rjw | 1f88458 | 2022-01-06 17:20:42 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2012 Fusion-io All rights reserved. |
| 3 | * Copyright (C) 2012 Intel Corp. All rights reserved. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public |
| 7 | * License v2 as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 12 | * General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public |
| 15 | * License along with this program; if not, write to the |
| 16 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 17 | * Boston, MA 021110-1307, USA. |
| 18 | */ |
| 19 | #include <linux/sched.h> |
| 20 | #include <linux/wait.h> |
| 21 | #include <linux/bio.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/buffer_head.h> |
| 24 | #include <linux/blkdev.h> |
| 25 | #include <linux/random.h> |
| 26 | #include <linux/iocontext.h> |
| 27 | #include <linux/capability.h> |
| 28 | #include <linux/ratelimit.h> |
| 29 | #include <linux/kthread.h> |
| 30 | #include <linux/raid/pq.h> |
| 31 | #include <linux/hash.h> |
| 32 | #include <linux/list_sort.h> |
| 33 | #include <linux/raid/xor.h> |
| 34 | #include <linux/mm.h> |
| 35 | #include <asm/div64.h> |
| 36 | #include "ctree.h" |
| 37 | #include "extent_map.h" |
| 38 | #include "disk-io.h" |
| 39 | #include "transaction.h" |
| 40 | #include "print-tree.h" |
| 41 | #include "volumes.h" |
| 42 | #include "raid56.h" |
| 43 | #include "async-thread.h" |
| 44 | #include "check-integrity.h" |
| 45 | #include "rcu-string.h" |
| 46 | |
| 47 | /* set when additional merges to this rbio are not allowed */ |
| 48 | #define RBIO_RMW_LOCKED_BIT 1 |
| 49 | |
| 50 | /* |
| 51 | * set when this rbio is sitting in the hash, but it is just a cache |
| 52 | * of past RMW |
| 53 | */ |
| 54 | #define RBIO_CACHE_BIT 2 |
| 55 | |
| 56 | /* |
| 57 | * set when it is safe to trust the stripe_pages for caching |
| 58 | */ |
| 59 | #define RBIO_CACHE_READY_BIT 3 |
| 60 | |
| 61 | #define RBIO_CACHE_SIZE 1024 |
| 62 | |
| 63 | enum btrfs_rbio_ops { |
| 64 | BTRFS_RBIO_WRITE, |
| 65 | BTRFS_RBIO_READ_REBUILD, |
| 66 | BTRFS_RBIO_PARITY_SCRUB, |
| 67 | BTRFS_RBIO_REBUILD_MISSING, |
| 68 | }; |
| 69 | |
| 70 | struct btrfs_raid_bio { |
| 71 | struct btrfs_fs_info *fs_info; |
| 72 | struct btrfs_bio *bbio; |
| 73 | |
| 74 | /* while we're doing rmw on a stripe |
| 75 | * we put it into a hash table so we can |
| 76 | * lock the stripe and merge more rbios |
| 77 | * into it. |
| 78 | */ |
| 79 | struct list_head hash_list; |
| 80 | |
| 81 | /* |
| 82 | * LRU list for the stripe cache |
| 83 | */ |
| 84 | struct list_head stripe_cache; |
| 85 | |
| 86 | /* |
| 87 | * for scheduling work in the helper threads |
| 88 | */ |
| 89 | struct btrfs_work work; |
| 90 | |
| 91 | /* |
| 92 | * bio list and bio_list_lock are used |
| 93 | * to add more bios into the stripe |
| 94 | * in hopes of avoiding the full rmw |
| 95 | */ |
| 96 | struct bio_list bio_list; |
| 97 | spinlock_t bio_list_lock; |
| 98 | |
| 99 | /* also protected by the bio_list_lock, the |
| 100 | * plug list is used by the plugging code |
| 101 | * to collect partial bios while plugged. The |
| 102 | * stripe locking code also uses it to hand off |
| 103 | * the stripe lock to the next pending IO |
| 104 | */ |
| 105 | struct list_head plug_list; |
| 106 | |
| 107 | /* |
| 108 | * flags that tell us if it is safe to |
| 109 | * merge with this bio |
| 110 | */ |
| 111 | unsigned long flags; |
| 112 | |
| 113 | /* size of each individual stripe on disk */ |
| 114 | int stripe_len; |
| 115 | |
| 116 | /* number of data stripes (no p/q) */ |
| 117 | int nr_data; |
| 118 | |
| 119 | int real_stripes; |
| 120 | |
| 121 | int stripe_npages; |
| 122 | /* |
| 123 | * set if we're doing a parity rebuild |
| 124 | * for a read from higher up, which is handled |
| 125 | * differently from a parity rebuild as part of |
| 126 | * rmw |
| 127 | */ |
| 128 | enum btrfs_rbio_ops operation; |
| 129 | |
| 130 | /* first bad stripe */ |
| 131 | int faila; |
| 132 | |
| 133 | /* second bad stripe (for raid6 use) */ |
| 134 | int failb; |
