blob: 1e35a2327478dd6feda83d5086a52584e1f04a26 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2012 Fusion-io All rights reserved.
3 * Copyright (C) 2012 Intel Corp. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19#include <linux/sched.h>
20#include <linux/wait.h>
21#include <linux/bio.h>
22#include <linux/slab.h>
23#include <linux/buffer_head.h>
24#include <linux/blkdev.h>
25#include <linux/random.h>
26#include <linux/iocontext.h>
27#include <linux/capability.h>
28#include <linux/ratelimit.h>
29#include <linux/kthread.h>
30#include <linux/raid/pq.h>
31#include <linux/hash.h>
32#include <linux/list_sort.h>
33#include <linux/raid/xor.h>
34#include <linux/mm.h>
35#include <asm/div64.h>
36#include "ctree.h"
37#include "extent_map.h"
38#include "disk-io.h"
39#include "transaction.h"
40#include "print-tree.h"
41#include "volumes.h"
42#include "raid56.h"
43#include "async-thread.h"
44#include "check-integrity.h"
45#include "rcu-string.h"
46
47/* set when additional merges to this rbio are not allowed */
48#define RBIO_RMW_LOCKED_BIT 1
49
50/*
51 * set when this rbio is sitting in the hash, but it is just a cache
52 * of past RMW
53 */
54#define RBIO_CACHE_BIT 2
55
56/*
57 * set when it is safe to trust the stripe_pages for caching
58 */
59#define RBIO_CACHE_READY_BIT 3
60
61#define RBIO_CACHE_SIZE 1024
62
63enum btrfs_rbio_ops {
64 BTRFS_RBIO_WRITE,
65 BTRFS_RBIO_READ_REBUILD,
66 BTRFS_RBIO_PARITY_SCRUB,
67 BTRFS_RBIO_REBUILD_MISSING,
68};
69
70struct btrfs_raid_bio {
71 struct btrfs_fs_info *fs_info;
72 struct btrfs_bio *bbio;
73
74 /* while we're doing rmw on a stripe
75 * we put it into a hash table so we can
76 * lock the stripe and merge more rbios
77 * into it.
78 */
79 struct list_head hash_list;
80
81 /*
82 * LRU list for the stripe cache
83 */
84 struct list_head stripe_cache;
85
86 /*
87 * for scheduling work in the helper threads
88 */
89 struct btrfs_work work;
90
91 /*
92 * bio list and bio_list_lock are used
93 * to add more bios into the stripe
94 * in hopes of avoiding the full rmw
95 */
96 struct bio_list bio_list;
97 spinlock_t bio_list_lock;
98
99 /* also protected by the bio_list_lock, the
100 * plug list is used by the plugging code
101 * to collect partial bios while plugged. The
102 * stripe locking code also uses it to hand off
103 * the stripe lock to the next pending IO
104 */
105 struct list_head plug_list;
106
107 /*
108 * flags that tell us if it is safe to
109 * merge with this bio
110 */
111 unsigned long flags;
112
113 /* size of each individual stripe on disk */
114 int stripe_len;
115
116 /* number of data stripes (no p/q) */
117 int nr_data;
118
119 int real_stripes;
120
121 int stripe_npages;
122 /*
123 * set if we're doing a parity rebuild
124 * for a read from higher up, which is handled
125 * differently from a parity rebuild as part of
126 * rmw
127 */
128 enum btrfs_rbio_ops operation;
129
130 /* first bad stripe */
131 int faila;
132
133 /* second bad stripe (for raid6 use) */
134 int failb;
135
136 int scrubp;
137 /*
138 * number of pages needed to represent the full
139 * stripe
140 */
141 int nr_pages;
142
143 /*
144 * size of all the bios in the bio_list. This
145 * helps us decide if the rbio maps to a full
146 * stripe or not
147 */
148 int bio_list_bytes;
149
150 int generic_bio_cnt;
151
152 refcount_t refs;
153
154 atomic_t stripes_pending;
155
156 atomic_t error;
157 /*
158 * these are two arrays of pointers. We allocate the
159 * rbio big enough to hold them both and setup their
160 * locations when the rbio is allocated
161 */
162
163 /* pointers to pages that we allocated for
164 * reading/writing stripes directly from the disk (including P/Q)
165 */
166 struct page **stripe_pages;
167
168 /*
169 * pointers to the pages in the bio_list. Stored
170 * here for faster lookup
171 */
172 struct page **bio_pages;
173
174 /*
175 * bitmap to record which horizontal stripe has data
176 */
177 unsigned long *dbitmap;
178};
179
180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
182static void rmw_work(struct btrfs_work *work);
183static void read_rebuild_work(struct btrfs_work *work);
184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
191
192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
193 int need_check);
194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
195
196/*
197 * the stripe hash table is used for locking, and to collect
198 * bios in hopes of making a full stripe
199 */
200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
201{
202 struct btrfs_stripe_hash_table *table;
203 struct btrfs_stripe_hash_table *x;
204 struct btrfs_stripe_hash *cur;
205 struct btrfs_stripe_hash *h;
206 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
207 int i;
208 int table_size;
209
210 if (info->stripe_hash_table)
211 return 0;
212
213 /*
214 * The table is large, starting with order 4 and can go as high as
215 * order 7 in case lock debugging is turned on.
216 *
217 * Try harder to allocate and fallback to vmalloc to lower the chance
218 * of a failing mount.
219 */
220 table_size = sizeof(*table) + sizeof(*h) * num_entries;
221 table = kvzalloc(table_size, GFP_KERNEL);
222 if (!table)
223 return -ENOMEM;
224
225 spin_lock_init(&table->cache_lock);
226 INIT_LIST_HEAD(&table->stripe_cache);
227
228 h = table->table;
229
230 for (i = 0; i < num_entries; i++) {
231 cur = h + i;
232 INIT_LIST_HEAD(&cur->hash_list);
233 spin_lock_init(&cur->lock);
234 init_waitqueue_head(&cur->wait);
235 }
236
237 x = cmpxchg(&info->stripe_hash_table, NULL, table);
238 if (x)
239 kvfree(x);
240 return 0;
241}
242
243/*
244 * caching an rbio means to copy anything from the
245 * bio_pages array into the stripe_pages array. We
246 * use the page uptodate bit in the stripe cache array
247 * to indicate if it has valid data
248 *
249 * once the caching is done, we set the cache ready
250 * bit.
251 */
252static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253{
254 int i;
255 char *s;
256 char *d;
257 int ret;
258
259 ret = alloc_rbio_pages(rbio);
260 if (ret)
261 return;
262
263 for (i = 0; i < rbio->nr_pages; i++) {
264 if (!rbio->bio_pages[i])
265 continue;
266
267 s = kmap(rbio->bio_pages[i]);
268 d = kmap(rbio->stripe_pages[i]);
269
270 memcpy(d, s, PAGE_SIZE);
271
272 kunmap(rbio->bio_pages[i]);
273 kunmap(rbio->stripe_pages[i]);
274 SetPageUptodate(rbio->stripe_pages[i]);
275 }
276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277}
278
279/*
280 * we hash on the first logical address of the stripe
281 */
282static int rbio_bucket(struct btrfs_raid_bio *rbio)
283{
284 u64 num = rbio->bbio->raid_map[0];
285
286 /*
287 * we shift down quite a bit. We're using byte
288 * addressing, and most of the lower bits are zeros.
289 * This tends to upset hash_64, and it consistently
290 * returns just one or two different values.
291 *
292 * shifting off the lower bits fixes things.
293 */
294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295}
296
297/*
298 * stealing an rbio means taking all the uptodate pages from the stripe
299 * array in the source rbio and putting them into the destination rbio
300 */
301static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302{
303 int i;
304 struct page *s;
305 struct page *d;
306
307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 return;
309
310 for (i = 0; i < dest->nr_pages; i++) {
311 s = src->stripe_pages[i];
312 if (!s || !PageUptodate(s)) {
313 continue;
314 }
315
316 d = dest->stripe_pages[i];
317 if (d)
318 __free_page(d);
319
320 dest->stripe_pages[i] = s;
321 src->stripe_pages[i] = NULL;
322 }
323}
324
325/*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
332static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334{
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
337 dest->generic_bio_cnt += victim->generic_bio_cnt;
338 bio_list_init(&victim->bio_list);
339}
340
341/*
342 * used to prune items that are in the cache. The caller
343 * must hold the hash table lock.
344 */
345static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346{
347 int bucket = rbio_bucket(rbio);
348 struct btrfs_stripe_hash_table *table;
349 struct btrfs_stripe_hash *h;
350 int freeit = 0;
351
352 /*
353 * check the bit again under the hash table lock.
354 */
355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 return;
357
358 table = rbio->fs_info->stripe_hash_table;
359 h = table->table + bucket;
360
361 /* hold the lock for the bucket because we may be
362 * removing it from the hash table
363 */
364 spin_lock(&h->lock);
365
366 /*
367 * hold the lock for the bio list because we need
368 * to make sure the bio list is empty
369 */
370 spin_lock(&rbio->bio_list_lock);
371
372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 list_del_init(&rbio->stripe_cache);
374 table->cache_size -= 1;
375 freeit = 1;
376
377 /* if the bio list isn't empty, this rbio is
378 * still involved in an IO. We take it out
379 * of the cache list, and drop the ref that
380 * was held for the list.
