | set_bit(BTRFS_ROOT_REF_COWS, &root->state); |
| 1482 | btrfs_check_and_init_root_item(&root->root_item); |
| 1483 | } |
| 1484 | |
| 1485 | return root; |
| 1486 | } |
| 1487 | |
| 1488 | int btrfs_init_fs_root(struct btrfs_root *root) |
| 1489 | { |
| 1490 | int ret; |
| 1491 | struct btrfs_subvolume_writers *writers; |
| 1492 | |
| 1493 | root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); |
| 1494 | root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), |
| 1495 | GFP_NOFS); |
| 1496 | if (!root->free_ino_pinned || !root->free_ino_ctl) { |
| 1497 | ret = -ENOMEM; |
| 1498 | goto fail; |
| 1499 | } |
| 1500 | |
| 1501 | writers = btrfs_alloc_subvolume_writers(); |
| 1502 | if (IS_ERR(writers)) { |
| 1503 | ret = PTR_ERR(writers); |
| 1504 | goto fail; |
| 1505 | } |
| 1506 | root->subv_writers = writers; |
| 1507 | |
| 1508 | btrfs_init_free_ino_ctl(root); |
| 1509 | spin_lock_init(&root->ino_cache_lock); |
| 1510 | init_waitqueue_head(&root->ino_cache_wait); |
| 1511 | |
| 1512 | /* |
| 1513 | * Don't assign anonymous block device to roots that are not exposed to |
| 1514 | * userspace, the id pool is limited to 1M |
| 1515 | */ |
| 1516 | if (is_fstree(root->root_key.objectid) && |
| 1517 | btrfs_root_refs(&root->root_item) > 0) { |
| 1518 | ret = get_anon_bdev(&root->anon_dev); |
| 1519 | if (ret) |
| 1520 | goto fail; |
| 1521 | } |
| 1522 | |
| 1523 | mutex_lock(&root->objectid_mutex); |
| 1524 | ret = btrfs_find_highest_objectid(root, |
| 1525 | &root->highest_objectid); |
| 1526 | if (ret) { |
| 1527 | mutex_unlock(&root->objectid_mutex); |
| 1528 | goto fail; |
| 1529 | } |
| 1530 | |
| 1531 | ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); |
| 1532 | |
| 1533 | mutex_unlock(&root->objectid_mutex); |
| 1534 | |
| 1535 | return 0; |
| 1536 | fail: |
| 1537 | /* the caller is responsible to call free_fs_root */ |
| 1538 | return ret; |
| 1539 | } |
| 1540 | |
| 1541 | struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, |
| 1542 | u64 root_id) |
| 1543 | { |
| 1544 | struct btrfs_root *root; |
| 1545 | |
| 1546 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 1547 | root = radix_tree_lookup(&fs_info->fs_roots_radix, |
| 1548 | (unsigned long)root_id); |
| 1549 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 1550 | return root; |
| 1551 | } |
| 1552 | |
| 1553 | int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, |
| 1554 | struct btrfs_root *root) |
| 1555 | { |
| 1556 | int ret; |
| 1557 | |
| 1558 | ret = radix_tree_preload(GFP_NOFS); |
| 1559 | if (ret) |
| 1560 | return ret; |
| 1561 | |
| 1562 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 1563 | ret = radix_tree_insert(&fs_info->fs_roots_radix, |
| 1564 | (unsigned long)root->root_key.objectid, |
| 1565 | root); |
| 1566 | if (ret == 0) |
| 1567 | set_bit(BTRFS_ROOT_IN_RADIX, &root->state); |
| 1568 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 1569 | radix_tree_preload_end(); |
| 1570 | |
| 1571 | return ret; |
| 1572 | } |
| 1573 | |
| 1574 | struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, |
| 1575 | struct btrfs_key *location, |
| 1576 | bool check_ref) |
| 1577 | { |
| 1578 | struct btrfs_root *root; |
| 1579 | struct btrfs_path *path; |
| 1580 | struct btrfs_key key; |
| 1581 | int ret; |
| 1582 | |
| 1583 | if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) |
| 1584 | return fs_info->tree_root; |
| 1585 | if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) |
| 1586 | return fs_info->extent_root; |
| 1587 | if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) |
| 1588 | return fs_info->chunk_root; |
| 1589 | if (location->objectid == BTRFS_DEV_TREE_OBJECTID) |
| 1590 | return fs_info->dev_root; |
| 1591 | if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) |
| 1592 | return fs_info->csum_root; |
| 1593 | if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) |
| 1594 | return fs_info->quota_root ? fs_info->quota_root : |
| 1595 | ERR_PTR(-ENOENT); |
| 1596 | if (location->objectid == BTRFS_UUID_TREE_OBJECTID) |
| 1597 | return fs_info->uuid_root ? fs_info->uuid_root : |
| 1598 | ERR_PTR(-ENOENT); |
| 1599 | if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) |
| 1600 | return fs_info->free_space_root ? fs_info->free_space_root : |
| 1601 | ERR_PTR(-ENOENT); |
| 1602 | again: |
| 1603 | root = btrfs_lookup_fs_root(fs_info, location->objectid); |
| 1604 | if (root) { |
| 1605 | if (check_ref && btrfs_root_refs(&root->root_item) == 0) |
| 1606 | return ERR_PTR(-ENOENT); |
| 1607 | return root; |
| 1608 | } |
| 1609 | |
| 1610 | root = btrfs_read_fs_root(fs_info->tree_root, location); |
| 1611 | if (IS_ERR(root)) |
| 1612 | return root; |
| 1613 | |
| 1614 | if (check_ref && btrfs_root_refs(&root->root_item) == 0) { |
| 1615 | ret = -ENOENT; |
| 1616 | goto fail; |
| 1617 | } |
| 1618 | |
| 1619 | ret = btrfs_init_fs_root(root); |
| 1620 | if (ret) |
| 1621 | goto fail; |
| 1622 | |
| 1623 | path = btrfs_alloc_path(); |
| 1624 | if (!path) { |
| 1625 | ret = -ENOMEM; |
| 1626 | goto fail; |
| 1627 | } |
| 1628 | key.objectid = BTRFS_ORPHAN_OBJECTID; |
| 1629 | key.type = BTRFS_ORPHAN_ITEM_KEY; |
| 1630 | key.offset = location->objectid; |
| 1631 | |
| 1632 | ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| 1633 | btrfs_free_path(path); |
| 1634 | if (ret < 0) |
| 1635 | goto fail; |
| 1636 | if (ret == 0) |
| 1637 | set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); |
| 1638 | |
| 1639 | ret = btrfs_insert_fs_root(fs_info, root); |
| 1640 | if (ret) { |
| 1641 | if (ret == -EEXIST) { |
| 1642 | free_fs_root(root); |
| 1643 | goto again; |
| 1644 | } |
| 1645 | goto fail; |
| 1646 | } |
| 1647 | return root; |
| 1648 | fail: |
| 1649 | free_fs_root(root); |
| 1650 | return ERR_PTR(ret); |
| 1651 | } |
| 1652 | |
| 1653 | static int btrfs_congested_fn(void *congested_data, int bdi_bits) |
| 1654 | { |
| 1655 | struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; |
| 1656 | int ret = 0; |
| 1657 | struct btrfs_device *device; |
| 1658 | struct backing_dev_info *bdi; |
| 1659 | |
| 1660 | rcu_read_lock(); |
| 1661 | list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { |
| 1662 | if (!device->bdev) |
| 1663 | continue; |
| 1664 | bdi = device->bdev->bd_bdi; |
| 1665 | if (bdi_congested(bdi, bdi_bits)) { |
| 1666 | ret = 1; |
| 1667 | break; |
| 1668 | } |
| 1669 | } |
| 1670 | rcu_read_unlock(); |
| 1671 | return ret; |
| 1672 | } |
| 1673 | |
| 1674 | /* |
| 1675 | * called by the kthread helper functions to finally call the bio end_io |
| 1676 | * functions. This is where read checksum verification actually happens |
| 1677 | */ |
| 1678 | static void end_workqueue_fn(struct btrfs_work *work) |
| 1679 | { |
| 1680 | struct bio *bio; |
| 1681 | struct btrfs_end_io_wq *end_io_wq; |
| 1682 | |
| 1683 | end_io_wq = container_of(work, struct btrfs_end_io_wq, work); |
| 1684 | bio = end_io_wq->bio; |
| 1685 | |
| 1686 | bio->bi_status = end_io_wq->status; |
| 1687 | bio->bi_private = end_io_wq->private; |
| 1688 | bio->bi_end_io = end_io_wq->end_io; |
| 1689 | bio_endio(bio); |
| 1690 | kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); |
| 1691 | } |
| 1692 | |
| 1693 | static int cleaner_kthread(void *arg) |
| 1694 | { |
| 1695 | struct btrfs_root *root = arg; |
| 1696 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 1697 | int again; |
| 1698 | |
| 1699 | while (1) { |
| 1700 | again = 0; |
| 1701 | |
| 1702 | /* Make the cleaner go to sleep early. */ |
| 1703 | if (btrfs_need_cleaner_sleep(fs_info)) |
| 1704 | goto sleep; |
| 1705 | |
| 1706 | /* |
| 1707 | * Do not do anything if we might cause open_ctree() to block |
| 1708 | * before we have finished mounting the filesystem. |
| 1709 | */ |
| 1710 | if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) |
| 1711 | goto sleep; |
| 1712 | |
| 1713 | if (!mutex_trylock(&fs_info->cleaner_mutex)) |
| 1714 | goto sleep; |
| 1715 | |
| 1716 | /* |
| 1717 | * Avoid the problem that we change the status of the fs |
| 1718 | * during the above check and trylock. |
| 1719 | */ |
| 1720 | if (btrfs_need_cleaner_sleep(fs_info)) { |
| 1721 | mutex_unlock(&fs_info->cleaner_mutex); |
| 1722 | goto sleep; |
| 1723 | } |
| 1724 | |
| 1725 | mutex_lock(&fs_info->cleaner_delayed_iput_mutex); |
| 1726 | btrfs_run_delayed_iputs(fs_info); |
| 1727 | mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); |
| 1728 | |
| 1729 | again = btrfs_clean_one_deleted_snapshot(root); |
| 1730 | mutex_unlock(&fs_info->cleaner_mutex); |
| 1731 | |
| 1732 | /* |
| 1733 | * The defragger has dealt with the R/O remount and umount, |
| 1734 | * needn't do anything special here. |
| 1735 | */ |
| 1736 | btrfs_run_defrag_inodes(fs_info); |
| 1737 | |
| 1738 | /* |
| 1739 | * Acquires fs_info->delete_unused_bgs_mutex to avoid racing |
| 1740 | * with relocation (btrfs_relocate_chunk) and relocation |
| 1741 | * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) |
| 1742 | * after acquiring fs_info->delete_unused_bgs_mutex. So we |
| 1743 | * can't hold, nor need to, fs_info->cleaner_mutex when deleting |
| 1744 | * unused block groups. |
| 1745 | */ |
| 1746 | btrfs_delete_unused_bgs(fs_info); |
| 1747 | sleep: |
| 1748 | if (kthread_should_park()) |
| 1749 | kthread_parkme(); |
| 1750 | if (kthread_should_stop()) |
| 1751 | return 0; |
| 1752 | if (!again) { |
| 1753 | set_current_state(TASK_INTERRUPTIBLE); |
| 1754 | schedule(); |
| 1755 | __set_current_state(TASK_RUNNING); |
| 1756 | } |
| 1757 | } |
| 1758 | } |
| 1759 | |
| 1760 | static int transaction_kthread(void *arg) |
| 1761 | { |
| 1762 | struct btrfs_root *root = arg; |
| 1763 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 1764 | struct btrfs_trans_handle *trans; |
| 1765 | struct btrfs_transaction *cur; |
| 1766 | u64 transid; |
| 1767 | unsigned long now; |
| 1768 | unsigned long delay; |
| 1769 | bool cannot_commit; |
| 1770 | |
| 1771 | do { |
| 1772 | cannot_commit = false; |
| 1773 | delay = HZ * fs_info->commit_interval; |
| 1774 | mutex_lock(&fs_info->transaction_kthread_mutex); |
| 1775 | |
| 1776 | spin_lock(&fs_info->trans_lock); |
| 1777 | cur = fs_info->running_transaction; |
| 1778 | if (!cur) { |
| 1779 | spin_unlock(&fs_info->trans_lock); |
| 1780 | goto sleep; |
| 1781 | } |
| 1782 | |
| 1783 | now = get_seconds(); |
| 1784 | if (cur->state < TRANS_STATE_BLOCKED && |
| 1785 | (now < cur->start_time || |
| 1786 | now - cur->start_time < fs_info->commit_interval)) { |
| 1787 | spin_unlock(&fs_info->trans_lock); |
| 1788 | delay = HZ * 5; |
| 1789 | goto sleep; |
| 1790 | } |
| 1791 | transid = cur->transid; |
| 1792 | spin_unlock(&fs_info->trans_lock); |
| 1793 | |
| 1794 | /* If the file system is aborted, this will always fail. */ |
| 1795 | trans = btrfs_attach_transaction(root); |
| 1796 | if (IS_ERR(trans)) { |
| 1797 | if (PTR_ERR(trans) != -ENOENT) |
| 1798 | cannot_commit = true; |
| 1799 | goto sleep; |
| 1800 | } |
| 1801 | if (transid == trans->transid) { |
| 1802 | btrfs_commit_transaction(trans); |
| 1803 | } else { |
| 1804 | btrfs_end_transaction(trans); |
| 1805 | } |
| 1806 | sleep: |
| 1807 | wake_up_process(fs_info->cleaner_kthread); |
| 1808 | mutex_unlock(&fs_info->transaction_kthread_mutex); |
| 1809 | |
| 1810 | if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, |
| 1811 | &fs_info->fs_state))) |
| 1812 | btrfs_cleanup_transaction(fs_info); |
| 1813 | set_current_state(TASK_INTERRUPTIBLE); |
| 1814 | if (!kthread_should_stop() && |
| 1815 | (!btrfs_transaction_blocked(fs_info) || |
| 1816 | cannot_commit)) |
| 1817 | schedule_timeout(delay); |
| 1818 | __set_current_state(TASK_RUNNING); |
| 1819 | } while (!kthread_should_stop()); |
| 1820 | return 0; |
| 1821 | } |
| 1822 | |
| 1823 | /* |
| 1824 | * this will find the highest generation in the array of |
| 1825 | * root backups. The index of the highest array is returned, |
| 1826 | * or -1 if we can't find anything. |
| 1827 | * |
| 1828 | * We check to make sure the array is valid by comparing the |
| 1829 | * generation of the latest root in the array with the generation |
| 1830 | * in the super block. If they don't match we pitch it. |
| 1831 | */ |
| 1832 | static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) |
| 1833 | { |
| 1834 | u64 cur; |
| 1835 | int newest_index = -1; |
| 1836 | struct btrfs_root_backup *root_backup; |
| 1837 | int i; |
| 1838 | |
| 1839 | for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { |
| 1840 | root_backup = info->super_copy->super_roots + i; |
| 1841 | cur = btrfs_backup_tree_root_gen(root_backup); |
| 1842 | if (cur == newest_gen) |
| 1843 | newest_index = i; |
| 1844 | } |
| 1845 | |
| 1846 | /* check to see if we actually wrapped around */ |
| 1847 | if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { |
| 1848 | root_backup = info->super_copy->super_roots; |
| 1849 | cur = btrfs_backup_tree_root_gen(root_backup); |
| 1850 | if (cur == newest_gen) |
| 1851 | newest_index = 0; |
| 1852 | } |
| 1853 | return newest_index; |
| 1854 | } |
| 1855 | |
| 1856 | |
| 1857 | /* |
| 1858 | * find the oldest backup so we know where to store new entries |
| 1859 | * in the backup array. This will set the backup_root_index |
| 1860 | * field in the fs_info struct |
| 1861 | */ |
| 1862 | static void find_oldest_super_backup(struct btrfs_fs_info *info, |
| 1863 | u64 newest_gen) |
| 1864 | { |
| 1865 | int newest_index = -1; |
| 1866 | |
| 1867 | newest_index = find_newest_super_backup(info, newest_gen); |
| 1868 | /* if there was garbage in there, just move along */ |
| 1869 | if (newest_index == -1) { |
| 1870 | info->backup_root_index = 0; |
| 1871 | } else { |
| 1872 | info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; |
| 1873 | } |
| 1874 | } |
| 1875 | |
| 1876 | /* |
| 1877 | * copy all the root pointers into the super backup array. |
| 1878 | * this will bump the backup pointer by one when it is |
| 1879 | * done |
| 1880 | */ |
| 1881 | static void backup_super_roots(struct btrfs_fs_info *info) |
| 1882 | { |
| 1883 | int next_backup; |
| 1884 | struct btrfs_root_backup *root_backup; |
| 1885 | int last_backup; |