| 135 | |
| 136 | int scrubp; |
| 137 | /* |
| 138 | * number of pages needed to represent the full |
| 139 | * stripe |
| 140 | */ |
| 141 | int nr_pages; |
| 142 | |
| 143 | /* |
| 144 | * size of all the bios in the bio_list. This |
| 145 | * helps us decide if the rbio maps to a full |
| 146 | * stripe or not |
| 147 | */ |
| 148 | int bio_list_bytes; |
| 149 | |
| 150 | int generic_bio_cnt; |
| 151 | |
| 152 | refcount_t refs; |
| 153 | |
| 154 | atomic_t stripes_pending; |
| 155 | |
| 156 | atomic_t error; |
| 157 | /* |
| 158 | * these are two arrays of pointers. We allocate the |
| 159 | * rbio big enough to hold them both and setup their |
| 160 | * locations when the rbio is allocated |
| 161 | */ |
| 162 | |
| 163 | /* pointers to pages that we allocated for |
| 164 | * reading/writing stripes directly from the disk (including P/Q) |
| 165 | */ |
| 166 | struct page **stripe_pages; |
| 167 | |
| 168 | /* |
| 169 | * pointers to the pages in the bio_list. Stored |
| 170 | * here for faster lookup |
| 171 | */ |
| 172 | struct page **bio_pages; |
| 173 | |
| 174 | /* |
| 175 | * bitmap to record which horizontal stripe has data |
| 176 | */ |
| 177 | unsigned long *dbitmap; |
| 178 | }; |
| 179 | |
| 180 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); |
| 181 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); |
| 182 | static void rmw_work(struct btrfs_work *work); |
| 183 | static void read_rebuild_work(struct btrfs_work *work); |
| 184 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio); |
| 185 | static void async_read_rebuild(struct btrfs_raid_bio *rbio); |
| 186 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); |
| 187 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); |
| 188 | static void __free_raid_bio(struct btrfs_raid_bio *rbio); |
| 189 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); |
| 190 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); |
| 191 | |
| 192 | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, |
| 193 | int need_check); |
| 194 | static void async_scrub_parity(struct btrfs_raid_bio *rbio); |
| 195 | |
| 196 | /* |
| 197 | * the stripe hash table is used for locking, and to collect |
| 198 | * bios in hopes of making a full stripe |
| 199 | */ |
| 200 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) |
| 201 | { |
| 202 | struct btrfs_stripe_hash_table *table; |
| 203 | struct btrfs_stripe_hash_table *x; |
| 204 | struct btrfs_stripe_hash *cur; |
| 205 | struct btrfs_stripe_hash *h; |
| 206 | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; |
| 207 | int i; |
| 208 | int table_size; |
| 209 | |
| 210 | if (info->stripe_hash_table) |
| 211 | return 0; |
| 212 | |
| 213 | /* |
| 214 | * The table is large, starting with order 4 and can go as high as |
| 215 | * order 7 in case lock debugging is turned on. |
| 216 | * |
| 217 | * Try harder to allocate and fallback to vmalloc to lower the chance |
| 218 | * of a failing mount. |
| 219 | */ |
| 220 | table_size = sizeof(*table) + sizeof(*h) * num_entries; |
| 221 | table = kvzalloc(table_size, GFP_KERNEL); |
| 222 | if (!table) |
| 223 | return -ENOMEM; |
| 224 | |
| 225 | spin_lock_init(&table->cache_lock); |
| 226 | INIT_LIST_HEAD(&table->stripe_cache); |
| 227 | |
| 228 | h = table->table; |
| 229 | |
| 230 | for (i = 0; i < num_entries; i++) { |
| 231 | cur = h + i; |
| 232 | INIT_LIST_HEAD(&cur->hash_list); |
| 233 | spin_lock_init(&cur->lock); |
| 234 | init_waitqueue_head(&cur->wait); |
| 235 | } |
| 236 | |
| 237 | x = cmpxchg(&info->stripe_hash_table, NULL, table); |
| 238 | if (x) |
| 239 | kvfree(x); |
| 240 | return 0; |
| 241 | } |
| 242 | |
| 243 | /* |
| 244 | * caching an rbio means to copy anything from the |
| 245 | * bio_pages array into the stripe_pages array. We |
| 246 | * use the page uptodate bit in the stripe cache array |
| 247 | * to indicate if it has valid data |
| 248 | * |
| 249 | * once the caching is done, we set the cache ready |
| 250 | * bit. |
| 251 | */ |
| 252 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) |
