blob: 0ba338cffa937407ddec9395c63e6b0e6296b098 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001// SPDX-License-Identifier: GPL-2.0
2#include <linux/bitops.h>
3#include <linux/slab.h>
4#include <linux/bio.h>
5#include <linux/mm.h>
6#include <linux/pagemap.h>
7#include <linux/page-flags.h>
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
13#include <linux/prefetch.h>
14#include <linux/cleancache.h>
15#include "extent_io.h"
16#include "extent_map.h"
17#include "ctree.h"
18#include "btrfs_inode.h"
19#include "volumes.h"
20#include "check-integrity.h"
21#include "locking.h"
22#include "rcu-string.h"
23#include "backref.h"
24
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
27static struct bio_set *btrfs_bioset;
28
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
34#ifdef CONFIG_BTRFS_DEBUG
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
37
38static DEFINE_SPINLOCK(leak_lock);
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 refcount_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
84
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89{
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
93}
94#else
95#define btrfs_leak_debug_add(new, head) do {} while (0)
96#define btrfs_leak_debug_del(entry) do {} while (0)
97#define btrfs_leak_debug_check() do {} while (0)
98#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
99#endif
100
101#define BUFFER_LRU_MAX 64
102
103struct tree_entry {
104 u64 start;
105 u64 end;
106 struct rb_node rb_node;
107};
108
109struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
113 unsigned long bio_flags;
114
115 /* tells writepage not to lock the state bits for this range
116 * it still does the unlocking
117 */
118 unsigned int extent_locked:1;
119
120 /* tells the submit_bio code to use REQ_SYNC */
121 unsigned int sync_io:1;
122};
123
124static void add_extent_changeset(struct extent_state *state, unsigned bits,
125 struct extent_changeset *changeset,
126 int set)
127{
128 int ret;
129
130 if (!changeset)
131 return;
132 if (set && (state->state & bits) == bits)
133 return;
134 if (!set && (state->state & bits) == 0)
135 return;
136 changeset->bytes_changed += state->end - state->start + 1;
137 ret = ulist_add(&changeset->range_changed, state->start, state->end,
138 GFP_ATOMIC);
139 /* ENOMEM */
140 BUG_ON(ret < 0);
141}
142
143static noinline void flush_write_bio(void *data);
144static inline struct btrfs_fs_info *
145tree_fs_info(struct extent_io_tree *tree)
146{
147 if (tree->ops)
148 return tree->ops->tree_fs_info(tree->private_data);
149 return NULL;
150}
151
152int __init extent_io_init(void)
153{
154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
155 sizeof(struct extent_state), 0,
156 SLAB_MEM_SPREAD, NULL);
157 if (!extent_state_cache)
158 return -ENOMEM;
159
160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161 sizeof(struct extent_buffer), 0,
162 SLAB_MEM_SPREAD, NULL);
163 if (!extent_buffer_cache)
164 goto free_state_cache;
165
166 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio),
168 BIOSET_NEED_BVECS);
169 if (!btrfs_bioset)
170 goto free_buffer_cache;
171
172 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
173 goto free_bioset;
174
175 return 0;
176
177free_bioset:
178 bioset_free(btrfs_bioset);
179 btrfs_bioset = NULL;
180
181free_buffer_cache:
182 kmem_cache_destroy(extent_buffer_cache);
183 extent_buffer_cache = NULL;
184
185free_state_cache:
186 kmem_cache_destroy(extent_state_cache);
187 extent_state_cache = NULL;
188 return -ENOMEM;
189}
190
191void extent_io_exit(void)
192{
193 btrfs_leak_debug_check();
194
195 /*
196 * Make sure all delayed rcu free are flushed before we
197 * destroy caches.
198 */
199 rcu_barrier();
200 kmem_cache_destroy(extent_state_cache);
201 kmem_cache_destroy(extent_buffer_cache);
202 if (btrfs_bioset)
203 bioset_free(btrfs_bioset);
204}
205
206void extent_io_tree_init(struct extent_io_tree *tree,
207 void *private_data)
208{
209 tree->state = RB_ROOT;
210 tree->ops = NULL;
211 tree->dirty_bytes = 0;
212 spin_lock_init(&tree->lock);
213 tree->private_data = private_data;
214}
215
216static struct extent_state *alloc_extent_state(gfp_t mask)
217{
218 struct extent_state *state;
219
220 /*
221 * The given mask might be not appropriate for the slab allocator,
222 * drop the unsupported bits
223 */
224 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
225 state = kmem_cache_alloc(extent_state_cache, mask);
226 if (!state)
227 return state;
228 state->state = 0;
229 state->failrec = NULL;
230 RB_CLEAR_NODE(&state->rb_node);
231 btrfs_leak_debug_add(&state->leak_list, &states);
232 refcount_set(&state->refs, 1);
233 init_waitqueue_head(&state->wq);
234 trace_alloc_extent_state(state, mask, _RET_IP_);
235 return state;
236}
237
238void free_extent_state(struct extent_state *state)
239{
240 if (!state)
241 return;
242 if (refcount_dec_and_test(&state->refs)) {
243 WARN_ON(extent_state_in_tree(state));
244 btrfs_leak_debug_del(&state->leak_list);
245 trace_free_extent_state(state, _RET_IP_);
246 kmem_cache_free(extent_state_cache, state);
247 }
248}
249
250static struct rb_node *tree_insert(struct rb_root *root,
251 struct rb_node *search_start,
252 u64 offset,
253 struct rb_node *node,
254 struct rb_node ***p_in,
255 struct rb_node **parent_in)
256{
257 struct rb_node **p;
258 struct rb_node *parent = NULL;
259 struct tree_entry *entry;
260
261 if (p_in && parent_in) {
262 p = *p_in;
263 parent = *parent_in;
264 goto do_insert;
265 }
266
267 p = search_start ? &search_start : &root->rb_node;
268 while (*p) {
269 parent = *p;
270 entry = rb_entry(parent, struct tree_entry, rb_node);
271
272 if (offset < entry->start)
273 p = &(*p)->rb_left;
274 else if (offset > entry->end)
275 p = &(*p)->rb_right;
276 else
277 return parent;
278 }
279
280do_insert:
281 rb_link_node(node, parent, p);
282 rb_insert_color(node, root);
283 return NULL;
284}
285
286static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
287 struct rb_node **prev_ret,
288 struct rb_node **next_ret,
289 struct rb_node ***p_ret,
290 struct rb_node **parent_ret)
291{
292 struct rb_root *root = &tree->state;
293 struct rb_node **n = &root->rb_node;
294 struct rb_node *prev = NULL;
295 struct rb_node *orig_prev = NULL;
296 struct tree_entry *entry;
297 struct tree_entry *prev_entry = NULL;
298
299 while (*n) {
300 prev = *n;
301 entry = rb_entry(prev, struct tree_entry, rb_node);
302 prev_entry = entry;
303
304 if (offset < entry->start)
305 n = &(*n)->rb_left;
306 else if (offset > entry->end)
307 n = &(*n)->rb_right;
308 else
309 return *n;
310 }
311
312 if (p_ret)
313 *p_ret = n;
314 if (parent_ret)
315 *parent_ret = prev;
316
317 if (prev_ret) {
318 orig_prev = prev;
319 while (prev && offset > prev_entry->end) {
320 prev = rb_next(prev);
321 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
322 }
323 *prev_ret = prev;
324 prev = orig_prev;
325 }
326
327 if (next_ret) {
328 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 while (prev && offset < prev_entry->start) {
330 prev = rb_prev(prev);
331 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
332 }
333 *next_ret = prev;
334 }
335 return NULL;
336}
337
338static inline struct rb_node *
339tree_search_for_insert(struct extent_io_tree *tree,
340 u64 offset,
341 struct rb_node ***p_ret,
342 struct rb_node **parent_ret)
343{
344 struct rb_node *prev = NULL;
345 struct rb_node *ret;
346
347 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
348 if (!ret)
349 return prev;
350 return ret;
351}
352
353static inline struct rb_node *tree_search(struct extent_io_tree *tree,
354 u64 offset)
355{
356 return tree_search_for_insert(tree, offset, NULL, NULL);
357}
358
359static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
360 struct extent_state *other)
361{
362 if (tree->ops && tree->ops->merge_extent_hook)
363 tree->ops->merge_extent_hook(tree->private_data, new, other);
364}
365
366/*
367 * utility function to look for merge candidates inside a given range.
368 * Any extents with matching state are merged together into a single
369 * extent in the tree. Extents with EXTENT_IO in their state field
370 * are not merged because the end_io handlers need to be able to do
371 * operations on them without sleeping (or doing allocations/splits).
372 *
373 * This should be called with the tree lock held.
374 */
375static void merge_state(struct extent_io_tree *tree,
376 struct extent_state *state)
377{
378 struct extent_state *other;
379 struct rb_node *other_node;
380
381 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
382 return;
383
384 other_node = rb_prev(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->end == state->start - 1 &&
388 other->state == state->state) {
389 merge_cb(tree, state, other);
390 state->start = other->start;
391 rb_erase(&other->rb_node, &tree->state);
392 RB_CLEAR_NODE(&other->rb_node);
393 free_extent_state(other);
394 }
395 }
396 other_node = rb_next(&state->rb_node);
397 if (other_node) {
398 other = rb_entry(other_node, struct extent_state, rb_node);
399 if (other->start == state->end + 1 &&
400 other->state == state->state) {
401 merge_cb(tree, state, other);
402 state->end = other->end;
403 rb_erase(&other->rb_node, &tree->state);
404 RB_CLEAR_NODE(&other->rb_node);
405 free_extent_state(other);
406 }
407 }
408}
409
410static void set_state_cb(struct extent_io_tree *tree,
411 struct extent_state *state, unsigned *bits)
412{
413 if (tree->ops && tree->ops->set_bit_hook)
414 tree->ops->set_bit_hook(tree->private_data, state, bits);
415}
416
417static void clear_state_cb(struct extent_io_tree *tree,
418 struct extent_state *state, unsigned *bits)
419{
420 if (tree->ops && tree->ops->clear_bit_hook)
421 tree->ops->clear_bit_hook(tree->private_data, state, bits);
422}
423
424static void set_state_bits(struct extent_io_tree *tree,
425 struct extent_state *state, unsigned *bits,
426 struct extent_changeset *changeset);
427
428/*
429 * insert an extent_state struct into the tree. 'bits' are set on the
430 * struct before it is inserted.
431 *
432 * This may return -EEXIST if the extent is already there, in which case the
433 * state struct is freed.
434 *
435 * The tree lock is not taken internally. This is a utility function and
436 * probably isn't what you want to call (see set/clear_extent_bit).
437 */
438static int insert_state(struct extent_io_tree *tree,
439 struct extent_state *state, u64 start, u64 end,
440 struct rb_node ***p,
441 struct rb_node **parent,
442 unsigned *bits, struct extent_changeset *changeset)
443{
444 struct rb_node *node;
445
446 if (end < start)
447 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
448 end, start);
449 state->start = start;
450 state->end = end;
451
452 set_state_bits(tree, state, bits, changeset);
453
454 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
455 if (node) {
456 struct extent_state *found;
457 found = rb_entry(node, struct extent_state, rb_node);
458 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
459 found->start, found->end, start, end);
460 return -EEXIST;
461 }
462 merge_state(tree, state);
463 return 0;
464}
465
466static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
467 u64 split)
468{
469 if (tree->ops && tree->ops->split_extent_hook)
470 tree->ops->split_extent_hook(tree->private_data, orig, split);
471}
472
473/*
474 * split a given extent state struct in two, inserting the preallocated
475 * struct 'prealloc' as the newly created second half. 'split' indicates an
476 * offset inside 'orig' where it should be split.
477 *
478 * Before calling,
479 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
480 * are two extent state structs in the tree:
481 * prealloc: [orig->start, split - 1]
482 * orig: [ split, orig->end ]
483 *
484 * The tree locks are not taken by this function. They need to be held
485 * by the caller.
486 */
487static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
488 struct extent_state *prealloc, u64 split)
489{
490 struct rb_node *node;
491
492 split_cb(tree, orig, split);
493
494 prealloc->start = orig->start;
495 prealloc->end = split - 1;
496 prealloc->state = orig->state;
497 orig->start = split;
498
499 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
500 &prealloc->rb_node, NULL, NULL);
501 if (node) {
502 free_extent_state(prealloc);
503 return -EEXIST;
504 }
505 return 0;
506}
507
508static struct extent_state *next_state(struct extent_state *state)
509{
510 struct rb_node *next = rb_next(&state->rb_node);
511 if (next)
512 return rb_entry(next, struct extent_state, rb_node);
513 else
514 return NULL;
515}
516
517/*
518 * utility function to clear some bits in an extent state struct.
519 * it will optionally wake up any one waiting on this state (wake == 1).
520 *
521 * If no bits are set on the state struct after clearing things, the
522 * struct is freed and removed from the tree
523 */
524static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
525 struct extent_state *state,
526 unsigned *bits, int wake,
527 struct extent_changeset *changeset)
528{
529 struct extent_state *next;
530 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
531
532 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
533 u64 range = state->end - state->start + 1;
534 WARN_ON(range > tree->dirty_bytes);
535 tree->dirty_bytes -= range;
536 }
537 clear_state_cb(tree, state, bits);
538 add_extent_changeset(state, bits_to_clear, changeset, 0);
539 state->state &= ~bits_to_clear;
540 if (wake)
541 wake_up(&state->wq);
542 if (state->state == 0) {
543 next = next_state(state);
544 if (extent_state_in_tree(state)) {
545 rb_erase(&state->rb_node, &tree->state);
546 RB_CLEAR_NODE(&state->rb_node);
547 free_extent_state(state);
548 } else {
549 WARN_ON(1);
550 }
551 } else {
552 merge_state(tree, state);
553 next = next_state(state);
554 }
555 return next;
556}
557
558static struct extent_state *
559alloc_extent_state_atomic(struct extent_state *prealloc)
560{
561 if (!prealloc)
562 prealloc = alloc_extent_state(GFP_ATOMIC);
563
564 return prealloc;
565}
566
567static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
568{
569 btrfs_panic(tree_fs_info(tree), err,
570 "Locking error: Extent tree was modified by another thread while locked.");
571}
572
573/*
574 * clear some bits on a range in the tree. This may require splitting
575 * or inserting elements in the tree, so the gfp mask is used to
576 * indicate which allocations or sleeping are allowed.
577 *
578 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
579 * the given range from the tree regardless of state (ie for truncate).
580 *
581 * the range [start, end] is inclusive.
582 *
583 * This takes the tree lock, and returns 0 on success and < 0 on error.
584 */
585static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
586 unsigned bits, int wake, int delete,
587 struct extent_state **cached_state,
588 gfp_t mask, struct extent_changeset *changeset)
589{
590 struct extent_state *state;
591 struct extent_state *cached;
592 struct extent_state *prealloc = NULL;
593 struct rb_node *node;
594 u64 last_end;
595 int err;
596 int clear = 0;
597
598 btrfs_debug_check_extent_io_range(tree, start, end);
599
600 if (bits & EXTENT_DELALLOC)
601 bits |= EXTENT_NORESERVE;
602
603 if (delete)
604 bits |= ~EXTENT_CTLBITS;
605 bits |= EXTENT_FIRST_DELALLOC;
606
607 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
608 clear = 1;
609again:
610 if (!prealloc && gfpflags_allow_blocking(mask)) {
611 /*
612 * Don't care for allocation failure here because we might end
613 * up not needing the pre-allocated extent state at all, which
614 * is the case if we only have in the tree extent states that
615 * cover our input range and don't cover too any other range.
616 * If we end up needing a new extent state we allocate it later.
617 */
618 prealloc = alloc_extent_state(mask);
619 }
620
621 spin_lock(&tree->lock);
622 if (cached_state) {
623 cached = *cached_state;
624
625 if (clear) {
626 *cached_state = NULL;
627 cached_state = NULL;
628 }
629
630 if (cached && extent_state_in_tree(cached) &&
631 cached->start <= start && cached->end > start) {
632 if (clear)
633 refcount_dec(&cached->refs);
634 state = cached;
635 goto hit_next;
636 }
637 if (clear)
638 free_extent_state(cached);
639 }
640 /*
641 * this search will find the extents that end after
642 * our range starts
643 */
644 node = tree_search(tree, start);
645 if (!node)
646 goto out;
647 state = rb_entry(node, struct extent_state, rb_node);
648hit_next:
649 if (state->start > end)
650 goto out;
651 WARN_ON(state->end < start);
652 last_end = state->end;
653
654 /* the state doesn't have the wanted bits, go ahead */
655 if (!(state->state & bits)) {
656 state = next_state(state);
657 goto next;
658 }
659
660 /*
661 * | ---- desired range ---- |
662 * | state | or
663 * | ------------- state -------------- |
664 *
665 * We need to split the extent we found, and may flip
666 * bits on second half.
667 *
668 * If the extent we found extends past our range, we
669 * just split and search again. It'll get split again
670 * the next time though.
671 *
672 * If the extent we found is inside our range, we clear
673 * the desired bit on it.
674 */
675
676 if (state->start < start) {
677 prealloc = alloc_extent_state_atomic(prealloc);
678 BUG_ON(!prealloc);
679 err = split_state(tree, state, prealloc, start);
680 if (err)
681 extent_io_tree_panic(tree, err);
682
683 prealloc = NULL;
684 if (err)
685 goto out;
686 if (state->end <= end) {
687 state = clear_state_bit(tree, state, &bits, wake,
688 changeset);
689 goto next;
690 }
691 goto search_again;
692 }
693 /*
694 * | ---- desired range ---- |
695 * | state |
696 * We need to split the extent, and clear the bit
697 * on the first half
698 */
699 if (state->start <= end && state->end > end) {
700 prealloc = alloc_extent_state_atomic(prealloc);
701 BUG_ON(!prealloc);
702 err = split_state(tree, state, prealloc, end + 1);
703 if (err)
704 extent_io_tree_panic(tree, err);
705
706 if (wake)
707 wake_up(&state->wq);
708
709 clear_state_bit(tree, prealloc, &bits, wake, changeset);
710
711 prealloc = NULL;
712 goto out;
713 }
714
715 state = clear_state_bit(tree, state, &bits, wake, changeset);
716next:
717 if (last_end == (u64)-1)
718 goto out;
719 start = last_end + 1;
720 if (start <= end && state && !need_resched())
721 goto hit_next;
722
723search_again:
724 if (start > end)
725 goto out;
726 spin_unlock(&tree->lock);
727 if (gfpflags_allow_blocking(mask))
728 cond_resched();
729 goto again;
730
731out:
732 spin_unlock(&tree->lock);
733 if (prealloc)
734 free_extent_state(prealloc);
735
736 return 0;
737
738}
739
740static void wait_on_state(struct extent_io_tree *tree,
741 struct extent_state *state)
742 __releases(tree->lock)
743 __acquires(tree->lock)
744{
745 DEFINE_WAIT(wait);
746 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
747 spin_unlock(&tree->lock);
748 schedule();
749 spin_lock(&tree->lock);
750 finish_wait(&state->wq, &wait);
751}
752
753/*
754 * waits for one or more bits to clear on a range in the state tree.
755 * The range [start, end] is inclusive.
756 * The tree lock is taken by this function
757 */
758static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
759 unsigned long bits)
760{
761 struct extent_state *state;
762 struct rb_node *node;
763
764 btrfs_debug_check_extent_io_range(tree, start, end);
765
766 spin_lock(&tree->lock);
767again:
768 while (1) {
769 /*
770 * this search will find all the extents that end after
771 * our range starts
772 */
773 node = tree_search(tree, start);
774process_node:
775 if (!node)
776 break;
777
778 state = rb_entry(node, struct extent_state, rb_node);
779
780 if (state->start > end)
781 goto out;
782
783 if (state->state & bits) {
784 start = state->start;
785 refcount_inc(&state->refs);
786 wait_on_state(tree, state);
787 free_extent_state(state);
788 goto again;
789 }
790 start = state->end + 1;
791
792 if (start > end)
793 break;
794
795 if (!cond_resched_lock(&tree->lock)) {
796 node = rb_next(node);
797 goto process_node;
798 }
799 }
800out:
801 spin_unlock(&tree->lock);
802}
803
804static void set_state_bits(struct extent_io_tree *tree,
805 struct extent_state *state,
806 unsigned *bits, struct extent_changeset *changeset)
807{
808 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
809
810 set_state_cb(tree, state, bits);
811 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
812 u64 range = state->end - state->start + 1;
813 tree->dirty_bytes += range;
814 }
815 add_extent_changeset(state, bits_to_set, changeset, 1);
816 state->state |= bits_to_set;
817}
818
819static void cache_state_if_flags(struct extent_state *state,
820 struct extent_state **cached_ptr,
821 unsigned flags)
822{
823 if (cached_ptr && !(*cached_ptr)) {
824 if (!flags || (state->state & flags)) {
825 *cached_ptr = state;
826 refcount_inc(&state->refs);
827 }
828 }
829}
830
831static void cache_state(struct extent_state *state,
832 struct extent_state **cached_ptr)
833{
834 return cache_state_if_flags(state, cached_ptr,
835 EXTENT_IOBITS | EXTENT_BOUNDARY);
836}
837
838/*
839 * set some bits on a range in the tree. This may require allocations or
840 * sleeping, so the gfp mask is used to indicate what is allowed.
841 *
842 * If any of the exclusive bits are set, this will fail with -EEXIST if some
843 * part of the range already has the desired bits set. The start of the
844 * existing range is returned in failed_start in this case.
845 *
846 * [start, end] is inclusive This takes the tree lock.
847 */
848
849static int __must_check
850__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
851 unsigned bits, unsigned exclusive_bits,
852 u64 *failed_start, struct extent_state **cached_state,
853 gfp_t mask, struct extent_changeset *changeset)
854{
855 struct extent_state *state;
856 struct extent_state *prealloc = NULL;
857 struct rb_node *node;
858 struct rb_node **p;
859 struct rb_node *parent;
860 int err = 0;
861 u64 last_start;
862 u64 last_end;
863
864 btrfs_debug_check_extent_io_range(tree, start, end);
865
866 bits |= EXTENT_FIRST_DELALLOC;
867again:
868 if (!prealloc && gfpflags_allow_blocking(mask)) {
869 /*
870 * Don't care for allocation failure here because we might end
871 * up not needing the pre-allocated extent state at all, which
872 * is the case if we only have in the tree extent states that
873 * cover our input range and don't cover too any other range.