| 1886 | |
| 1887 | next_backup = info->backup_root_index; |
| 1888 | last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % |
| 1889 | BTRFS_NUM_BACKUP_ROOTS; |
| 1890 | |
| 1891 | /* |
| 1892 | * just overwrite the last backup if we're at the same generation |
| 1893 | * this happens only at umount |
| 1894 | */ |
| 1895 | root_backup = info->super_for_commit->super_roots + last_backup; |
| 1896 | if (btrfs_backup_tree_root_gen(root_backup) == |
| 1897 | btrfs_header_generation(info->tree_root->node)) |
| 1898 | next_backup = last_backup; |
| 1899 | |
| 1900 | root_backup = info->super_for_commit->super_roots + next_backup; |
| 1901 | |
| 1902 | /* |
| 1903 | * make sure all of our padding and empty slots get zero filled |
| 1904 | * regardless of which ones we use today |
| 1905 | */ |
| 1906 | memset(root_backup, 0, sizeof(*root_backup)); |
| 1907 | |
| 1908 | info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; |
| 1909 | |
| 1910 | btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); |
| 1911 | btrfs_set_backup_tree_root_gen(root_backup, |
| 1912 | btrfs_header_generation(info->tree_root->node)); |
| 1913 | |
| 1914 | btrfs_set_backup_tree_root_level(root_backup, |
| 1915 | btrfs_header_level(info->tree_root->node)); |
| 1916 | |
| 1917 | btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); |
| 1918 | btrfs_set_backup_chunk_root_gen(root_backup, |
| 1919 | btrfs_header_generation(info->chunk_root->node)); |
| 1920 | btrfs_set_backup_chunk_root_level(root_backup, |
| 1921 | btrfs_header_level(info->chunk_root->node)); |
| 1922 | |
| 1923 | btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); |
| 1924 | btrfs_set_backup_extent_root_gen(root_backup, |
| 1925 | btrfs_header_generation(info->extent_root->node)); |
| 1926 | btrfs_set_backup_extent_root_level(root_backup, |
| 1927 | btrfs_header_level(info->extent_root->node)); |
| 1928 | |
| 1929 | /* |
| 1930 | * we might commit during log recovery, which happens before we set |
| 1931 | * the fs_root. Make sure it is valid before we fill it in. |
| 1932 | */ |
| 1933 | if (info->fs_root && info->fs_root->node) { |
| 1934 | btrfs_set_backup_fs_root(root_backup, |
| 1935 | info->fs_root->node->start); |
| 1936 | btrfs_set_backup_fs_root_gen(root_backup, |
| 1937 | btrfs_header_generation(info->fs_root->node)); |
| 1938 | btrfs_set_backup_fs_root_level(root_backup, |
| 1939 | btrfs_header_level(info->fs_root->node)); |
| 1940 | } |
| 1941 | |
| 1942 | btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); |
| 1943 | btrfs_set_backup_dev_root_gen(root_backup, |
| 1944 | btrfs_header_generation(info->dev_root->node)); |
| 1945 | btrfs_set_backup_dev_root_level(root_backup, |
| 1946 | btrfs_header_level(info->dev_root->node)); |
| 1947 | |
| 1948 | btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); |
| 1949 | btrfs_set_backup_csum_root_gen(root_backup, |
| 1950 | btrfs_header_generation(info->csum_root->node)); |
| 1951 | btrfs_set_backup_csum_root_level(root_backup, |
| 1952 | btrfs_header_level(info->csum_root->node)); |
| 1953 | |
| 1954 | btrfs_set_backup_total_bytes(root_backup, |
| 1955 | btrfs_super_total_bytes(info->super_copy)); |
| 1956 | btrfs_set_backup_bytes_used(root_backup, |
| 1957 | btrfs_super_bytes_used(info->super_copy)); |
| 1958 | btrfs_set_backup_num_devices(root_backup, |
| 1959 | btrfs_super_num_devices(info->super_copy)); |
| 1960 | |
| 1961 | /* |
| 1962 | * if we don't copy this out to the super_copy, it won't get remembered |
| 1963 | * for the next commit |
| 1964 | */ |
| 1965 | memcpy(&info->super_copy->super_roots, |
| 1966 | &info->super_for_commit->super_roots, |
| 1967 | sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); |
| 1968 | } |
| 1969 | |
| 1970 | /* |
| 1971 | * this copies info out of the root backup array and back into |
| 1972 | * the in-memory super block. It is meant to help iterate through |
| 1973 | * the array, so you send it the number of backups you've already |
| 1974 | * tried and the last backup index you used. |
| 1975 | * |
| 1976 | * this returns -1 when it has tried all the backups |
| 1977 | */ |
| 1978 | static noinline int next_root_backup(struct btrfs_fs_info *info, |
| 1979 | struct btrfs_super_block *super, |
| 1980 | int *num_backups_tried, int *backup_index) |
| 1981 | { |
| 1982 | struct btrfs_root_backup *root_backup; |
| 1983 | int newest = *backup_index; |
| 1984 | |
| 1985 | if (*num_backups_tried == 0) { |
| 1986 | u64 gen = btrfs_super_generation(super); |
| 1987 | |
| 1988 | newest = find_newest_super_backup(info, gen); |
| 1989 | if (newest == -1) |
| 1990 | return -1; |
| 1991 | |
| 1992 | *backup_index = newest; |
| 1993 | *num_backups_tried = 1; |
| 1994 | } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { |
| 1995 | /* we've tried all the backups, all done */ |
| 1996 | return -1; |
| 1997 | } else { |
| 1998 | /* jump to the next oldest backup */ |
| 1999 | newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % |
| 2000 | BTRFS_NUM_BACKUP_ROOTS; |
| 2001 | *backup_index = newest; |
| 2002 | *num_backups_tried += 1; |
| 2003 | } |
| 2004 | root_backup = super->super_roots + newest; |
| 2005 | |
| 2006 | btrfs_set_super_generation(super, |
| 2007 | btrfs_backup_tree_root_gen(root_backup)); |
| 2008 | btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); |
| 2009 | btrfs_set_super_root_level(super, |
| 2010 | btrfs_backup_tree_root_level(root_backup)); |
| 2011 | btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); |
| 2012 | |
| 2013 | /* |
| 2014 | * fixme: the total bytes and num_devices need to match or we should |
| 2015 | * need a fsck |
| 2016 | */ |
| 2017 | btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); |
| 2018 | btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); |
| 2019 | return 0; |
| 2020 | } |
| 2021 | |
| 2022 | /* helper to cleanup workers */ |
| 2023 | static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) |
| 2024 | { |
| 2025 | btrfs_destroy_workqueue(fs_info->fixup_workers); |
| 2026 | btrfs_destroy_workqueue(fs_info->delalloc_workers); |
| 2027 | btrfs_destroy_workqueue(fs_info->workers); |
| 2028 | btrfs_destroy_workqueue(fs_info->endio_workers); |
| 2029 | btrfs_destroy_workqueue(fs_info->endio_raid56_workers); |
| 2030 | btrfs_destroy_workqueue(fs_info->endio_repair_workers); |
| 2031 | btrfs_destroy_workqueue(fs_info->rmw_workers); |
| 2032 | btrfs_destroy_workqueue(fs_info->endio_write_workers); |
| 2033 | btrfs_destroy_workqueue(fs_info->endio_freespace_worker); |
| 2034 | btrfs_destroy_workqueue(fs_info->submit_workers); |
| 2035 | btrfs_destroy_workqueue(fs_info->delayed_workers); |
| 2036 | btrfs_destroy_workqueue(fs_info->caching_workers); |
| 2037 | btrfs_destroy_workqueue(fs_info->readahead_workers); |
| 2038 | btrfs_destroy_workqueue(fs_info->flush_workers); |
| 2039 | btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); |
| 2040 | btrfs_destroy_workqueue(fs_info->extent_workers); |
| 2041 | /* |
| 2042 | * Now that all other work queues are destroyed, we can safely destroy |
| 2043 | * the queues used for metadata I/O, since tasks from those other work |
| 2044 | * queues can do metadata I/O operations. |
| 2045 | */ |
| 2046 | btrfs_destroy_workqueue(fs_info->endio_meta_workers); |
| 2047 | btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); |
| 2048 | } |
| 2049 | |
| 2050 | static void free_root_extent_buffers(struct btrfs_root *root) |
| 2051 | { |
| 2052 | if (root) { |
| 2053 | free_extent_buffer(root->node); |
| 2054 | free_extent_buffer(root->commit_root); |
| 2055 | root->node = NULL; |
| 2056 | root->commit_root = NULL; |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | /* helper to cleanup tree roots */ |
| 2061 | static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) |
| 2062 | { |
| 2063 | free_root_extent_buffers(info->tree_root); |
| 2064 | |
| 2065 | free_root_extent_buffers(info->dev_root); |
| 2066 | free_root_extent_buffers(info->extent_root); |
| 2067 | free_root_extent_buffers(info->csum_root); |
| 2068 | free_root_extent_buffers(info->quota_root); |
| 2069 | free_root_extent_buffers(info->uuid_root); |
| 2070 | if (free_chunk_root) |
| 2071 | free_root_extent_buffers(info->chunk_root); |
| 2072 | free_root_extent_buffers(info->free_space_root); |
| 2073 | } |
| 2074 | |
| 2075 | void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) |
| 2076 | { |
| 2077 | int ret; |
| 2078 | struct btrfs_root *gang[8]; |
| 2079 | int i; |
| 2080 | |
| 2081 | while (!list_empty(&fs_info->dead_roots)) { |
| 2082 | gang[0] = list_entry(fs_info->dead_roots.next, |
| 2083 | struct btrfs_root, root_list); |
| 2084 | list_del(&gang[0]->root_list); |
| 2085 | |
| 2086 | if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { |
| 2087 | btrfs_drop_and_free_fs_root(fs_info, gang[0]); |
| 2088 | } else { |
| 2089 | free_extent_buffer(gang[0]->node); |
| 2090 | free_extent_buffer(gang[0]->commit_root); |
| 2091 | btrfs_put_fs_root(gang[0]); |
| 2092 | } |
| 2093 | } |
| 2094 | |
| 2095 | while (1) { |
| 2096 | ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, |
| 2097 | (void **)gang, 0, |
| 2098 | ARRAY_SIZE(gang)); |
| 2099 | if (!ret) |
| 2100 | break; |
| 2101 | for (i = 0; i < ret; i++) |
| 2102 | btrfs_drop_and_free_fs_root(fs_info, gang[i]); |
| 2103 | } |
| 2104 | |
| 2105 | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { |
| 2106 | btrfs_free_log_root_tree(NULL, fs_info); |
| 2107 | btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); |
| 2108 | } |
| 2109 | } |
| 2110 | |
| 2111 | static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) |
| 2112 | { |
| 2113 | mutex_init(&fs_info->scrub_lock); |
| 2114 | atomic_set(&fs_info->scrubs_running, 0); |
| 2115 | atomic_set(&fs_info->scrub_pause_req, 0); |
| 2116 | atomic_set(&fs_info->scrubs_paused, 0); |
| 2117 | atomic_set(&fs_info->scrub_cancel_req, 0); |
| 2118 | init_waitqueue_head(&fs_info->scrub_pause_wait); |
| 2119 | fs_info->scrub_workers_refcnt = 0; |
| 2120 | } |
| 2121 | |
| 2122 | static void btrfs_init_balance(struct btrfs_fs_info *fs_info) |
| 2123 | { |
| 2124 | spin_lock_init(&fs_info->balance_lock); |
| 2125 | mutex_init(&fs_info->balance_mutex); |
| 2126 | atomic_set(&fs_info->balance_running, 0); |
| 2127 | atomic_set(&fs_info->balance_pause_req, 0); |
| 2128 | atomic_set(&fs_info->balance_cancel_req, 0); |
| 2129 | fs_info->balance_ctl = NULL; |
| 2130 | init_waitqueue_head(&fs_info->balance_wait_q); |
| 2131 | } |
| 2132 | |
| 2133 | static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) |
| 2134 | { |
| 2135 | struct inode *inode = fs_info->btree_inode; |
| 2136 | |
| 2137 | inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; |
| 2138 | set_nlink(inode, 1); |
| 2139 | /* |
| 2140 | * we set the i_size on the btree inode to the max possible int. |
| 2141 | * the real end of the address space is determined by all of |
| 2142 | * the devices in the system |
| 2143 | */ |
| 2144 | inode->i_size = OFFSET_MAX; |
| 2145 | inode->i_mapping->a_ops = &btree_aops; |
| 2146 | |
| 2147 | RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); |
| 2148 | extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); |
| 2149 | BTRFS_I(inode)->io_tree.track_uptodate = 0; |
| 2150 | extent_map_tree_init(&BTRFS_I(inode)->extent_tree); |
| 2151 | |
| 2152 | BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; |
| 2153 | |
| 2154 | BTRFS_I(inode)->root = fs_info->tree_root; |
| 2155 | memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); |
| 2156 | set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); |
| 2157 | btrfs_insert_inode_hash(inode); |
| 2158 | } |
| 2159 | |
| 2160 | static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) |
| 2161 | { |
| 2162 | fs_info->dev_replace.lock_owner = 0; |
| 2163 | atomic_set(&fs_info->dev_replace.nesting_level, 0); |
| 2164 | mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); |
| 2165 | rwlock_init(&fs_info->dev_replace.lock); |
| 2166 | atomic_set(&fs_info->dev_replace.read_locks, 0); |
| 2167 | atomic_set(&fs_info->dev_replace.blocking_readers, 0); |
| 2168 | init_waitqueue_head(&fs_info->replace_wait); |
| 2169 | init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); |
| 2170 | } |
| 2171 | |
| 2172 | static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) |
| 2173 | { |
| 2174 | spin_lock_init(&fs_info->qgroup_lock); |
| 2175 | mutex_init(&fs_info->qgroup_ioctl_lock); |
| 2176 | fs_info->qgroup_tree = RB_ROOT; |
| 2177 | fs_info->qgroup_op_tree = RB_ROOT; |
| 2178 | INIT_LIST_HEAD(&fs_info->dirty_qgroups); |
| 2179 | fs_info->qgroup_seq = 1; |
| 2180 | fs_info->qgroup_ulist = NULL; |
| 2181 | fs_info->qgroup_rescan_running = false; |
| 2182 | mutex_init(&fs_info->qgroup_rescan_lock); |
| 2183 | } |
| 2184 | |
| 2185 | static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, |
| 2186 | struct btrfs_fs_devices *fs_devices) |
| 2187 | { |
| 2188 | int max_active = fs_info->thread_pool_size; |
| 2189 | unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; |
| 2190 | |
| 2191 | fs_info->workers = |
| 2192 | btrfs_alloc_workqueue(fs_info, "worker", |
| 2193 | flags | WQ_HIGHPRI, max_active, 16); |
| 2194 | |
| 2195 | fs_info->delalloc_workers = |
| 2196 | btrfs_alloc_workqueue(fs_info, "delalloc", |
| 2197 | flags, max_active, 2); |
| 2198 | |
| 2199 | fs_info->flush_workers = |
| 2200 | btrfs_alloc_workqueue(fs_info, "flush_delalloc", |
| 2201 | flags, max_active, 0); |
| 2202 | |
| 2203 | fs_info->caching_workers = |
| 2204 | btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); |
| 2205 | |
| 2206 | /* |
| 2207 | * a higher idle thresh on the submit workers makes it much more |
| 2208 | * likely that bios will be send down in a sane order to the |
| 2209 | * devices |
| 2210 | */ |
| 2211 | fs_info->submit_workers = |
| 2212 | btrfs_alloc_workqueue(fs_info, "submit", flags, |
| 2213 | min_t(u64, fs_devices->num_devices, |
| 2214 | max_active), 64); |
| 2215 | |
| 2216 | fs_info->fixup_workers = |
| 2217 | btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); |
| 2218 | |
| 2219 | /* |