| 253 | { |
| 254 | int i; |
| 255 | char *s; |
| 256 | char *d; |
| 257 | int ret; |
| 258 | |
| 259 | ret = alloc_rbio_pages(rbio); |
| 260 | if (ret) |
| 261 | return; |
| 262 | |
| 263 | for (i = 0; i < rbio->nr_pages; i++) { |
| 264 | if (!rbio->bio_pages[i]) |
| 265 | continue; |
| 266 | |
| 267 | s = kmap(rbio->bio_pages[i]); |
| 268 | d = kmap(rbio->stripe_pages[i]); |
| 269 | |
| 270 | memcpy(d, s, PAGE_SIZE); |
| 271 | |
| 272 | kunmap(rbio->bio_pages[i]); |
| 273 | kunmap(rbio->stripe_pages[i]); |
| 274 | SetPageUptodate(rbio->stripe_pages[i]); |
| 275 | } |
| 276 | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * we hash on the first logical address of the stripe |
| 281 | */ |
| 282 | static int rbio_bucket(struct btrfs_raid_bio *rbio) |
| 283 | { |
| 284 | u64 num = rbio->bbio->raid_map[0]; |
| 285 | |
| 286 | /* |
| 287 | * we shift down quite a bit. We're using byte |
| 288 | * addressing, and most of the lower bits are zeros. |
| 289 | * This tends to upset hash_64, and it consistently |
| 290 | * returns just one or two different values. |
| 291 | * |
| 292 | * shifting off the lower bits fixes things. |
| 293 | */ |
| 294 | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * stealing an rbio means taking all the uptodate pages from the stripe |
| 299 | * array in the source rbio and putting them into the destination rbio |
| 300 | */ |
| 301 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) |
| 302 | { |
| 303 | int i; |
| 304 | struct page *s; |
| 305 | struct page *d; |
| 306 | |
| 307 | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) |
| 308 | return; |
| 309 | |
| 310 | for (i = 0; i < dest->nr_pages; i++) { |
| 311 | s = src->stripe_pages[i]; |
| 312 | if (!s || !PageUptodate(s)) { |
| 313 | continue; |
| 314 | } |
| 315 | |
| 316 | d = dest->stripe_pages[i]; |
| 317 | if (d) |
| 318 | __free_page(d); |
| 319 | |
| 320 | dest->stripe_pages[i] = s; |
| 321 | src->stripe_pages[i] = NULL; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * merging means we take the bio_list from the victim and |
| 327 | * splice it into the destination. The victim should |
| 328 | * be discarded afterwards. |
| 329 | * |
| 330 | * must be called with dest->rbio_list_lock held |
| 331 | */ |
| 332 | static void merge_rbio(struct btrfs_raid_bio *dest, |
| 333 | struct btrfs_raid_bio *victim) |
| 334 | { |
| 335 | bio_list_merge(&dest->bio_list, &victim->bio_list); |
| 336 | dest->bio_list_bytes += victim->bio_list_bytes; |
| 337 | dest->generic_bio_cnt += victim->generic_bio_cnt; |
| 338 | bio_list_init(&victim->bio_list); |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * used to prune items that are in the cache. The caller |
| 343 | * must hold the hash table lock. |
| 344 | */ |
| 345 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) |
| 346 | { |
| 347 | int bucket = rbio_bucket(rbio); |
| 348 | struct btrfs_stripe_hash_table *table; |
| 349 | struct btrfs_stripe_hash *h; |
| 350 | int freeit = 0; |
| 351 | |
| 352 | /* |
| 353 | * check the bit again under the hash table lock. |
| 354 | */ |
| 355 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| 356 | return; |
| 357 | |
| 358 | table = rbio->fs_info->stripe_hash_table; |
| 359 | h = table->table + bucket; |
| 360 | |
| 361 | /* hold the lock for the bucket because we may be |
| 362 | * removing it from the hash table |
| 363 | */ |
| 364 | spin_lock(&h->lock); |
| 365 | |
| 366 | /* |
| 367 | * hold the lock for the bio list because we need |
| 368 | * to make sure the bio list is empty |
| 369 | */ |
| 370 | spin_lock(&rbio->bio_list_lock); |
| 371 | |
| 372 | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { |
| 373 | list_del_init(&rbio->stripe_cache); |
| 374 | table->cache_size -= 1; |
| 375 | freeit = 1; |
| 376 | |
| 377 | /* if the bio list isn't empty, this rbio is |
| 378 | * still involved in an IO. We take it out |
| 379 | * of the cache list, and drop the ref that |
| 380 | * was held for the list. |
| 381 | * |
| 382 | * If the bio_list was empty, we also remove |