381 *
382 * If the bio_list was empty, we also remove
383 * the rbio from the hash_table, and drop
384 * the corresponding ref
385 */
386 if (bio_list_empty(&rbio->bio_list)) {
387 if (!list_empty(&rbio->hash_list)) {
388 list_del_init(&rbio->hash_list);
389 refcount_dec(&rbio->refs);
390 BUG_ON(!list_empty(&rbio->plug_list));
391 }
392 }
393 }
394
395 spin_unlock(&rbio->bio_list_lock);
396 spin_unlock(&h->lock);
397
398 if (freeit)
399 __free_raid_bio(rbio);
400}
401
402/*
403 * prune a given rbio from the cache
404 */
405static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406{
407 struct btrfs_stripe_hash_table *table;
408 unsigned long flags;
409
410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 return;
412
413 table = rbio->fs_info->stripe_hash_table;
414
415 spin_lock_irqsave(&table->cache_lock, flags);
416 __remove_rbio_from_cache(rbio);
417 spin_unlock_irqrestore(&table->cache_lock, flags);
418}
419
420/*
421 * remove everything in the cache
422 */
423static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
424{
425 struct btrfs_stripe_hash_table *table;
426 unsigned long flags;
427 struct btrfs_raid_bio *rbio;
428
429 table = info->stripe_hash_table;
430
431 spin_lock_irqsave(&table->cache_lock, flags);
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
437 }
438 spin_unlock_irqrestore(&table->cache_lock, flags);
439}
440
441/*
442 * remove all cached entries and free the hash table
443 * used by unmount
444 */
445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446{
447 if (!info->stripe_hash_table)
448 return;
449 btrfs_clear_rbio_cache(info);
450 kvfree(info->stripe_hash_table);
451 info->stripe_hash_table = NULL;
452}
453
454/*
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
458 *
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
461 *
462 * If the size of the rbio cache is too big, we
463 * prune an item.
464 */
465static void cache_rbio(struct btrfs_raid_bio *rbio)
466{
467 struct btrfs_stripe_hash_table *table;
468 unsigned long flags;
469
470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 return;
472
473 table = rbio->fs_info->stripe_hash_table;
474
475 spin_lock_irqsave(&table->cache_lock, flags);
476 spin_lock(&rbio->bio_list_lock);
477
478 /* bump our ref if we were not in the list before */
479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
480 refcount_inc(&rbio->refs);
481
482 if (!list_empty(&rbio->stripe_cache)){
483 list_move(&rbio->stripe_cache, &table->stripe_cache);
484 } else {
485 list_add(&rbio->stripe_cache, &table->stripe_cache);
486 table->cache_size += 1;
487 }
488
489 spin_unlock(&rbio->bio_list_lock);
490
491 if (table->cache_size > RBIO_CACHE_SIZE) {
492 struct btrfs_raid_bio *found;
493
494 found = list_entry(table->stripe_cache.prev,
495 struct btrfs_raid_bio,
496 stripe_cache);
497
498 if (found != rbio)
499 __remove_rbio_from_cache(found);
500 }
501
502 spin_unlock_irqrestore(&table->cache_lock, flags);
503}
504
505/*
506 * helper function to run the xor_blocks api. It is only
507 * able to do MAX_XOR_BLOCKS at a time, so we need to
508 * loop through.
509 */
510static void run_xor(void **pages, int src_cnt, ssize_t len)
511{
512 int src_off = 0;
513 int xor_src_cnt = 0;
514 void *dest = pages[src_cnt];
515
516 while(src_cnt > 0) {
517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519
520 src_cnt -= xor_src_cnt;
521 src_off += xor_src_cnt;
522 }
523}
524
525/*
526 * returns true if the bio list inside this rbio
527 * covers an entire stripe (no rmw required).
528 * Must be called with the bio list lock held, or
529 * at a time when you know it is impossible to add
530 * new bios into the list
531 */
532static int __rbio_is_full(struct btrfs_raid_bio *rbio)
533{
534 unsigned long size = rbio->bio_list_bytes;
535 int ret = 1;
536
537 if (size != rbio->nr_data * rbio->stripe_len)
538 ret = 0;
539
540 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
541 return ret;
542}
543
544static int rbio_is_full(struct btrfs_raid_bio *rbio)
545{
546 unsigned long flags;
547 int ret;
548
549 spin_lock_irqsave(&rbio->bio_list_lock, flags);
550 ret = __rbio_is_full(rbio);
551 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
552 return ret;
553}
554
555/*
556 * returns 1 if it is safe to merge two rbios together.
557 * The merging is safe if the two rbios correspond to
558 * the same stripe and if they are both going in the same
559 * direction (read vs write), and if neither one is
560 * locked for final IO
561 *
562 * The caller is responsible for locking such that
563 * rmw_locked is safe to test
564 */
565static int rbio_can_merge(struct btrfs_raid_bio *last,
566 struct btrfs_raid_bio *cur)
567{
568 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
569 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
570 return 0;
571
572 /*
573 * we can't merge with cached rbios, since the
574 * idea is that when we merge the destination
575 * rbio is going to run our IO for us. We can
576 * steal from cached rbios though, other functions
577 * handle that.
578 */
579 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
580 test_bit(RBIO_CACHE_BIT, &cur->flags))
581 return 0;
582
583 if (last->bbio->raid_map[0] !=
584 cur->bbio->raid_map[0])
585 return 0;
586
587 /* we can't merge with different operations */
588 if (last->operation != cur->operation)
589 return 0;
590 /*
591 * We've need read the full stripe from the drive.
592 * check and repair the parity and write the new results.
593 *
594 * We're not allowed to add any new bios to the
595 * bio list here, anyone else that wants to
596 * change this stripe needs to do their own rmw.
597 */
598 if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
599 cur->operation == BTRFS_RBIO_PARITY_SCRUB)
600 return 0;
601
602 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
603 cur->operation == BTRFS_RBIO_REBUILD_MISSING)
604 return 0;
605
606 return 1;
607}
608
609static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
610 int index)
611{
612 return stripe * rbio->stripe_npages + index;
613}
614
615/*
616 * these are just the pages from the rbio array, not from anything
617 * the FS sent down to us
618 */
619static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
620 int index)
621{
622 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
623}
624
625/*
626 * helper to index into the pstripe
627 */
628static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
629{
630 return rbio_stripe_page(rbio, rbio->nr_data, index);
631}
632
633/*
634 * helper to index into the qstripe, returns null
635 * if there is no qstripe
636 */
637static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
638{
639 if (rbio->nr_data + 1 == rbio->real_stripes)
640 return NULL;
641 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
642}
643
644/*
645 * The first stripe in the table for a logical address
646 * has the lock. rbios are added in one of three ways:
647 *
648 * 1) Nobody has the stripe locked yet. The rbio is given
649 * the lock and 0 is returned. The caller must start the IO
650 * themselves.
651 *
652 * 2) Someone has the stripe locked, but we're able to merge
653 * with the lock owner. The rbio is freed and the IO will
654 * start automatically along with the existing rbio. 1 is returned.
655 *
656 * 3) Someone has the stripe locked, but we're not able to merge.
657 * The rbio is added to the lock owner's plug list, or merged into
658 * an rbio already on the plug list. When the lock owner unlocks,
659 * the next rbio on the list is run and the IO is started automatically.
660 * 1 is returned
661 *
662 * If we return 0, the caller still owns the rbio and must continue with
663 * IO submission. If we return 1, the caller must assume the rbio has
664 * already been freed.
665 */
666static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
667{
668 int bucket = rbio_bucket(rbio);
669 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
670 struct btrfs_raid_bio *cur;
671 struct btrfs_raid_bio *pending;
672 unsigned long flags;
673 DEFINE_WAIT(wait);
674 struct btrfs_raid_bio *freeit = NULL;
675 struct btrfs_raid_bio *cache_drop = NULL;
676 int ret = 0;
677
678 spin_lock_irqsave(&h->lock, flags);
679 list_for_each_entry(cur, &h->hash_list, hash_list) {
680 if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
681 spin_lock(&cur->bio_list_lock);
682
683 /* can we steal this cached rbio's pages? */
684 if (bio_list_empty(&cur->bio_list) &&
685 list_empty(&cur->plug_list) &&
686 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
687 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
688 list_del_init(&cur->hash_list);
689 refcount_dec(&cur->refs);
690
691 steal_rbio(cur, rbio);
692 cache_drop = cur;
693 spin_unlock(&cur->bio_list_lock);
694
695 goto lockit;
696 }
697
698 /* can we merge into the lock owner? */
699 if (rbio_can_merge(cur, rbio)) {
700 merge_rbio(cur, rbio);
701 spin_unlock(&cur->bio_list_lock);
702 freeit = rbio;
703 ret = 1;
704 goto out;
705 }
706
707
708 /*
709 * we couldn't merge with the running
710 * rbio, see if we can merge with the
711 * pending ones. We don't have to
712 * check for rmw_locked because there
713 * is no way they are inside finish_rmw
714 * right now
715 */
716 list_for_each_entry(pending, &cur->plug_list,
717 plug_list) {
718 if (rbio_can_merge(pending, rbio)) {
719 merge_rbio(pending, rbio);
720 spin_unlock(&cur->bio_list_lock);
721 freeit = rbio;
722 ret = 1;
723 goto out;
724 }
725 }
726
727 /* no merging, put us on the tail of the plug list,
728 * our rbio will be started with the currently
729 * running rbio unlocks
730 */
731 list_add_tail(&rbio->plug_list, &cur->plug_list);
732 spin_unlock(&cur->bio_list_lock);
733 ret = 1;
734 goto out;
735 }
736 }
737lockit:
738 refcount_inc(&rbio->refs);
739 list_add(&rbio->hash_list, &h->hash_list);
740out:
741 spin_unlock_irqrestore(&h->lock, flags);
742 if (cache_drop)
743 remove_rbio_from_cache(cache_drop);
744 if (freeit)
745 __free_raid_bio(freeit);
746 return ret;
747}
748
749/*
750 * called as rmw or parity rebuild is completed. If the plug list has more
751 * rbios waiting for this stripe, the next one on the list will be started
752 */
753static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
754{
755 int bucket;
756 struct btrfs_stripe_hash *h;
757 unsigned long flags;
758 int keep_cache = 0;
759
760 bucket = rbio_bucket(rbio);
761 h = rbio->fs_info->stripe_hash_table->table + bucket;
762
763 if (list_empty(&rbio->plug_list))
764 cache_rbio(rbio);
765
766 spin_lock_irqsave(&h->lock, flags);
767 spin_lock(&rbio->bio_list_lock);
768
769 if (!list_empty(&rbio->hash_list)) {
770 /*
771 * if we're still cached and there is no other IO
772 * to perform, just leave this rbio here for others
773 * to steal from later
774 */
775 if (list_empty(&rbio->plug_list) &&
776 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
777 keep_cache = 1;
778 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
779 BUG_ON(!bio_list_empty(&rbio->bio_list));
780 goto done;
781 }
782
783 list_del_init(&rbio->hash_list);
784 refcount_dec(&rbio->refs);
785
786 /*
787 * we use the plug list to hold all the rbios
788 * waiting for the chance to lock this stripe.
