rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public |
| 6 | * License v2 as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 11 | * General Public License for more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public |
| 14 | * License along with this program; if not, write to the |
| 15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 16 | * Boston, MA 021110-1307, USA. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/delay.h> |
| 20 | #include <linux/kthread.h> |
| 21 | #include <linux/pagemap.h> |
| 22 | |
| 23 | #include "ctree.h" |
| 24 | #include "disk-io.h" |
| 25 | #include "free-space-cache.h" |
| 26 | #include "inode-map.h" |
| 27 | #include "transaction.h" |
| 28 | |
| 29 | static void fail_caching_thread(struct btrfs_root *root) |
| 30 | { |
| 31 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 32 | |
| 33 | btrfs_warn(fs_info, "failed to start inode caching task"); |
| 34 | btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE, |
| 35 | "disabling inode map caching"); |
| 36 | spin_lock(&root->ino_cache_lock); |
| 37 | root->ino_cache_state = BTRFS_CACHE_ERROR; |
| 38 | spin_unlock(&root->ino_cache_lock); |
| 39 | wake_up(&root->ino_cache_wait); |
| 40 | } |
| 41 | |
| 42 | static int caching_kthread(void *data) |
| 43 | { |
| 44 | struct btrfs_root *root = data; |
| 45 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 46 | struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| 47 | struct btrfs_key key; |
| 48 | struct btrfs_path *path; |
| 49 | struct extent_buffer *leaf; |
| 50 | u64 last = (u64)-1; |
| 51 | int slot; |
| 52 | int ret; |
| 53 | |
| 54 | if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) |
| 55 | return 0; |
| 56 | |
| 57 | path = btrfs_alloc_path(); |
| 58 | if (!path) { |
| 59 | fail_caching_thread(root); |
| 60 | return -ENOMEM; |
| 61 | } |
| 62 | |
| 63 | /* Since the commit root is read-only, we can safely skip locking. */ |
| 64 | path->skip_locking = 1; |
| 65 | path->search_commit_root = 1; |
| 66 | path->reada = READA_FORWARD; |
| 67 | |
| 68 | key.objectid = BTRFS_FIRST_FREE_OBJECTID; |
| 69 | key.offset = 0; |
| 70 | key.type = BTRFS_INODE_ITEM_KEY; |
| 71 | again: |
| 72 | /* need to make sure the commit_root doesn't disappear */ |
| 73 | down_read(&fs_info->commit_root_sem); |
| 74 | |
| 75 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| 76 | if (ret < 0) |
| 77 | goto out; |
| 78 | |
| 79 | while (1) { |
| 80 | if (btrfs_fs_closing(fs_info)) |
| 81 | goto out; |
| 82 | |
| 83 | leaf = path->nodes[0]; |
| 84 | slot = path->slots[0]; |
| 85 | if (slot >= btrfs_header_nritems(leaf)) { |
| 86 | ret = btrfs_next_leaf(root, path); |
| 87 | if (ret < 0) |
| 88 | goto out; |
| 89 | else if (ret > 0) |
| 90 | break; |
| 91 | |
| 92 | if (need_resched() || |
| 93 | btrfs_transaction_in_commit(fs_info)) { |
| 94 | leaf = path->nodes[0]; |
| 95 | |
| 96 | if (WARN_ON(btrfs_header_nritems(leaf) == 0)) |
| 97 | break; |
| 98 | |
| 99 | /* |
| 100 | * Save the key so we can advances forward |
| 101 | * in the next search. |
| 102 | */ |
| 103 | btrfs_item_key_to_cpu(leaf, &key, 0); |
| 104 | btrfs_release_path(path); |
| 105 | root->ino_cache_progress = last; |
| 106 | up_read(&fs_info->commit_root_sem); |
| 107 | schedule_timeout(1); |
| 108 | goto again; |
| 109 | } else |