874 * If we end up needing a new extent state we allocate it later.
875 */
876 prealloc = alloc_extent_state(mask);
877 }
878
879 spin_lock(&tree->lock);
880 if (cached_state && *cached_state) {
881 state = *cached_state;
882 if (state->start <= start && state->end > start &&
883 extent_state_in_tree(state)) {
884 node = &state->rb_node;
885 goto hit_next;
886 }
887 }
888 /*
889 * this search will find all the extents that end after
890 * our range starts.
891 */
892 node = tree_search_for_insert(tree, start, &p, &parent);
893 if (!node) {
894 prealloc = alloc_extent_state_atomic(prealloc);
895 BUG_ON(!prealloc);
896 err = insert_state(tree, prealloc, start, end,
897 &p, &parent, &bits, changeset);
898 if (err)
899 extent_io_tree_panic(tree, err);
900
901 cache_state(prealloc, cached_state);
902 prealloc = NULL;
903 goto out;
904 }
905 state = rb_entry(node, struct extent_state, rb_node);
906hit_next:
907 last_start = state->start;
908 last_end = state->end;
909
910 /*
911 * | ---- desired range ---- |
912 * | state |
913 *
914 * Just lock what we found and keep going
915 */
916 if (state->start == start && state->end <= end) {
917 if (state->state & exclusive_bits) {
918 *failed_start = state->start;
919 err = -EEXIST;
920 goto out;
921 }
922
923 set_state_bits(tree, state, &bits, changeset);
924 cache_state(state, cached_state);
925 merge_state(tree, state);
926 if (last_end == (u64)-1)
927 goto out;
928 start = last_end + 1;
929 state = next_state(state);
930 if (start < end && state && state->start == start &&
931 !need_resched())
932 goto hit_next;
933 goto search_again;
934 }
935
936 /*
937 * | ---- desired range ---- |
938 * | state |
939 * or
940 * | ------------- state -------------- |
941 *
942 * We need to split the extent we found, and may flip bits on
943 * second half.
944 *
945 * If the extent we found extends past our
946 * range, we just split and search again. It'll get split
947 * again the next time though.
948 *
949 * If the extent we found is inside our range, we set the
950 * desired bit on it.
951 */
952 if (state->start < start) {
953 if (state->state & exclusive_bits) {
954 *failed_start = start;
955 err = -EEXIST;
956 goto out;
957 }
958
959 prealloc = alloc_extent_state_atomic(prealloc);
960 BUG_ON(!prealloc);
961 err = split_state(tree, state, prealloc, start);
962 if (err)
963 extent_io_tree_panic(tree, err);
964
965 prealloc = NULL;
966 if (err)
967 goto out;
968 if (state->end <= end) {
969 set_state_bits(tree, state, &bits, changeset);
970 cache_state(state, cached_state);
971 merge_state(tree, state);
972 if (last_end == (u64)-1)
973 goto out;
974 start = last_end + 1;
975 state = next_state(state);
976 if (start < end && state && state->start == start &&
977 !need_resched())
978 goto hit_next;
979 }
980 goto search_again;
981 }
982 /*
983 * | ---- desired range ---- |
984 * | state | or | state |
985 *
986 * There's a hole, we need to insert something in it and
987 * ignore the extent we found.
988 */
989 if (state->start > start) {
990 u64 this_end;
991 if (end < last_start)
992 this_end = end;
993 else
994 this_end = last_start - 1;
995
996 prealloc = alloc_extent_state_atomic(prealloc);
997 BUG_ON(!prealloc);
998
999 /*
1000 * Avoid to free 'prealloc' if it can be merged with
1001 * the later extent.
1002 */
1003 err = insert_state(tree, prealloc, start, this_end,
1004 NULL, NULL, &bits, changeset);
1005 if (err)
1006 extent_io_tree_panic(tree, err);
1007
1008 cache_state(prealloc, cached_state);
1009 prealloc = NULL;
1010 start = this_end + 1;
1011 goto search_again;
1012 }
1013 /*
1014 * | ---- desired range ---- |
1015 * | state |
1016 * We need to split the extent, and set the bit
1017 * on the first half
1018 */
1019 if (state->start <= end && state->end > end) {
1020 if (state->state & exclusive_bits) {
1021 *failed_start = start;
1022 err = -EEXIST;
1023 goto out;
1024 }
1025
1026 prealloc = alloc_extent_state_atomic(prealloc);
1027 BUG_ON(!prealloc);
1028 err = split_state(tree, state, prealloc, end + 1);
1029 if (err)
1030 extent_io_tree_panic(tree, err);
1031
1032 set_state_bits(tree, prealloc, &bits, changeset);
1033 cache_state(prealloc, cached_state);
1034 merge_state(tree, prealloc);
1035 prealloc = NULL;
1036 goto out;
1037 }
1038
1039search_again:
1040 if (start > end)
1041 goto out;
1042 spin_unlock(&tree->lock);
1043 if (gfpflags_allow_blocking(mask))
1044 cond_resched();
1045 goto again;
1046
1047out:
1048 spin_unlock(&tree->lock);
1049 if (prealloc)
1050 free_extent_state(prealloc);
1051
1052 return err;
1053
1054}
1055
1056int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1057 unsigned bits, u64 * failed_start,
1058 struct extent_state **cached_state, gfp_t mask)
1059{
1060 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1061 cached_state, mask, NULL);
1062}
1063
1064
1065/**
1066 * convert_extent_bit - convert all bits in a given range from one bit to
1067 * another
1068 * @tree: the io tree to search
1069 * @start: the start offset in bytes
1070 * @end: the end offset in bytes (inclusive)
1071 * @bits: the bits to set in this range
1072 * @clear_bits: the bits to clear in this range
1073 * @cached_state: state that we're going to cache
1074 *
1075 * This will go through and set bits for the given range. If any states exist
1076 * already in this range they are set with the given bit and cleared of the
1077 * clear_bits. This is only meant to be used by things that are mergeable, ie
1078 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1079 * boundary bits like LOCK.
1080 *
1081 * All allocations are done with GFP_NOFS.
1082 */
1083int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1084 unsigned bits, unsigned clear_bits,
1085 struct extent_state **cached_state)
1086{
1087 struct extent_state *state;
1088 struct extent_state *prealloc = NULL;
1089 struct rb_node *node;
1090 struct rb_node **p;
1091 struct rb_node *parent;
1092 int err = 0;
1093 u64 last_start;
1094 u64 last_end;
1095 bool first_iteration = true;
1096
1097 btrfs_debug_check_extent_io_range(tree, start, end);
1098
1099again:
1100 if (!prealloc) {
1101 /*
1102 * Best effort, don't worry if extent state allocation fails
1103 * here for the first iteration. We might have a cached state
1104 * that matches exactly the target range, in which case no
1105 * extent state allocations are needed. We'll only know this
1106 * after locking the tree.
1107 */
1108 prealloc = alloc_extent_state(GFP_NOFS);
1109 if (!prealloc && !first_iteration)
1110 return -ENOMEM;
1111 }
1112
1113 spin_lock(&tree->lock);
1114 if (cached_state && *cached_state) {
1115 state = *cached_state;
1116 if (state->start <= start && state->end > start &&
1117 extent_state_in_tree(state)) {
1118 node = &state->rb_node;
1119 goto hit_next;
1120 }
1121 }
1122
1123 /*
1124 * this search will find all the extents that end after
1125 * our range starts.
1126 */
1127 node = tree_search_for_insert(tree, start, &p, &parent);
1128 if (!node) {
1129 prealloc = alloc_extent_state_atomic(prealloc);
1130 if (!prealloc) {
1131 err = -ENOMEM;
1132 goto out;
1133 }
1134 err = insert_state(tree, prealloc, start, end,
1135 &p, &parent, &bits, NULL);
1136 if (err)
1137 extent_io_tree_panic(tree, err);
1138 cache_state(prealloc, cached_state);
1139 prealloc = NULL;
1140 goto out;
1141 }
1142 state = rb_entry(node, struct extent_state, rb_node);
1143hit_next:
1144 last_start = state->start;
1145 last_end = state->end;
1146
1147 /*
1148 * | ---- desired range ---- |
1149 * | state |
1150 *
1151 * Just lock what we found and keep going
1152 */
1153 if (state->start == start && state->end <= end) {
1154 set_state_bits(tree, state, &bits, NULL);
1155 cache_state(state, cached_state);
1156 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1157 if (last_end == (u64)-1)
1158 goto out;
1159 start = last_end + 1;
1160 if (start < end && state && state->start == start &&
1161 !need_resched())
1162 goto hit_next;
1163 goto search_again;
1164 }
1165
1166 /*
1167 * | ---- desired range ---- |
1168 * | state |
1169 * or
1170 * | ------------- state -------------- |
1171 *
1172 * We need to split the extent we found, and may flip bits on
1173 * second half.
1174 *
1175 * If the extent we found extends past our
1176 * range, we just split and search again. It'll get split
1177 * again the next time though.
1178 *
1179 * If the extent we found is inside our range, we set the
1180 * desired bit on it.
1181 */
1182 if (state->start < start) {
1183 prealloc = alloc_extent_state_atomic(prealloc);
1184 if (!prealloc) {
1185 err = -ENOMEM;
1186 goto out;
1187 }
1188 err = split_state(tree, state, prealloc, start);
1189 if (err)
1190 extent_io_tree_panic(tree, err);
1191 prealloc = NULL;
1192 if (err)
1193 goto out;
1194 if (state->end <= end) {
1195 set_state_bits(tree, state, &bits, NULL);
1196 cache_state(state, cached_state);
1197 state = clear_state_bit(tree, state, &clear_bits, 0,
1198 NULL);
1199 if (last_end == (u64)-1)
1200 goto out;
1201 start = last_end + 1;
1202 if (start < end && state && state->start == start &&
1203 !need_resched())
1204 goto hit_next;
1205 }
1206 goto search_again;
1207 }
1208 /*
1209 * | ---- desired range ---- |
1210 * | state | or | state |
1211 *
1212 * There's a hole, we need to insert something in it and
1213 * ignore the extent we found.
1214 */
1215 if (state->start > start) {
1216 u64 this_end;
1217 if (end < last_start)
1218 this_end = end;
1219 else
1220 this_end = last_start - 1;
1221
1222 prealloc = alloc_extent_state_atomic(prealloc);
1223 if (!prealloc) {
1224 err = -ENOMEM;
1225 goto out;
1226 }
1227
1228 /*
1229 * Avoid to free 'prealloc' if it can be merged with
1230 * the later extent.
1231 */
1232 err = insert_state(tree, prealloc, start, this_end,
1233 NULL, NULL, &bits, NULL);
1234 if (err)
1235 extent_io_tree_panic(tree, err);
1236 cache_state(prealloc, cached_state);
1237 prealloc = NULL;
1238 start = this_end + 1;
1239 goto search_again;
1240 }
1241 /*
1242 * | ---- desired range ---- |
1243 * | state |
1244 * We need to split the extent, and set the bit
1245 * on the first half
1246 */
1247 if (state->start <= end && state->end > end) {
1248 prealloc = alloc_extent_state_atomic(prealloc);
1249 if (!prealloc) {
1250 err = -ENOMEM;
1251 goto out;
1252 }
1253
1254 err = split_state(tree, state, prealloc, end + 1);
1255 if (err)
1256 extent_io_tree_panic(tree, err);
1257
1258 set_state_bits(tree, prealloc, &bits, NULL);
1259 cache_state(prealloc, cached_state);
1260 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1261 prealloc = NULL;
1262 goto out;
1263 }
1264
1265search_again:
1266 if (start > end)
1267 goto out;
1268 spin_unlock(&tree->lock);
1269 cond_resched();
1270 first_iteration = false;
1271 goto again;
1272
1273out:
1274 spin_unlock(&tree->lock);
1275 if (prealloc)
1276 free_extent_state(prealloc);
1277
1278 return err;
1279}
1280
1281/* wrappers around set/clear extent bit */
1282int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1283 unsigned bits, struct extent_changeset *changeset)
1284{
1285 /*
1286 * We don't support EXTENT_LOCKED yet, as current changeset will
1287 * record any bits changed, so for EXTENT_LOCKED case, it will
1288 * either fail with -EEXIST or changeset will record the whole
1289 * range.
1290 */
1291 BUG_ON(bits & EXTENT_LOCKED);
1292
1293 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1294 changeset);
1295}
1296
1297int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1298 unsigned bits, int wake, int delete,
1299 struct extent_state **cached, gfp_t mask)
1300{
1301 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1302 cached, mask, NULL);
1303}
1304
1305int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1306 unsigned bits, struct extent_changeset *changeset)
1307{
1308 /*
1309 * Don't support EXTENT_LOCKED case, same reason as
1310 * set_record_extent_bits().
1311 */
1312 BUG_ON(bits & EXTENT_LOCKED);
1313
1314 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1315 changeset);
1316}
1317
1318/*
1319 * either insert or lock state struct between start and end use mask to tell
1320 * us if waiting is desired.
1321 */
1322int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1323 struct extent_state **cached_state)
1324{
1325 int err;
1326 u64 failed_start;
1327
1328 while (1) {
1329 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1330 EXTENT_LOCKED, &failed_start,
1331 cached_state, GFP_NOFS, NULL);
1332 if (err == -EEXIST) {
1333 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1334 start = failed_start;
1335 } else
1336 break;
1337 WARN_ON(start > end);
1338 }
1339 return err;
1340}
1341
1342int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1343{
1344 int err;
1345 u64 failed_start;
1346
1347 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1348 &failed_start, NULL, GFP_NOFS, NULL);
1349 if (err == -EEXIST) {
1350 if (failed_start > start)
1351 clear_extent_bit(tree, start, failed_start - 1,
1352 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1353 return 0;
1354 }
1355 return 1;
1356}
1357
1358void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1359{
1360 unsigned long index = start >> PAGE_SHIFT;
1361 unsigned long end_index = end >> PAGE_SHIFT;
1362 struct page *page;
1363
1364 while (index <= end_index) {
1365 page = find_get_page(inode->i_mapping, index);
1366 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1367 clear_page_dirty_for_io(page);
1368 put_page(page);
1369 index++;
1370 }
1371}
1372
1373void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1374{
1375 unsigned long index = start >> PAGE_SHIFT;
1376 unsigned long end_index = end >> PAGE_SHIFT;
1377 struct page *page;
1378
1379 while (index <= end_index) {
1380 page = find_get_page(inode->i_mapping, index);
1381 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1382 __set_page_dirty_nobuffers(page);
1383 account_page_redirty(page);
1384 put_page(page);
1385 index++;
1386 }
1387}
1388
1389/*
1390 * helper function to set both pages and extents in the tree writeback
1391 */
1392static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1393{
1394 tree->ops->set_range_writeback(tree->private_data, start, end);
1395}
1396
1397/* find the first state struct with 'bits' set after 'start', and
1398 * return it. tree->lock must be held. NULL will returned if
1399 * nothing was found after 'start'
1400 */
1401static struct extent_state *
1402find_first_extent_bit_state(struct extent_io_tree *tree,
1403 u64 start, unsigned bits)
1404{
1405 struct rb_node *node;
1406 struct extent_state *state;
1407
1408 /*
1409 * this search will find all the extents that end after
1410 * our range starts.
1411 */
1412 node = tree_search(tree, start);
1413 if (!node)
1414 goto out;
1415
1416 while (1) {
1417 state = rb_entry(node, struct extent_state, rb_node);
1418 if (state->end >= start && (state->state & bits))
1419 return state;
1420
1421 node = rb_next(node);
1422 if (!node)
1423 break;
1424 }
1425out:
1426 return NULL;
1427}
1428
1429/*
1430 * find the first offset in the io tree with 'bits' set. zero is
1431 * returned if we find something, and *start_ret and *end_ret are
1432 * set to reflect the state struct that was found.
1433 *
1434 * If nothing was found, 1 is returned. If found something, return 0.
1435 */
1436int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1437 u64 *start_ret, u64 *end_ret, unsigned bits,
1438 struct extent_state **cached_state)
1439{
1440 struct extent_state *state;
1441 struct rb_node *n;
1442 int ret = 1;
1443
1444 spin_lock(&tree->lock);
1445 if (cached_state && *cached_state) {
1446 state = *cached_state;
1447 if (state->end == start - 1 && extent_state_in_tree(state)) {
1448 n = rb_next(&state->rb_node);
1449 while (n) {
1450 state = rb_entry(n, struct extent_state,
1451 rb_node);
1452 if (state->state & bits)
1453 goto got_it;
1454 n = rb_next(n);
1455 }
1456 free_extent_state(*cached_state);
1457 *cached_state = NULL;
1458 goto out;
1459 }
1460 free_extent_state(*cached_state);
1461 *cached_state = NULL;
1462 }
1463
1464 state = find_first_extent_bit_state(tree, start, bits);
1465got_it:
1466 if (state) {
1467 cache_state_if_flags(state, cached_state, 0);
1468 *start_ret = state->start;
1469 *end_ret = state->end;
1470 ret = 0;
1471 }
1472out:
1473 spin_unlock(&tree->lock);
1474 return ret;
1475}
1476
1477/*
1478 * find a contiguous range of bytes in the file marked as delalloc, not
1479 * more than 'max_bytes'. start and end are used to return the range,
1480 *
1481 * 1 is returned if we find something, 0 if nothing was in the tree
1482 */
1483static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1484 u64 *start, u64 *end, u64 max_bytes,
1485 struct extent_state **cached_state)
1486{
1487 struct rb_node *node;
1488 struct extent_state *state;
1489 u64 cur_start = *start;
1490 u64 found = 0;
1491 u64 total_bytes = 0;
1492
1493 spin_lock(&tree->lock);
1494
1495 /*
1496 * this search will find all the extents that end after
1497 * our range starts.
1498 */
1499 node = tree_search(tree, cur_start);
1500 if (!node) {
1501 if (!found)
1502 *end = (u64)-1;
1503 goto out;
1504 }
1505
1506 while (1) {
1507 state = rb_entry(node, struct extent_state, rb_node);
1508 if (found && (state->start != cur_start ||
1509 (state->state & EXTENT_BOUNDARY))) {
1510 goto out;
1511 }
1512 if (!(state->state & EXTENT_DELALLOC)) {
1513 if (!found)
1514 *end = state->end;
1515 goto out;
1516 }
1517 if (!found) {
1518 *start = state->start;
1519 *cached_state = state;
1520 refcount_inc(&state->refs);
1521 }
1522 found++;
1523 *end = state->end;
1524 cur_start = state->end + 1;
1525 node = rb_next(node);
1526 total_bytes += state->end - state->start + 1;
1527 if (total_bytes >= max_bytes)
1528 break;
1529 if (!node)
1530 break;
1531 }
1532out:
1533 spin_unlock(&tree->lock);
1534 return found;
1535}
1536
1537static int __process_pages_contig(struct address_space *mapping,
1538 struct page *locked_page,
1539 pgoff_t start_index, pgoff_t end_index,
1540 unsigned long page_ops, pgoff_t *index_ret);
1541
1542static noinline void __unlock_for_delalloc(struct inode *inode,
1543 struct page *locked_page,
1544 u64 start, u64 end)
1545{
1546 unsigned long index = start >> PAGE_SHIFT;
1547 unsigned long end_index = end >> PAGE_SHIFT;
1548
1549 ASSERT(locked_page);
1550 if (index == locked_page->index && end_index == index)
1551 return;
1552
1553 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1554 PAGE_UNLOCK, NULL);
1555}
1556
1557static noinline int lock_delalloc_pages(struct inode *inode,
1558 struct page *locked_page,
1559 u64 delalloc_start,
1560 u64 delalloc_end)
1561{
1562 unsigned long index = delalloc_start >> PAGE_SHIFT;
1563 unsigned long index_ret = index;
1564 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1565 int ret;
1566
1567 ASSERT(locked_page);
1568 if (index == locked_page->index && index == end_index)
1569 return 0;
1570
1571 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1572 end_index, PAGE_LOCK, &index_ret);
1573 if (ret == -EAGAIN)
1574 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1575 (u64)index_ret << PAGE_SHIFT);
1576 return ret;
1577}
1578
1579/*
1580 * find a contiguous range of bytes in the file marked as delalloc, not
1581 * more than 'max_bytes'. start and end are used to return the range,
1582 *
1583 * 1 is returned if we find something, 0 if nothing was in the tree
1584 */
1585STATIC u64 find_lock_delalloc_range(struct inode *inode,
1586 struct extent_io_tree *tree,
1587 struct page *locked_page, u64 *start,
1588 u64 *end, u64 max_bytes)
1589{
1590 u64 delalloc_start;
1591 u64 delalloc_end;
1592 u64 found;
1593 struct extent_state *cached_state = NULL;
1594 int ret;
1595 int loops = 0;
1596
1597again:
1598 /* step one, find a bunch of delalloc bytes starting at start */
1599 delalloc_start = *start;
1600 delalloc_end = 0;
1601 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1602 max_bytes, &cached_state);
1603 if (!found || delalloc_end <= *start) {
1604 *start = delalloc_start;
1605 *end = delalloc_end;
1606 free_extent_state(cached_state);
1607 return 0;
1608 }
1609
1610 /*
1611 * start comes from the offset of locked_page. We have to lock
1612 * pages in order, so we can't process delalloc bytes before
1613 * locked_page
1614 */
1615 if (delalloc_start < *start)
1616 delalloc_start = *start;
1617
1618 /*
1619 * make sure to limit the number of pages we try to lock down
1620 */
1621 if (delalloc_end + 1 - delalloc_start > max_bytes)
1622 delalloc_end = delalloc_start + max_bytes - 1;
1623
1624 /* step two, lock all the pages after the page that has start */
1625 ret = lock_delalloc_pages(inode, locked_page,
1626 delalloc_start, delalloc_end);
1627 if (ret == -EAGAIN) {
1628 /* some of the pages are gone, lets avoid looping by
1629 * shortening the size of the delalloc range we're searching
1630 */
1631 free_extent_state(cached_state);
1632 cached_state = NULL;
1633 if (!loops) {
1634 max_bytes = PAGE_SIZE;
1635 loops = 1;
1636 goto again;
1637 } else {
1638 found = 0;
1639 goto out_failed;
1640 }
1641 }
1642 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1643
1644 /* step three, lock the state bits for the whole range */
1645 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1646
1647 /* then test to make sure it is all still delalloc */
1648 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1649 EXTENT_DELALLOC, 1, cached_state);
1650 if (!ret) {
1651 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1652 &cached_state, GFP_NOFS);
1653 __unlock_for_delalloc(inode, locked_page,
1654 delalloc_start, delalloc_end);
1655 cond_resched();
1656 goto again;
1657 }
1658 free_extent_state(cached_state);
1659 *start = delalloc_start;
1660 *end = delalloc_end;
1661out_failed:
1662 return found;
1663}
1664
1665static int __process_pages_contig(struct address_space *mapping,
1666 struct page *locked_page,
1667 pgoff_t start_index, pgoff_t end_index,
1668 unsigned long page_ops, pgoff_t *index_ret)
1669{
1670 unsigned long nr_pages = end_index - start_index + 1;
1671 unsigned long pages_locked = 0;
1672 pgoff_t index = start_index;
1673 struct page *pages[16];
1674 unsigned ret;
1675 int err = 0;
1676 int i;
1677
1678 if (page_ops & PAGE_LOCK) {
1679 ASSERT(page_ops == PAGE_LOCK);
1680 ASSERT(index_ret && *index_ret == start_index);
1681 }
1682
1683 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1684 mapping_set_error(mapping, -EIO);
1685
1686 while (nr_pages > 0) {
1687 ret = find_get_pages_contig(mapping, index,
1688 min_t(unsigned long,
1689 nr_pages, ARRAY_SIZE(pages)), pages);
1690 if (ret == 0) {
1691 /*
1692 * Only if we're going to lock these pages,
1693 * can we find nothing at @index.
