blob: 725544ec9c842c4bfa598cea06cf05d25026b556 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
27#include <linux/falloc.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/compat.h>
31#include <linux/slab.h>
32#include <linux/btrfs.h>
33#include <linux/uio.h>
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
38#include "print-tree.h"
39#include "tree-log.h"
40#include "locking.h"
41#include "volumes.h"
42#include "qgroup.h"
43#include "compression.h"
44
45static struct kmem_cache *btrfs_inode_defrag_cachep;
46/*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69};
70
71static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73{
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84}
85
86/* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
95static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
96 struct inode_defrag *defrag)
97{
98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
102 int ret;
103
104 p = &fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
111 p = &parent->rb_left;
112 else if (ret > 0)
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
123 return -EEXIST;
124 }
125 }
126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
129 return 0;
130}
131
132static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
133{
134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
135 return 0;
136
137 if (btrfs_fs_closing(fs_info))
138 return 0;
139
140 return 1;
141}
142
143/*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct btrfs_inode *inode)
149{
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
155
156 if (!__need_auto_defrag(fs_info))
157 return 0;
158
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = inode->root->last_trans;
166
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
170
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
175 spin_lock(&fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 }
188 spin_unlock(&fs_info->defrag_inodes_lock);
189 return 0;
190}
191
192/*
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 */
197static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
198 struct inode_defrag *defrag)
199{
200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
201 int ret;
202
203 if (!__need_auto_defrag(fs_info))
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
210 spin_lock(&fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218}
219
220/*
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
223 */
224static struct inode_defrag *
225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226{
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
235
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
249 }
250
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
257 }
258out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
263}
264
265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266{
267 struct inode_defrag *defrag;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282}
283
284#define BTRFS_DEFRAG_BATCH 1024
285
286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288{
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
309
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
317 }
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
325
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
353cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
357}
358
359/*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364{
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
368
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
376 if (!__need_auto_defrag(fs_info))
377 break;
378
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
394
395 __btrfs_run_defrag_inode(fs_info, defrag);
396 }
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405}
406
407/* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413{
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459}
460
461/*
462 * unlocks pages after btrfs_file_write is done with them
463 */
464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465{
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
477 }
478}
479
480/*
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
484 *
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
487 */
488int btrfs_dirty_pages(struct inode *inode, struct page **pages,
489 size_t num_pages, loff_t pos, size_t write_bytes,
490 struct extent_state **cached)
491{
492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
493 int err = 0;
494 int i;
495 u64 num_bytes;
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
500
501 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
502 num_bytes = round_up(write_bytes + pos - start_pos,
503 fs_info->sectorsize);
504
505 end_of_last_block = start_pos + num_bytes - 1;
506 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
507 cached, 0);
508 if (err)
509 return err;
510
511 for (i = 0; i < num_pages; i++) {
512 struct page *p = pages[i];
513 SetPageUptodate(p);
514 ClearPageChecked(p);
515 set_page_dirty(p);
516 }
517
518 /*
519 * we've only changed i_size in ram, and we haven't updated
520 * the disk i_size. There is no need to log the inode
521 * at this time.
522 */
523 if (end_pos > isize)
524 i_size_write(inode, end_pos);
525 return 0;
526}
527
528/*
529 * this drops all the extents in the cache that intersect the range
530 * [start, end]. Existing extents are split as required.
531 */
532void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
533 int skip_pinned)
534{
535 struct extent_map *em;
536 struct extent_map *split = NULL;
537 struct extent_map *split2 = NULL;
538 struct extent_map_tree *em_tree = &inode->extent_tree;
539 u64 len = end - start + 1;
540 u64 gen;
541 int ret;
542 int testend = 1;
543 unsigned long flags;
544 int compressed = 0;
545 bool modified;
546
547 WARN_ON(end < start);
548 if (end == (u64)-1) {
549 len = (u64)-1;
550 testend = 0;
551 }
552 while (1) {
553 int no_splits = 0;
554
555 modified = false;
556 if (!split)
557 split = alloc_extent_map();
558 if (!split2)
559 split2 = alloc_extent_map();
560 if (!split || !split2)
561 no_splits = 1;
562
563 write_lock(&em_tree->lock);
564 em = lookup_extent_mapping(em_tree, start, len);
565 if (!em) {
566 write_unlock(&em_tree->lock);
567 break;
568 }
569 flags = em->flags;
570 gen = em->generation;
571 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
572 if (testend && em->start + em->len >= start + len) {
573 free_extent_map(em);
574 write_unlock(&em_tree->lock);
575 break;
576 }
577 start = em->start + em->len;
578 if (testend)
579 len = start + len - (em->start + em->len);
580 free_extent_map(em);
581 write_unlock(&em_tree->lock);
582 continue;
583 }
584 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
585 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
586 clear_bit(EXTENT_FLAG_LOGGING, &flags);
587 modified = !list_empty(&em->list);
588 if (no_splits)
589 goto next;
590
591 if (em->start < start) {
592 split->start = em->start;
593 split->len = start - em->start;
594
595 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
596 split->orig_start = em->orig_start;
597 split->block_start = em->block_start;
598
599 if (compressed)
600 split->block_len = em->block_len;
601 else
602 split->block_len = split->len;
603 split->orig_block_len = max(split->block_len,
604 em->orig_block_len);
605 split->ram_bytes = em->ram_bytes;
606 } else {
607 split->orig_start = split->start;
608 split->block_len = 0;
609 split->block_start = em->block_start;
610 split->orig_block_len = 0;
611 split->ram_bytes = split->len;
612 }
613
614 split->generation = gen;
615 split->bdev = em->bdev;
616 split->flags = flags;
617 split->compress_type = em->compress_type;
618 replace_extent_mapping(em_tree, em, split, modified);
619 free_extent_map(split);
620 split = split2;
621 split2 = NULL;
622 }
623 if (testend && em->start + em->len > start + len) {
624 u64 diff = start + len - em->start;
625
626 split->start = start + len;
627 split->len = em->start + em->len - (start + len);
628 split->bdev = em->bdev;
629 split->flags = flags;
630 split->compress_type = em->compress_type;
631 split->generation = gen;
632
633 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
634 split->orig_block_len = max(em->block_len,
635 em->orig_block_len);
636
637 split->ram_bytes = em->ram_bytes;
638 if (compressed) {
639 split->block_len = em->block_len;
640 split->block_start = em->block_start;
641 split->orig_start = em->orig_start;
642 } else {
643 split->block_len = split->len;
644 split->block_start = em->block_start
645 + diff;
646 split->orig_start = em->orig_start;
647 }
648 } else {
649 split->ram_bytes = split->len;
650 split->orig_start = split->start;
651 split->block_len = 0;
652 split->block_start = em->block_start;
653 split->orig_block_len = 0;
654 }
655
656 if (extent_map_in_tree(em)) {
657 replace_extent_mapping(em_tree, em, split,
658 modified);
659 } else {
660 ret = add_extent_mapping(em_tree, split,
661 modified);
662 ASSERT(ret == 0); /* Logic error */
663 }
664 free_extent_map(split);
665 split = NULL;
666 }
667next:
668 if (extent_map_in_tree(em))
669 remove_extent_mapping(em_tree, em);
670 write_unlock(&em_tree->lock);
671
672 /* once for us */
673 free_extent_map(em);
674 /* once for the tree*/
675 free_extent_map(em);
676 }
677 if (split)
678 free_extent_map(split);
679 if (split2)
680 free_extent_map(split2);
681}
682
683/*
684 * this is very complex, but the basic idea is to drop all extents
685 * in the range start - end. hint_block is filled in with a block number
686 * that would be a good hint to the block allocator for this file.
687 *
688 * If an extent intersects the range but is not entirely inside the range
689 * it is either truncated or split. Anything entirely inside the range
690 * is deleted from the tree.
691 */
692int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693 struct btrfs_root *root, struct inode *inode,
694 struct btrfs_path *path, u64 start, u64 end,
695 u64 *drop_end, int drop_cache,
696 int replace_extent,
697 u32 extent_item_size,
698 int *key_inserted)
699{
700 struct btrfs_fs_info *fs_info = root->fs_info;
701 struct extent_buffer *leaf;
702 struct btrfs_file_extent_item *fi;
703 struct btrfs_key key;
704 struct btrfs_key new_key;
705 u64 ino = btrfs_ino(BTRFS_I(inode));
706 u64 search_start = start;
707 u64 disk_bytenr = 0;
708 u64 num_bytes = 0;
709 u64 extent_offset = 0;
710 u64 extent_end = 0;
711 u64 last_end = start;
712 int del_nr = 0;
713 int del_slot = 0;
714 int extent_type;
715 int recow;
716 int ret;
717 int modify_tree = -1;
718 int update_refs;
719 int found = 0;
720 int leafs_visited = 0;
721
722 if (drop_cache)
723 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
724
725 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
726 modify_tree = 0;
727
728 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
729 root == fs_info->tree_root);
730 while (1) {
731 recow = 0;
732 ret = btrfs_lookup_file_extent(trans, root, path, ino,
733 search_start, modify_tree);
734 if (ret < 0)
735 break;
736 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
737 leaf = path->nodes[0];
738 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
739 if (key.objectid == ino &&
740 key.type == BTRFS_EXTENT_DATA_KEY)
741 path->slots[0]--;
742 }
743 ret = 0;
744 leafs_visited++;
745next_slot:
746 leaf = path->nodes[0];
747 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
748 BUG_ON(del_nr > 0);
749 ret = btrfs_next_leaf(root, path);
750 if (ret < 0)
751 break;
752 if (ret > 0) {
753 ret = 0;
754 break;
755 }
756 leafs_visited++;
757 leaf = path->nodes[0];
758 recow = 1;
759 }
760
761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
762
763 if (key.objectid > ino)
764 break;
765 if (WARN_ON_ONCE(key.objectid < ino) ||
766 key.type < BTRFS_EXTENT_DATA_KEY) {
767 ASSERT(del_nr == 0);
768 path->slots[0]++;
769 goto next_slot;
770 }
771 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
772 break;
773
774 fi = btrfs_item_ptr(leaf, path->slots[0],
775 struct btrfs_file_extent_item);
776 extent_type = btrfs_file_extent_type(leaf, fi);
777
778 if (extent_type == BTRFS_FILE_EXTENT_REG ||
779 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
780 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
781 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
782 extent_offset = btrfs_file_extent_offset(leaf, fi);
783 extent_end = key.offset +
784 btrfs_file_extent_num_bytes(leaf, fi);
785 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
786 extent_end = key.offset +
787 btrfs_file_extent_ram_bytes(leaf, fi);
788 } else {
789 /* can't happen */
790 BUG();
791 }
792
793 /*
794 * Don't skip extent items representing 0 byte lengths. They
795 * used to be created (bug) if while punching holes we hit
796 * -ENOSPC condition. So if we find one here, just ensure we
797 * delete it, otherwise we would insert a new file extent item
798 * with the same key (offset) as that 0 bytes length file
799 * extent item in the call to setup_items_for_insert() later
800 * in this function.
