blob: 495430e4f84bebfa30f8c16328d8c355c67eced1 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/slab.h>
29#include <linux/migrate.h>
30#include <linux/ratelimit.h>
31#include <linux/uuid.h>
32#include <linux/semaphore.h>
33#include <asm/unaligned.h>
34#include "ctree.h"
35#include "disk-io.h"
36#include "hash.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "print-tree.h"
41#include "locking.h"
42#include "tree-log.h"
43#include "free-space-cache.h"
44#include "free-space-tree.h"
45#include "inode-map.h"
46#include "check-integrity.h"
47#include "rcu-string.h"
48#include "dev-replace.h"
49#include "raid56.h"
50#include "sysfs.h"
51#include "qgroup.h"
52#include "compression.h"
53#include "tree-checker.h"
54
55#ifdef CONFIG_X86
56#include <asm/cpufeature.h>
57#endif
58
59#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
60 BTRFS_HEADER_FLAG_RELOC |\
61 BTRFS_SUPER_FLAG_ERROR |\
62 BTRFS_SUPER_FLAG_SEEDING |\
63 BTRFS_SUPER_FLAG_METADUMP |\
64 BTRFS_SUPER_FLAG_METADUMP_V2)
65
66static const struct extent_io_ops btree_extent_io_ops;
67static void end_workqueue_fn(struct btrfs_work *work);
68static void free_fs_root(struct btrfs_root *root);
69static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
70static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
71static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
72 struct btrfs_fs_info *fs_info);
73static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
74static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
75 struct extent_io_tree *dirty_pages,
76 int mark);
77static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
78 struct extent_io_tree *pinned_extents);
79static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
80static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
81
82/*
83 * btrfs_end_io_wq structs are used to do processing in task context when an IO
84 * is complete. This is used during reads to verify checksums, and it is used
85 * by writes to insert metadata for new file extents after IO is complete.
86 */
87struct btrfs_end_io_wq {
88 struct bio *bio;
89 bio_end_io_t *end_io;
90 void *private;
91 struct btrfs_fs_info *info;
92 blk_status_t status;
93 enum btrfs_wq_endio_type metadata;
94 struct btrfs_work work;
95};
96
97static struct kmem_cache *btrfs_end_io_wq_cache;
98
99int __init btrfs_end_io_wq_init(void)
100{
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109}
110
111void btrfs_end_io_wq_exit(void)
112{
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114}
115
116/*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121struct async_submit_bio {
122 void *private_data;
123 struct btrfs_fs_info *fs_info;
124 struct bio *bio;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int mirror_num;
128 unsigned long bio_flags;
129 /*
130 * bio_offset is optional, can be used if the pages in the bio
131 * can't tell us where in the file the bio should go
132 */
133 u64 bio_offset;
134 struct btrfs_work work;
135 blk_status_t status;
136};
137
138/*
139 * Lockdep class keys for extent_buffer->lock's in this root. For a given
140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
141 * the level the eb occupies in the tree.
142 *
143 * Different roots are used for different purposes and may nest inside each
144 * other and they require separate keysets. As lockdep keys should be
145 * static, assign keysets according to the purpose of the root as indicated
146 * by btrfs_root->objectid. This ensures that all special purpose roots
147 * have separate keysets.
148 *
149 * Lock-nesting across peer nodes is always done with the immediate parent
150 * node locked thus preventing deadlock. As lockdep doesn't know this, use
151 * subclass to avoid triggering lockdep warning in such cases.
152 *
153 * The key is set by the readpage_end_io_hook after the buffer has passed
154 * csum validation but before the pages are unlocked. It is also set by
155 * btrfs_init_new_buffer on freshly allocated blocks.
156 *
157 * We also add a check to make sure the highest level of the tree is the
158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
159 * needs update as well.
160 */
161#ifdef CONFIG_DEBUG_LOCK_ALLOC
162# if BTRFS_MAX_LEVEL != 8
163# error
164# endif
165
166static struct btrfs_lockdep_keyset {
167 u64 id; /* root objectid */
168 const char *name_stem; /* lock name stem */
169 char names[BTRFS_MAX_LEVEL + 1][20];
170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
171} btrfs_lockdep_keysets[] = {
172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184 { .id = 0, .name_stem = "tree" },
185};
186
187void __init btrfs_init_lockdep(void)
188{
189 int i, j;
190
191 /* initialize lockdep class names */
192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 snprintf(ks->names[j], sizeof(ks->names[j]),
197 "btrfs-%s-%02d", ks->name_stem, j);
198 }
199}
200
201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 int level)
203{
204 struct btrfs_lockdep_keyset *ks;
205
206 BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208 /* find the matching keyset, id 0 is the default entry */
209 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 if (ks->id == objectid)
211 break;
212
213 lockdep_set_class_and_name(&eb->lock,
214 &ks->keys[level], ks->names[level]);
215}
216
217#endif
218
219/*
220 * extents on the btree inode are pretty simple, there's one extent
221 * that covers the entire device
222 */
223static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
224 struct page *page, size_t pg_offset, u64 start, u64 len,
225 int create)
226{
227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
228 struct extent_map_tree *em_tree = &inode->extent_tree;
229 struct extent_map *em;
230 int ret;
231
232 read_lock(&em_tree->lock);
233 em = lookup_extent_mapping(em_tree, start, len);
234 if (em) {
235 em->bdev = fs_info->fs_devices->latest_bdev;
236 read_unlock(&em_tree->lock);
237 goto out;
238 }
239 read_unlock(&em_tree->lock);
240
241 em = alloc_extent_map();
242 if (!em) {
243 em = ERR_PTR(-ENOMEM);
244 goto out;
245 }
246 em->start = 0;
247 em->len = (u64)-1;
248 em->block_len = (u64)-1;
249 em->block_start = 0;
250 em->bdev = fs_info->fs_devices->latest_bdev;
251
252 write_lock(&em_tree->lock);
253 ret = add_extent_mapping(em_tree, em, 0);
254 if (ret == -EEXIST) {
255 free_extent_map(em);
256 em = lookup_extent_mapping(em_tree, start, len);
257 if (!em)
258 em = ERR_PTR(-EIO);
259 } else if (ret) {
260 free_extent_map(em);
261 em = ERR_PTR(ret);
262 }
263 write_unlock(&em_tree->lock);
264
265out:
266 return em;
267}
268
269u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
270{
271 return btrfs_crc32c(seed, data, len);
272}
273
274void btrfs_csum_final(u32 crc, u8 *result)
275{
276 put_unaligned_le32(~crc, result);
277}
278
279/*
280 * compute the csum for a btree block, and either verify it or write it
281 * into the csum field of the block.
282 */
283static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 struct extent_buffer *buf,
285 int verify)
286{
287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 char *result = NULL;
289 unsigned long len;
290 unsigned long cur_len;
291 unsigned long offset = BTRFS_CSUM_SIZE;
292 char *kaddr;
293 unsigned long map_start;
294 unsigned long map_len;
295 int err;
296 u32 crc = ~(u32)0;
297 unsigned long inline_result;
298
299 len = buf->len - offset;
300 while (len > 0) {
301 err = map_private_extent_buffer(buf, offset, 32,
302 &kaddr, &map_start, &map_len);
303 if (err)
304 return err;
305 cur_len = min(len, map_len - (offset - map_start));
306 crc = btrfs_csum_data(kaddr + offset - map_start,
307 crc, cur_len);
308 len -= cur_len;
309 offset += cur_len;
310 }
311 if (csum_size > sizeof(inline_result)) {
312 result = kzalloc(csum_size, GFP_NOFS);
313 if (!result)
314 return -ENOMEM;
315 } else {
316 result = (char *)&inline_result;
317 }
318
319 btrfs_csum_final(crc, result);
320
321 if (verify) {
322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 u32 val;
324 u32 found = 0;
325 memcpy(&found, result, csum_size);
326
327 read_extent_buffer(buf, &val, 0, csum_size);
328 btrfs_warn_rl(fs_info,
329 "%s checksum verify failed on %llu wanted %X found %X level %d",
330 fs_info->sb->s_id, buf->start,
331 val, found, btrfs_header_level(buf));
332 if (result != (char *)&inline_result)
333 kfree(result);
334 return -EUCLEAN;
335 }
336 } else {
337 write_extent_buffer(buf, result, 0, csum_size);
338 }
339 if (result != (char *)&inline_result)
340 kfree(result);
341 return 0;
342}
343
344/*
345 * we can't consider a given block up to date unless the transid of the
346 * block matches the transid in the parent node's pointer. This is how we
347 * detect blocks that either didn't get written at all or got written
348 * in the wrong place.
349 */
350static int verify_parent_transid(struct extent_io_tree *io_tree,
351 struct extent_buffer *eb, u64 parent_transid,
352 int atomic)
353{
354 struct extent_state *cached_state = NULL;
355 int ret;
356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357
358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 return 0;
360
361 if (atomic)
362 return -EAGAIN;
363
364 if (need_lock) {
365 btrfs_tree_read_lock(eb);
366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 }
368
369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state);
371 if (extent_buffer_uptodate(eb) &&
372 btrfs_header_generation(eb) == parent_transid) {
373 ret = 0;
374 goto out;
375 }
376 btrfs_err_rl(eb->fs_info,
377 "parent transid verify failed on %llu wanted %llu found %llu",
378 eb->start,
379 parent_transid, btrfs_header_generation(eb));
380 ret = 1;
381
382 /*
383 * Things reading via commit roots that don't have normal protection,
384 * like send, can have a really old block in cache that may point at a
385 * block that has been freed and re-allocated. So don't clear uptodate
386 * if we find an eb that is under IO (dirty/writeback) because we could
387 * end up reading in the stale data and then writing it back out and
388 * making everybody very sad.
389 */
390 if (!extent_buffer_under_io(eb))
391 clear_extent_buffer_uptodate(eb);
392out:
393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 &cached_state, GFP_NOFS);
395 if (need_lock)
396 btrfs_tree_read_unlock_blocking(eb);
397 return ret;
398}
399
400/*
401 * Return 0 if the superblock checksum type matches the checksum value of that
402 * algorithm. Pass the raw disk superblock data.
403 */
404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 char *raw_disk_sb)
406{
407 struct btrfs_super_block *disk_sb =
408 (struct btrfs_super_block *)raw_disk_sb;
409 u16 csum_type = btrfs_super_csum_type(disk_sb);
410 int ret = 0;
411
412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 u32 crc = ~(u32)0;
414 const int csum_size = sizeof(crc);
415 char result[csum_size];
416
417 /*
418 * The super_block structure does not span the whole
419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 * is filled with zeros and is included in the checksum.
421 */
422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 btrfs_csum_final(crc, result);
425
426 if (memcmp(raw_disk_sb, result, csum_size))
427 ret = 1;
428 }
429
430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432 csum_type);
433 ret = 1;
434 }
435
436 return ret;
437}
438
439/*
440 * helper to read a given tree block, doing retries as required when
441 * the checksums don't match and we have alternate mirrors to try.
442 */
443static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
444 struct extent_buffer *eb,
445 u64 parent_transid)
446{
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 while (1) {
456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458 btree_get_extent, mirror_num);
459 if (!ret) {
460 if (!verify_parent_transid(io_tree, eb,
461 parent_transid, 0))
462 break;
463 else
464 ret = -EIO;
465 }
466
467 num_copies = btrfs_num_copies(fs_info,
468 eb->start, eb->len);
469 if (num_copies == 1)
470 break;
471
472 if (!failed_mirror) {
473 failed = 1;
474 failed_mirror = eb->read_mirror;
475 }
476
477 mirror_num++;
478 if (mirror_num == failed_mirror)
479 mirror_num++;
480
481 if (mirror_num > num_copies)
482 break;
483 }
484
485 if (failed && !ret && failed_mirror)
486 repair_eb_io_failure(fs_info, eb, failed_mirror);
487
488 return ret;
489}
490
491/*
492 * checksum a dirty tree block before IO. This has extra checks to make sure
493 * we only fill in the checksum field in the first page of a multi-page block
494 */
495
496static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
497{
498 u64 start = page_offset(page);
499 u64 found_start;
500 struct extent_buffer *eb;
501
502 eb = (struct extent_buffer *)page->private;
503 if (page != eb->pages[0])
504 return 0;
505
506 found_start = btrfs_header_bytenr(eb);
507 /*
508 * Please do not consolidate these warnings into a single if.
509 * It is useful to know what went wrong.
510 */
511 if (WARN_ON(found_start != start))
512 return -EUCLEAN;
513 if (WARN_ON(!PageUptodate(page)))
514 return -EUCLEAN;
515
516 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
517 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
518
519 return csum_tree_block(fs_info, eb, 0);
520}
521
522static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
523 struct extent_buffer *eb)
524{
525 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
526 u8 fsid[BTRFS_FSID_SIZE];
527 int ret = 1;
528
529 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
530 while (fs_devices) {
531 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
532 ret = 0;
533 break;
534 }
535 fs_devices = fs_devices->seed;
536 }
537 return ret;
538}
539
540static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
541 u64 phy_offset, struct page *page,
542 u64 start, u64 end, int mirror)
543{
544 u64 found_start;
545 int found_level;
546 struct extent_buffer *eb;
547 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
548 struct btrfs_fs_info *fs_info = root->fs_info;
549 int ret = 0;
550 int reads_done;
551
552 if (!page->private)
553 goto out;
554
555 eb = (struct extent_buffer *)page->private;
556
557 /* the pending IO might have been the only thing that kept this buffer
558 * in memory. Make sure we have a ref for all this other checks
559 */
560 extent_buffer_get(eb);
561
562 reads_done = atomic_dec_and_test(&eb->io_pages);
563 if (!reads_done)
564 goto err;
565
566 eb->read_mirror = mirror;
567 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
568 ret = -EIO;
569 goto err;
570 }
571
572 found_start = btrfs_header_bytenr(eb);
573 if (found_start != eb->start) {
574 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
575 found_start, eb->start);
576 ret = -EIO;
577 goto err;
578 }
579 if (check_tree_block_fsid(fs_info, eb)) {
580 btrfs_err_rl(fs_info, "bad fsid on block %llu",
581 eb->start);
582 ret = -EIO;
583 goto err;
584 }
585 found_level = btrfs_header_level(eb);
586 if (found_level >= BTRFS_MAX_LEVEL) {
587 btrfs_err(fs_info, "bad tree block level %d",
588 (int)btrfs_header_level(eb));
589 ret = -EIO;
590 goto err;
591 }
592
593 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
594 eb, found_level);
595
596 ret = csum_tree_block(fs_info, eb, 1);
597 if (ret)
598 goto err;
599
600 /*
601 * If this is a leaf block and it is corrupt, set the corrupt bit so
602 * that we don't try and read the other copies of this block, just
603 * return -EIO.