| 2220 | * endios are largely parallel and should have a very |
| 2221 | * low idle thresh |
| 2222 | */ |
| 2223 | fs_info->endio_workers = |
| 2224 | btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); |
| 2225 | fs_info->endio_meta_workers = |
| 2226 | btrfs_alloc_workqueue(fs_info, "endio-meta", flags, |
| 2227 | max_active, 4); |
| 2228 | fs_info->endio_meta_write_workers = |
| 2229 | btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, |
| 2230 | max_active, 2); |
| 2231 | fs_info->endio_raid56_workers = |
| 2232 | btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, |
| 2233 | max_active, 4); |
| 2234 | fs_info->endio_repair_workers = |
| 2235 | btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); |
| 2236 | fs_info->rmw_workers = |
| 2237 | btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); |
| 2238 | fs_info->endio_write_workers = |
| 2239 | btrfs_alloc_workqueue(fs_info, "endio-write", flags, |
| 2240 | max_active, 2); |
| 2241 | fs_info->endio_freespace_worker = |
| 2242 | btrfs_alloc_workqueue(fs_info, "freespace-write", flags, |
| 2243 | max_active, 0); |
| 2244 | fs_info->delayed_workers = |
| 2245 | btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, |
| 2246 | max_active, 0); |
| 2247 | fs_info->readahead_workers = |
| 2248 | btrfs_alloc_workqueue(fs_info, "readahead", flags, |
| 2249 | max_active, 2); |
| 2250 | fs_info->qgroup_rescan_workers = |
| 2251 | btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); |
| 2252 | fs_info->extent_workers = |
| 2253 | btrfs_alloc_workqueue(fs_info, "extent-refs", flags, |
| 2254 | min_t(u64, fs_devices->num_devices, |
| 2255 | max_active), 8); |
| 2256 | |
| 2257 | if (!(fs_info->workers && fs_info->delalloc_workers && |
| 2258 | fs_info->submit_workers && fs_info->flush_workers && |
| 2259 | fs_info->endio_workers && fs_info->endio_meta_workers && |
| 2260 | fs_info->endio_meta_write_workers && |
| 2261 | fs_info->endio_repair_workers && |
| 2262 | fs_info->endio_write_workers && fs_info->endio_raid56_workers && |
| 2263 | fs_info->endio_freespace_worker && fs_info->rmw_workers && |
| 2264 | fs_info->caching_workers && fs_info->readahead_workers && |
| 2265 | fs_info->fixup_workers && fs_info->delayed_workers && |
| 2266 | fs_info->extent_workers && |
| 2267 | fs_info->qgroup_rescan_workers)) { |
| 2268 | return -ENOMEM; |
| 2269 | } |
| 2270 | |
| 2271 | return 0; |
| 2272 | } |
| 2273 | |
| 2274 | static int btrfs_replay_log(struct btrfs_fs_info *fs_info, |
| 2275 | struct btrfs_fs_devices *fs_devices) |
| 2276 | { |
| 2277 | int ret; |
| 2278 | struct btrfs_root *log_tree_root; |
| 2279 | struct btrfs_super_block *disk_super = fs_info->super_copy; |
| 2280 | u64 bytenr = btrfs_super_log_root(disk_super); |
| 2281 | |
| 2282 | if (fs_devices->rw_devices == 0) { |
| 2283 | btrfs_warn(fs_info, "log replay required on RO media"); |
| 2284 | return -EIO; |
| 2285 | } |
| 2286 | |
| 2287 | log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); |
| 2288 | if (!log_tree_root) |
| 2289 | return -ENOMEM; |
| 2290 | |
| 2291 | __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); |
| 2292 | |
| 2293 | log_tree_root->node = read_tree_block(fs_info, bytenr, |
| 2294 | fs_info->generation + 1); |
| 2295 | if (IS_ERR(log_tree_root->node)) { |
| 2296 | btrfs_warn(fs_info, "failed to read log tree"); |
| 2297 | ret = PTR_ERR(log_tree_root->node); |
| 2298 | kfree(log_tree_root); |
| 2299 | return ret; |
| 2300 | } else if (!extent_buffer_uptodate(log_tree_root->node)) { |
| 2301 | btrfs_err(fs_info, "failed to read log tree"); |
| 2302 | free_extent_buffer(log_tree_root->node); |
| 2303 | kfree(log_tree_root); |
| 2304 | return -EIO; |
| 2305 | } |
| 2306 | /* returns with log_tree_root freed on success */ |
| 2307 | ret = btrfs_recover_log_trees(log_tree_root); |
| 2308 | if (ret) { |
| 2309 | btrfs_handle_fs_error(fs_info, ret, |
| 2310 | "Failed to recover log tree"); |
| 2311 | free_extent_buffer(log_tree_root->node); |
| 2312 | kfree(log_tree_root); |
| 2313 | return ret; |
| 2314 | } |
| 2315 | |
| 2316 | if (sb_rdonly(fs_info->sb)) { |
| 2317 | ret = btrfs_commit_super(fs_info); |
| 2318 | if (ret) |
| 2319 | return ret; |
| 2320 | } |
| 2321 | |
| 2322 | return 0; |
| 2323 | } |
| 2324 | |
| 2325 | static int btrfs_read_roots(struct btrfs_fs_info *fs_info) |
| 2326 | { |
| 2327 | struct btrfs_root *tree_root = fs_info->tree_root; |
| 2328 | struct btrfs_root *root; |
| 2329 | struct btrfs_key location; |
| 2330 | int ret; |
| 2331 | |
| 2332 | BUG_ON(!fs_info->tree_root); |
| 2333 | |
| 2334 | location.objectid = BTRFS_EXTENT_TREE_OBJECTID; |
| 2335 | location.type = BTRFS_ROOT_ITEM_KEY; |
| 2336 | location.offset = 0; |
| 2337 | |
| 2338 | root = btrfs_read_tree_root(tree_root, &location); |
| 2339 | if (IS_ERR(root)) |
| 2340 | return PTR_ERR(root); |
| 2341 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2342 | fs_info->extent_root = root; |
| 2343 | |
| 2344 | location.objectid = BTRFS_DEV_TREE_OBJECTID; |
| 2345 | root = btrfs_read_tree_root(tree_root, &location); |
| 2346 | if (IS_ERR(root)) |
| 2347 | return PTR_ERR(root); |
| 2348 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2349 | fs_info->dev_root = root; |
| 2350 | btrfs_init_devices_late(fs_info); |
| 2351 | |
| 2352 | location.objectid = BTRFS_CSUM_TREE_OBJECTID; |
| 2353 | root = btrfs_read_tree_root(tree_root, &location); |
| 2354 | if (IS_ERR(root)) |
| 2355 | return PTR_ERR(root); |
| 2356 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2357 | fs_info->csum_root = root; |
| 2358 | |
| 2359 | location.objectid = BTRFS_QUOTA_TREE_OBJECTID; |
| 2360 | root = btrfs_read_tree_root(tree_root, &location); |
| 2361 | if (!IS_ERR(root)) { |
| 2362 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2363 | set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); |
| 2364 | fs_info->quota_root = root; |
| 2365 | } |
| 2366 | |
| 2367 | location.objectid = BTRFS_UUID_TREE_OBJECTID; |
| 2368 | root = btrfs_read_tree_root(tree_root, &location); |
| 2369 | if (IS_ERR(root)) { |
| 2370 | ret = PTR_ERR(root); |
| 2371 | if (ret != -ENOENT) |
| 2372 | return ret; |
| 2373 | } else { |
| 2374 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2375 | fs_info->uuid_root = root; |
| 2376 | } |
| 2377 | |
| 2378 | if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { |
| 2379 | location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; |
| 2380 | root = btrfs_read_tree_root(tree_root, &location); |
| 2381 | if (IS_ERR(root)) |
| 2382 | return PTR_ERR(root); |
| 2383 | set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| 2384 | fs_info->free_space_root = root; |
| 2385 | } |
| 2386 | |
| 2387 | return 0; |
| 2388 | } |
| 2389 | |
| 2390 | int open_ctree(struct super_block *sb, |
| 2391 | struct btrfs_fs_devices *fs_devices, |
| 2392 | char *options) |
| 2393 | { |
| 2394 | u32 sectorsize; |
| 2395 | u32 nodesize; |
| 2396 | u32 stripesize; |
| 2397 | u64 generation; |
| 2398 | u64 features; |
| 2399 | struct btrfs_key location; |
| 2400 | struct buffer_head *bh; |
| 2401 | struct btrfs_super_block *disk_super; |
| 2402 | struct btrfs_fs_info *fs_info = btrfs_sb(sb); |
| 2403 | struct btrfs_root *tree_root; |
| 2404 | struct btrfs_root *chunk_root; |
| 2405 | int ret; |
| 2406 | int err = -EINVAL; |
| 2407 | int num_backups_tried = 0; |
| 2408 | int backup_index = 0; |
| 2409 | int max_active; |
| 2410 | int clear_free_space_tree = 0; |
| 2411 | |
| 2412 | tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); |
| 2413 | chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); |
| 2414 | if (!tree_root || !chunk_root) { |
| 2415 | err = -ENOMEM; |
| 2416 | goto fail; |
| 2417 | } |
| 2418 | |
| 2419 | ret = init_srcu_struct(&fs_info->subvol_srcu); |
| 2420 | if (ret) { |
| 2421 | err = ret; |
| 2422 | goto fail; |
| 2423 | } |
| 2424 | |
| 2425 | ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); |
| 2426 | if (ret) { |
| 2427 | err = ret; |
| 2428 | goto fail_srcu; |
| 2429 | } |
| 2430 | fs_info->dirty_metadata_batch = PAGE_SIZE * |
| 2431 | (1 + ilog2(nr_cpu_ids)); |
| 2432 | |
| 2433 | ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); |
| 2434 | if (ret) { |
| 2435 | err = ret; |
| 2436 | goto fail_dirty_metadata_bytes; |
| 2437 | } |
| 2438 | |
| 2439 | ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); |
| 2440 | if (ret) { |
| 2441 | err = ret; |
| 2442 | goto fail_delalloc_bytes; |
| 2443 | } |
| 2444 | |
| 2445 | fs_info->btree_inode = new_inode(sb); |
| 2446 | if (!fs_info->btree_inode) { |
| 2447 | err = -ENOMEM; |
| 2448 | goto fail_bio_counter; |
| 2449 | } |
| 2450 | |
| 2451 | mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); |
| 2452 | |
| 2453 | INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); |
| 2454 | INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); |
| 2455 | INIT_LIST_HEAD(&fs_info->trans_list); |
| 2456 | INIT_LIST_HEAD(&fs_info->dead_roots); |
| 2457 | INIT_LIST_HEAD(&fs_info->delayed_iputs); |
| 2458 | INIT_LIST_HEAD(&fs_info->delalloc_roots); |
| 2459 | INIT_LIST_HEAD(&fs_info->caching_block_groups); |
| 2460 | spin_lock_init(&fs_info->delalloc_root_lock); |
| 2461 | spin_lock_init(&fs_info->trans_lock); |
| 2462 | spin_lock_init(&fs_info->fs_roots_radix_lock); |
| 2463 | spin_lock_init(&fs_info->delayed_iput_lock); |
| 2464 | spin_lock_init(&fs_info->defrag_inodes_lock); |
| 2465 | spin_lock_init(&fs_info->super_lock); |
| 2466 | spin_lock_init(&fs_info->qgroup_op_lock); |
| 2467 | spin_lock_init(&fs_info->buffer_lock); |
| 2468 | spin_lock_init(&fs_info->unused_bgs_lock); |
| 2469 | rwlock_init(&fs_info->tree_mod_log_lock); |
| 2470 | mutex_init(&fs_info->unused_bg_unpin_mutex); |
| 2471 | mutex_init(&fs_info->delete_unused_bgs_mutex); |
| 2472 | mutex_init(&fs_info->reloc_mutex); |
| 2473 | mutex_init(&fs_info->delalloc_root_mutex); |
| 2474 | mutex_init(&fs_info->cleaner_delayed_iput_mutex); |
| 2475 | seqlock_init(&fs_info->profiles_lock); |
| 2476 | |
| 2477 | INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); |
| 2478 | INIT_LIST_HEAD(&fs_info->space_info); |
| 2479 | INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); |
| 2480 | INIT_LIST_HEAD(&fs_info->unused_bgs); |
| 2481 | btrfs_mapping_init(&fs_info->mapping_tree); |
| 2482 | btrfs_init_block_rsv(&fs_info->global_block_rsv, |
| 2483 | BTRFS_BLOCK_RSV_GLOBAL); |
| 2484 | btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, |
| 2485 | BTRFS_BLOCK_RSV_DELALLOC); |
| 2486 | btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); |
| 2487 | btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); |
| 2488 | btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); |
| 2489 | btrfs_init_block_rsv(&fs_info->delayed_block_rsv, |
| 2490 | BTRFS_BLOCK_RSV_DELOPS); |
| 2491 | atomic_set(&fs_info->nr_async_submits, 0); |
| 2492 | atomic_set(&fs_info->async_delalloc_pages, 0); |
| 2493 | atomic_set(&fs_info->async_submit_draining, 0); |
| 2494 | atomic_set(&fs_info->nr_async_bios, 0); |
| 2495 | atomic_set(&fs_info->defrag_running, 0); |
| 2496 | atomic_set(&fs_info->qgroup_op_seq, 0); |
| 2497 | atomic_set(&fs_info->reada_works_cnt, 0); |
| 2498 | atomic64_set(&fs_info->tree_mod_seq, 0); |
| 2499 | fs_info->sb = sb; |
| 2500 | fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; |
| 2501 | fs_info->metadata_ratio = 0; |
| 2502 | fs_info->defrag_inodes = RB_ROOT; |
| 2503 | atomic64_set(&fs_info->free_chunk_space, 0); |
| 2504 | fs_info->tree_mod_log = RB_ROOT; |
| 2505 | fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; |
| 2506 | fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ |
| 2507 | /* readahead state */ |
| 2508 | INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); |
| 2509 | spin_lock_init(&fs_info->reada_lock); |
| 2510 | |
| 2511 | fs_info->thread_pool_size = min_t(unsigned long, |
| 2512 | num_online_cpus() + 2, 8); |
| 2513 | |
| 2514 | INIT_LIST_HEAD(&fs_info->ordered_roots); |
| 2515 | spin_lock_init(&fs_info->ordered_root_lock); |
| 2516 | fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), |
| 2517 | GFP_KERNEL); |
| 2518 | if (!fs_info->delayed_root) { |
| 2519 | err = -ENOMEM; |
| 2520 | goto fail_iput; |
| 2521 | } |
| 2522 | btrfs_init_delayed_root(fs_info->delayed_root); |
| 2523 | |
| 2524 | btrfs_init_scrub(fs_info); |
| 2525 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY |
| 2526 | fs_info->check_integrity_print_mask = 0; |
| 2527 | #endif |
| 2528 | btrfs_init_balance(fs_info); |
| 2529 | btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); |
| 2530 | |
| 2531 | sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; |
| 2532 | sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); |
| 2533 | |
| 2534 | btrfs_init_btree_inode(fs_info); |
| 2535 | |
| 2536 | spin_lock_init(&fs_info->block_group_cache_lock); |
| 2537 | fs_info->block_group_cache_tree = RB_ROOT; |
| 2538 | fs_info->first_logical_byte = (u64)-1; |
| 2539 | |
| 2540 | extent_io_tree_init(&fs_info->freed_extents[0], NULL); |
| 2541 | extent_io_tree_init(&fs_info->freed_extents[1], NULL); |
| 2542 | fs_info->pinned_extents = &fs_info->freed_extents[0]; |
| 2543 | set_bit(BTRFS_FS_BARRIER, &fs_info->flags); |
| 2544 | |
| 2545 | mutex_init(&fs_info->ordered_operations_mutex); |
| 2546 | mutex_init(&fs_info->tree_log_mutex); |
| 2547 | mutex_init(&fs_info->chunk_mutex); |
| 2548 | mutex_init(&fs_info->transaction_kthread_mutex); |
| 2549 | mutex_init(&fs_info->cleaner_mutex); |
| 2550 | mutex_init(&fs_info->volume_mutex); |
| 2551 | mutex_init(&fs_info->ro_block_group_mutex); |
| 2552 | init_rwsem(&fs_info->commit_root_sem); |
| 2553 | init_rwsem(&fs_info->cleanup_work_sem); |
| 2554 | init_rwsem(&fs_info->subvol_sem); |
| 2555 | sema_init(&fs_info->uuid_tree_rescan_sem, 1); |
| 2556 | |
| 2557 | btrfs_init_dev_replace_locks(fs_info); |
| 2558 | btrfs_init_qgroup(fs_info); |
| 2559 | |
| 2560 | btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); |
| 2561 | btrfs_init_free_cluster(&fs_info->data_alloc_cluster); |
| 2562 | |
| 2563 | init_waitqueue_head(&fs_info->transaction_throttle); |