801 */
802 if (extent_end == key.offset && extent_end >= search_start) {
803 last_end = extent_end;
804 goto delete_extent_item;
805 }
806
807 if (extent_end <= search_start) {
808 path->slots[0]++;
809 goto next_slot;
810 }
811
812 found = 1;
813 search_start = max(key.offset, start);
814 if (recow || !modify_tree) {
815 modify_tree = -1;
816 btrfs_release_path(path);
817 continue;
818 }
819
820 /*
821 * | - range to drop - |
822 * | -------- extent -------- |
823 */
824 if (start > key.offset && end < extent_end) {
825 BUG_ON(del_nr > 0);
826 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
827 ret = -EOPNOTSUPP;
828 break;
829 }
830
831 memcpy(&new_key, &key, sizeof(new_key));
832 new_key.offset = start;
833 ret = btrfs_duplicate_item(trans, root, path,
834 &new_key);
835 if (ret == -EAGAIN) {
836 btrfs_release_path(path);
837 continue;
838 }
839 if (ret < 0)
840 break;
841
842 leaf = path->nodes[0];
843 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
844 struct btrfs_file_extent_item);
845 btrfs_set_file_extent_num_bytes(leaf, fi,
846 start - key.offset);
847
848 fi = btrfs_item_ptr(leaf, path->slots[0],
849 struct btrfs_file_extent_item);
850
851 extent_offset += start - key.offset;
852 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
853 btrfs_set_file_extent_num_bytes(leaf, fi,
854 extent_end - start);
855 btrfs_mark_buffer_dirty(leaf);
856
857 if (update_refs && disk_bytenr > 0) {
858 ret = btrfs_inc_extent_ref(trans, fs_info,
859 disk_bytenr, num_bytes, 0,
860 root->root_key.objectid,
861 new_key.objectid,
862 start - extent_offset);
863 BUG_ON(ret); /* -ENOMEM */
864 }
865 key.offset = start;
866 }
867 /*
868 * From here on out we will have actually dropped something, so
869 * last_end can be updated.
870 */
871 last_end = extent_end;
872
873 /*
874 * | ---- range to drop ----- |
875 * | -------- extent -------- |
876 */
877 if (start <= key.offset && end < extent_end) {
878 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
879 ret = -EOPNOTSUPP;
880 break;
881 }
882
883 memcpy(&new_key, &key, sizeof(new_key));
884 new_key.offset = end;
885 btrfs_set_item_key_safe(fs_info, path, &new_key);
886
887 extent_offset += end - key.offset;
888 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
889 btrfs_set_file_extent_num_bytes(leaf, fi,
890 extent_end - end);
891 btrfs_mark_buffer_dirty(leaf);
892 if (update_refs && disk_bytenr > 0)
893 inode_sub_bytes(inode, end - key.offset);
894 break;
895 }
896
897 search_start = extent_end;
898 /*
899 * | ---- range to drop ----- |
900 * | -------- extent -------- |
901 */
902 if (start > key.offset && end >= extent_end) {
903 BUG_ON(del_nr > 0);
904 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
905 ret = -EOPNOTSUPP;
906 break;
907 }
908
909 btrfs_set_file_extent_num_bytes(leaf, fi,
910 start - key.offset);
911 btrfs_mark_buffer_dirty(leaf);
912 if (update_refs && disk_bytenr > 0)
913 inode_sub_bytes(inode, extent_end - start);
914 if (end == extent_end)
915 break;
916
917 path->slots[0]++;
918 goto next_slot;
919 }
920
921 /*
922 * | ---- range to drop ----- |
923 * | ------ extent ------ |
924 */
925 if (start <= key.offset && end >= extent_end) {
926delete_extent_item:
927 if (del_nr == 0) {
928 del_slot = path->slots[0];
929 del_nr = 1;
930 } else {
931 BUG_ON(del_slot + del_nr != path->slots[0]);
932 del_nr++;
933 }
934
935 if (update_refs &&
936 extent_type == BTRFS_FILE_EXTENT_INLINE) {
937 inode_sub_bytes(inode,
938 extent_end - key.offset);
939 extent_end = ALIGN(extent_end,
940 fs_info->sectorsize);
941 } else if (update_refs && disk_bytenr > 0) {
942 ret = btrfs_free_extent(trans, fs_info,
943 disk_bytenr, num_bytes, 0,
944 root->root_key.objectid,
945 key.objectid, key.offset -
946 extent_offset);
947 BUG_ON(ret); /* -ENOMEM */
948 inode_sub_bytes(inode,
949 extent_end - key.offset);
950 }
951
952 if (end == extent_end)
953 break;
954
955 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
956 path->slots[0]++;
957 goto next_slot;
958 }
959
960 ret = btrfs_del_items(trans, root, path, del_slot,
961 del_nr);
962 if (ret) {
963 btrfs_abort_transaction(trans, ret);
964 break;
965 }
966
967 del_nr = 0;
968 del_slot = 0;
969
970 btrfs_release_path(path);
971 continue;
972 }
973
974 BUG_ON(1);
975 }
976
977 if (!ret && del_nr > 0) {
978 /*
979 * Set path->slots[0] to first slot, so that after the delete
980 * if items are move off from our leaf to its immediate left or
981 * right neighbor leafs, we end up with a correct and adjusted
982 * path->slots[0] for our insertion (if replace_extent != 0).
983 */
984 path->slots[0] = del_slot;
985 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
986 if (ret)
987 btrfs_abort_transaction(trans, ret);
988 }
989
990 leaf = path->nodes[0];
991 /*
992 * If btrfs_del_items() was called, it might have deleted a leaf, in
993 * which case it unlocked our path, so check path->locks[0] matches a
994 * write lock.
995 */
996 if (!ret && replace_extent && leafs_visited == 1 &&
997 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
998 path->locks[0] == BTRFS_WRITE_LOCK) &&
999 btrfs_leaf_free_space(fs_info, leaf) >=
1000 sizeof(struct btrfs_item) + extent_item_size) {
1001
1002 key.objectid = ino;
1003 key.type = BTRFS_EXTENT_DATA_KEY;
1004 key.offset = start;
1005 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1006 struct btrfs_key slot_key;
1007
1008 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1009 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1010 path->slots[0]++;
1011 }
1012 setup_items_for_insert(root, path, &key,
1013 &extent_item_size,
1014 extent_item_size,
1015 sizeof(struct btrfs_item) +
1016 extent_item_size, 1);
1017 *key_inserted = 1;
1018 }
1019
1020 if (!replace_extent || !(*key_inserted))
1021 btrfs_release_path(path);
1022 if (drop_end)
1023 *drop_end = found ? min(end, last_end) : end;
1024 return ret;
1025}
1026
1027int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1028 struct btrfs_root *root, struct inode *inode, u64 start,
1029 u64 end, int drop_cache)
1030{
1031 struct btrfs_path *path;
1032 int ret;
1033
1034 path = btrfs_alloc_path();
1035 if (!path)
1036 return -ENOMEM;
1037 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1038 drop_cache, 0, 0, NULL);
1039 btrfs_free_path(path);
1040 return ret;
1041}
1042
1043static int extent_mergeable(struct extent_buffer *leaf, int slot,
1044 u64 objectid, u64 bytenr, u64 orig_offset,
1045 u64 *start, u64 *end)
1046{
1047 struct btrfs_file_extent_item *fi;
1048 struct btrfs_key key;
1049 u64 extent_end;
1050
1051 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1052 return 0;
1053
1054 btrfs_item_key_to_cpu(leaf, &key, slot);
1055 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1056 return 0;
1057
1058 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1059 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1060 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1061 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1062 btrfs_file_extent_compression(leaf, fi) ||
1063 btrfs_file_extent_encryption(leaf, fi) ||
1064 btrfs_file_extent_other_encoding(leaf, fi))
1065 return 0;
1066
1067 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1068 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1069 return 0;
1070
1071 *start = key.offset;
1072 *end = extent_end;
1073 return 1;
1074}
1075
1076/*
1077 * Mark extent in the range start - end as written.
1078 *
1079 * This changes extent type from 'pre-allocated' to 'regular'. If only
1080 * part of extent is marked as written, the extent will be split into
1081 * two or three.