| 383 | * the rbio from the hash_table, and drop |
| 384 | * the corresponding ref |
| 385 | */ |
| 386 | if (bio_list_empty(&rbio->bio_list)) { |
| 387 | if (!list_empty(&rbio->hash_list)) { |
| 388 | list_del_init(&rbio->hash_list); |
| 389 | refcount_dec(&rbio->refs); |
| 390 | BUG_ON(!list_empty(&rbio->plug_list)); |
| 391 | } |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | spin_unlock(&rbio->bio_list_lock); |
| 396 | spin_unlock(&h->lock); |
| 397 | |
| 398 | if (freeit) |
| 399 | __free_raid_bio(rbio); |
| 400 | } |
| 401 | |
| 402 | /* |
| 403 | * prune a given rbio from the cache |
| 404 | */ |
| 405 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) |
| 406 | { |
| 407 | struct btrfs_stripe_hash_table *table; |
| 408 | unsigned long flags; |
| 409 | |
| 410 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| 411 | return; |
| 412 | |
| 413 | table = rbio->fs_info->stripe_hash_table; |
| 414 | |
| 415 | spin_lock_irqsave(&table->cache_lock, flags); |
| 416 | __remove_rbio_from_cache(rbio); |
| 417 | spin_unlock_irqrestore(&table->cache_lock, flags); |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * remove everything in the cache |
| 422 | */ |
| 423 | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) |
| 424 | { |
| 425 | struct btrfs_stripe_hash_table *table; |
| 426 | unsigned long flags; |
| 427 | struct btrfs_raid_bio *rbio; |
| 428 | |
| 429 | table = info->stripe_hash_table; |
| 430 | |
| 431 | spin_lock_irqsave(&table->cache_lock, flags); |
| 432 | while (!list_empty(&table->stripe_cache)) { |
| 433 | rbio = list_entry(table->stripe_cache.next, |
| 434 | struct btrfs_raid_bio, |
| 435 | stripe_cache); |
| 436 | __remove_rbio_from_cache(rbio); |
| 437 | } |
| 438 | spin_unlock_irqrestore(&table->cache_lock, flags); |
| 439 | } |
| 440 | |
| 441 | /* |
| 442 | * remove all cached entries and free the hash table |
| 443 | * used by unmount |
| 444 | */ |
| 445 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) |
| 446 | { |
| 447 | if (!info->stripe_hash_table) |
| 448 | return; |
| 449 | btrfs_clear_rbio_cache(info); |
| 450 | kvfree(info->stripe_hash_table); |
| 451 | info->stripe_hash_table = NULL; |
| 452 | } |
| 453 | |
| 454 | /* |
| 455 | * insert an rbio into the stripe cache. It |
| 456 | * must have already been prepared by calling |
| 457 | * cache_rbio_pages |
| 458 | * |
| 459 | * If this rbio was already cached, it gets |
| 460 | * moved to the front of the lru. |
| 461 | * |
| 462 | * If the size of the rbio cache is too big, we |
| 463 | * prune an item. |
| 464 | */ |
| 465 | static void cache_rbio(struct btrfs_raid_bio *rbio) |
| 466 | { |
| 467 | struct btrfs_stripe_hash_table *table; |
| 468 | unsigned long flags; |
| 469 | |
| 470 | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) |
| 471 | return; |
| 472 | |
| 473 | table = rbio->fs_info->stripe_hash_table; |
| 474 | |
| 475 | spin_lock_irqsave(&table->cache_lock, flags); |
| 476 | spin_lock(&rbio->bio_list_lock); |
| 477 | |
| 478 | /* bump our ref if we were not in the list before */ |
| 479 | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| 480 | refcount_inc(&rbio->refs); |
| 481 | |
| 482 | if (!list_empty(&rbio->stripe_cache)){ |
| 483 | list_move(&rbio->stripe_cache, &table->stripe_cache); |
| 484 | } else { |
| 485 | list_add(&rbio->stripe_cache, &table->stripe_cache); |
| 486 | table->cache_size += 1; |
| 487 | } |
| 488 | |
| 489 | spin_unlock(&rbio->bio_list_lock); |
| 490 | |
| 491 | if (table->cache_size > RBIO_CACHE_SIZE) { |
| 492 | struct btrfs_raid_bio *found; |
| 493 | |
| 494 | found = list_entry(table->stripe_cache.prev, |
| 495 | struct btrfs_raid_bio, |
| 496 | stripe_cache); |
| 497 | |
| 498 | if (found != rbio) |
| 499 | __remove_rbio_from_cache(found); |
| 500 | } |
| 501 | |
| 502 | spin_unlock_irqrestore(&table->cache_lock, flags); |
| 503 | } |
| 504 | |
| 505 | /* |
| 506 | * helper function to run the xor_blocks api. It is only |
| 507 | * able to do MAX_XOR_BLOCKS at a time, so we need to |
| 508 | * loop through. |
| 509 | */ |