604 */
605 if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
606 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
607 ret = -EIO;
608 }
609
610 if (found_level > 0 && btrfs_check_node(root, eb))
611 ret = -EIO;
612
613 if (!ret)
614 set_extent_buffer_uptodate(eb);
615err:
616 if (reads_done &&
617 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
618 btree_readahead_hook(eb, ret);
619
620 if (ret) {
621 /*
622 * our io error hook is going to dec the io pages
623 * again, we have to make sure it has something
624 * to decrement
625 */
626 atomic_inc(&eb->io_pages);
627 clear_extent_buffer_uptodate(eb);
628 }
629 free_extent_buffer(eb);
630out:
631 return ret;
632}
633
634static int btree_io_failed_hook(struct page *page, int failed_mirror)
635{
636 struct extent_buffer *eb;
637
638 eb = (struct extent_buffer *)page->private;
639 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
640 eb->read_mirror = failed_mirror;
641 atomic_dec(&eb->io_pages);
642 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
643 btree_readahead_hook(eb, -EIO);
644 return -EIO; /* we fixed nothing */
645}
646
647static void end_workqueue_bio(struct bio *bio)
648{
649 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
650 struct btrfs_fs_info *fs_info;
651 struct btrfs_workqueue *wq;
652 btrfs_work_func_t func;
653
654 fs_info = end_io_wq->info;
655 end_io_wq->status = bio->bi_status;
656
657 if (bio_op(bio) == REQ_OP_WRITE) {
658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
659 wq = fs_info->endio_meta_write_workers;
660 func = btrfs_endio_meta_write_helper;
661 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
662 wq = fs_info->endio_freespace_worker;
663 func = btrfs_freespace_write_helper;
664 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
665 wq = fs_info->endio_raid56_workers;
666 func = btrfs_endio_raid56_helper;
667 } else {
668 wq = fs_info->endio_write_workers;
669 func = btrfs_endio_write_helper;
670 }
671 } else {
672 if (unlikely(end_io_wq->metadata ==
673 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
674 wq = fs_info->endio_repair_workers;
675 func = btrfs_endio_repair_helper;
676 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
677 wq = fs_info->endio_raid56_workers;
678 func = btrfs_endio_raid56_helper;
679 } else if (end_io_wq->metadata) {
680 wq = fs_info->endio_meta_workers;
681 func = btrfs_endio_meta_helper;
682 } else {
683 wq = fs_info->endio_workers;
684 func = btrfs_endio_helper;
685 }
686 }
687
688 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
689 btrfs_queue_work(wq, &end_io_wq->work);
690}
691
692blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
693 enum btrfs_wq_endio_type metadata)
694{
695 struct btrfs_end_io_wq *end_io_wq;
696
697 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
698 if (!end_io_wq)
699 return BLK_STS_RESOURCE;
700
701 end_io_wq->private = bio->bi_private;
702 end_io_wq->end_io = bio->bi_end_io;
703 end_io_wq->info = info;
704 end_io_wq->status = 0;
705 end_io_wq->bio = bio;
706 end_io_wq->metadata = metadata;
707
708 bio->bi_private = end_io_wq;
709 bio->bi_end_io = end_workqueue_bio;
710 return 0;
711}
712
713unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
714{
715 unsigned long limit = min_t(unsigned long,
716 info->thread_pool_size,
717 info->fs_devices->open_devices);
718 return 256 * limit;
719}
720
721static void run_one_async_start(struct btrfs_work *work)
722{
723 struct async_submit_bio *async;
724 blk_status_t ret;
725
726 async = container_of(work, struct async_submit_bio, work);
727 ret = async->submit_bio_start(async->private_data, async->bio,
728 async->mirror_num, async->bio_flags,
729 async->bio_offset);
730 if (ret)
731 async->status = ret;
732}
733
734static void run_one_async_done(struct btrfs_work *work)
735{
736 struct btrfs_fs_info *fs_info;
737 struct async_submit_bio *async;
738 int limit;
739
740 async = container_of(work, struct async_submit_bio, work);
741 fs_info = async->fs_info;
742
743 limit = btrfs_async_submit_limit(fs_info);
744 limit = limit * 2 / 3;
745
746 /*
747 * atomic_dec_return implies a barrier for waitqueue_active
748 */
749 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
750 waitqueue_active(&fs_info->async_submit_wait))
751 wake_up(&fs_info->async_submit_wait);
752
753 /* If an error occurred we just want to clean up the bio and move on */
754 if (async->status) {
755 async->bio->bi_status = async->status;
756 bio_endio(async->bio);
757 return;
758 }
759
760 async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
761 async->bio_flags, async->bio_offset);
762}
763
764static void run_one_async_free(struct btrfs_work *work)
765{
766 struct async_submit_bio *async;
767
768 async = container_of(work, struct async_submit_bio, work);
769 kfree(async);
770}
771
772blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
773 int mirror_num, unsigned long bio_flags,
774 u64 bio_offset, void *private_data,
775 extent_submit_bio_hook_t *submit_bio_start,
776 extent_submit_bio_hook_t *submit_bio_done)
777{
778 struct async_submit_bio *async;
779
780 async = kmalloc(sizeof(*async), GFP_NOFS);
781 if (!async)
782 return BLK_STS_RESOURCE;
783
784 async->private_data = private_data;
785 async->fs_info = fs_info;
786 async->bio = bio;
787 async->mirror_num = mirror_num;
788 async->submit_bio_start = submit_bio_start;
789 async->submit_bio_done = submit_bio_done;
790
791 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
792 run_one_async_done, run_one_async_free);
793
794 async->bio_flags = bio_flags;
795 async->bio_offset = bio_offset;
796
797 async->status = 0;
798
799 atomic_inc(&fs_info->nr_async_submits);
800
801 if (op_is_sync(bio->bi_opf))
802 btrfs_set_work_high_priority(&async->work);
803
804 btrfs_queue_work(fs_info->workers, &async->work);
805
806 while (atomic_read(&fs_info->async_submit_draining) &&
807 atomic_read(&fs_info->nr_async_submits)) {
808 wait_event(fs_info->async_submit_wait,
809 (atomic_read(&fs_info->nr_async_submits) == 0));
810 }
811
812 return 0;
813}
814
815static blk_status_t btree_csum_one_bio(struct bio *bio)
816{
817 struct bio_vec *bvec;
818 struct btrfs_root *root;
819 int i, ret = 0;
820
821 ASSERT(!bio_flagged(bio, BIO_CLONED));
822 bio_for_each_segment_all(bvec, bio, i) {
823 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
824 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
825 if (ret)
826 break;
827 }
828
829 return errno_to_blk_status(ret);
830}
831
832static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
833 int mirror_num, unsigned long bio_flags,
834 u64 bio_offset)
835{
836 /*
837 * when we're called for a write, we're already in the async
838 * submission context. Just jump into btrfs_map_bio
839 */
840 return btree_csum_one_bio(bio);
841}
842
843static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
844 int mirror_num, unsigned long bio_flags,
845 u64 bio_offset)
846{
847 struct inode *inode = private_data;
848 blk_status_t ret;
849
850 /*
851 * when we're called for a write, we're already in the async
852 * submission context. Just jump into btrfs_map_bio
853 */
854 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
855 if (ret) {
856 bio->bi_status = ret;
857 bio_endio(bio);
858 }
859 return ret;
860}
861
862static int check_async_write(unsigned long bio_flags)
863{
864 if (bio_flags & EXTENT_BIO_TREE_LOG)
865 return 0;
866#ifdef CONFIG_X86
867 if (static_cpu_has(X86_FEATURE_XMM4_2))
868 return 0;
869#endif
870 return 1;
871}
872
873static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
874 int mirror_num, unsigned long bio_flags,
875 u64 bio_offset)
876{
877 struct inode *inode = private_data;
878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
879 int async = check_async_write(bio_flags);
880 blk_status_t ret;
881
882 if (bio_op(bio) != REQ_OP_WRITE) {
883 /*
884 * called for a read, do the setup so that checksum validation
885 * can happen in the async kernel threads
886 */
887 ret = btrfs_bio_wq_end_io(fs_info, bio,
888 BTRFS_WQ_ENDIO_METADATA);
889 if (ret)
890 goto out_w_error;
891 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
892 } else if (!async) {
893 ret = btree_csum_one_bio(bio);
894 if (ret)
895 goto out_w_error;
896 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
897 } else {
898 /*
899 * kthread helpers are used to submit writes so that
900 * checksumming can happen in parallel across all CPUs
901 */
902 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
903 bio_offset, private_data,
904 __btree_submit_bio_start,
905 __btree_submit_bio_done);
906 }
907
908 if (ret)
909 goto out_w_error;
910 return 0;
911
912out_w_error:
913 bio->bi_status = ret;
914 bio_endio(bio);
915 return ret;
916}
917
918#ifdef CONFIG_MIGRATION
919static int btree_migratepage(struct address_space *mapping,
920 struct page *newpage, struct page *page,
921 enum migrate_mode mode)
922{
923 /*
924 * we can't safely write a btree page from here,
925 * we haven't done the locking hook
926 */
927 if (PageDirty(page))
928 return -EAGAIN;
929 /*
930 * Buffers may be managed in a filesystem specific way.
931 * We must have no buffers or drop them.
932 */
933 if (page_has_private(page) &&
934 !try_to_release_page(page, GFP_KERNEL))
935 return -EAGAIN;
936 return migrate_page(mapping, newpage, page, mode);
937}
938#endif
939
940
941static int btree_writepages(struct address_space *mapping,
942 struct writeback_control *wbc)
943{
944 struct btrfs_fs_info *fs_info;
945 int ret;
946
947 if (wbc->sync_mode == WB_SYNC_NONE) {
948
949 if (wbc->for_kupdate)
950 return 0;
951
952 fs_info = BTRFS_I(mapping->host)->root->fs_info;
953 /* this is a bit racy, but that's ok */
954 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
955 BTRFS_DIRTY_METADATA_THRESH,
956 fs_info->dirty_metadata_batch);
957 if (ret < 0)
958 return 0;
959 }
960 return btree_write_cache_pages(mapping, wbc);
961}
962
963static int btree_readpage(struct file *file, struct page *page)
964{
965 struct extent_io_tree *tree;
966 tree = &BTRFS_I(page->mapping->host)->io_tree;
967 return extent_read_full_page(tree, page, btree_get_extent, 0);
968}
969
970static int btree_releasepage(struct page *page, gfp_t gfp_flags)
971{
972 if (PageWriteback(page) || PageDirty(page))
973 return 0;
974
975 return try_release_extent_buffer(page);
976}
977
978static void btree_invalidatepage(struct page *page, unsigned int offset,
979 unsigned int length)
980{
981 struct extent_io_tree *tree;
982 tree = &BTRFS_I(page->mapping->host)->io_tree;
983 extent_invalidatepage(tree, page, offset);
984 btree_releasepage(page, GFP_NOFS);
985 if (PagePrivate(page)) {
986 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
987 "page private not zero on page %llu",
988 (unsigned long long)page_offset(page));
989 ClearPagePrivate(page);
990 set_page_private(page, 0);
991 put_page(page);
992 }
993}
994
995static int btree_set_page_dirty(struct page *page)
996{
997#ifdef DEBUG
998 struct extent_buffer *eb;
999
1000 BUG_ON(!PagePrivate(page));
1001 eb = (struct extent_buffer *)page->private;
1002 BUG_ON(!eb);
1003 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1004 BUG_ON(!atomic_read(&eb->refs));
1005 btrfs_assert_tree_locked(eb);
1006#endif
1007 return __set_page_dirty_nobuffers(page);
1008}
1009
1010static const struct address_space_operations btree_aops = {
1011 .readpage = btree_readpage,
1012 .writepages = btree_writepages,
1013 .releasepage = btree_releasepage,
1014 .invalidatepage = btree_invalidatepage,
1015#ifdef CONFIG_MIGRATION
1016 .migratepage = btree_migratepage,
1017#endif
1018 .set_page_dirty = btree_set_page_dirty,
1019};
1020
1021void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1022{
1023 struct extent_buffer *buf = NULL;
1024 struct inode *btree_inode = fs_info->btree_inode;
1025
1026 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1027 if (IS_ERR(buf))
1028 return;
1029 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1030 buf, WAIT_NONE, btree_get_extent, 0);
1031 free_extent_buffer(buf);
1032}
1033
1034int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1035 int mirror_num, struct extent_buffer **eb)
1036{
1037 struct extent_buffer *buf = NULL;
1038 struct inode *btree_inode = fs_info->btree_inode;
1039 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1040 int ret;
1041
1042 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1043 if (IS_ERR(buf))
1044 return 0;
1045
1046 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1047
1048 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1049 btree_get_extent, mirror_num);
1050 if (ret) {
1051 free_extent_buffer(buf);
1052 return ret;
1053 }
1054
1055 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1056 free_extent_buffer(buf);
1057 return -EIO;
1058 } else if (extent_buffer_uptodate(buf)) {
1059 *eb = buf;
1060 } else {
1061 free_extent_buffer(buf);
1062 }
1063 return 0;
1064}
1065
1066struct extent_buffer *btrfs_find_create_tree_block(
1067 struct btrfs_fs_info *fs_info,
1068 u64 bytenr)
1069{
1070 if (btrfs_is_testing(fs_info))
1071 return alloc_test_extent_buffer(fs_info, bytenr);
1072 return alloc_extent_buffer(fs_info, bytenr);
1073}
1074
1075
1076int btrfs_write_tree_block(struct extent_buffer *buf)
1077{
1078 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1079 buf->start + buf->len - 1);
1080}
1081
1082void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1083{
1084 filemap_fdatawait_range(buf->pages[0]->mapping,
1085 buf->start, buf->start + buf->len - 1);
1086}
1087
1088struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1089 u64 parent_transid)
1090{
1091 struct extent_buffer *buf = NULL;
1092 int ret;
1093
1094 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1095 if (IS_ERR(buf))
1096 return buf;
1097
1098 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1099 if (ret) {
1100 free_extent_buffer(buf);
1101 return ERR_PTR(ret);
1102 }
1103 return buf;
1104
1105}
1106
1107void clean_tree_block(struct btrfs_fs_info *fs_info,
1108 struct extent_buffer *buf)
1109{
1110 if (btrfs_header_generation(buf) ==
1111 fs_info->running_transaction->transid) {
1112 btrfs_assert_tree_locked(buf);
1113
1114 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1115 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1116 -buf->len,
1117 fs_info->dirty_metadata_batch);
1118 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1119 btrfs_set_lock_blocking(buf);
1120 clear_extent_buffer_dirty(buf);
1121 }
1122 }
1123}
1124
1125static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1126{
1127 struct btrfs_subvolume_writers *writers;
1128 int ret;
1129
1130 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1131 if (!writers)
1132 return ERR_PTR(-ENOMEM);
1133
1134 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1135 if (ret < 0) {
1136 kfree(writers);
1137 return ERR_PTR(ret);
1138 }
1139
1140 init_waitqueue_head(&writers->wait);
1141 return writers;
1142}
1143
1144static void
1145btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1146{
1147 percpu_counter_destroy(&writers->counter);
1148 kfree(writers);
1149}
1150
1151static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1152 u64 objectid)
1153{
1154 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1155 root->node = NULL;
1156 root->commit_root = NULL;
1157 root->state = 0;
1158 root->orphan_cleanup_state = 0;
1159
1160 root->objectid = objectid;
1161 root->last_trans = 0;
1162 root->highest_objectid = 0;
1163 root->nr_delalloc_inodes = 0;
1164 root->nr_ordered_extents = 0;
1165 root->name = NULL;
1166 root->inode_tree = RB_ROOT;
1167 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1168 root->block_rsv = NULL;
1169 root->orphan_block_rsv = NULL;
1170
1171 INIT_LIST_HEAD(&root->dirty_list);
1172 INIT_LIST_HEAD(&root->root_list);
1173 INIT_LIST_HEAD(&root->delalloc_inodes);
1174 INIT_LIST_HEAD(&root->delalloc_root);
1175 INIT_LIST_HEAD(&root->ordered_extents);
1176 INIT_LIST_HEAD(&root->ordered_root);
1177 INIT_LIST_HEAD(&root->logged_list[0]);
1178 INIT_LIST_HEAD(&root->logged_list[1]);
1179 spin_lock_init(&root->orphan_lock);
1180 spin_lock_init(&root->inode_lock);
1181 spin_lock_init(&root->delalloc_lock);
1182 spin_lock_init(&root->ordered_extent_lock);
1183 spin_lock_init(&root->accounting_lock);
1184 spin_lock_init(&root->log_extents_lock[0]);
1185 spin_lock_init(&root->log_extents_lock[1]);
1186 mutex_init(&root->objectid_mutex);
1187 mutex_init(&root->log_mutex);
1188 mutex_init(&root->ordered_extent_mutex);
1189 mutex_init(&root->delalloc_mutex);
1190 init_waitqueue_head(&root->log_writer_wait);
1191 init_waitqueue_head(&root->log_commit_wait[0]);
1192 init_waitqueue_head(&root->log_commit_wait[1]);
1193 INIT_LIST_HEAD(&root->log_ctxs[0]);
1194 INIT_LIST_HEAD(&root->log_ctxs[1]);
1195 atomic_set(&root->log_commit[0], 0);
1196 atomic_set(&root->log_commit[1], 0);
1197 atomic_set(&root->log_writers, 0);
1198 atomic_set(&root->log_batch, 0);
1199 atomic_set(&root->orphan_inodes, 0);
1200 refcount_set(&root->refs, 1);
1201 atomic_set(&root->will_be_snapshotted, 0);
1202 atomic64_set(&root->qgroup_meta_rsv, 0);
1203 root->log_transid = 0;
1204 root->log_transid_committed = -1;
1205 root->last_log_commit = 0;
1206 if (!dummy)
1207 extent_io_tree_init(&root->dirty_log_pages, NULL);
1208
1209 memset(&root->root_key, 0, sizeof(root->root_key));
1210 memset(&root->root_item, 0, sizeof(root->root_item));
1211 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1212 if (!dummy)
1213 root->defrag_trans_start = fs_info->generation;
1214 else
1215 root->defrag_trans_start = 0;
1216 root->root_key.objectid = objectid;
1217 root->anon_dev = 0;
1218
1219 spin_lock_init(&root->root_item_lock);
1220}
1221
1222static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1223 gfp_t flags)
1224{
1225 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1226 if (root)
1227 root->fs_info = fs_info;
1228 return root;
1229}
1230
1231#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1232/* Should only be used by the testing infrastructure */
1233struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1234{
1235 struct btrfs_root *root;
1236
1237 if (!fs_info)
1238 return ERR_PTR(-EINVAL);
1239
1240 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1241 if (!root)
1242 return ERR_PTR(-ENOMEM);
1243
1244 /* We don't use the stripesize in selftest, set it as sectorsize */
1245 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1246 root->alloc_bytenr = 0;
1247
1248 return root;
1249}
1250#endif
1251
1252struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_fs_info *fs_info,
1254 u64 objectid)
1255{
1256 struct extent_buffer *leaf;
1257 struct btrfs_root *tree_root = fs_info->tree_root;
1258 struct btrfs_root *root;
1259 struct btrfs_key key;
1260 int ret = 0;
1261 uuid_le uuid;
1262
1263 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1264 if (!root)
1265 return ERR_PTR(-ENOMEM);
1266
1267 __setup_root(root, fs_info, objectid);
1268 root->root_key.objectid = objectid;
1269 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270 root->root_key.offset = 0;
1271
1272 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1273 if (IS_ERR(leaf)) {
1274 ret = PTR_ERR(leaf);
1275 leaf = NULL;
1276 goto fail;
1277 }
1278
1279 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1280 btrfs_set_header_bytenr(leaf, leaf->start);
1281 btrfs_set_header_generation(leaf, trans->transid);
1282 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1283 btrfs_set_header_owner(leaf, objectid);
1284 root->node = leaf;
1285
1286 write_extent_buffer_fsid(leaf, fs_info->fsid);
1287 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1288 btrfs_mark_buffer_dirty(leaf);
1289
1290 root->commit_root = btrfs_root_node(root);
1291 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1292
1293 root->root_item.flags = 0;
1294 root->root_item.byte_limit = 0;
1295 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1296 btrfs_set_root_generation(&root->root_item, trans->transid);
1297 btrfs_set_root_level(&root->root_item, 0);
1298 btrfs_set_root_refs(&root->root_item, 1);
1299 btrfs_set_root_used(&root->root_item, leaf->len);
1300 btrfs_set_root_last_snapshot(&root->root_item, 0);
1301 btrfs_set_root_dirid(&root->root_item, 0);
1302 uuid_le_gen(&uuid);
1303 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1304 root->root_item.drop_level = 0;
1305
1306 key.objectid = objectid;
1307 key.type = BTRFS_ROOT_ITEM_KEY;
1308 key.offset = 0;
1309 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1310 if (ret)
1311 goto fail;
1312
1313 btrfs_tree_unlock(leaf);
1314
1315 return root;
1316
1317fail:
1318 if (leaf) {
1319 btrfs_tree_unlock(leaf);
1320 free_extent_buffer(root->commit_root);
1321 free_extent_buffer(leaf);
1322 }
1323 kfree(root);
1324
1325 return ERR_PTR(ret);
1326}
1327
1328static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1329 struct btrfs_fs_info *fs_info)
1330{
1331 struct btrfs_root *root;
1332 struct extent_buffer *leaf;
1333
1334 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1335 if (!root)
1336 return ERR_PTR(-ENOMEM);
1337
1338 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1339
1340 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1341 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1342 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1343
1344 /*
1345 * DON'T set REF_COWS for log trees
1346 *
1347 * log trees do not get reference counted because they go away
1348 * before a real commit is actually done. They do store pointers
1349 * to file data extents, and those reference counts still get
1350 * updated (along with back refs to the log tree).