1082 */
1083int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1084 struct btrfs_inode *inode, u64 start, u64 end)
1085{
1086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1087 struct btrfs_root *root = inode->root;
1088 struct extent_buffer *leaf;
1089 struct btrfs_path *path;
1090 struct btrfs_file_extent_item *fi;
1091 struct btrfs_key key;
1092 struct btrfs_key new_key;
1093 u64 bytenr;
1094 u64 num_bytes;
1095 u64 extent_end;
1096 u64 orig_offset;
1097 u64 other_start;
1098 u64 other_end;
1099 u64 split;
1100 int del_nr = 0;
1101 int del_slot = 0;
1102 int recow;
1103 int ret;
1104 u64 ino = btrfs_ino(inode);
1105
1106 path = btrfs_alloc_path();
1107 if (!path)
1108 return -ENOMEM;
1109again:
1110 recow = 0;
1111 split = start;
1112 key.objectid = ino;
1113 key.type = BTRFS_EXTENT_DATA_KEY;
1114 key.offset = split;
1115
1116 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1117 if (ret < 0)
1118 goto out;
1119 if (ret > 0 && path->slots[0] > 0)
1120 path->slots[0]--;
1121
1122 leaf = path->nodes[0];
1123 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1124 if (key.objectid != ino ||
1125 key.type != BTRFS_EXTENT_DATA_KEY) {
1126 ret = -EINVAL;
1127 btrfs_abort_transaction(trans, ret);
1128 goto out;
1129 }
1130 fi = btrfs_item_ptr(leaf, path->slots[0],
1131 struct btrfs_file_extent_item);
1132 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1133 ret = -EINVAL;
1134 btrfs_abort_transaction(trans, ret);
1135 goto out;
1136 }
1137 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1138 if (key.offset > start || extent_end < end) {
1139 ret = -EINVAL;
1140 btrfs_abort_transaction(trans, ret);
1141 goto out;
1142 }
1143
1144 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1145 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1146 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1147 memcpy(&new_key, &key, sizeof(new_key));
1148
1149 if (start == key.offset && end < extent_end) {
1150 other_start = 0;
1151 other_end = start;
1152 if (extent_mergeable(leaf, path->slots[0] - 1,
1153 ino, bytenr, orig_offset,
1154 &other_start, &other_end)) {
1155 new_key.offset = end;
1156 btrfs_set_item_key_safe(fs_info, path, &new_key);
1157 fi = btrfs_item_ptr(leaf, path->slots[0],
1158 struct btrfs_file_extent_item);
1159 btrfs_set_file_extent_generation(leaf, fi,
1160 trans->transid);
1161 btrfs_set_file_extent_num_bytes(leaf, fi,
1162 extent_end - end);
1163 btrfs_set_file_extent_offset(leaf, fi,
1164 end - orig_offset);
1165 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1166 struct btrfs_file_extent_item);
1167 btrfs_set_file_extent_generation(leaf, fi,
1168 trans->transid);
1169 btrfs_set_file_extent_num_bytes(leaf, fi,
1170 end - other_start);
1171 btrfs_mark_buffer_dirty(leaf);
1172 goto out;
1173 }
1174 }
1175
1176 if (start > key.offset && end == extent_end) {
1177 other_start = end;
1178 other_end = 0;
1179 if (extent_mergeable(leaf, path->slots[0] + 1,
1180 ino, bytenr, orig_offset,
1181 &other_start, &other_end)) {
1182 fi = btrfs_item_ptr(leaf, path->slots[0],
1183 struct btrfs_file_extent_item);
1184 btrfs_set_file_extent_num_bytes(leaf, fi,
1185 start - key.offset);
1186 btrfs_set_file_extent_generation(leaf, fi,
1187 trans->transid);
1188 path->slots[0]++;
1189 new_key.offset = start;
1190 btrfs_set_item_key_safe(fs_info, path, &new_key);
1191
1192 fi = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_file_extent_item);
1194 btrfs_set_file_extent_generation(leaf, fi,
1195 trans->transid);
1196 btrfs_set_file_extent_num_bytes(leaf, fi,
1197 other_end - start);
1198 btrfs_set_file_extent_offset(leaf, fi,
1199 start - orig_offset);
1200 btrfs_mark_buffer_dirty(leaf);
1201 goto out;
1202 }
1203 }
1204
1205 while (start > key.offset || end < extent_end) {
1206 if (key.offset == start)
1207 split = end;
1208
1209 new_key.offset = split;
1210 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1211 if (ret == -EAGAIN) {
1212 btrfs_release_path(path);
1213 goto again;
1214 }
1215 if (ret < 0) {
1216 btrfs_abort_transaction(trans, ret);
1217 goto out;
1218 }
1219
1220 leaf = path->nodes[0];
1221 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1222 struct btrfs_file_extent_item);
1223 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1224 btrfs_set_file_extent_num_bytes(leaf, fi,
1225 split - key.offset);
1226
1227 fi = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_file_extent_item);
1229
1230 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1231 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1232 btrfs_set_file_extent_num_bytes(leaf, fi,
1233 extent_end - split);
1234 btrfs_mark_buffer_dirty(leaf);
1235
1236 ret = btrfs_inc_extent_ref(trans, fs_info, bytenr, num_bytes,
1237 0, root->root_key.objectid,
1238 ino, orig_offset);
1239 if (ret) {
1240 btrfs_abort_transaction(trans, ret);
1241 goto out;
1242 }
1243
1244 if (split == start) {
1245 key.offset = start;
1246 } else {
1247 if (start != key.offset) {
1248 ret = -EINVAL;
1249 btrfs_abort_transaction(trans, ret);
1250 goto out;
1251 }
1252 path->slots[0]--;
1253 extent_end = end;
1254 }
1255 recow = 1;
1256 }
1257
1258 other_start = end;
1259 other_end = 0;
1260 if (extent_mergeable(leaf, path->slots[0] + 1,
1261 ino, bytenr, orig_offset,
1262 &other_start, &other_end)) {
1263 if (recow) {
1264 btrfs_release_path(path);
1265 goto again;
1266 }
1267 extent_end = other_end;
1268 del_slot = path->slots[0] + 1;
1269 del_nr++;
1270 ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1271 0, root->root_key.objectid,
1272 ino, orig_offset);
1273 if (ret) {
1274 btrfs_abort_transaction(trans, ret);
1275 goto out;
1276 }
1277 }
1278 other_start = 0;
1279 other_end = start;
1280 if (extent_mergeable(leaf, path->slots[0] - 1,
1281 ino, bytenr, orig_offset,
1282 &other_start, &other_end)) {
1283 if (recow) {
1284 btrfs_release_path(path);
1285 goto again;
1286 }
1287 key.offset = other_start;
1288 del_slot = path->slots[0];
1289 del_nr++;
1290 ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1291 0, root->root_key.objectid,
1292 ino, orig_offset);
1293 if (ret) {
1294 btrfs_abort_transaction(trans, ret);
1295 goto out;
1296 }
1297 }
1298 if (del_nr == 0) {
1299 fi = btrfs_item_ptr(leaf, path->slots[0],
1300 struct btrfs_file_extent_item);
1301 btrfs_set_file_extent_type(leaf, fi,
1302 BTRFS_FILE_EXTENT_REG);
1303 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1304 btrfs_mark_buffer_dirty(leaf);
1305 } else {
1306 fi = btrfs_item_ptr(leaf, del_slot - 1,
1307 struct btrfs_file_extent_item);
1308 btrfs_set_file_extent_type(leaf, fi,
1309 BTRFS_FILE_EXTENT_REG);
1310 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1311 btrfs_set_file_extent_num_bytes(leaf, fi,
1312 extent_end - key.offset);
1313 btrfs_mark_buffer_dirty(leaf);
1314
1315 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1316 if (ret < 0) {
1317 btrfs_abort_transaction(trans, ret);
1318 goto out;
1319 }
1320 }
1321out:
1322 btrfs_free_path(path);
1323 return 0;
1324}
1325
1326/*
1327 * on error we return an unlocked page and the error value
1328 * on success we return a locked page and 0
1329 */
1330static int prepare_uptodate_page(struct inode *inode,
1331 struct page *page, u64 pos,
1332 bool force_uptodate)
1333{
1334 int ret = 0;
1335
1336 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1337 !PageUptodate(page)) {
1338 ret = btrfs_readpage(NULL, page);
1339 if (ret)
1340 return ret;
1341 lock_page(page);
1342 if (!PageUptodate(page)) {
1343 unlock_page(page);
1344 return -EIO;
1345 }
1346 if (page->mapping != inode->i_mapping) {
1347 unlock_page(page);
1348 return -EAGAIN;
1349 }
1350 }
1351 return 0;
1352}
1353
1354/*
1355 * this just gets pages into the page cache and locks them down.
1356 */
1357static noinline int prepare_pages(struct inode *inode, struct page **pages,
1358 size_t num_pages, loff_t pos,
1359 size_t write_bytes, bool force_uptodate)
1360{
1361 int i;
1362 unsigned long index = pos >> PAGE_SHIFT;
1363 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1364 int err = 0;
1365 int faili;
1366
1367 for (i = 0; i < num_pages; i++) {
1368again:
1369 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1370 mask | __GFP_WRITE);
1371 if (!pages[i]) {
1372 faili = i - 1;
1373 err = -ENOMEM;
1374 goto fail;
1375 }
1376
1377 if (i == 0)
1378 err = prepare_uptodate_page(inode, pages[i], pos,
1379 force_uptodate);
1380 if (!err && i == num_pages - 1)
1381 err = prepare_uptodate_page(inode, pages[i],
1382 pos + write_bytes, false);
1383 if (err) {
1384 put_page(pages[i]);
1385 if (err == -EAGAIN) {
1386 err = 0;
1387 goto again;
1388 }
1389 faili = i - 1;
1390 goto fail;
1391 }
1392 wait_on_page_writeback(pages[i]);
1393 }
1394
1395 return 0;
1396fail:
1397 while (faili >= 0) {
1398 unlock_page(pages[faili]);
1399 put_page(pages[faili]);
1400 faili--;
1401 }
1402 return err;
1403
1404}
1405
1406static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
1407 const u64 start,
1408 const u64 len,
1409 struct extent_state **cached_state)
1410{
1411 u64 search_start = start;
1412 const u64 end = start + len - 1;
1413
1414 while (search_start < end) {
1415 const u64 search_len = end - search_start + 1;
1416 struct extent_map *em;
1417 u64 em_len;
1418 int ret = 0;
1419
1420 em = btrfs_get_extent(inode, NULL, 0, search_start,
1421 search_len, 0);
1422 if (IS_ERR(em))
1423 return PTR_ERR(em);
1424
1425 if (em->block_start != EXTENT_MAP_HOLE)
1426 goto next;
1427
1428 em_len = em->len;
1429 if (em->start < search_start)
1430 em_len -= search_start - em->start;
1431 if (em_len > search_len)
1432 em_len = search_len;
1433
1434 ret = set_extent_bit(&inode->io_tree, search_start,
1435 search_start + em_len - 1,
1436 EXTENT_DELALLOC_NEW,
1437 NULL, cached_state, GFP_NOFS);
1438next:
1439 search_start = extent_map_end(em);
1440 free_extent_map(em);
1441 if (ret)
1442 return ret;
1443 }
1444 return 0;
1445}
1446
1447/*
1448 * This function locks the extent and properly waits for data=ordered extents
1449 * to finish before allowing the pages to be modified if need.