789 * hand the lock over to one of them.
790 */
791 if (!list_empty(&rbio->plug_list)) {
792 struct btrfs_raid_bio *next;
793 struct list_head *head = rbio->plug_list.next;
794
795 next = list_entry(head, struct btrfs_raid_bio,
796 plug_list);
797
798 list_del_init(&rbio->plug_list);
799
800 list_add(&next->hash_list, &h->hash_list);
801 refcount_inc(&next->refs);
802 spin_unlock(&rbio->bio_list_lock);
803 spin_unlock_irqrestore(&h->lock, flags);
804
805 if (next->operation == BTRFS_RBIO_READ_REBUILD)
806 async_read_rebuild(next);
807 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
808 steal_rbio(rbio, next);
809 async_read_rebuild(next);
810 } else if (next->operation == BTRFS_RBIO_WRITE) {
811 steal_rbio(rbio, next);
812 async_rmw_stripe(next);
813 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
814 steal_rbio(rbio, next);
815 async_scrub_parity(next);
816 }
817
818 goto done_nolock;
819 /*
820 * The barrier for this waitqueue_active is not needed,
821 * we're protected by h->lock and can't miss a wakeup.
822 */
823 } else if (waitqueue_active(&h->wait)) {
824 spin_unlock(&rbio->bio_list_lock);
825 spin_unlock_irqrestore(&h->lock, flags);
826 wake_up(&h->wait);
827 goto done_nolock;
828 }
829 }
830done:
831 spin_unlock(&rbio->bio_list_lock);
832 spin_unlock_irqrestore(&h->lock, flags);
833
834done_nolock:
835 if (!keep_cache)
836 remove_rbio_from_cache(rbio);
837}
838
839static void __free_raid_bio(struct btrfs_raid_bio *rbio)
840{
841 int i;
842
843 if (!refcount_dec_and_test(&rbio->refs))
844 return;
845
846 WARN_ON(!list_empty(&rbio->stripe_cache));
847 WARN_ON(!list_empty(&rbio->hash_list));
848 WARN_ON(!bio_list_empty(&rbio->bio_list));
849
850 for (i = 0; i < rbio->nr_pages; i++) {
851 if (rbio->stripe_pages[i]) {
852 __free_page(rbio->stripe_pages[i]);
853 rbio->stripe_pages[i] = NULL;
854 }
855 }
856
857 btrfs_put_bbio(rbio->bbio);
858 kfree(rbio);
859}
860
861static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
862{
863 struct bio *next;
864
865 while (cur) {
866 next = cur->bi_next;
867 cur->bi_next = NULL;
868 cur->bi_status = err;
869 bio_endio(cur);
870 cur = next;
871 }
872}
873
874/*
875 * this frees the rbio and runs through all the bios in the
876 * bio_list and calls end_io on them
877 */
878static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
879{
880 struct bio *cur = bio_list_get(&rbio->bio_list);
881 struct bio *extra;
882
883 if (rbio->generic_bio_cnt)
884 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
885
886 /*
887 * At this moment, rbio->bio_list is empty, however since rbio does not
888 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
889 * hash list, rbio may be merged with others so that rbio->bio_list
890 * becomes non-empty.
891 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
892 * more and we can call bio_endio() on all queued bios.
893 */
894 unlock_stripe(rbio);
895 extra = bio_list_get(&rbio->bio_list);
896 __free_raid_bio(rbio);
897
898 rbio_endio_bio_list(cur, err);
899 if (extra)
900 rbio_endio_bio_list(extra, err);
901}
902
903/*
904 * end io function used by finish_rmw. When we finally
905 * get here, we've written a full stripe
906 */
907static void raid_write_end_io(struct bio *bio)
908{
909 struct btrfs_raid_bio *rbio = bio->bi_private;
910 blk_status_t err = bio->bi_status;
911 int max_errors;
912
913 if (err)
914 fail_bio_stripe(rbio, bio);
915
916 bio_put(bio);
917
918 if (!atomic_dec_and_test(&rbio->stripes_pending))
919 return;
920
921 err = BLK_STS_OK;
922
923 /* OK, we have read all the stripes we need to. */
924 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
925 0 : rbio->bbio->max_errors;
926 if (atomic_read(&rbio->error) > max_errors)
927 err = BLK_STS_IOERR;
928
929 rbio_orig_end_io(rbio, err);
930}
931
932/*
933 * the read/modify/write code wants to use the original bio for
934 * any pages it included, and then use the rbio for everything
935 * else. This function decides if a given index (stripe number)
936 * and page number in that stripe fall inside the original bio
937 * or the rbio.
938 *
939 * if you set bio_list_only, you'll get a NULL back for any ranges
940 * that are outside the bio_list
941 *
942 * This doesn't take any refs on anything, you get a bare page pointer
943 * and the caller must bump refs as required.
944 *
945 * You must call index_rbio_pages once before you can trust
946 * the answers from this function.
947 */
948static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
949 int index, int pagenr, int bio_list_only)
950{
951 int chunk_page;
952 struct page *p = NULL;
953
954 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
955
956 spin_lock_irq(&rbio->bio_list_lock);
957 p = rbio->bio_pages[chunk_page];
958 spin_unlock_irq(&rbio->bio_list_lock);
959
960 if (p || bio_list_only)
961 return p;
962
963 return rbio->stripe_pages[chunk_page];
964}
965
966/*
967 * number of pages we need for the entire stripe across all the
968 * drives
969 */
970static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
971{
972 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
973}
974
975/*
976 * allocation and initial setup for the btrfs_raid_bio. Not
977 * this does not allocate any pages for rbio->pages.
978 */
979static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
980 struct btrfs_bio *bbio,
981 u64 stripe_len)
982{
983 struct btrfs_raid_bio *rbio;
984 int nr_data = 0;
985 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
986 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
987 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
988 void *p;
989
990 rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
991 DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
992 sizeof(long), GFP_NOFS);
993 if (!rbio)
994 return ERR_PTR(-ENOMEM);
995
996 bio_list_init(&rbio->bio_list);
997 INIT_LIST_HEAD(&rbio->plug_list);
998 spin_lock_init(&rbio->bio_list_lock);
999 INIT_LIST_HEAD(&rbio->stripe_cache);
1000 INIT_LIST_HEAD(&rbio->hash_list);
1001 rbio->bbio = bbio;
1002 rbio->fs_info = fs_info;
1003 rbio->stripe_len = stripe_len;
1004 rbio->nr_pages = num_pages;
1005 rbio->real_stripes = real_stripes;
1006 rbio->stripe_npages = stripe_npages;
1007 rbio->faila = -1;
1008 rbio->failb = -1;
1009 refcount_set(&rbio->refs, 1);
1010 atomic_set(&rbio->error, 0);
1011 atomic_set(&rbio->stripes_pending, 0);
1012
1013 /*
1014 * the stripe_pages and bio_pages array point to the extra
1015 * memory we allocated past the end of the rbio
1016 */
1017 p = rbio + 1;
1018 rbio->stripe_pages = p;
1019 rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1020 rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1021
1022 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1023 nr_data = real_stripes - 1;
1024 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1025 nr_data = real_stripes - 2;
1026 else
1027 BUG();
1028
1029 rbio->nr_data = nr_data;
1030 return rbio;
1031}
1032
1033/* allocate pages for all the stripes in the bio, including parity */
1034static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1035{
1036 int i;
1037 struct page *page;
1038
1039 for (i = 0; i < rbio->nr_pages; i++) {
1040 if (rbio->stripe_pages[i])
1041 continue;
1042 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1043 if (!page)
1044 return -ENOMEM;
1045 rbio->stripe_pages[i] = page;
1046 }
1047 return 0;
1048}
1049
1050/* only allocate pages for p/q stripes */
1051static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1052{
1053 int i;
1054 struct page *page;
1055
1056 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1057
1058 for (; i < rbio->nr_pages; i++) {
1059 if (rbio->stripe_pages[i])
1060 continue;
1061 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1062 if (!page)
1063 return -ENOMEM;
1064 rbio->stripe_pages[i] = page;
1065 }
1066 return 0;
1067}
1068
1069/*
1070 * add a single page from a specific stripe into our list of bios for IO
1071 * this will try to merge into existing bios if possible, and returns
1072 * zero if all went well.