| 2564 | init_waitqueue_head(&fs_info->transaction_wait); |
| 2565 | init_waitqueue_head(&fs_info->transaction_blocked_wait); |
| 2566 | init_waitqueue_head(&fs_info->async_submit_wait); |
| 2567 | |
| 2568 | INIT_LIST_HEAD(&fs_info->pinned_chunks); |
| 2569 | |
| 2570 | /* Usable values until the real ones are cached from the superblock */ |
| 2571 | fs_info->nodesize = 4096; |
| 2572 | fs_info->sectorsize = 4096; |
| 2573 | fs_info->stripesize = 4096; |
| 2574 | |
| 2575 | ret = btrfs_alloc_stripe_hash_table(fs_info); |
| 2576 | if (ret) { |
| 2577 | err = ret; |
| 2578 | goto fail_alloc; |
| 2579 | } |
| 2580 | |
| 2581 | __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); |
| 2582 | |
| 2583 | invalidate_bdev(fs_devices->latest_bdev); |
| 2584 | |
| 2585 | /* |
| 2586 | * Read super block and check the signature bytes only |
| 2587 | */ |
| 2588 | bh = btrfs_read_dev_super(fs_devices->latest_bdev); |
| 2589 | if (IS_ERR(bh)) { |
| 2590 | err = PTR_ERR(bh); |
| 2591 | goto fail_alloc; |
| 2592 | } |
| 2593 | |
| 2594 | /* |
| 2595 | * We want to check superblock checksum, the type is stored inside. |
| 2596 | * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). |
| 2597 | */ |
| 2598 | if (btrfs_check_super_csum(fs_info, bh->b_data)) { |
| 2599 | btrfs_err(fs_info, "superblock checksum mismatch"); |
| 2600 | err = -EINVAL; |
| 2601 | brelse(bh); |
| 2602 | goto fail_alloc; |
| 2603 | } |
| 2604 | |
| 2605 | /* |
| 2606 | * super_copy is zeroed at allocation time and we never touch the |
| 2607 | * following bytes up to INFO_SIZE, the checksum is calculated from |
| 2608 | * the whole block of INFO_SIZE |
| 2609 | */ |
| 2610 | memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); |
| 2611 | memcpy(fs_info->super_for_commit, fs_info->super_copy, |
| 2612 | sizeof(*fs_info->super_for_commit)); |
| 2613 | brelse(bh); |
| 2614 | |
| 2615 | memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); |
| 2616 | |
| 2617 | ret = btrfs_check_super_valid(fs_info); |
| 2618 | if (ret) { |
| 2619 | btrfs_err(fs_info, "superblock contains fatal errors"); |
| 2620 | err = -EINVAL; |
| 2621 | goto fail_alloc; |
| 2622 | } |
| 2623 | |
| 2624 | disk_super = fs_info->super_copy; |
| 2625 | if (!btrfs_super_root(disk_super)) |
| 2626 | goto fail_alloc; |
| 2627 | |
| 2628 | /* check FS state, whether FS is broken. */ |
| 2629 | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) |
| 2630 | set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); |
| 2631 | |
| 2632 | /* |
| 2633 | * run through our array of backup supers and setup |
| 2634 | * our ring pointer to the oldest one |
| 2635 | */ |
| 2636 | generation = btrfs_super_generation(disk_super); |
| 2637 | find_oldest_super_backup(fs_info, generation); |
| 2638 | |
| 2639 | /* |
| 2640 | * In the long term, we'll store the compression type in the super |
| 2641 | * block, and it'll be used for per file compression control. |
| 2642 | */ |
| 2643 | fs_info->compress_type = BTRFS_COMPRESS_ZLIB; |
| 2644 | |
| 2645 | ret = btrfs_parse_options(fs_info, options, sb->s_flags); |
| 2646 | if (ret) { |
| 2647 | err = ret; |
| 2648 | goto fail_alloc; |
| 2649 | } |
| 2650 | |
| 2651 | features = btrfs_super_incompat_flags(disk_super) & |
| 2652 | ~BTRFS_FEATURE_INCOMPAT_SUPP; |
| 2653 | if (features) { |
| 2654 | btrfs_err(fs_info, |
| 2655 | "cannot mount because of unsupported optional features (%llx)", |
| 2656 | features); |
| 2657 | err = -EINVAL; |
| 2658 | goto fail_alloc; |
| 2659 | } |
| 2660 | |
| 2661 | features = btrfs_super_incompat_flags(disk_super); |
| 2662 | features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; |
| 2663 | if (fs_info->compress_type == BTRFS_COMPRESS_LZO) |
| 2664 | features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; |
| 2665 | else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) |
| 2666 | features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; |
| 2667 | |
| 2668 | if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) |
| 2669 | btrfs_info(fs_info, "has skinny extents"); |
| 2670 | |
| 2671 | /* |
| 2672 | * flag our filesystem as having big metadata blocks if |
| 2673 | * they are bigger than the page size |
| 2674 | */ |
| 2675 | if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { |
| 2676 | if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) |
| 2677 | btrfs_info(fs_info, |
| 2678 | "flagging fs with big metadata feature"); |
| 2679 | features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; |
| 2680 | } |
| 2681 | |
| 2682 | nodesize = btrfs_super_nodesize(disk_super); |
| 2683 | sectorsize = btrfs_super_sectorsize(disk_super); |
| 2684 | stripesize = sectorsize; |
| 2685 | fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); |
| 2686 | fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); |
| 2687 | |
| 2688 | /* Cache block sizes */ |
| 2689 | fs_info->nodesize = nodesize; |
| 2690 | fs_info->sectorsize = sectorsize; |
| 2691 | fs_info->stripesize = stripesize; |
| 2692 | |
| 2693 | /* |
| 2694 | * mixed block groups end up with duplicate but slightly offset |
| 2695 | * extent buffers for the same range. It leads to corruptions |
| 2696 | */ |
| 2697 | if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && |
| 2698 | (sectorsize != nodesize)) { |
| 2699 | btrfs_err(fs_info, |
| 2700 | "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", |
| 2701 | nodesize, sectorsize); |
| 2702 | goto fail_alloc; |
| 2703 | } |
| 2704 | |
| 2705 | /* |
| 2706 | * Needn't use the lock because there is no other task which will |
| 2707 | * update the flag. |
| 2708 | */ |
| 2709 | btrfs_set_super_incompat_flags(disk_super, features); |
| 2710 | |
| 2711 | features = btrfs_super_compat_ro_flags(disk_super) & |
| 2712 | ~BTRFS_FEATURE_COMPAT_RO_SUPP; |
| 2713 | if (!sb_rdonly(sb) && features) { |
| 2714 | btrfs_err(fs_info, |
| 2715 | "cannot mount read-write because of unsupported optional features (%llx)", |
| 2716 | features); |
| 2717 | err = -EINVAL; |
| 2718 | goto fail_alloc; |
| 2719 | } |
| 2720 | |
| 2721 | max_active = fs_info->thread_pool_size; |
| 2722 | |
| 2723 | ret = btrfs_init_workqueues(fs_info, fs_devices); |
| 2724 | if (ret) { |
| 2725 | err = ret; |
| 2726 | goto fail_sb_buffer; |
| 2727 | } |
| 2728 | |
| 2729 | sb->s_bdi->congested_fn = btrfs_congested_fn; |
| 2730 | sb->s_bdi->congested_data = fs_info; |
| 2731 | sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; |
| 2732 | sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; |
| 2733 | sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); |
| 2734 | sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); |
| 2735 | |
| 2736 | sb->s_blocksize = sectorsize; |
| 2737 | sb->s_blocksize_bits = blksize_bits(sectorsize); |
| 2738 | |
| 2739 | mutex_lock(&fs_info->chunk_mutex); |
| 2740 | ret = btrfs_read_sys_array(fs_info); |
| 2741 | mutex_unlock(&fs_info->chunk_mutex); |
| 2742 | if (ret) { |
| 2743 | btrfs_err(fs_info, "failed to read the system array: %d", ret); |
| 2744 | goto fail_sb_buffer; |
| 2745 | } |
| 2746 | |
| 2747 | generation = btrfs_super_chunk_root_generation(disk_super); |
| 2748 | |
| 2749 | __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); |
| 2750 | |
| 2751 | chunk_root->node = read_tree_block(fs_info, |
| 2752 | btrfs_super_chunk_root(disk_super), |
| 2753 | generation); |
| 2754 | if (IS_ERR(chunk_root->node) || |
| 2755 | !extent_buffer_uptodate(chunk_root->node)) { |
| 2756 | btrfs_err(fs_info, "failed to read chunk root"); |
| 2757 | if (!IS_ERR(chunk_root->node)) |
| 2758 | free_extent_buffer(chunk_root->node); |
| 2759 | chunk_root->node = NULL; |
| 2760 | goto fail_tree_roots; |
| 2761 | } |
| 2762 | btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); |
| 2763 | chunk_root->commit_root = btrfs_root_node(chunk_root); |
| 2764 | |
| 2765 | read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, |
| 2766 | btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); |
| 2767 | |
| 2768 | ret = btrfs_read_chunk_tree(fs_info); |
| 2769 | if (ret) { |
| 2770 | btrfs_err(fs_info, "failed to read chunk tree: %d", ret); |
| 2771 | goto fail_tree_roots; |
| 2772 | } |
| 2773 | |
| 2774 | /* |
| 2775 | * keep the device that is marked to be the target device for the |
| 2776 | * dev_replace procedure |
| 2777 | */ |
| 2778 | btrfs_close_extra_devices(fs_devices, 0); |
| 2779 | |
| 2780 | if (!fs_devices->latest_bdev) { |
| 2781 | btrfs_err(fs_info, "failed to read devices"); |
| 2782 | goto fail_tree_roots; |
| 2783 | } |
| 2784 | |
| 2785 | retry_root_backup: |
| 2786 | generation = btrfs_super_generation(disk_super); |
| 2787 | |
| 2788 | tree_root->node = read_tree_block(fs_info, |
| 2789 | btrfs_super_root(disk_super), |
| 2790 | generation); |
| 2791 | if (IS_ERR(tree_root->node) || |
| 2792 | !extent_buffer_uptodate(tree_root->node)) { |
| 2793 | btrfs_warn(fs_info, "failed to read tree root"); |
| 2794 | if (!IS_ERR(tree_root->node)) |
| 2795 | free_extent_buffer(tree_root->node); |
| 2796 | tree_root->node = NULL; |
| 2797 | goto recovery_tree_root; |
| 2798 | } |
| 2799 | |
| 2800 | btrfs_set_root_node(&tree_root->root_item, tree_root->node); |
| 2801 | tree_root->commit_root = btrfs_root_node(tree_root); |
| 2802 | btrfs_set_root_refs(&tree_root->root_item, 1); |
| 2803 | |
| 2804 | mutex_lock(&tree_root->objectid_mutex); |
| 2805 | ret = btrfs_find_highest_objectid(tree_root, |
| 2806 | &tree_root->highest_objectid); |
| 2807 | if (ret) { |
| 2808 | mutex_unlock(&tree_root->objectid_mutex); |
| 2809 | goto recovery_tree_root; |
| 2810 | } |
| 2811 | |
| 2812 | ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); |
| 2813 | |
| 2814 | mutex_unlock(&tree_root->objectid_mutex); |
| 2815 | |
| 2816 | ret = btrfs_read_roots(fs_info); |
| 2817 | if (ret) |
| 2818 | goto recovery_tree_root; |
| 2819 | |
| 2820 | fs_info->generation = generation; |
| 2821 | fs_info->last_trans_committed = generation; |
| 2822 | |
| 2823 | ret = btrfs_recover_balance(fs_info); |
| 2824 | if (ret) { |
| 2825 | btrfs_err(fs_info, "failed to recover balance: %d", ret); |
| 2826 | goto fail_block_groups; |
| 2827 | } |
| 2828 | |
| 2829 | ret = btrfs_init_dev_stats(fs_info); |
| 2830 | if (ret) { |
| 2831 | btrfs_err(fs_info, "failed to init dev_stats: %d", ret); |
| 2832 | goto fail_block_groups; |
| 2833 | } |
| 2834 | |
| 2835 | ret = btrfs_init_dev_replace(fs_info); |
| 2836 | if (ret) { |
| 2837 | btrfs_err(fs_info, "failed to init dev_replace: %d", ret); |
| 2838 | goto fail_block_groups; |
| 2839 | } |
| 2840 | |
| 2841 | btrfs_close_extra_devices(fs_devices, 1); |
| 2842 | |
| 2843 | ret = btrfs_sysfs_add_fsid(fs_devices, NULL); |
| 2844 | if (ret) { |
| 2845 | btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", |
| 2846 | ret); |
| 2847 | goto fail_block_groups; |
| 2848 | } |
| 2849 | |
| 2850 | ret = btrfs_sysfs_add_device(fs_devices); |
| 2851 | if (ret) { |
| 2852 | btrfs_err(fs_info, "failed to init sysfs device interface: %d", |
| 2853 | ret); |
| 2854 | goto fail_fsdev_sysfs; |
| 2855 | } |
| 2856 | |
| 2857 | ret = btrfs_sysfs_add_mounted(fs_info); |
| 2858 | if (ret) { |
| 2859 | btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); |
| 2860 | goto fail_fsdev_sysfs; |
| 2861 | } |
| 2862 | |
| 2863 | ret = btrfs_init_space_info(fs_info); |
| 2864 | if (ret) { |
| 2865 | btrfs_err(fs_info, "failed to initialize space info: %d", ret); |
| 2866 | goto fail_sysfs; |
| 2867 | } |
| 2868 | |
| 2869 | ret = btrfs_read_block_groups(fs_info); |
| 2870 | if (ret) { |
| 2871 | btrfs_err(fs_info, "failed to read block groups: %d", ret); |
| 2872 | goto fail_sysfs; |
| 2873 | } |
| 2874 | |
| 2875 | if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) { |
| 2876 | btrfs_warn(fs_info, |
| 2877 | "writeable mount is not allowed due to too many missing devices"); |
| 2878 | goto fail_sysfs; |
| 2879 | } |
| 2880 | |
| 2881 | fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, |
| 2882 | "btrfs-cleaner"); |
| 2883 | if (IS_ERR(fs_info->cleaner_kthread)) |
| 2884 | goto fail_sysfs; |
| 2885 | |
| 2886 | fs_info->transaction_kthread = kthread_run(transaction_kthread, |
| 2887 | tree_root, |
| 2888 | "btrfs-transaction"); |
| 2889 | if (IS_ERR(fs_info->transaction_kthread)) |
| 2890 | goto fail_cleaner; |
| 2891 | |
| 2892 | if (!btrfs_test_opt(fs_info, NOSSD) && |
| 2893 | !fs_info->fs_devices->rotating) { |
| 2894 | btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); |
| 2895 | } |
| 2896 | |
| 2897 | /* |
| 2898 | * Mount does not set all options immediately, we can do it now and do |
| 2899 | * not have to wait for transaction commit |
| 2900 | */ |
| 2901 | btrfs_apply_pending_changes(fs_info); |
| 2902 | |
| 2903 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY |
| 2904 | if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { |
| 2905 | ret = btrfsic_mount(fs_info, fs_devices, |
| 2906 | btrfs_test_opt(fs_info, |
| 2907 | CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? |
| 2908 | 1 : 0, |
| 2909 | fs_info->check_integrity_print_mask); |
| 2910 | if (ret) |
| 2911 | btrfs_warn(fs_info, |
| 2912 | "failed to initialize integrity check module: %d", |
| 2913 | ret); |
| 2914 | } |
| 2915 | #endif |
| 2916 | ret = btrfs_read_qgroup_config(fs_info); |
| 2917 | if (ret) |
| 2918 | goto fail_trans_kthread; |
| 2919 | |
| 2920 | /* do not make disk changes in broken FS or nologreplay is given */ |
| 2921 | if (btrfs_super_log_root(disk_super) != 0 && |
| 2922 | !btrfs_test_opt(fs_info, NOLOGREPLAY)) { |
| 2923 | btrfs_info(fs_info, "start tree-log replay"); |
| 2924 | ret = btrfs_replay_log(fs_info, fs_devices); |
| 2925 | if (ret) { |
| 2926 | err = ret; |
| 2927 | goto fail_qgroup; |
| 2928 | } |
| 2929 | } |
| 2930 | |
| 2931 | ret = btrfs_find_orphan_roots(fs_info); |
| 2932 | if (ret) |
| 2933 | goto fail_qgroup; |
| 2934 | |
| 2935 | if (!sb_rdonly(sb)) { |
| 2936 | ret = btrfs_cleanup_fs_roots(fs_info); |
| 2937 | if (ret) |
| 2938 | goto fail_qgroup; |
| 2939 | |
| 2940 | mutex_lock(&fs_info->cleaner_mutex); |
| 2941 | ret = btrfs_recover_relocation(tree_root); |