1351 */
1352
1353 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1354 NULL, 0, 0, 0);
1355 if (IS_ERR(leaf)) {
1356 kfree(root);
1357 return ERR_CAST(leaf);
1358 }
1359
1360 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1361 btrfs_set_header_bytenr(leaf, leaf->start);
1362 btrfs_set_header_generation(leaf, trans->transid);
1363 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1365 root->node = leaf;
1366
1367 write_extent_buffer_fsid(root->node, fs_info->fsid);
1368 btrfs_mark_buffer_dirty(root->node);
1369 btrfs_tree_unlock(root->node);
1370 return root;
1371}
1372
1373int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1374 struct btrfs_fs_info *fs_info)
1375{
1376 struct btrfs_root *log_root;
1377
1378 log_root = alloc_log_tree(trans, fs_info);
1379 if (IS_ERR(log_root))
1380 return PTR_ERR(log_root);
1381 WARN_ON(fs_info->log_root_tree);
1382 fs_info->log_root_tree = log_root;
1383 return 0;
1384}
1385
1386int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1387 struct btrfs_root *root)
1388{
1389 struct btrfs_fs_info *fs_info = root->fs_info;
1390 struct btrfs_root *log_root;
1391 struct btrfs_inode_item *inode_item;
1392
1393 log_root = alloc_log_tree(trans, fs_info);
1394 if (IS_ERR(log_root))
1395 return PTR_ERR(log_root);
1396
1397 log_root->last_trans = trans->transid;
1398 log_root->root_key.offset = root->root_key.objectid;
1399
1400 inode_item = &log_root->root_item.inode;
1401 btrfs_set_stack_inode_generation(inode_item, 1);
1402 btrfs_set_stack_inode_size(inode_item, 3);
1403 btrfs_set_stack_inode_nlink(inode_item, 1);
1404 btrfs_set_stack_inode_nbytes(inode_item,
1405 fs_info->nodesize);
1406 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1407
1408 btrfs_set_root_node(&log_root->root_item, log_root->node);
1409
1410 WARN_ON(root->log_root);
1411 root->log_root = log_root;
1412 root->log_transid = 0;
1413 root->log_transid_committed = -1;
1414 root->last_log_commit = 0;
1415 return 0;
1416}
1417
1418static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1419 struct btrfs_key *key)
1420{
1421 struct btrfs_root *root;
1422 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1423 struct btrfs_path *path;
1424 u64 generation;
1425 int ret;
1426
1427 path = btrfs_alloc_path();
1428 if (!path)
1429 return ERR_PTR(-ENOMEM);
1430
1431 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1432 if (!root) {
1433 ret = -ENOMEM;
1434 goto alloc_fail;
1435 }
1436
1437 __setup_root(root, fs_info, key->objectid);
1438
1439 ret = btrfs_find_root(tree_root, key, path,
1440 &root->root_item, &root->root_key);
1441 if (ret) {
1442 if (ret > 0)
1443 ret = -ENOENT;
1444 goto find_fail;
1445 }
1446
1447 generation = btrfs_root_generation(&root->root_item);
1448 root->node = read_tree_block(fs_info,
1449 btrfs_root_bytenr(&root->root_item),
1450 generation);
1451 if (IS_ERR(root->node)) {
1452 ret = PTR_ERR(root->node);
1453 goto find_fail;
1454 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1455 ret = -EIO;
1456 free_extent_buffer(root->node);
1457 goto find_fail;
1458 }
1459 root->commit_root = btrfs_root_node(root);
1460out:
1461 btrfs_free_path(path);
1462 return root;
1463
1464find_fail:
1465 kfree(root);
1466alloc_fail:
1467 root = ERR_PTR(ret);
1468 goto out;
1469}
1470
1471struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1472 struct btrfs_key *location)
1473{
1474 struct btrfs_root *root;
1475
1476 root = btrfs_read_tree_root(tree_root, location);
1477 if (IS_ERR(root))
1478 return root;
1479
1480 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1481 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1482 btrfs_check_and_init_root_item(&root->root_item);
1483 }
1484
1485 return root;
1486}
1487
1488int btrfs_init_fs_root(struct btrfs_root *root)
1489{
1490 int ret;
1491 struct btrfs_subvolume_writers *writers;
1492
1493 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1494 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1495 GFP_NOFS);
1496 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1497 ret = -ENOMEM;
1498 goto fail;
1499 }
1500
1501 writers = btrfs_alloc_subvolume_writers();
1502 if (IS_ERR(writers)) {
1503 ret = PTR_ERR(writers);
1504 goto fail;
1505 }
1506 root->subv_writers = writers;
1507
1508 btrfs_init_free_ino_ctl(root);
1509 spin_lock_init(&root->ino_cache_lock);
1510 init_waitqueue_head(&root->ino_cache_wait);
1511
1512 /*
1513 * Don't assign anonymous block device to roots that are not exposed to
1514 * userspace, the id pool is limited to 1M
1515 */
1516 if (is_fstree(root->root_key.objectid) &&
1517 btrfs_root_refs(&root->root_item) > 0) {
1518 ret = get_anon_bdev(&root->anon_dev);
1519 if (ret)
1520 goto fail;
1521 }
1522
1523 mutex_lock(&root->objectid_mutex);
1524 ret = btrfs_find_highest_objectid(root,
1525 &root->highest_objectid);
1526 if (ret) {
1527 mutex_unlock(&root->objectid_mutex);
1528 goto fail;
1529 }
1530
1531 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1532
1533 mutex_unlock(&root->objectid_mutex);
1534
1535 return 0;
1536fail:
1537 /* the caller is responsible to call free_fs_root */
1538 return ret;
1539}
1540
1541struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1542 u64 root_id)
1543{
1544 struct btrfs_root *root;
1545
1546 spin_lock(&fs_info->fs_roots_radix_lock);
1547 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1548 (unsigned long)root_id);
1549 spin_unlock(&fs_info->fs_roots_radix_lock);
1550 return root;
1551}
1552
1553int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1554 struct btrfs_root *root)
1555{
1556 int ret;
1557
1558 ret = radix_tree_preload(GFP_NOFS);
1559 if (ret)
1560 return ret;
1561
1562 spin_lock(&fs_info->fs_roots_radix_lock);
1563 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1564 (unsigned long)root->root_key.objectid,
1565 root);
1566 if (ret == 0)
1567 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1568 spin_unlock(&fs_info->fs_roots_radix_lock);
1569 radix_tree_preload_end();
1570
1571 return ret;
1572}
1573
1574struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1575 struct btrfs_key *location,
1576 bool check_ref)
1577{
1578 struct btrfs_root *root;
1579 struct btrfs_path *path;
1580 struct btrfs_key key;
1581 int ret;
1582
1583 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1584 return fs_info->tree_root;
1585 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1586 return fs_info->extent_root;
1587 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1588 return fs_info->chunk_root;
1589 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1590 return fs_info->dev_root;
1591 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1592 return fs_info->csum_root;
1593 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1594 return fs_info->quota_root ? fs_info->quota_root :
1595 ERR_PTR(-ENOENT);
1596 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1597 return fs_info->uuid_root ? fs_info->uuid_root :
1598 ERR_PTR(-ENOENT);
1599 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1600 return fs_info->free_space_root ? fs_info->free_space_root :
1601 ERR_PTR(-ENOENT);
1602again:
1603 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1604 if (root) {
1605 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1606 return ERR_PTR(-ENOENT);
1607 return root;
1608 }
1609
1610 root = btrfs_read_fs_root(fs_info->tree_root, location);
1611 if (IS_ERR(root))
1612 return root;
1613
1614 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1615 ret = -ENOENT;
1616 goto fail;
1617 }
1618
1619 ret = btrfs_init_fs_root(root);
1620 if (ret)
1621 goto fail;
1622
1623 path = btrfs_alloc_path();
1624 if (!path) {
1625 ret = -ENOMEM;
1626 goto fail;
1627 }
1628 key.objectid = BTRFS_ORPHAN_OBJECTID;
1629 key.type = BTRFS_ORPHAN_ITEM_KEY;
1630 key.offset = location->objectid;
1631
1632 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1633 btrfs_free_path(path);
1634 if (ret < 0)
1635 goto fail;
1636 if (ret == 0)
1637 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1638
1639 ret = btrfs_insert_fs_root(fs_info, root);
1640 if (ret) {
1641 if (ret == -EEXIST) {
1642 free_fs_root(root);
1643 goto again;
1644 }
1645 goto fail;
1646 }
1647 return root;
1648fail:
1649 free_fs_root(root);
1650 return ERR_PTR(ret);
1651}
1652
1653static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1654{
1655 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1656 int ret = 0;
1657 struct btrfs_device *device;
1658 struct backing_dev_info *bdi;
1659
1660 rcu_read_lock();
1661 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1662 if (!device->bdev)
1663 continue;
1664 bdi = device->bdev->bd_bdi;
1665 if (bdi_congested(bdi, bdi_bits)) {
1666 ret = 1;
1667 break;
1668 }
1669 }
1670 rcu_read_unlock();
1671 return ret;
1672}
1673
1674/*
1675 * called by the kthread helper functions to finally call the bio end_io
1676 * functions. This is where read checksum verification actually happens
1677 */
1678static void end_workqueue_fn(struct btrfs_work *work)
1679{
1680 struct bio *bio;
1681 struct btrfs_end_io_wq *end_io_wq;
1682
1683 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1684 bio = end_io_wq->bio;
1685
1686 bio->bi_status = end_io_wq->status;
1687 bio->bi_private = end_io_wq->private;
1688 bio->bi_end_io = end_io_wq->end_io;
1689 bio_endio(bio);
1690 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1691}
1692
1693static int cleaner_kthread(void *arg)
1694{
1695 struct btrfs_root *root = arg;
1696 struct btrfs_fs_info *fs_info = root->fs_info;
1697 int again;
1698
1699 while (1) {
1700 again = 0;
1701
1702 /* Make the cleaner go to sleep early. */
1703 if (btrfs_need_cleaner_sleep(fs_info))
1704 goto sleep;
1705
1706 /*
1707 * Do not do anything if we might cause open_ctree() to block
1708 * before we have finished mounting the filesystem.
1709 */
1710 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1711 goto sleep;
1712
1713 if (!mutex_trylock(&fs_info->cleaner_mutex))
1714 goto sleep;
1715
1716 /*
1717 * Avoid the problem that we change the status of the fs
1718 * during the above check and trylock.
1719 */
1720 if (btrfs_need_cleaner_sleep(fs_info)) {
1721 mutex_unlock(&fs_info->cleaner_mutex);
1722 goto sleep;
1723 }
1724
1725 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1726 btrfs_run_delayed_iputs(fs_info);
1727 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1728
1729 again = btrfs_clean_one_deleted_snapshot(root);
1730 mutex_unlock(&fs_info->cleaner_mutex);
1731
1732 /*
1733 * The defragger has dealt with the R/O remount and umount,
1734 * needn't do anything special here.
1735 */
1736 btrfs_run_defrag_inodes(fs_info);
1737
1738 /*
1739 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1740 * with relocation (btrfs_relocate_chunk) and relocation
1741 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1742 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1743 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1744 * unused block groups.
1745 */
1746 btrfs_delete_unused_bgs(fs_info);
1747sleep:
1748 if (kthread_should_park())
1749 kthread_parkme();
1750 if (kthread_should_stop())
1751 return 0;
1752 if (!again) {
1753 set_current_state(TASK_INTERRUPTIBLE);
1754 schedule();
1755 __set_current_state(TASK_RUNNING);
1756 }
1757 }
1758}
1759
1760static int transaction_kthread(void *arg)
1761{
1762 struct btrfs_root *root = arg;
1763 struct btrfs_fs_info *fs_info = root->fs_info;
1764 struct btrfs_trans_handle *trans;
1765 struct btrfs_transaction *cur;
1766 u64 transid;
1767 unsigned long now;
1768 unsigned long delay;
1769 bool cannot_commit;
1770
1771 do {
1772 cannot_commit = false;
1773 delay = HZ * fs_info->commit_interval;
1774 mutex_lock(&fs_info->transaction_kthread_mutex);
1775
1776 spin_lock(&fs_info->trans_lock);
1777 cur = fs_info->running_transaction;
1778 if (!cur) {
1779 spin_unlock(&fs_info->trans_lock);
1780 goto sleep;
1781 }
1782
1783 now = get_seconds();
1784 if (cur->state < TRANS_STATE_BLOCKED &&
1785 (now < cur->start_time ||
1786 now - cur->start_time < fs_info->commit_interval)) {
1787 spin_unlock(&fs_info->trans_lock);
1788 delay = HZ * 5;
1789 goto sleep;
1790 }
1791 transid = cur->transid;
1792 spin_unlock(&fs_info->trans_lock);
1793
1794 /* If the file system is aborted, this will always fail. */
1795 trans = btrfs_attach_transaction(root);
1796 if (IS_ERR(trans)) {
1797 if (PTR_ERR(trans) != -ENOENT)
1798 cannot_commit = true;
1799 goto sleep;
1800 }
1801 if (transid == trans->transid) {
1802 btrfs_commit_transaction(trans);
1803 } else {
1804 btrfs_end_transaction(trans);
1805 }
1806sleep:
1807 wake_up_process(fs_info->cleaner_kthread);
1808 mutex_unlock(&fs_info->transaction_kthread_mutex);
1809
1810 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1811 &fs_info->fs_state)))
1812 btrfs_cleanup_transaction(fs_info);
1813 set_current_state(TASK_INTERRUPTIBLE);
1814 if (!kthread_should_stop() &&
1815 (!btrfs_transaction_blocked(fs_info) ||
1816 cannot_commit))
1817 schedule_timeout(delay);
1818 __set_current_state(TASK_RUNNING);
1819 } while (!kthread_should_stop());
1820 return 0;
1821}
1822
1823/*
1824 * this will find the highest generation in the array of
1825 * root backups. The index of the highest array is returned,
1826 * or -1 if we can't find anything.