1073 */
1074static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1075 struct bio_list *bio_list,
1076 struct page *page,
1077 int stripe_nr,
1078 unsigned long page_index,
1079 unsigned long bio_max_len)
1080{
1081 struct bio *last = bio_list->tail;
1082 u64 last_end = 0;
1083 int ret;
1084 struct bio *bio;
1085 struct btrfs_bio_stripe *stripe;
1086 u64 disk_start;
1087
1088 stripe = &rbio->bbio->stripes[stripe_nr];
1089 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1090
1091 /* if the device is missing, just fail this stripe */
1092 if (!stripe->dev->bdev)
1093 return fail_rbio_index(rbio, stripe_nr);
1094
1095 /* see if we can add this page onto our existing bio */
1096 if (last) {
1097 last_end = (u64)last->bi_iter.bi_sector << 9;
1098 last_end += last->bi_iter.bi_size;
1099
1100 /*
1101 * we can't merge these if they are from different
1102 * devices or if they are not contiguous
1103 */
1104 if (last_end == disk_start && stripe->dev->bdev &&
1105 !last->bi_status &&
1106 last->bi_disk == stripe->dev->bdev->bd_disk &&
1107 last->bi_partno == stripe->dev->bdev->bd_partno) {
1108 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1109 if (ret == PAGE_SIZE)
1110 return 0;
1111 }
1112 }
1113
1114 /* put a new bio on the list */
1115 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1116 bio->bi_iter.bi_size = 0;
1117 bio_set_dev(bio, stripe->dev->bdev);
1118 bio->bi_iter.bi_sector = disk_start >> 9;
1119
1120 bio_add_page(bio, page, PAGE_SIZE, 0);
1121 bio_list_add(bio_list, bio);
1122 return 0;
1123}
1124
1125/*
1126 * while we're doing the read/modify/write cycle, we could
1127 * have errors in reading pages off the disk. This checks
1128 * for errors and if we're not able to read the page it'll
1129 * trigger parity reconstruction. The rmw will be finished
1130 * after we've reconstructed the failed stripes
1131 */
1132static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1133{
1134 if (rbio->faila >= 0 || rbio->failb >= 0) {
1135 BUG_ON(rbio->faila == rbio->real_stripes - 1);
1136 __raid56_parity_recover(rbio);
1137 } else {
1138 finish_rmw(rbio);
1139 }
1140}
1141
1142/*
1143 * helper function to walk our bio list and populate the bio_pages array with
1144 * the result. This seems expensive, but it is faster than constantly
1145 * searching through the bio list as we setup the IO in finish_rmw or stripe
1146 * reconstruction.
1147 *
1148 * This must be called before you trust the answers from page_in_rbio
1149 */
1150static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1151{
1152 struct bio *bio;
1153 u64 start;
1154 unsigned long stripe_offset;
1155 unsigned long page_index;
1156
1157 spin_lock_irq(&rbio->bio_list_lock);
1158 bio_list_for_each(bio, &rbio->bio_list) {
1159 struct bio_vec bvec;
1160 struct bvec_iter iter;
1161 int i = 0;
1162
1163 start = (u64)bio->bi_iter.bi_sector << 9;
1164 stripe_offset = start - rbio->bbio->raid_map[0];
1165 page_index = stripe_offset >> PAGE_SHIFT;
1166
1167 if (bio_flagged(bio, BIO_CLONED))
1168 bio->bi_iter = btrfs_io_bio(bio)->iter;
1169
1170 bio_for_each_segment(bvec, bio, iter) {
1171 rbio->bio_pages[page_index + i] = bvec.bv_page;
1172 i++;
1173 }
1174 }
1175 spin_unlock_irq(&rbio->bio_list_lock);
1176}
1177
1178/*
1179 * this is called from one of two situations. We either
1180 * have a full stripe from the higher layers, or we've read all
1181 * the missing bits off disk.
1182 *
1183 * This will calculate the parity and then send down any
1184 * changed blocks.
1185 */
1186static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1187{
1188 struct btrfs_bio *bbio = rbio->bbio;
1189 void *pointers[rbio->real_stripes];
1190 int nr_data = rbio->nr_data;
1191 int stripe;
1192 int pagenr;
1193 int p_stripe = -1;
1194 int q_stripe = -1;
1195 struct bio_list bio_list;
1196 struct bio *bio;
1197 int ret;
1198
1199 bio_list_init(&bio_list);
1200
1201 if (rbio->real_stripes - rbio->nr_data == 1) {
1202 p_stripe = rbio->real_stripes - 1;
1203 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1204 p_stripe = rbio->real_stripes - 2;
1205 q_stripe = rbio->real_stripes - 1;
1206 } else {
1207 BUG();
1208 }
1209
1210 /* at this point we either have a full stripe,
1211 * or we've read the full stripe from the drive.
1212 * recalculate the parity and write the new results.
1213 *
1214 * We're not allowed to add any new bios to the
1215 * bio list here, anyone else that wants to
1216 * change this stripe needs to do their own rmw.
1217 */
1218 spin_lock_irq(&rbio->bio_list_lock);
1219 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1220 spin_unlock_irq(&rbio->bio_list_lock);
1221
1222 atomic_set(&rbio->error, 0);
1223
1224 /*
1225 * now that we've set rmw_locked, run through the
1226 * bio list one last time and map the page pointers
1227 *
1228 * We don't cache full rbios because we're assuming
1229 * the higher layers are unlikely to use this area of
1230 * the disk again soon. If they do use it again,
1231 * hopefully they will send another full bio.
1232 */
1233 index_rbio_pages(rbio);
1234 if (!rbio_is_full(rbio))
1235 cache_rbio_pages(rbio);
1236 else
1237 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1238
1239 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1240 struct page *p;
1241 /* first collect one page from each data stripe */
1242 for (stripe = 0; stripe < nr_data; stripe++) {
1243 p = page_in_rbio(rbio, stripe, pagenr, 0);
1244 pointers[stripe] = kmap(p);
1245 }
1246
1247 /* then add the parity stripe */
1248 p = rbio_pstripe_page(rbio, pagenr);
1249 SetPageUptodate(p);
1250 pointers[stripe++] = kmap(p);
1251
1252 if (q_stripe != -1) {
1253
1254 /*
1255 * raid6, add the qstripe and call the
1256 * library function to fill in our p/q
1257 */
1258 p = rbio_qstripe_page(rbio, pagenr);
1259 SetPageUptodate(p);
1260 pointers[stripe++] = kmap(p);
1261
1262 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1263 pointers);
1264 } else {
1265 /* raid5 */
1266 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1267 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1268 }
1269
1270
1271 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1272 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1273 }
1274
1275 /*
1276 * time to start writing. Make bios for everything from the
1277 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1278 * everything else.
1279 */
1280 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1281 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1282 struct page *page;
1283 if (stripe < rbio->nr_data) {
1284 page = page_in_rbio(rbio, stripe, pagenr, 1);
1285 if (!page)
1286 continue;
1287 } else {
1288 page = rbio_stripe_page(rbio, stripe, pagenr);
1289 }
1290
1291 ret = rbio_add_io_page(rbio, &bio_list,
1292 page, stripe, pagenr, rbio->stripe_len);
1293 if (ret)
1294 goto cleanup;
1295 }
1296 }
1297
1298 if (likely(!bbio->num_tgtdevs))
1299 goto write_data;
1300
1301 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1302 if (!bbio->tgtdev_map[stripe])
1303 continue;
1304
1305 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1306 struct page *page;
1307 if (stripe < rbio->nr_data) {
1308 page = page_in_rbio(rbio, stripe, pagenr, 1);
1309 if (!page)
1310 continue;
1311 } else {
1312 page = rbio_stripe_page(rbio, stripe, pagenr);
1313 }
1314
1315 ret = rbio_add_io_page(rbio, &bio_list, page,
1316 rbio->bbio->tgtdev_map[stripe],
1317 pagenr, rbio->stripe_len);
1318 if (ret)
1319 goto cleanup;
1320 }
1321 }
1322
1323write_data:
1324 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1325 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1326
1327 while (1) {
1328 bio = bio_list_pop(&bio_list);
1329 if (!bio)
1330 break;
1331
1332 bio->bi_private = rbio;
1333 bio->bi_end_io = raid_write_end_io;
1334 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1335
1336 submit_bio(bio);
1337 }
1338 return;
1339
1340cleanup:
1341 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1342}
1343
1344/*
1345 * helper to find the stripe number for a given bio. Used to figure out which
1346 * stripe has failed. This expects the bio to correspond to a physical disk,
1347 * so it looks up based on physical sector numbers.
1348 */
1349static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1350 struct bio *bio)
1351{
1352 u64 physical = bio->bi_iter.bi_sector;
1353 u64 stripe_start;
1354 int i;
1355 struct btrfs_bio_stripe *stripe;
1356
1357 physical <<= 9;
1358
1359 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1360 stripe = &rbio->bbio->stripes[i];
1361 stripe_start = stripe->physical;
1362 if (physical >= stripe_start &&
1363 physical < stripe_start + rbio->stripe_len &&
1364 stripe->dev->bdev &&
1365 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1366 bio->bi_partno == stripe->dev->bdev->bd_partno) {
1367 return i;
1368 }
1369 }
1370 return -1;
1371}
1372
1373/*
1374 * helper to find the stripe number for a given
1375 * bio (before mapping). Used to figure out which stripe has
1376 * failed. This looks up based on logical block numbers.