1694 */
1695 ASSERT(page_ops & PAGE_LOCK);
1696 err = -EAGAIN;
1697 goto out;
1698 }
1699
1700 for (i = 0; i < ret; i++) {
1701 if (page_ops & PAGE_SET_PRIVATE2)
1702 SetPagePrivate2(pages[i]);
1703
1704 if (pages[i] == locked_page) {
1705 put_page(pages[i]);
1706 pages_locked++;
1707 continue;
1708 }
1709 if (page_ops & PAGE_CLEAR_DIRTY)
1710 clear_page_dirty_for_io(pages[i]);
1711 if (page_ops & PAGE_SET_WRITEBACK)
1712 set_page_writeback(pages[i]);
1713 if (page_ops & PAGE_SET_ERROR)
1714 SetPageError(pages[i]);
1715 if (page_ops & PAGE_END_WRITEBACK)
1716 end_page_writeback(pages[i]);
1717 if (page_ops & PAGE_UNLOCK)
1718 unlock_page(pages[i]);
1719 if (page_ops & PAGE_LOCK) {
1720 lock_page(pages[i]);
1721 if (!PageDirty(pages[i]) ||
1722 pages[i]->mapping != mapping) {
1723 unlock_page(pages[i]);
1724 for (; i < ret; i++)
1725 put_page(pages[i]);
1726 err = -EAGAIN;
1727 goto out;
1728 }
1729 }
1730 put_page(pages[i]);
1731 pages_locked++;
1732 }
1733 nr_pages -= ret;
1734 index += ret;
1735 cond_resched();
1736 }
1737out:
1738 if (err && index_ret)
1739 *index_ret = start_index + pages_locked - 1;
1740 return err;
1741}
1742
1743void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1744 u64 delalloc_end, struct page *locked_page,
1745 unsigned clear_bits,
1746 unsigned long page_ops)
1747{
1748 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1749 NULL, GFP_NOFS);
1750
1751 __process_pages_contig(inode->i_mapping, locked_page,
1752 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1753 page_ops, NULL);
1754}
1755
1756/*
1757 * count the number of bytes in the tree that have a given bit(s)
1758 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1759 * cached. The total number found is returned.
1760 */
1761u64 count_range_bits(struct extent_io_tree *tree,
1762 u64 *start, u64 search_end, u64 max_bytes,
1763 unsigned bits, int contig)
1764{
1765 struct rb_node *node;
1766 struct extent_state *state;
1767 u64 cur_start = *start;
1768 u64 total_bytes = 0;
1769 u64 last = 0;
1770 int found = 0;
1771
1772 if (WARN_ON(search_end <= cur_start))
1773 return 0;
1774
1775 spin_lock(&tree->lock);
1776 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1777 total_bytes = tree->dirty_bytes;
1778 goto out;
1779 }
1780 /*
1781 * this search will find all the extents that end after
1782 * our range starts.
1783 */
1784 node = tree_search(tree, cur_start);
1785 if (!node)
1786 goto out;
1787
1788 while (1) {
1789 state = rb_entry(node, struct extent_state, rb_node);
1790 if (state->start > search_end)
1791 break;
1792 if (contig && found && state->start > last + 1)
1793 break;
1794 if (state->end >= cur_start && (state->state & bits) == bits) {
1795 total_bytes += min(search_end, state->end) + 1 -
1796 max(cur_start, state->start);
1797 if (total_bytes >= max_bytes)
1798 break;
1799 if (!found) {
1800 *start = max(cur_start, state->start);
1801 found = 1;
1802 }
1803 last = state->end;
1804 } else if (contig && found) {
1805 break;
1806 }
1807 node = rb_next(node);
1808 if (!node)
1809 break;
1810 }
1811out:
1812 spin_unlock(&tree->lock);
1813 return total_bytes;
1814}
1815
1816/*
1817 * set the private field for a given byte offset in the tree. If there isn't
1818 * an extent_state there already, this does nothing.
1819 */
1820static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1821 struct io_failure_record *failrec)
1822{
1823 struct rb_node *node;
1824 struct extent_state *state;
1825 int ret = 0;
1826
1827 spin_lock(&tree->lock);
1828 /*
1829 * this search will find all the extents that end after
1830 * our range starts.
1831 */
1832 node = tree_search(tree, start);
1833 if (!node) {
1834 ret = -ENOENT;
1835 goto out;
1836 }
1837 state = rb_entry(node, struct extent_state, rb_node);
1838 if (state->start != start) {
1839 ret = -ENOENT;
1840 goto out;
1841 }
1842 state->failrec = failrec;
1843out:
1844 spin_unlock(&tree->lock);
1845 return ret;
1846}
1847
1848static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1849 struct io_failure_record **failrec)
1850{
1851 struct rb_node *node;
1852 struct extent_state *state;
1853 int ret = 0;
1854
1855 spin_lock(&tree->lock);
1856 /*
1857 * this search will find all the extents that end after
1858 * our range starts.
1859 */
1860 node = tree_search(tree, start);
1861 if (!node) {
1862 ret = -ENOENT;
1863 goto out;
1864 }
1865 state = rb_entry(node, struct extent_state, rb_node);
1866 if (state->start != start) {
1867 ret = -ENOENT;
1868 goto out;
1869 }
1870 *failrec = state->failrec;
1871out:
1872 spin_unlock(&tree->lock);
1873 return ret;
1874}
1875
1876/*
1877 * searches a range in the state tree for a given mask.
1878 * If 'filled' == 1, this returns 1 only if every extent in the tree
1879 * has the bits set. Otherwise, 1 is returned if any bit in the
1880 * range is found set.
1881 */
1882int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1883 unsigned bits, int filled, struct extent_state *cached)
1884{
1885 struct extent_state *state = NULL;
1886 struct rb_node *node;
1887 int bitset = 0;
1888
1889 spin_lock(&tree->lock);
1890 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1891 cached->end > start)
1892 node = &cached->rb_node;
1893 else
1894 node = tree_search(tree, start);
1895 while (node && start <= end) {
1896 state = rb_entry(node, struct extent_state, rb_node);
1897
1898 if (filled && state->start > start) {
1899 bitset = 0;
1900 break;
1901 }
1902
1903 if (state->start > end)
1904 break;
1905
1906 if (state->state & bits) {
1907 bitset = 1;
1908 if (!filled)
1909 break;
1910 } else if (filled) {
1911 bitset = 0;
1912 break;
1913 }
1914
1915 if (state->end == (u64)-1)
1916 break;
1917
1918 start = state->end + 1;
1919 if (start > end)
1920 break;
1921 node = rb_next(node);
1922 if (!node) {
1923 if (filled)
1924 bitset = 0;
1925 break;
1926 }
1927 }
1928 spin_unlock(&tree->lock);
1929 return bitset;
1930}
1931
1932/*
1933 * helper function to set a given page up to date if all the
1934 * extents in the tree for that page are up to date
1935 */
1936static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1937{
1938 u64 start = page_offset(page);
1939 u64 end = start + PAGE_SIZE - 1;
1940 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1941 SetPageUptodate(page);
1942}
1943
1944int free_io_failure(struct extent_io_tree *failure_tree,
1945 struct extent_io_tree *io_tree,
1946 struct io_failure_record *rec)
1947{
1948 int ret;
1949 int err = 0;
1950
1951 set_state_failrec(failure_tree, rec->start, NULL);
1952 ret = clear_extent_bits(failure_tree, rec->start,
1953 rec->start + rec->len - 1,
1954 EXTENT_LOCKED | EXTENT_DIRTY);
1955 if (ret)
1956 err = ret;
1957
1958 ret = clear_extent_bits(io_tree, rec->start,
1959 rec->start + rec->len - 1,
1960 EXTENT_DAMAGED);
1961 if (ret && !err)
1962 err = ret;
1963
1964 kfree(rec);
1965 return err;
1966}
1967
1968/*
1969 * this bypasses the standard btrfs submit functions deliberately, as
1970 * the standard behavior is to write all copies in a raid setup. here we only
1971 * want to write the one bad copy. so we do the mapping for ourselves and issue
1972 * submit_bio directly.
1973 * to avoid any synchronization issues, wait for the data after writing, which
1974 * actually prevents the read that triggered the error from finishing.
1975 * currently, there can be no more than two copies of every data bit. thus,
1976 * exactly one rewrite is required.
1977 */
1978int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1979 u64 length, u64 logical, struct page *page,
1980 unsigned int pg_offset, int mirror_num)
1981{
1982 struct bio *bio;
1983 struct btrfs_device *dev;
1984 u64 map_length = 0;
1985 u64 sector;
1986 struct btrfs_bio *bbio = NULL;
1987 int ret;
1988
1989 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1990 BUG_ON(!mirror_num);
1991
1992 bio = btrfs_io_bio_alloc(1);
1993 bio->bi_iter.bi_size = 0;
1994 map_length = length;
1995
1996 /*
1997 * Avoid races with device replace and make sure our bbio has devices
1998 * associated to its stripes that don't go away while we are doing the
1999 * read repair operation.
2000 */
2001 btrfs_bio_counter_inc_blocked(fs_info);
2002 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2003 /*
2004 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2005 * to update all raid stripes, but here we just want to correct
2006 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2007 * stripe's dev and sector.
2008 */
2009 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2010 &map_length, &bbio, 0);
2011 if (ret) {
2012 btrfs_bio_counter_dec(fs_info);
2013 bio_put(bio);
2014 return -EIO;
2015 }
2016 ASSERT(bbio->mirror_num == 1);
2017 } else {
2018 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2019 &map_length, &bbio, mirror_num);
2020 if (ret) {
2021 btrfs_bio_counter_dec(fs_info);
2022 bio_put(bio);
2023 return -EIO;
2024 }
2025 BUG_ON(mirror_num != bbio->mirror_num);
2026 }
2027
2028 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2029 bio->bi_iter.bi_sector = sector;
2030 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2031 btrfs_put_bbio(bbio);
2032 if (!dev || !dev->bdev || !dev->writeable) {
2033 btrfs_bio_counter_dec(fs_info);
2034 bio_put(bio);
2035 return -EIO;
2036 }
2037 bio_set_dev(bio, dev->bdev);
2038 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2039 bio_add_page(bio, page, length, pg_offset);
2040
2041 if (btrfsic_submit_bio_wait(bio)) {
2042 /* try to remap that extent elsewhere? */
2043 btrfs_bio_counter_dec(fs_info);
2044 bio_put(bio);
2045 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2046 return -EIO;
2047 }
2048
2049 btrfs_info_rl_in_rcu(fs_info,
2050 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2051 ino, start,
2052 rcu_str_deref(dev->name), sector);
2053 btrfs_bio_counter_dec(fs_info);
2054 bio_put(bio);
2055 return 0;
2056}
2057
2058int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2059 struct extent_buffer *eb, int mirror_num)
2060{
2061 u64 start = eb->start;
2062 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2063 int ret = 0;
2064
2065 if (sb_rdonly(fs_info->sb))
2066 return -EROFS;
2067
2068 for (i = 0; i < num_pages; i++) {
2069 struct page *p = eb->pages[i];
2070
2071 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2072 start - page_offset(p), mirror_num);
2073 if (ret)
2074 break;
2075 start += PAGE_SIZE;
2076 }
2077
2078 return ret;
2079}
2080
2081/*
2082 * each time an IO finishes, we do a fast check in the IO failure tree
2083 * to see if we need to process or clean up an io_failure_record
2084 */
2085int clean_io_failure(struct btrfs_fs_info *fs_info,
2086 struct extent_io_tree *failure_tree,
2087 struct extent_io_tree *io_tree, u64 start,
2088 struct page *page, u64 ino, unsigned int pg_offset)
2089{
2090 u64 private;
2091 struct io_failure_record *failrec;
2092 struct extent_state *state;
2093 int num_copies;
2094 int ret;
2095
2096 private = 0;
2097 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2098 EXTENT_DIRTY, 0);
2099 if (!ret)
2100 return 0;
2101
2102 ret = get_state_failrec(failure_tree, start, &failrec);
2103 if (ret)
2104 return 0;
2105
2106 BUG_ON(!failrec->this_mirror);
2107
2108 if (failrec->in_validation) {
2109 /* there was no real error, just free the record */
2110 btrfs_debug(fs_info,
2111 "clean_io_failure: freeing dummy error at %llu",
2112 failrec->start);
2113 goto out;
2114 }
2115 if (sb_rdonly(fs_info->sb))
2116 goto out;
2117
2118 spin_lock(&io_tree->lock);
2119 state = find_first_extent_bit_state(io_tree,
2120 failrec->start,
2121 EXTENT_LOCKED);
2122 spin_unlock(&io_tree->lock);
2123
2124 if (state && state->start <= failrec->start &&
2125 state->end >= failrec->start + failrec->len - 1) {
2126 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127 failrec->len);
2128 if (num_copies > 1) {
2129 repair_io_failure(fs_info, ino, start, failrec->len,
2130 failrec->logical, page, pg_offset,
2131 failrec->failed_mirror);
2132 }
2133 }
2134
2135out:
2136 free_io_failure(failure_tree, io_tree, failrec);
2137
2138 return 0;
2139}
2140
2141/*
2142 * Can be called when
2143 * - hold extent lock
2144 * - under ordered extent
2145 * - the inode is freeing
2146 */
2147void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2148{
2149 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2150 struct io_failure_record *failrec;
2151 struct extent_state *state, *next;
2152
2153 if (RB_EMPTY_ROOT(&failure_tree->state))
2154 return;
2155
2156 spin_lock(&failure_tree->lock);
2157 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2158 while (state) {
2159 if (state->start > end)
2160 break;
2161
2162 ASSERT(state->end <= end);
2163
2164 next = next_state(state);
2165
2166 failrec = state->failrec;
2167 free_extent_state(state);
2168 kfree(failrec);
2169
2170 state = next;
2171 }
2172 spin_unlock(&failure_tree->lock);
2173}
2174
2175int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2176 struct io_failure_record **failrec_ret)
2177{
2178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2179 struct io_failure_record *failrec;
2180 struct extent_map *em;
2181 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2184 int ret;
2185 u64 logical;
2186
2187 ret = get_state_failrec(failure_tree, start, &failrec);
2188 if (ret) {
2189 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2190 if (!failrec)
2191 return -ENOMEM;
2192
2193 failrec->start = start;
2194 failrec->len = end - start + 1;
2195 failrec->this_mirror = 0;
2196 failrec->bio_flags = 0;
2197 failrec->in_validation = 0;
2198
2199 read_lock(&em_tree->lock);
2200 em = lookup_extent_mapping(em_tree, start, failrec->len);
2201 if (!em) {
2202 read_unlock(&em_tree->lock);
2203 kfree(failrec);
2204 return -EIO;
2205 }
2206
2207 if (em->start > start || em->start + em->len <= start) {
2208 free_extent_map(em);
2209 em = NULL;
2210 }
2211 read_unlock(&em_tree->lock);
2212 if (!em) {
2213 kfree(failrec);
2214 return -EIO;
2215 }
2216
2217 logical = start - em->start;
2218 logical = em->block_start + logical;
2219 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2220 logical = em->block_start;
2221 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2222 extent_set_compress_type(&failrec->bio_flags,
2223 em->compress_type);
2224 }
2225
2226 btrfs_debug(fs_info,
2227 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2228 logical, start, failrec->len);
2229
2230 failrec->logical = logical;
2231 free_extent_map(em);
2232
2233 /* set the bits in the private failure tree */
2234 ret = set_extent_bits(failure_tree, start, end,
2235 EXTENT_LOCKED | EXTENT_DIRTY);
2236 if (ret >= 0)
2237 ret = set_state_failrec(failure_tree, start, failrec);
2238 /* set the bits in the inode's tree */
2239 if (ret >= 0)
2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2241 if (ret < 0) {
2242 kfree(failrec);
2243 return ret;
2244 }
2245 } else {
2246 btrfs_debug(fs_info,
2247 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2248 failrec->logical, failrec->start, failrec->len,
2249 failrec->in_validation);
2250 /*
2251 * when data can be on disk more than twice, add to failrec here
2252 * (e.g. with a list for failed_mirror) to make
2253 * clean_io_failure() clean all those errors at once.
2254 */
2255 }
2256
2257 *failrec_ret = failrec;
2258
2259 return 0;
2260}
2261
2262bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263 struct io_failure_record *failrec, int failed_mirror)
2264{
2265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2266 int num_copies;
2267
2268 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2269 if (num_copies == 1) {
2270 /*
2271 * we only have a single copy of the data, so don't bother with
2272 * all the retry and error correction code that follows. no
2273 * matter what the error is, it is very likely to persist.
2274 */
2275 btrfs_debug(fs_info,
2276 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2277 num_copies, failrec->this_mirror, failed_mirror);
2278 return false;
2279 }
2280
2281 /*
2282 * there are two premises:
2283 * a) deliver good data to the caller
2284 * b) correct the bad sectors on disk
2285 */
2286 if (failed_bio->bi_vcnt > 1) {
2287 /*
2288 * to fulfill b), we need to know the exact failing sectors, as
2289 * we don't want to rewrite any more than the failed ones. thus,
2290 * we need separate read requests for the failed bio
2291 *
2292 * if the following BUG_ON triggers, our validation request got
2293 * merged. we need separate requests for our algorithm to work.
2294 */
2295 BUG_ON(failrec->in_validation);
2296 failrec->in_validation = 1;
2297 failrec->this_mirror = failed_mirror;
2298 } else {
2299 /*
2300 * we're ready to fulfill a) and b) alongside. get a good copy
2301 * of the failed sector and if we succeed, we have setup
2302 * everything for repair_io_failure to do the rest for us.
2303 */
2304 if (failrec->in_validation) {
2305 BUG_ON(failrec->this_mirror != failed_mirror);
2306 failrec->in_validation = 0;
2307 failrec->this_mirror = 0;
2308 }
2309 failrec->failed_mirror = failed_mirror;
2310 failrec->this_mirror++;
2311 if (failrec->this_mirror == failed_mirror)
2312 failrec->this_mirror++;
2313 }
2314
2315 if (failrec->this_mirror > num_copies) {
2316 btrfs_debug(fs_info,
2317 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2318 num_copies, failrec->this_mirror, failed_mirror);
2319 return false;
2320 }
2321
2322 return true;
2323}
2324
2325
2326struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2327 struct io_failure_record *failrec,
2328 struct page *page, int pg_offset, int icsum,
2329 bio_end_io_t *endio_func, void *data)
2330{
2331 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2332 struct bio *bio;
2333 struct btrfs_io_bio *btrfs_failed_bio;
2334 struct btrfs_io_bio *btrfs_bio;
2335
2336 bio = btrfs_io_bio_alloc(1);
2337 bio->bi_end_io = endio_func;
2338 bio->bi_iter.bi_sector = failrec->logical >> 9;
2339 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2340 bio->bi_iter.bi_size = 0;
2341 bio->bi_private = data;
2342
2343 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344 if (btrfs_failed_bio->csum) {
2345 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2346
2347 btrfs_bio = btrfs_io_bio(bio);
2348 btrfs_bio->csum = btrfs_bio->csum_inline;
2349 icsum *= csum_size;
2350 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2351 csum_size);
2352 }
2353
2354 bio_add_page(bio, page, failrec->len, pg_offset);
2355
2356 return bio;
2357}
2358
2359/*
2360 * this is a generic handler for readpage errors (default
2361 * readpage_io_failed_hook). if other copies exist, read those and write back
2362 * good data to the failed position. does not investigate in remapping the
2363 * failed extent elsewhere, hoping the device will be smart enough to do this as
2364 * needed
2365 */
2366
2367static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2368 struct page *page, u64 start, u64 end,
2369 int failed_mirror)
2370{
2371 struct io_failure_record *failrec;
2372 struct inode *inode = page->mapping->host;
2373 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2374 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2375 struct bio *bio;
2376 int read_mode = 0;
2377 blk_status_t status;
2378 int ret;
2379
2380 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2381
2382 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2383 if (ret)
2384 return ret;
2385
2386 if (!btrfs_check_repairable(inode, failed_bio, failrec,
2387 failed_mirror)) {
2388 free_io_failure(failure_tree, tree, failrec);
2389 return -EIO;
2390 }
2391
2392 if (failed_bio->bi_vcnt > 1)
2393 read_mode |= REQ_FAILFAST_DEV;
2394
2395 phy_offset >>= inode->i_sb->s_blocksize_bits;
2396 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2397 start - page_offset(page),
2398 (int)phy_offset, failed_bio->bi_end_io,
2399 NULL);
2400 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2401
2402 btrfs_debug(btrfs_sb(inode->i_sb),
2403 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2404 read_mode, failrec->this_mirror, failrec->in_validation);
2405
2406 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2407 failrec->bio_flags, 0);
2408 if (status) {
2409 free_io_failure(failure_tree, tree, failrec);
2410 bio_put(bio);
2411 ret = blk_status_to_errno(status);
2412 }
2413
2414 return ret;
2415}
2416
2417/* lots and lots of room for performance fixes in the end_bio funcs */
2418
2419void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2420{
2421 int uptodate = (err == 0);
2422 struct extent_io_tree *tree;
2423 int ret = 0;
2424
2425 tree = &BTRFS_I(page->mapping->host)->io_tree;
2426
2427 if (tree->ops && tree->ops->writepage_end_io_hook)
2428 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2429 uptodate);
2430
2431 if (!uptodate) {
2432 ClearPageUptodate(page);
2433 SetPageError(page);
2434 ret = err < 0 ? err : -EIO;
2435 mapping_set_error(page->mapping, ret);
2436 }
2437}
2438
2439/*
2440 * after a writepage IO is done, we need to:
2441 * clear the uptodate bits on error
2442 * clear the writeback bits in the extent tree for this IO
2443 * end_page_writeback if the page has no more pending IO
2444 *
2445 * Scheduling is not allowed, so the extent state tree is expected
2446 * to have one and only one object corresponding to this IO.