1450 *
1451 * The return value:
1452 * 1 - the extent is locked
1453 * 0 - the extent is not locked, and everything is OK
1454 * -EAGAIN - need re-prepare the pages
1455 * the other < 0 number - Something wrong happens
1456 */
1457static noinline int
1458lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1459 size_t num_pages, loff_t pos,
1460 size_t write_bytes,
1461 u64 *lockstart, u64 *lockend,
1462 struct extent_state **cached_state)
1463{
1464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1465 u64 start_pos;
1466 u64 last_pos;
1467 int i;
1468 int ret = 0;
1469
1470 start_pos = round_down(pos, fs_info->sectorsize);
1471 last_pos = start_pos
1472 + round_up(pos + write_bytes - start_pos,
1473 fs_info->sectorsize) - 1;
1474
1475 if (start_pos < inode->vfs_inode.i_size ||
1476 (inode->flags & BTRFS_INODE_PREALLOC)) {
1477 struct btrfs_ordered_extent *ordered;
1478 unsigned int clear_bits;
1479
1480 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1481 cached_state);
1482 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1483 last_pos - start_pos + 1);
1484 if (ordered &&
1485 ordered->file_offset + ordered->len > start_pos &&
1486 ordered->file_offset <= last_pos) {
1487 unlock_extent_cached(&inode->io_tree, start_pos,
1488 last_pos, cached_state, GFP_NOFS);
1489 for (i = 0; i < num_pages; i++) {
1490 unlock_page(pages[i]);
1491 put_page(pages[i]);
1492 }
1493 btrfs_start_ordered_extent(&inode->vfs_inode,
1494 ordered, 1);
1495 btrfs_put_ordered_extent(ordered);
1496 return -EAGAIN;
1497 }
1498 if (ordered)
1499 btrfs_put_ordered_extent(ordered);
1500 ret = btrfs_find_new_delalloc_bytes(inode, start_pos,
1501 last_pos - start_pos + 1,
1502 cached_state);
1503 clear_bits = EXTENT_DIRTY | EXTENT_DELALLOC |
1504 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG;
1505 if (ret)
1506 clear_bits |= EXTENT_DELALLOC_NEW | EXTENT_LOCKED;
1507 clear_extent_bit(&inode->io_tree, start_pos,
1508 last_pos, clear_bits,
1509 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
1510 0, cached_state, GFP_NOFS);
1511 if (ret)
1512 return ret;
1513 *lockstart = start_pos;
1514 *lockend = last_pos;
1515 ret = 1;
1516 }
1517
1518 for (i = 0; i < num_pages; i++) {
1519 if (clear_page_dirty_for_io(pages[i]))
1520 account_page_redirty(pages[i]);
1521 set_page_extent_mapped(pages[i]);
1522 WARN_ON(!PageLocked(pages[i]));
1523 }
1524
1525 return ret;
1526}
1527
1528static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1529 size_t *write_bytes)
1530{
1531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1532 struct btrfs_root *root = inode->root;
1533 struct btrfs_ordered_extent *ordered;
1534 u64 lockstart, lockend;
1535 u64 num_bytes;
1536 int ret;
1537
1538 ret = btrfs_start_write_no_snapshotting(root);
1539 if (!ret)
1540 return -ENOSPC;
1541
1542 lockstart = round_down(pos, fs_info->sectorsize);
1543 lockend = round_up(pos + *write_bytes,
1544 fs_info->sectorsize) - 1;
1545
1546 while (1) {
1547 lock_extent(&inode->io_tree, lockstart, lockend);
1548 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1549 lockend - lockstart + 1);
1550 if (!ordered) {
1551 break;
1552 }
1553 unlock_extent(&inode->io_tree, lockstart, lockend);
1554 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1555 btrfs_put_ordered_extent(ordered);
1556 }
1557
1558 num_bytes = lockend - lockstart + 1;
1559 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1560 NULL, NULL, NULL);
1561 if (ret <= 0) {
1562 ret = 0;
1563 btrfs_end_write_no_snapshotting(root);
1564 } else {
1565 *write_bytes = min_t(size_t, *write_bytes ,
1566 num_bytes - pos + lockstart);
1567 }
1568
1569 unlock_extent(&inode->io_tree, lockstart, lockend);
1570
1571 return ret;
1572}
1573
1574static noinline ssize_t __btrfs_buffered_write(struct file *file,
1575 struct iov_iter *i,
1576 loff_t pos)
1577{
1578 struct inode *inode = file_inode(file);
1579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1580 struct btrfs_root *root = BTRFS_I(inode)->root;
1581 struct page **pages = NULL;
1582 struct extent_state *cached_state = NULL;
1583 struct extent_changeset *data_reserved = NULL;
1584 u64 release_bytes = 0;
1585 u64 lockstart;
1586 u64 lockend;
1587 size_t num_written = 0;
1588 int nrptrs;
1589 int ret = 0;
1590 bool only_release_metadata = false;
1591 bool force_page_uptodate = false;
1592 bool need_unlock;
1593
1594 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1595 PAGE_SIZE / (sizeof(struct page *)));
1596 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1597 nrptrs = max(nrptrs, 8);
1598 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1599 if (!pages)
1600 return -ENOMEM;
1601
1602 while (iov_iter_count(i) > 0) {
1603 size_t offset = pos & (PAGE_SIZE - 1);
1604 size_t sector_offset;
1605 size_t write_bytes = min(iov_iter_count(i),
1606 nrptrs * (size_t)PAGE_SIZE -
1607 offset);
1608 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1609 PAGE_SIZE);
1610 size_t reserve_bytes;
1611 size_t dirty_pages;
1612 size_t copied;
1613 size_t dirty_sectors;
1614 size_t num_sectors;
1615
1616 WARN_ON(num_pages > nrptrs);
1617
1618 /*
1619 * Fault pages before locking them in prepare_pages
1620 * to avoid recursive lock
1621 */
1622 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1623 ret = -EFAULT;
1624 break;
1625 }
1626
1627 only_release_metadata = false;
1628 sector_offset = pos & (fs_info->sectorsize - 1);
1629 reserve_bytes = round_up(write_bytes + sector_offset,
1630 fs_info->sectorsize);
1631
1632 extent_changeset_release(data_reserved);
1633 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1634 write_bytes);
1635 if (ret < 0) {
1636 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1637 BTRFS_INODE_PREALLOC)) &&
1638 check_can_nocow(BTRFS_I(inode), pos,
1639 &write_bytes) > 0) {
1640 /*
1641 * For nodata cow case, no need to reserve
1642 * data space.
1643 */
1644 only_release_metadata = true;
1645 /*
1646 * our prealloc extent may be smaller than
1647 * write_bytes, so scale down.
1648 */
1649 num_pages = DIV_ROUND_UP(write_bytes + offset,
1650 PAGE_SIZE);
1651 reserve_bytes = round_up(write_bytes +
1652 sector_offset,
1653 fs_info->sectorsize);
1654 } else {
1655 break;
1656 }
1657 }
1658
1659 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1660 reserve_bytes);
1661 if (ret) {
1662 if (!only_release_metadata)
1663 btrfs_free_reserved_data_space(inode,
1664 data_reserved, pos,
1665 write_bytes);
1666 else
1667 btrfs_end_write_no_snapshotting(root);
1668 break;
1669 }
1670
1671 release_bytes = reserve_bytes;
1672 need_unlock = false;
1673again:
1674 /*
1675 * This is going to setup the pages array with the number of
1676 * pages we want, so we don't really need to worry about the
1677 * contents of pages from loop to loop
1678 */
1679 ret = prepare_pages(inode, pages, num_pages,
1680 pos, write_bytes,
1681 force_page_uptodate);
1682 if (ret)
1683 break;
1684
1685 ret = lock_and_cleanup_extent_if_need(BTRFS_I(inode), pages,
1686 num_pages, pos, write_bytes, &lockstart,
1687 &lockend, &cached_state);
1688 if (ret < 0) {
1689 if (ret == -EAGAIN)
1690 goto again;
1691 break;
1692 } else if (ret > 0) {
1693 need_unlock = true;
1694 ret = 0;
1695 }
1696
1697 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1698
1699 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1700 dirty_sectors = round_up(copied + sector_offset,
1701 fs_info->sectorsize);
1702 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1703
1704 /*
1705 * if we have trouble faulting in the pages, fall
1706 * back to one page at a time
1707 */
1708 if (copied < write_bytes)
1709 nrptrs = 1;
1710
1711 if (copied == 0) {
1712 force_page_uptodate = true;
1713 dirty_sectors = 0;
1714 dirty_pages = 0;
1715 } else {
1716 force_page_uptodate = false;
1717 dirty_pages = DIV_ROUND_UP(copied + offset,
1718 PAGE_SIZE);
1719 }
1720
1721 /*
1722 * If we had a short copy we need to release the excess delaloc
1723 * bytes we reserved. We need to increment outstanding_extents
1724 * because btrfs_delalloc_release_space and
1725 * btrfs_delalloc_release_metadata will decrement it, but
1726 * we still have an outstanding extent for the chunk we actually
1727 * managed to copy.
1728 */
1729 if (num_sectors > dirty_sectors) {
1730 /* release everything except the sectors we dirtied */
1731 release_bytes -= dirty_sectors <<
1732 fs_info->sb->s_blocksize_bits;
1733 if (copied > 0) {
1734 spin_lock(&BTRFS_I(inode)->lock);
1735 BTRFS_I(inode)->outstanding_extents++;
1736 spin_unlock(&BTRFS_I(inode)->lock);
1737 }
1738 if (only_release_metadata) {
1739 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1740 release_bytes);
1741 } else {
1742 u64 __pos;
1743
1744 __pos = round_down(pos,
1745 fs_info->sectorsize) +
1746 (dirty_pages << PAGE_SHIFT);
1747 btrfs_delalloc_release_space(inode,
1748 data_reserved, __pos,
1749 release_bytes);
1750 }
1751 }
1752
1753 release_bytes = round_up(copied + sector_offset,
1754 fs_info->sectorsize);
1755
1756 if (copied > 0)
1757 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1758 pos, copied, NULL);
1759 if (need_unlock)
1760 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1761 lockstart, lockend, &cached_state,
1762 GFP_NOFS);
1763 if (ret) {
1764 btrfs_drop_pages(pages, num_pages);
1765 break;
1766 }
1767
1768 release_bytes = 0;
1769 if (only_release_metadata)
1770 btrfs_end_write_no_snapshotting(root);
1771
1772 if (only_release_metadata && copied > 0) {
1773 lockstart = round_down(pos,
1774 fs_info->sectorsize);
1775 lockend = round_up(pos + copied,
1776 fs_info->sectorsize) - 1;
1777
1778 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1779 lockend, EXTENT_NORESERVE, NULL,
1780 NULL, GFP_NOFS);
1781 }
1782
1783 btrfs_drop_pages(pages, num_pages);
1784
1785 cond_resched();
1786
1787 balance_dirty_pages_ratelimited(inode->i_mapping);
1788 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1789 btrfs_btree_balance_dirty(fs_info);
1790
1791 pos += copied;
1792 num_written += copied;
1793 }
1794
1795 kfree(pages);
1796
1797 if (release_bytes) {
1798 if (only_release_metadata) {
1799 btrfs_end_write_no_snapshotting(root);
1800 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1801 release_bytes);
1802 } else {
1803 btrfs_delalloc_release_space(inode, data_reserved,
1804 round_down(pos, fs_info->sectorsize),
1805 release_bytes);
1806 }
1807 }
1808
1809 extent_changeset_free(data_reserved);
1810 return num_written ? num_written : ret;
1811}
1812
1813static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1814{
1815 struct file *file = iocb->ki_filp;
1816 struct inode *inode = file_inode(file);
1817 loff_t pos = iocb->ki_pos;
1818 ssize_t written;
1819 ssize_t written_buffered;
1820 loff_t endbyte;
1821 int err;
1822
1823 written = generic_file_direct_write(iocb, from);
1824
1825 if (written < 0 || !iov_iter_count(from))
1826 return written;
1827
1828 pos += written;
1829 written_buffered = __btrfs_buffered_write(file, from, pos);
1830 if (written_buffered < 0) {
1831 err = written_buffered;
1832 goto out;
1833 }
1834 /*
1835 * Ensure all data is persisted. We want the next direct IO read to be
1836 * able to read what was just written.