| 510 | static void run_xor(void **pages, int src_cnt, ssize_t len) |
| 511 | { |
| 512 | int src_off = 0; |
| 513 | int xor_src_cnt = 0; |
| 514 | void *dest = pages[src_cnt]; |
| 515 | |
| 516 | while(src_cnt > 0) { |
| 517 | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); |
| 518 | xor_blocks(xor_src_cnt, len, dest, pages + src_off); |
| 519 | |
| 520 | src_cnt -= xor_src_cnt; |
| 521 | src_off += xor_src_cnt; |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | /* |
| 526 | * returns true if the bio list inside this rbio |
| 527 | * covers an entire stripe (no rmw required). |
| 528 | * Must be called with the bio list lock held, or |
| 529 | * at a time when you know it is impossible to add |
| 530 | * new bios into the list |
| 531 | */ |
| 532 | static int __rbio_is_full(struct btrfs_raid_bio *rbio) |
| 533 | { |
| 534 | unsigned long size = rbio->bio_list_bytes; |
| 535 | int ret = 1; |
| 536 | |
| 537 | if (size != rbio->nr_data * rbio->stripe_len) |
| 538 | ret = 0; |
| 539 | |
| 540 | BUG_ON(size > rbio->nr_data * rbio->stripe_len); |
| 541 | return ret; |
| 542 | } |
| 543 | |
| 544 | static int rbio_is_full(struct btrfs_raid_bio *rbio) |
| 545 | { |
| 546 | unsigned long flags; |
| 547 | int ret; |
| 548 | |
| 549 | spin_lock_irqsave(&rbio->bio_list_lock, flags); |
| 550 | ret = __rbio_is_full(rbio); |
| 551 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); |
| 552 | return ret; |
| 553 | } |
| 554 | |
| 555 | /* |
| 556 | * returns 1 if it is safe to merge two rbios together. |
| 557 | * The merging is safe if the two rbios correspond to |
| 558 | * the same stripe and if they are both going in the same |
| 559 | * direction (read vs write), and if neither one is |
| 560 | * locked for final IO |
| 561 | * |
| 562 | * The caller is responsible for locking such that |
| 563 | * rmw_locked is safe to test |
| 564 | */ |
| 565 | static int rbio_can_merge(struct btrfs_raid_bio *last, |
| 566 | struct btrfs_raid_bio *cur) |
| 567 | { |
| 568 | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || |
| 569 | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) |
| 570 | return 0; |
| 571 | |
| 572 | /* |
| 573 | * we can't merge with cached rbios, since the |
| 574 | * idea is that when we merge the destination |
| 575 | * rbio is going to run our IO for us. We can |
| 576 | * steal from cached rbios though, other functions |
| 577 | * handle that. |
| 578 | */ |
| 579 | if (test_bit(RBIO_CACHE_BIT, &last->flags) || |
| 580 | test_bit(RBIO_CACHE_BIT, &cur->flags)) |
| 581 | return 0; |
| 582 | |
| 583 | if (last->bbio->raid_map[0] != |
| 584 | cur->bbio->raid_map[0]) |
| 585 | return 0; |
| 586 | |
| 587 | /* we can't merge with different operations */ |
| 588 | if (last->operation != cur->operation) |
| 589 | return 0; |
| 590 | /* |
| 591 | * We've need read the full stripe from the drive. |
| 592 | * check and repair the parity and write the new results. |
| 593 | * |
| 594 | * We're not allowed to add any new bios to the |
| 595 | * bio list here, anyone else that wants to |
| 596 | * change this stripe needs to do their own rmw. |
| 597 | */ |
| 598 | if (last->operation == BTRFS_RBIO_PARITY_SCRUB || |
| 599 | cur->operation == BTRFS_RBIO_PARITY_SCRUB) |
| 600 | return 0; |
| 601 | |
| 602 | if (last->operation == BTRFS_RBIO_REBUILD_MISSING || |
| 603 | cur->operation == BTRFS_RBIO_REBUILD_MISSING) |
| 604 | return 0; |
| 605 | |
| 606 | return 1; |
| 607 | } |
| 608 | |
| 609 | static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, |
| 610 | int index) |
| 611 | { |
| 612 | return stripe * rbio->stripe_npages + index; |
| 613 | } |
| 614 | |
| 615 | /* |
| 616 | * these are just the pages from the rbio array, not from anything |
| 617 | * the FS sent down to us |
| 618 | */ |
| 619 | static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, |
| 620 | int index) |
| 621 | { |
| 622 | return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; |
| 623 | } |
| 624 | |
| 625 | /* |
| 626 | * helper to index into the pstripe |
| 627 | */ |