2447 */
2448static void end_bio_extent_writepage(struct bio *bio)
2449{
2450 int error = blk_status_to_errno(bio->bi_status);
2451 struct bio_vec *bvec;
2452 u64 start;
2453 u64 end;
2454 int i;
2455
2456 ASSERT(!bio_flagged(bio, BIO_CLONED));
2457 bio_for_each_segment_all(bvec, bio, i) {
2458 struct page *page = bvec->bv_page;
2459 struct inode *inode = page->mapping->host;
2460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2461
2462 /* We always issue full-page reads, but if some block
2463 * in a page fails to read, blk_update_request() will
2464 * advance bv_offset and adjust bv_len to compensate.
2465 * Print a warning for nonzero offsets, and an error
2466 * if they don't add up to a full page. */
2467 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2468 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2469 btrfs_err(fs_info,
2470 "partial page write in btrfs with offset %u and length %u",
2471 bvec->bv_offset, bvec->bv_len);
2472 else
2473 btrfs_info(fs_info,
2474 "incomplete page write in btrfs with offset %u and length %u",
2475 bvec->bv_offset, bvec->bv_len);
2476 }
2477
2478 start = page_offset(page);
2479 end = start + bvec->bv_offset + bvec->bv_len - 1;
2480
2481 end_extent_writepage(page, error, start, end);
2482 end_page_writeback(page);
2483 }
2484
2485 bio_put(bio);
2486}
2487
2488static void
2489endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2490 int uptodate)
2491{
2492 struct extent_state *cached = NULL;
2493 u64 end = start + len - 1;
2494
2495 if (uptodate && tree->track_uptodate)
2496 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2497 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2498}
2499
2500/*
2501 * after a readpage IO is done, we need to:
2502 * clear the uptodate bits on error
2503 * set the uptodate bits if things worked
2504 * set the page up to date if all extents in the tree are uptodate
2505 * clear the lock bit in the extent tree
2506 * unlock the page if there are no other extents locked for it
2507 *
2508 * Scheduling is not allowed, so the extent state tree is expected
2509 * to have one and only one object corresponding to this IO.
2510 */
2511static void end_bio_extent_readpage(struct bio *bio)
2512{
2513 struct bio_vec *bvec;
2514 int uptodate = !bio->bi_status;
2515 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2516 struct extent_io_tree *tree, *failure_tree;
2517 u64 offset = 0;
2518 u64 start;
2519 u64 end;
2520 u64 len;
2521 u64 extent_start = 0;
2522 u64 extent_len = 0;
2523 int mirror;
2524 int ret;
2525 int i;
2526
2527 ASSERT(!bio_flagged(bio, BIO_CLONED));
2528 bio_for_each_segment_all(bvec, bio, i) {
2529 struct page *page = bvec->bv_page;
2530 struct inode *inode = page->mapping->host;
2531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2532
2533 btrfs_debug(fs_info,
2534 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2535 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2536 io_bio->mirror_num);
2537 tree = &BTRFS_I(inode)->io_tree;
2538 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2539
2540 /* We always issue full-page reads, but if some block
2541 * in a page fails to read, blk_update_request() will
2542 * advance bv_offset and adjust bv_len to compensate.
2543 * Print a warning for nonzero offsets, and an error
2544 * if they don't add up to a full page. */
2545 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2546 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2547 btrfs_err(fs_info,
2548 "partial page read in btrfs with offset %u and length %u",
2549 bvec->bv_offset, bvec->bv_len);
2550 else
2551 btrfs_info(fs_info,
2552 "incomplete page read in btrfs with offset %u and length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 }
2555
2556 start = page_offset(page);
2557 end = start + bvec->bv_offset + bvec->bv_len - 1;
2558 len = bvec->bv_len;
2559
2560 mirror = io_bio->mirror_num;
2561 if (likely(uptodate && tree->ops)) {
2562 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2563 page, start, end,
2564 mirror);
2565 if (ret)
2566 uptodate = 0;
2567 else
2568 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2569 failure_tree, tree, start,
2570 page,
2571 btrfs_ino(BTRFS_I(inode)), 0);
2572 }
2573
2574 if (likely(uptodate))
2575 goto readpage_ok;
2576
2577 if (tree->ops) {
2578 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2579 if (ret == -EAGAIN) {
2580 /*
2581 * Data inode's readpage_io_failed_hook() always
2582 * returns -EAGAIN.
2583 *
2584 * The generic bio_readpage_error handles errors
2585 * the following way: If possible, new read
2586 * requests are created and submitted and will
2587 * end up in end_bio_extent_readpage as well (if
2588 * we're lucky, not in the !uptodate case). In
2589 * that case it returns 0 and we just go on with
2590 * the next page in our bio. If it can't handle
2591 * the error it will return -EIO and we remain
2592 * responsible for that page.
2593 */
2594 ret = bio_readpage_error(bio, offset, page,
2595 start, end, mirror);
2596 if (ret == 0) {
2597 uptodate = !bio->bi_status;
2598 offset += len;
2599 continue;
2600 }
2601 }
2602
2603 /*
2604 * metadata's readpage_io_failed_hook() always returns
2605 * -EIO and fixes nothing. -EIO is also returned if
2606 * data inode error could not be fixed.
2607 */
2608 ASSERT(ret == -EIO);
2609 }
2610readpage_ok:
2611 if (likely(uptodate)) {
2612 loff_t i_size = i_size_read(inode);
2613 pgoff_t end_index = i_size >> PAGE_SHIFT;
2614 unsigned off;
2615
2616 /* Zero out the end if this page straddles i_size */
2617 off = i_size & (PAGE_SIZE-1);
2618 if (page->index == end_index && off)
2619 zero_user_segment(page, off, PAGE_SIZE);
2620 SetPageUptodate(page);
2621 } else {
2622 ClearPageUptodate(page);
2623 SetPageError(page);
2624 }
2625 unlock_page(page);
2626 offset += len;
2627
2628 if (unlikely(!uptodate)) {
2629 if (extent_len) {
2630 endio_readpage_release_extent(tree,
2631 extent_start,
2632 extent_len, 1);
2633 extent_start = 0;
2634 extent_len = 0;
2635 }
2636 endio_readpage_release_extent(tree, start,
2637 end - start + 1, 0);
2638 } else if (!extent_len) {
2639 extent_start = start;
2640 extent_len = end + 1 - start;
2641 } else if (extent_start + extent_len == start) {
2642 extent_len += end + 1 - start;
2643 } else {
2644 endio_readpage_release_extent(tree, extent_start,
2645 extent_len, uptodate);
2646 extent_start = start;
2647 extent_len = end + 1 - start;
2648 }
2649 }
2650
2651 if (extent_len)
2652 endio_readpage_release_extent(tree, extent_start, extent_len,
2653 uptodate);
2654 if (io_bio->end_io)
2655 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2656 bio_put(bio);
2657}
2658
2659/*
2660 * Initialize the members up to but not including 'bio'. Use after allocating a
2661 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2662 * 'bio' because use of __GFP_ZERO is not supported.
2663 */
2664static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2665{
2666 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2667}
2668
2669/*
2670 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2671 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2672 * for the appropriate container_of magic
2673 */
2674struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2675{
2676 struct bio *bio;
2677
2678 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2679 bio_set_dev(bio, bdev);
2680 bio->bi_iter.bi_sector = first_byte >> 9;
2681 btrfs_io_bio_init(btrfs_io_bio(bio));
2682 return bio;
2683}
2684
2685struct bio *btrfs_bio_clone(struct bio *bio)
2686{
2687 struct btrfs_io_bio *btrfs_bio;
2688 struct bio *new;
2689
2690 /* Bio allocation backed by a bioset does not fail */
2691 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2692 btrfs_bio = btrfs_io_bio(new);
2693 btrfs_io_bio_init(btrfs_bio);
2694 btrfs_bio->iter = bio->bi_iter;
2695 return new;
2696}
2697
2698struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2699{
2700 struct bio *bio;
2701
2702 /* Bio allocation backed by a bioset does not fail */
2703 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2704 btrfs_io_bio_init(btrfs_io_bio(bio));
2705 return bio;
2706}
2707
2708struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2709{
2710 struct bio *bio;
2711 struct btrfs_io_bio *btrfs_bio;
2712
2713 /* this will never fail when it's backed by a bioset */
2714 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2715 ASSERT(bio);
2716
2717 btrfs_bio = btrfs_io_bio(bio);
2718 btrfs_io_bio_init(btrfs_bio);
2719
2720 bio_trim(bio, offset >> 9, size >> 9);
2721 btrfs_bio->iter = bio->bi_iter;
2722 return bio;
2723}
2724
2725static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2726 unsigned long bio_flags)
2727{
2728 blk_status_t ret = 0;
2729 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2730 struct page *page = bvec->bv_page;
2731 struct extent_io_tree *tree = bio->bi_private;
2732 u64 start;
2733
2734 start = page_offset(page) + bvec->bv_offset;
2735
2736 bio->bi_private = NULL;
2737 bio_get(bio);
2738
2739 if (tree->ops)
2740 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2741 mirror_num, bio_flags, start);
2742 else
2743 btrfsic_submit_bio(bio);
2744
2745 bio_put(bio);
2746 return blk_status_to_errno(ret);
2747}
2748
2749static int merge_bio(struct extent_io_tree *tree, struct page *page,
2750 unsigned long offset, size_t size, struct bio *bio,
2751 unsigned long bio_flags)
2752{
2753 int ret = 0;
2754 if (tree->ops)
2755 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2756 bio_flags);
2757 return ret;
2758
2759}
2760
2761/*
2762 * @opf: bio REQ_OP_* and REQ_* flags as one value
2763 */
2764static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2765 struct writeback_control *wbc,
2766 struct page *page, sector_t sector,
2767 size_t size, unsigned long offset,
2768 struct block_device *bdev,
2769 struct bio **bio_ret,
2770 bio_end_io_t end_io_func,
2771 int mirror_num,
2772 unsigned long prev_bio_flags,
2773 unsigned long bio_flags,
2774 bool force_bio_submit)
2775{
2776 int ret = 0;
2777 struct bio *bio;
2778 int contig = 0;
2779 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2780 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2781
2782 if (bio_ret && *bio_ret) {
2783 bio = *bio_ret;
2784 if (old_compressed)
2785 contig = bio->bi_iter.bi_sector == sector;
2786 else
2787 contig = bio_end_sector(bio) == sector;
2788
2789 if (prev_bio_flags != bio_flags || !contig ||
2790 force_bio_submit ||
2791 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2792 bio_add_page(bio, page, page_size, offset) < page_size) {
2793 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2794 if (ret < 0) {
2795 *bio_ret = NULL;
2796 return ret;
2797 }
2798 bio = NULL;
2799 } else {
2800 if (wbc)
2801 wbc_account_io(wbc, page, page_size);
2802 return 0;
2803 }
2804 }
2805
2806 bio = btrfs_bio_alloc(bdev, (u64)sector << 9);
2807 bio_add_page(bio, page, page_size, offset);
2808 bio->bi_end_io = end_io_func;
2809 bio->bi_private = tree;
2810 bio->bi_write_hint = page->mapping->host->i_write_hint;
2811 bio->bi_opf = opf;
2812 if (wbc) {
2813 wbc_init_bio(wbc, bio);
2814 wbc_account_io(wbc, page, page_size);
2815 }
2816
2817 if (bio_ret)
2818 *bio_ret = bio;
2819 else
2820 ret = submit_one_bio(bio, mirror_num, bio_flags);
2821
2822 return ret;
2823}
2824
2825static void attach_extent_buffer_page(struct extent_buffer *eb,
2826 struct page *page)
2827{
2828 if (!PagePrivate(page)) {
2829 SetPagePrivate(page);
2830 get_page(page);
2831 set_page_private(page, (unsigned long)eb);
2832 } else {
2833 WARN_ON(page->private != (unsigned long)eb);
2834 }
2835}
2836
2837void set_page_extent_mapped(struct page *page)
2838{
2839 if (!PagePrivate(page)) {
2840 SetPagePrivate(page);
2841 get_page(page);
2842 set_page_private(page, EXTENT_PAGE_PRIVATE);
2843 }
2844}
2845
2846static struct extent_map *
2847__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2848 u64 start, u64 len, get_extent_t *get_extent,
2849 struct extent_map **em_cached)
2850{
2851 struct extent_map *em;
2852
2853 if (em_cached && *em_cached) {
2854 em = *em_cached;
2855 if (extent_map_in_tree(em) && start >= em->start &&
2856 start < extent_map_end(em)) {
2857 refcount_inc(&em->refs);
2858 return em;
2859 }
2860
2861 free_extent_map(em);
2862 *em_cached = NULL;
2863 }
2864
2865 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2866 if (em_cached && !IS_ERR_OR_NULL(em)) {
2867 BUG_ON(*em_cached);
2868 refcount_inc(&em->refs);
2869 *em_cached = em;
2870 }
2871 return em;
2872}
2873/*
2874 * basic readpage implementation. Locked extent state structs are inserted
2875 * into the tree that are removed when the IO is done (by the end_io
2876 * handlers)
2877 * XXX JDM: This needs looking at to ensure proper page locking
2878 * return 0 on success, otherwise return error
2879 */
2880static int __do_readpage(struct extent_io_tree *tree,
2881 struct page *page,
2882 get_extent_t *get_extent,
2883 struct extent_map **em_cached,
2884 struct bio **bio, int mirror_num,
2885 unsigned long *bio_flags, unsigned int read_flags,
2886 u64 *prev_em_start)
2887{
2888 struct inode *inode = page->mapping->host;
2889 u64 start = page_offset(page);
2890 u64 page_end = start + PAGE_SIZE - 1;
2891 u64 end;
2892 u64 cur = start;
2893 u64 extent_offset;
2894 u64 last_byte = i_size_read(inode);
2895 u64 block_start;
2896 u64 cur_end;
2897 sector_t sector;
2898 struct extent_map *em;
2899 struct block_device *bdev;
2900 int ret = 0;
2901 int nr = 0;
2902 size_t pg_offset = 0;
2903 size_t iosize;
2904 size_t disk_io_size;
2905 size_t blocksize = inode->i_sb->s_blocksize;
2906 unsigned long this_bio_flag = 0;
2907
2908 set_page_extent_mapped(page);
2909
2910 end = page_end;
2911 if (!PageUptodate(page)) {
2912 if (cleancache_get_page(page) == 0) {
2913 BUG_ON(blocksize != PAGE_SIZE);
2914 unlock_extent(tree, start, end);
2915 goto out;
2916 }
2917 }
2918
2919 if (page->index == last_byte >> PAGE_SHIFT) {
2920 char *userpage;
2921 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2922
2923 if (zero_offset) {
2924 iosize = PAGE_SIZE - zero_offset;
2925 userpage = kmap_atomic(page);
2926 memset(userpage + zero_offset, 0, iosize);
2927 flush_dcache_page(page);
2928 kunmap_atomic(userpage);
2929 }
2930 }
2931 while (cur <= end) {
2932 bool force_bio_submit = false;
2933
2934 if (cur >= last_byte) {
2935 char *userpage;
2936 struct extent_state *cached = NULL;
2937
2938 iosize = PAGE_SIZE - pg_offset;
2939 userpage = kmap_atomic(page);
2940 memset(userpage + pg_offset, 0, iosize);
2941 flush_dcache_page(page);
2942 kunmap_atomic(userpage);
2943 set_extent_uptodate(tree, cur, cur + iosize - 1,
2944 &cached, GFP_NOFS);
2945 unlock_extent_cached(tree, cur,
2946 cur + iosize - 1,
2947 &cached, GFP_NOFS);
2948 break;
2949 }
2950 em = __get_extent_map(inode, page, pg_offset, cur,
2951 end - cur + 1, get_extent, em_cached);
2952 if (IS_ERR_OR_NULL(em)) {
2953 SetPageError(page);
2954 unlock_extent(tree, cur, end);
2955 break;
2956 }
2957 extent_offset = cur - em->start;
2958 BUG_ON(extent_map_end(em) <= cur);
2959 BUG_ON(end < cur);
2960
2961 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2962 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2963 extent_set_compress_type(&this_bio_flag,
2964 em->compress_type);
2965 }
2966
2967 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2968 cur_end = min(extent_map_end(em) - 1, end);
2969 iosize = ALIGN(iosize, blocksize);
2970 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2971 disk_io_size = em->block_len;
2972 sector = em->block_start >> 9;
2973 } else {
2974 sector = (em->block_start + extent_offset) >> 9;
2975 disk_io_size = iosize;
2976 }
2977 bdev = em->bdev;
2978 block_start = em->block_start;
2979 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2980 block_start = EXTENT_MAP_HOLE;
2981
2982 /*
2983 * If we have a file range that points to a compressed extent
2984 * and it's followed by a consecutive file range that points to
2985 * to the same compressed extent (possibly with a different
2986 * offset and/or length, so it either points to the whole extent
2987 * or only part of it), we must make sure we do not submit a
2988 * single bio to populate the pages for the 2 ranges because
2989 * this makes the compressed extent read zero out the pages
2990 * belonging to the 2nd range. Imagine the following scenario:
2991 *
2992 * File layout
2993 * [0 - 8K] [8K - 24K]
2994 * | |
2995 * | |
2996 * points to extent X, points to extent X,
2997 * offset 4K, length of 8K offset 0, length 16K
2998 *
2999 * [extent X, compressed length = 4K uncompressed length = 16K]
3000 *
3001 * If the bio to read the compressed extent covers both ranges,
3002 * it will decompress extent X into the pages belonging to the
3003 * first range and then it will stop, zeroing out the remaining
3004 * pages that belong to the other range that points to extent X.
3005 * So here we make sure we submit 2 bios, one for the first
3006 * range and another one for the third range. Both will target
3007 * the same physical extent from disk, but we can't currently
3008 * make the compressed bio endio callback populate the pages
3009 * for both ranges because each compressed bio is tightly
3010 * coupled with a single extent map, and each range can have
3011 * an extent map with a different offset value relative to the
3012 * uncompressed data of our extent and different lengths. This
3013 * is a corner case so we prioritize correctness over
3014 * non-optimal behavior (submitting 2 bios for the same extent).