1827 *
1828 * We check to make sure the array is valid by comparing the
1829 * generation of the latest root in the array with the generation
1830 * in the super block. If they don't match we pitch it.
1831 */
1832static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1833{
1834 u64 cur;
1835 int newest_index = -1;
1836 struct btrfs_root_backup *root_backup;
1837 int i;
1838
1839 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1840 root_backup = info->super_copy->super_roots + i;
1841 cur = btrfs_backup_tree_root_gen(root_backup);
1842 if (cur == newest_gen)
1843 newest_index = i;
1844 }
1845
1846 /* check to see if we actually wrapped around */
1847 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1848 root_backup = info->super_copy->super_roots;
1849 cur = btrfs_backup_tree_root_gen(root_backup);
1850 if (cur == newest_gen)
1851 newest_index = 0;
1852 }
1853 return newest_index;
1854}
1855
1856
1857/*
1858 * find the oldest backup so we know where to store new entries
1859 * in the backup array. This will set the backup_root_index
1860 * field in the fs_info struct
1861 */
1862static void find_oldest_super_backup(struct btrfs_fs_info *info,
1863 u64 newest_gen)
1864{
1865 int newest_index = -1;
1866
1867 newest_index = find_newest_super_backup(info, newest_gen);
1868 /* if there was garbage in there, just move along */
1869 if (newest_index == -1) {
1870 info->backup_root_index = 0;
1871 } else {
1872 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1873 }
1874}
1875
1876/*
1877 * copy all the root pointers into the super backup array.
1878 * this will bump the backup pointer by one when it is
1879 * done
1880 */
1881static void backup_super_roots(struct btrfs_fs_info *info)
1882{
1883 int next_backup;
1884 struct btrfs_root_backup *root_backup;
1885 int last_backup;
1886
1887 next_backup = info->backup_root_index;
1888 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1889 BTRFS_NUM_BACKUP_ROOTS;
1890
1891 /*
1892 * just overwrite the last backup if we're at the same generation
1893 * this happens only at umount
1894 */
1895 root_backup = info->super_for_commit->super_roots + last_backup;
1896 if (btrfs_backup_tree_root_gen(root_backup) ==
1897 btrfs_header_generation(info->tree_root->node))
1898 next_backup = last_backup;
1899
1900 root_backup = info->super_for_commit->super_roots + next_backup;
1901
1902 /*
1903 * make sure all of our padding and empty slots get zero filled
1904 * regardless of which ones we use today
1905 */
1906 memset(root_backup, 0, sizeof(*root_backup));
1907
1908 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1909
1910 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1911 btrfs_set_backup_tree_root_gen(root_backup,
1912 btrfs_header_generation(info->tree_root->node));
1913
1914 btrfs_set_backup_tree_root_level(root_backup,
1915 btrfs_header_level(info->tree_root->node));
1916
1917 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1918 btrfs_set_backup_chunk_root_gen(root_backup,
1919 btrfs_header_generation(info->chunk_root->node));
1920 btrfs_set_backup_chunk_root_level(root_backup,
1921 btrfs_header_level(info->chunk_root->node));
1922
1923 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1924 btrfs_set_backup_extent_root_gen(root_backup,
1925 btrfs_header_generation(info->extent_root->node));
1926 btrfs_set_backup_extent_root_level(root_backup,
1927 btrfs_header_level(info->extent_root->node));
1928
1929 /*
1930 * we might commit during log recovery, which happens before we set
1931 * the fs_root. Make sure it is valid before we fill it in.
1932 */
1933 if (info->fs_root && info->fs_root->node) {
1934 btrfs_set_backup_fs_root(root_backup,
1935 info->fs_root->node->start);
1936 btrfs_set_backup_fs_root_gen(root_backup,
1937 btrfs_header_generation(info->fs_root->node));
1938 btrfs_set_backup_fs_root_level(root_backup,
1939 btrfs_header_level(info->fs_root->node));
1940 }
1941
1942 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1943 btrfs_set_backup_dev_root_gen(root_backup,
1944 btrfs_header_generation(info->dev_root->node));
1945 btrfs_set_backup_dev_root_level(root_backup,
1946 btrfs_header_level(info->dev_root->node));
1947
1948 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1949 btrfs_set_backup_csum_root_gen(root_backup,
1950 btrfs_header_generation(info->csum_root->node));
1951 btrfs_set_backup_csum_root_level(root_backup,
1952 btrfs_header_level(info->csum_root->node));
1953
1954 btrfs_set_backup_total_bytes(root_backup,
1955 btrfs_super_total_bytes(info->super_copy));
1956 btrfs_set_backup_bytes_used(root_backup,
1957 btrfs_super_bytes_used(info->super_copy));
1958 btrfs_set_backup_num_devices(root_backup,
1959 btrfs_super_num_devices(info->super_copy));
1960
1961 /*
1962 * if we don't copy this out to the super_copy, it won't get remembered
1963 * for the next commit
1964 */
1965 memcpy(&info->super_copy->super_roots,
1966 &info->super_for_commit->super_roots,
1967 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1968}
1969
1970/*
1971 * this copies info out of the root backup array and back into
1972 * the in-memory super block. It is meant to help iterate through
1973 * the array, so you send it the number of backups you've already
1974 * tried and the last backup index you used.
1975 *
1976 * this returns -1 when it has tried all the backups
1977 */
1978static noinline int next_root_backup(struct btrfs_fs_info *info,
1979 struct btrfs_super_block *super,
1980 int *num_backups_tried, int *backup_index)
1981{
1982 struct btrfs_root_backup *root_backup;
1983 int newest = *backup_index;
1984
1985 if (*num_backups_tried == 0) {
1986 u64 gen = btrfs_super_generation(super);
1987
1988 newest = find_newest_super_backup(info, gen);
1989 if (newest == -1)
1990 return -1;
1991
1992 *backup_index = newest;
1993 *num_backups_tried = 1;
1994 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1995 /* we've tried all the backups, all done */
1996 return -1;
1997 } else {
1998 /* jump to the next oldest backup */
1999 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2000 BTRFS_NUM_BACKUP_ROOTS;
2001 *backup_index = newest;
2002 *num_backups_tried += 1;
2003 }
2004 root_backup = super->super_roots + newest;
2005
2006 btrfs_set_super_generation(super,
2007 btrfs_backup_tree_root_gen(root_backup));
2008 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2009 btrfs_set_super_root_level(super,
2010 btrfs_backup_tree_root_level(root_backup));
2011 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2012
2013 /*
2014 * fixme: the total bytes and num_devices need to match or we should
2015 * need a fsck
2016 */
2017 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2018 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2019 return 0;
2020}
2021
2022/* helper to cleanup workers */
2023static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2024{
2025 btrfs_destroy_workqueue(fs_info->fixup_workers);
2026 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2027 btrfs_destroy_workqueue(fs_info->workers);
2028 btrfs_destroy_workqueue(fs_info->endio_workers);
2029 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2030 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2031 btrfs_destroy_workqueue(fs_info->rmw_workers);
2032 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2033 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2034 btrfs_destroy_workqueue(fs_info->submit_workers);
2035 btrfs_destroy_workqueue(fs_info->delayed_workers);
2036 btrfs_destroy_workqueue(fs_info->caching_workers);
2037 btrfs_destroy_workqueue(fs_info->readahead_workers);
2038 btrfs_destroy_workqueue(fs_info->flush_workers);
2039 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2040 btrfs_destroy_workqueue(fs_info->extent_workers);
2041 /*
2042 * Now that all other work queues are destroyed, we can safely destroy
2043 * the queues used for metadata I/O, since tasks from those other work
2044 * queues can do metadata I/O operations.
2045 */
2046 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2047 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2048}
2049
2050static void free_root_extent_buffers(struct btrfs_root *root)
2051{
2052 if (root) {
2053 free_extent_buffer(root->node);
2054 free_extent_buffer(root->commit_root);
2055 root->node = NULL;
2056 root->commit_root = NULL;
2057 }
2058}
2059
2060/* helper to cleanup tree roots */
2061static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2062{
2063 free_root_extent_buffers(info->tree_root);
2064
2065 free_root_extent_buffers(info->dev_root);
2066 free_root_extent_buffers(info->extent_root);
2067 free_root_extent_buffers(info->csum_root);
2068 free_root_extent_buffers(info->quota_root);
2069 free_root_extent_buffers(info->uuid_root);
2070 if (free_chunk_root)
2071 free_root_extent_buffers(info->chunk_root);
2072 free_root_extent_buffers(info->free_space_root);
2073}
2074
2075void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2076{
2077 int ret;
2078 struct btrfs_root *gang[8];
2079 int i;
2080
2081 while (!list_empty(&fs_info->dead_roots)) {
2082 gang[0] = list_entry(fs_info->dead_roots.next,
2083 struct btrfs_root, root_list);
2084 list_del(&gang[0]->root_list);
2085
2086 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2087 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2088 } else {
2089 free_extent_buffer(gang[0]->node);
2090 free_extent_buffer(gang[0]->commit_root);
2091 btrfs_put_fs_root(gang[0]);
2092 }
2093 }
2094
2095 while (1) {
2096 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2097 (void **)gang, 0,
2098 ARRAY_SIZE(gang));
2099 if (!ret)
2100 break;
2101 for (i = 0; i < ret; i++)
2102 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2103 }
2104
2105 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2106 btrfs_free_log_root_tree(NULL, fs_info);
2107 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2108 }
2109}
2110
2111static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2112{
2113 mutex_init(&fs_info->scrub_lock);
2114 atomic_set(&fs_info->scrubs_running, 0);
2115 atomic_set(&fs_info->scrub_pause_req, 0);
2116 atomic_set(&fs_info->scrubs_paused, 0);
2117 atomic_set(&fs_info->scrub_cancel_req, 0);
2118 init_waitqueue_head(&fs_info->scrub_pause_wait);
2119 fs_info->scrub_workers_refcnt = 0;
2120}
2121
2122static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2123{
2124 spin_lock_init(&fs_info->balance_lock);
2125 mutex_init(&fs_info->balance_mutex);
2126 atomic_set(&fs_info->balance_running, 0);
2127 atomic_set(&fs_info->balance_pause_req, 0);
2128 atomic_set(&fs_info->balance_cancel_req, 0);
2129 fs_info->balance_ctl = NULL;
2130 init_waitqueue_head(&fs_info->balance_wait_q);
2131}
2132
2133static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2134{
2135 struct inode *inode = fs_info->btree_inode;
2136
2137 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2138 set_nlink(inode, 1);
2139 /*
2140 * we set the i_size on the btree inode to the max possible int.
2141 * the real end of the address space is determined by all of
2142 * the devices in the system
2143 */
2144 inode->i_size = OFFSET_MAX;
2145 inode->i_mapping->a_ops = &btree_aops;
2146
2147 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2148 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2149 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2150 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2151
2152 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2153
2154 BTRFS_I(inode)->root = fs_info->tree_root;
2155 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2156 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2157 btrfs_insert_inode_hash(inode);
2158}
2159
2160static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2161{
2162 fs_info->dev_replace.lock_owner = 0;
2163 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2164 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2165 rwlock_init(&fs_info->dev_replace.lock);
2166 atomic_set(&fs_info->dev_replace.read_locks, 0);
2167 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2168 init_waitqueue_head(&fs_info->replace_wait);
2169 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2170}
2171
2172static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2173{
2174 spin_lock_init(&fs_info->qgroup_lock);
2175 mutex_init(&fs_info->qgroup_ioctl_lock);
2176 fs_info->qgroup_tree = RB_ROOT;
2177 fs_info->qgroup_op_tree = RB_ROOT;
2178 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2179 fs_info->qgroup_seq = 1;
2180 fs_info->qgroup_ulist = NULL;
2181 fs_info->qgroup_rescan_running = false;
2182 mutex_init(&fs_info->qgroup_rescan_lock);
2183}
2184
2185static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2186 struct btrfs_fs_devices *fs_devices)
2187{
2188 int max_active = fs_info->thread_pool_size;
2189 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2190
2191 fs_info->workers =
2192 btrfs_alloc_workqueue(fs_info, "worker",
2193 flags | WQ_HIGHPRI, max_active, 16);
2194
2195 fs_info->delalloc_workers =
2196 btrfs_alloc_workqueue(fs_info, "delalloc",
2197 flags, max_active, 2);
2198
2199 fs_info->flush_workers =
2200 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2201 flags, max_active, 0);
2202
2203 fs_info->caching_workers =
2204 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2205
2206 /*
2207 * a higher idle thresh on the submit workers makes it much more
2208 * likely that bios will be send down in a sane order to the
2209 * devices
2210 */
2211 fs_info->submit_workers =
2212 btrfs_alloc_workqueue(fs_info, "submit", flags,
2213 min_t(u64, fs_devices->num_devices,
2214 max_active), 64);
2215
2216 fs_info->fixup_workers =
2217 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2218
2219 /*
2220 * endios are largely parallel and should have a very
2221 * low idle thresh
2222 */
2223 fs_info->endio_workers =
2224 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2225 fs_info->endio_meta_workers =
2226 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2227 max_active, 4);
2228 fs_info->endio_meta_write_workers =
2229 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2230 max_active, 2);
2231 fs_info->endio_raid56_workers =
2232 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2233 max_active, 4);
2234 fs_info->endio_repair_workers =
2235 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2236 fs_info->rmw_workers =
2237 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2238 fs_info->endio_write_workers =
2239 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2240 max_active, 2);
2241 fs_info->endio_freespace_worker =
2242 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2243 max_active, 0);
2244 fs_info->delayed_workers =
2245 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2246 max_active, 0);
2247 fs_info->readahead_workers =
2248 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2249 max_active, 2);
2250 fs_info->qgroup_rescan_workers =
2251 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2252 fs_info->extent_workers =
2253 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2254 min_t(u64, fs_devices->num_devices,
2255 max_active), 8);
2256
2257 if (!(fs_info->workers && fs_info->delalloc_workers &&
2258 fs_info->submit_workers && fs_info->flush_workers &&
2259 fs_info->endio_workers && fs_info->endio_meta_workers &&
2260 fs_info->endio_meta_write_workers &&
2261 fs_info->endio_repair_workers &&
2262 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2263 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2264 fs_info->caching_workers && fs_info->readahead_workers &&
2265 fs_info->fixup_workers && fs_info->delayed_workers &&
2266 fs_info->extent_workers &&
2267 fs_info->qgroup_rescan_workers)) {
2268 return -ENOMEM;
2269 }
2270
2271 return 0;
2272}
2273
2274static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2275 struct btrfs_fs_devices *fs_devices)
2276{
2277 int ret;
2278 struct btrfs_root *log_tree_root;
2279 struct btrfs_super_block *disk_super = fs_info->super_copy;
2280 u64 bytenr = btrfs_super_log_root(disk_super);
2281
2282 if (fs_devices->rw_devices == 0) {
2283 btrfs_warn(fs_info, "log replay required on RO media");
2284 return -EIO;
2285 }
2286
2287 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2288 if (!log_tree_root)
2289 return -ENOMEM;
2290
2291 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2292
2293 log_tree_root->node = read_tree_block(fs_info, bytenr,
2294 fs_info->generation + 1);
2295 if (IS_ERR(log_tree_root->node)) {
2296 btrfs_warn(fs_info, "failed to read log tree");
2297 ret = PTR_ERR(log_tree_root->node);
2298 kfree(log_tree_root);
2299 return ret;
2300 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2301 btrfs_err(fs_info, "failed to read log tree");
2302 free_extent_buffer(log_tree_root->node);
2303 kfree(log_tree_root);
2304 return -EIO;
2305 }
2306 /* returns with log_tree_root freed on success */
2307 ret = btrfs_recover_log_trees(log_tree_root);
2308 if (ret) {
2309 btrfs_handle_fs_error(fs_info, ret,
2310 "Failed to recover log tree");
2311 free_extent_buffer(log_tree_root->node);