| 628 | static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) |
| 629 | { |
| 630 | return rbio_stripe_page(rbio, rbio->nr_data, index); |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | * helper to index into the qstripe, returns null |
| 635 | * if there is no qstripe |
| 636 | */ |
| 637 | static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) |
| 638 | { |
| 639 | if (rbio->nr_data + 1 == rbio->real_stripes) |
| 640 | return NULL; |
| 641 | return rbio_stripe_page(rbio, rbio->nr_data + 1, index); |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * The first stripe in the table for a logical address |
| 646 | * has the lock. rbios are added in one of three ways: |
| 647 | * |
| 648 | * 1) Nobody has the stripe locked yet. The rbio is given |
| 649 | * the lock and 0 is returned. The caller must start the IO |
| 650 | * themselves. |
| 651 | * |
| 652 | * 2) Someone has the stripe locked, but we're able to merge |
| 653 | * with the lock owner. The rbio is freed and the IO will |
| 654 | * start automatically along with the existing rbio. 1 is returned. |
| 655 | * |
| 656 | * 3) Someone has the stripe locked, but we're not able to merge. |
| 657 | * The rbio is added to the lock owner's plug list, or merged into |
| 658 | * an rbio already on the plug list. When the lock owner unlocks, |
| 659 | * the next rbio on the list is run and the IO is started automatically. |
| 660 | * 1 is returned |
| 661 | * |
| 662 | * If we return 0, the caller still owns the rbio and must continue with |
| 663 | * IO submission. If we return 1, the caller must assume the rbio has |
| 664 | * already been freed. |
| 665 | */ |
| 666 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) |
| 667 | { |
| 668 | int bucket = rbio_bucket(rbio); |
| 669 | struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; |
| 670 | struct btrfs_raid_bio *cur; |
| 671 | struct btrfs_raid_bio *pending; |
| 672 | unsigned long flags; |
| 673 | DEFINE_WAIT(wait); |
| 674 | struct btrfs_raid_bio *freeit = NULL; |
| 675 | struct btrfs_raid_bio *cache_drop = NULL; |
| 676 | int ret = 0; |
| 677 | |
| 678 | spin_lock_irqsave(&h->lock, flags); |
| 679 | list_for_each_entry(cur, &h->hash_list, hash_list) { |
| 680 | if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { |
| 681 | spin_lock(&cur->bio_list_lock); |
| 682 | |
| 683 | /* can we steal this cached rbio's pages? */ |
| 684 | if (bio_list_empty(&cur->bio_list) && |
| 685 | list_empty(&cur->plug_list) && |
| 686 | test_bit(RBIO_CACHE_BIT, &cur->flags) && |
| 687 | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { |
| 688 | list_del_init(&cur->hash_list); |
| 689 | refcount_dec(&cur->refs); |
| 690 | |
| 691 | steal_rbio(cur, rbio); |
| 692 | cache_drop = cur; |
| 693 | spin_unlock(&cur->bio_list_lock); |
| 694 | |
| 695 | goto lockit; |
| 696 | } |
| 697 | |
| 698 | /* can we merge into the lock owner? */ |
| 699 | if (rbio_can_merge(cur, rbio)) { |
| 700 | merge_rbio(cur, rbio); |
| 701 | spin_unlock(&cur->bio_list_lock); |
| 702 | freeit = rbio; |
| 703 | ret = 1; |
| 704 | goto out; |
| 705 | } |
| 706 | |
| 707 | |
| 708 | /* |
| 709 | * we couldn't merge with the running |
| 710 | * rbio, see if we can merge with the |
| 711 | * pending ones. We don't have to |
| 712 | * check for rmw_locked because there |
| 713 | * is no way they are inside finish_rmw |
| 714 | * right now |
| 715 | */ |
| 716 | list_for_each_entry(pending, &cur->plug_list, |
| 717 | plug_list) { |
| 718 | if (rbio_can_merge(pending, rbio)) { |
| 719 | merge_rbio(pending, rbio); |
| 720 | spin_unlock(&cur->bio_list_lock); |
| 721 | freeit = rbio; |
| 722 | ret = 1; |
| 723 | goto out; |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | /* no merging, put us on the tail of the plug list, |
| 728 | * our rbio will be started with the currently |
| 729 | * running rbio unlocks |
| 730 | */ |
| 731 | list_add_tail(&rbio->plug_list, &cur->plug_list); |
| 732 | spin_unlock(&cur->bio_list_lock); |
| 733 | ret = 1; |
| 734 | goto out; |
| 735 | } |
| 736 | } |
| 737 | lockit: |