1837 */
1838 endbyte = pos + written_buffered - 1;
1839 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1840 if (err)
1841 goto out;
1842 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1843 if (err)
1844 goto out;
1845 written += written_buffered;
1846 iocb->ki_pos = pos + written_buffered;
1847 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1848 endbyte >> PAGE_SHIFT);
1849out:
1850 return written ? written : err;
1851}
1852
1853static void update_time_for_write(struct inode *inode)
1854{
1855 struct timespec now;
1856
1857 if (IS_NOCMTIME(inode))
1858 return;
1859
1860 now = current_time(inode);
1861 if (!timespec_equal(&inode->i_mtime, &now))
1862 inode->i_mtime = now;
1863
1864 if (!timespec_equal(&inode->i_ctime, &now))
1865 inode->i_ctime = now;
1866
1867 if (IS_I_VERSION(inode))
1868 inode_inc_iversion(inode);
1869}
1870
1871static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1872 struct iov_iter *from)
1873{
1874 struct file *file = iocb->ki_filp;
1875 struct inode *inode = file_inode(file);
1876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1877 struct btrfs_root *root = BTRFS_I(inode)->root;
1878 u64 start_pos;
1879 u64 end_pos;
1880 ssize_t num_written = 0;
1881 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1882 ssize_t err;
1883 loff_t pos;
1884 size_t count;
1885 loff_t oldsize;
1886 int clean_page = 0;
1887
1888 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1889 (iocb->ki_flags & IOCB_NOWAIT))
1890 return -EOPNOTSUPP;
1891
1892 if (iocb->ki_flags & IOCB_NOWAIT) {
1893 if (!inode_trylock(inode))
1894 return -EAGAIN;
1895 } else {
1896 inode_lock(inode);
1897 }
1898
1899 err = generic_write_checks(iocb, from);
1900 if (err <= 0) {
1901 inode_unlock(inode);
1902 return err;
1903 }
1904
1905 pos = iocb->ki_pos;
1906 count = iov_iter_count(from);
1907 if (iocb->ki_flags & IOCB_NOWAIT) {
1908 /*
1909 * We will allocate space in case nodatacow is not set,
1910 * so bail
1911 */
1912 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1913 BTRFS_INODE_PREALLOC)) ||
1914 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1915 inode_unlock(inode);
1916 return -EAGAIN;
1917 }
1918 }
1919
1920 current->backing_dev_info = inode_to_bdi(inode);
1921 err = file_remove_privs(file);
1922 if (err) {
1923 inode_unlock(inode);
1924 goto out;
1925 }
1926
1927 /*
1928 * If BTRFS flips readonly due to some impossible error
1929 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1930 * although we have opened a file as writable, we have
1931 * to stop this write operation to ensure FS consistency.
1932 */
1933 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1934 inode_unlock(inode);
1935 err = -EROFS;
1936 goto out;
1937 }
1938
1939 /*
1940 * We reserve space for updating the inode when we reserve space for the
1941 * extent we are going to write, so we will enospc out there. We don't
1942 * need to start yet another transaction to update the inode as we will
1943 * update the inode when we finish writing whatever data we write.
1944 */
1945 update_time_for_write(inode);
1946
1947 start_pos = round_down(pos, fs_info->sectorsize);
1948 oldsize = i_size_read(inode);
1949 if (start_pos > oldsize) {
1950 /* Expand hole size to cover write data, preventing empty gap */
1951 end_pos = round_up(pos + count,
1952 fs_info->sectorsize);
1953 err = btrfs_cont_expand(inode, oldsize, end_pos);
1954 if (err) {
1955 inode_unlock(inode);
1956 goto out;
1957 }
1958 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1959 clean_page = 1;
1960 }
1961
1962 if (sync)
1963 atomic_inc(&BTRFS_I(inode)->sync_writers);
1964
1965 if (iocb->ki_flags & IOCB_DIRECT) {
1966 num_written = __btrfs_direct_write(iocb, from);
1967 } else {
1968 num_written = __btrfs_buffered_write(file, from, pos);
1969 if (num_written > 0)
1970 iocb->ki_pos = pos + num_written;
1971 if (clean_page)
1972 pagecache_isize_extended(inode, oldsize,
1973 i_size_read(inode));
1974 }
1975
1976 inode_unlock(inode);
1977
1978 /*
1979 * We also have to set last_sub_trans to the current log transid,
1980 * otherwise subsequent syncs to a file that's been synced in this
1981 * transaction will appear to have already occurred.
1982 */
1983 spin_lock(&BTRFS_I(inode)->lock);
1984 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1985 spin_unlock(&BTRFS_I(inode)->lock);
1986 if (num_written > 0)
1987 num_written = generic_write_sync(iocb, num_written);
1988
1989 if (sync)
1990 atomic_dec(&BTRFS_I(inode)->sync_writers);
1991out:
1992 current->backing_dev_info = NULL;
1993 return num_written ? num_written : err;
1994}
1995
1996int btrfs_release_file(struct inode *inode, struct file *filp)
1997{
1998 struct btrfs_file_private *private = filp->private_data;
1999
2000 if (private && private->trans)
2001 btrfs_ioctl_trans_end(filp);
2002 if (private && private->filldir_buf)
2003 kfree(private->filldir_buf);
2004 kfree(private);
2005 filp->private_data = NULL;
2006
2007 /*
2008 * ordered_data_close is set by settattr when we are about to truncate
2009 * a file from a non-zero size to a zero size. This tries to
2010 * flush down new bytes that may have been written if the
2011 * application were using truncate to replace a file in place.
2012 */
2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014 &BTRFS_I(inode)->runtime_flags))
2015 filemap_flush(inode->i_mapping);
2016 return 0;
2017}
2018
2019static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020{
2021 int ret;
2022 struct blk_plug plug;
2023
2024 /*
2025 * This is only called in fsync, which would do synchronous writes, so
2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2027 * multiple disks using raid profile, a large IO can be split to
2028 * several segments of stripe length (currently 64K).
2029 */
2030 blk_start_plug(&plug);
2031 atomic_inc(&BTRFS_I(inode)->sync_writers);
2032 ret = btrfs_fdatawrite_range(inode, start, end);
2033 atomic_dec(&BTRFS_I(inode)->sync_writers);
2034 blk_finish_plug(&plug);
2035
2036 return ret;
2037}
2038
2039/*
2040 * fsync call for both files and directories. This logs the inode into
2041 * the tree log instead of forcing full commits whenever possible.
2042 *
2043 * It needs to call filemap_fdatawait so that all ordered extent updates are
2044 * in the metadata btree are up to date for copying to the log.
2045 *
2046 * It drops the inode mutex before doing the tree log commit. This is an
2047 * important optimization for directories because holding the mutex prevents
2048 * new operations on the dir while we write to disk.
2049 */
2050int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2051{
2052 struct dentry *dentry = file_dentry(file);
2053 struct inode *inode = d_inode(dentry);
2054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2055 struct btrfs_root *root = BTRFS_I(inode)->root;
2056 struct btrfs_trans_handle *trans;
2057 struct btrfs_log_ctx ctx;
2058 int ret = 0, err;
2059 bool full_sync = 0;
2060 u64 len;
2061
2062 /*
2063 * If the inode needs a full sync, make sure we use a full range to
2064 * avoid log tree corruption, due to hole detection racing with ordered
2065 * extent completion for adjacent ranges, and assertion failures during
2066 * hole detection.
2067 */
2068 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2069 &BTRFS_I(inode)->runtime_flags)) {
2070 start = 0;
2071 end = LLONG_MAX;
2072 }
2073
2074 /*
2075 * The range length can be represented by u64, we have to do the typecasts
2076 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2077 */
2078 len = (u64)end - (u64)start + 1;
2079 trace_btrfs_sync_file(file, datasync);
2080
2081 btrfs_init_log_ctx(&ctx, inode);
2082
2083 /*
2084 * We write the dirty pages in the range and wait until they complete
2085 * out of the ->i_mutex. If so, we can flush the dirty pages by
2086 * multi-task, and make the performance up. See
2087 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2088 */
2089 ret = start_ordered_ops(inode, start, end);
2090 if (ret)
2091 goto out;
2092
2093 inode_lock(inode);
2094
2095 /*
2096 * We take the dio_sem here because the tree log stuff can race with
2097 * lockless dio writes and get an extent map logged for an extent we
2098 * never waited on. We need it this high up for lockdep reasons.
2099 */
2100 down_write(&BTRFS_I(inode)->dio_sem);
2101
2102 atomic_inc(&root->log_batch);
2103 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2104 &BTRFS_I(inode)->runtime_flags);
2105 /*
2106 * We might have have had more pages made dirty after calling
2107 * start_ordered_ops and before acquiring the inode's i_mutex.
2108 */
2109 if (full_sync) {
2110 /*
2111 * For a full sync, we need to make sure any ordered operations
2112 * start and finish before we start logging the inode, so that
2113 * all extents are persisted and the respective file extent
2114 * items are in the fs/subvol btree.
2115 */
2116 ret = btrfs_wait_ordered_range(inode, start, len);
2117 } else {
2118 /*
2119 * Start any new ordered operations before starting to log the
2120 * inode. We will wait for them to finish in btrfs_sync_log().
2121 *
2122 * Right before acquiring the inode's mutex, we might have new
2123 * writes dirtying pages, which won't immediately start the
2124 * respective ordered operations - that is done through the
2125 * fill_delalloc callbacks invoked from the writepage and
2126 * writepages address space operations. So make sure we start
2127 * all ordered operations before starting to log our inode. Not
2128 * doing this means that while logging the inode, writeback
2129 * could start and invoke writepage/writepages, which would call
2130 * the fill_delalloc callbacks (cow_file_range,
2131 * submit_compressed_extents). These callbacks add first an
2132 * extent map to the modified list of extents and then create
2133 * the respective ordered operation, which means in
2134 * tree-log.c:btrfs_log_inode() we might capture all existing
2135 * ordered operations (with btrfs_get_logged_extents()) before
2136 * the fill_delalloc callback adds its ordered operation, and by
2137 * the time we visit the modified list of extent maps (with
2138 * btrfs_log_changed_extents()), we see and process the extent
2139 * map they created. We then use the extent map to construct a
2140 * file extent item for logging without waiting for the
2141 * respective ordered operation to finish - this file extent
2142 * item points to a disk location that might not have yet been
2143 * written to, containing random data - so after a crash a log
2144 * replay will make our inode have file extent items that point
2145 * to disk locations containing invalid data, as we returned
2146 * success to userspace without waiting for the respective
2147 * ordered operation to finish, because it wasn't captured by
2148 * btrfs_get_logged_extents().
2149 */
2150 ret = start_ordered_ops(inode, start, end);
2151 }
2152 if (ret) {
2153 up_write(&BTRFS_I(inode)->dio_sem);
2154 inode_unlock(inode);
2155 goto out;
2156 }
2157 atomic_inc(&root->log_batch);
2158
2159 /*
2160 * If the last transaction that changed this file was before the current
2161 * transaction and we have the full sync flag set in our inode, we can
2162 * bail out now without any syncing.
2163 *
2164 * Note that we can't bail out if the full sync flag isn't set. This is
2165 * because when the full sync flag is set we start all ordered extents
2166 * and wait for them to fully complete - when they complete they update
2167 * the inode's last_trans field through:
2168 *
2169 * btrfs_finish_ordered_io() ->
2170 * btrfs_update_inode_fallback() ->
2171 * btrfs_update_inode() ->
2172 * btrfs_set_inode_last_trans()
2173 *
2174 * So we are sure that last_trans is up to date and can do this check to
2175 * bail out safely. For the fast path, when the full sync flag is not
2176 * set in our inode, we can not do it because we start only our ordered
2177 * extents and don't wait for them to complete (that is when
2178 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2179 * value might be less than or equals to fs_info->last_trans_committed,
2180 * and setting a speculative last_trans for an inode when a buffered
2181 * write is made (such as fs_info->generation + 1 for example) would not
2182 * be reliable since after setting the value and before fsync is called
2183 * any number of transactions can start and commit (transaction kthread
2184 * commits the current transaction periodically), and a transaction
2185 * commit does not start nor waits for ordered extents to complete.