2312 kfree(log_tree_root);
2313 return ret;
2314 }
2315
2316 if (sb_rdonly(fs_info->sb)) {
2317 ret = btrfs_commit_super(fs_info);
2318 if (ret)
2319 return ret;
2320 }
2321
2322 return 0;
2323}
2324
2325static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2326{
2327 struct btrfs_root *tree_root = fs_info->tree_root;
2328 struct btrfs_root *root;
2329 struct btrfs_key location;
2330 int ret;
2331
2332 BUG_ON(!fs_info->tree_root);
2333
2334 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2335 location.type = BTRFS_ROOT_ITEM_KEY;
2336 location.offset = 0;
2337
2338 root = btrfs_read_tree_root(tree_root, &location);
2339 if (IS_ERR(root))
2340 return PTR_ERR(root);
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 fs_info->extent_root = root;
2343
2344 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2345 root = btrfs_read_tree_root(tree_root, &location);
2346 if (IS_ERR(root))
2347 return PTR_ERR(root);
2348 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2349 fs_info->dev_root = root;
2350 btrfs_init_devices_late(fs_info);
2351
2352 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2353 root = btrfs_read_tree_root(tree_root, &location);
2354 if (IS_ERR(root))
2355 return PTR_ERR(root);
2356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2357 fs_info->csum_root = root;
2358
2359 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2360 root = btrfs_read_tree_root(tree_root, &location);
2361 if (!IS_ERR(root)) {
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2364 fs_info->quota_root = root;
2365 }
2366
2367 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2368 root = btrfs_read_tree_root(tree_root, &location);
2369 if (IS_ERR(root)) {
2370 ret = PTR_ERR(root);
2371 if (ret != -ENOENT)
2372 return ret;
2373 } else {
2374 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2375 fs_info->uuid_root = root;
2376 }
2377
2378 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2379 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2380 root = btrfs_read_tree_root(tree_root, &location);
2381 if (IS_ERR(root))
2382 return PTR_ERR(root);
2383 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2384 fs_info->free_space_root = root;
2385 }
2386
2387 return 0;
2388}
2389
2390int open_ctree(struct super_block *sb,
2391 struct btrfs_fs_devices *fs_devices,
2392 char *options)
2393{
2394 u32 sectorsize;
2395 u32 nodesize;
2396 u32 stripesize;
2397 u64 generation;
2398 u64 features;
2399 struct btrfs_key location;
2400 struct buffer_head *bh;
2401 struct btrfs_super_block *disk_super;
2402 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2403 struct btrfs_root *tree_root;
2404 struct btrfs_root *chunk_root;
2405 int ret;
2406 int err = -EINVAL;
2407 int num_backups_tried = 0;
2408 int backup_index = 0;
2409 int max_active;
2410 int clear_free_space_tree = 0;
2411
2412 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2413 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2414 if (!tree_root || !chunk_root) {
2415 err = -ENOMEM;
2416 goto fail;
2417 }
2418
2419 ret = init_srcu_struct(&fs_info->subvol_srcu);
2420 if (ret) {
2421 err = ret;
2422 goto fail;
2423 }
2424
2425 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2426 if (ret) {
2427 err = ret;
2428 goto fail_srcu;
2429 }
2430 fs_info->dirty_metadata_batch = PAGE_SIZE *
2431 (1 + ilog2(nr_cpu_ids));
2432
2433 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2434 if (ret) {
2435 err = ret;
2436 goto fail_dirty_metadata_bytes;
2437 }
2438
2439 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2440 if (ret) {
2441 err = ret;
2442 goto fail_delalloc_bytes;
2443 }
2444
2445 fs_info->btree_inode = new_inode(sb);
2446 if (!fs_info->btree_inode) {
2447 err = -ENOMEM;
2448 goto fail_bio_counter;
2449 }
2450
2451 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2452
2453 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2454 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2455 INIT_LIST_HEAD(&fs_info->trans_list);
2456 INIT_LIST_HEAD(&fs_info->dead_roots);
2457 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2458 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2459 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2460 spin_lock_init(&fs_info->delalloc_root_lock);
2461 spin_lock_init(&fs_info->trans_lock);
2462 spin_lock_init(&fs_info->fs_roots_radix_lock);
2463 spin_lock_init(&fs_info->delayed_iput_lock);
2464 spin_lock_init(&fs_info->defrag_inodes_lock);
2465 spin_lock_init(&fs_info->super_lock);
2466 spin_lock_init(&fs_info->qgroup_op_lock);
2467 spin_lock_init(&fs_info->buffer_lock);
2468 spin_lock_init(&fs_info->unused_bgs_lock);
2469 rwlock_init(&fs_info->tree_mod_log_lock);
2470 mutex_init(&fs_info->unused_bg_unpin_mutex);
2471 mutex_init(&fs_info->delete_unused_bgs_mutex);
2472 mutex_init(&fs_info->reloc_mutex);
2473 mutex_init(&fs_info->delalloc_root_mutex);
2474 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2475 seqlock_init(&fs_info->profiles_lock);
2476
2477 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2478 INIT_LIST_HEAD(&fs_info->space_info);
2479 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2480 INIT_LIST_HEAD(&fs_info->unused_bgs);
2481 btrfs_mapping_init(&fs_info->mapping_tree);
2482 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2483 BTRFS_BLOCK_RSV_GLOBAL);
2484 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2485 BTRFS_BLOCK_RSV_DELALLOC);
2486 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2487 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2488 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2489 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2490 BTRFS_BLOCK_RSV_DELOPS);
2491 atomic_set(&fs_info->nr_async_submits, 0);
2492 atomic_set(&fs_info->async_delalloc_pages, 0);
2493 atomic_set(&fs_info->async_submit_draining, 0);
2494 atomic_set(&fs_info->nr_async_bios, 0);
2495 atomic_set(&fs_info->defrag_running, 0);
2496 atomic_set(&fs_info->qgroup_op_seq, 0);
2497 atomic_set(&fs_info->reada_works_cnt, 0);
2498 atomic64_set(&fs_info->tree_mod_seq, 0);
2499 fs_info->sb = sb;
2500 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2501 fs_info->metadata_ratio = 0;
2502 fs_info->defrag_inodes = RB_ROOT;
2503 atomic64_set(&fs_info->free_chunk_space, 0);
2504 fs_info->tree_mod_log = RB_ROOT;
2505 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2506 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2507 /* readahead state */
2508 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2509 spin_lock_init(&fs_info->reada_lock);
2510
2511 fs_info->thread_pool_size = min_t(unsigned long,
2512 num_online_cpus() + 2, 8);
2513
2514 INIT_LIST_HEAD(&fs_info->ordered_roots);
2515 spin_lock_init(&fs_info->ordered_root_lock);
2516 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2517 GFP_KERNEL);
2518 if (!fs_info->delayed_root) {
2519 err = -ENOMEM;
2520 goto fail_iput;
2521 }
2522 btrfs_init_delayed_root(fs_info->delayed_root);
2523
2524 btrfs_init_scrub(fs_info);
2525#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2526 fs_info->check_integrity_print_mask = 0;
2527#endif
2528 btrfs_init_balance(fs_info);
2529 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2530
2531 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2532 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2533
2534 btrfs_init_btree_inode(fs_info);
2535
2536 spin_lock_init(&fs_info->block_group_cache_lock);
2537 fs_info->block_group_cache_tree = RB_ROOT;
2538 fs_info->first_logical_byte = (u64)-1;
2539
2540 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2541 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2542 fs_info->pinned_extents = &fs_info->freed_extents[0];
2543 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2544
2545 mutex_init(&fs_info->ordered_operations_mutex);
2546 mutex_init(&fs_info->tree_log_mutex);
2547 mutex_init(&fs_info->chunk_mutex);
2548 mutex_init(&fs_info->transaction_kthread_mutex);
2549 mutex_init(&fs_info->cleaner_mutex);
2550 mutex_init(&fs_info->volume_mutex);
2551 mutex_init(&fs_info->ro_block_group_mutex);
2552 init_rwsem(&fs_info->commit_root_sem);
2553 init_rwsem(&fs_info->cleanup_work_sem);
2554 init_rwsem(&fs_info->subvol_sem);
2555 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2556
2557 btrfs_init_dev_replace_locks(fs_info);
2558 btrfs_init_qgroup(fs_info);
2559
2560 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2561 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2562
2563 init_waitqueue_head(&fs_info->transaction_throttle);
2564 init_waitqueue_head(&fs_info->transaction_wait);
2565 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2566 init_waitqueue_head(&fs_info->async_submit_wait);
2567
2568 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2569
2570 /* Usable values until the real ones are cached from the superblock */
2571 fs_info->nodesize = 4096;
2572 fs_info->sectorsize = 4096;
2573 fs_info->stripesize = 4096;
2574
2575 ret = btrfs_alloc_stripe_hash_table(fs_info);
2576 if (ret) {
2577 err = ret;
2578 goto fail_alloc;
2579 }
2580
2581 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2582
2583 invalidate_bdev(fs_devices->latest_bdev);
2584
2585 /*
2586 * Read super block and check the signature bytes only
2587 */
2588 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2589 if (IS_ERR(bh)) {
2590 err = PTR_ERR(bh);
2591 goto fail_alloc;
2592 }
2593
2594 /*
2595 * We want to check superblock checksum, the type is stored inside.
2596 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2597 */
2598 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2599 btrfs_err(fs_info, "superblock checksum mismatch");
2600 err = -EINVAL;
2601 brelse(bh);
2602 goto fail_alloc;
2603 }
2604
2605 /*
2606 * super_copy is zeroed at allocation time and we never touch the
2607 * following bytes up to INFO_SIZE, the checksum is calculated from
2608 * the whole block of INFO_SIZE
2609 */
2610 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2611 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2612 sizeof(*fs_info->super_for_commit));
2613 brelse(bh);
2614
2615 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2616
2617 ret = btrfs_check_super_valid(fs_info);
2618 if (ret) {
2619 btrfs_err(fs_info, "superblock contains fatal errors");
2620 err = -EINVAL;
2621 goto fail_alloc;
2622 }
2623
2624 disk_super = fs_info->super_copy;
2625 if (!btrfs_super_root(disk_super))
2626 goto fail_alloc;
2627
2628 /* check FS state, whether FS is broken. */
2629 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2630 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2631
2632 /*
2633 * run through our array of backup supers and setup
2634 * our ring pointer to the oldest one
2635 */
2636 generation = btrfs_super_generation(disk_super);
2637 find_oldest_super_backup(fs_info, generation);
2638
2639 /*
2640 * In the long term, we'll store the compression type in the super
2641 * block, and it'll be used for per file compression control.
2642 */
2643 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2644
2645 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2646 if (ret) {
2647 err = ret;
2648 goto fail_alloc;
2649 }
2650
2651 features = btrfs_super_incompat_flags(disk_super) &
2652 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2653 if (features) {
2654 btrfs_err(fs_info,
2655 "cannot mount because of unsupported optional features (%llx)",
2656 features);
2657 err = -EINVAL;
2658 goto fail_alloc;
2659 }
2660
2661 features = btrfs_super_incompat_flags(disk_super);
2662 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2663 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2664 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2665 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2666 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2667
2668 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2669 btrfs_info(fs_info, "has skinny extents");
2670
2671 /*
2672 * flag our filesystem as having big metadata blocks if
2673 * they are bigger than the page size
2674 */
2675 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2676 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2677 btrfs_info(fs_info,
2678 "flagging fs with big metadata feature");
2679 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2680 }
2681
2682 nodesize = btrfs_super_nodesize(disk_super);
2683 sectorsize = btrfs_super_sectorsize(disk_super);
2684 stripesize = sectorsize;
2685 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2686 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2687
2688 /* Cache block sizes */
2689 fs_info->nodesize = nodesize;
2690 fs_info->sectorsize = sectorsize;
2691 fs_info->stripesize = stripesize;
2692
2693 /*
2694 * mixed block groups end up with duplicate but slightly offset
2695 * extent buffers for the same range. It leads to corruptions
2696 */
2697 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2698 (sectorsize != nodesize)) {
2699 btrfs_err(fs_info,
2700"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2701 nodesize, sectorsize);
2702 goto fail_alloc;
2703 }
2704
2705 /*
2706 * Needn't use the lock because there is no other task which will
2707 * update the flag.
2708 */
2709 btrfs_set_super_incompat_flags(disk_super, features);
2710
2711 features = btrfs_super_compat_ro_flags(disk_super) &
2712 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2713 if (!sb_rdonly(sb) && features) {
2714 btrfs_err(fs_info,
2715 "cannot mount read-write because of unsupported optional features (%llx)",
2716 features);
2717 err = -EINVAL;
2718 goto fail_alloc;
2719 }
2720
2721 max_active = fs_info->thread_pool_size;
2722
2723 ret = btrfs_init_workqueues(fs_info, fs_devices);
2724 if (ret) {
2725 err = ret;
2726 goto fail_sb_buffer;
2727 }
2728
2729 sb->s_bdi->congested_fn = btrfs_congested_fn;
2730 sb->s_bdi->congested_data = fs_info;
2731 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2732 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2733 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2734 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2735
2736 sb->s_blocksize = sectorsize;
2737 sb->s_blocksize_bits = blksize_bits(sectorsize);
2738
2739 mutex_lock(&fs_info->chunk_mutex);
2740 ret = btrfs_read_sys_array(fs_info);
2741 mutex_unlock(&fs_info->chunk_mutex);
2742 if (ret) {
2743 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2744 goto fail_sb_buffer;
2745 }
2746
2747 generation = btrfs_super_chunk_root_generation(disk_super);
2748
2749 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2750
2751 chunk_root->node = read_tree_block(fs_info,
2752 btrfs_super_chunk_root(disk_super),
2753 generation);
2754 if (IS_ERR(chunk_root->node) ||
2755 !extent_buffer_uptodate(chunk_root->node)) {
2756 btrfs_err(fs_info, "failed to read chunk root");
2757 if (!IS_ERR(chunk_root->node))
2758 free_extent_buffer(chunk_root->node);
2759 chunk_root->node = NULL;
2760 goto fail_tree_roots;
2761 }
2762 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2763 chunk_root->commit_root = btrfs_root_node(chunk_root);
2764
2765 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2766 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2767
2768 ret = btrfs_read_chunk_tree(fs_info);
2769 if (ret) {
2770 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2771 goto fail_tree_roots;
2772 }
2773
2774 /*
2775 * keep the device that is marked to be the target device for the
2776 * dev_replace procedure
2777 */
2778 btrfs_close_extra_devices(fs_devices, 0);
2779
2780 if (!fs_devices->latest_bdev) {
2781 btrfs_err(fs_info, "failed to read devices");
2782 goto fail_tree_roots;
2783 }
2784
2785retry_root_backup:
2786 generation = btrfs_super_generation(disk_super);
2787
2788 tree_root->node = read_tree_block(fs_info,
2789 btrfs_super_root(disk_super),
2790 generation);
2791 if (IS_ERR(tree_root->node) ||
2792 !extent_buffer_uptodate(tree_root->node)) {
2793 btrfs_warn(fs_info, "failed to read tree root");
2794 if (!IS_ERR(tree_root->node))
2795 free_extent_buffer(tree_root->node);
2796 tree_root->node = NULL;
2797 goto recovery_tree_root;
2798 }
2799
2800 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2801 tree_root->commit_root = btrfs_root_node(tree_root);
2802 btrfs_set_root_refs(&tree_root->root_item, 1);
2803
2804 mutex_lock(&tree_root->objectid_mutex);
2805 ret = btrfs_find_highest_objectid(tree_root,
2806 &tree_root->highest_objectid);
2807 if (ret) {
2808 mutex_unlock(&tree_root->objectid_mutex);
2809 goto recovery_tree_root;
2810 }
2811
2812 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2813
2814 mutex_unlock(&tree_root->objectid_mutex);
2815
2816 ret = btrfs_read_roots(fs_info);
2817 if (ret)
2818 goto recovery_tree_root;
2819
2820 fs_info->generation = generation;
2821 fs_info->last_trans_committed = generation;
2822
2823 ret = btrfs_recover_balance(fs_info);
2824 if (ret) {
2825 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2826 goto fail_block_groups;
2827 }
2828
2829 ret = btrfs_init_dev_stats(fs_info);
2830 if (ret) {
2831 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2832 goto fail_block_groups;