1377 */
1378static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1379 struct bio *bio)
1380{
1381 u64 logical = bio->bi_iter.bi_sector;
1382 u64 stripe_start;
1383 int i;
1384
1385 logical <<= 9;
1386
1387 for (i = 0; i < rbio->nr_data; i++) {
1388 stripe_start = rbio->bbio->raid_map[i];
1389 if (logical >= stripe_start &&
1390 logical < stripe_start + rbio->stripe_len) {
1391 return i;
1392 }
1393 }
1394 return -1;
1395}
1396
1397/*
1398 * returns -EIO if we had too many failures
1399 */
1400static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1401{
1402 unsigned long flags;
1403 int ret = 0;
1404
1405 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1406
1407 /* we already know this stripe is bad, move on */
1408 if (rbio->faila == failed || rbio->failb == failed)
1409 goto out;
1410
1411 if (rbio->faila == -1) {
1412 /* first failure on this rbio */
1413 rbio->faila = failed;
1414 atomic_inc(&rbio->error);
1415 } else if (rbio->failb == -1) {
1416 /* second failure on this rbio */
1417 rbio->failb = failed;
1418 atomic_inc(&rbio->error);
1419 } else {
1420 ret = -EIO;
1421 }
1422out:
1423 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1424
1425 return ret;
1426}
1427
1428/*
1429 * helper to fail a stripe based on a physical disk
1430 * bio.
1431 */
1432static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1433 struct bio *bio)
1434{
1435 int failed = find_bio_stripe(rbio, bio);
1436
1437 if (failed < 0)
1438 return -EIO;
1439
1440 return fail_rbio_index(rbio, failed);
1441}
1442
1443/*
1444 * this sets each page in the bio uptodate. It should only be used on private
1445 * rbio pages, nothing that comes in from the higher layers
1446 */
1447static void set_bio_pages_uptodate(struct bio *bio)
1448{
1449 struct bio_vec *bvec;
1450 int i;
1451
1452 ASSERT(!bio_flagged(bio, BIO_CLONED));
1453
1454 bio_for_each_segment_all(bvec, bio, i)
1455 SetPageUptodate(bvec->bv_page);
1456}
1457
1458/*
1459 * end io for the read phase of the rmw cycle. All the bios here are physical
1460 * stripe bios we've read from the disk so we can recalculate the parity of the
1461 * stripe.
1462 *
1463 * This will usually kick off finish_rmw once all the bios are read in, but it
1464 * may trigger parity reconstruction if we had any errors along the way
1465 */
1466static void raid_rmw_end_io(struct bio *bio)
1467{
1468 struct btrfs_raid_bio *rbio = bio->bi_private;
1469
1470 if (bio->bi_status)
1471 fail_bio_stripe(rbio, bio);
1472 else
1473 set_bio_pages_uptodate(bio);
1474
1475 bio_put(bio);
1476
1477 if (!atomic_dec_and_test(&rbio->stripes_pending))
1478 return;
1479
1480 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1481 goto cleanup;
1482
1483 /*
1484 * this will normally call finish_rmw to start our write
1485 * but if there are any failed stripes we'll reconstruct
1486 * from parity first
1487 */
1488 validate_rbio_for_rmw(rbio);
1489 return;
1490
1491cleanup:
1492
1493 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1494}
1495
1496static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1497{
1498 btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL);
1499 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1500}
1501
1502static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1503{
1504 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1505 read_rebuild_work, NULL, NULL);
1506
1507 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
1508}
1509
1510/*
1511 * the stripe must be locked by the caller. It will
1512 * unlock after all the writes are done
1513 */
1514static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1515{
1516 int bios_to_read = 0;
1517 struct bio_list bio_list;
1518 int ret;
1519 int pagenr;
1520 int stripe;
1521 struct bio *bio;
1522
1523 bio_list_init(&bio_list);
1524
1525 ret = alloc_rbio_pages(rbio);
1526 if (ret)
1527 goto cleanup;
1528
1529 index_rbio_pages(rbio);
1530
1531 atomic_set(&rbio->error, 0);
1532 /*
1533 * build a list of bios to read all the missing parts of this
1534 * stripe
1535 */
1536 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1537 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1538 struct page *page;
1539 /*
1540 * we want to find all the pages missing from
1541 * the rbio and read them from the disk. If
1542 * page_in_rbio finds a page in the bio list
1543 * we don't need to read it off the stripe.
1544 */
1545 page = page_in_rbio(rbio, stripe, pagenr, 1);
1546 if (page)
1547 continue;
1548
1549 page = rbio_stripe_page(rbio, stripe, pagenr);
1550 /*
1551 * the bio cache may have handed us an uptodate
1552 * page. If so, be happy and use it
1553 */
1554 if (PageUptodate(page))
1555 continue;
1556
1557 ret = rbio_add_io_page(rbio, &bio_list, page,
1558 stripe, pagenr, rbio->stripe_len);
1559 if (ret)
1560 goto cleanup;
1561 }
1562 }
1563
1564 bios_to_read = bio_list_size(&bio_list);
1565 if (!bios_to_read) {
1566 /*
1567 * this can happen if others have merged with
1568 * us, it means there is nothing left to read.
1569 * But if there are missing devices it may not be
1570 * safe to do the full stripe write yet.
1571 */
1572 goto finish;
1573 }
1574
1575 /*
1576 * the bbio may be freed once we submit the last bio. Make sure
1577 * not to touch it after that
1578 */
1579 atomic_set(&rbio->stripes_pending, bios_to_read);
1580 while (1) {
1581 bio = bio_list_pop(&bio_list);
1582 if (!bio)
1583 break;
1584
1585 bio->bi_private = rbio;
1586 bio->bi_end_io = raid_rmw_end_io;
1587 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1588
1589 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1590
1591 submit_bio(bio);
1592 }
1593 /* the actual write will happen once the reads are done */
1594 return 0;
1595
1596cleanup:
1597 rbio_orig_end_io(rbio, BLK_STS_IOERR);
1598 return -EIO;
1599
1600finish:
1601 validate_rbio_for_rmw(rbio);
1602 return 0;
1603}
1604
1605/*
1606 * if the upper layers pass in a full stripe, we thank them by only allocating
1607 * enough pages to hold the parity, and sending it all down quickly.
1608 */
1609static int full_stripe_write(struct btrfs_raid_bio *rbio)
1610{
1611 int ret;
1612
1613 ret = alloc_rbio_parity_pages(rbio);
1614 if (ret) {
1615 __free_raid_bio(rbio);
1616 return ret;
1617 }
1618
1619 ret = lock_stripe_add(rbio);
1620 if (ret == 0)
1621 finish_rmw(rbio);
1622 return 0;
1623}
1624
1625/*
1626 * partial stripe writes get handed over to async helpers.
1627 * We're really hoping to merge a few more writes into this
1628 * rbio before calculating new parity
1629 */
1630static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1631{
1632 int ret;
1633
1634 ret = lock_stripe_add(rbio);
1635 if (ret == 0)
1636 async_rmw_stripe(rbio);
1637 return 0;
1638}
1639
1640/*
1641 * sometimes while we were reading from the drive to
1642 * recalculate parity, enough new bios come into create
1643 * a full stripe. So we do a check here to see if we can
1644 * go directly to finish_rmw
1645 */
1646static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1647{
1648 /* head off into rmw land if we don't have a full stripe */
1649 if (!rbio_is_full(rbio))
1650 return partial_stripe_write(rbio);
1651 return full_stripe_write(rbio);
1652}
1653
1654/*
1655 * We use plugging call backs to collect full stripes.
1656 * Any time we get a partial stripe write while plugged
1657 * we collect it into a list. When the unplug comes down,
1658 * we sort the list by logical block number and merge
1659 * everything we can into the same rbios
1660 */
1661struct btrfs_plug_cb {
1662 struct blk_plug_cb cb;
1663 struct btrfs_fs_info *info;
1664 struct list_head rbio_list;
1665 struct btrfs_work work;
1666};
1667
1668/*
1669 * rbios on the plug list are sorted for easier merging.
1670 */
1671static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1672{
1673 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1674 plug_list);
1675 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1676 plug_list);
1677 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1678 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1679
1680 if (a_sector < b_sector)
1681 return -1;
1682 if (a_sector > b_sector)
1683 return 1;
1684 return 0;
1685}
1686
1687static void run_plug(struct btrfs_plug_cb *plug)
1688{
1689 struct btrfs_raid_bio *cur;
1690 struct btrfs_raid_bio *last = NULL;
1691
1692 /*
1693 * sort our plug list then try to merge
1694 * everything we can in hopes of creating full
1695 * stripes.
1696 */
1697 list_sort(NULL, &plug->rbio_list, plug_cmp);
1698 while (!list_empty(&plug->rbio_list)) {
1699 cur = list_entry(plug->rbio_list.next,
1700 struct btrfs_raid_bio, plug_list);
1701 list_del_init(&cur->plug_list);
1702
1703 if (rbio_is_full(cur)) {
1704 /* we have a full stripe, send it down */
1705 full_stripe_write(cur);
1706 continue;
1707 }
1708 if (last) {
1709 if (rbio_can_merge(last, cur)) {
1710 merge_rbio(last, cur);
1711 __free_raid_bio(cur);
1712 continue;
1713
1714 }
1715 __raid56_parity_write(last);
1716 }
1717 last = cur;
1718 }
1719 if (last) {
1720 __raid56_parity_write(last);
1721 }
1722 kfree(plug);
1723}
1724
1725/*
1726 * if the unplug comes from schedule, we have to push the
1727 * work off to a helper thread
1728 */
1729static void unplug_work(struct btrfs_work *work)
1730{
1731 struct btrfs_plug_cb *plug;
1732 plug = container_of(work, struct btrfs_plug_cb, work);
1733 run_plug(plug);
1734}
1735
1736static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1737{
1738 struct btrfs_plug_cb *plug;
1739 plug = container_of(cb, struct btrfs_plug_cb, cb);
1740
1741 if (from_schedule) {
1742 btrfs_init_work(&plug->work, btrfs_rmw_helper,
1743 unplug_work, NULL, NULL);
1744 btrfs_queue_work(plug->info->rmw_workers,
1745 &plug->work);
1746 return;
1747 }
1748 run_plug(plug);
1749}
1750
1751/*
1752 * our main entry point for writes from the rest of the FS.