| 2942 | mutex_unlock(&fs_info->cleaner_mutex); |
| 2943 | if (ret < 0) { |
| 2944 | btrfs_warn(fs_info, "failed to recover relocation: %d", |
| 2945 | ret); |
| 2946 | err = -EINVAL; |
| 2947 | goto fail_qgroup; |
| 2948 | } |
| 2949 | } |
| 2950 | |
| 2951 | location.objectid = BTRFS_FS_TREE_OBJECTID; |
| 2952 | location.type = BTRFS_ROOT_ITEM_KEY; |
| 2953 | location.offset = 0; |
| 2954 | |
| 2955 | fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); |
| 2956 | if (IS_ERR(fs_info->fs_root)) { |
| 2957 | err = PTR_ERR(fs_info->fs_root); |
| 2958 | goto fail_qgroup; |
| 2959 | } |
| 2960 | |
| 2961 | if (sb_rdonly(sb)) |
| 2962 | return 0; |
| 2963 | |
| 2964 | if (btrfs_test_opt(fs_info, CLEAR_CACHE) && |
| 2965 | btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { |
| 2966 | clear_free_space_tree = 1; |
| 2967 | } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && |
| 2968 | !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { |
| 2969 | btrfs_warn(fs_info, "free space tree is invalid"); |
| 2970 | clear_free_space_tree = 1; |
| 2971 | } |
| 2972 | |
| 2973 | if (clear_free_space_tree) { |
| 2974 | btrfs_info(fs_info, "clearing free space tree"); |
| 2975 | ret = btrfs_clear_free_space_tree(fs_info); |
| 2976 | if (ret) { |
| 2977 | btrfs_warn(fs_info, |
| 2978 | "failed to clear free space tree: %d", ret); |
| 2979 | close_ctree(fs_info); |
| 2980 | return ret; |
| 2981 | } |
| 2982 | } |
| 2983 | |
| 2984 | if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && |
| 2985 | !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { |
| 2986 | btrfs_info(fs_info, "creating free space tree"); |
| 2987 | ret = btrfs_create_free_space_tree(fs_info); |
| 2988 | if (ret) { |
| 2989 | btrfs_warn(fs_info, |
| 2990 | "failed to create free space tree: %d", ret); |
| 2991 | close_ctree(fs_info); |
| 2992 | return ret; |
| 2993 | } |
| 2994 | } |
| 2995 | |
| 2996 | down_read(&fs_info->cleanup_work_sem); |
| 2997 | if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || |
| 2998 | (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { |
| 2999 | up_read(&fs_info->cleanup_work_sem); |
| 3000 | close_ctree(fs_info); |
| 3001 | return ret; |
| 3002 | } |
| 3003 | up_read(&fs_info->cleanup_work_sem); |
| 3004 | |
| 3005 | ret = btrfs_resume_balance_async(fs_info); |
| 3006 | if (ret) { |
| 3007 | btrfs_warn(fs_info, "failed to resume balance: %d", ret); |
| 3008 | close_ctree(fs_info); |
| 3009 | return ret; |
| 3010 | } |
| 3011 | |
| 3012 | ret = btrfs_resume_dev_replace_async(fs_info); |
| 3013 | if (ret) { |
| 3014 | btrfs_warn(fs_info, "failed to resume device replace: %d", ret); |
| 3015 | close_ctree(fs_info); |
| 3016 | return ret; |
| 3017 | } |
| 3018 | |
| 3019 | btrfs_qgroup_rescan_resume(fs_info); |
| 3020 | |
| 3021 | if (!fs_info->uuid_root) { |
| 3022 | btrfs_info(fs_info, "creating UUID tree"); |
| 3023 | ret = btrfs_create_uuid_tree(fs_info); |
| 3024 | if (ret) { |
| 3025 | btrfs_warn(fs_info, |
| 3026 | "failed to create the UUID tree: %d", ret); |
| 3027 | close_ctree(fs_info); |
| 3028 | return ret; |
| 3029 | } |
| 3030 | } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || |
| 3031 | fs_info->generation != |
| 3032 | btrfs_super_uuid_tree_generation(disk_super)) { |
| 3033 | btrfs_info(fs_info, "checking UUID tree"); |
| 3034 | ret = btrfs_check_uuid_tree(fs_info); |
| 3035 | if (ret) { |
| 3036 | btrfs_warn(fs_info, |
| 3037 | "failed to check the UUID tree: %d", ret); |
| 3038 | close_ctree(fs_info); |
| 3039 | return ret; |
| 3040 | } |
| 3041 | } else { |
| 3042 | set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); |
| 3043 | } |
| 3044 | set_bit(BTRFS_FS_OPEN, &fs_info->flags); |
| 3045 | |
| 3046 | /* |
| 3047 | * backuproot only affect mount behavior, and if open_ctree succeeded, |
| 3048 | * no need to keep the flag |
| 3049 | */ |
| 3050 | btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); |
| 3051 | |
| 3052 | return 0; |
| 3053 | |
| 3054 | fail_qgroup: |
| 3055 | btrfs_free_qgroup_config(fs_info); |
| 3056 | fail_trans_kthread: |
| 3057 | kthread_stop(fs_info->transaction_kthread); |
| 3058 | btrfs_cleanup_transaction(fs_info); |
| 3059 | btrfs_free_fs_roots(fs_info); |
| 3060 | fail_cleaner: |
| 3061 | kthread_stop(fs_info->cleaner_kthread); |
| 3062 | |
| 3063 | /* |
| 3064 | * make sure we're done with the btree inode before we stop our |
| 3065 | * kthreads |
| 3066 | */ |
| 3067 | filemap_write_and_wait(fs_info->btree_inode->i_mapping); |
| 3068 | |
| 3069 | fail_sysfs: |
| 3070 | btrfs_sysfs_remove_mounted(fs_info); |
| 3071 | |
| 3072 | fail_fsdev_sysfs: |
| 3073 | btrfs_sysfs_remove_fsid(fs_info->fs_devices); |
| 3074 | |
| 3075 | fail_block_groups: |
| 3076 | btrfs_put_block_group_cache(fs_info); |
| 3077 | |
| 3078 | fail_tree_roots: |
| 3079 | free_root_pointers(fs_info, true); |
| 3080 | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); |
| 3081 | |
| 3082 | fail_sb_buffer: |
| 3083 | btrfs_stop_all_workers(fs_info); |
| 3084 | btrfs_free_block_groups(fs_info); |
| 3085 | fail_alloc: |
| 3086 | fail_iput: |
| 3087 | btrfs_mapping_tree_free(&fs_info->mapping_tree); |
| 3088 | |
| 3089 | iput(fs_info->btree_inode); |
| 3090 | fail_bio_counter: |
| 3091 | percpu_counter_destroy(&fs_info->bio_counter); |
| 3092 | fail_delalloc_bytes: |
| 3093 | percpu_counter_destroy(&fs_info->delalloc_bytes); |
| 3094 | fail_dirty_metadata_bytes: |
| 3095 | percpu_counter_destroy(&fs_info->dirty_metadata_bytes); |
| 3096 | fail_srcu: |
| 3097 | cleanup_srcu_struct(&fs_info->subvol_srcu); |
| 3098 | fail: |
| 3099 | btrfs_free_stripe_hash_table(fs_info); |
| 3100 | btrfs_close_devices(fs_info->fs_devices); |
| 3101 | return err; |
| 3102 | |
| 3103 | recovery_tree_root: |
| 3104 | if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) |
| 3105 | goto fail_tree_roots; |
| 3106 | |
| 3107 | free_root_pointers(fs_info, false); |
| 3108 | |
| 3109 | /* don't use the log in recovery mode, it won't be valid */ |
| 3110 | btrfs_set_super_log_root(disk_super, 0); |
| 3111 | |
| 3112 | /* we can't trust the free space cache either */ |
| 3113 | btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); |
| 3114 | |
| 3115 | ret = next_root_backup(fs_info, fs_info->super_copy, |
| 3116 | &num_backups_tried, &backup_index); |
| 3117 | if (ret == -1) |
| 3118 | goto fail_block_groups; |
| 3119 | goto retry_root_backup; |
| 3120 | } |
| 3121 | |
| 3122 | static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) |
| 3123 | { |
| 3124 | if (uptodate) { |
| 3125 | set_buffer_uptodate(bh); |
| 3126 | } else { |
| 3127 | struct btrfs_device *device = (struct btrfs_device *) |
| 3128 | bh->b_private; |
| 3129 | |
| 3130 | btrfs_warn_rl_in_rcu(device->fs_info, |
| 3131 | "lost page write due to IO error on %s", |
| 3132 | rcu_str_deref(device->name)); |
| 3133 | /* note, we don't set_buffer_write_io_error because we have |
| 3134 | * our own ways of dealing with the IO errors |
| 3135 | */ |
| 3136 | clear_buffer_uptodate(bh); |
| 3137 | btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); |
| 3138 | } |
| 3139 | unlock_buffer(bh); |
| 3140 | put_bh(bh); |
| 3141 | } |
| 3142 | |
| 3143 | int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, |
| 3144 | struct buffer_head **bh_ret) |
| 3145 | { |
| 3146 | struct buffer_head *bh; |
| 3147 | struct btrfs_super_block *super; |
| 3148 | u64 bytenr; |
| 3149 | |
| 3150 | bytenr = btrfs_sb_offset(copy_num); |
| 3151 | if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) |
| 3152 | return -EINVAL; |
| 3153 | |
| 3154 | bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); |
| 3155 | /* |
| 3156 | * If we fail to read from the underlying devices, as of now |
| 3157 | * the best option we have is to mark it EIO. |
| 3158 | */ |
| 3159 | if (!bh) |
| 3160 | return -EIO; |
| 3161 | |
| 3162 | super = (struct btrfs_super_block *)bh->b_data; |
| 3163 | if (btrfs_super_bytenr(super) != bytenr || |
| 3164 | btrfs_super_magic(super) != BTRFS_MAGIC) { |
| 3165 | brelse(bh); |
| 3166 | return -EINVAL; |
| 3167 | } |
| 3168 | |
| 3169 | *bh_ret = bh; |
| 3170 | return 0; |
| 3171 | } |
| 3172 | |
| 3173 | |
| 3174 | struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) |
| 3175 | { |
| 3176 | struct buffer_head *bh; |
| 3177 | struct buffer_head *latest = NULL; |
| 3178 | struct btrfs_super_block *super; |
| 3179 | int i; |
| 3180 | u64 transid = 0; |
| 3181 | int ret = -EINVAL; |
| 3182 | |
| 3183 | /* we would like to check all the supers, but that would make |
| 3184 | * a btrfs mount succeed after a mkfs from a different FS. |
| 3185 | * So, we need to add a special mount option to scan for |
| 3186 | * later supers, using BTRFS_SUPER_MIRROR_MAX instead |
| 3187 | */ |
| 3188 | for (i = 0; i < 1; i++) { |
| 3189 | ret = btrfs_read_dev_one_super(bdev, i, &bh); |
| 3190 | if (ret) |
| 3191 | continue; |
| 3192 | |
| 3193 | super = (struct btrfs_super_block *)bh->b_data; |
| 3194 | |
| 3195 | if (!latest || btrfs_super_generation(super) > transid) { |
| 3196 | brelse(latest); |
| 3197 | latest = bh; |
| 3198 | transid = btrfs_super_generation(super); |
| 3199 | } else { |
| 3200 | brelse(bh); |
| 3201 | } |
| 3202 | } |
| 3203 | |
| 3204 | if (!latest) |
| 3205 | return ERR_PTR(ret); |
| 3206 | |
| 3207 | return latest; |
| 3208 | } |
| 3209 | |
| 3210 | /* |
| 3211 | * Write superblock @sb to the @device. Do not wait for completion, all the |
| 3212 | * buffer heads we write are pinned. |
| 3213 | * |
| 3214 | * Write @max_mirrors copies of the superblock, where 0 means default that fit |
| 3215 | * the expected device size at commit time. Note that max_mirrors must be |
| 3216 | * same for write and wait phases. |
| 3217 | * |
| 3218 | * Return number of errors when buffer head is not found or submission fails. |
| 3219 | */ |
| 3220 | static int write_dev_supers(struct btrfs_device *device, |
| 3221 | struct btrfs_super_block *sb, int max_mirrors) |
| 3222 | { |
| 3223 | struct buffer_head *bh; |
| 3224 | int i; |
| 3225 | int ret; |
| 3226 | int errors = 0; |
| 3227 | u32 crc; |
| 3228 | u64 bytenr; |
| 3229 | int op_flags; |
| 3230 | |
| 3231 | if (max_mirrors == 0) |
| 3232 | max_mirrors = BTRFS_SUPER_MIRROR_MAX; |
| 3233 | |
| 3234 | for (i = 0; i < max_mirrors; i++) { |
| 3235 | bytenr = btrfs_sb_offset(i); |
| 3236 | if (bytenr + BTRFS_SUPER_INFO_SIZE >= |
| 3237 | device->commit_total_bytes) |
| 3238 | break; |
| 3239 | |
| 3240 | btrfs_set_super_bytenr(sb, bytenr); |
| 3241 | |
| 3242 | crc = ~(u32)0; |
| 3243 | crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, |
| 3244 | BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); |
| 3245 | btrfs_csum_final(crc, sb->csum); |
| 3246 | |
| 3247 | /* One reference for us, and we leave it for the caller */ |
| 3248 | bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, |
| 3249 | BTRFS_SUPER_INFO_SIZE); |
| 3250 | if (!bh) { |
| 3251 | btrfs_err(device->fs_info, |
| 3252 | "couldn't get super buffer head for bytenr %llu", |
| 3253 | bytenr); |
| 3254 | errors++; |
| 3255 | continue; |
| 3256 | } |
| 3257 | |
| 3258 | memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); |
| 3259 | |
| 3260 | /* one reference for submit_bh */ |
| 3261 | get_bh(bh); |
| 3262 | |
| 3263 | set_buffer_uptodate(bh); |
| 3264 | lock_buffer(bh); |
| 3265 | bh->b_end_io = btrfs_end_buffer_write_sync; |
| 3266 | bh->b_private = device; |
| 3267 | |
| 3268 | /* |
| 3269 | * we fua the first super. The others we allow |
| 3270 | * to go down lazy. |
| 3271 | */ |
| 3272 | op_flags = REQ_SYNC | REQ_META | REQ_PRIO; |
| 3273 | if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) |
| 3274 | op_flags |= REQ_FUA; |
| 3275 | ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); |
| 3276 | if (ret) |
| 3277 | errors++; |
| 3278 | } |
| 3279 | return errors < i ? 0 : -1; |
| 3280 | } |
| 3281 | |
| 3282 | /* |
| 3283 | * Wait for write completion of superblocks done by write_dev_supers, |
| 3284 | * @max_mirrors same for write and wait phases. |
| 3285 | * |
| 3286 | * Return number of errors when buffer head is not found or not marked up to |
| 3287 | * date. |
| 3288 | */ |
| 3289 | static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) |
| 3290 | { |
| 3291 | struct buffer_head *bh; |
| 3292 | int i; |
| 3293 | int errors = 0; |
| 3294 | u64 bytenr; |
| 3295 | |
| 3296 | if (max_mirrors == 0) |
| 3297 | max_mirrors = BTRFS_SUPER_MIRROR_MAX; |
| 3298 | |
| 3299 | for (i = 0; i < max_mirrors; i++) { |
| 3300 | bytenr = btrfs_sb_offset(i); |
| 3301 | if (bytenr + BTRFS_SUPER_INFO_SIZE >= |
| 3302 | device->commit_total_bytes) |
| 3303 | break; |
| 3304 | |
| 3305 | bh = __find_get_block(device->bdev, |
| 3306 | bytenr / BTRFS_BDEV_BLOCKSIZE, |
| 3307 | BTRFS_SUPER_INFO_SIZE); |
| 3308 | if (!bh) { |
| 3309 | errors++; |
| 3310 | continue; |
| 3311 | } |
| 3312 | wait_on_buffer(bh); |
| 3313 | if (!buffer_uptodate(bh)) |
| 3314 | errors++; |
| 3315 | |
| 3316 | /* drop our reference */ |
| 3317 | brelse(bh); |
| 3318 | |
| 3319 | /* drop the reference from the writing run */ |
| 3320 | brelse(bh); |
| 3321 | } |
| 3322 | |
| 3323 | return errors < i ? 0 : -1; |
| 3324 | } |
| 3325 | |
| 3326 | /* |
| 3327 | * endio for the write_dev_flush, this will wake anyone waiting |
| 3328 | * for the barrier when it is done |
| 3329 | */ |
| 3330 | static void btrfs_end_empty_barrier(struct bio *bio) |
| 3331 | { |
| 3332 | complete(bio->bi_private); |
| 3333 | } |
| 3334 | |
| 3335 | /* |
| 3336 | * Submit a flush request to the device if it supports it. Error handling is |
| 3337 | * done in the waiting counterpart. |
| 3338 | */ |
| 3339 | static void write_dev_flush(struct btrfs_device *device) |
| 3340 | { |
| 3341 | struct request_queue *q = bdev_get_queue(device->bdev); |
| 3342 | struct bio *bio = device->flush_bio; |
| 3343 | |
| 3344 | if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) |
| 3345 | return; |
| 3346 | |
| 3347 | bio_reset(bio); |
| 3348 | bio->bi_end_io = btrfs_end_empty_barrier; |
| 3349 | bio_set_dev(bio, device->bdev); |
| 3350 | bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; |