2186 */
2187 smp_mb();
2188 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2189 (full_sync && BTRFS_I(inode)->last_trans <=
2190 fs_info->last_trans_committed) ||
2191 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2192 BTRFS_I(inode)->last_trans
2193 <= fs_info->last_trans_committed)) {
2194 /*
2195 * We've had everything committed since the last time we were
2196 * modified so clear this flag in case it was set for whatever
2197 * reason, it's no longer relevant.
2198 */
2199 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2200 &BTRFS_I(inode)->runtime_flags);
2201 /*
2202 * An ordered extent might have started before and completed
2203 * already with io errors, in which case the inode was not
2204 * updated and we end up here. So check the inode's mapping
2205 * for any errors that might have happened since we last
2206 * checked called fsync.
2207 */
2208 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2209 up_write(&BTRFS_I(inode)->dio_sem);
2210 inode_unlock(inode);
2211 goto out;
2212 }
2213
2214 /*
2215 * ok we haven't committed the transaction yet, lets do a commit
2216 */
2217 if (file->private_data)
2218 btrfs_ioctl_trans_end(file);
2219
2220 /*
2221 * We use start here because we will need to wait on the IO to complete
2222 * in btrfs_sync_log, which could require joining a transaction (for
2223 * example checking cross references in the nocow path). If we use join
2224 * here we could get into a situation where we're waiting on IO to
2225 * happen that is blocked on a transaction trying to commit. With start
2226 * we inc the extwriter counter, so we wait for all extwriters to exit
2227 * before we start blocking join'ers. This comment is to keep somebody
2228 * from thinking they are super smart and changing this to
2229 * btrfs_join_transaction *cough*Josef*cough*.
2230 */
2231 trans = btrfs_start_transaction(root, 0);
2232 if (IS_ERR(trans)) {
2233 ret = PTR_ERR(trans);
2234 up_write(&BTRFS_I(inode)->dio_sem);
2235 inode_unlock(inode);
2236 goto out;
2237 }
2238 trans->sync = true;
2239
2240 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2241 if (ret < 0) {
2242 /* Fallthrough and commit/free transaction. */
2243 ret = 1;
2244 }
2245
2246 /* we've logged all the items and now have a consistent
2247 * version of the file in the log. It is possible that
2248 * someone will come in and modify the file, but that's
2249 * fine because the log is consistent on disk, and we
2250 * have references to all of the file's extents
2251 *
2252 * It is possible that someone will come in and log the
2253 * file again, but that will end up using the synchronization
2254 * inside btrfs_sync_log to keep things safe.
2255 */
2256 up_write(&BTRFS_I(inode)->dio_sem);
2257 inode_unlock(inode);
2258
2259 /*
2260 * If any of the ordered extents had an error, just return it to user
2261 * space, so that the application knows some writes didn't succeed and
2262 * can take proper action (retry for e.g.). Blindly committing the
2263 * transaction in this case, would fool userspace that everything was
2264 * successful. And we also want to make sure our log doesn't contain
2265 * file extent items pointing to extents that weren't fully written to -
2266 * just like in the non fast fsync path, where we check for the ordered
2267 * operation's error flag before writing to the log tree and return -EIO
2268 * if any of them had this flag set (btrfs_wait_ordered_range) -
2269 * therefore we need to check for errors in the ordered operations,
2270 * which are indicated by ctx.io_err.
2271 */
2272 if (ctx.io_err) {
2273 btrfs_end_transaction(trans);
2274 ret = ctx.io_err;
2275 goto out;
2276 }
2277
2278 if (ret != BTRFS_NO_LOG_SYNC) {
2279 if (!ret) {
2280 ret = btrfs_sync_log(trans, root, &ctx);
2281 if (!ret) {
2282 ret = btrfs_end_transaction(trans);
2283 goto out;
2284 }
2285 }
2286 if (!full_sync) {
2287 ret = btrfs_wait_ordered_range(inode, start, len);
2288 if (ret) {
2289 btrfs_end_transaction(trans);
2290 goto out;
2291 }
2292 }
2293 ret = btrfs_commit_transaction(trans);
2294 } else {
2295 ret = btrfs_end_transaction(trans);
2296 }
2297out:
2298 ASSERT(list_empty(&ctx.list));
2299 err = file_check_and_advance_wb_err(file);
2300 if (!ret)
2301 ret = err;
2302 return ret > 0 ? -EIO : ret;
2303}
2304
2305static const struct vm_operations_struct btrfs_file_vm_ops = {
2306 .fault = filemap_fault,
2307 .map_pages = filemap_map_pages,
2308 .page_mkwrite = btrfs_page_mkwrite,
2309};
2310
2311static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2312{
2313 struct address_space *mapping = filp->f_mapping;
2314
2315 if (!mapping->a_ops->readpage)
2316 return -ENOEXEC;
2317
2318 file_accessed(filp);
2319 vma->vm_ops = &btrfs_file_vm_ops;
2320
2321 return 0;
2322}
2323
2324static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2325 int slot, u64 start, u64 end)
2326{
2327 struct btrfs_file_extent_item *fi;
2328 struct btrfs_key key;
2329
2330 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2331 return 0;
2332
2333 btrfs_item_key_to_cpu(leaf, &key, slot);
2334 if (key.objectid != btrfs_ino(inode) ||
2335 key.type != BTRFS_EXTENT_DATA_KEY)
2336 return 0;
2337
2338 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2339
2340 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2341 return 0;
2342
2343 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2344 return 0;
2345
2346 if (key.offset == end)
2347 return 1;
2348 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2349 return 1;
2350 return 0;
2351}
2352
2353static int fill_holes(struct btrfs_trans_handle *trans,
2354 struct btrfs_inode *inode,
2355 struct btrfs_path *path, u64 offset, u64 end)
2356{
2357 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2358 struct btrfs_root *root = inode->root;
2359 struct extent_buffer *leaf;
2360 struct btrfs_file_extent_item *fi;
2361 struct extent_map *hole_em;
2362 struct extent_map_tree *em_tree = &inode->extent_tree;
2363 struct btrfs_key key;
2364 int ret;
2365
2366 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2367 goto out;
2368
2369 key.objectid = btrfs_ino(inode);
2370 key.type = BTRFS_EXTENT_DATA_KEY;
2371 key.offset = offset;
2372
2373 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2374 if (ret <= 0) {
2375 /*
2376 * We should have dropped this offset, so if we find it then
2377 * something has gone horribly wrong.
2378 */
2379 if (ret == 0)
2380 ret = -EINVAL;
2381 return ret;
2382 }
2383
2384 leaf = path->nodes[0];
2385 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2386 u64 num_bytes;
2387
2388 path->slots[0]--;
2389 fi = btrfs_item_ptr(leaf, path->slots[0],
2390 struct btrfs_file_extent_item);
2391 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2392 end - offset;
2393 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2394 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2395 btrfs_set_file_extent_offset(leaf, fi, 0);
2396 btrfs_mark_buffer_dirty(leaf);
2397 goto out;
2398 }
2399
2400 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2401 u64 num_bytes;
2402
2403 key.offset = offset;
2404 btrfs_set_item_key_safe(fs_info, path, &key);
2405 fi = btrfs_item_ptr(leaf, path->slots[0],
2406 struct btrfs_file_extent_item);
2407 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2408 offset;
2409 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2410 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2411 btrfs_set_file_extent_offset(leaf, fi, 0);
2412 btrfs_mark_buffer_dirty(leaf);
2413 goto out;
2414 }
2415 btrfs_release_path(path);
2416
2417 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2418 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2419 if (ret)
2420 return ret;
2421
2422out:
2423 btrfs_release_path(path);
2424
2425 hole_em = alloc_extent_map();
2426 if (!hole_em) {
2427 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2428 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2429 } else {
2430 hole_em->start = offset;
2431 hole_em->len = end - offset;
2432 hole_em->ram_bytes = hole_em->len;
2433 hole_em->orig_start = offset;
2434
2435 hole_em->block_start = EXTENT_MAP_HOLE;
2436 hole_em->block_len = 0;
2437 hole_em->orig_block_len = 0;
2438 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2439 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2440 hole_em->generation = trans->transid;
2441
2442 do {
2443 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2444 write_lock(&em_tree->lock);
2445 ret = add_extent_mapping(em_tree, hole_em, 1);
2446 write_unlock(&em_tree->lock);
2447 } while (ret == -EEXIST);
2448 free_extent_map(hole_em);
2449 if (ret)
2450 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2451 &inode->runtime_flags);
2452 }
2453
2454 return 0;
2455}
2456
2457/*
2458 * Find a hole extent on given inode and change start/len to the end of hole
2459 * extent.(hole/vacuum extent whose em->start <= start &&
2460 * em->start + em->len > start)
2461 * When a hole extent is found, return 1 and modify start/len.
2462 */
2463static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2464{
2465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2466 struct extent_map *em;
2467 int ret = 0;
2468
2469 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2470 round_down(*start, fs_info->sectorsize),
2471 round_up(*len, fs_info->sectorsize), 0);
2472 if (IS_ERR(em))
2473 return PTR_ERR(em);
2474
2475 /* Hole or vacuum extent(only exists in no-hole mode) */
2476 if (em->block_start == EXTENT_MAP_HOLE) {
2477 ret = 1;
2478 *len = em->start + em->len > *start + *len ?
2479 0 : *start + *len - em->start - em->len;
2480 *start = em->start + em->len;
2481 }
2482 free_extent_map(em);
2483 return ret;
2484}
2485
2486static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2487{
2488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2489 struct btrfs_root *root = BTRFS_I(inode)->root;
2490 struct extent_state *cached_state = NULL;
2491 struct btrfs_path *path;
2492 struct btrfs_block_rsv *rsv;
2493 struct btrfs_trans_handle *trans;
2494 u64 lockstart;
2495 u64 lockend;
2496 u64 tail_start;
2497 u64 tail_len;
2498 u64 orig_start = offset;
2499 u64 cur_offset;
2500 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2501 u64 drop_end;
2502 int ret = 0;
2503 int err = 0;
2504 unsigned int rsv_count;
2505 bool same_block;
2506 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
2507 u64 ino_size;
2508 bool truncated_block = false;
2509 bool updated_inode = false;
2510
2511 ret = btrfs_wait_ordered_range(inode, offset, len);
2512 if (ret)
2513 return ret;
2514
2515 inode_lock(inode);
2516 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2517 ret = find_first_non_hole(inode, &offset, &len);
2518 if (ret < 0)
2519 goto out_only_mutex;
2520 if (ret && !len) {
2521 /* Already in a large hole */
2522 ret = 0;
2523 goto out_only_mutex;
2524 }
2525
2526 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2527 lockend = round_down(offset + len,
2528 btrfs_inode_sectorsize(inode)) - 1;
2529 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2530 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2531 /*
2532 * We needn't truncate any block which is beyond the end of the file
2533 * because we are sure there is no data there.