1753 */
1754int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1755 struct btrfs_bio *bbio, u64 stripe_len)
1756{
1757 struct btrfs_raid_bio *rbio;
1758 struct btrfs_plug_cb *plug = NULL;
1759 struct blk_plug_cb *cb;
1760 int ret;
1761
1762 rbio = alloc_rbio(fs_info, bbio, stripe_len);
1763 if (IS_ERR(rbio)) {
1764 btrfs_put_bbio(bbio);
1765 return PTR_ERR(rbio);
1766 }
1767 bio_list_add(&rbio->bio_list, bio);
1768 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1769 rbio->operation = BTRFS_RBIO_WRITE;
1770
1771 btrfs_bio_counter_inc_noblocked(fs_info);
1772 rbio->generic_bio_cnt = 1;
1773
1774 /*
1775 * don't plug on full rbios, just get them out the door
1776 * as quickly as we can
1777 */
1778 if (rbio_is_full(rbio)) {
1779 ret = full_stripe_write(rbio);
1780 if (ret)
1781 btrfs_bio_counter_dec(fs_info);
1782 return ret;
1783 }
1784
1785 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1786 if (cb) {
1787 plug = container_of(cb, struct btrfs_plug_cb, cb);
1788 if (!plug->info) {
1789 plug->info = fs_info;
1790 INIT_LIST_HEAD(&plug->rbio_list);
1791 }
1792 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1793 ret = 0;
1794 } else {
1795 ret = __raid56_parity_write(rbio);
1796 if (ret)
1797 btrfs_bio_counter_dec(fs_info);
1798 }
1799 return ret;
1800}
1801
1802/*
1803 * all parity reconstruction happens here. We've read in everything
1804 * we can find from the drives and this does the heavy lifting of
1805 * sorting the good from the bad.
1806 */
1807static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1808{
1809 int pagenr, stripe;
1810 void **pointers;
1811 int faila = -1, failb = -1;
1812 struct page *page;
1813 blk_status_t err;
1814 int i;
1815
1816 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1817 if (!pointers) {
1818 err = BLK_STS_RESOURCE;
1819 goto cleanup_io;
1820 }
1821
1822 faila = rbio->faila;
1823 failb = rbio->failb;
1824
1825 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1826 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1827 spin_lock_irq(&rbio->bio_list_lock);
1828 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1829 spin_unlock_irq(&rbio->bio_list_lock);
1830 }
1831
1832 index_rbio_pages(rbio);
1833
1834 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1835 /*
1836 * Now we just use bitmap to mark the horizontal stripes in
1837 * which we have data when doing parity scrub.
1838 */
1839 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1840 !test_bit(pagenr, rbio->dbitmap))
1841 continue;
1842
1843 /* setup our array of pointers with pages
1844 * from each stripe
1845 */
1846 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1847 /*
1848 * if we're rebuilding a read, we have to use
1849 * pages from the bio list
1850 */
1851 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1852 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1853 (stripe == faila || stripe == failb)) {
1854 page = page_in_rbio(rbio, stripe, pagenr, 0);
1855 } else {
1856 page = rbio_stripe_page(rbio, stripe, pagenr);
1857 }
1858 pointers[stripe] = kmap(page);
1859 }
1860
1861 /* all raid6 handling here */
1862 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1863 /*
1864 * single failure, rebuild from parity raid5
1865 * style
1866 */
1867 if (failb < 0) {
1868 if (faila == rbio->nr_data) {
1869 /*
1870 * Just the P stripe has failed, without
1871 * a bad data or Q stripe.
1872 * TODO, we should redo the xor here.
1873 */
1874 err = BLK_STS_IOERR;
1875 goto cleanup;
1876 }
1877 /*
1878 * a single failure in raid6 is rebuilt
1879 * in the pstripe code below
1880 */
1881 goto pstripe;
1882 }
1883
1884 /* make sure our ps and qs are in order */
1885 if (faila > failb) {
1886 int tmp = failb;
1887 failb = faila;
1888 faila = tmp;
1889 }
1890
1891 /* if the q stripe is failed, do a pstripe reconstruction
1892 * from the xors.
1893 * If both the q stripe and the P stripe are failed, we're
1894 * here due to a crc mismatch and we can't give them the
1895 * data they want
1896 */
1897 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1898 if (rbio->bbio->raid_map[faila] ==
1899 RAID5_P_STRIPE) {
1900 err = BLK_STS_IOERR;
1901 goto cleanup;
1902 }
1903 /*
1904 * otherwise we have one bad data stripe and
1905 * a good P stripe. raid5!
1906 */
1907 goto pstripe;
1908 }
1909
1910 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1911 raid6_datap_recov(rbio->real_stripes,
1912 PAGE_SIZE, faila, pointers);
1913 } else {
1914 raid6_2data_recov(rbio->real_stripes,
1915 PAGE_SIZE, faila, failb,
1916 pointers);
1917 }
1918 } else {
1919 void *p;
1920
1921 /* rebuild from P stripe here (raid5 or raid6) */
1922 BUG_ON(failb != -1);
1923pstripe:
1924 /* Copy parity block into failed block to start with */
1925 memcpy(pointers[faila],
1926 pointers[rbio->nr_data],
1927 PAGE_SIZE);
1928
1929 /* rearrange the pointer array */
1930 p = pointers[faila];
1931 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1932 pointers[stripe] = pointers[stripe + 1];
1933 pointers[rbio->nr_data - 1] = p;
1934
1935 /* xor in the rest */
1936 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1937 }
1938 /* if we're doing this rebuild as part of an rmw, go through
1939 * and set all of our private rbio pages in the
1940 * failed stripes as uptodate. This way finish_rmw will
1941 * know they can be trusted. If this was a read reconstruction,
1942 * other endio functions will fiddle the uptodate bits
1943 */
1944 if (rbio->operation == BTRFS_RBIO_WRITE) {
1945 for (i = 0; i < rbio->stripe_npages; i++) {
1946 if (faila != -1) {
1947 page = rbio_stripe_page(rbio, faila, i);
1948 SetPageUptodate(page);
1949 }
1950 if (failb != -1) {
1951 page = rbio_stripe_page(rbio, failb, i);
1952 SetPageUptodate(page);
1953 }
1954 }
1955 }
1956 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1957 /*
1958 * if we're rebuilding a read, we have to use
1959 * pages from the bio list
1960 */
1961 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1962 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1963 (stripe == faila || stripe == failb)) {
1964 page = page_in_rbio(rbio, stripe, pagenr, 0);
1965 } else {
1966 page = rbio_stripe_page(rbio, stripe, pagenr);
1967 }
1968 kunmap(page);
1969 }
1970 }
1971
1972 err = BLK_STS_OK;
1973cleanup:
1974 kfree(pointers);
1975
1976cleanup_io:
1977 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1978 if (err == BLK_STS_OK)
1979 cache_rbio_pages(rbio);
1980 else
1981 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1982
1983 rbio_orig_end_io(rbio, err);
1984 } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1985 rbio_orig_end_io(rbio, err);
1986 } else if (err == BLK_STS_OK) {
1987 rbio->faila = -1;
1988 rbio->failb = -1;
1989
1990 if (rbio->operation == BTRFS_RBIO_WRITE)
1991 finish_rmw(rbio);
1992 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1993 finish_parity_scrub(rbio, 0);
1994 else
1995 BUG();
1996 } else {
1997 rbio_orig_end_io(rbio, err);
1998 }
1999}
2000
2001/*
2002 * This is called only for stripes we've read from disk to
2003 * reconstruct the parity.
2004 */
2005static void raid_recover_end_io(struct bio *bio)
2006{
2007 struct btrfs_raid_bio *rbio = bio->bi_private;
2008
2009 /*
2010 * we only read stripe pages off the disk, set them
2011 * up to date if there were no errors
2012 */
2013 if (bio->bi_status)
2014 fail_bio_stripe(rbio, bio);
2015 else
2016 set_bio_pages_uptodate(bio);
2017 bio_put(bio);
2018
2019 if (!atomic_dec_and_test(&rbio->stripes_pending))
2020 return;
2021
2022 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2023 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2024 else
2025 __raid_recover_end_io(rbio);
2026}
2027
2028/*
2029 * reads everything we need off the disk to reconstruct
2030 * the parity. endio handlers trigger final reconstruction
2031 * when the IO is done.
2032 *
2033 * This is used both for reads from the higher layers and for
2034 * parity construction required to finish a rmw cycle.
2035 */
2036static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2037{
2038 int bios_to_read = 0;
2039 struct bio_list bio_list;
2040 int ret;
2041 int pagenr;
2042 int stripe;
2043 struct bio *bio;
2044
2045 bio_list_init(&bio_list);
2046
2047 ret = alloc_rbio_pages(rbio);
2048 if (ret)
2049 goto cleanup;
2050
2051 atomic_set(&rbio->error, 0);
2052
2053 /*
2054 * read everything that hasn't failed. Thanks to the
2055 * stripe cache, it is possible that some or all of these
2056 * pages are going to be uptodate.
2057 */
2058 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2059 if (rbio->faila == stripe || rbio->failb == stripe) {
2060 atomic_inc(&rbio->error);
2061 continue;
2062 }
2063
2064 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2065 struct page *p;
2066
2067 /*
2068 * the rmw code may have already read this
2069 * page in
2070 */
2071 p = rbio_stripe_page(rbio, stripe, pagenr);
2072 if (PageUptodate(p))
2073 continue;
2074
2075 ret = rbio_add_io_page(rbio, &bio_list,
2076 rbio_stripe_page(rbio, stripe, pagenr),
2077 stripe, pagenr, rbio->stripe_len);
2078 if (ret < 0)
2079 goto cleanup;
2080 }
2081 }
2082
2083 bios_to_read = bio_list_size(&bio_list);
2084 if (!bios_to_read) {
2085 /*
2086 * we might have no bios to read just because the pages
2087 * were up to date, or we might have no bios to read because
2088 * the devices were gone.