2833 }
2834
2835 ret = btrfs_init_dev_replace(fs_info);
2836 if (ret) {
2837 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2838 goto fail_block_groups;
2839 }
2840
2841 btrfs_close_extra_devices(fs_devices, 1);
2842
2843 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2844 if (ret) {
2845 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2846 ret);
2847 goto fail_block_groups;
2848 }
2849
2850 ret = btrfs_sysfs_add_device(fs_devices);
2851 if (ret) {
2852 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2853 ret);
2854 goto fail_fsdev_sysfs;
2855 }
2856
2857 ret = btrfs_sysfs_add_mounted(fs_info);
2858 if (ret) {
2859 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2860 goto fail_fsdev_sysfs;
2861 }
2862
2863 ret = btrfs_init_space_info(fs_info);
2864 if (ret) {
2865 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2866 goto fail_sysfs;
2867 }
2868
2869 ret = btrfs_read_block_groups(fs_info);
2870 if (ret) {
2871 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2872 goto fail_sysfs;
2873 }
2874
2875 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
2876 btrfs_warn(fs_info,
2877 "writeable mount is not allowed due to too many missing devices");
2878 goto fail_sysfs;
2879 }
2880
2881 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2882 "btrfs-cleaner");
2883 if (IS_ERR(fs_info->cleaner_kthread))
2884 goto fail_sysfs;
2885
2886 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2887 tree_root,
2888 "btrfs-transaction");
2889 if (IS_ERR(fs_info->transaction_kthread))
2890 goto fail_cleaner;
2891
2892 if (!btrfs_test_opt(fs_info, NOSSD) &&
2893 !fs_info->fs_devices->rotating) {
2894 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2895 }
2896
2897 /*
2898 * Mount does not set all options immediately, we can do it now and do
2899 * not have to wait for transaction commit
2900 */
2901 btrfs_apply_pending_changes(fs_info);
2902
2903#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2904 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2905 ret = btrfsic_mount(fs_info, fs_devices,
2906 btrfs_test_opt(fs_info,
2907 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2908 1 : 0,
2909 fs_info->check_integrity_print_mask);
2910 if (ret)
2911 btrfs_warn(fs_info,
2912 "failed to initialize integrity check module: %d",
2913 ret);
2914 }
2915#endif
2916 ret = btrfs_read_qgroup_config(fs_info);
2917 if (ret)
2918 goto fail_trans_kthread;
2919
2920 /* do not make disk changes in broken FS or nologreplay is given */
2921 if (btrfs_super_log_root(disk_super) != 0 &&
2922 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2923 btrfs_info(fs_info, "start tree-log replay");
2924 ret = btrfs_replay_log(fs_info, fs_devices);
2925 if (ret) {
2926 err = ret;
2927 goto fail_qgroup;
2928 }
2929 }
2930
2931 ret = btrfs_find_orphan_roots(fs_info);
2932 if (ret)
2933 goto fail_qgroup;
2934
2935 if (!sb_rdonly(sb)) {
2936 ret = btrfs_cleanup_fs_roots(fs_info);
2937 if (ret)
2938 goto fail_qgroup;
2939
2940 mutex_lock(&fs_info->cleaner_mutex);
2941 ret = btrfs_recover_relocation(tree_root);
2942 mutex_unlock(&fs_info->cleaner_mutex);
2943 if (ret < 0) {
2944 btrfs_warn(fs_info, "failed to recover relocation: %d",
2945 ret);
2946 err = -EINVAL;
2947 goto fail_qgroup;
2948 }
2949 }
2950
2951 location.objectid = BTRFS_FS_TREE_OBJECTID;
2952 location.type = BTRFS_ROOT_ITEM_KEY;
2953 location.offset = 0;
2954
2955 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2956 if (IS_ERR(fs_info->fs_root)) {
2957 err = PTR_ERR(fs_info->fs_root);
2958 goto fail_qgroup;
2959 }
2960
2961 if (sb_rdonly(sb))
2962 return 0;
2963
2964 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2965 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2966 clear_free_space_tree = 1;
2967 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2968 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2969 btrfs_warn(fs_info, "free space tree is invalid");
2970 clear_free_space_tree = 1;
2971 }
2972
2973 if (clear_free_space_tree) {
2974 btrfs_info(fs_info, "clearing free space tree");
2975 ret = btrfs_clear_free_space_tree(fs_info);
2976 if (ret) {
2977 btrfs_warn(fs_info,
2978 "failed to clear free space tree: %d", ret);
2979 close_ctree(fs_info);
2980 return ret;
2981 }
2982 }
2983
2984 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2985 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2986 btrfs_info(fs_info, "creating free space tree");
2987 ret = btrfs_create_free_space_tree(fs_info);
2988 if (ret) {
2989 btrfs_warn(fs_info,
2990 "failed to create free space tree: %d", ret);
2991 close_ctree(fs_info);
2992 return ret;
2993 }
2994 }
2995
2996 down_read(&fs_info->cleanup_work_sem);
2997 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2998 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2999 up_read(&fs_info->cleanup_work_sem);
3000 close_ctree(fs_info);
3001 return ret;
3002 }
3003 up_read(&fs_info->cleanup_work_sem);
3004
3005 ret = btrfs_resume_balance_async(fs_info);
3006 if (ret) {
3007 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3008 close_ctree(fs_info);
3009 return ret;
3010 }
3011
3012 ret = btrfs_resume_dev_replace_async(fs_info);
3013 if (ret) {
3014 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3015 close_ctree(fs_info);
3016 return ret;
3017 }
3018
3019 btrfs_qgroup_rescan_resume(fs_info);
3020
3021 if (!fs_info->uuid_root) {
3022 btrfs_info(fs_info, "creating UUID tree");
3023 ret = btrfs_create_uuid_tree(fs_info);
3024 if (ret) {
3025 btrfs_warn(fs_info,
3026 "failed to create the UUID tree: %d", ret);
3027 close_ctree(fs_info);
3028 return ret;
3029 }
3030 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3031 fs_info->generation !=
3032 btrfs_super_uuid_tree_generation(disk_super)) {
3033 btrfs_info(fs_info, "checking UUID tree");
3034 ret = btrfs_check_uuid_tree(fs_info);
3035 if (ret) {
3036 btrfs_warn(fs_info,
3037 "failed to check the UUID tree: %d", ret);
3038 close_ctree(fs_info);
3039 return ret;
3040 }
3041 } else {
3042 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3043 }
3044 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3045
3046 /*
3047 * backuproot only affect mount behavior, and if open_ctree succeeded,
3048 * no need to keep the flag
3049 */
3050 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3051
3052 return 0;
3053
3054fail_qgroup:
3055 btrfs_free_qgroup_config(fs_info);
3056fail_trans_kthread:
3057 kthread_stop(fs_info->transaction_kthread);
3058 btrfs_cleanup_transaction(fs_info);
3059 btrfs_free_fs_roots(fs_info);
3060fail_cleaner:
3061 kthread_stop(fs_info->cleaner_kthread);
3062
3063 /*
3064 * make sure we're done with the btree inode before we stop our
3065 * kthreads
3066 */
3067 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3068
3069fail_sysfs:
3070 btrfs_sysfs_remove_mounted(fs_info);
3071
3072fail_fsdev_sysfs:
3073 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3074
3075fail_block_groups:
3076 btrfs_put_block_group_cache(fs_info);
3077
3078fail_tree_roots:
3079 free_root_pointers(fs_info, true);
3080 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3081
3082fail_sb_buffer:
3083 btrfs_stop_all_workers(fs_info);
3084 btrfs_free_block_groups(fs_info);
3085fail_alloc:
3086fail_iput:
3087 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3088
3089 iput(fs_info->btree_inode);
3090fail_bio_counter:
3091 percpu_counter_destroy(&fs_info->bio_counter);
3092fail_delalloc_bytes:
3093 percpu_counter_destroy(&fs_info->delalloc_bytes);
3094fail_dirty_metadata_bytes:
3095 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3096fail_srcu:
3097 cleanup_srcu_struct(&fs_info->subvol_srcu);
3098fail:
3099 btrfs_free_stripe_hash_table(fs_info);
3100 btrfs_close_devices(fs_info->fs_devices);
3101 return err;
3102
3103recovery_tree_root:
3104 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3105 goto fail_tree_roots;
3106
3107 free_root_pointers(fs_info, false);
3108
3109 /* don't use the log in recovery mode, it won't be valid */
3110 btrfs_set_super_log_root(disk_super, 0);
3111
3112 /* we can't trust the free space cache either */
3113 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3114
3115 ret = next_root_backup(fs_info, fs_info->super_copy,
3116 &num_backups_tried, &backup_index);
3117 if (ret == -1)
3118 goto fail_block_groups;
3119 goto retry_root_backup;
3120}
3121
3122static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3123{
3124 if (uptodate) {
3125 set_buffer_uptodate(bh);
3126 } else {
3127 struct btrfs_device *device = (struct btrfs_device *)
3128 bh->b_private;
3129
3130 btrfs_warn_rl_in_rcu(device->fs_info,
3131 "lost page write due to IO error on %s",
3132 rcu_str_deref(device->name));
3133 /* note, we don't set_buffer_write_io_error because we have
3134 * our own ways of dealing with the IO errors
3135 */
3136 clear_buffer_uptodate(bh);
3137 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3138 }
3139 unlock_buffer(bh);
3140 put_bh(bh);
3141}
3142
3143int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3144 struct buffer_head **bh_ret)
3145{
3146 struct buffer_head *bh;
3147 struct btrfs_super_block *super;
3148 u64 bytenr;
3149
3150 bytenr = btrfs_sb_offset(copy_num);
3151 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3152 return -EINVAL;
3153
3154 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3155 /*
3156 * If we fail to read from the underlying devices, as of now
3157 * the best option we have is to mark it EIO.
3158 */
3159 if (!bh)
3160 return -EIO;
3161
3162 super = (struct btrfs_super_block *)bh->b_data;
3163 if (btrfs_super_bytenr(super) != bytenr ||
3164 btrfs_super_magic(super) != BTRFS_MAGIC) {
3165 brelse(bh);
3166 return -EINVAL;
3167 }
3168
3169 *bh_ret = bh;
3170 return 0;
3171}
3172
3173
3174struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3175{
3176 struct buffer_head *bh;
3177 struct buffer_head *latest = NULL;
3178 struct btrfs_super_block *super;
3179 int i;
3180 u64 transid = 0;
3181 int ret = -EINVAL;
3182
3183 /* we would like to check all the supers, but that would make
3184 * a btrfs mount succeed after a mkfs from a different FS.
3185 * So, we need to add a special mount option to scan for
3186 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3187 */
3188 for (i = 0; i < 1; i++) {
3189 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3190 if (ret)
3191 continue;
3192
3193 super = (struct btrfs_super_block *)bh->b_data;
3194
3195 if (!latest || btrfs_super_generation(super) > transid) {
3196 brelse(latest);
3197 latest = bh;
3198 transid = btrfs_super_generation(super);
3199 } else {
3200 brelse(bh);
3201 }
3202 }
3203
3204 if (!latest)
3205 return ERR_PTR(ret);
3206
3207 return latest;
3208}
3209
3210/*
3211 * Write superblock @sb to the @device. Do not wait for completion, all the
3212 * buffer heads we write are pinned.
3213 *
3214 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3215 * the expected device size at commit time. Note that max_mirrors must be
3216 * same for write and wait phases.
3217 *
3218 * Return number of errors when buffer head is not found or submission fails.
3219 */
3220static int write_dev_supers(struct btrfs_device *device,
3221 struct btrfs_super_block *sb, int max_mirrors)
3222{
3223 struct buffer_head *bh;
3224 int i;
3225 int ret;
3226 int errors = 0;
3227 u32 crc;
3228 u64 bytenr;
3229 int op_flags;
3230
3231 if (max_mirrors == 0)
3232 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3233
3234 for (i = 0; i < max_mirrors; i++) {
3235 bytenr = btrfs_sb_offset(i);
3236 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3237 device->commit_total_bytes)
3238 break;
3239
3240 btrfs_set_super_bytenr(sb, bytenr);
3241
3242 crc = ~(u32)0;
3243 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3244 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3245 btrfs_csum_final(crc, sb->csum);
3246
3247 /* One reference for us, and we leave it for the caller */
3248 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3249 BTRFS_SUPER_INFO_SIZE);
3250 if (!bh) {
3251 btrfs_err(device->fs_info,
3252 "couldn't get super buffer head for bytenr %llu",
3253 bytenr);
3254 errors++;
3255 continue;
3256 }
3257
3258 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3259
3260 /* one reference for submit_bh */
3261 get_bh(bh);
3262
3263 set_buffer_uptodate(bh);
3264 lock_buffer(bh);
3265 bh->b_end_io = btrfs_end_buffer_write_sync;
3266 bh->b_private = device;
3267
3268 /*
3269 * we fua the first super. The others we allow
3270 * to go down lazy.
3271 */
3272 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3273 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3274 op_flags |= REQ_FUA;
3275 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3276 if (ret)
3277 errors++;
3278 }
3279 return errors < i ? 0 : -1;
3280}
3281
3282/*
3283 * Wait for write completion of superblocks done by write_dev_supers,
3284 * @max_mirrors same for write and wait phases.
3285 *
3286 * Return number of errors when buffer head is not found or not marked up to
3287 * date.
3288 */
3289static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3290{
3291 struct buffer_head *bh;
3292 int i;
3293 int errors = 0;
3294 u64 bytenr;
3295
3296 if (max_mirrors == 0)
3297 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3298
3299 for (i = 0; i < max_mirrors; i++) {
3300 bytenr = btrfs_sb_offset(i);
3301 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3302 device->commit_total_bytes)
3303 break;
3304
3305 bh = __find_get_block(device->bdev,
3306 bytenr / BTRFS_BDEV_BLOCKSIZE,
3307 BTRFS_SUPER_INFO_SIZE);
3308 if (!bh) {
3309 errors++;
3310 continue;
3311 }
3312 wait_on_buffer(bh);
3313 if (!buffer_uptodate(bh))
3314 errors++;
3315
3316 /* drop our reference */
3317 brelse(bh);
3318
3319 /* drop the reference from the writing run */
3320 brelse(bh);
3321 }
3322
3323 return errors < i ? 0 : -1;
3324}
3325
3326/*
3327 * endio for the write_dev_flush, this will wake anyone waiting
3328 * for the barrier when it is done
3329 */
3330static void btrfs_end_empty_barrier(struct bio *bio)
3331{
3332 complete(bio->bi_private);
3333}
3334
3335/*
3336 * Submit a flush request to the device if it supports it. Error handling is
3337 * done in the waiting counterpart.
3338 */
3339static void write_dev_flush(struct btrfs_device *device)
3340{
3341 struct request_queue *q = bdev_get_queue(device->bdev);
3342 struct bio *bio = device->flush_bio;
3343
3344 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3345 return;
3346
3347 bio_reset(bio);
3348 bio->bi_end_io = btrfs_end_empty_barrier;
3349 bio_set_dev(bio, device->bdev);
3350 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3351 init_completion(&device->flush_wait);
3352 bio->bi_private = &device->flush_wait;
3353
3354 btrfsic_submit_bio(bio);
3355 device->flush_bio_sent = 1;
3356}
3357
3358/*
3359 * If the flush bio has been submitted by write_dev_flush, wait for it.
3360 */
3361static blk_status_t wait_dev_flush(struct btrfs_device *device)
3362{
3363 struct bio *bio = device->flush_bio;
3364
3365 if (!device->flush_bio_sent)
3366 return BLK_STS_OK;
3367
3368 device->flush_bio_sent = 0;
3369 wait_for_completion_io(&device->flush_wait);
3370
3371 return bio->bi_status;
3372}
3373
3374static int check_barrier_error(struct btrfs_fs_info *fs_info)
3375{
3376 if (!btrfs_check_rw_degradable(fs_info))
3377 return -EIO;
3378 return 0;
3379}
3380
3381/*
3382 * send an empty flush down to each device in parallel,
3383 * then wait for them
3384 */
3385static int barrier_all_devices(struct btrfs_fs_info *info)
3386{
3387 struct list_head *head;
3388 struct btrfs_device *dev;
3389 int errors_wait = 0;
3390 blk_status_t ret;
3391
3392 /* send down all the barriers */
3393 head = &info->fs_devices->devices;
3394 list_for_each_entry_rcu(dev, head, dev_list) {
3395 if (dev->missing)
3396 continue;
3397 if (!dev->bdev)
3398 continue;
3399 if (!dev->in_fs_metadata || !dev->writeable)
3400 continue;
3401
3402 write_dev_flush(dev);
3403 dev->last_flush_error = BLK_STS_OK;
3404 }
3405
3406 /* wait for all the barriers */
3407 list_for_each_entry_rcu(dev, head, dev_list) {
3408 if (dev->missing)
3409 continue;
3410 if (!dev->bdev) {
3411 errors_wait++;
3412 continue;
3413 }
3414 if (!dev->in_fs_metadata || !dev->writeable)
3415 continue;
3416
3417 ret = wait_dev_flush(dev);
3418 if (ret) {
3419 dev->last_flush_error = ret;
3420 btrfs_dev_stat_inc_and_print(dev,
3421 BTRFS_DEV_STAT_FLUSH_ERRS);
3422 errors_wait++;
3423 }
3424 }
3425
3426 if (errors_wait) {
3427 /*
3428 * At some point we need the status of all disks
3429 * to arrive at the volume status. So error checking
3430 * is being pushed to a separate loop.
3431 */
3432 return check_barrier_error(info);
3433 }
3434 return 0;
3435}
3436
3437int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3438{
3439 int raid_type;
3440 int min_tolerated = INT_MAX;
3441
3442 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3443 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3444 min_tolerated = min(min_tolerated,
3445 btrfs_raid_array[BTRFS_RAID_SINGLE].