| 738 | refcount_inc(&rbio->refs); |
| 739 | list_add(&rbio->hash_list, &h->hash_list); |
| 740 | out: |
| 741 | spin_unlock_irqrestore(&h->lock, flags); |
| 742 | if (cache_drop) |
| 743 | remove_rbio_from_cache(cache_drop); |
| 744 | if (freeit) |
| 745 | __free_raid_bio(freeit); |
| 746 | return ret; |
| 747 | } |
| 748 | |
| 749 | /* |
| 750 | * called as rmw or parity rebuild is completed. If the plug list has more |
| 751 | * rbios waiting for this stripe, the next one on the list will be started |
| 752 | */ |
| 753 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) |
| 754 | { |
| 755 | int bucket; |
| 756 | struct btrfs_stripe_hash *h; |
| 757 | unsigned long flags; |
| 758 | int keep_cache = 0; |
| 759 | |
| 760 | bucket = rbio_bucket(rbio); |
| 761 | h = rbio->fs_info->stripe_hash_table->table + bucket; |
| 762 | |
| 763 | if (list_empty(&rbio->plug_list)) |
| 764 | cache_rbio(rbio); |
| 765 | |
| 766 | spin_lock_irqsave(&h->lock, flags); |
| 767 | spin_lock(&rbio->bio_list_lock); |
| 768 | |
| 769 | if (!list_empty(&rbio->hash_list)) { |
| 770 | /* |
| 771 | * if we're still cached and there is no other IO |
| 772 | * to perform, just leave this rbio here for others |
| 773 | * to steal from later |
| 774 | */ |
| 775 | if (list_empty(&rbio->plug_list) && |
| 776 | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { |
| 777 | keep_cache = 1; |
| 778 | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 779 | BUG_ON(!bio_list_empty(&rbio->bio_list)); |
| 780 | goto done; |
| 781 | } |
| 782 | |
| 783 | list_del_init(&rbio->hash_list); |
| 784 | refcount_dec(&rbio->refs); |
| 785 | |
| 786 | /* |
| 787 | * we use the plug list to hold all the rbios |
| 788 | * waiting for the chance to lock this stripe. |
| 789 | * hand the lock over to one of them. |
| 790 | */ |
| 791 | if (!list_empty(&rbio->plug_list)) { |
| 792 | struct btrfs_raid_bio *next; |
| 793 | struct list_head *head = rbio->plug_list.next; |
| 794 | |
| 795 | next = list_entry(head, struct btrfs_raid_bio, |
| 796 | plug_list); |
| 797 | |
| 798 | list_del_init(&rbio->plug_list); |
| 799 | |
| 800 | list_add(&next->hash_list, &h->hash_list); |
| 801 | refcount_inc(&next->refs); |
| 802 | spin_unlock(&rbio->bio_list_lock); |
| 803 | spin_unlock_irqrestore(&h->lock, flags); |
| 804 | |
| 805 | if (next->operation == BTRFS_RBIO_READ_REBUILD) |
| 806 | async_read_rebuild(next); |
| 807 | else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { |
| 808 | steal_rbio(rbio, next); |
| 809 | async_read_rebuild(next); |
| 810 | } else if (next->operation == BTRFS_RBIO_WRITE) { |
| 811 | steal_rbio(rbio, next); |
| 812 | async_rmw_stripe(next); |
| 813 | } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { |
| 814 | steal_rbio(rbio, next); |
| 815 | async_scrub_parity(next); |
| 816 | } |
| 817 | |
| 818 | goto done_nolock; |
| 819 | /* |
| 820 | * The barrier for this waitqueue_active is not needed, |
| 821 | * we're protected by h->lock and can't miss a wakeup. |
| 822 | */ |
| 823 | } else if (waitqueue_active(&h->wait)) { |
| 824 | spin_unlock(&rbio->bio_list_lock); |
| 825 | spin_unlock_irqrestore(&h->lock, flags); |
| 826 | wake_up(&h->wait); |
| 827 | goto done_nolock; |
| 828 | } |
| 829 | } |
| 830 | done: |
| 831 | spin_unlock(&rbio->bio_list_lock); |
| 832 | spin_unlock_irqrestore(&h->lock, flags); |
| 833 | |
| 834 | done_nolock: |
| 835 | if (!keep_cache) |
| 836 | remove_rbio_from_cache(rbio); |
| 837 | } |
| 838 | |
| 839 | static void __free_raid_bio(struct btrfs_raid_bio *rbio) |
| 840 | { |
| 841 | int i; |
| 842 | |
| 843 | if (!refcount_dec_and_test(&rbio->refs)) |
| 844 | return; |
| 845 | |
| 846 | WARN_ON(!list_empty(&rbio->stripe_cache)); |
| 847 | WARN_ON(!list_empty(&rbio->hash_list)); |
| 848 | WARN_ON(!bio_list_empty(&rbio->bio_list)); |
| 849 | |
| 850 | for (i = 0; i < rbio->nr_pages; i++) { |
| 851 | if (rbio->stripe_pages[i]) { |
| 852 | __free_page(rbio->stripe_pages[i]); |
| 853 | rbio->stripe_pages[i] = NULL; |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | btrfs_put_bbio(rbio->bbio); |