3015 */
3016 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3017 prev_em_start && *prev_em_start != (u64)-1 &&
3018 *prev_em_start != em->start)
3019 force_bio_submit = true;
3020
3021 if (prev_em_start)
3022 *prev_em_start = em->start;
3023
3024 free_extent_map(em);
3025 em = NULL;
3026
3027 /* we've found a hole, just zero and go on */
3028 if (block_start == EXTENT_MAP_HOLE) {
3029 char *userpage;
3030 struct extent_state *cached = NULL;
3031
3032 userpage = kmap_atomic(page);
3033 memset(userpage + pg_offset, 0, iosize);
3034 flush_dcache_page(page);
3035 kunmap_atomic(userpage);
3036
3037 set_extent_uptodate(tree, cur, cur + iosize - 1,
3038 &cached, GFP_NOFS);
3039 unlock_extent_cached(tree, cur,
3040 cur + iosize - 1,
3041 &cached, GFP_NOFS);
3042 cur = cur + iosize;
3043 pg_offset += iosize;
3044 continue;
3045 }
3046 /* the get_extent function already copied into the page */
3047 if (test_range_bit(tree, cur, cur_end,
3048 EXTENT_UPTODATE, 1, NULL)) {
3049 check_page_uptodate(tree, page);
3050 unlock_extent(tree, cur, cur + iosize - 1);
3051 cur = cur + iosize;
3052 pg_offset += iosize;
3053 continue;
3054 }
3055 /* we have an inline extent but it didn't get marked up
3056 * to date. Error out
3057 */
3058 if (block_start == EXTENT_MAP_INLINE) {
3059 SetPageError(page);
3060 unlock_extent(tree, cur, cur + iosize - 1);
3061 cur = cur + iosize;
3062 pg_offset += iosize;
3063 continue;
3064 }
3065
3066 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3067 page, sector, disk_io_size, pg_offset,
3068 bdev, bio,
3069 end_bio_extent_readpage, mirror_num,
3070 *bio_flags,
3071 this_bio_flag,
3072 force_bio_submit);
3073 if (!ret) {
3074 nr++;
3075 *bio_flags = this_bio_flag;
3076 } else {
3077 SetPageError(page);
3078 unlock_extent(tree, cur, cur + iosize - 1);
3079 goto out;
3080 }
3081 cur = cur + iosize;
3082 pg_offset += iosize;
3083 }
3084out:
3085 if (!nr) {
3086 if (!PageError(page))
3087 SetPageUptodate(page);
3088 unlock_page(page);
3089 }
3090 return ret;
3091}
3092
3093static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3094 struct page *pages[], int nr_pages,
3095 u64 start, u64 end,
3096 get_extent_t *get_extent,
3097 struct extent_map **em_cached,
3098 struct bio **bio, int mirror_num,
3099 unsigned long *bio_flags,
3100 u64 *prev_em_start)
3101{
3102 struct inode *inode;
3103 struct btrfs_ordered_extent *ordered;
3104 int index;
3105
3106 inode = pages[0]->mapping->host;
3107 while (1) {
3108 lock_extent(tree, start, end);
3109 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3110 end - start + 1);
3111 if (!ordered)
3112 break;
3113 unlock_extent(tree, start, end);
3114 btrfs_start_ordered_extent(inode, ordered, 1);
3115 btrfs_put_ordered_extent(ordered);
3116 }
3117
3118 for (index = 0; index < nr_pages; index++) {
3119 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3120 mirror_num, bio_flags, 0, prev_em_start);
3121 put_page(pages[index]);
3122 }
3123}
3124
3125static void __extent_readpages(struct extent_io_tree *tree,
3126 struct page *pages[],
3127 int nr_pages, get_extent_t *get_extent,
3128 struct extent_map **em_cached,
3129 struct bio **bio, int mirror_num,
3130 unsigned long *bio_flags,
3131 u64 *prev_em_start)
3132{
3133 u64 start = 0;
3134 u64 end = 0;
3135 u64 page_start;
3136 int index;
3137 int first_index = 0;
3138
3139 for (index = 0; index < nr_pages; index++) {
3140 page_start = page_offset(pages[index]);
3141 if (!end) {
3142 start = page_start;
3143 end = start + PAGE_SIZE - 1;
3144 first_index = index;
3145 } else if (end + 1 == page_start) {
3146 end += PAGE_SIZE;
3147 } else {
3148 __do_contiguous_readpages(tree, &pages[first_index],
3149 index - first_index, start,
3150 end, get_extent, em_cached,
3151 bio, mirror_num, bio_flags,
3152 prev_em_start);
3153 start = page_start;
3154 end = start + PAGE_SIZE - 1;
3155 first_index = index;
3156 }
3157 }
3158
3159 if (end)
3160 __do_contiguous_readpages(tree, &pages[first_index],
3161 index - first_index, start,
3162 end, get_extent, em_cached, bio,
3163 mirror_num, bio_flags,
3164 prev_em_start);
3165}
3166
3167static int __extent_read_full_page(struct extent_io_tree *tree,
3168 struct page *page,
3169 get_extent_t *get_extent,
3170 struct bio **bio, int mirror_num,
3171 unsigned long *bio_flags,
3172 unsigned int read_flags)
3173{
3174 struct inode *inode = page->mapping->host;
3175 struct btrfs_ordered_extent *ordered;
3176 u64 start = page_offset(page);
3177 u64 end = start + PAGE_SIZE - 1;
3178 int ret;
3179
3180 while (1) {
3181 lock_extent(tree, start, end);
3182 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3183 PAGE_SIZE);
3184 if (!ordered)
3185 break;
3186 unlock_extent(tree, start, end);
3187 btrfs_start_ordered_extent(inode, ordered, 1);
3188 btrfs_put_ordered_extent(ordered);
3189 }
3190
3191 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3192 bio_flags, read_flags, NULL);
3193 return ret;
3194}
3195
3196int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3197 get_extent_t *get_extent, int mirror_num)
3198{
3199 struct bio *bio = NULL;
3200 unsigned long bio_flags = 0;
3201 int ret;
3202
3203 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3204 &bio_flags, 0);
3205 if (bio)
3206 ret = submit_one_bio(bio, mirror_num, bio_flags);
3207 return ret;
3208}
3209
3210static void update_nr_written(struct writeback_control *wbc,
3211 unsigned long nr_written)
3212{
3213 wbc->nr_to_write -= nr_written;
3214}
3215
3216/*
3217 * helper for __extent_writepage, doing all of the delayed allocation setup.
3218 *
3219 * This returns 1 if our fill_delalloc function did all the work required
3220 * to write the page (copy into inline extent). In this case the IO has
3221 * been started and the page is already unlocked.
3222 *
3223 * This returns 0 if all went well (page still locked)
3224 * This returns < 0 if there were errors (page still locked)
3225 */
3226static noinline_for_stack int writepage_delalloc(struct inode *inode,
3227 struct page *page, struct writeback_control *wbc,
3228 struct extent_page_data *epd,
3229 u64 delalloc_start,
3230 unsigned long *nr_written)
3231{
3232 struct extent_io_tree *tree = epd->tree;
3233 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3234 u64 nr_delalloc;
3235 u64 delalloc_to_write = 0;
3236 u64 delalloc_end = 0;
3237 int ret;
3238 int page_started = 0;
3239
3240 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3241 return 0;
3242
3243 while (delalloc_end < page_end) {
3244 nr_delalloc = find_lock_delalloc_range(inode, tree,
3245 page,
3246 &delalloc_start,
3247 &delalloc_end,
3248 BTRFS_MAX_EXTENT_SIZE);
3249 if (nr_delalloc == 0) {
3250 delalloc_start = delalloc_end + 1;
3251 continue;
3252 }
3253 ret = tree->ops->fill_delalloc(inode, page,
3254 delalloc_start,
3255 delalloc_end,
3256 &page_started,
3257 nr_written);
3258 /* File system has been set read-only */
3259 if (ret) {
3260 SetPageError(page);
3261 /* fill_delalloc should be return < 0 for error
3262 * but just in case, we use > 0 here meaning the
3263 * IO is started, so we don't want to return > 0
3264 * unless things are going well.
3265 */
3266 ret = ret < 0 ? ret : -EIO;
3267 goto done;
3268 }
3269 /*
3270 * delalloc_end is already one less than the total length, so
3271 * we don't subtract one from PAGE_SIZE
3272 */
3273 delalloc_to_write += (delalloc_end - delalloc_start +
3274 PAGE_SIZE) >> PAGE_SHIFT;
3275 delalloc_start = delalloc_end + 1;
3276 }
3277 if (wbc->nr_to_write < delalloc_to_write) {
3278 int thresh = 8192;
3279
3280 if (delalloc_to_write < thresh * 2)
3281 thresh = delalloc_to_write;
3282 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3283 thresh);
3284 }
3285
3286 /* did the fill delalloc function already unlock and start
3287 * the IO?
3288 */
3289 if (page_started) {
3290 /*
3291 * we've unlocked the page, so we can't update
3292 * the mapping's writeback index, just update
3293 * nr_to_write.
3294 */
3295 wbc->nr_to_write -= *nr_written;
3296 return 1;
3297 }
3298
3299 ret = 0;
3300
3301done:
3302 return ret;
3303}
3304
3305/*
3306 * helper for __extent_writepage. This calls the writepage start hooks,
3307 * and does the loop to map the page into extents and bios.
3308 *
3309 * We return 1 if the IO is started and the page is unlocked,
3310 * 0 if all went well (page still locked)
3311 * < 0 if there were errors (page still locked)
3312 */
3313static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3314 struct page *page,
3315 struct writeback_control *wbc,
3316 struct extent_page_data *epd,
3317 loff_t i_size,
3318 unsigned long nr_written,
3319 unsigned int write_flags, int *nr_ret)
3320{
3321 struct extent_io_tree *tree = epd->tree;
3322 u64 start = page_offset(page);
3323 u64 page_end = start + PAGE_SIZE - 1;
3324 u64 end;
3325 u64 cur = start;
3326 u64 extent_offset;
3327 u64 block_start;
3328 u64 iosize;
3329 sector_t sector;
3330 struct extent_map *em;
3331 struct block_device *bdev;
3332 size_t pg_offset = 0;
3333 size_t blocksize;
3334 int ret = 0;
3335 int nr = 0;
3336 bool compressed;
3337
3338 if (tree->ops && tree->ops->writepage_start_hook) {
3339 ret = tree->ops->writepage_start_hook(page, start,
3340 page_end);
3341 if (ret) {
3342 /* Fixup worker will requeue */
3343 if (ret == -EBUSY)
3344 wbc->pages_skipped++;
3345 else
3346 redirty_page_for_writepage(wbc, page);
3347
3348 update_nr_written(wbc, nr_written);
3349 unlock_page(page);
3350 return 1;
3351 }
3352 }
3353
3354 /*
3355 * we don't want to touch the inode after unlocking the page,
3356 * so we update the mapping writeback index now
3357 */
3358 update_nr_written(wbc, nr_written + 1);
3359
3360 end = page_end;
3361 if (i_size <= start) {
3362 if (tree->ops && tree->ops->writepage_end_io_hook)
3363 tree->ops->writepage_end_io_hook(page, start,
3364 page_end, NULL, 1);
3365 goto done;
3366 }
3367
3368 blocksize = inode->i_sb->s_blocksize;
3369
3370 while (cur <= end) {
3371 u64 em_end;
3372
3373 if (cur >= i_size) {
3374 if (tree->ops && tree->ops->writepage_end_io_hook)
3375 tree->ops->writepage_end_io_hook(page, cur,
3376 page_end, NULL, 1);
3377 break;
3378 }
3379 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3380 end - cur + 1, 1);
3381 if (IS_ERR_OR_NULL(em)) {
3382 SetPageError(page);
3383 ret = PTR_ERR_OR_ZERO(em);
3384 break;
3385 }
3386
3387 extent_offset = cur - em->start;
3388 em_end = extent_map_end(em);
3389 BUG_ON(em_end <= cur);
3390 BUG_ON(end < cur);
3391 iosize = min(em_end - cur, end - cur + 1);
3392 iosize = ALIGN(iosize, blocksize);
3393 sector = (em->block_start + extent_offset) >> 9;
3394 bdev = em->bdev;
3395 block_start = em->block_start;
3396 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3397 free_extent_map(em);
3398 em = NULL;
3399
3400 /*
3401 * compressed and inline extents are written through other
3402 * paths in the FS
3403 */
3404 if (compressed || block_start == EXTENT_MAP_HOLE ||
3405 block_start == EXTENT_MAP_INLINE) {
3406 /*
3407 * end_io notification does not happen here for
3408 * compressed extents
3409 */
3410 if (!compressed && tree->ops &&
3411 tree->ops->writepage_end_io_hook)
3412 tree->ops->writepage_end_io_hook(page, cur,
3413 cur + iosize - 1,
3414 NULL, 1);
3415 else if (compressed) {
3416 /* we don't want to end_page_writeback on
3417 * a compressed extent. this happens
3418 * elsewhere
3419 */
3420 nr++;
3421 }
3422
3423 cur += iosize;
3424 pg_offset += iosize;
3425 continue;
3426 }
3427
3428 set_range_writeback(tree, cur, cur + iosize - 1);
3429 if (!PageWriteback(page)) {
3430 btrfs_err(BTRFS_I(inode)->root->fs_info,
3431 "page %lu not writeback, cur %llu end %llu",
3432 page->index, cur, end);
3433 }
3434
3435 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3436 page, sector, iosize, pg_offset,
3437 bdev, &epd->bio,
3438 end_bio_extent_writepage,
3439 0, 0, 0, false);
3440 if (ret) {
3441 SetPageError(page);
3442 if (PageWriteback(page))
3443 end_page_writeback(page);
3444 }
3445
3446 cur = cur + iosize;
3447 pg_offset += iosize;
3448 nr++;
3449 }
3450done:
3451 *nr_ret = nr;
3452 return ret;
3453}
3454
3455/*
3456 * the writepage semantics are similar to regular writepage. extent
3457 * records are inserted to lock ranges in the tree, and as dirty areas
3458 * are found, they are marked writeback. Then the lock bits are removed
3459 * and the end_io handler clears the writeback ranges
3460 */
3461static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462 void *data)
3463{
3464 struct inode *inode = page->mapping->host;
3465 struct extent_page_data *epd = data;
3466 u64 start = page_offset(page);
3467 u64 page_end = start + PAGE_SIZE - 1;
3468 int ret;
3469 int nr = 0;
3470 size_t pg_offset = 0;
3471 loff_t i_size = i_size_read(inode);
3472 unsigned long end_index = i_size >> PAGE_SHIFT;
3473 unsigned int write_flags = 0;
3474 unsigned long nr_written = 0;
3475
3476 write_flags = wbc_to_write_flags(wbc);
3477
3478 trace___extent_writepage(page, inode, wbc);
3479
3480 WARN_ON(!PageLocked(page));
3481
3482 ClearPageError(page);
3483
3484 pg_offset = i_size & (PAGE_SIZE - 1);
3485 if (page->index > end_index ||
3486 (page->index == end_index && !pg_offset)) {
3487 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3488 unlock_page(page);
3489 return 0;
3490 }
3491
3492 if (page->index == end_index) {
3493 char *userpage;
3494
3495 userpage = kmap_atomic(page);
3496 memset(userpage + pg_offset, 0,
3497 PAGE_SIZE - pg_offset);
3498 kunmap_atomic(userpage);
3499 flush_dcache_page(page);
3500 }
3501
3502 pg_offset = 0;
3503
3504 set_page_extent_mapped(page);
3505
3506 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3507 if (ret == 1)
3508 goto done_unlocked;
3509 if (ret)
3510 goto done;
3511
3512 ret = __extent_writepage_io(inode, page, wbc, epd,
3513 i_size, nr_written, write_flags, &nr);
3514 if (ret == 1)
3515 goto done_unlocked;
3516
3517done:
3518 if (nr == 0) {
3519 /* make sure the mapping tag for page dirty gets cleared */
3520 set_page_writeback(page);
3521 end_page_writeback(page);
3522 }
3523 if (PageError(page)) {
3524 ret = ret < 0 ? ret : -EIO;
3525 end_extent_writepage(page, ret, start, page_end);
3526 }
3527 unlock_page(page);
3528 return ret;
3529
3530done_unlocked:
3531 return 0;
3532}
3533
3534void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3535{
3536 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3537 TASK_UNINTERRUPTIBLE);
3538}
3539
3540static noinline_for_stack int
3541lock_extent_buffer_for_io(struct extent_buffer *eb,
3542 struct btrfs_fs_info *fs_info,
3543 struct extent_page_data *epd)
3544{
3545 unsigned long i, num_pages;
3546 int flush = 0;
3547 int ret = 0;
3548
3549 if (!btrfs_try_tree_write_lock(eb)) {
3550 flush = 1;
3551 flush_write_bio(epd);
3552 btrfs_tree_lock(eb);
3553 }
3554
3555 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3556 btrfs_tree_unlock(eb);
3557 if (!epd->sync_io)
3558 return 0;
3559 if (!flush) {
3560 flush_write_bio(epd);
3561 flush = 1;
3562 }
3563 while (1) {
3564 wait_on_extent_buffer_writeback(eb);
3565 btrfs_tree_lock(eb);
3566 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3567 break;
3568 btrfs_tree_unlock(eb);
3569 }
3570 }
3571
3572 /*
3573 * We need to do this to prevent races in people who check if the eb is
3574 * under IO since we can end up having no IO bits set for a short period
3575 * of time.
3576 */
3577 spin_lock(&eb->refs_lock);
3578 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3579 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3580 spin_unlock(&eb->refs_lock);
3581 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3582 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3583 -eb->len,
3584 fs_info->dirty_metadata_batch);
3585 ret = 1;
3586 } else {
3587 spin_unlock(&eb->refs_lock);
3588 }
3589
3590 btrfs_tree_unlock(eb);
3591
3592 if (!ret)
3593 return ret;
3594
3595 num_pages = num_extent_pages(eb->start, eb->len);
3596 for (i = 0; i < num_pages; i++) {
3597 struct page *p = eb->pages[i];
3598
3599 if (!trylock_page(p)) {
3600 if (!flush) {
3601 flush_write_bio(epd);
3602 flush = 1;
3603 }
3604 lock_page(p);
3605 }
3606 }
3607
3608 return ret;
3609}
3610
3611static void end_extent_buffer_writeback(struct extent_buffer *eb)
3612{
3613 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3614 smp_mb__after_atomic();
3615 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3616}
3617
3618static void set_btree_ioerr(struct page *page)
3619{
3620 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3621
3622 SetPageError(page);
3623 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3624 return;
3625
3626 /*
3627 * If writeback for a btree extent that doesn't belong to a log tree
3628 * failed, increment the counter transaction->eb_write_errors.
3629 * We do this because while the transaction is running and before it's
3630 * committing (when we call filemap_fdata[write|wait]_range against
3631 * the btree inode), we might have
3632 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3633 * returns an error or an error happens during writeback, when we're
3634 * committing the transaction we wouldn't know about it, since the pages
3635 * can be no longer dirty nor marked anymore for writeback (if a
3636 * subsequent modification to the extent buffer didn't happen before the
3637 * transaction commit), which makes filemap_fdata[write|wait]_range not
3638 * able to find the pages tagged with SetPageError at transaction
3639 * commit time. So if this happens we must abort the transaction,
3640 * otherwise we commit a super block with btree roots that point to
3641 * btree nodes/leafs whose content on disk is invalid - either garbage
3642 * or the content of some node/leaf from a past generation that got
3643 * cowed or deleted and is no longer valid.
3644 *
3645 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3646 * not be enough - we need to distinguish between log tree extents vs
3647 * non-log tree extents, and the next filemap_fdatawait_range() call
3648 * will catch and clear such errors in the mapping - and that call might
3649 * be from a log sync and not from a transaction commit. Also, checking
3650 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3651 * not done and would not be reliable - the eb might have been released
3652 * from memory and reading it back again means that flag would not be
3653 * set (since it's a runtime flag, not persisted on disk).
3654 *
3655 * Using the flags below in the btree inode also makes us achieve the
3656 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3657 * writeback for all dirty pages and before filemap_fdatawait_range()
3658 * is called, the writeback for all dirty pages had already finished
3659 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3660 * filemap_fdatawait_range() would return success, as it could not know
3661 * that writeback errors happened (the pages were no longer tagged for
3662 * writeback).
3663 */
3664 switch (eb->log_index) {
3665 case -1:
3666 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3667 break;
3668 case 0:
3669 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3670 break;
3671 case 1:
3672 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3673 break;
3674 default:
3675 BUG(); /* unexpected, logic error */
3676 }
3677}
3678
3679static void end_bio_extent_buffer_writepage(struct bio *bio)
3680{
3681 struct bio_vec *bvec;
3682 struct extent_buffer *eb;
3683 int i, done;
3684
3685 ASSERT(!bio_flagged(bio, BIO_CLONED));
3686 bio_for_each_segment_all(bvec, bio, i) {
3687 struct page *page = bvec->bv_page;
3688
3689 eb = (struct extent_buffer *)page->private;
3690 BUG_ON(!eb);
3691 done = atomic_dec_and_test(&eb->io_pages);
3692
3693 if (bio->bi_status ||
3694 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3695 ClearPageUptodate(page);
3696 set_btree_ioerr(page);
3697 }
3698
3699 end_page_writeback(page);
3700
3701 if (!done)
3702 continue;
3703
3704 end_extent_buffer_writeback(eb);
3705 }
3706
3707 bio_put(bio);
3708}
3709
3710static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3711 struct btrfs_fs_info *fs_info,
3712 struct writeback_control *wbc,
3713 struct extent_page_data *epd)
3714{
3715 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3716 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3717 u64 offset = eb->start;
3718 u32 nritems;
3719 unsigned long i, num_pages;
3720 unsigned long bio_flags = 0;
3721 unsigned long start, end;
3722 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3723 int ret = 0;
3724
3725 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3726 num_pages = num_extent_pages(eb->start, eb->len);
3727 atomic_set(&eb->io_pages, num_pages);
3728 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3729 bio_flags = EXTENT_BIO_TREE_LOG;
3730
3731 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3732 nritems = btrfs_header_nritems(eb);
3733 if (btrfs_header_level(eb) > 0) {
3734 end = btrfs_node_key_ptr_offset(nritems);
3735
3736 memzero_extent_buffer(eb, end, eb->len - end);
3737 } else {
3738 /*
3739 * leaf:
3740 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3741 */
3742 start = btrfs_item_nr_offset(nritems);
3743 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3744 memzero_extent_buffer(eb, start, end - start);
3745 }
3746
3747 for (i = 0; i < num_pages; i++) {
3748 struct page *p = eb->pages[i];
3749
3750 clear_page_dirty_for_io(p);
3751 set_page_writeback(p);
3752 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3753 p, offset >> 9, PAGE_SIZE, 0, bdev,
3754 &epd->bio,
3755 end_bio_extent_buffer_writepage,
3756 0, epd->bio_flags, bio_flags, false);
3757 epd->bio_flags = bio_flags;
3758 if (ret) {
3759 set_btree_ioerr(p);
3760 if (PageWriteback(p))
3761 end_page_writeback(p);
3762 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3763 end_extent_buffer_writeback(eb);
3764 ret = -EIO;
3765 break;
3766 }
3767 offset += PAGE_SIZE;
3768 update_nr_written(wbc, 1);
3769 unlock_page(p);
3770 }
3771
3772 if (unlikely(ret)) {
3773 for (; i < num_pages; i++) {
3774 struct page *p = eb->pages[i];
3775 clear_page_dirty_for_io(p);
3776 unlock_page(p);
3777 }
3778 }
3779
3780 return ret;
3781}
3782
3783int btree_write_cache_pages(struct address_space *mapping,
3784 struct writeback_control *wbc)
3785{
3786 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3787 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3788 struct extent_buffer *eb, *prev_eb = NULL;
3789 struct extent_page_data epd = {
3790 .bio = NULL,
3791 .tree = tree,
3792 .extent_locked = 0,
3793 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3794 .bio_flags = 0,
3795 };
3796 int ret = 0;
3797 int done = 0;
3798 int nr_to_write_done = 0;
3799 struct pagevec pvec;
3800 int nr_pages;
3801 pgoff_t index;
3802 pgoff_t end; /* Inclusive */
3803 int scanned = 0;
3804 int tag;
3805
3806 pagevec_init(&pvec, 0);
3807 if (wbc->range_cyclic) {
3808 index = mapping->writeback_index; /* Start from prev offset */
3809 end = -1;
3810 } else {
3811 index = wbc->range_start >> PAGE_SHIFT;
3812 end = wbc->range_end >> PAGE_SHIFT;
3813 scanned = 1;
3814 }
3815 if (wbc->sync_mode == WB_SYNC_ALL)
3816 tag = PAGECACHE_TAG_TOWRITE;
3817 else
3818 tag = PAGECACHE_TAG_DIRTY;
3819retry:
3820 if (wbc->sync_mode == WB_SYNC_ALL)
3821 tag_pages_for_writeback(mapping, index, end);
3822 while (!done && !nr_to_write_done && (index <= end) &&
3823 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3824 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3825 unsigned i;
3826
3827 scanned = 1;
3828 for (i = 0; i < nr_pages; i++) {
3829 struct page *page = pvec.pages[i];
3830
3831 if (!PagePrivate(page))
3832 continue;
3833
3834 if (!wbc->range_cyclic && page->index > end) {
3835 done = 1;
3836 break;
3837 }
3838
3839 spin_lock(&mapping->private_lock);
3840 if (!PagePrivate(page)) {
3841 spin_unlock(&mapping->private_lock);
3842 continue;
3843 }
3844
3845 eb = (struct extent_buffer *)page->private;
3846
3847 /*
3848 * Shouldn't happen and normally this would be a BUG_ON
3849 * but no sense in crashing the users box for something
3850 * we can survive anyway.