2089 */
2090 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2091 __raid_recover_end_io(rbio);
2092 goto out;
2093 } else {
2094 goto cleanup;
2095 }
2096 }
2097
2098 /*
2099 * the bbio may be freed once we submit the last bio. Make sure
2100 * not to touch it after that
2101 */
2102 atomic_set(&rbio->stripes_pending, bios_to_read);
2103 while (1) {
2104 bio = bio_list_pop(&bio_list);
2105 if (!bio)
2106 break;
2107
2108 bio->bi_private = rbio;
2109 bio->bi_end_io = raid_recover_end_io;
2110 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2111
2112 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2113
2114 submit_bio(bio);
2115 }
2116out:
2117 return 0;
2118
2119cleanup:
2120 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2121 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2122 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2123 return -EIO;
2124}
2125
2126/*
2127 * the main entry point for reads from the higher layers. This
2128 * is really only called when the normal read path had a failure,
2129 * so we assume the bio they send down corresponds to a failed part
2130 * of the drive.
2131 */
2132int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2133 struct btrfs_bio *bbio, u64 stripe_len,
2134 int mirror_num, int generic_io)
2135{
2136 struct btrfs_raid_bio *rbio;
2137 int ret;
2138
2139 if (generic_io) {
2140 ASSERT(bbio->mirror_num == mirror_num);
2141 btrfs_io_bio(bio)->mirror_num = mirror_num;
2142 }
2143
2144 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2145 if (IS_ERR(rbio)) {
2146 if (generic_io)
2147 btrfs_put_bbio(bbio);
2148 return PTR_ERR(rbio);
2149 }
2150
2151 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2152 bio_list_add(&rbio->bio_list, bio);
2153 rbio->bio_list_bytes = bio->bi_iter.bi_size;
2154
2155 rbio->faila = find_logical_bio_stripe(rbio, bio);
2156 if (rbio->faila == -1) {
2157 btrfs_warn(fs_info,
2158 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2159 __func__, (u64)bio->bi_iter.bi_sector << 9,
2160 (u64)bio->bi_iter.bi_size, bbio->map_type);
2161 if (generic_io)
2162 btrfs_put_bbio(bbio);
2163 kfree(rbio);
2164 return -EIO;
2165 }
2166
2167 if (generic_io) {
2168 btrfs_bio_counter_inc_noblocked(fs_info);
2169 rbio->generic_bio_cnt = 1;
2170 } else {
2171 btrfs_get_bbio(bbio);
2172 }
2173
2174 /*
2175 * Loop retry:
2176 * for 'mirror == 2', reconstruct from all other stripes.
2177 * for 'mirror_num > 2', select a stripe to fail on every retry.
2178 */
2179 if (mirror_num > 2) {
2180 /*
2181 * 'mirror == 3' is to fail the p stripe and
2182 * reconstruct from the q stripe. 'mirror > 3' is to
2183 * fail a data stripe and reconstruct from p+q stripe.
2184 */
2185 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2186 ASSERT(rbio->failb > 0);
2187 if (rbio->failb <= rbio->faila)
2188 rbio->failb--;
2189 }
2190
2191 ret = lock_stripe_add(rbio);
2192
2193 /*
2194 * __raid56_parity_recover will end the bio with
2195 * any errors it hits. We don't want to return
2196 * its error value up the stack because our caller
2197 * will end up calling bio_endio with any nonzero
2198 * return
2199 */
2200 if (ret == 0)
2201 __raid56_parity_recover(rbio);
2202 /*
2203 * our rbio has been added to the list of
2204 * rbios that will be handled after the
2205 * currently lock owner is done
2206 */
2207 return 0;
2208
2209}
2210
2211static void rmw_work(struct btrfs_work *work)
2212{
2213 struct btrfs_raid_bio *rbio;
2214
2215 rbio = container_of(work, struct btrfs_raid_bio, work);
2216 raid56_rmw_stripe(rbio);
2217}
2218
2219static void read_rebuild_work(struct btrfs_work *work)
2220{
2221 struct btrfs_raid_bio *rbio;
2222
2223 rbio = container_of(work, struct btrfs_raid_bio, work);
2224 __raid56_parity_recover(rbio);
2225}
2226
2227/*
2228 * The following code is used to scrub/replace the parity stripe
2229 *
2230 * Caller must have already increased bio_counter for getting @bbio.
2231 *
2232 * Note: We need make sure all the pages that add into the scrub/replace
2233 * raid bio are correct and not be changed during the scrub/replace. That
2234 * is those pages just hold metadata or file data with checksum.
2235 */
2236
2237struct btrfs_raid_bio *
2238raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2239 struct btrfs_bio *bbio, u64 stripe_len,
2240 struct btrfs_device *scrub_dev,
2241 unsigned long *dbitmap, int stripe_nsectors)
2242{
2243 struct btrfs_raid_bio *rbio;
2244 int i;
2245
2246 rbio = alloc_rbio(fs_info, bbio, stripe_len);
2247 if (IS_ERR(rbio))
2248 return NULL;
2249 bio_list_add(&rbio->bio_list, bio);
2250 /*
2251 * This is a special bio which is used to hold the completion handler
2252 * and make the scrub rbio is similar to the other types
2253 */
2254 ASSERT(!bio->bi_iter.bi_size);
2255 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2256
2257 for (i = 0; i < rbio->real_stripes; i++) {
2258 if (bbio->stripes[i].dev == scrub_dev) {
2259 rbio->scrubp = i;
2260 break;
2261 }
2262 }
2263
2264 /* Now we just support the sectorsize equals to page size */
2265 ASSERT(fs_info->sectorsize == PAGE_SIZE);
2266 ASSERT(rbio->stripe_npages == stripe_nsectors);
2267 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2268
2269 /*
2270 * We have already increased bio_counter when getting bbio, record it
2271 * so we can free it at rbio_orig_end_io().
2272 */
2273 rbio->generic_bio_cnt = 1;
2274
2275 return rbio;
2276}
2277
2278/* Used for both parity scrub and missing. */
2279void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2280 u64 logical)
2281{
2282 int stripe_offset;
2283 int index;
2284
2285 ASSERT(logical >= rbio->bbio->raid_map[0]);
2286 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2287 rbio->stripe_len * rbio->nr_data);
2288 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2289 index = stripe_offset >> PAGE_SHIFT;
2290 rbio->bio_pages[index] = page;
2291}
2292
2293/*
2294 * We just scrub the parity that we have correct data on the same horizontal,
2295 * so we needn't allocate all pages for all the stripes.
2296 */
2297static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2298{
2299 int i;
2300 int bit;
2301 int index;
2302 struct page *page;
2303
2304 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2305 for (i = 0; i < rbio->real_stripes; i++) {
2306 index = i * rbio->stripe_npages + bit;
2307 if (rbio->stripe_pages[index])
2308 continue;
2309
2310 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2311 if (!page)
2312 return -ENOMEM;
2313 rbio->stripe_pages[index] = page;
2314 }
2315 }
2316 return 0;
2317}
2318
2319static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2320 int need_check)
2321{
2322 struct btrfs_bio *bbio = rbio->bbio;
2323 void *pointers[rbio->real_stripes];
2324 DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
2325 int nr_data = rbio->nr_data;
2326 int stripe;
2327 int pagenr;
2328 int p_stripe = -1;
2329 int q_stripe = -1;
2330 struct page *p_page = NULL;
2331 struct page *q_page = NULL;
2332 struct bio_list bio_list;
2333 struct bio *bio;
2334 int is_replace = 0;
2335 int ret;
2336
2337 bio_list_init(&bio_list);
2338
2339 if (rbio->real_stripes - rbio->nr_data == 1) {
2340 p_stripe = rbio->real_stripes - 1;
2341 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2342 p_stripe = rbio->real_stripes - 2;
2343 q_stripe = rbio->real_stripes - 1;
2344 } else {
2345 BUG();
2346 }
2347
2348 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2349 is_replace = 1;
2350 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2351 }
2352
2353 /*
2354 * Because the higher layers(scrubber) are unlikely to
2355 * use this area of the disk again soon, so don't cache
2356 * it.
2357 */
2358 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2359
2360 if (!need_check)
2361 goto writeback;
2362
2363 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2364 if (!p_page)
2365 goto cleanup;
2366 SetPageUptodate(p_page);
2367
2368 if (q_stripe != -1) {
2369 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2370 if (!q_page) {
2371 __free_page(p_page);
2372 goto cleanup;
2373 }
2374 SetPageUptodate(q_page);
2375 }
2376
2377 atomic_set(&rbio->error, 0);
2378
2379 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2380 struct page *p;
2381 void *parity;
2382 /* first collect one page from each data stripe */
2383 for (stripe = 0; stripe < nr_data; stripe++) {
2384 p = page_in_rbio(rbio, stripe, pagenr, 0);
2385 pointers[stripe] = kmap(p);
2386 }
2387
2388 /* then add the parity stripe */
2389 pointers[stripe++] = kmap(p_page);
2390
2391 if (q_stripe != -1) {
2392
2393 /*
2394 * raid6, add the qstripe and call the
2395 * library function to fill in our p/q
2396 */
2397 pointers[stripe++] = kmap(q_page);
2398
2399 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2400 pointers);
2401 } else {
2402 /* raid5 */
2403 memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2404 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2405 }
2406
2407 /* Check scrubbing parity and repair it */
2408 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2409 parity = kmap(p);
2410 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2411 memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2412 else
2413 /* Parity is right, needn't writeback */
2414 bitmap_clear(rbio->dbitmap, pagenr, 1);
2415 kunmap(p);
2416
2417 for (stripe = 0; stripe < nr_data; stripe++)
2418 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2419 kunmap(p_page);
2420 }
2421
2422 __free_page(p_page);
2423 if (q_page)
2424 __free_page(q_page);
2425
2426writeback:
2427 /*
2428 * time to start writing. Make bios for everything from the
2429 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2430 * everything else.