3446 tolerated_failures);
3447
3448 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3449 if (raid_type == BTRFS_RAID_SINGLE)
3450 continue;
3451 if (!(flags & btrfs_raid_group[raid_type]))
3452 continue;
3453 min_tolerated = min(min_tolerated,
3454 btrfs_raid_array[raid_type].
3455 tolerated_failures);
3456 }
3457
3458 if (min_tolerated == INT_MAX) {
3459 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3460 min_tolerated = 0;
3461 }
3462
3463 return min_tolerated;
3464}
3465
3466int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3467{
3468 struct list_head *head;
3469 struct btrfs_device *dev;
3470 struct btrfs_super_block *sb;
3471 struct btrfs_dev_item *dev_item;
3472 int ret;
3473 int do_barriers;
3474 int max_errors;
3475 int total_errors = 0;
3476 u64 flags;
3477
3478 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3479
3480 /*
3481 * max_mirrors == 0 indicates we're from commit_transaction,
3482 * not from fsync where the tree roots in fs_info have not
3483 * been consistent on disk.
3484 */
3485 if (max_mirrors == 0)
3486 backup_super_roots(fs_info);
3487
3488 sb = fs_info->super_for_commit;
3489 dev_item = &sb->dev_item;
3490
3491 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3492 head = &fs_info->fs_devices->devices;
3493 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3494
3495 if (do_barriers) {
3496 ret = barrier_all_devices(fs_info);
3497 if (ret) {
3498 mutex_unlock(
3499 &fs_info->fs_devices->device_list_mutex);
3500 btrfs_handle_fs_error(fs_info, ret,
3501 "errors while submitting device barriers.");
3502 return ret;
3503 }
3504 }
3505
3506 list_for_each_entry_rcu(dev, head, dev_list) {
3507 if (!dev->bdev) {
3508 total_errors++;
3509 continue;
3510 }
3511 if (!dev->in_fs_metadata || !dev->writeable)
3512 continue;
3513
3514 btrfs_set_stack_device_generation(dev_item, 0);
3515 btrfs_set_stack_device_type(dev_item, dev->type);
3516 btrfs_set_stack_device_id(dev_item, dev->devid);
3517 btrfs_set_stack_device_total_bytes(dev_item,
3518 dev->commit_total_bytes);
3519 btrfs_set_stack_device_bytes_used(dev_item,
3520 dev->commit_bytes_used);
3521 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3522 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3523 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3524 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3525 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3526
3527 flags = btrfs_super_flags(sb);
3528 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3529
3530 ret = write_dev_supers(dev, sb, max_mirrors);
3531 if (ret)
3532 total_errors++;
3533 }
3534 if (total_errors > max_errors) {
3535 btrfs_err(fs_info, "%d errors while writing supers",
3536 total_errors);
3537 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3538
3539 /* FUA is masked off if unsupported and can't be the reason */
3540 btrfs_handle_fs_error(fs_info, -EIO,
3541 "%d errors while writing supers",
3542 total_errors);
3543 return -EIO;
3544 }
3545
3546 total_errors = 0;
3547 list_for_each_entry_rcu(dev, head, dev_list) {
3548 if (!dev->bdev)
3549 continue;
3550 if (!dev->in_fs_metadata || !dev->writeable)
3551 continue;
3552
3553 ret = wait_dev_supers(dev, max_mirrors);
3554 if (ret)
3555 total_errors++;
3556 }
3557 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3558 if (total_errors > max_errors) {
3559 btrfs_handle_fs_error(fs_info, -EIO,
3560 "%d errors while writing supers",
3561 total_errors);
3562 return -EIO;
3563 }
3564 return 0;
3565}
3566
3567/* Drop a fs root from the radix tree and free it. */
3568void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3569 struct btrfs_root *root)
3570{
3571 spin_lock(&fs_info->fs_roots_radix_lock);
3572 radix_tree_delete(&fs_info->fs_roots_radix,
3573 (unsigned long)root->root_key.objectid);
3574 spin_unlock(&fs_info->fs_roots_radix_lock);
3575
3576 if (btrfs_root_refs(&root->root_item) == 0)
3577 synchronize_srcu(&fs_info->subvol_srcu);
3578
3579 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3580 btrfs_free_log(NULL, root);
3581 if (root->reloc_root) {
3582 free_extent_buffer(root->reloc_root->node);
3583 free_extent_buffer(root->reloc_root->commit_root);
3584 btrfs_put_fs_root(root->reloc_root);
3585 root->reloc_root = NULL;
3586 }
3587 }
3588
3589 if (root->free_ino_pinned)
3590 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3591 if (root->free_ino_ctl)
3592 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3593 free_fs_root(root);
3594}
3595
3596static void free_fs_root(struct btrfs_root *root)
3597{
3598 iput(root->ino_cache_inode);
3599 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3600 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3601 root->orphan_block_rsv = NULL;
3602 if (root->anon_dev)
3603 free_anon_bdev(root->anon_dev);
3604 if (root->subv_writers)
3605 btrfs_free_subvolume_writers(root->subv_writers);
3606 free_extent_buffer(root->node);
3607 free_extent_buffer(root->commit_root);
3608 kfree(root->free_ino_ctl);
3609 kfree(root->free_ino_pinned);
3610 kfree(root->name);
3611 btrfs_put_fs_root(root);
3612}
3613
3614void btrfs_free_fs_root(struct btrfs_root *root)
3615{
3616 free_fs_root(root);
3617}
3618
3619int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3620{
3621 u64 root_objectid = 0;
3622 struct btrfs_root *gang[8];
3623 int i = 0;
3624 int err = 0;
3625 unsigned int ret = 0;
3626 int index;
3627
3628 while (1) {
3629 index = srcu_read_lock(&fs_info->subvol_srcu);
3630 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3631 (void **)gang, root_objectid,
3632 ARRAY_SIZE(gang));
3633 if (!ret) {
3634 srcu_read_unlock(&fs_info->subvol_srcu, index);
3635 break;
3636 }
3637 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3638
3639 for (i = 0; i < ret; i++) {
3640 /* Avoid to grab roots in dead_roots */
3641 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3642 gang[i] = NULL;
3643 continue;
3644 }
3645 /* grab all the search result for later use */
3646 gang[i] = btrfs_grab_fs_root(gang[i]);
3647 }
3648 srcu_read_unlock(&fs_info->subvol_srcu, index);
3649
3650 for (i = 0; i < ret; i++) {
3651 if (!gang[i])
3652 continue;
3653 root_objectid = gang[i]->root_key.objectid;
3654 err = btrfs_orphan_cleanup(gang[i]);
3655 if (err)
3656 break;
3657 btrfs_put_fs_root(gang[i]);
3658 }
3659 root_objectid++;
3660 }
3661
3662 /* release the uncleaned roots due to error */
3663 for (; i < ret; i++) {
3664 if (gang[i])
3665 btrfs_put_fs_root(gang[i]);
3666 }
3667 return err;
3668}
3669
3670int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3671{
3672 struct btrfs_root *root = fs_info->tree_root;
3673 struct btrfs_trans_handle *trans;
3674
3675 mutex_lock(&fs_info->cleaner_mutex);
3676 btrfs_run_delayed_iputs(fs_info);
3677 mutex_unlock(&fs_info->cleaner_mutex);
3678 wake_up_process(fs_info->cleaner_kthread);
3679
3680 /* wait until ongoing cleanup work done */
3681 down_write(&fs_info->cleanup_work_sem);
3682 up_write(&fs_info->cleanup_work_sem);
3683
3684 trans = btrfs_join_transaction(root);
3685 if (IS_ERR(trans))
3686 return PTR_ERR(trans);
3687 return btrfs_commit_transaction(trans);
3688}
3689
3690void close_ctree(struct btrfs_fs_info *fs_info)
3691{
3692 struct btrfs_root *root = fs_info->tree_root;
3693 int ret;
3694
3695 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3696 /*
3697 * We don't want the cleaner to start new transactions, add more delayed
3698 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3699 * because that frees the task_struct, and the transaction kthread might
3700 * still try to wake up the cleaner.
3701 */
3702 kthread_park(fs_info->cleaner_kthread);
3703
3704 /* wait for the qgroup rescan worker to stop */
3705 btrfs_qgroup_wait_for_completion(fs_info, false);
3706
3707 /* wait for the uuid_scan task to finish */
3708 down(&fs_info->uuid_tree_rescan_sem);
3709 /* avoid complains from lockdep et al., set sem back to initial state */
3710 up(&fs_info->uuid_tree_rescan_sem);
3711
3712 /* pause restriper - we want to resume on mount */
3713 btrfs_pause_balance(fs_info);
3714
3715 btrfs_dev_replace_suspend_for_unmount(fs_info);
3716
3717 btrfs_scrub_cancel(fs_info);
3718
3719 /* wait for any defraggers to finish */
3720 wait_event(fs_info->transaction_wait,
3721 (atomic_read(&fs_info->defrag_running) == 0));
3722
3723 /* clear out the rbtree of defraggable inodes */
3724 btrfs_cleanup_defrag_inodes(fs_info);
3725
3726 cancel_work_sync(&fs_info->async_reclaim_work);
3727
3728 if (!sb_rdonly(fs_info->sb)) {
3729 /*
3730 * The cleaner kthread is stopped, so do one final pass over
3731 * unused block groups.
3732 */
3733 btrfs_delete_unused_bgs(fs_info);
3734
3735 /*
3736 * There might be existing delayed inode workers still running
3737 * and holding an empty delayed inode item. We must wait for
3738 * them to complete first because they can create a transaction.
3739 * This happens when someone calls btrfs_balance_delayed_items()
3740 * and then a transaction commit runs the same delayed nodes
3741 * before any delayed worker has done something with the nodes.
3742 * We must wait for any worker here and not at transaction
3743 * commit time since that could cause a deadlock.
3744 * This is a very rare case.
3745 */
3746 btrfs_flush_workqueue(fs_info->delayed_workers);
3747
3748 ret = btrfs_commit_super(fs_info);
3749 if (ret)
3750 btrfs_err(fs_info, "commit super ret %d", ret);
3751 }
3752
3753 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3754 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3755 btrfs_error_commit_super(fs_info);
3756
3757 kthread_stop(fs_info->transaction_kthread);
3758 kthread_stop(fs_info->cleaner_kthread);
3759
3760 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3761
3762 btrfs_free_qgroup_config(fs_info);
3763 ASSERT(list_empty(&fs_info->delalloc_roots));
3764
3765 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3766 btrfs_info(fs_info, "at unmount delalloc count %lld",
3767 percpu_counter_sum(&fs_info->delalloc_bytes));
3768 }
3769
3770 btrfs_sysfs_remove_mounted(fs_info);
3771 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3772
3773 btrfs_free_fs_roots(fs_info);
3774
3775 btrfs_put_block_group_cache(fs_info);
3776
3777 /*
3778 * we must make sure there is not any read request to
3779 * submit after we stopping all workers.
3780 */
3781 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3782 btrfs_stop_all_workers(fs_info);
3783
3784 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3785 free_root_pointers(fs_info, true);
3786
3787 /*
3788 * We must free the block groups after dropping the fs_roots as we could
3789 * have had an IO error and have left over tree log blocks that aren't
3790 * cleaned up until the fs roots are freed. This makes the block group
3791 * accounting appear to be wrong because there's pending reserved bytes,
3792 * so make sure we do the block group cleanup afterwards.
3793 */
3794 btrfs_free_block_groups(fs_info);
3795
3796 iput(fs_info->btree_inode);
3797
3798#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3799 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3800 btrfsic_unmount(fs_info->fs_devices);
3801#endif
3802
3803 btrfs_close_devices(fs_info->fs_devices);
3804 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3805
3806 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3807 percpu_counter_destroy(&fs_info->delalloc_bytes);
3808 percpu_counter_destroy(&fs_info->bio_counter);
3809 cleanup_srcu_struct(&fs_info->subvol_srcu);
3810
3811 btrfs_free_stripe_hash_table(fs_info);
3812
3813 __btrfs_free_block_rsv(root->orphan_block_rsv);
3814 root->orphan_block_rsv = NULL;
3815
3816 while (!list_empty(&fs_info->pinned_chunks)) {
3817 struct extent_map *em;
3818
3819 em = list_first_entry(&fs_info->pinned_chunks,
3820 struct extent_map, list);
3821 list_del_init(&em->list);
3822 free_extent_map(em);
3823 }
3824}
3825
3826int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3827 int atomic)
3828{
3829 int ret;
3830 struct inode *btree_inode = buf->pages[0]->mapping->host;
3831
3832 ret = extent_buffer_uptodate(buf);
3833 if (!ret)
3834 return ret;
3835
3836 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3837 parent_transid, atomic);
3838 if (ret == -EAGAIN)
3839 return ret;
3840 return !ret;
3841}
3842
3843void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3844{
3845 struct btrfs_fs_info *fs_info;
3846 struct btrfs_root *root;
3847 u64 transid = btrfs_header_generation(buf);
3848 int was_dirty;
3849
3850#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3851 /*
3852 * This is a fast path so only do this check if we have sanity tests
3853 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3854 * outside of the sanity tests.
3855 */
3856 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3857 return;
3858#endif
3859 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3860 fs_info = root->fs_info;
3861 btrfs_assert_tree_locked(buf);
3862 if (transid != fs_info->generation)
3863 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3864 buf->start, transid, fs_info->generation);
3865 was_dirty = set_extent_buffer_dirty(buf);
3866 if (!was_dirty)
3867 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3868 buf->len,
3869 fs_info->dirty_metadata_batch);
3870#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3871 /*
3872 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3873 * but item data not updated.
3874 * So here we should only check item pointers, not item data.
3875 */
3876 if (btrfs_header_level(buf) == 0 &&
3877 btrfs_check_leaf_relaxed(root, buf)) {
3878 btrfs_print_leaf(buf);
3879 ASSERT(0);
3880 }
3881#endif
3882}
3883
3884static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3885 int flush_delayed)
3886{
3887 /*
3888 * looks as though older kernels can get into trouble with
3889 * this code, they end up stuck in balance_dirty_pages forever
3890 */
3891 int ret;
3892
3893 if (current->flags & PF_MEMALLOC)
3894 return;
3895
3896 if (flush_delayed)
3897 btrfs_balance_delayed_items(fs_info);
3898
3899 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3900 BTRFS_DIRTY_METADATA_THRESH,
3901 fs_info->dirty_metadata_batch);
3902 if (ret > 0) {
3903 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3904 }
3905}
3906
3907void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3908{
3909 __btrfs_btree_balance_dirty(fs_info, 1);
3910}
3911
3912void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3913{
3914 __btrfs_btree_balance_dirty(fs_info, 0);
3915}
3916
3917int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3918{
3919 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3920 struct btrfs_fs_info *fs_info = root->fs_info;
3921
3922 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3923}
3924
3925static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3926{
3927 struct btrfs_super_block *sb = fs_info->super_copy;
3928 u64 nodesize = btrfs_super_nodesize(sb);
3929 u64 sectorsize = btrfs_super_sectorsize(sb);
3930 int ret = 0;
3931
3932 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3933 btrfs_err(fs_info, "no valid FS found");
3934 ret = -EINVAL;
3935 }
3936 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3937 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3938 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3939 ret = -EINVAL;
3940 }
3941 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3942 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3943 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3944 ret = -EINVAL;
3945 }
3946 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3947 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3948 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3949 ret = -EINVAL;
3950 }
3951 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3952 btrfs_err(fs_info, "log_root level too big: %d >= %d",
3953 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3954 ret = -EINVAL;
3955 }
3956
3957 /*
3958 * Check sectorsize and nodesize first, other check will need it.