| 3351 | init_completion(&device->flush_wait); |
| 3352 | bio->bi_private = &device->flush_wait; |
| 3353 | |
| 3354 | btrfsic_submit_bio(bio); |
| 3355 | device->flush_bio_sent = 1; |
| 3356 | } |
| 3357 | |
| 3358 | /* |
| 3359 | * If the flush bio has been submitted by write_dev_flush, wait for it. |
| 3360 | */ |
| 3361 | static blk_status_t wait_dev_flush(struct btrfs_device *device) |
| 3362 | { |
| 3363 | struct bio *bio = device->flush_bio; |
| 3364 | |
| 3365 | if (!device->flush_bio_sent) |
| 3366 | return BLK_STS_OK; |
| 3367 | |
| 3368 | device->flush_bio_sent = 0; |
| 3369 | wait_for_completion_io(&device->flush_wait); |
| 3370 | |
| 3371 | return bio->bi_status; |
| 3372 | } |
| 3373 | |
| 3374 | static int check_barrier_error(struct btrfs_fs_info *fs_info) |
| 3375 | { |
| 3376 | if (!btrfs_check_rw_degradable(fs_info)) |
| 3377 | return -EIO; |
| 3378 | return 0; |
| 3379 | } |
| 3380 | |
| 3381 | /* |
| 3382 | * send an empty flush down to each device in parallel, |
| 3383 | * then wait for them |
| 3384 | */ |
| 3385 | static int barrier_all_devices(struct btrfs_fs_info *info) |
| 3386 | { |
| 3387 | struct list_head *head; |
| 3388 | struct btrfs_device *dev; |
| 3389 | int errors_wait = 0; |
| 3390 | blk_status_t ret; |
| 3391 | |
| 3392 | /* send down all the barriers */ |
| 3393 | head = &info->fs_devices->devices; |
| 3394 | list_for_each_entry_rcu(dev, head, dev_list) { |
| 3395 | if (dev->missing) |
| 3396 | continue; |
| 3397 | if (!dev->bdev) |
| 3398 | continue; |
| 3399 | if (!dev->in_fs_metadata || !dev->writeable) |
| 3400 | continue; |
| 3401 | |
| 3402 | write_dev_flush(dev); |
| 3403 | dev->last_flush_error = BLK_STS_OK; |
| 3404 | } |
| 3405 | |
| 3406 | /* wait for all the barriers */ |
| 3407 | list_for_each_entry_rcu(dev, head, dev_list) { |
| 3408 | if (dev->missing) |
| 3409 | continue; |
| 3410 | if (!dev->bdev) { |
| 3411 | errors_wait++; |
| 3412 | continue; |
| 3413 | } |
| 3414 | if (!dev->in_fs_metadata || !dev->writeable) |
| 3415 | continue; |
| 3416 | |
| 3417 | ret = wait_dev_flush(dev); |
| 3418 | if (ret) { |
| 3419 | dev->last_flush_error = ret; |
| 3420 | btrfs_dev_stat_inc_and_print(dev, |
| 3421 | BTRFS_DEV_STAT_FLUSH_ERRS); |
| 3422 | errors_wait++; |
| 3423 | } |
| 3424 | } |
| 3425 | |
| 3426 | if (errors_wait) { |
| 3427 | /* |
| 3428 | * At some point we need the status of all disks |
| 3429 | * to arrive at the volume status. So error checking |
| 3430 | * is being pushed to a separate loop. |
| 3431 | */ |
| 3432 | return check_barrier_error(info); |
| 3433 | } |
| 3434 | return 0; |
| 3435 | } |
| 3436 | |
| 3437 | int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) |
| 3438 | { |
| 3439 | int raid_type; |
| 3440 | int min_tolerated = INT_MAX; |
| 3441 | |
| 3442 | if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || |
| 3443 | (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) |
| 3444 | min_tolerated = min(min_tolerated, |
| 3445 | btrfs_raid_array[BTRFS_RAID_SINGLE]. |
| 3446 | tolerated_failures); |
| 3447 | |
| 3448 | for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { |
| 3449 | if (raid_type == BTRFS_RAID_SINGLE) |
| 3450 | continue; |
| 3451 | if (!(flags & btrfs_raid_group[raid_type])) |
| 3452 | continue; |
| 3453 | min_tolerated = min(min_tolerated, |
| 3454 | btrfs_raid_array[raid_type]. |
| 3455 | tolerated_failures); |
| 3456 | } |
| 3457 | |
| 3458 | if (min_tolerated == INT_MAX) { |
| 3459 | pr_warn("BTRFS: unknown raid flag: %llu", flags); |
| 3460 | min_tolerated = 0; |
| 3461 | } |
| 3462 | |
| 3463 | return min_tolerated; |
| 3464 | } |
| 3465 | |
| 3466 | int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) |
| 3467 | { |
| 3468 | struct list_head *head; |
| 3469 | struct btrfs_device *dev; |
| 3470 | struct btrfs_super_block *sb; |
| 3471 | struct btrfs_dev_item *dev_item; |
| 3472 | int ret; |
| 3473 | int do_barriers; |
| 3474 | int max_errors; |
| 3475 | int total_errors = 0; |
| 3476 | u64 flags; |
| 3477 | |
| 3478 | do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); |
| 3479 | |
| 3480 | /* |
| 3481 | * max_mirrors == 0 indicates we're from commit_transaction, |
| 3482 | * not from fsync where the tree roots in fs_info have not |
| 3483 | * been consistent on disk. |
| 3484 | */ |
| 3485 | if (max_mirrors == 0) |
| 3486 | backup_super_roots(fs_info); |
| 3487 | |
| 3488 | sb = fs_info->super_for_commit; |
| 3489 | dev_item = &sb->dev_item; |
| 3490 | |
| 3491 | mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| 3492 | head = &fs_info->fs_devices->devices; |
| 3493 | max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; |
| 3494 | |
| 3495 | if (do_barriers) { |
| 3496 | ret = barrier_all_devices(fs_info); |
| 3497 | if (ret) { |
| 3498 | mutex_unlock( |
| 3499 | &fs_info->fs_devices->device_list_mutex); |
| 3500 | btrfs_handle_fs_error(fs_info, ret, |
| 3501 | "errors while submitting device barriers."); |
| 3502 | return ret; |
| 3503 | } |
| 3504 | } |
| 3505 | |
| 3506 | list_for_each_entry_rcu(dev, head, dev_list) { |
| 3507 | if (!dev->bdev) { |
| 3508 | total_errors++; |
| 3509 | continue; |
| 3510 | } |
| 3511 | if (!dev->in_fs_metadata || !dev->writeable) |
| 3512 | continue; |
| 3513 | |
| 3514 | btrfs_set_stack_device_generation(dev_item, 0); |
| 3515 | btrfs_set_stack_device_type(dev_item, dev->type); |
| 3516 | btrfs_set_stack_device_id(dev_item, dev->devid); |
| 3517 | btrfs_set_stack_device_total_bytes(dev_item, |
| 3518 | dev->commit_total_bytes); |
| 3519 | btrfs_set_stack_device_bytes_used(dev_item, |
| 3520 | dev->commit_bytes_used); |
| 3521 | btrfs_set_stack_device_io_align(dev_item, dev->io_align); |
| 3522 | btrfs_set_stack_device_io_width(dev_item, dev->io_width); |
| 3523 | btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); |
| 3524 | memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); |
| 3525 | memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); |
| 3526 | |
| 3527 | flags = btrfs_super_flags(sb); |
| 3528 | btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); |
| 3529 | |
| 3530 | ret = write_dev_supers(dev, sb, max_mirrors); |
| 3531 | if (ret) |
| 3532 | total_errors++; |
| 3533 | } |
| 3534 | if (total_errors > max_errors) { |
| 3535 | btrfs_err(fs_info, "%d errors while writing supers", |
| 3536 | total_errors); |
| 3537 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3538 | |
| 3539 | /* FUA is masked off if unsupported and can't be the reason */ |
| 3540 | btrfs_handle_fs_error(fs_info, -EIO, |
| 3541 | "%d errors while writing supers", |
| 3542 | total_errors); |
| 3543 | return -EIO; |
| 3544 | } |
| 3545 | |
| 3546 | total_errors = 0; |
| 3547 | list_for_each_entry_rcu(dev, head, dev_list) { |
| 3548 | if (!dev->bdev) |
| 3549 | continue; |
| 3550 | if (!dev->in_fs_metadata || !dev->writeable) |
| 3551 | continue; |
| 3552 | |
| 3553 | ret = wait_dev_supers(dev, max_mirrors); |
| 3554 | if (ret) |
| 3555 | total_errors++; |
| 3556 | } |
| 3557 | mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| 3558 | if (total_errors > max_errors) { |
| 3559 | btrfs_handle_fs_error(fs_info, -EIO, |
| 3560 | "%d errors while writing supers", |
| 3561 | total_errors); |
| 3562 | return -EIO; |
| 3563 | } |
| 3564 | return 0; |
| 3565 | } |
| 3566 | |
| 3567 | /* Drop a fs root from the radix tree and free it. */ |
| 3568 | void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, |
| 3569 | struct btrfs_root *root) |
| 3570 | { |
| 3571 | spin_lock(&fs_info->fs_roots_radix_lock); |
| 3572 | radix_tree_delete(&fs_info->fs_roots_radix, |
| 3573 | (unsigned long)root->root_key.objectid); |
| 3574 | spin_unlock(&fs_info->fs_roots_radix_lock); |
| 3575 | |
| 3576 | if (btrfs_root_refs(&root->root_item) == 0) |
| 3577 | synchronize_srcu(&fs_info->subvol_srcu); |
| 3578 | |
| 3579 | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { |
| 3580 | btrfs_free_log(NULL, root); |
| 3581 | if (root->reloc_root) { |
| 3582 | free_extent_buffer(root->reloc_root->node); |
| 3583 | free_extent_buffer(root->reloc_root->commit_root); |
| 3584 | btrfs_put_fs_root(root->reloc_root); |
| 3585 | root->reloc_root = NULL; |
| 3586 | } |
| 3587 | } |
| 3588 | |
| 3589 | if (root->free_ino_pinned) |
| 3590 | __btrfs_remove_free_space_cache(root->free_ino_pinned); |
| 3591 | if (root->free_ino_ctl) |
| 3592 | __btrfs_remove_free_space_cache(root->free_ino_ctl); |
| 3593 | free_fs_root(root); |
| 3594 | } |
| 3595 | |
| 3596 | static void free_fs_root(struct btrfs_root *root) |
| 3597 | { |
| 3598 | iput(root->ino_cache_inode); |
| 3599 | WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); |
| 3600 | btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv); |
| 3601 | root->orphan_block_rsv = NULL; |
| 3602 | if (root->anon_dev) |
| 3603 | free_anon_bdev(root->anon_dev); |
| 3604 | if (root->subv_writers) |
| 3605 | btrfs_free_subvolume_writers(root->subv_writers); |
| 3606 | free_extent_buffer(root->node); |
| 3607 | free_extent_buffer(root->commit_root); |
| 3608 | kfree(root->free_ino_ctl); |
| 3609 | kfree(root->free_ino_pinned); |
| 3610 | kfree(root->name); |
| 3611 | btrfs_put_fs_root(root); |
| 3612 | } |
| 3613 | |
| 3614 | void btrfs_free_fs_root(struct btrfs_root *root) |
| 3615 | { |
| 3616 | free_fs_root(root); |
| 3617 | } |
| 3618 | |
| 3619 | int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) |
| 3620 | { |
| 3621 | u64 root_objectid = 0; |
| 3622 | struct btrfs_root *gang[8]; |
| 3623 | int i = 0; |
| 3624 | int err = 0; |
| 3625 | unsigned int ret = 0; |
| 3626 | int index; |
| 3627 | |
| 3628 | while (1) { |
| 3629 | index = srcu_read_lock(&fs_info->subvol_srcu); |
| 3630 | ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, |
| 3631 | (void **)gang, root_objectid, |
| 3632 | ARRAY_SIZE(gang)); |
| 3633 | if (!ret) { |
| 3634 | srcu_read_unlock(&fs_info->subvol_srcu, index); |
| 3635 | break; |
| 3636 | } |
| 3637 | root_objectid = gang[ret - 1]->root_key.objectid + 1; |
| 3638 | |
| 3639 | for (i = 0; i < ret; i++) { |
| 3640 | /* Avoid to grab roots in dead_roots */ |
| 3641 | if (btrfs_root_refs(&gang[i]->root_item) == 0) { |
| 3642 | gang[i] = NULL; |
| 3643 | continue; |
| 3644 | } |
| 3645 | /* grab all the search result for later use */ |
| 3646 | gang[i] = btrfs_grab_fs_root(gang[i]); |
| 3647 | } |
| 3648 | srcu_read_unlock(&fs_info->subvol_srcu, index); |
| 3649 | |
| 3650 | for (i = 0; i < ret; i++) { |
| 3651 | if (!gang[i]) |
| 3652 | continue; |
| 3653 | root_objectid = gang[i]->root_key.objectid; |
| 3654 | err = btrfs_orphan_cleanup(gang[i]); |
| 3655 | if (err) |
| 3656 | break; |
| 3657 | btrfs_put_fs_root(gang[i]); |
| 3658 | } |
| 3659 | root_objectid++; |
| 3660 | } |
| 3661 | |
| 3662 | /* release the uncleaned roots due to error */ |
| 3663 | for (; i < ret; i++) { |
| 3664 | if (gang[i]) |
| 3665 | btrfs_put_fs_root(gang[i]); |
| 3666 | } |
| 3667 | return err; |
| 3668 | } |
| 3669 | |
| 3670 | int btrfs_commit_super(struct btrfs_fs_info *fs_info) |
| 3671 | { |
| 3672 | struct btrfs_root *root = fs_info->tree_root; |
| 3673 | struct btrfs_trans_handle *trans; |
| 3674 | |
| 3675 | mutex_lock(&fs_info->cleaner_mutex); |
| 3676 | btrfs_run_delayed_iputs(fs_info); |
| 3677 | mutex_unlock(&fs_info->cleaner_mutex); |
| 3678 | wake_up_process(fs_info->cleaner_kthread); |
| 3679 | |
| 3680 | /* wait until ongoing cleanup work done */ |
| 3681 | down_write(&fs_info->cleanup_work_sem); |
| 3682 | up_write(&fs_info->cleanup_work_sem); |
| 3683 | |
| 3684 | trans = btrfs_join_transaction(root); |
| 3685 | if (IS_ERR(trans)) |
| 3686 | return PTR_ERR(trans); |
| 3687 | return btrfs_commit_transaction(trans); |
| 3688 | } |
| 3689 | |
| 3690 | void close_ctree(struct btrfs_fs_info *fs_info) |
| 3691 | { |
| 3692 | struct btrfs_root *root = fs_info->tree_root; |
| 3693 | int ret; |
| 3694 | |
| 3695 | set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); |
| 3696 | /* |
| 3697 | * We don't want the cleaner to start new transactions, add more delayed |
| 3698 | * iputs, etc. while we're closing. We can't use kthread_stop() yet |
| 3699 | * because that frees the task_struct, and the transaction kthread might |
| 3700 | * still try to wake up the cleaner. |
| 3701 | */ |
| 3702 | kthread_park(fs_info->cleaner_kthread); |
| 3703 | |
| 3704 | /* wait for the qgroup rescan worker to stop */ |
| 3705 | btrfs_qgroup_wait_for_completion(fs_info, false); |
| 3706 | |
| 3707 | /* wait for the uuid_scan task to finish */ |
| 3708 | down(&fs_info->uuid_tree_rescan_sem); |
| 3709 | /* avoid complains from lockdep et al., set sem back to initial state */ |
| 3710 | up(&fs_info->uuid_tree_rescan_sem); |
| 3711 | |
| 3712 | /* pause restriper - we want to resume on mount */ |
| 3713 | btrfs_pause_balance(fs_info); |
| 3714 | |
| 3715 | btrfs_dev_replace_suspend_for_unmount(fs_info); |
| 3716 | |
| 3717 | btrfs_scrub_cancel(fs_info); |
| 3718 | |
| 3719 | /* wait for any defraggers to finish */ |
| 3720 | wait_event(fs_info->transaction_wait, |
| 3721 | (atomic_read(&fs_info->defrag_running) == 0)); |
| 3722 | |
| 3723 | /* clear out the rbtree of defraggable inodes */ |
| 3724 | btrfs_cleanup_defrag_inodes(fs_info); |
| 3725 | |
| 3726 | cancel_work_sync(&fs_info->async_reclaim_work); |
| 3727 | |
| 3728 | if (!sb_rdonly(fs_info->sb)) { |
| 3729 | /* |
| 3730 | * The cleaner kthread is stopped, so do one final pass over |
| 3731 | * unused block groups. |
| 3732 | */ |
| 3733 | btrfs_delete_unused_bgs(fs_info); |
| 3734 | |
| 3735 | /* |
| 3736 | * There might be existing delayed inode workers still running |
| 3737 | * and holding an empty delayed inode item. We must wait for |
| 3738 | * them to complete first because they can create a transaction. |
| 3739 | * This happens when someone calls btrfs_balance_delayed_items() |
| 3740 | * and then a transaction commit runs the same delayed nodes |
| 3741 | * before any delayed worker has done something with the nodes. |
| 3742 | * We must wait for any worker here and not at transaction |
| 3743 | * commit time since that could cause a deadlock. |
| 3744 | * This is a very rare case. |
| 3745 | */ |