| 110 | continue; |
| 111 | } |
| 112 | |
| 113 | btrfs_item_key_to_cpu(leaf, &key, slot); |
| 114 | |
| 115 | if (key.type != BTRFS_INODE_ITEM_KEY) |
| 116 | goto next; |
| 117 | |
| 118 | if (key.objectid >= root->highest_objectid) |
| 119 | break; |
| 120 | |
| 121 | if (last != (u64)-1 && last + 1 != key.objectid) { |
| 122 | __btrfs_add_free_space(fs_info, ctl, last + 1, |
| 123 | key.objectid - last - 1); |
| 124 | wake_up(&root->ino_cache_wait); |
| 125 | } |
| 126 | |
| 127 | last = key.objectid; |
| 128 | next: |
| 129 | path->slots[0]++; |
| 130 | } |
| 131 | |
| 132 | if (last < root->highest_objectid - 1) { |
| 133 | __btrfs_add_free_space(fs_info, ctl, last + 1, |
| 134 | root->highest_objectid - last - 1); |
| 135 | } |
| 136 | |
| 137 | spin_lock(&root->ino_cache_lock); |
| 138 | root->ino_cache_state = BTRFS_CACHE_FINISHED; |
| 139 | spin_unlock(&root->ino_cache_lock); |
| 140 | |
| 141 | root->ino_cache_progress = (u64)-1; |
| 142 | btrfs_unpin_free_ino(root); |
| 143 | out: |
| 144 | wake_up(&root->ino_cache_wait); |
| 145 | up_read(&fs_info->commit_root_sem); |
| 146 | |
| 147 | btrfs_free_path(path); |
| 148 | |
| 149 | return ret; |
| 150 | } |
| 151 | |
| 152 | static void start_caching(struct btrfs_root *root) |
| 153 | { |
| 154 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 155 | struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| 156 | struct task_struct *tsk; |
| 157 | int ret; |
| 158 | u64 objectid; |
| 159 | |
| 160 | if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) |
| 161 | return; |
| 162 | |
| 163 | spin_lock(&root->ino_cache_lock); |
| 164 | if (root->ino_cache_state != BTRFS_CACHE_NO) { |
| 165 | spin_unlock(&root->ino_cache_lock); |
| 166 | return; |
| 167 | } |
| 168 | |
| 169 | root->ino_cache_state = BTRFS_CACHE_STARTED; |
| 170 | spin_unlock(&root->ino_cache_lock); |
| 171 | |
| 172 | ret = load_free_ino_cache(fs_info, root); |
| 173 | if (ret == 1) { |
| 174 | spin_lock(&root->ino_cache_lock); |
| 175 | root->ino_cache_state = BTRFS_CACHE_FINISHED; |
| 176 | spin_unlock(&root->ino_cache_lock); |
| 177 | wake_up(&root->ino_cache_wait); |
| 178 | return; |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | * It can be quite time-consuming to fill the cache by searching |
| 183 | * through the extent tree, and this can keep ino allocation path |
| 184 | * waiting. Therefore at start we quickly find out the highest |
| 185 | * inode number and we know we can use inode numbers which fall in |
| 186 | * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID]. |
| 187 | */ |
| 188 | ret = btrfs_find_free_objectid(root, &objectid); |
| 189 | if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) { |
| 190 | __btrfs_add_free_space(fs_info, ctl, objectid, |
| 191 | BTRFS_LAST_FREE_OBJECTID - objectid + 1); |
| 192 | } |
| 193 | |
| 194 | tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu", |
| 195 | root->root_key.objectid); |
| 196 | if (IS_ERR(tsk)) |
| 197 | fail_caching_thread(root); |
| 198 | } |
| 199 | |
| 200 | int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid) |
| 201 | { |
| 202 | if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE)) |
| 203 | return btrfs_find_free_objectid(root, objectid); |
| 204 | |
| 205 | again: |
| 206 | *objectid = btrfs_find_ino_for_alloc(root); |
| 207 | |