3851 */
3852 if (WARN_ON(!eb)) {
3853 spin_unlock(&mapping->private_lock);
3854 continue;
3855 }
3856
3857 if (eb == prev_eb) {
3858 spin_unlock(&mapping->private_lock);
3859 continue;
3860 }
3861
3862 ret = atomic_inc_not_zero(&eb->refs);
3863 spin_unlock(&mapping->private_lock);
3864 if (!ret)
3865 continue;
3866
3867 prev_eb = eb;
3868 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3869 if (!ret) {
3870 free_extent_buffer(eb);
3871 continue;
3872 }
3873
3874 ret = write_one_eb(eb, fs_info, wbc, &epd);
3875 if (ret) {
3876 done = 1;
3877 free_extent_buffer(eb);
3878 break;
3879 }
3880 free_extent_buffer(eb);
3881
3882 /*
3883 * the filesystem may choose to bump up nr_to_write.
3884 * We have to make sure to honor the new nr_to_write
3885 * at any time
3886 */
3887 nr_to_write_done = wbc->nr_to_write <= 0;
3888 }
3889 pagevec_release(&pvec);
3890 cond_resched();
3891 }
3892 if (!scanned && !done) {
3893 /*
3894 * We hit the last page and there is more work to be done: wrap
3895 * back to the start of the file
3896 */
3897 scanned = 1;
3898 index = 0;
3899 goto retry;
3900 }
3901 flush_write_bio(&epd);
3902 return ret;
3903}
3904
3905/**
3906 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3907 * @mapping: address space structure to write
3908 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3909 * @writepage: function called for each page
3910 * @data: data passed to writepage function
3911 *
3912 * If a page is already under I/O, write_cache_pages() skips it, even
3913 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3914 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3915 * and msync() need to guarantee that all the data which was dirty at the time
3916 * the call was made get new I/O started against them. If wbc->sync_mode is
3917 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3918 * existing IO to complete.
3919 */
3920static int extent_write_cache_pages(struct address_space *mapping,
3921 struct writeback_control *wbc,
3922 writepage_t writepage, void *data,
3923 void (*flush_fn)(void *))
3924{
3925 struct inode *inode = mapping->host;
3926 int ret = 0;
3927 int done = 0;
3928 int nr_to_write_done = 0;
3929 struct pagevec pvec;
3930 int nr_pages;
3931 pgoff_t index;
3932 pgoff_t end; /* Inclusive */
3933 pgoff_t done_index;
3934 int range_whole = 0;
3935 int scanned = 0;
3936 int tag;
3937
3938 /*
3939 * We have to hold onto the inode so that ordered extents can do their
3940 * work when the IO finishes. The alternative to this is failing to add
3941 * an ordered extent if the igrab() fails there and that is a huge pain
3942 * to deal with, so instead just hold onto the inode throughout the
3943 * writepages operation. If it fails here we are freeing up the inode
3944 * anyway and we'd rather not waste our time writing out stuff that is
3945 * going to be truncated anyway.
3946 */
3947 if (!igrab(inode))
3948 return 0;
3949
3950 pagevec_init(&pvec, 0);
3951 if (wbc->range_cyclic) {
3952 index = mapping->writeback_index; /* Start from prev offset */
3953 end = -1;
3954 } else {
3955 index = wbc->range_start >> PAGE_SHIFT;
3956 end = wbc->range_end >> PAGE_SHIFT;
3957 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3958 range_whole = 1;
3959 scanned = 1;
3960 }
3961 if (wbc->sync_mode == WB_SYNC_ALL)
3962 tag = PAGECACHE_TAG_TOWRITE;
3963 else
3964 tag = PAGECACHE_TAG_DIRTY;
3965retry:
3966 if (wbc->sync_mode == WB_SYNC_ALL)
3967 tag_pages_for_writeback(mapping, index, end);
3968 done_index = index;
3969 while (!done && !nr_to_write_done && (index <= end) &&
3970 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3971 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3972 unsigned i;
3973
3974 scanned = 1;
3975 for (i = 0; i < nr_pages; i++) {
3976 struct page *page = pvec.pages[i];
3977
3978 done_index = page->index;
3979 /*
3980 * At this point we hold neither mapping->tree_lock nor
3981 * lock on the page itself: the page may be truncated or
3982 * invalidated (changing page->mapping to NULL), or even
3983 * swizzled back from swapper_space to tmpfs file
3984 * mapping
3985 */
3986 if (!trylock_page(page)) {
3987 flush_fn(data);
3988 lock_page(page);
3989 }
3990
3991 if (unlikely(page->mapping != mapping)) {
3992 unlock_page(page);
3993 continue;
3994 }
3995
3996 if (!wbc->range_cyclic && page->index > end) {
3997 done = 1;
3998 unlock_page(page);
3999 continue;
4000 }
4001
4002 if (wbc->sync_mode != WB_SYNC_NONE) {
4003 if (PageWriteback(page))
4004 flush_fn(data);
4005 wait_on_page_writeback(page);
4006 }
4007
4008 if (PageWriteback(page) ||
4009 !clear_page_dirty_for_io(page)) {
4010 unlock_page(page);
4011 continue;
4012 }
4013
4014 ret = (*writepage)(page, wbc, data);
4015
4016 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4017 unlock_page(page);
4018 ret = 0;
4019 }
4020 if (ret < 0) {
4021 /*
4022 * done_index is set past this page,
4023 * so media errors will not choke
4024 * background writeout for the entire
4025 * file. This has consequences for
4026 * range_cyclic semantics (ie. it may
4027 * not be suitable for data integrity
4028 * writeout).
4029 */
4030 done_index = page->index + 1;
4031 done = 1;
4032 break;
4033 }
4034
4035 /*
4036 * the filesystem may choose to bump up nr_to_write.
4037 * We have to make sure to honor the new nr_to_write
4038 * at any time
4039 */
4040 nr_to_write_done = wbc->nr_to_write <= 0;
4041 }
4042 pagevec_release(&pvec);
4043 cond_resched();
4044 }
4045 if (!scanned && !done) {
4046 /*
4047 * We hit the last page and there is more work to be done: wrap
4048 * back to the start of the file
4049 */
4050 scanned = 1;
4051 index = 0;
4052
4053 /*
4054 * If we're looping we could run into a page that is locked by a
4055 * writer and that writer could be waiting on writeback for a
4056 * page in our current bio, and thus deadlock, so flush the
4057 * write bio here.
4058 */
4059 flush_write_bio(data);
4060 goto retry;
4061 }
4062
4063 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4064 mapping->writeback_index = done_index;
4065
4066 btrfs_add_delayed_iput(inode);
4067 return ret;
4068}
4069
4070static void flush_epd_write_bio(struct extent_page_data *epd)
4071{
4072 if (epd->bio) {
4073 int ret;
4074
4075 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4076 BUG_ON(ret < 0); /* -ENOMEM */
4077 epd->bio = NULL;
4078 }
4079}
4080
4081static noinline void flush_write_bio(void *data)
4082{
4083 struct extent_page_data *epd = data;
4084 flush_epd_write_bio(epd);
4085}
4086
4087int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4088 get_extent_t *get_extent,
4089 struct writeback_control *wbc)
4090{
4091 int ret;
4092 struct extent_page_data epd = {
4093 .bio = NULL,
4094 .tree = tree,
4095 .get_extent = get_extent,
4096 .extent_locked = 0,
4097 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4098 .bio_flags = 0,
4099 };
4100
4101 ret = __extent_writepage(page, wbc, &epd);
4102
4103 flush_epd_write_bio(&epd);
4104 return ret;
4105}
4106
4107int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4108 u64 start, u64 end, get_extent_t *get_extent,
4109 int mode)
4110{
4111 int ret = 0;
4112 struct address_space *mapping = inode->i_mapping;
4113 struct page *page;
4114 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4115 PAGE_SHIFT;
4116
4117 struct extent_page_data epd = {
4118 .bio = NULL,
4119 .tree = tree,
4120 .get_extent = get_extent,
4121 .extent_locked = 1,
4122 .sync_io = mode == WB_SYNC_ALL,
4123 .bio_flags = 0,
4124 };
4125 struct writeback_control wbc_writepages = {
4126 .sync_mode = mode,
4127 .nr_to_write = nr_pages * 2,
4128 .range_start = start,
4129 .range_end = end + 1,
4130 };
4131
4132 while (start <= end) {
4133 page = find_get_page(mapping, start >> PAGE_SHIFT);
4134 if (clear_page_dirty_for_io(page))
4135 ret = __extent_writepage(page, &wbc_writepages, &epd);
4136 else {
4137 if (tree->ops && tree->ops->writepage_end_io_hook)
4138 tree->ops->writepage_end_io_hook(page, start,
4139 start + PAGE_SIZE - 1,
4140 NULL, 1);
4141 unlock_page(page);
4142 }
4143 put_page(page);
4144 start += PAGE_SIZE;
4145 }
4146
4147 flush_epd_write_bio(&epd);
4148 return ret;
4149}
4150
4151int extent_writepages(struct extent_io_tree *tree,
4152 struct address_space *mapping,
4153 get_extent_t *get_extent,
4154 struct writeback_control *wbc)
4155{
4156 int ret = 0;
4157 struct extent_page_data epd = {
4158 .bio = NULL,
4159 .tree = tree,
4160 .get_extent = get_extent,
4161 .extent_locked = 0,
4162 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4163 .bio_flags = 0,
4164 };
4165
4166 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4167 flush_write_bio);
4168 flush_epd_write_bio(&epd);
4169 return ret;
4170}
4171
4172int extent_readpages(struct extent_io_tree *tree,
4173 struct address_space *mapping,
4174 struct list_head *pages, unsigned nr_pages,
4175 get_extent_t get_extent)
4176{
4177 struct bio *bio = NULL;
4178 unsigned page_idx;
4179 unsigned long bio_flags = 0;
4180 struct page *pagepool[16];
4181 struct page *page;
4182 struct extent_map *em_cached = NULL;
4183 int nr = 0;
4184 u64 prev_em_start = (u64)-1;
4185
4186 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4187 page = list_entry(pages->prev, struct page, lru);
4188
4189 prefetchw(&page->flags);
4190 list_del(&page->lru);
4191 if (add_to_page_cache_lru(page, mapping,
4192 page->index,
4193 readahead_gfp_mask(mapping))) {
4194 put_page(page);
4195 continue;
4196 }
4197
4198 pagepool[nr++] = page;
4199 if (nr < ARRAY_SIZE(pagepool))
4200 continue;
4201 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4202 &bio, 0, &bio_flags, &prev_em_start);
4203 nr = 0;
4204 }
4205 if (nr)
4206 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4207 &bio, 0, &bio_flags, &prev_em_start);
4208
4209 if (em_cached)
4210 free_extent_map(em_cached);
4211
4212 BUG_ON(!list_empty(pages));
4213 if (bio)
4214 return submit_one_bio(bio, 0, bio_flags);
4215 return 0;
4216}
4217
4218/*
4219 * basic invalidatepage code, this waits on any locked or writeback
4220 * ranges corresponding to the page, and then deletes any extent state
4221 * records from the tree
4222 */
4223int extent_invalidatepage(struct extent_io_tree *tree,
4224 struct page *page, unsigned long offset)
4225{
4226 struct extent_state *cached_state = NULL;
4227 u64 start = page_offset(page);
4228 u64 end = start + PAGE_SIZE - 1;
4229 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4230
4231 start += ALIGN(offset, blocksize);
4232 if (start > end)
4233 return 0;
4234
4235 lock_extent_bits(tree, start, end, &cached_state);
4236 wait_on_page_writeback(page);
4237 clear_extent_bit(tree, start, end,
4238 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4239 EXTENT_DO_ACCOUNTING,
4240 1, 1, &cached_state, GFP_NOFS);
4241 return 0;
4242}
4243
4244/*
4245 * a helper for releasepage, this tests for areas of the page that
4246 * are locked or under IO and drops the related state bits if it is safe
4247 * to drop the page.
4248 */
4249static int try_release_extent_state(struct extent_map_tree *map,
4250 struct extent_io_tree *tree,
4251 struct page *page, gfp_t mask)
4252{
4253 u64 start = page_offset(page);
4254 u64 end = start + PAGE_SIZE - 1;
4255 int ret = 1;
4256
4257 if (test_range_bit(tree, start, end,
4258 EXTENT_IOBITS, 0, NULL))
4259 ret = 0;
4260 else {
4261 /*
4262 * at this point we can safely clear everything except the
4263 * locked bit and the nodatasum bit
4264 */
4265 ret = clear_extent_bit(tree, start, end,
4266 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4267 0, 0, NULL, mask);
4268
4269 /* if clear_extent_bit failed for enomem reasons,
4270 * we can't allow the release to continue.
4271 */
4272 if (ret < 0)
4273 ret = 0;
4274 else
4275 ret = 1;
4276 }
4277 return ret;
4278}
4279
4280/*
4281 * a helper for releasepage. As long as there are no locked extents
4282 * in the range corresponding to the page, both state records and extent
4283 * map records are removed
4284 */
4285int try_release_extent_mapping(struct extent_map_tree *map,
4286 struct extent_io_tree *tree, struct page *page,
4287 gfp_t mask)
4288{
4289 struct extent_map *em;
4290 u64 start = page_offset(page);
4291 u64 end = start + PAGE_SIZE - 1;
4292 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4293
4294 if (gfpflags_allow_blocking(mask) &&
4295 page->mapping->host->i_size > SZ_16M) {
4296 u64 len;
4297 while (start <= end) {
4298 len = end - start + 1;
4299 write_lock(&map->lock);
4300 em = lookup_extent_mapping(map, start, len);
4301 if (!em) {
4302 write_unlock(&map->lock);
4303 break;
4304 }
4305 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4306 em->start != start) {
4307 write_unlock(&map->lock);
4308 free_extent_map(em);
4309 break;
4310 }
4311 if (!test_range_bit(tree, em->start,
4312 extent_map_end(em) - 1,
4313 EXTENT_LOCKED | EXTENT_WRITEBACK,
4314 0, NULL)) {
4315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4316 &btrfs_inode->runtime_flags);
4317 remove_extent_mapping(map, em);
4318 /* once for the rb tree */
4319 free_extent_map(em);
4320 }
4321 start = extent_map_end(em);
4322 write_unlock(&map->lock);
4323
4324 /* once for us */
4325 free_extent_map(em);
4326
4327 cond_resched(); /* Allow large-extent preemption. */
4328 }
4329 }
4330 return try_release_extent_state(map, tree, page, mask);
4331}
4332
4333/*
4334 * helper function for fiemap, which doesn't want to see any holes.
4335 * This maps until we find something past 'last'
4336 */
4337static struct extent_map *get_extent_skip_holes(struct inode *inode,
4338 u64 offset,
4339 u64 last,
4340 get_extent_t *get_extent)
4341{
4342 u64 sectorsize = btrfs_inode_sectorsize(inode);
4343 struct extent_map *em;
4344 u64 len;
4345
4346 if (offset >= last)
4347 return NULL;
4348
4349 while (1) {
4350 len = last - offset;
4351 if (len == 0)
4352 break;
4353 len = ALIGN(len, sectorsize);
4354 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4355 if (IS_ERR_OR_NULL(em))
4356 return em;
4357
4358 /* if this isn't a hole return it */
4359 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4360 em->block_start != EXTENT_MAP_HOLE) {
4361 return em;
4362 }
4363
4364 /* this is a hole, advance to the next extent */
4365 offset = extent_map_end(em);
4366 free_extent_map(em);
4367 if (offset >= last)
4368 break;
4369 }
4370 return NULL;
4371}
4372
4373/*
4374 * To cache previous fiemap extent
4375 *
4376 * Will be used for merging fiemap extent
4377 */
4378struct fiemap_cache {
4379 u64 offset;
4380 u64 phys;
4381 u64 len;
4382 u32 flags;
4383 bool cached;
4384};
4385
4386/*
4387 * Helper to submit fiemap extent.
4388 *
4389 * Will try to merge current fiemap extent specified by @offset, @phys,
4390 * @len and @flags with cached one.
4391 * And only when we fails to merge, cached one will be submitted as
4392 * fiemap extent.
4393 *
4394 * Return value is the same as fiemap_fill_next_extent().
4395 */
4396static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4397 struct fiemap_cache *cache,
4398 u64 offset, u64 phys, u64 len, u32 flags)
4399{
4400 int ret = 0;
4401
4402 if (!cache->cached)
4403 goto assign;
4404
4405 /*
4406 * Sanity check, extent_fiemap() should have ensured that new
4407 * fiemap extent won't overlap with cahced one.
4408 * Not recoverable.
4409 *
4410 * NOTE: Physical address can overlap, due to compression
4411 */
4412 if (cache->offset + cache->len > offset) {
4413 WARN_ON(1);
4414 return -EINVAL;
4415 }
4416
4417 /*
4418 * Only merges fiemap extents if
4419 * 1) Their logical addresses are continuous
4420 *
4421 * 2) Their physical addresses are continuous
4422 * So truly compressed (physical size smaller than logical size)
4423 * extents won't get merged with each other
4424 *
4425 * 3) Share same flags except FIEMAP_EXTENT_LAST
4426 * So regular extent won't get merged with prealloc extent
4427 */
4428 if (cache->offset + cache->len == offset &&
4429 cache->phys + cache->len == phys &&
4430 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4431 (flags & ~FIEMAP_EXTENT_LAST)) {
4432 cache->len += len;
4433 cache->flags |= flags;
4434 goto try_submit_last;
4435 }
4436
4437 /* Not mergeable, need to submit cached one */
4438 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4439 cache->len, cache->flags);
4440 cache->cached = false;
4441 if (ret)
4442 return ret;
4443assign:
4444 cache->cached = true;
4445 cache->offset = offset;
4446 cache->phys = phys;
4447 cache->len = len;
4448 cache->flags = flags;
4449try_submit_last:
4450 if (cache->flags & FIEMAP_EXTENT_LAST) {
4451 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4452 cache->phys, cache->len, cache->flags);
4453 cache->cached = false;
4454 }
4455 return ret;
4456}
4457
4458/*
4459 * Emit last fiemap cache
4460 *
4461 * The last fiemap cache may still be cached in the following case:
4462 * 0 4k 8k
4463 * |<- Fiemap range ->|
4464 * |<------------ First extent ----------->|
4465 *
4466 * In this case, the first extent range will be cached but not emitted.
4467 * So we must emit it before ending extent_fiemap().