3959 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3960 */
3961 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3962 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3963 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3964 ret = -EINVAL;
3965 }
3966 /* Only PAGE SIZE is supported yet */
3967 if (sectorsize != PAGE_SIZE) {
3968 btrfs_err(fs_info,
3969 "sectorsize %llu not supported yet, only support %lu",
3970 sectorsize, PAGE_SIZE);
3971 ret = -EINVAL;
3972 }
3973 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3974 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3975 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3976 ret = -EINVAL;
3977 }
3978 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3979 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3980 le32_to_cpu(sb->__unused_leafsize), nodesize);
3981 ret = -EINVAL;
3982 }
3983
3984 /* Root alignment check */
3985 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3986 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3987 btrfs_super_root(sb));
3988 ret = -EINVAL;
3989 }
3990 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3991 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3992 btrfs_super_chunk_root(sb));
3993 ret = -EINVAL;
3994 }
3995 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3996 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3997 btrfs_super_log_root(sb));
3998 ret = -EINVAL;
3999 }
4000
4001 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
4002 btrfs_err(fs_info,
4003 "dev_item UUID does not match fsid: %pU != %pU",
4004 fs_info->fsid, sb->dev_item.fsid);
4005 ret = -EINVAL;
4006 }
4007
4008 /*
4009 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4010 * done later
4011 */
4012 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4013 btrfs_err(fs_info, "bytes_used is too small %llu",
4014 btrfs_super_bytes_used(sb));
4015 ret = -EINVAL;
4016 }
4017 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4018 btrfs_err(fs_info, "invalid stripesize %u",
4019 btrfs_super_stripesize(sb));
4020 ret = -EINVAL;
4021 }
4022 if (btrfs_super_num_devices(sb) > (1UL << 31))
4023 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4024 btrfs_super_num_devices(sb));
4025 if (btrfs_super_num_devices(sb) == 0) {
4026 btrfs_err(fs_info, "number of devices is 0");
4027 ret = -EINVAL;
4028 }
4029
4030 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4031 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4032 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4033 ret = -EINVAL;
4034 }
4035
4036 /*
4037 * Obvious sys_chunk_array corruptions, it must hold at least one key
4038 * and one chunk
4039 */
4040 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4041 btrfs_err(fs_info, "system chunk array too big %u > %u",
4042 btrfs_super_sys_array_size(sb),
4043 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4044 ret = -EINVAL;
4045 }
4046 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4047 + sizeof(struct btrfs_chunk)) {
4048 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4049 btrfs_super_sys_array_size(sb),
4050 sizeof(struct btrfs_disk_key)
4051 + sizeof(struct btrfs_chunk));
4052 ret = -EINVAL;
4053 }
4054
4055 /*
4056 * The generation is a global counter, we'll trust it more than the others
4057 * but it's still possible that it's the one that's wrong.
4058 */
4059 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4060 btrfs_warn(fs_info,
4061 "suspicious: generation < chunk_root_generation: %llu < %llu",
4062 btrfs_super_generation(sb),
4063 btrfs_super_chunk_root_generation(sb));
4064 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4065 && btrfs_super_cache_generation(sb) != (u64)-1)
4066 btrfs_warn(fs_info,
4067 "suspicious: generation < cache_generation: %llu < %llu",
4068 btrfs_super_generation(sb),
4069 btrfs_super_cache_generation(sb));
4070
4071 return ret;
4072}
4073
4074static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4075{
4076 /* cleanup FS via transaction */
4077 btrfs_cleanup_transaction(fs_info);
4078
4079 mutex_lock(&fs_info->cleaner_mutex);
4080 btrfs_run_delayed_iputs(fs_info);
4081 mutex_unlock(&fs_info->cleaner_mutex);
4082
4083 down_write(&fs_info->cleanup_work_sem);
4084 up_write(&fs_info->cleanup_work_sem);
4085}
4086
4087static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4088{
4089 struct btrfs_ordered_extent *ordered;
4090
4091 spin_lock(&root->ordered_extent_lock);
4092 /*
4093 * This will just short circuit the ordered completion stuff which will
4094 * make sure the ordered extent gets properly cleaned up.
4095 */
4096 list_for_each_entry(ordered, &root->ordered_extents,
4097 root_extent_list)
4098 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4099 spin_unlock(&root->ordered_extent_lock);
4100}
4101
4102static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4103{
4104 struct btrfs_root *root;
4105 struct list_head splice;
4106
4107 INIT_LIST_HEAD(&splice);
4108
4109 spin_lock(&fs_info->ordered_root_lock);
4110 list_splice_init(&fs_info->ordered_roots, &splice);
4111 while (!list_empty(&splice)) {
4112 root = list_first_entry(&splice, struct btrfs_root,
4113 ordered_root);
4114 list_move_tail(&root->ordered_root,
4115 &fs_info->ordered_roots);
4116
4117 spin_unlock(&fs_info->ordered_root_lock);
4118 btrfs_destroy_ordered_extents(root);
4119
4120 cond_resched();
4121 spin_lock(&fs_info->ordered_root_lock);
4122 }
4123 spin_unlock(&fs_info->ordered_root_lock);
4124
4125 /*
4126 * We need this here because if we've been flipped read-only we won't
4127 * get sync() from the umount, so we need to make sure any ordered
4128 * extents that haven't had their dirty pages IO start writeout yet
4129 * actually get run and error out properly.
4130 */
4131 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4132}
4133
4134static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4135 struct btrfs_fs_info *fs_info)
4136{
4137 struct rb_node *node;
4138 struct btrfs_delayed_ref_root *delayed_refs;
4139 struct btrfs_delayed_ref_node *ref;
4140 int ret = 0;
4141
4142 delayed_refs = &trans->delayed_refs;
4143
4144 spin_lock(&delayed_refs->lock);
4145 if (atomic_read(&delayed_refs->num_entries) == 0) {
4146 spin_unlock(&delayed_refs->lock);
4147 btrfs_info(fs_info, "delayed_refs has NO entry");
4148 return ret;
4149 }
4150
4151 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4152 struct btrfs_delayed_ref_head *head;
4153 struct btrfs_delayed_ref_node *tmp;
4154 bool pin_bytes = false;
4155
4156 head = rb_entry(node, struct btrfs_delayed_ref_head,
4157 href_node);
4158 if (!mutex_trylock(&head->mutex)) {
4159 refcount_inc(&head->node.refs);
4160 spin_unlock(&delayed_refs->lock);
4161
4162 mutex_lock(&head->mutex);
4163 mutex_unlock(&head->mutex);
4164 btrfs_put_delayed_ref(&head->node);
4165 spin_lock(&delayed_refs->lock);
4166 continue;
4167 }
4168 spin_lock(&head->lock);
4169 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4170 list) {
4171 ref->in_tree = 0;
4172 list_del(&ref->list);
4173 if (!list_empty(&ref->add_list))
4174 list_del(&ref->add_list);
4175 atomic_dec(&delayed_refs->num_entries);
4176 btrfs_put_delayed_ref(ref);
4177 }
4178 if (head->must_insert_reserved)
4179 pin_bytes = true;
4180 btrfs_free_delayed_extent_op(head->extent_op);
4181 delayed_refs->num_heads--;
4182 if (head->processing == 0)
4183 delayed_refs->num_heads_ready--;
4184 atomic_dec(&delayed_refs->num_entries);
4185 head->node.in_tree = 0;
4186 rb_erase(&head->href_node, &delayed_refs->href_root);
4187 spin_unlock(&head->lock);
4188 spin_unlock(&delayed_refs->lock);
4189 mutex_unlock(&head->mutex);
4190
4191 if (pin_bytes)
4192 btrfs_pin_extent(fs_info, head->node.bytenr,
4193 head->node.num_bytes, 1);
4194 btrfs_put_delayed_ref(&head->node);
4195 cond_resched();
4196 spin_lock(&delayed_refs->lock);
4197 }
4198
4199 spin_unlock(&delayed_refs->lock);
4200
4201 return ret;
4202}
4203
4204static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4205{
4206 struct btrfs_inode *btrfs_inode;
4207 struct list_head splice;
4208
4209 INIT_LIST_HEAD(&splice);
4210
4211 spin_lock(&root->delalloc_lock);
4212 list_splice_init(&root->delalloc_inodes, &splice);
4213
4214 while (!list_empty(&splice)) {
4215 struct inode *inode = NULL;
4216 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4217 delalloc_inodes);
4218 __btrfs_del_delalloc_inode(root, btrfs_inode);
4219 spin_unlock(&root->delalloc_lock);
4220
4221 /*
4222 * Make sure we get a live inode and that it'll not disappear
4223 * meanwhile.
4224 */
4225 inode = igrab(&btrfs_inode->vfs_inode);
4226 if (inode) {
4227 invalidate_inode_pages2(inode->i_mapping);
4228 iput(inode);
4229 }
4230 spin_lock(&root->delalloc_lock);
4231 }
4232 spin_unlock(&root->delalloc_lock);
4233}
4234
4235static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4236{
4237 struct btrfs_root *root;
4238 struct list_head splice;
4239
4240 INIT_LIST_HEAD(&splice);
4241
4242 spin_lock(&fs_info->delalloc_root_lock);
4243 list_splice_init(&fs_info->delalloc_roots, &splice);
4244 while (!list_empty(&splice)) {
4245 root = list_first_entry(&splice, struct btrfs_root,
4246 delalloc_root);
4247 root = btrfs_grab_fs_root(root);
4248 BUG_ON(!root);
4249 spin_unlock(&fs_info->delalloc_root_lock);
4250
4251 btrfs_destroy_delalloc_inodes(root);
4252 btrfs_put_fs_root(root);
4253
4254 spin_lock(&fs_info->delalloc_root_lock);
4255 }
4256 spin_unlock(&fs_info->delalloc_root_lock);
4257}
4258
4259static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4260 struct extent_io_tree *dirty_pages,
4261 int mark)
4262{
4263 int ret;
4264 struct extent_buffer *eb;
4265 u64 start = 0;
4266 u64 end;
4267
4268 while (1) {
4269 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4270 mark, NULL);
4271 if (ret)
4272 break;
4273
4274 clear_extent_bits(dirty_pages, start, end, mark);
4275 while (start <= end) {
4276 eb = find_extent_buffer(fs_info, start);
4277 start += fs_info->nodesize;
4278 if (!eb)
4279 continue;
4280 wait_on_extent_buffer_writeback(eb);
4281
4282 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4283 &eb->bflags))
4284 clear_extent_buffer_dirty(eb);
4285 free_extent_buffer_stale(eb);
4286 }
4287 }
4288
4289 return ret;
4290}
4291
4292static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4293 struct extent_io_tree *pinned_extents)
4294{
4295 struct extent_io_tree *unpin;
4296 u64 start;
4297 u64 end;
4298 int ret;
4299 bool loop = true;
4300
4301 unpin = pinned_extents;
4302again:
4303 while (1) {
4304 /*
4305 * The btrfs_finish_extent_commit() may get the same range as
4306 * ours between find_first_extent_bit and clear_extent_dirty.
4307 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4308 * the same extent range.
4309 */
4310 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4311 ret = find_first_extent_bit(unpin, 0, &start, &end,
4312 EXTENT_DIRTY, NULL);
4313 if (ret) {
4314 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4315 break;
4316 }
4317
4318 clear_extent_dirty(unpin, start, end);
4319 btrfs_error_unpin_extent_range(fs_info, start, end);
4320 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4321 cond_resched();
4322 }
4323
4324 if (loop) {
4325 if (unpin == &fs_info->freed_extents[0])
4326 unpin = &fs_info->freed_extents[1];
4327 else
4328 unpin = &fs_info->freed_extents[0];
4329 loop = false;
4330 goto again;
4331 }
4332
4333 return 0;
4334}
4335
4336static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4337{
4338 struct inode *inode;
4339
4340 inode = cache->io_ctl.inode;
4341 if (inode) {
4342 invalidate_inode_pages2(inode->i_mapping);
4343 BTRFS_I(inode)->generation = 0;
4344 cache->io_ctl.inode = NULL;
4345 iput(inode);
4346 }
4347 ASSERT(cache->io_ctl.pages == NULL);
4348 btrfs_put_block_group(cache);
4349}
4350
4351void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4352 struct btrfs_fs_info *fs_info)
4353{
4354 struct btrfs_block_group_cache *cache;
4355
4356 spin_lock(&cur_trans->dirty_bgs_lock);
4357 while (!list_empty(&cur_trans->dirty_bgs)) {
4358 cache = list_first_entry(&cur_trans->dirty_bgs,
4359 struct btrfs_block_group_cache,
4360 dirty_list);
4361 if (!cache) {
4362 btrfs_err(fs_info, "orphan block group dirty_bgs list");
4363 spin_unlock(&cur_trans->dirty_bgs_lock);
4364 return;
4365 }
4366
4367 if (!list_empty(&cache->io_list)) {
4368 spin_unlock(&cur_trans->dirty_bgs_lock);
4369 list_del_init(&cache->io_list);
4370 btrfs_cleanup_bg_io(cache);
4371 spin_lock(&cur_trans->dirty_bgs_lock);
4372 }
4373
4374 list_del_init(&cache->dirty_list);
4375 spin_lock(&cache->lock);
4376 cache->disk_cache_state = BTRFS_DC_ERROR;
4377 spin_unlock(&cache->lock);
4378
4379 spin_unlock(&cur_trans->dirty_bgs_lock);
4380 btrfs_put_block_group(cache);
4381 spin_lock(&cur_trans->dirty_bgs_lock);
4382 }
4383 spin_unlock(&cur_trans->dirty_bgs_lock);
4384
4385 while (!list_empty(&cur_trans->io_bgs)) {
4386 cache = list_first_entry(&cur_trans->io_bgs,
4387 struct btrfs_block_group_cache,
4388 io_list);
4389 if (!cache) {
4390 btrfs_err(fs_info, "orphan block group on io_bgs list");
4391 return;
4392 }
4393
4394 list_del_init(&cache->io_list);
4395 spin_lock(&cache->lock);
4396 cache->disk_cache_state = BTRFS_DC_ERROR;
4397 spin_unlock(&cache->lock);
4398 btrfs_cleanup_bg_io(cache);
4399 }
4400}
4401
4402void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4403 struct btrfs_fs_info *fs_info)
4404{
4405 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4406 ASSERT(list_empty(&cur_trans->dirty_bgs));
4407 ASSERT(list_empty(&cur_trans->io_bgs));
4408
4409 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4410
4411 cur_trans->state = TRANS_STATE_COMMIT_START;
4412 wake_up(&fs_info->transaction_blocked_wait);
4413
4414 cur_trans->state = TRANS_STATE_UNBLOCKED;
4415 wake_up(&fs_info->transaction_wait);
4416
4417 btrfs_destroy_delayed_inodes(fs_info);
4418
4419 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4420 EXTENT_DIRTY);
4421 btrfs_destroy_pinned_extent(fs_info,
4422 fs_info->pinned_extents);
4423
4424 cur_trans->state =TRANS_STATE_COMPLETED;
4425 wake_up(&cur_trans->commit_wait);
4426}
4427
4428static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4429{
4430 struct btrfs_transaction *t;
4431
4432 mutex_lock(&fs_info->transaction_kthread_mutex);
4433
4434 spin_lock(&fs_info->trans_lock);
4435 while (!list_empty(&fs_info->trans_list)) {
4436 t = list_first_entry(&fs_info->trans_list,
4437 struct btrfs_transaction, list);
4438 if (t->state >= TRANS_STATE_COMMIT_START) {
4439 refcount_inc(&t->use_count);
4440 spin_unlock(&fs_info->trans_lock);
4441 btrfs_wait_for_commit(fs_info, t->transid);
4442 btrfs_put_transaction(t);
4443 spin_lock(&fs_info->trans_lock);
4444 continue;
4445 }
4446 if (t == fs_info->running_transaction) {
4447 t->state = TRANS_STATE_COMMIT_DOING;
4448 spin_unlock(&fs_info->trans_lock);
4449 /*
4450 * We wait for 0 num_writers since we don't hold a trans
4451 * handle open currently for this transaction.
4452 */
4453 wait_event(t->writer_wait,
4454 atomic_read(&t->num_writers) == 0);
4455 } else {
4456 spin_unlock(&fs_info->trans_lock);
4457 }
4458 btrfs_cleanup_one_transaction(t, fs_info);
4459
4460 spin_lock(&fs_info->trans_lock);
4461 if (t == fs_info->running_transaction)
4462 fs_info->running_transaction = NULL;
4463 list_del_init(&t->list);
4464 spin_unlock(&fs_info->trans_lock);
4465
4466 btrfs_put_transaction(t);
4467 trace_btrfs_transaction_commit(fs_info->tree_root);
4468 spin_lock(&fs_info->trans_lock);
4469 }
4470 spin_unlock(&fs_info->trans_lock);
4471 btrfs_destroy_all_ordered_extents(fs_info);
4472 btrfs_destroy_delayed_inodes(fs_info);
4473 btrfs_assert_delayed_root_empty(fs_info);
4474 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4475 btrfs_destroy_all_delalloc_inodes(fs_info);
4476 mutex_unlock(&fs_info->transaction_kthread_mutex);
4477
4478 return 0;
4479}
4480
4481static struct btrfs_fs_info *btree_fs_info(void *private_data)
4482{
4483 struct inode *inode = private_data;
4484 return btrfs_sb(inode->i_sb);
4485}
4486
4487static const struct extent_io_ops btree_extent_io_ops = {
4488 /* mandatory callbacks */
4489 .submit_bio_hook = btree_submit_bio_hook,
4490 .readpage_end_io_hook = btree_readpage_end_io_hook,
4491 /* note we're sharing with inode.c for the merge bio hook */
4492 .merge_bio_hook = btrfs_merge_bio_hook,
4493 .readpage_io_failed_hook = btree_io_failed_hook,
4494 .set_range_writeback = btrfs_set_range_writeback,
4495 .tree_fs_info = btree_fs_info,
4496
4497 /* optional callbacks */
4498};