| 208 | if (*objectid != 0) |
| 209 | return 0; |
| 210 | |
| 211 | start_caching(root); |
| 212 | |
| 213 | wait_event(root->ino_cache_wait, |
| 214 | root->ino_cache_state == BTRFS_CACHE_FINISHED || |
| 215 | root->ino_cache_state == BTRFS_CACHE_ERROR || |
| 216 | root->free_ino_ctl->free_space > 0); |
| 217 | |
| 218 | if (root->ino_cache_state == BTRFS_CACHE_FINISHED && |
| 219 | root->free_ino_ctl->free_space == 0) |
| 220 | return -ENOSPC; |
| 221 | else if (root->ino_cache_state == BTRFS_CACHE_ERROR) |
| 222 | return btrfs_find_free_objectid(root, objectid); |
| 223 | else |
| 224 | goto again; |
| 225 | } |
| 226 | |
| 227 | void btrfs_return_ino(struct btrfs_root *root, u64 objectid) |
| 228 | { |
| 229 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 230 | struct btrfs_free_space_ctl *pinned = root->free_ino_pinned; |
| 231 | |
| 232 | if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) |
| 233 | return; |
| 234 | again: |
| 235 | if (root->ino_cache_state == BTRFS_CACHE_FINISHED) { |
| 236 | __btrfs_add_free_space(fs_info, pinned, objectid, 1); |
| 237 | } else { |
| 238 | down_write(&fs_info->commit_root_sem); |
| 239 | spin_lock(&root->ino_cache_lock); |
| 240 | if (root->ino_cache_state == BTRFS_CACHE_FINISHED) { |
| 241 | spin_unlock(&root->ino_cache_lock); |
| 242 | up_write(&fs_info->commit_root_sem); |
| 243 | goto again; |
| 244 | } |
| 245 | spin_unlock(&root->ino_cache_lock); |
| 246 | |
| 247 | start_caching(root); |
| 248 | |
| 249 | __btrfs_add_free_space(fs_info, pinned, objectid, 1); |
| 250 | |
| 251 | up_write(&fs_info->commit_root_sem); |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * When a transaction is committed, we'll move those inode numbers which are |
| 257 | * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and |
| 258 | * others will just be dropped, because the commit root we were searching has |
| 259 | * changed. |
| 260 | * |
| 261 | * Must be called with root->fs_info->commit_root_sem held |
| 262 | */ |
| 263 | void btrfs_unpin_free_ino(struct btrfs_root *root) |
| 264 | { |
| 265 | struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| 266 | struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset; |
| 267 | spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock; |
| 268 | struct btrfs_free_space *info; |
| 269 | struct rb_node *n; |
| 270 | u64 count; |
| 271 | |
| 272 | if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE)) |
| 273 | return; |
| 274 | |
| 275 | while (1) { |
| 276 | bool add_to_ctl = true; |
| 277 | |
| 278 | spin_lock(rbroot_lock); |
| 279 | n = rb_first(rbroot); |
| 280 | if (!n) { |
| 281 | spin_unlock(rbroot_lock); |
| 282 | break; |
| 283 | } |
| 284 | |
| 285 | info = rb_entry(n, struct btrfs_free_space, offset_index); |
| 286 | BUG_ON(info->bitmap); /* Logic error */ |
| 287 | |
| 288 | if (info->offset > root->ino_cache_progress) |
| 289 | add_to_ctl = false; |
| 290 | else if (info->offset + info->bytes > root->ino_cache_progress) |
| 291 | count = root->ino_cache_progress - info->offset + 1; |
| 292 | else |
| 293 | count = info->bytes; |
| 294 | |
| 295 | rb_erase(&info->offset_index, rbroot); |
| 296 | spin_unlock(rbroot_lock); |
| 297 | if (add_to_ctl) |
| 298 | __btrfs_add_free_space(root->fs_info, ctl, |
| 299 | info->offset, count); |