| 3746 | btrfs_flush_workqueue(fs_info->delayed_workers); |
| 3747 | |
| 3748 | ret = btrfs_commit_super(fs_info); |
| 3749 | if (ret) |
| 3750 | btrfs_err(fs_info, "commit super ret %d", ret); |
| 3751 | } |
| 3752 | |
| 3753 | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || |
| 3754 | test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) |
| 3755 | btrfs_error_commit_super(fs_info); |
| 3756 | |
| 3757 | kthread_stop(fs_info->transaction_kthread); |
| 3758 | kthread_stop(fs_info->cleaner_kthread); |
| 3759 | |
| 3760 | set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); |
| 3761 | |
| 3762 | btrfs_free_qgroup_config(fs_info); |
| 3763 | ASSERT(list_empty(&fs_info->delalloc_roots)); |
| 3764 | |
| 3765 | if (percpu_counter_sum(&fs_info->delalloc_bytes)) { |
| 3766 | btrfs_info(fs_info, "at unmount delalloc count %lld", |
| 3767 | percpu_counter_sum(&fs_info->delalloc_bytes)); |
| 3768 | } |
| 3769 | |
| 3770 | btrfs_sysfs_remove_mounted(fs_info); |
| 3771 | btrfs_sysfs_remove_fsid(fs_info->fs_devices); |
| 3772 | |
| 3773 | btrfs_free_fs_roots(fs_info); |
| 3774 | |
| 3775 | btrfs_put_block_group_cache(fs_info); |
| 3776 | |
| 3777 | /* |
| 3778 | * we must make sure there is not any read request to |
| 3779 | * submit after we stopping all workers. |
| 3780 | */ |
| 3781 | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); |
| 3782 | btrfs_stop_all_workers(fs_info); |
| 3783 | |
| 3784 | clear_bit(BTRFS_FS_OPEN, &fs_info->flags); |
| 3785 | free_root_pointers(fs_info, true); |
| 3786 | |
| 3787 | /* |
| 3788 | * We must free the block groups after dropping the fs_roots as we could |
| 3789 | * have had an IO error and have left over tree log blocks that aren't |
| 3790 | * cleaned up until the fs roots are freed. This makes the block group |
| 3791 | * accounting appear to be wrong because there's pending reserved bytes, |
| 3792 | * so make sure we do the block group cleanup afterwards. |
| 3793 | */ |
| 3794 | btrfs_free_block_groups(fs_info); |
| 3795 | |
| 3796 | iput(fs_info->btree_inode); |
| 3797 | |
| 3798 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY |
| 3799 | if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) |
| 3800 | btrfsic_unmount(fs_info->fs_devices); |
| 3801 | #endif |
| 3802 | |
| 3803 | btrfs_close_devices(fs_info->fs_devices); |
| 3804 | btrfs_mapping_tree_free(&fs_info->mapping_tree); |
| 3805 | |
| 3806 | percpu_counter_destroy(&fs_info->dirty_metadata_bytes); |
| 3807 | percpu_counter_destroy(&fs_info->delalloc_bytes); |
| 3808 | percpu_counter_destroy(&fs_info->bio_counter); |
| 3809 | cleanup_srcu_struct(&fs_info->subvol_srcu); |
| 3810 | |
| 3811 | btrfs_free_stripe_hash_table(fs_info); |
| 3812 | |
| 3813 | __btrfs_free_block_rsv(root->orphan_block_rsv); |
| 3814 | root->orphan_block_rsv = NULL; |
| 3815 | |
| 3816 | while (!list_empty(&fs_info->pinned_chunks)) { |
| 3817 | struct extent_map *em; |
| 3818 | |
| 3819 | em = list_first_entry(&fs_info->pinned_chunks, |
| 3820 | struct extent_map, list); |
| 3821 | list_del_init(&em->list); |
| 3822 | free_extent_map(em); |
| 3823 | } |
| 3824 | } |
| 3825 | |
| 3826 | int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, |
| 3827 | int atomic) |
| 3828 | { |
| 3829 | int ret; |
| 3830 | struct inode *btree_inode = buf->pages[0]->mapping->host; |
| 3831 | |
| 3832 | ret = extent_buffer_uptodate(buf); |
| 3833 | if (!ret) |
| 3834 | return ret; |
| 3835 | |
| 3836 | ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, |
| 3837 | parent_transid, atomic); |
| 3838 | if (ret == -EAGAIN) |
| 3839 | return ret; |
| 3840 | return !ret; |
| 3841 | } |
| 3842 | |
| 3843 | void btrfs_mark_buffer_dirty(struct extent_buffer *buf) |
| 3844 | { |
| 3845 | struct btrfs_fs_info *fs_info; |
| 3846 | struct btrfs_root *root; |
| 3847 | u64 transid = btrfs_header_generation(buf); |
| 3848 | int was_dirty; |
| 3849 | |
| 3850 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| 3851 | /* |
| 3852 | * This is a fast path so only do this check if we have sanity tests |
| 3853 | * enabled. Normal people shouldn't be marking dummy buffers as dirty |
| 3854 | * outside of the sanity tests. |
| 3855 | */ |
| 3856 | if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) |
| 3857 | return; |
| 3858 | #endif |
| 3859 | root = BTRFS_I(buf->pages[0]->mapping->host)->root; |
| 3860 | fs_info = root->fs_info; |
| 3861 | btrfs_assert_tree_locked(buf); |
| 3862 | if (transid != fs_info->generation) |
| 3863 | WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", |
| 3864 | buf->start, transid, fs_info->generation); |
| 3865 | was_dirty = set_extent_buffer_dirty(buf); |
| 3866 | if (!was_dirty) |
| 3867 | percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, |
| 3868 | buf->len, |
| 3869 | fs_info->dirty_metadata_batch); |
| 3870 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY |
| 3871 | /* |
| 3872 | * Since btrfs_mark_buffer_dirty() can be called with item pointer set |
| 3873 | * but item data not updated. |
| 3874 | * So here we should only check item pointers, not item data. |
| 3875 | */ |
| 3876 | if (btrfs_header_level(buf) == 0 && |
| 3877 | btrfs_check_leaf_relaxed(root, buf)) { |
| 3878 | btrfs_print_leaf(buf); |
| 3879 | ASSERT(0); |
| 3880 | } |
| 3881 | #endif |
| 3882 | } |
| 3883 | |
| 3884 | static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, |
| 3885 | int flush_delayed) |
| 3886 | { |
| 3887 | /* |
| 3888 | * looks as though older kernels can get into trouble with |
| 3889 | * this code, they end up stuck in balance_dirty_pages forever |
| 3890 | */ |
| 3891 | int ret; |
| 3892 | |
| 3893 | if (current->flags & PF_MEMALLOC) |
| 3894 | return; |
| 3895 | |
| 3896 | if (flush_delayed) |
| 3897 | btrfs_balance_delayed_items(fs_info); |
| 3898 | |
| 3899 | ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, |
| 3900 | BTRFS_DIRTY_METADATA_THRESH, |
| 3901 | fs_info->dirty_metadata_batch); |
| 3902 | if (ret > 0) { |
| 3903 | balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); |
| 3904 | } |
| 3905 | } |
| 3906 | |
| 3907 | void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) |
| 3908 | { |
| 3909 | __btrfs_btree_balance_dirty(fs_info, 1); |
| 3910 | } |
| 3911 | |
| 3912 | void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) |
| 3913 | { |
| 3914 | __btrfs_btree_balance_dirty(fs_info, 0); |
| 3915 | } |
| 3916 | |
| 3917 | int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) |
| 3918 | { |
| 3919 | struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; |
| 3920 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 3921 | |
| 3922 | return btree_read_extent_buffer_pages(fs_info, buf, parent_transid); |
| 3923 | } |
| 3924 | |
| 3925 | static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info) |
| 3926 | { |
| 3927 | struct btrfs_super_block *sb = fs_info->super_copy; |
| 3928 | u64 nodesize = btrfs_super_nodesize(sb); |
| 3929 | u64 sectorsize = btrfs_super_sectorsize(sb); |
| 3930 | int ret = 0; |
| 3931 | |
| 3932 | if (btrfs_super_magic(sb) != BTRFS_MAGIC) { |
| 3933 | btrfs_err(fs_info, "no valid FS found"); |
| 3934 | ret = -EINVAL; |
| 3935 | } |
| 3936 | if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { |
| 3937 | btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", |
| 3938 | btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); |
| 3939 | ret = -EINVAL; |
| 3940 | } |
| 3941 | if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| 3942 | btrfs_err(fs_info, "tree_root level too big: %d >= %d", |
| 3943 | btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); |
| 3944 | ret = -EINVAL; |
| 3945 | } |
| 3946 | if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| 3947 | btrfs_err(fs_info, "chunk_root level too big: %d >= %d", |
| 3948 | btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); |
| 3949 | ret = -EINVAL; |
| 3950 | } |
| 3951 | if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| 3952 | btrfs_err(fs_info, "log_root level too big: %d >= %d", |
| 3953 | btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); |
| 3954 | ret = -EINVAL; |
| 3955 | } |
| 3956 | |
| 3957 | /* |
| 3958 | * Check sectorsize and nodesize first, other check will need it. |
| 3959 | * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. |
| 3960 | */ |
| 3961 | if (!is_power_of_2(sectorsize) || sectorsize < 4096 || |
| 3962 | sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { |
| 3963 | btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); |
| 3964 | ret = -EINVAL; |
| 3965 | } |
| 3966 | /* Only PAGE SIZE is supported yet */ |
| 3967 | if (sectorsize != PAGE_SIZE) { |
| 3968 | btrfs_err(fs_info, |
| 3969 | "sectorsize %llu not supported yet, only support %lu", |
| 3970 | sectorsize, PAGE_SIZE); |
| 3971 | ret = -EINVAL; |
| 3972 | } |
| 3973 | if (!is_power_of_2(nodesize) || nodesize < sectorsize || |
| 3974 | nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { |
| 3975 | btrfs_err(fs_info, "invalid nodesize %llu", nodesize); |
| 3976 | ret = -EINVAL; |
| 3977 | } |
| 3978 | if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { |
| 3979 | btrfs_err(fs_info, "invalid leafsize %u, should be %llu", |
| 3980 | le32_to_cpu(sb->__unused_leafsize), nodesize); |
| 3981 | ret = -EINVAL; |
| 3982 | } |
| 3983 | |
| 3984 | /* Root alignment check */ |
| 3985 | if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { |
| 3986 | btrfs_warn(fs_info, "tree_root block unaligned: %llu", |
| 3987 | btrfs_super_root(sb)); |
| 3988 | ret = -EINVAL; |
| 3989 | } |
| 3990 | if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { |
| 3991 | btrfs_warn(fs_info, "chunk_root block unaligned: %llu", |
| 3992 | btrfs_super_chunk_root(sb)); |
| 3993 | ret = -EINVAL; |
| 3994 | } |
| 3995 | if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { |
| 3996 | btrfs_warn(fs_info, "log_root block unaligned: %llu", |
| 3997 | btrfs_super_log_root(sb)); |
| 3998 | ret = -EINVAL; |
| 3999 | } |
| 4000 | |
| 4001 | if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { |
| 4002 | btrfs_err(fs_info, |
| 4003 | "dev_item UUID does not match fsid: %pU != %pU", |
| 4004 | fs_info->fsid, sb->dev_item.fsid); |
| 4005 | ret = -EINVAL; |
| 4006 | } |
| 4007 | |
| 4008 | /* |
| 4009 | * Hint to catch really bogus numbers, bitflips or so, more exact checks are |
| 4010 | * done later |
| 4011 | */ |
| 4012 | if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { |
| 4013 | btrfs_err(fs_info, "bytes_used is too small %llu", |
| 4014 | btrfs_super_bytes_used(sb)); |
| 4015 | ret = -EINVAL; |
| 4016 | } |
| 4017 | if (!is_power_of_2(btrfs_super_stripesize(sb))) { |
| 4018 | btrfs_err(fs_info, "invalid stripesize %u", |
| 4019 | btrfs_super_stripesize(sb)); |
| 4020 | ret = -EINVAL; |
| 4021 | } |
| 4022 | if (btrfs_super_num_devices(sb) > (1UL << 31)) |
| 4023 | btrfs_warn(fs_info, "suspicious number of devices: %llu", |
| 4024 | btrfs_super_num_devices(sb)); |
| 4025 | if (btrfs_super_num_devices(sb) == 0) { |
| 4026 | btrfs_err(fs_info, "number of devices is 0"); |
| 4027 | ret = -EINVAL; |
| 4028 | } |
| 4029 | |
| 4030 | if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { |
| 4031 | btrfs_err(fs_info, "super offset mismatch %llu != %u", |
| 4032 | btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); |
| 4033 | ret = -EINVAL; |
| 4034 | } |
| 4035 | |
| 4036 | /* |
| 4037 | * Obvious sys_chunk_array corruptions, it must hold at least one key |
| 4038 | * and one chunk |
| 4039 | */ |
| 4040 | if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { |
| 4041 | btrfs_err(fs_info, "system chunk array too big %u > %u", |
| 4042 | btrfs_super_sys_array_size(sb), |
| 4043 | BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); |
| 4044 | ret = -EINVAL; |
| 4045 | } |
| 4046 | if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) |
| 4047 | + sizeof(struct btrfs_chunk)) { |
| 4048 | btrfs_err(fs_info, "system chunk array too small %u < %zu", |
| 4049 | btrfs_super_sys_array_size(sb), |
| 4050 | sizeof(struct btrfs_disk_key) |
| 4051 | + sizeof(struct btrfs_chunk)); |
| 4052 | ret = -EINVAL; |
| 4053 | } |
| 4054 | |
| 4055 | /* |
| 4056 | * The generation is a global counter, we'll trust it more than the others |
| 4057 | * but it's still possible that it's the one that's wrong. |
| 4058 | */ |
| 4059 | if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) |
| 4060 | btrfs_warn(fs_info, |
| 4061 | "suspicious: generation < chunk_root_generation: %llu < %llu", |
| 4062 | btrfs_super_generation(sb), |
| 4063 | btrfs_super_chunk_root_generation(sb)); |
| 4064 | if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) |
| 4065 | && btrfs_super_cache_generation(sb) != (u64)-1) |
| 4066 | btrfs_warn(fs_info, |
| 4067 | "suspicious: generation < cache_generation: %llu < %llu", |
| 4068 | btrfs_super_generation(sb), |
| 4069 | btrfs_super_cache_generation(sb)); |
| 4070 | |
| 4071 | return ret; |
| 4072 | } |
| 4073 | |
| 4074 | static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) |
| 4075 | { |
| 4076 | /* cleanup FS via transaction */ |
| 4077 | btrfs_cleanup_transaction(fs_info); |
| 4078 | |
| 4079 | mutex_lock(&fs_info->cleaner_mutex); |
| 4080 | btrfs_run_delayed_iputs(fs_info); |
| 4081 | mutex_unlock(&fs_info->cleaner_mutex); |
| 4082 | |
| 4083 | down_write(&fs_info->cleanup_work_sem); |
| 4084 | up_write(&fs_info->cleanup_work_sem); |
| 4085 | } |
| 4086 | |
| 4087 | static void btrfs_destroy_ordered_extents(struct btrfs_root *root) |
| 4088 | { |
| 4089 | struct btrfs_ordered_extent *ordered; |
| 4090 | |
| 4091 | spin_lock(&root->ordered_extent_lock); |
| 4092 | /* |
| 4093 | * This will just short circuit the ordered completion stuff which will |
| 4094 | * make sure the ordered extent gets properly cleaned up. |
| 4095 | */ |
| 4096 | list_for_each_entry(ordered, &root->ordered_extents, |
| 4097 | root_extent_list) |
| 4098 | set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); |
| 4099 | spin_unlock(&root->ordered_extent_lock); |
| 4100 | } |
| 4101 | |
| 4102 | static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) |
| 4103 | { |
| 4104 | struct btrfs_root *root; |