2534 */
2535 /*
2536 * Only do this if we are in the same block and we aren't doing the
2537 * entire block.
2538 */
2539 if (same_block && len < fs_info->sectorsize) {
2540 if (offset < ino_size) {
2541 truncated_block = true;
2542 ret = btrfs_truncate_block(inode, offset, len, 0);
2543 } else {
2544 ret = 0;
2545 }
2546 goto out_only_mutex;
2547 }
2548
2549 /* zero back part of the first block */
2550 if (offset < ino_size) {
2551 truncated_block = true;
2552 ret = btrfs_truncate_block(inode, offset, 0, 0);
2553 if (ret) {
2554 inode_unlock(inode);
2555 return ret;
2556 }
2557 }
2558
2559 /* Check the aligned pages after the first unaligned page,
2560 * if offset != orig_start, which means the first unaligned page
2561 * including several following pages are already in holes,
2562 * the extra check can be skipped */
2563 if (offset == orig_start) {
2564 /* after truncate page, check hole again */
2565 len = offset + len - lockstart;
2566 offset = lockstart;
2567 ret = find_first_non_hole(inode, &offset, &len);
2568 if (ret < 0)
2569 goto out_only_mutex;
2570 if (ret && !len) {
2571 ret = 0;
2572 goto out_only_mutex;
2573 }
2574 lockstart = offset;
2575 }
2576
2577 /* Check the tail unaligned part is in a hole */
2578 tail_start = lockend + 1;
2579 tail_len = offset + len - tail_start;
2580 if (tail_len) {
2581 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2582 if (unlikely(ret < 0))
2583 goto out_only_mutex;
2584 if (!ret) {
2585 /* zero the front end of the last page */
2586 if (tail_start + tail_len < ino_size) {
2587 truncated_block = true;
2588 ret = btrfs_truncate_block(inode,
2589 tail_start + tail_len,
2590 0, 1);
2591 if (ret)
2592 goto out_only_mutex;
2593 }
2594 }
2595 }
2596
2597 if (lockend < lockstart) {
2598 ret = 0;
2599 goto out_only_mutex;
2600 }
2601
2602 while (1) {
2603 struct btrfs_ordered_extent *ordered;
2604
2605 truncate_pagecache_range(inode, lockstart, lockend);
2606
2607 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2608 &cached_state);
2609 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2610
2611 /*
2612 * We need to make sure we have no ordered extents in this range
2613 * and nobody raced in and read a page in this range, if we did
2614 * we need to try again.
2615 */
2616 if ((!ordered ||
2617 (ordered->file_offset + ordered->len <= lockstart ||
2618 ordered->file_offset > lockend)) &&
2619 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2620 if (ordered)
2621 btrfs_put_ordered_extent(ordered);
2622 break;
2623 }
2624 if (ordered)
2625 btrfs_put_ordered_extent(ordered);
2626 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2627 lockend, &cached_state, GFP_NOFS);
2628 ret = btrfs_wait_ordered_range(inode, lockstart,
2629 lockend - lockstart + 1);
2630 if (ret) {
2631 inode_unlock(inode);
2632 return ret;
2633 }
2634 }
2635
2636 path = btrfs_alloc_path();
2637 if (!path) {
2638 ret = -ENOMEM;
2639 goto out;
2640 }
2641
2642 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2643 if (!rsv) {
2644 ret = -ENOMEM;
2645 goto out_free;
2646 }
2647 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2648 rsv->failfast = 1;
2649
2650 /*
2651 * 1 - update the inode
2652 * 1 - removing the extents in the range
2653 * 1 - adding the hole extent if no_holes isn't set
2654 */
2655 rsv_count = no_holes ? 2 : 3;
2656 trans = btrfs_start_transaction(root, rsv_count);
2657 if (IS_ERR(trans)) {
2658 err = PTR_ERR(trans);
2659 goto out_free;
2660 }
2661
2662 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2663 min_size, 0);
2664 BUG_ON(ret);
2665 trans->block_rsv = rsv;
2666
2667 cur_offset = lockstart;
2668 len = lockend - cur_offset;
2669 while (cur_offset < lockend) {
2670 ret = __btrfs_drop_extents(trans, root, inode, path,
2671 cur_offset, lockend + 1,
2672 &drop_end, 1, 0, 0, NULL);
2673 if (ret != -ENOSPC)
2674 break;
2675
2676 trans->block_rsv = &fs_info->trans_block_rsv;
2677
2678 if (cur_offset < drop_end && cur_offset < ino_size) {
2679 ret = fill_holes(trans, BTRFS_I(inode), path,
2680 cur_offset, drop_end);
2681 if (ret) {
2682 /*
2683 * If we failed then we didn't insert our hole
2684 * entries for the area we dropped, so now the
2685 * fs is corrupted, so we must abort the
2686 * transaction.
2687 */
2688 btrfs_abort_transaction(trans, ret);
2689 err = ret;
2690 break;
2691 }
2692 }
2693
2694 cur_offset = drop_end;
2695
2696 ret = btrfs_update_inode(trans, root, inode);
2697 if (ret) {
2698 err = ret;
2699 break;
2700 }
2701
2702 btrfs_end_transaction(trans);
2703 btrfs_btree_balance_dirty(fs_info);
2704
2705 trans = btrfs_start_transaction(root, rsv_count);
2706 if (IS_ERR(trans)) {
2707 ret = PTR_ERR(trans);
2708 trans = NULL;
2709 break;
2710 }
2711
2712 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2713 rsv, min_size, 0);
2714 BUG_ON(ret); /* shouldn't happen */
2715 trans->block_rsv = rsv;
2716
2717 ret = find_first_non_hole(inode, &cur_offset, &len);
2718 if (unlikely(ret < 0))
2719 break;
2720 if (ret && !len) {
2721 ret = 0;
2722 break;
2723 }
2724 }
2725
2726 if (ret) {
2727 err = ret;
2728 goto out_trans;
2729 }
2730
2731 trans->block_rsv = &fs_info->trans_block_rsv;
2732 /*
2733 * If we are using the NO_HOLES feature we might have had already an
2734 * hole that overlaps a part of the region [lockstart, lockend] and
2735 * ends at (or beyond) lockend. Since we have no file extent items to
2736 * represent holes, drop_end can be less than lockend and so we must
2737 * make sure we have an extent map representing the existing hole (the
2738 * call to __btrfs_drop_extents() might have dropped the existing extent
2739 * map representing the existing hole), otherwise the fast fsync path
2740 * will not record the existence of the hole region
2741 * [existing_hole_start, lockend].
2742 */
2743 if (drop_end <= lockend)
2744 drop_end = lockend + 1;
2745 /*
2746 * Don't insert file hole extent item if it's for a range beyond eof
2747 * (because it's useless) or if it represents a 0 bytes range (when
2748 * cur_offset == drop_end).
2749 */
2750 if (cur_offset < ino_size && cur_offset < drop_end) {
2751 ret = fill_holes(trans, BTRFS_I(inode), path,
2752 cur_offset, drop_end);
2753 if (ret) {
2754 /* Same comment as above. */
2755 btrfs_abort_transaction(trans, ret);
2756 err = ret;
2757 goto out_trans;
2758 }
2759 }
2760
2761out_trans:
2762 if (!trans)
2763 goto out_free;
2764
2765 inode_inc_iversion(inode);
2766 inode->i_mtime = inode->i_ctime = current_time(inode);
2767
2768 trans->block_rsv = &fs_info->trans_block_rsv;
2769 ret = btrfs_update_inode(trans, root, inode);
2770 updated_inode = true;
2771 btrfs_end_transaction(trans);
2772 btrfs_btree_balance_dirty(fs_info);
2773out_free:
2774 btrfs_free_path(path);
2775 btrfs_free_block_rsv(fs_info, rsv);
2776out:
2777 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2778 &cached_state, GFP_NOFS);
2779out_only_mutex:
2780 if (!updated_inode && truncated_block && !ret && !err) {
2781 /*
2782 * If we only end up zeroing part of a page, we still need to
2783 * update the inode item, so that all the time fields are
2784 * updated as well as the necessary btrfs inode in memory fields
2785 * for detecting, at fsync time, if the inode isn't yet in the
2786 * log tree or it's there but not up to date.
2787 */
2788 struct timespec now = current_time(inode);
2789
2790 inode_inc_iversion(inode);
2791 inode->i_mtime = now;
2792 inode->i_ctime = now;
2793 trans = btrfs_start_transaction(root, 1);
2794 if (IS_ERR(trans)) {
2795 err = PTR_ERR(trans);
2796 } else {
2797 err = btrfs_update_inode(trans, root, inode);
2798 ret = btrfs_end_transaction(trans);
2799 }
2800 }
2801 inode_unlock(inode);
2802 if (ret && !err)
2803 err = ret;
2804 return err;
2805}
2806
2807/* Helper structure to record which range is already reserved */
2808struct falloc_range {
2809 struct list_head list;
2810 u64 start;
2811 u64 len;
2812};
2813
2814/*
2815 * Helper function to add falloc range
2816 *
2817 * Caller should have locked the larger range of extent containing
2818 * [start, len)
2819 */
2820static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2821{
2822 struct falloc_range *prev = NULL;
2823 struct falloc_range *range = NULL;
2824
2825 if (list_empty(head))
2826 goto insert;
2827
2828 /*
2829 * As fallocate iterate by bytenr order, we only need to check
2830 * the last range.
2831 */
2832 prev = list_entry(head->prev, struct falloc_range, list);
2833 if (prev->start + prev->len == start) {
2834 prev->len += len;
2835 return 0;
2836 }
2837insert:
2838 range = kmalloc(sizeof(*range), GFP_KERNEL);
2839 if (!range)
2840 return -ENOMEM;
2841 range->start = start;
2842 range->len = len;
2843 list_add_tail(&range->list, head);
2844 return 0;
2845}
2846
2847static long btrfs_fallocate(struct file *file, int mode,
2848 loff_t offset, loff_t len)
2849{
2850 struct inode *inode = file_inode(file);
2851 struct extent_state *cached_state = NULL;
2852 struct extent_changeset *data_reserved = NULL;
2853 struct falloc_range *range;
2854 struct falloc_range *tmp;
2855 struct list_head reserve_list;
2856 u64 cur_offset;
2857 u64 last_byte;
2858 u64 alloc_start;
2859 u64 alloc_end;
2860 u64 alloc_hint = 0;
2861 u64 locked_end;
2862 u64 actual_end = 0;
2863 struct extent_map *em;
2864 int blocksize = btrfs_inode_sectorsize(inode);
2865 int ret;
2866
2867 alloc_start = round_down(offset, blocksize);
2868 alloc_end = round_up(offset + len, blocksize);
2869 cur_offset = alloc_start;
2870
2871 /* Make sure we aren't being give some crap mode */
2872 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2873 return -EOPNOTSUPP;
2874
2875 if (mode & FALLOC_FL_PUNCH_HOLE)
2876 return btrfs_punch_hole(inode, offset, len);
2877
2878 /*
2879 * Only trigger disk allocation, don't trigger qgroup reserve
2880 *
2881 * For qgroup space, it will be checked later.