| 300 | kmem_cache_free(btrfs_free_space_cachep, info); |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | #define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space)) |
| 305 | #define INODES_PER_BITMAP (PAGE_SIZE * 8) |
| 306 | |
| 307 | /* |
| 308 | * The goal is to keep the memory used by the free_ino tree won't |
| 309 | * exceed the memory if we use bitmaps only. |
| 310 | */ |
| 311 | static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) |
| 312 | { |
| 313 | struct btrfs_free_space *info; |
| 314 | struct rb_node *n; |
| 315 | int max_ino; |
| 316 | int max_bitmaps; |
| 317 | |
| 318 | n = rb_last(&ctl->free_space_offset); |
| 319 | if (!n) { |
| 320 | ctl->extents_thresh = INIT_THRESHOLD; |
| 321 | return; |
| 322 | } |
| 323 | info = rb_entry(n, struct btrfs_free_space, offset_index); |
| 324 | |
| 325 | /* |
| 326 | * Find the maximum inode number in the filesystem. Note we |
| 327 | * ignore the fact that this can be a bitmap, because we are |
| 328 | * not doing precise calculation. |
| 329 | */ |
| 330 | max_ino = info->bytes - 1; |
| 331 | |
| 332 | max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP; |
| 333 | if (max_bitmaps <= ctl->total_bitmaps) { |
| 334 | ctl->extents_thresh = 0; |
| 335 | return; |
| 336 | } |
| 337 | |
| 338 | ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) * |
| 339 | PAGE_SIZE / sizeof(*info); |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * We don't fall back to bitmap, if we are below the extents threshold |
| 344 | * or this chunk of inode numbers is a big one. |
| 345 | */ |
| 346 | static bool use_bitmap(struct btrfs_free_space_ctl *ctl, |
| 347 | struct btrfs_free_space *info) |
| 348 | { |
| 349 | if (ctl->free_extents < ctl->extents_thresh || |
| 350 | info->bytes > INODES_PER_BITMAP / 10) |
| 351 | return false; |
| 352 | |
| 353 | return true; |
| 354 | } |
| 355 | |
| 356 | static const struct btrfs_free_space_op free_ino_op = { |
| 357 | .recalc_thresholds = recalculate_thresholds, |
| 358 | .use_bitmap = use_bitmap, |
| 359 | }; |
| 360 | |
| 361 | static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl) |
| 362 | { |
| 363 | } |
| 364 | |
| 365 | static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl, |
| 366 | struct btrfs_free_space *info) |
| 367 | { |
| 368 | /* |
| 369 | * We always use extents for two reasons: |
| 370 | * |
| 371 | * - The pinned tree is only used during the process of caching |
| 372 | * work. |
| 373 | * - Make code simpler. See btrfs_unpin_free_ino(). |
| 374 | */ |
| 375 | return false; |
| 376 | } |
| 377 | |
| 378 | static const struct btrfs_free_space_op pinned_free_ino_op = { |
| 379 | .recalc_thresholds = pinned_recalc_thresholds, |
| 380 | .use_bitmap = pinned_use_bitmap, |
| 381 | }; |
| 382 | |
| 383 | void btrfs_init_free_ino_ctl(struct btrfs_root *root) |
| 384 | { |
| 385 | struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| 386 | struct btrfs_free_space_ctl *pinned = root->free_ino_pinned; |
| 387 | |
| 388 | spin_lock_init(&ctl->tree_lock); |
| 389 | ctl->unit = 1; |
| 390 | ctl->start = 0; |
| 391 | ctl->private = NULL; |
| 392 | ctl->op = &free_ino_op; |
| 393 | INIT_LIST_HEAD(&ctl->trimming_ranges); |
| 394 | mutex_init(&ctl->cache_writeout_mutex); |
| 395 | |
| 396 | /* |
| 397 | * Initially we allow to use 16K of ram to cache chunks of |