2431 */
2432 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2433 struct page *page;
2434
2435 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2436 ret = rbio_add_io_page(rbio, &bio_list,
2437 page, rbio->scrubp, pagenr, rbio->stripe_len);
2438 if (ret)
2439 goto cleanup;
2440 }
2441
2442 if (!is_replace)
2443 goto submit_write;
2444
2445 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2446 struct page *page;
2447
2448 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2449 ret = rbio_add_io_page(rbio, &bio_list, page,
2450 bbio->tgtdev_map[rbio->scrubp],
2451 pagenr, rbio->stripe_len);
2452 if (ret)
2453 goto cleanup;
2454 }
2455
2456submit_write:
2457 nr_data = bio_list_size(&bio_list);
2458 if (!nr_data) {
2459 /* Every parity is right */
2460 rbio_orig_end_io(rbio, BLK_STS_OK);
2461 return;
2462 }
2463
2464 atomic_set(&rbio->stripes_pending, nr_data);
2465
2466 while (1) {
2467 bio = bio_list_pop(&bio_list);
2468 if (!bio)
2469 break;
2470
2471 bio->bi_private = rbio;
2472 bio->bi_end_io = raid_write_end_io;
2473 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2474
2475 submit_bio(bio);
2476 }
2477 return;
2478
2479cleanup:
2480 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2481}
2482
2483static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2484{
2485 if (stripe >= 0 && stripe < rbio->nr_data)
2486 return 1;
2487 return 0;
2488}
2489
2490/*
2491 * While we're doing the parity check and repair, we could have errors
2492 * in reading pages off the disk. This checks for errors and if we're
2493 * not able to read the page it'll trigger parity reconstruction. The
2494 * parity scrub will be finished after we've reconstructed the failed
2495 * stripes
2496 */
2497static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2498{
2499 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2500 goto cleanup;
2501
2502 if (rbio->faila >= 0 || rbio->failb >= 0) {
2503 int dfail = 0, failp = -1;
2504
2505 if (is_data_stripe(rbio, rbio->faila))
2506 dfail++;
2507 else if (is_parity_stripe(rbio->faila))
2508 failp = rbio->faila;
2509
2510 if (is_data_stripe(rbio, rbio->failb))
2511 dfail++;
2512 else if (is_parity_stripe(rbio->failb))
2513 failp = rbio->failb;
2514
2515 /*
2516 * Because we can not use a scrubbing parity to repair
2517 * the data, so the capability of the repair is declined.
2518 * (In the case of RAID5, we can not repair anything)
2519 */
2520 if (dfail > rbio->bbio->max_errors - 1)
2521 goto cleanup;
2522
2523 /*
2524 * If all data is good, only parity is correctly, just
2525 * repair the parity.
2526 */
2527 if (dfail == 0) {
2528 finish_parity_scrub(rbio, 0);
2529 return;
2530 }
2531
2532 /*
2533 * Here means we got one corrupted data stripe and one
2534 * corrupted parity on RAID6, if the corrupted parity
2535 * is scrubbing parity, luckily, use the other one to repair
2536 * the data, or we can not repair the data stripe.
2537 */
2538 if (failp != rbio->scrubp)
2539 goto cleanup;
2540
2541 __raid_recover_end_io(rbio);
2542 } else {
2543 finish_parity_scrub(rbio, 1);
2544 }
2545 return;
2546
2547cleanup:
2548 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2549}
2550
2551/*
2552 * end io for the read phase of the rmw cycle. All the bios here are physical
2553 * stripe bios we've read from the disk so we can recalculate the parity of the
2554 * stripe.
2555 *
2556 * This will usually kick off finish_rmw once all the bios are read in, but it
2557 * may trigger parity reconstruction if we had any errors along the way
2558 */
2559static void raid56_parity_scrub_end_io(struct bio *bio)
2560{
2561 struct btrfs_raid_bio *rbio = bio->bi_private;
2562
2563 if (bio->bi_status)
2564 fail_bio_stripe(rbio, bio);
2565 else
2566 set_bio_pages_uptodate(bio);
2567
2568 bio_put(bio);
2569
2570 if (!atomic_dec_and_test(&rbio->stripes_pending))
2571 return;
2572
2573 /*
2574 * this will normally call finish_rmw to start our write
2575 * but if there are any failed stripes we'll reconstruct
2576 * from parity first
2577 */
2578 validate_rbio_for_parity_scrub(rbio);
2579}
2580
2581static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2582{
2583 int bios_to_read = 0;
2584 struct bio_list bio_list;
2585 int ret;
2586 int pagenr;
2587 int stripe;
2588 struct bio *bio;
2589
2590 ret = alloc_rbio_essential_pages(rbio);
2591 if (ret)
2592 goto cleanup;
2593
2594 bio_list_init(&bio_list);
2595
2596 atomic_set(&rbio->error, 0);
2597 /*
2598 * build a list of bios to read all the missing parts of this
2599 * stripe
2600 */
2601 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2602 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2603 struct page *page;
2604 /*
2605 * we want to find all the pages missing from
2606 * the rbio and read them from the disk. If
2607 * page_in_rbio finds a page in the bio list
2608 * we don't need to read it off the stripe.
2609 */
2610 page = page_in_rbio(rbio, stripe, pagenr, 1);
2611 if (page)
2612 continue;
2613
2614 page = rbio_stripe_page(rbio, stripe, pagenr);
2615 /*
2616 * the bio cache may have handed us an uptodate
2617 * page. If so, be happy and use it
2618 */
2619 if (PageUptodate(page))
2620 continue;
2621
2622 ret = rbio_add_io_page(rbio, &bio_list, page,
2623 stripe, pagenr, rbio->stripe_len);
2624 if (ret)
2625 goto cleanup;
2626 }
2627 }
2628
2629 bios_to_read = bio_list_size(&bio_list);
2630 if (!bios_to_read) {
2631 /*
2632 * this can happen if others have merged with
2633 * us, it means there is nothing left to read.
2634 * But if there are missing devices it may not be
2635 * safe to do the full stripe write yet.
2636 */
2637 goto finish;
2638 }
2639
2640 /*
2641 * the bbio may be freed once we submit the last bio. Make sure
2642 * not to touch it after that
2643 */
2644 atomic_set(&rbio->stripes_pending, bios_to_read);
2645 while (1) {
2646 bio = bio_list_pop(&bio_list);
2647 if (!bio)
2648 break;
2649
2650 bio->bi_private = rbio;
2651 bio->bi_end_io = raid56_parity_scrub_end_io;
2652 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2653
2654 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2655
2656 submit_bio(bio);
2657 }
2658 /* the actual write will happen once the reads are done */
2659 return;
2660
2661cleanup:
2662 rbio_orig_end_io(rbio, BLK_STS_IOERR);
2663 return;
2664
2665finish:
2666 validate_rbio_for_parity_scrub(rbio);
2667}
2668
2669static void scrub_parity_work(struct btrfs_work *work)
2670{
2671 struct btrfs_raid_bio *rbio;
2672
2673 rbio = container_of(work, struct btrfs_raid_bio, work);
2674 raid56_parity_scrub_stripe(rbio);
2675}
2676
2677static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2678{
2679 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2680 scrub_parity_work, NULL, NULL);
2681
2682 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2683}
2684
2685void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2686{
2687 if (!lock_stripe_add(rbio))
2688 async_scrub_parity(rbio);
2689}
2690
2691/* The following code is used for dev replace of a missing RAID 5/6 device. */
2692
2693struct btrfs_raid_bio *
2694raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2695 struct btrfs_bio *bbio, u64 length)
2696{
2697 struct btrfs_raid_bio *rbio;
2698
2699 rbio = alloc_rbio(fs_info, bbio, length);
2700 if (IS_ERR(rbio))
2701 return NULL;
2702
2703 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2704 bio_list_add(&rbio->bio_list, bio);
2705 /*
2706 * This is a special bio which is used to hold the completion handler
2707 * and make the scrub rbio is similar to the other types
2708 */
2709 ASSERT(!bio->bi_iter.bi_size);
2710
2711 rbio->faila = find_logical_bio_stripe(rbio, bio);
2712 if (rbio->faila == -1) {
2713 BUG();
2714 kfree(rbio);
2715 return NULL;
2716 }
2717
2718 /*
2719 * When we get bbio, we have already increased bio_counter, record it
2720 * so we can free it at rbio_orig_end_io()
2721 */
2722 rbio->generic_bio_cnt = 1;
2723
2724 return rbio;
2725}
2726
2727static void missing_raid56_work(struct btrfs_work *work)
2728{
2729 struct btrfs_raid_bio *rbio;
2730
2731 rbio = container_of(work, struct btrfs_raid_bio, work);
2732 __raid56_parity_recover(rbio);
2733}
2734
2735static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2736{
2737 btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2738 missing_raid56_work, NULL, NULL);
2739
2740 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2741}
2742
2743void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2744{
2745 if (!lock_stripe_add(rbio))
2746 async_missing_raid56(rbio);
2747}