| 4105 | struct list_head splice; |
| 4106 | |
| 4107 | INIT_LIST_HEAD(&splice); |
| 4108 | |
| 4109 | spin_lock(&fs_info->ordered_root_lock); |
| 4110 | list_splice_init(&fs_info->ordered_roots, &splice); |
| 4111 | while (!list_empty(&splice)) { |
| 4112 | root = list_first_entry(&splice, struct btrfs_root, |
| 4113 | ordered_root); |
| 4114 | list_move_tail(&root->ordered_root, |
| 4115 | &fs_info->ordered_roots); |
| 4116 | |
| 4117 | spin_unlock(&fs_info->ordered_root_lock); |
| 4118 | btrfs_destroy_ordered_extents(root); |
| 4119 | |
| 4120 | cond_resched(); |
| 4121 | spin_lock(&fs_info->ordered_root_lock); |
| 4122 | } |
| 4123 | spin_unlock(&fs_info->ordered_root_lock); |
| 4124 | |
| 4125 | /* |
| 4126 | * We need this here because if we've been flipped read-only we won't |
| 4127 | * get sync() from the umount, so we need to make sure any ordered |
| 4128 | * extents that haven't had their dirty pages IO start writeout yet |
| 4129 | * actually get run and error out properly. |
| 4130 | */ |
| 4131 | btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); |
| 4132 | } |
| 4133 | |
| 4134 | static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, |
| 4135 | struct btrfs_fs_info *fs_info) |
| 4136 | { |
| 4137 | struct rb_node *node; |
| 4138 | struct btrfs_delayed_ref_root *delayed_refs; |
| 4139 | struct btrfs_delayed_ref_node *ref; |
| 4140 | int ret = 0; |
| 4141 | |
| 4142 | delayed_refs = &trans->delayed_refs; |
| 4143 | |
| 4144 | spin_lock(&delayed_refs->lock); |
| 4145 | if (atomic_read(&delayed_refs->num_entries) == 0) { |
| 4146 | spin_unlock(&delayed_refs->lock); |
| 4147 | btrfs_info(fs_info, "delayed_refs has NO entry"); |
| 4148 | return ret; |
| 4149 | } |
| 4150 | |
| 4151 | while ((node = rb_first(&delayed_refs->href_root)) != NULL) { |
| 4152 | struct btrfs_delayed_ref_head *head; |
| 4153 | struct btrfs_delayed_ref_node *tmp; |
| 4154 | bool pin_bytes = false; |
| 4155 | |
| 4156 | head = rb_entry(node, struct btrfs_delayed_ref_head, |
| 4157 | href_node); |
| 4158 | if (!mutex_trylock(&head->mutex)) { |
| 4159 | refcount_inc(&head->node.refs); |
| 4160 | spin_unlock(&delayed_refs->lock); |
| 4161 | |
| 4162 | mutex_lock(&head->mutex); |
| 4163 | mutex_unlock(&head->mutex); |
| 4164 | btrfs_put_delayed_ref(&head->node); |
| 4165 | spin_lock(&delayed_refs->lock); |
| 4166 | continue; |
| 4167 | } |
| 4168 | spin_lock(&head->lock); |
| 4169 | list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, |
| 4170 | list) { |
| 4171 | ref->in_tree = 0; |
| 4172 | list_del(&ref->list); |
| 4173 | if (!list_empty(&ref->add_list)) |
| 4174 | list_del(&ref->add_list); |
| 4175 | atomic_dec(&delayed_refs->num_entries); |
| 4176 | btrfs_put_delayed_ref(ref); |
| 4177 | } |
| 4178 | if (head->must_insert_reserved) |
| 4179 | pin_bytes = true; |
| 4180 | btrfs_free_delayed_extent_op(head->extent_op); |
| 4181 | delayed_refs->num_heads--; |
| 4182 | if (head->processing == 0) |
| 4183 | delayed_refs->num_heads_ready--; |
| 4184 | atomic_dec(&delayed_refs->num_entries); |
| 4185 | head->node.in_tree = 0; |
| 4186 | rb_erase(&head->href_node, &delayed_refs->href_root); |
| 4187 | spin_unlock(&head->lock); |
| 4188 | spin_unlock(&delayed_refs->lock); |
| 4189 | mutex_unlock(&head->mutex); |
| 4190 | |
| 4191 | if (pin_bytes) |
| 4192 | btrfs_pin_extent(fs_info, head->node.bytenr, |
| 4193 | head->node.num_bytes, 1); |
| 4194 | btrfs_put_delayed_ref(&head->node); |
| 4195 | cond_resched(); |
| 4196 | spin_lock(&delayed_refs->lock); |
| 4197 | } |
| 4198 | |
| 4199 | spin_unlock(&delayed_refs->lock); |
| 4200 | |
| 4201 | return ret; |
| 4202 | } |
| 4203 | |
| 4204 | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) |
| 4205 | { |
| 4206 | struct btrfs_inode *btrfs_inode; |
| 4207 | struct list_head splice; |
| 4208 | |
| 4209 | INIT_LIST_HEAD(&splice); |
| 4210 | |
| 4211 | spin_lock(&root->delalloc_lock); |
| 4212 | list_splice_init(&root->delalloc_inodes, &splice); |
| 4213 | |
| 4214 | while (!list_empty(&splice)) { |
| 4215 | struct inode *inode = NULL; |
| 4216 | btrfs_inode = list_first_entry(&splice, struct btrfs_inode, |
| 4217 | delalloc_inodes); |
| 4218 | __btrfs_del_delalloc_inode(root, btrfs_inode); |
| 4219 | spin_unlock(&root->delalloc_lock); |
| 4220 | |
| 4221 | /* |
| 4222 | * Make sure we get a live inode and that it'll not disappear |
| 4223 | * meanwhile. |
| 4224 | */ |
| 4225 | inode = igrab(&btrfs_inode->vfs_inode); |
| 4226 | if (inode) { |
| 4227 | invalidate_inode_pages2(inode->i_mapping); |
| 4228 | iput(inode); |
| 4229 | } |
| 4230 | spin_lock(&root->delalloc_lock); |
| 4231 | } |
| 4232 | spin_unlock(&root->delalloc_lock); |
| 4233 | } |
| 4234 | |
| 4235 | static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) |
| 4236 | { |
| 4237 | struct btrfs_root *root; |
| 4238 | struct list_head splice; |
| 4239 | |
| 4240 | INIT_LIST_HEAD(&splice); |
| 4241 | |
| 4242 | spin_lock(&fs_info->delalloc_root_lock); |
| 4243 | list_splice_init(&fs_info->delalloc_roots, &splice); |
| 4244 | while (!list_empty(&splice)) { |
| 4245 | root = list_first_entry(&splice, struct btrfs_root, |
| 4246 | delalloc_root); |
| 4247 | root = btrfs_grab_fs_root(root); |
| 4248 | BUG_ON(!root); |
| 4249 | spin_unlock(&fs_info->delalloc_root_lock); |
| 4250 | |
| 4251 | btrfs_destroy_delalloc_inodes(root); |
| 4252 | btrfs_put_fs_root(root); |
| 4253 | |
| 4254 | spin_lock(&fs_info->delalloc_root_lock); |
| 4255 | } |
| 4256 | spin_unlock(&fs_info->delalloc_root_lock); |
| 4257 | } |
| 4258 | |
| 4259 | static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, |
| 4260 | struct extent_io_tree *dirty_pages, |
| 4261 | int mark) |
| 4262 | { |
| 4263 | int ret; |
| 4264 | struct extent_buffer *eb; |
| 4265 | u64 start = 0; |
| 4266 | u64 end; |
| 4267 | |
| 4268 | while (1) { |
| 4269 | ret = find_first_extent_bit(dirty_pages, start, &start, &end, |
| 4270 | mark, NULL); |
| 4271 | if (ret) |
| 4272 | break; |
| 4273 | |
| 4274 | clear_extent_bits(dirty_pages, start, end, mark); |
| 4275 | while (start <= end) { |
| 4276 | eb = find_extent_buffer(fs_info, start); |
| 4277 | start += fs_info->nodesize; |
| 4278 | if (!eb) |
| 4279 | continue; |
| 4280 | wait_on_extent_buffer_writeback(eb); |
| 4281 | |
| 4282 | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, |
| 4283 | &eb->bflags)) |
| 4284 | clear_extent_buffer_dirty(eb); |
| 4285 | free_extent_buffer_stale(eb); |
| 4286 | } |
| 4287 | } |
| 4288 | |
| 4289 | return ret; |
| 4290 | } |
| 4291 | |
| 4292 | static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, |
| 4293 | struct extent_io_tree *pinned_extents) |
| 4294 | { |
| 4295 | struct extent_io_tree *unpin; |
| 4296 | u64 start; |
| 4297 | u64 end; |
| 4298 | int ret; |
| 4299 | bool loop = true; |
| 4300 | |
| 4301 | unpin = pinned_extents; |
| 4302 | again: |
| 4303 | while (1) { |
| 4304 | /* |
| 4305 | * The btrfs_finish_extent_commit() may get the same range as |
| 4306 | * ours between find_first_extent_bit and clear_extent_dirty. |
| 4307 | * Hence, hold the unused_bg_unpin_mutex to avoid double unpin |
| 4308 | * the same extent range. |
| 4309 | */ |
| 4310 | mutex_lock(&fs_info->unused_bg_unpin_mutex); |
| 4311 | ret = find_first_extent_bit(unpin, 0, &start, &end, |
| 4312 | EXTENT_DIRTY, NULL); |
| 4313 | if (ret) { |
| 4314 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 4315 | break; |
| 4316 | } |
| 4317 | |
| 4318 | clear_extent_dirty(unpin, start, end); |
| 4319 | btrfs_error_unpin_extent_range(fs_info, start, end); |
| 4320 | mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| 4321 | cond_resched(); |
| 4322 | } |
| 4323 | |
| 4324 | if (loop) { |
| 4325 | if (unpin == &fs_info->freed_extents[0]) |
| 4326 | unpin = &fs_info->freed_extents[1]; |
| 4327 | else |
| 4328 | unpin = &fs_info->freed_extents[0]; |
| 4329 | loop = false; |
| 4330 | goto again; |
| 4331 | } |
| 4332 | |
| 4333 | return 0; |
| 4334 | } |
| 4335 | |
| 4336 | static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) |
| 4337 | { |
| 4338 | struct inode *inode; |
| 4339 | |
| 4340 | inode = cache->io_ctl.inode; |
| 4341 | if (inode) { |
| 4342 | invalidate_inode_pages2(inode->i_mapping); |
| 4343 | BTRFS_I(inode)->generation = 0; |
| 4344 | cache->io_ctl.inode = NULL; |
| 4345 | iput(inode); |
| 4346 | } |
| 4347 | ASSERT(cache->io_ctl.pages == NULL); |
| 4348 | btrfs_put_block_group(cache); |
| 4349 | } |
| 4350 | |
| 4351 | void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, |
| 4352 | struct btrfs_fs_info *fs_info) |
| 4353 | { |
| 4354 | struct btrfs_block_group_cache *cache; |
| 4355 | |
| 4356 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 4357 | while (!list_empty(&cur_trans->dirty_bgs)) { |
| 4358 | cache = list_first_entry(&cur_trans->dirty_bgs, |
| 4359 | struct btrfs_block_group_cache, |
| 4360 | dirty_list); |
| 4361 | if (!cache) { |
| 4362 | btrfs_err(fs_info, "orphan block group dirty_bgs list"); |
| 4363 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 4364 | return; |
| 4365 | } |
| 4366 | |
| 4367 | if (!list_empty(&cache->io_list)) { |
| 4368 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 4369 | list_del_init(&cache->io_list); |
| 4370 | btrfs_cleanup_bg_io(cache); |
| 4371 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 4372 | } |
| 4373 | |
| 4374 | list_del_init(&cache->dirty_list); |
| 4375 | spin_lock(&cache->lock); |
| 4376 | cache->disk_cache_state = BTRFS_DC_ERROR; |
| 4377 | spin_unlock(&cache->lock); |
| 4378 | |
| 4379 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 4380 | btrfs_put_block_group(cache); |
| 4381 | spin_lock(&cur_trans->dirty_bgs_lock); |
| 4382 | } |
| 4383 | spin_unlock(&cur_trans->dirty_bgs_lock); |
| 4384 | |
| 4385 | while (!list_empty(&cur_trans->io_bgs)) { |
| 4386 | cache = list_first_entry(&cur_trans->io_bgs, |
| 4387 | struct btrfs_block_group_cache, |
| 4388 | io_list); |
| 4389 | if (!cache) { |
| 4390 | btrfs_err(fs_info, "orphan block group on io_bgs list"); |
| 4391 | return; |
| 4392 | } |
| 4393 | |
| 4394 | list_del_init(&cache->io_list); |
| 4395 | spin_lock(&cache->lock); |
| 4396 | cache->disk_cache_state = BTRFS_DC_ERROR; |
| 4397 | spin_unlock(&cache->lock); |
| 4398 | btrfs_cleanup_bg_io(cache); |
| 4399 | } |
| 4400 | } |
| 4401 | |
| 4402 | void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, |
| 4403 | struct btrfs_fs_info *fs_info) |
| 4404 | { |
| 4405 | btrfs_cleanup_dirty_bgs(cur_trans, fs_info); |
| 4406 | ASSERT(list_empty(&cur_trans->dirty_bgs)); |
| 4407 | ASSERT(list_empty(&cur_trans->io_bgs)); |
| 4408 | |
| 4409 | btrfs_destroy_delayed_refs(cur_trans, fs_info); |
| 4410 | |
| 4411 | cur_trans->state = TRANS_STATE_COMMIT_START; |
| 4412 | wake_up(&fs_info->transaction_blocked_wait); |
| 4413 | |
| 4414 | cur_trans->state = TRANS_STATE_UNBLOCKED; |
| 4415 | wake_up(&fs_info->transaction_wait); |
| 4416 | |
| 4417 | btrfs_destroy_delayed_inodes(fs_info); |
| 4418 | |
| 4419 | btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, |
| 4420 | EXTENT_DIRTY); |
| 4421 | btrfs_destroy_pinned_extent(fs_info, |
| 4422 | fs_info->pinned_extents); |
| 4423 | |
| 4424 | cur_trans->state =TRANS_STATE_COMPLETED; |
| 4425 | wake_up(&cur_trans->commit_wait); |
| 4426 | } |
| 4427 | |
| 4428 | static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) |
| 4429 | { |
| 4430 | struct btrfs_transaction *t; |
| 4431 | |
| 4432 | mutex_lock(&fs_info->transaction_kthread_mutex); |
| 4433 | |
| 4434 | spin_lock(&fs_info->trans_lock); |
| 4435 | while (!list_empty(&fs_info->trans_list)) { |
| 4436 | t = list_first_entry(&fs_info->trans_list, |
| 4437 | struct btrfs_transaction, list); |
| 4438 | if (t->state >= TRANS_STATE_COMMIT_START) { |
| 4439 | refcount_inc(&t->use_count); |
| 4440 | spin_unlock(&fs_info->trans_lock); |
| 4441 | btrfs_wait_for_commit(fs_info, t->transid); |
| 4442 | btrfs_put_transaction(t); |
| 4443 | spin_lock(&fs_info->trans_lock); |
| 4444 | continue; |
| 4445 | } |
| 4446 | if (t == fs_info->running_transaction) { |
| 4447 | t->state = TRANS_STATE_COMMIT_DOING; |
| 4448 | spin_unlock(&fs_info->trans_lock); |
| 4449 | /* |
| 4450 | * We wait for 0 num_writers since we don't hold a trans |
| 4451 | * handle open currently for this transaction. |
| 4452 | */ |
| 4453 | wait_event(t->writer_wait, |
| 4454 | atomic_read(&t->num_writers) == 0); |
| 4455 | } else { |
| 4456 | spin_unlock(&fs_info->trans_lock); |
| 4457 | } |
| 4458 | btrfs_cleanup_one_transaction(t, fs_info); |
| 4459 | |
| 4460 | spin_lock(&fs_info->trans_lock); |
| 4461 | if (t == fs_info->running_transaction) |
| 4462 | fs_info->running_transaction = NULL; |
| 4463 | list_del_init(&t->list); |
| 4464 | spin_unlock(&fs_info->trans_lock); |
| 4465 | |
| 4466 | btrfs_put_transaction(t); |
| 4467 | trace_btrfs_transaction_commit(fs_info->tree_root); |
| 4468 | spin_lock(&fs_info->trans_lock); |
| 4469 | } |
| 4470 | spin_unlock(&fs_info->trans_lock); |
| 4471 | btrfs_destroy_all_ordered_extents(fs_info); |
| 4472 | btrfs_destroy_delayed_inodes(fs_info); |
| 4473 | btrfs_assert_delayed_root_empty(fs_info); |
| 4474 | btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); |
| 4475 | btrfs_destroy_all_delalloc_inodes(fs_info); |
| 4476 | mutex_unlock(&fs_info->transaction_kthread_mutex); |
| 4477 | |
| 4478 | return 0; |
| 4479 | } |
| 4480 | |
| 4481 | static struct btrfs_fs_info *btree_fs_info(void *private_data) |
| 4482 | { |
| 4483 | struct inode *inode = private_data; |
| 4484 | return btrfs_sb(inode->i_sb); |
| 4485 | } |
| 4486 | |
| 4487 | static const struct extent_io_ops btree_extent_io_ops = { |
| 4488 | /* mandatory callbacks */ |
| 4489 | .submit_bio_hook = btree_submit_bio_hook, |
| 4490 | .readpage_end_io_hook = btree_readpage_end_io_hook, |
| 4491 | /* note we're sharing with inode.c for the merge bio hook */ |
| 4492 | .merge_bio_hook = btrfs_merge_bio_hook, |
| 4493 | .readpage_io_failed_hook = btree_io_failed_hook, |
| 4494 | .set_range_writeback = btrfs_set_range_writeback, |
| 4495 | .tree_fs_info = btree_fs_info, |
| 4496 | |
| 4497 | /* optional callbacks */ |
| 4498 | }; |