| 398 | * inode numbers before we resort to bitmaps. This is somewhat |
| 399 | * arbitrary, but it will be adjusted in runtime. |
| 400 | */ |
| 401 | ctl->extents_thresh = INIT_THRESHOLD; |
| 402 | |
| 403 | spin_lock_init(&pinned->tree_lock); |
| 404 | pinned->unit = 1; |
| 405 | pinned->start = 0; |
| 406 | pinned->private = NULL; |
| 407 | pinned->extents_thresh = 0; |
| 408 | pinned->op = &pinned_free_ino_op; |
| 409 | } |
| 410 | |
| 411 | int btrfs_save_ino_cache(struct btrfs_root *root, |
| 412 | struct btrfs_trans_handle *trans) |
| 413 | { |
| 414 | struct btrfs_fs_info *fs_info = root->fs_info; |
| 415 | struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; |
| 416 | struct btrfs_path *path; |
| 417 | struct inode *inode; |
| 418 | struct btrfs_block_rsv *rsv; |
| 419 | struct extent_changeset *data_reserved = NULL; |
| 420 | u64 num_bytes; |
| 421 | u64 alloc_hint = 0; |
| 422 | int ret; |
| 423 | int prealloc; |
| 424 | bool retry = false; |
| 425 | |
| 426 | /* only fs tree and subvol/snap needs ino cache */ |
| 427 | if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID && |
| 428 | (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID || |
| 429 | root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID)) |
| 430 | return 0; |
| 431 | |
| 432 | /* Don't save inode cache if we are deleting this root */ |
| 433 | if (btrfs_root_refs(&root->root_item) == 0) |
| 434 | return 0; |
| 435 | |
| 436 | if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) |
| 437 | return 0; |
| 438 | |
| 439 | path = btrfs_alloc_path(); |
| 440 | if (!path) |
| 441 | return -ENOMEM; |
| 442 | |
| 443 | rsv = trans->block_rsv; |
| 444 | trans->block_rsv = &fs_info->trans_block_rsv; |
| 445 | |
| 446 | num_bytes = trans->bytes_reserved; |
| 447 | /* |
| 448 | * 1 item for inode item insertion if need |
| 449 | * 4 items for inode item update (in the worst case) |
| 450 | * 1 items for slack space if we need do truncation |
| 451 | * 1 item for free space object |
| 452 | * 3 items for pre-allocation |
| 453 | */ |
| 454 | trans->bytes_reserved = btrfs_calc_trans_metadata_size(fs_info, 10); |
| 455 | ret = btrfs_block_rsv_add(root, trans->block_rsv, |
| 456 | trans->bytes_reserved, |
| 457 | BTRFS_RESERVE_NO_FLUSH); |
| 458 | if (ret) |
| 459 | goto out; |
| 460 | trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid, |
| 461 | trans->bytes_reserved, 1); |
| 462 | again: |
| 463 | inode = lookup_free_ino_inode(root, path); |
| 464 | if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) { |
| 465 | ret = PTR_ERR(inode); |
| 466 | goto out_release; |
| 467 | } |
| 468 | |
| 469 | if (IS_ERR(inode)) { |
| 470 | BUG_ON(retry); /* Logic error */ |
| 471 | retry = true; |
| 472 | |
| 473 | ret = create_free_ino_inode(root, trans, path); |
| 474 | if (ret) |
| 475 | goto out_release; |
| 476 | goto again; |
| 477 | } |
| 478 | |
| 479 | BTRFS_I(inode)->generation = 0; |
| 480 | ret = btrfs_update_inode(trans, root, inode); |
| 481 | if (ret) { |
| 482 | btrfs_abort_transaction(trans, ret); |
| 483 | goto out_put; |
| 484 | } |
| 485 | |
| 486 | if (i_size_read(inode) > 0) { |
| 487 | ret = btrfs_truncate_free_space_cache(trans, NULL, inode); |
| 488 | if (ret) { |
| 489 | if (ret != -ENOSPC) |
| 490 | btrfs_abort_transaction(trans, ret); |