4468 */
4469static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4470 struct fiemap_extent_info *fieinfo,
4471 struct fiemap_cache *cache)
4472{
4473 int ret;
4474
4475 if (!cache->cached)
4476 return 0;
4477
4478 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4479 cache->len, cache->flags);
4480 cache->cached = false;
4481 if (ret > 0)
4482 ret = 0;
4483 return ret;
4484}
4485
4486int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4487 __u64 start, __u64 len, get_extent_t *get_extent)
4488{
4489 int ret = 0;
4490 u64 off = start;
4491 u64 max = start + len;
4492 u32 flags = 0;
4493 u32 found_type;
4494 u64 last;
4495 u64 last_for_get_extent = 0;
4496 u64 disko = 0;
4497 u64 isize = i_size_read(inode);
4498 struct btrfs_key found_key;
4499 struct extent_map *em = NULL;
4500 struct extent_state *cached_state = NULL;
4501 struct btrfs_path *path;
4502 struct btrfs_root *root = BTRFS_I(inode)->root;
4503 struct fiemap_cache cache = { 0 };
4504 int end = 0;
4505 u64 em_start = 0;
4506 u64 em_len = 0;
4507 u64 em_end = 0;
4508
4509 if (len == 0)
4510 return -EINVAL;
4511
4512 path = btrfs_alloc_path();
4513 if (!path)
4514 return -ENOMEM;
4515 path->leave_spinning = 1;
4516
4517 start = round_down(start, btrfs_inode_sectorsize(inode));
4518 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4519
4520 /*
4521 * lookup the last file extent. We're not using i_size here
4522 * because there might be preallocation past i_size
4523 */
4524 ret = btrfs_lookup_file_extent(NULL, root, path,
4525 btrfs_ino(BTRFS_I(inode)), -1, 0);
4526 if (ret < 0) {
4527 btrfs_free_path(path);
4528 return ret;
4529 } else {
4530 WARN_ON(!ret);
4531 if (ret == 1)
4532 ret = 0;
4533 }
4534
4535 path->slots[0]--;
4536 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4537 found_type = found_key.type;
4538
4539 /* No extents, but there might be delalloc bits */
4540 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4541 found_type != BTRFS_EXTENT_DATA_KEY) {
4542 /* have to trust i_size as the end */
4543 last = (u64)-1;
4544 last_for_get_extent = isize;
4545 } else {
4546 /*
4547 * remember the start of the last extent. There are a
4548 * bunch of different factors that go into the length of the
4549 * extent, so its much less complex to remember where it started
4550 */
4551 last = found_key.offset;
4552 last_for_get_extent = last + 1;
4553 }
4554 btrfs_release_path(path);
4555
4556 /*
4557 * we might have some extents allocated but more delalloc past those
4558 * extents. so, we trust isize unless the start of the last extent is
4559 * beyond isize
4560 */
4561 if (last < isize) {
4562 last = (u64)-1;
4563 last_for_get_extent = isize;
4564 }
4565
4566 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4567 &cached_state);
4568
4569 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4570 get_extent);
4571 if (!em)
4572 goto out;
4573 if (IS_ERR(em)) {
4574 ret = PTR_ERR(em);
4575 goto out;
4576 }
4577
4578 while (!end) {
4579 u64 offset_in_extent = 0;
4580
4581 /* break if the extent we found is outside the range */
4582 if (em->start >= max || extent_map_end(em) < off)
4583 break;
4584
4585 /*
4586 * get_extent may return an extent that starts before our
4587 * requested range. We have to make sure the ranges
4588 * we return to fiemap always move forward and don't
4589 * overlap, so adjust the offsets here
4590 */
4591 em_start = max(em->start, off);
4592
4593 /*
4594 * record the offset from the start of the extent
4595 * for adjusting the disk offset below. Only do this if the
4596 * extent isn't compressed since our in ram offset may be past
4597 * what we have actually allocated on disk.
4598 */
4599 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4600 offset_in_extent = em_start - em->start;
4601 em_end = extent_map_end(em);
4602 em_len = em_end - em_start;
4603 disko = 0;
4604 flags = 0;
4605
4606 /*
4607 * bump off for our next call to get_extent
4608 */
4609 off = extent_map_end(em);
4610 if (off >= max)
4611 end = 1;
4612
4613 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4614 end = 1;
4615 flags |= FIEMAP_EXTENT_LAST;
4616 } else if (em->block_start == EXTENT_MAP_INLINE) {
4617 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4618 FIEMAP_EXTENT_NOT_ALIGNED);
4619 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4620 flags |= (FIEMAP_EXTENT_DELALLOC |
4621 FIEMAP_EXTENT_UNKNOWN);
4622 } else if (fieinfo->fi_extents_max) {
4623 u64 bytenr = em->block_start -
4624 (em->start - em->orig_start);
4625
4626 disko = em->block_start + offset_in_extent;
4627
4628 /*
4629 * As btrfs supports shared space, this information
4630 * can be exported to userspace tools via
4631 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4632 * then we're just getting a count and we can skip the
4633 * lookup stuff.
4634 */
4635 ret = btrfs_check_shared(root,
4636 btrfs_ino(BTRFS_I(inode)),
4637 bytenr);
4638 if (ret < 0)
4639 goto out_free;
4640 if (ret)
4641 flags |= FIEMAP_EXTENT_SHARED;
4642 ret = 0;
4643 }
4644 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4645 flags |= FIEMAP_EXTENT_ENCODED;
4646 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4647 flags |= FIEMAP_EXTENT_UNWRITTEN;
4648
4649 free_extent_map(em);
4650 em = NULL;
4651 if ((em_start >= last) || em_len == (u64)-1 ||
4652 (last == (u64)-1 && isize <= em_end)) {
4653 flags |= FIEMAP_EXTENT_LAST;
4654 end = 1;
4655 }
4656
4657 /* now scan forward to see if this is really the last extent. */
4658 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4659 get_extent);
4660 if (IS_ERR(em)) {
4661 ret = PTR_ERR(em);
4662 goto out;
4663 }
4664 if (!em) {
4665 flags |= FIEMAP_EXTENT_LAST;
4666 end = 1;
4667 }
4668 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4669 em_len, flags);
4670 if (ret) {
4671 if (ret == 1)
4672 ret = 0;
4673 goto out_free;
4674 }
4675 }
4676out_free:
4677 if (!ret)
4678 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4679 free_extent_map(em);
4680out:
4681 btrfs_free_path(path);
4682 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4683 &cached_state, GFP_NOFS);
4684 return ret;
4685}
4686
4687static void __free_extent_buffer(struct extent_buffer *eb)
4688{
4689 btrfs_leak_debug_del(&eb->leak_list);
4690 kmem_cache_free(extent_buffer_cache, eb);
4691}
4692
4693int extent_buffer_under_io(struct extent_buffer *eb)
4694{
4695 return (atomic_read(&eb->io_pages) ||
4696 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4697 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4698}
4699
4700/*
4701 * Helper for releasing extent buffer page.
4702 */
4703static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4704{
4705 unsigned long index;
4706 struct page *page;
4707 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4708
4709 BUG_ON(extent_buffer_under_io(eb));
4710
4711 index = num_extent_pages(eb->start, eb->len);
4712 if (index == 0)
4713 return;
4714
4715 do {
4716 index--;
4717 page = eb->pages[index];
4718 if (!page)
4719 continue;
4720 if (mapped)
4721 spin_lock(&page->mapping->private_lock);
4722 /*
4723 * We do this since we'll remove the pages after we've
4724 * removed the eb from the radix tree, so we could race
4725 * and have this page now attached to the new eb. So
4726 * only clear page_private if it's still connected to
4727 * this eb.
4728 */
4729 if (PagePrivate(page) &&
4730 page->private == (unsigned long)eb) {
4731 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4732 BUG_ON(PageDirty(page));
4733 BUG_ON(PageWriteback(page));
4734 /*
4735 * We need to make sure we haven't be attached
4736 * to a new eb.
4737 */
4738 ClearPagePrivate(page);
4739 set_page_private(page, 0);
4740 /* One for the page private */
4741 put_page(page);
4742 }
4743
4744 if (mapped)
4745 spin_unlock(&page->mapping->private_lock);
4746
4747 /* One for when we allocated the page */
4748 put_page(page);
4749 } while (index != 0);
4750}
4751
4752/*
4753 * Helper for releasing the extent buffer.
4754 */
4755static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4756{
4757 btrfs_release_extent_buffer_page(eb);
4758 __free_extent_buffer(eb);
4759}
4760
4761static struct extent_buffer *
4762__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4763 unsigned long len)
4764{
4765 struct extent_buffer *eb = NULL;
4766
4767 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4768 eb->start = start;
4769 eb->len = len;
4770 eb->fs_info = fs_info;
4771 eb->bflags = 0;
4772 rwlock_init(&eb->lock);
4773 atomic_set(&eb->write_locks, 0);
4774 atomic_set(&eb->read_locks, 0);
4775 atomic_set(&eb->blocking_readers, 0);
4776 atomic_set(&eb->blocking_writers, 0);
4777 atomic_set(&eb->spinning_readers, 0);
4778 atomic_set(&eb->spinning_writers, 0);
4779 eb->lock_nested = 0;
4780 init_waitqueue_head(&eb->write_lock_wq);
4781 init_waitqueue_head(&eb->read_lock_wq);
4782
4783 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4784
4785 spin_lock_init(&eb->refs_lock);
4786 atomic_set(&eb->refs, 1);
4787 atomic_set(&eb->io_pages, 0);
4788
4789 /*
4790 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4791 */
4792 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4793 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4794 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4795
4796 return eb;
4797}
4798
4799struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4800{
4801 unsigned long i;
4802 struct page *p;
4803 struct extent_buffer *new;
4804 unsigned long num_pages = num_extent_pages(src->start, src->len);
4805
4806 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4807 if (new == NULL)
4808 return NULL;
4809
4810 for (i = 0; i < num_pages; i++) {
4811 p = alloc_page(GFP_NOFS);
4812 if (!p) {
4813 btrfs_release_extent_buffer(new);
4814 return NULL;
4815 }
4816 attach_extent_buffer_page(new, p);
4817 WARN_ON(PageDirty(p));
4818 SetPageUptodate(p);
4819 new->pages[i] = p;
4820 copy_page(page_address(p), page_address(src->pages[i]));
4821 }
4822
4823 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4824 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4825
4826 return new;
4827}
4828
4829struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4830 u64 start, unsigned long len)
4831{
4832 struct extent_buffer *eb;
4833 unsigned long num_pages;
4834 unsigned long i;
4835
4836 num_pages = num_extent_pages(start, len);
4837
4838 eb = __alloc_extent_buffer(fs_info, start, len);
4839 if (!eb)
4840 return NULL;
4841
4842 for (i = 0; i < num_pages; i++) {
4843 eb->pages[i] = alloc_page(GFP_NOFS);
4844 if (!eb->pages[i])
4845 goto err;
4846 }
4847 set_extent_buffer_uptodate(eb);
4848 btrfs_set_header_nritems(eb, 0);
4849 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4850
4851 return eb;
4852err:
4853 for (; i > 0; i--)
4854 __free_page(eb->pages[i - 1]);
4855 __free_extent_buffer(eb);
4856 return NULL;
4857}
4858
4859struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4860 u64 start)
4861{
4862 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4863}
4864
4865static void check_buffer_tree_ref(struct extent_buffer *eb)
4866{
4867 int refs;
4868 /*
4869 * The TREE_REF bit is first set when the extent_buffer is added
4870 * to the radix tree. It is also reset, if unset, when a new reference
4871 * is created by find_extent_buffer.
4872 *
4873 * It is only cleared in two cases: freeing the last non-tree
4874 * reference to the extent_buffer when its STALE bit is set or
4875 * calling releasepage when the tree reference is the only reference.
4876 *
4877 * In both cases, care is taken to ensure that the extent_buffer's
4878 * pages are not under io. However, releasepage can be concurrently
4879 * called with creating new references, which is prone to race
4880 * conditions between the calls to check_buffer_tree_ref in those
4881 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4882 *
4883 * The actual lifetime of the extent_buffer in the radix tree is
4884 * adequately protected by the refcount, but the TREE_REF bit and
4885 * its corresponding reference are not. To protect against this
4886 * class of races, we call check_buffer_tree_ref from the codepaths
4887 * which trigger io after they set eb->io_pages. Note that once io is
4888 * initiated, TREE_REF can no longer be cleared, so that is the
4889 * moment at which any such race is best fixed.
4890 */
4891 refs = atomic_read(&eb->refs);
4892 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4893 return;
4894
4895 spin_lock(&eb->refs_lock);
4896 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4897 atomic_inc(&eb->refs);
4898 spin_unlock(&eb->refs_lock);
4899}
4900
4901static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4902 struct page *accessed)
4903{
4904 unsigned long num_pages, i;
4905
4906 check_buffer_tree_ref(eb);
4907
4908 num_pages = num_extent_pages(eb->start, eb->len);
4909 for (i = 0; i < num_pages; i++) {
4910 struct page *p = eb->pages[i];
4911
4912 if (p != accessed)
4913 mark_page_accessed(p);
4914 }
4915}
4916
4917struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4918 u64 start)
4919{
4920 struct extent_buffer *eb;
4921
4922 rcu_read_lock();
4923 eb = radix_tree_lookup(&fs_info->buffer_radix,
4924 start >> PAGE_SHIFT);
4925 if (eb && atomic_inc_not_zero(&eb->refs)) {
4926 rcu_read_unlock();
4927 /*
4928 * Lock our eb's refs_lock to avoid races with
4929 * free_extent_buffer. When we get our eb it might be flagged
4930 * with EXTENT_BUFFER_STALE and another task running
4931 * free_extent_buffer might have seen that flag set,
4932 * eb->refs == 2, that the buffer isn't under IO (dirty and
4933 * writeback flags not set) and it's still in the tree (flag
4934 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4935 * of decrementing the extent buffer's reference count twice.
4936 * So here we could race and increment the eb's reference count,
4937 * clear its stale flag, mark it as dirty and drop our reference
4938 * before the other task finishes executing free_extent_buffer,
4939 * which would later result in an attempt to free an extent
4940 * buffer that is dirty.
4941 */
4942 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4943 spin_lock(&eb->refs_lock);
4944 spin_unlock(&eb->refs_lock);
4945 }
4946 mark_extent_buffer_accessed(eb, NULL);
4947 return eb;
4948 }
4949 rcu_read_unlock();
4950
4951 return NULL;
4952}
4953
4954#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4955struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4956 u64 start)
4957{
4958 struct extent_buffer *eb, *exists = NULL;
4959 int ret;
4960
4961 eb = find_extent_buffer(fs_info, start);
4962 if (eb)
4963 return eb;
4964 eb = alloc_dummy_extent_buffer(fs_info, start);
4965 if (!eb)
4966 return ERR_PTR(-ENOMEM);
4967 eb->fs_info = fs_info;
4968again:
4969 ret = radix_tree_preload(GFP_NOFS);
4970 if (ret) {
4971 exists = ERR_PTR(ret);
4972 goto free_eb;
4973 }
4974 spin_lock(&fs_info->buffer_lock);
4975 ret = radix_tree_insert(&fs_info->buffer_radix,
4976 start >> PAGE_SHIFT, eb);
4977 spin_unlock(&fs_info->buffer_lock);
4978 radix_tree_preload_end();
4979 if (ret == -EEXIST) {
4980 exists = find_extent_buffer(fs_info, start);
4981 if (exists)
4982 goto free_eb;
4983 else
4984 goto again;
4985 }
4986 check_buffer_tree_ref(eb);
4987 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4988
4989 /*
4990 * We will free dummy extent buffer's if they come into
4991 * free_extent_buffer with a ref count of 2, but if we are using this we
4992 * want the buffers to stay in memory until we're done with them, so
4993 * bump the ref count again.
4994 */
4995 atomic_inc(&eb->refs);
4996 return eb;
4997free_eb:
4998 btrfs_release_extent_buffer(eb);
4999 return exists;
5000}
5001#endif
5002
5003struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5004 u64 start)
5005{
5006 unsigned long len = fs_info->nodesize;
5007 unsigned long num_pages = num_extent_pages(start, len);
5008 unsigned long i;
5009 unsigned long index = start >> PAGE_SHIFT;
5010 struct extent_buffer *eb;
5011 struct extent_buffer *exists = NULL;
5012 struct page *p;
5013 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5014 int uptodate = 1;
5015 int ret;
5016
5017 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5018 btrfs_err(fs_info, "bad tree block start %llu", start);
5019 return ERR_PTR(-EINVAL);
5020 }
5021
5022 eb = find_extent_buffer(fs_info, start);
5023 if (eb)
5024 return eb;
5025
5026 eb = __alloc_extent_buffer(fs_info, start, len);
5027 if (!eb)
5028 return ERR_PTR(-ENOMEM);
5029
5030 for (i = 0; i < num_pages; i++, index++) {
5031 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5032 if (!p) {
5033 exists = ERR_PTR(-ENOMEM);
5034 goto free_eb;
5035 }
5036
5037 spin_lock(&mapping->private_lock);
5038 if (PagePrivate(p)) {
5039 /*
5040 * We could have already allocated an eb for this page
5041 * and attached one so lets see if we can get a ref on
5042 * the existing eb, and if we can we know it's good and
5043 * we can just return that one, else we know we can just
5044 * overwrite page->private.
5045 */
5046 exists = (struct extent_buffer *)p->private;
5047 if (atomic_inc_not_zero(&exists->refs)) {
5048 spin_unlock(&mapping->private_lock);
5049 unlock_page(p);
5050 put_page(p);
5051 mark_extent_buffer_accessed(exists, p);
5052 goto free_eb;
5053 }
5054 exists = NULL;
5055
5056 /*
5057 * Do this so attach doesn't complain and we need to
5058 * drop the ref the old guy had.
5059 */
5060 ClearPagePrivate(p);
5061 WARN_ON(PageDirty(p));
5062 put_page(p);
5063 }
5064 attach_extent_buffer_page(eb, p);
5065 spin_unlock(&mapping->private_lock);
5066 WARN_ON(PageDirty(p));
5067 eb->pages[i] = p;
5068 if (!PageUptodate(p))
5069 uptodate = 0;
5070
5071 /*
5072 * see below about how we avoid a nasty race with release page
5073 * and why we unlock later
5074 */
5075 }
5076 if (uptodate)
5077 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5078again:
5079 ret = radix_tree_preload(GFP_NOFS);
5080 if (ret) {
5081 exists = ERR_PTR(ret);
5082 goto free_eb;
5083 }
5084
5085 spin_lock(&fs_info->buffer_lock);
5086 ret = radix_tree_insert(&fs_info->buffer_radix,
5087 start >> PAGE_SHIFT, eb);
5088 spin_unlock(&fs_info->buffer_lock);
5089 radix_tree_preload_end();
5090 if (ret == -EEXIST) {
5091 exists = find_extent_buffer(fs_info, start);
5092 if (exists)
5093 goto free_eb;
5094 else
5095 goto again;
5096 }
5097 /* add one reference for the tree */
5098 check_buffer_tree_ref(eb);
5099 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5100
5101 /*
5102 * there is a race where release page may have
5103 * tried to find this extent buffer in the radix
5104 * but failed. It will tell the VM it is safe to
5105 * reclaim the, and it will clear the page private bit.
5106 * We must make sure to set the page private bit properly
5107 * after the extent buffer is in the radix tree so
5108 * it doesn't get lost
5109 */
5110 SetPageChecked(eb->pages[0]);
5111 for (i = 1; i < num_pages; i++) {
5112 p = eb->pages[i];
5113 ClearPageChecked(p);
5114 unlock_page(p);
5115 }
5116 unlock_page(eb->pages[0]);
5117 return eb;
5118
5119free_eb:
5120 WARN_ON(!atomic_dec_and_test(&eb->refs));
5121 for (i = 0; i < num_pages; i++) {
5122 if (eb->pages[i])
5123 unlock_page(eb->pages[i]);
5124 }
5125
5126 btrfs_release_extent_buffer(eb);
5127 return exists;
5128}
5129
5130static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5131{
5132 struct extent_buffer *eb =
5133 container_of(head, struct extent_buffer, rcu_head);
5134
5135 __free_extent_buffer(eb);
5136}
5137
5138/* Expects to have eb->eb_lock already held */
5139static int release_extent_buffer(struct extent_buffer *eb)
5140{
5141 WARN_ON(atomic_read(&eb->refs) == 0);
5142 if (atomic_dec_and_test(&eb->refs)) {
5143 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5144 struct btrfs_fs_info *fs_info = eb->fs_info;
5145
5146 spin_unlock(&eb->refs_lock);
5147
5148 spin_lock(&fs_info->buffer_lock);
5149 radix_tree_delete(&fs_info->buffer_radix,
5150 eb->start >> PAGE_SHIFT);
5151 spin_unlock(&fs_info->buffer_lock);
5152 } else {
5153 spin_unlock(&eb->refs_lock);
5154 }
5155
5156 /* Should be safe to release our pages at this point */
5157 btrfs_release_extent_buffer_page(eb);
5158#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5159 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5160 __free_extent_buffer(eb);
5161 return 1;
5162 }
5163#endif
5164 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5165 return 1;
5166 }
5167 spin_unlock(&eb->refs_lock);
5168
5169 return 0;
5170}
5171
5172void free_extent_buffer(struct extent_buffer *eb)
5173{
5174 int refs;
5175 int old;
5176 if (!eb)
5177 return;
5178
5179 while (1) {
5180 refs = atomic_read(&eb->refs);
5181 if (refs <= 3)
5182 break;
5183 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5184 if (old == refs)
5185 return;
5186 }
5187
5188 spin_lock(&eb->refs_lock);
5189 if (atomic_read(&eb->refs) == 2 &&
5190 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5191 atomic_dec(&eb->refs);
5192
5193 if (atomic_read(&eb->refs) == 2 &&
5194 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5195 !extent_buffer_under_io(eb) &&
5196 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5197 atomic_dec(&eb->refs);
5198
5199 /*
5200 * I know this is terrible, but it's temporary until we stop tracking
5201 * the uptodate bits and such for the extent buffers.