2882 */
2883 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2884 alloc_end - alloc_start);
2885 if (ret < 0)
2886 return ret;
2887
2888 inode_lock(inode);
2889
2890 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2891 ret = inode_newsize_ok(inode, offset + len);
2892 if (ret)
2893 goto out;
2894 }
2895
2896 /*
2897 * TODO: Move these two operations after we have checked
2898 * accurate reserved space, or fallocate can still fail but
2899 * with page truncated or size expanded.
2900 *
2901 * But that's a minor problem and won't do much harm BTW.
2902 */
2903 if (alloc_start > inode->i_size) {
2904 ret = btrfs_cont_expand(inode, i_size_read(inode),
2905 alloc_start);
2906 if (ret)
2907 goto out;
2908 } else if (offset + len > inode->i_size) {
2909 /*
2910 * If we are fallocating from the end of the file onward we
2911 * need to zero out the end of the block if i_size lands in the
2912 * middle of a block.
2913 */
2914 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2915 if (ret)
2916 goto out;
2917 }
2918
2919 /*
2920 * wait for ordered IO before we have any locks. We'll loop again
2921 * below with the locks held.
2922 */
2923 ret = btrfs_wait_ordered_range(inode, alloc_start,
2924 alloc_end - alloc_start);
2925 if (ret)
2926 goto out;
2927
2928 locked_end = alloc_end - 1;
2929 while (1) {
2930 struct btrfs_ordered_extent *ordered;
2931
2932 /* the extent lock is ordered inside the running
2933 * transaction
2934 */
2935 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2936 locked_end, &cached_state);
2937 ordered = btrfs_lookup_first_ordered_extent(inode,
2938 alloc_end - 1);
2939 if (ordered &&
2940 ordered->file_offset + ordered->len > alloc_start &&
2941 ordered->file_offset < alloc_end) {
2942 btrfs_put_ordered_extent(ordered);
2943 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2944 alloc_start, locked_end,
2945 &cached_state, GFP_KERNEL);
2946 /*
2947 * we can't wait on the range with the transaction
2948 * running or with the extent lock held
2949 */
2950 ret = btrfs_wait_ordered_range(inode, alloc_start,
2951 alloc_end - alloc_start);
2952 if (ret)
2953 goto out;
2954 } else {
2955 if (ordered)
2956 btrfs_put_ordered_extent(ordered);
2957 break;
2958 }
2959 }
2960
2961 /* First, check if we exceed the qgroup limit */
2962 INIT_LIST_HEAD(&reserve_list);
2963 while (1) {
2964 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2965 alloc_end - cur_offset, 0);
2966 if (IS_ERR(em)) {
2967 ret = PTR_ERR(em);
2968 break;
2969 }
2970 last_byte = min(extent_map_end(em), alloc_end);
2971 actual_end = min_t(u64, extent_map_end(em), offset + len);
2972 last_byte = ALIGN(last_byte, blocksize);
2973 if (em->block_start == EXTENT_MAP_HOLE ||
2974 (cur_offset >= inode->i_size &&
2975 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2976 ret = add_falloc_range(&reserve_list, cur_offset,
2977 last_byte - cur_offset);
2978 if (ret < 0) {
2979 free_extent_map(em);
2980 break;
2981 }
2982 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2983 cur_offset, last_byte - cur_offset);
2984 if (ret < 0) {
2985 cur_offset = last_byte;
2986 free_extent_map(em);
2987 break;
2988 }
2989 } else {
2990 /*
2991 * Do not need to reserve unwritten extent for this
2992 * range, free reserved data space first, otherwise
2993 * it'll result in false ENOSPC error.
2994 */
2995 btrfs_free_reserved_data_space(inode, data_reserved,
2996 cur_offset, last_byte - cur_offset);
2997 }
2998 free_extent_map(em);
2999 cur_offset = last_byte;
3000 if (cur_offset >= alloc_end)
3001 break;
3002 }
3003
3004 /*
3005 * If ret is still 0, means we're OK to fallocate.
3006 * Or just cleanup the list and exit.
3007 */
3008 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3009 if (!ret)
3010 ret = btrfs_prealloc_file_range(inode, mode,
3011 range->start,
3012 range->len, i_blocksize(inode),
3013 offset + len, &alloc_hint);
3014 else
3015 btrfs_free_reserved_data_space(inode,
3016 data_reserved, range->start,
3017 range->len);
3018 list_del(&range->list);
3019 kfree(range);
3020 }
3021 if (ret < 0)
3022 goto out_unlock;
3023
3024 if (actual_end > inode->i_size &&
3025 !(mode & FALLOC_FL_KEEP_SIZE)) {
3026 struct btrfs_trans_handle *trans;
3027 struct btrfs_root *root = BTRFS_I(inode)->root;
3028
3029 /*
3030 * We didn't need to allocate any more space, but we
3031 * still extended the size of the file so we need to
3032 * update i_size and the inode item.
3033 */
3034 trans = btrfs_start_transaction(root, 1);
3035 if (IS_ERR(trans)) {
3036 ret = PTR_ERR(trans);
3037 } else {
3038 inode->i_ctime = current_time(inode);
3039 i_size_write(inode, actual_end);
3040 btrfs_ordered_update_i_size(inode, actual_end, NULL);
3041 ret = btrfs_update_inode(trans, root, inode);
3042 if (ret)
3043 btrfs_end_transaction(trans);
3044 else
3045 ret = btrfs_end_transaction(trans);
3046 }
3047 }
3048out_unlock:
3049 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3050 &cached_state, GFP_KERNEL);
3051out:
3052 inode_unlock(inode);
3053 /* Let go of our reservation. */
3054 if (ret != 0)
3055 btrfs_free_reserved_data_space(inode, data_reserved,
3056 cur_offset, alloc_end - cur_offset);
3057 extent_changeset_free(data_reserved);
3058 return ret;
3059}
3060
3061static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
3062{
3063 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3064 struct extent_map *em = NULL;
3065 struct extent_state *cached_state = NULL;
3066 u64 lockstart;
3067 u64 lockend;
3068 u64 start;
3069 u64 len;
3070 int ret = 0;
3071
3072 if (inode->i_size == 0)
3073 return -ENXIO;
3074
3075 /*
3076 * *offset can be negative, in this case we start finding DATA/HOLE from
3077 * the very start of the file.
3078 */
3079 start = max_t(loff_t, 0, *offset);
3080
3081 lockstart = round_down(start, fs_info->sectorsize);
3082 lockend = round_up(i_size_read(inode),
3083 fs_info->sectorsize);
3084 if (lockend <= lockstart)
3085 lockend = lockstart + fs_info->sectorsize;
3086 lockend--;
3087 len = lockend - lockstart + 1;
3088
3089 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3090 &cached_state);
3091
3092 while (start < inode->i_size) {
3093 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3094 start, len, 0);
3095 if (IS_ERR(em)) {
3096 ret = PTR_ERR(em);
3097 em = NULL;
3098 break;
3099 }
3100
3101 if (whence == SEEK_HOLE &&
3102 (em->block_start == EXTENT_MAP_HOLE ||
3103 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3104 break;
3105 else if (whence == SEEK_DATA &&
3106 (em->block_start != EXTENT_MAP_HOLE &&
3107 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3108 break;
3109
3110 start = em->start + em->len;
3111 free_extent_map(em);
3112 em = NULL;
3113 cond_resched();
3114 }
3115 free_extent_map(em);
3116 if (!ret) {
3117 if (whence == SEEK_DATA && start >= inode->i_size)
3118 ret = -ENXIO;
3119 else
3120 *offset = min_t(loff_t, start, inode->i_size);
3121 }
3122 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3123 &cached_state, GFP_NOFS);
3124 return ret;
3125}
3126
3127static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3128{
3129 struct inode *inode = file->f_mapping->host;
3130 int ret;
3131
3132 inode_lock(inode);
3133 switch (whence) {
3134 case SEEK_END:
3135 case SEEK_CUR:
3136 offset = generic_file_llseek(file, offset, whence);
3137 goto out;
3138 case SEEK_DATA:
3139 case SEEK_HOLE:
3140 if (offset >= i_size_read(inode)) {
3141 inode_unlock(inode);
3142 return -ENXIO;
3143 }
3144
3145 ret = find_desired_extent(inode, &offset, whence);
3146 if (ret) {
3147 inode_unlock(inode);
3148 return ret;
3149 }
3150 }
3151
3152 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3153out:
3154 inode_unlock(inode);
3155 return offset;
3156}
3157
3158static int btrfs_file_open(struct inode *inode, struct file *filp)
3159{
3160 filp->f_mode |= FMODE_NOWAIT;
3161 return generic_file_open(inode, filp);
3162}
3163
3164const struct file_operations btrfs_file_operations = {
3165 .llseek = btrfs_file_llseek,
3166 .read_iter = generic_file_read_iter,
3167 .splice_read = generic_file_splice_read,
3168 .write_iter = btrfs_file_write_iter,
3169 .mmap = btrfs_file_mmap,
3170 .open = btrfs_file_open,
3171 .release = btrfs_release_file,
3172 .fsync = btrfs_sync_file,
3173 .fallocate = btrfs_fallocate,
3174 .unlocked_ioctl = btrfs_ioctl,
3175#ifdef CONFIG_COMPAT
3176 .compat_ioctl = btrfs_compat_ioctl,
3177#endif
3178 .clone_file_range = btrfs_clone_file_range,
3179 .dedupe_file_range = btrfs_dedupe_file_range,
3180};
3181
3182void btrfs_auto_defrag_exit(void)
3183{
3184 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3185}
3186
3187int btrfs_auto_defrag_init(void)
3188{
3189 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3190 sizeof(struct inode_defrag), 0,
3191 SLAB_MEM_SPREAD,
3192 NULL);
3193 if (!btrfs_inode_defrag_cachep)
3194 return -ENOMEM;
3195
3196 return 0;
3197}
3198
3199int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3200{
3201 int ret;
3202
3203 /*
3204 * So with compression we will find and lock a dirty page and clear the
3205 * first one as dirty, setup an async extent, and immediately return
3206 * with the entire range locked but with nobody actually marked with
3207 * writeback. So we can't just filemap_write_and_wait_range() and
3208 * expect it to work since it will just kick off a thread to do the
3209 * actual work. So we need to call filemap_fdatawrite_range _again_
3210 * since it will wait on the page lock, which won't be unlocked until
3211 * after the pages have been marked as writeback and so we're good to go
3212 * from there. We have to do this otherwise we'll miss the ordered
3213 * extents and that results in badness. Please Josef, do not think you
3214 * know better and pull this out at some point in the future, it is
3215 * right and you are wrong.
3216 */
3217 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3218 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3219 &BTRFS_I(inode)->runtime_flags))
3220 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3221
3222 return ret;
3223}