| 491 | goto out_put; |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | spin_lock(&root->ino_cache_lock); |
| 496 | if (root->ino_cache_state != BTRFS_CACHE_FINISHED) { |
| 497 | ret = -1; |
| 498 | spin_unlock(&root->ino_cache_lock); |
| 499 | goto out_put; |
| 500 | } |
| 501 | spin_unlock(&root->ino_cache_lock); |
| 502 | |
| 503 | spin_lock(&ctl->tree_lock); |
| 504 | prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents; |
| 505 | prealloc = ALIGN(prealloc, PAGE_SIZE); |
| 506 | prealloc += ctl->total_bitmaps * PAGE_SIZE; |
| 507 | spin_unlock(&ctl->tree_lock); |
| 508 | |
| 509 | /* Just to make sure we have enough space */ |
| 510 | prealloc += 8 * PAGE_SIZE; |
| 511 | |
| 512 | ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 0, prealloc); |
| 513 | if (ret) |
| 514 | goto out_put; |
| 515 | |
| 516 | ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc, |
| 517 | prealloc, prealloc, &alloc_hint); |
| 518 | if (ret) { |
| 519 | btrfs_delalloc_release_metadata(BTRFS_I(inode), prealloc); |
| 520 | goto out_put; |
| 521 | } |
| 522 | |
| 523 | ret = btrfs_write_out_ino_cache(root, trans, path, inode); |
| 524 | out_put: |
| 525 | iput(inode); |
| 526 | out_release: |
| 527 | trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid, |
| 528 | trans->bytes_reserved, 0); |
| 529 | btrfs_block_rsv_release(fs_info, trans->block_rsv, |
| 530 | trans->bytes_reserved); |
| 531 | out: |
| 532 | trans->block_rsv = rsv; |
| 533 | trans->bytes_reserved = num_bytes; |
| 534 | |
| 535 | btrfs_free_path(path); |
| 536 | extent_changeset_free(data_reserved); |
| 537 | return ret; |
| 538 | } |
| 539 | |
| 540 | int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid) |
| 541 | { |
| 542 | struct btrfs_path *path; |
| 543 | int ret; |
| 544 | struct extent_buffer *l; |
| 545 | struct btrfs_key search_key; |
| 546 | struct btrfs_key found_key; |
| 547 | int slot; |
| 548 | |
| 549 | path = btrfs_alloc_path(); |
| 550 | if (!path) |
| 551 | return -ENOMEM; |
| 552 | |
| 553 | search_key.objectid = BTRFS_LAST_FREE_OBJECTID; |
| 554 | search_key.type = -1; |
| 555 | search_key.offset = (u64)-1; |
| 556 | ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); |
| 557 | if (ret < 0) |
| 558 | goto error; |
| 559 | BUG_ON(ret == 0); /* Corruption */ |
| 560 | if (path->slots[0] > 0) { |
| 561 | slot = path->slots[0] - 1; |
| 562 | l = path->nodes[0]; |
| 563 | btrfs_item_key_to_cpu(l, &found_key, slot); |
| 564 | *objectid = max_t(u64, found_key.objectid, |
| 565 | BTRFS_FIRST_FREE_OBJECTID - 1); |
| 566 | } else { |
| 567 | *objectid = BTRFS_FIRST_FREE_OBJECTID - 1; |
| 568 | } |
| 569 | ret = 0; |
| 570 | error: |
| 571 | btrfs_free_path(path); |
| 572 | return ret; |
| 573 | } |
| 574 | |
| 575 | int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid) |
| 576 | { |
| 577 | int ret; |
| 578 | mutex_lock(&root->objectid_mutex); |
| 579 | |
| 580 | if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) { |
| 581 | btrfs_warn(root->fs_info, |
| 582 | "the objectid of root %llu reaches its highest value", |
| 583 | root->root_key.objectid); |
| 584 | ret = -ENOSPC; |
| 585 | goto out; |
| 586 | } |
| 587 | |
| 588 | *objectid = ++root->highest_objectid; |
| 589 | ret = 0; |
| 590 | out: |
| 591 | mutex_unlock(&root->objectid_mutex); |
| 592 | return ret; |
| 593 | } |