5202 */
5203 release_extent_buffer(eb);
5204}
5205
5206void free_extent_buffer_stale(struct extent_buffer *eb)
5207{
5208 if (!eb)
5209 return;
5210
5211 spin_lock(&eb->refs_lock);
5212 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5213
5214 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5215 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5216 atomic_dec(&eb->refs);
5217 release_extent_buffer(eb);
5218}
5219
5220void clear_extent_buffer_dirty(struct extent_buffer *eb)
5221{
5222 unsigned long i;
5223 unsigned long num_pages;
5224 struct page *page;
5225
5226 num_pages = num_extent_pages(eb->start, eb->len);
5227
5228 for (i = 0; i < num_pages; i++) {
5229 page = eb->pages[i];
5230 if (!PageDirty(page))
5231 continue;
5232
5233 lock_page(page);
5234 WARN_ON(!PagePrivate(page));
5235
5236 clear_page_dirty_for_io(page);
5237 spin_lock_irq(&page->mapping->tree_lock);
5238 if (!PageDirty(page)) {
5239 radix_tree_tag_clear(&page->mapping->page_tree,
5240 page_index(page),
5241 PAGECACHE_TAG_DIRTY);
5242 }
5243 spin_unlock_irq(&page->mapping->tree_lock);
5244 ClearPageError(page);
5245 unlock_page(page);
5246 }
5247 WARN_ON(atomic_read(&eb->refs) == 0);
5248}
5249
5250int set_extent_buffer_dirty(struct extent_buffer *eb)
5251{
5252 unsigned long i;
5253 unsigned long num_pages;
5254 int was_dirty = 0;
5255
5256 check_buffer_tree_ref(eb);
5257
5258 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5259
5260 num_pages = num_extent_pages(eb->start, eb->len);
5261 WARN_ON(atomic_read(&eb->refs) == 0);
5262 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5263
5264 for (i = 0; i < num_pages; i++)
5265 set_page_dirty(eb->pages[i]);
5266 return was_dirty;
5267}
5268
5269void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5270{
5271 unsigned long i;
5272 struct page *page;
5273 unsigned long num_pages;
5274
5275 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5276 num_pages = num_extent_pages(eb->start, eb->len);
5277 for (i = 0; i < num_pages; i++) {
5278 page = eb->pages[i];
5279 if (page)
5280 ClearPageUptodate(page);
5281 }
5282}
5283
5284void set_extent_buffer_uptodate(struct extent_buffer *eb)
5285{
5286 unsigned long i;
5287 struct page *page;
5288 unsigned long num_pages;
5289
5290 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5291 num_pages = num_extent_pages(eb->start, eb->len);
5292 for (i = 0; i < num_pages; i++) {
5293 page = eb->pages[i];
5294 SetPageUptodate(page);
5295 }
5296}
5297
5298int extent_buffer_uptodate(struct extent_buffer *eb)
5299{
5300 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5301}
5302
5303int read_extent_buffer_pages(struct extent_io_tree *tree,
5304 struct extent_buffer *eb, int wait,
5305 get_extent_t *get_extent, int mirror_num)
5306{
5307 unsigned long i;
5308 struct page *page;
5309 int err;
5310 int ret = 0;
5311 int locked_pages = 0;
5312 int all_uptodate = 1;
5313 unsigned long num_pages;
5314 unsigned long num_reads = 0;
5315 struct bio *bio = NULL;
5316 unsigned long bio_flags = 0;
5317
5318 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5319 return 0;
5320
5321 num_pages = num_extent_pages(eb->start, eb->len);
5322 for (i = 0; i < num_pages; i++) {
5323 page = eb->pages[i];
5324 if (wait == WAIT_NONE) {
5325 if (!trylock_page(page))
5326 goto unlock_exit;
5327 } else {
5328 lock_page(page);
5329 }
5330 locked_pages++;
5331 }
5332 /*
5333 * We need to firstly lock all pages to make sure that
5334 * the uptodate bit of our pages won't be affected by
5335 * clear_extent_buffer_uptodate().
5336 */
5337 for (i = 0; i < num_pages; i++) {
5338 page = eb->pages[i];
5339 if (!PageUptodate(page)) {
5340 num_reads++;
5341 all_uptodate = 0;
5342 }
5343 }
5344
5345 if (all_uptodate) {
5346 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5347 goto unlock_exit;
5348 }
5349
5350 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5351 eb->read_mirror = 0;
5352 atomic_set(&eb->io_pages, num_reads);
5353 /*
5354 * It is possible for releasepage to clear the TREE_REF bit before we
5355 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5356 */
5357 check_buffer_tree_ref(eb);
5358 for (i = 0; i < num_pages; i++) {
5359 page = eb->pages[i];
5360
5361 if (!PageUptodate(page)) {
5362 if (ret) {
5363 atomic_dec(&eb->io_pages);
5364 unlock_page(page);
5365 continue;
5366 }
5367
5368 ClearPageError(page);
5369 err = __extent_read_full_page(tree, page,
5370 get_extent, &bio,
5371 mirror_num, &bio_flags,
5372 REQ_META);
5373 if (err) {
5374 ret = err;
5375 /*
5376 * We use &bio in above __extent_read_full_page,
5377 * so we ensure that if it returns error, the
5378 * current page fails to add itself to bio and
5379 * it's been unlocked.
5380 *
5381 * We must dec io_pages by ourselves.
5382 */
5383 atomic_dec(&eb->io_pages);
5384 }
5385 } else {
5386 unlock_page(page);
5387 }
5388 }
5389
5390 if (bio) {
5391 err = submit_one_bio(bio, mirror_num, bio_flags);
5392 if (err)
5393 return err;
5394 }
5395
5396 if (ret || wait != WAIT_COMPLETE)
5397 return ret;
5398
5399 for (i = 0; i < num_pages; i++) {
5400 page = eb->pages[i];
5401 wait_on_page_locked(page);
5402 if (!PageUptodate(page))
5403 ret = -EIO;
5404 }
5405
5406 return ret;
5407
5408unlock_exit:
5409 while (locked_pages > 0) {
5410 locked_pages--;
5411 page = eb->pages[locked_pages];
5412 unlock_page(page);
5413 }
5414 return ret;
5415}
5416
5417void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5418 unsigned long start, unsigned long len)
5419{
5420 size_t cur;
5421 size_t offset;
5422 struct page *page;
5423 char *kaddr;
5424 char *dst = (char *)dstv;
5425 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5426 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5427
5428 if (start + len > eb->len) {
5429 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5430 eb->start, eb->len, start, len);
5431 memset(dst, 0, len);
5432 return;
5433 }
5434
5435 offset = (start_offset + start) & (PAGE_SIZE - 1);
5436
5437 while (len > 0) {
5438 page = eb->pages[i];
5439
5440 cur = min(len, (PAGE_SIZE - offset));
5441 kaddr = page_address(page);
5442 memcpy(dst, kaddr + offset, cur);
5443
5444 dst += cur;
5445 len -= cur;
5446 offset = 0;
5447 i++;
5448 }
5449}
5450
5451int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5452 void __user *dstv,
5453 unsigned long start, unsigned long len)
5454{
5455 size_t cur;
5456 size_t offset;
5457 struct page *page;
5458 char *kaddr;
5459 char __user *dst = (char __user *)dstv;
5460 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5461 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5462 int ret = 0;
5463
5464 WARN_ON(start > eb->len);
5465 WARN_ON(start + len > eb->start + eb->len);
5466
5467 offset = (start_offset + start) & (PAGE_SIZE - 1);
5468
5469 while (len > 0) {
5470 page = eb->pages[i];
5471
5472 cur = min(len, (PAGE_SIZE - offset));
5473 kaddr = page_address(page);
5474 if (probe_user_write(dst, kaddr + offset, cur)) {
5475 ret = -EFAULT;
5476 break;
5477 }
5478
5479 dst += cur;
5480 len -= cur;
5481 offset = 0;
5482 i++;
5483 }
5484
5485 return ret;
5486}
5487
5488/*
5489 * return 0 if the item is found within a page.
5490 * return 1 if the item spans two pages.
5491 * return -EINVAL otherwise.
5492 */
5493int map_private_extent_buffer(const struct extent_buffer *eb,
5494 unsigned long start, unsigned long min_len,
5495 char **map, unsigned long *map_start,
5496 unsigned long *map_len)
5497{
5498 size_t offset = start & (PAGE_SIZE - 1);
5499 char *kaddr;
5500 struct page *p;
5501 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5502 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5503 unsigned long end_i = (start_offset + start + min_len - 1) >>
5504 PAGE_SHIFT;
5505
5506 if (start + min_len > eb->len) {
5507 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5508 eb->start, eb->len, start, min_len);
5509 return -EINVAL;
5510 }
5511
5512 if (i != end_i)
5513 return 1;
5514
5515 if (i == 0) {
5516 offset = start_offset;
5517 *map_start = 0;
5518 } else {
5519 offset = 0;
5520 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5521 }
5522
5523 p = eb->pages[i];
5524 kaddr = page_address(p);
5525 *map = kaddr + offset;
5526 *map_len = PAGE_SIZE - offset;
5527 return 0;
5528}
5529
5530int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5531 unsigned long start, unsigned long len)
5532{
5533 size_t cur;
5534 size_t offset;
5535 struct page *page;
5536 char *kaddr;
5537 char *ptr = (char *)ptrv;
5538 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5539 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5540 int ret = 0;
5541
5542 WARN_ON(start > eb->len);
5543 WARN_ON(start + len > eb->start + eb->len);
5544
5545 offset = (start_offset + start) & (PAGE_SIZE - 1);
5546
5547 while (len > 0) {
5548 page = eb->pages[i];
5549
5550 cur = min(len, (PAGE_SIZE - offset));
5551
5552 kaddr = page_address(page);
5553 ret = memcmp(ptr, kaddr + offset, cur);
5554 if (ret)
5555 break;
5556
5557 ptr += cur;
5558 len -= cur;
5559 offset = 0;
5560 i++;
5561 }
5562 return ret;
5563}
5564
5565void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5566 const void *srcv)
5567{
5568 char *kaddr;
5569
5570 WARN_ON(!PageUptodate(eb->pages[0]));
5571 kaddr = page_address(eb->pages[0]);
5572 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5573 BTRFS_FSID_SIZE);
5574}
5575
5576void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5577{
5578 char *kaddr;
5579
5580 WARN_ON(!PageUptodate(eb->pages[0]));
5581 kaddr = page_address(eb->pages[0]);
5582 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5583 BTRFS_FSID_SIZE);
5584}
5585
5586void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5587 unsigned long start, unsigned long len)
5588{
5589 size_t cur;
5590 size_t offset;
5591 struct page *page;
5592 char *kaddr;
5593 char *src = (char *)srcv;
5594 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5595 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5596
5597 WARN_ON(start > eb->len);
5598 WARN_ON(start + len > eb->start + eb->len);
5599
5600 offset = (start_offset + start) & (PAGE_SIZE - 1);
5601
5602 while (len > 0) {
5603 page = eb->pages[i];
5604 WARN_ON(!PageUptodate(page));
5605
5606 cur = min(len, PAGE_SIZE - offset);
5607 kaddr = page_address(page);
5608 memcpy(kaddr + offset, src, cur);
5609
5610 src += cur;
5611 len -= cur;
5612 offset = 0;
5613 i++;
5614 }
5615}
5616
5617void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5618 unsigned long len)
5619{
5620 size_t cur;
5621 size_t offset;
5622 struct page *page;
5623 char *kaddr;
5624 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5625 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5626
5627 WARN_ON(start > eb->len);
5628 WARN_ON(start + len > eb->start + eb->len);
5629
5630 offset = (start_offset + start) & (PAGE_SIZE - 1);
5631
5632 while (len > 0) {
5633 page = eb->pages[i];
5634 WARN_ON(!PageUptodate(page));
5635
5636 cur = min(len, PAGE_SIZE - offset);
5637 kaddr = page_address(page);
5638 memset(kaddr + offset, 0, cur);
5639
5640 len -= cur;
5641 offset = 0;
5642 i++;
5643 }
5644}
5645
5646void copy_extent_buffer_full(struct extent_buffer *dst,
5647 struct extent_buffer *src)
5648{
5649 int i;
5650 unsigned num_pages;
5651
5652 ASSERT(dst->len == src->len);
5653
5654 num_pages = num_extent_pages(dst->start, dst->len);
5655 for (i = 0; i < num_pages; i++)
5656 copy_page(page_address(dst->pages[i]),
5657 page_address(src->pages[i]));
5658}
5659
5660void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5661 unsigned long dst_offset, unsigned long src_offset,
5662 unsigned long len)
5663{
5664 u64 dst_len = dst->len;
5665 size_t cur;
5666 size_t offset;
5667 struct page *page;
5668 char *kaddr;
5669 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5670 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5671
5672 WARN_ON(src->len != dst_len);
5673
5674 offset = (start_offset + dst_offset) &
5675 (PAGE_SIZE - 1);
5676
5677 while (len > 0) {
5678 page = dst->pages[i];
5679 WARN_ON(!PageUptodate(page));
5680
5681 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5682
5683 kaddr = page_address(page);
5684 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5685
5686 src_offset += cur;
5687 len -= cur;
5688 offset = 0;
5689 i++;
5690 }
5691}
5692
5693void le_bitmap_set(u8 *map, unsigned int start, int len)
5694{
5695 u8 *p = map + BIT_BYTE(start);
5696 const unsigned int size = start + len;
5697 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5698 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5699
5700 while (len - bits_to_set >= 0) {
5701 *p |= mask_to_set;
5702 len -= bits_to_set;
5703 bits_to_set = BITS_PER_BYTE;
5704 mask_to_set = ~0;
5705 p++;
5706 }
5707 if (len) {
5708 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5709 *p |= mask_to_set;
5710 }
5711}
5712
5713void le_bitmap_clear(u8 *map, unsigned int start, int len)
5714{
5715 u8 *p = map + BIT_BYTE(start);
5716 const unsigned int size = start + len;
5717 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5718 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5719
5720 while (len - bits_to_clear >= 0) {
5721 *p &= ~mask_to_clear;
5722 len -= bits_to_clear;
5723 bits_to_clear = BITS_PER_BYTE;
5724 mask_to_clear = ~0;
5725 p++;
5726 }
5727 if (len) {
5728 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5729 *p &= ~mask_to_clear;
5730 }
5731}
5732
5733/*
5734 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5735 * given bit number
5736 * @eb: the extent buffer
5737 * @start: offset of the bitmap item in the extent buffer
5738 * @nr: bit number
5739 * @page_index: return index of the page in the extent buffer that contains the
5740 * given bit number
5741 * @page_offset: return offset into the page given by page_index
5742 *
5743 * This helper hides the ugliness of finding the byte in an extent buffer which
5744 * contains a given bit.
5745 */
5746static inline void eb_bitmap_offset(struct extent_buffer *eb,
5747 unsigned long start, unsigned long nr,
5748 unsigned long *page_index,
5749 size_t *page_offset)
5750{
5751 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5752 size_t byte_offset = BIT_BYTE(nr);
5753 size_t offset;
5754
5755 /*
5756 * The byte we want is the offset of the extent buffer + the offset of
5757 * the bitmap item in the extent buffer + the offset of the byte in the
5758 * bitmap item.
5759 */
5760 offset = start_offset + start + byte_offset;
5761
5762 *page_index = offset >> PAGE_SHIFT;
5763 *page_offset = offset & (PAGE_SIZE - 1);
5764}
5765
5766/**
5767 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5768 * @eb: the extent buffer
5769 * @start: offset of the bitmap item in the extent buffer
5770 * @nr: bit number to test
5771 */
5772int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5773 unsigned long nr)
5774{
5775 u8 *kaddr;
5776 struct page *page;
5777 unsigned long i;
5778 size_t offset;
5779
5780 eb_bitmap_offset(eb, start, nr, &i, &offset);
5781 page = eb->pages[i];
5782 WARN_ON(!PageUptodate(page));
5783 kaddr = page_address(page);
5784 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5785}
5786
5787/**
5788 * extent_buffer_bitmap_set - set an area of a bitmap
5789 * @eb: the extent buffer
5790 * @start: offset of the bitmap item in the extent buffer
5791 * @pos: bit number of the first bit
5792 * @len: number of bits to set
5793 */
5794void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5795 unsigned long pos, unsigned long len)
5796{
5797 u8 *kaddr;
5798 struct page *page;
5799 unsigned long i;
5800 size_t offset;
5801 const unsigned int size = pos + len;
5802 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5803 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5804
5805 eb_bitmap_offset(eb, start, pos, &i, &offset);
5806 page = eb->pages[i];
5807 WARN_ON(!PageUptodate(page));
5808 kaddr = page_address(page);
5809
5810 while (len >= bits_to_set) {
5811 kaddr[offset] |= mask_to_set;
5812 len -= bits_to_set;
5813 bits_to_set = BITS_PER_BYTE;
5814 mask_to_set = ~0;
5815 if (++offset >= PAGE_SIZE && len > 0) {
5816 offset = 0;
5817 page = eb->pages[++i];
5818 WARN_ON(!PageUptodate(page));
5819 kaddr = page_address(page);
5820 }
5821 }
5822 if (len) {
5823 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5824 kaddr[offset] |= mask_to_set;
5825 }
5826}
5827
5828
5829/**
5830 * extent_buffer_bitmap_clear - clear an area of a bitmap
5831 * @eb: the extent buffer
5832 * @start: offset of the bitmap item in the extent buffer
5833 * @pos: bit number of the first bit
5834 * @len: number of bits to clear
5835 */
5836void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5837 unsigned long pos, unsigned long len)
5838{
5839 u8 *kaddr;
5840 struct page *page;
5841 unsigned long i;
5842 size_t offset;
5843 const unsigned int size = pos + len;
5844 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5845 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5846
5847 eb_bitmap_offset(eb, start, pos, &i, &offset);
5848 page = eb->pages[i];
5849 WARN_ON(!PageUptodate(page));
5850 kaddr = page_address(page);
5851
5852 while (len >= bits_to_clear) {
5853 kaddr[offset] &= ~mask_to_clear;
5854 len -= bits_to_clear;
5855 bits_to_clear = BITS_PER_BYTE;
5856 mask_to_clear = ~0;
5857 if (++offset >= PAGE_SIZE && len > 0) {
5858 offset = 0;
5859 page = eb->pages[++i];
5860 WARN_ON(!PageUptodate(page));
5861 kaddr = page_address(page);
5862 }
5863 }
5864 if (len) {
5865 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5866 kaddr[offset] &= ~mask_to_clear;
5867 }
5868}
5869
5870static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5871{
5872 unsigned long distance = (src > dst) ? src - dst : dst - src;
5873 return distance < len;
5874}
5875
5876static void copy_pages(struct page *dst_page, struct page *src_page,
5877 unsigned long dst_off, unsigned long src_off,
5878 unsigned long len)
5879{
5880 char *dst_kaddr = page_address(dst_page);
5881 char *src_kaddr;
5882 int must_memmove = 0;
5883
5884 if (dst_page != src_page) {
5885 src_kaddr = page_address(src_page);
5886 } else {
5887 src_kaddr = dst_kaddr;
5888 if (areas_overlap(src_off, dst_off, len))
5889 must_memmove = 1;
5890 }
5891
5892 if (must_memmove)
5893 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5894 else
5895 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5896}
5897
5898void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5899 unsigned long src_offset, unsigned long len)
5900{
5901 struct btrfs_fs_info *fs_info = dst->fs_info;
5902 size_t cur;
5903 size_t dst_off_in_page;
5904 size_t src_off_in_page;
5905 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5906 unsigned long dst_i;
5907 unsigned long src_i;
5908
5909 if (src_offset + len > dst->len) {
5910 btrfs_err(fs_info,
5911 "memmove bogus src_offset %lu move len %lu dst len %lu",
5912 src_offset, len, dst->len);
5913 BUG_ON(1);
5914 }
5915 if (dst_offset + len > dst->len) {
5916 btrfs_err(fs_info,
5917 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5918 dst_offset, len, dst->len);
5919 BUG_ON(1);
5920 }
5921
5922 while (len > 0) {
5923 dst_off_in_page = (start_offset + dst_offset) &
5924 (PAGE_SIZE - 1);
5925 src_off_in_page = (start_offset + src_offset) &
5926 (PAGE_SIZE - 1);
5927
5928 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5929 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5930
5931 cur = min(len, (unsigned long)(PAGE_SIZE -
5932 src_off_in_page));
5933 cur = min_t(unsigned long, cur,
5934 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5935
5936 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5937 dst_off_in_page, src_off_in_page, cur);
5938
5939 src_offset += cur;
5940 dst_offset += cur;
5941 len -= cur;
5942 }
5943}
5944
5945void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5946 unsigned long src_offset, unsigned long len)
5947{
5948 struct btrfs_fs_info *fs_info = dst->fs_info;
5949 size_t cur;
5950 size_t dst_off_in_page;
5951 size_t src_off_in_page;
5952 unsigned long dst_end = dst_offset + len - 1;
5953 unsigned long src_end = src_offset + len - 1;
5954 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5955 unsigned long dst_i;
5956 unsigned long src_i;
5957
5958 if (src_offset + len > dst->len) {
5959 btrfs_err(fs_info,
5960 "memmove bogus src_offset %lu move len %lu len %lu",
5961 src_offset, len, dst->len);
5962 BUG_ON(1);
5963 }
5964 if (dst_offset + len > dst->len) {
5965 btrfs_err(fs_info,
5966 "memmove bogus dst_offset %lu move len %lu len %lu",
5967 dst_offset, len, dst->len);
5968 BUG_ON(1);
5969 }
5970 if (dst_offset < src_offset) {
5971 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5972 return;
5973 }
5974 while (len > 0) {
5975 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5976 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5977
5978 dst_off_in_page = (start_offset + dst_end) &
5979 (PAGE_SIZE - 1);
5980 src_off_in_page = (start_offset + src_end) &
5981 (PAGE_SIZE - 1);
5982
5983 cur = min_t(unsigned long, len, src_off_in_page + 1);
5984 cur = min(cur, dst_off_in_page + 1);
5985 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5986 dst_off_in_page - cur + 1,
5987 src_off_in_page - cur + 1, cur);
5988
5989 dst_end -= cur;
5990 src_end -= cur;
5991 len -= cur;
5992 }
5993}
5994
5995int try_release_extent_buffer(struct page *page)
5996{
5997 struct extent_buffer *eb;
5998
5999 /*
6000 * We need to make sure nobody is attaching this page to an eb right
6001 * now.
6002 */
6003 spin_lock(&page->mapping->private_lock);
6004 if (!PagePrivate(page)) {
6005 spin_unlock(&page->mapping->private_lock);
6006 return 1;
6007 }
6008
6009 eb = (struct extent_buffer *)page->private;
6010 BUG_ON(!eb);
6011
6012 /*
6013 * This is a little awful but should be ok, we need to make sure that
6014 * the eb doesn't disappear out from under us while we're looking at
6015 * this page.
6016 */
6017 spin_lock(&eb->refs_lock);
6018 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6019 spin_unlock(&eb->refs_lock);
6020 spin_unlock(&page->mapping->private_lock);
6021 return 0;
6022 }
6023 spin_unlock(&page->mapping->private_lock);
6024
6025 /*
6026 * If tree ref isn't set then we know the ref on this eb is a real ref,
6027 * so just return, this page will likely be freed soon anyway.
6028 */
6029 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6030 spin_unlock(&eb->refs_lock);
6031 return 0;
6032 }
6033
6034 return release_extent_buffer(eb);
6035}