| 858 | kfree(rbio); |
| 859 | } |
| 860 | |
| 861 | static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) |
| 862 | { |
| 863 | struct bio *next; |
| 864 | |
| 865 | while (cur) { |
| 866 | next = cur->bi_next; |
| 867 | cur->bi_next = NULL; |
| 868 | cur->bi_status = err; |
| 869 | bio_endio(cur); |
| 870 | cur = next; |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | /* |
| 875 | * this frees the rbio and runs through all the bios in the |
| 876 | * bio_list and calls end_io on them |
| 877 | */ |
| 878 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) |
| 879 | { |
| 880 | struct bio *cur = bio_list_get(&rbio->bio_list); |
| 881 | struct bio *extra; |
| 882 | |
| 883 | if (rbio->generic_bio_cnt) |
| 884 | btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); |
| 885 | |
| 886 | /* |
| 887 | * At this moment, rbio->bio_list is empty, however since rbio does not |
| 888 | * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the |
| 889 | * hash list, rbio may be merged with others so that rbio->bio_list |
| 890 | * becomes non-empty. |
| 891 | * Once unlock_stripe() is done, rbio->bio_list will not be updated any |
| 892 | * more and we can call bio_endio() on all queued bios. |
| 893 | */ |
| 894 | unlock_stripe(rbio); |
| 895 | extra = bio_list_get(&rbio->bio_list); |
| 896 | __free_raid_bio(rbio); |
| 897 | |
| 898 | rbio_endio_bio_list(cur, err); |
| 899 | if (extra) |
| 900 | rbio_endio_bio_list(extra, err); |
| 901 | } |
| 902 | |
| 903 | /* |
| 904 | * end io function used by finish_rmw. When we finally |
| 905 | * get here, we've written a full stripe |
| 906 | */ |
| 907 | static void raid_write_end_io(struct bio *bio) |
| 908 | { |
| 909 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 910 | blk_status_t err = bio->bi_status; |
| 911 | int max_errors; |
| 912 | |
| 913 | if (err) |
| 914 | fail_bio_stripe(rbio, bio); |
| 915 | |
| 916 | bio_put(bio); |
| 917 | |
| 918 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
| 919 | return; |
| 920 | |
| 921 | err = BLK_STS_OK; |
| 922 | |
| 923 | /* OK, we have read all the stripes we need to. */ |
| 924 | max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? |
| 925 | 0 : rbio->bbio->max_errors; |
| 926 | if (atomic_read(&rbio->error) > max_errors) |
| 927 | err = BLK_STS_IOERR; |
| 928 | |
| 929 | rbio_orig_end_io(rbio, err); |
| 930 | } |
| 931 | |
| 932 | /* |
| 933 | * the read/modify/write code wants to use the original bio for |
| 934 | * any pages it included, and then use the rbio for everything |
| 935 | * else. This function decides if a given index (stripe number) |
| 936 | * and page number in that stripe fall inside the original bio |
| 937 | * or the rbio. |
| 938 | * |
| 939 | * if you set bio_list_only, you'll get a NULL back for any ranges |
| 940 | * that are outside the bio_list |
| 941 | * |
| 942 | * This doesn't take any refs on anything, you get a bare page pointer |
| 943 | * and the caller must bump refs as required. |
| 944 | * |
| 945 | * You must call index_rbio_pages once before you can trust |
| 946 | * the answers from this function. |
| 947 | */ |
| 948 | static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, |
| 949 | int index, int pagenr, int bio_list_only) |
| 950 | { |
| 951 | int chunk_page; |
| 952 | struct page *p = NULL; |
| 953 | |
| 954 | chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; |
| 955 | |
| 956 | spin_lock_irq(&rbio->bio_list_lock); |
| 957 | p = rbio->bio_pages[chunk_page]; |
| 958 | spin_unlock_irq(&rbio->bio_list_lock); |
| 959 | |
| 960 | if (p || bio_list_only) |
| 961 | return p; |
| 962 | |
| 963 | return rbio->stripe_pages[chunk_page]; |
| 964 | } |
| 965 | |
| 966 | /* |
| 967 | * number of pages we need for the entire stripe across all the |
| 968 | * drives |
| 969 | */ |
| 970 | static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) |
| 971 | { |
| 972 | return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; |
| 973 | } |
| 974 | |
| 975 | /* |
| 976 | * allocation and initial setup for the btrfs_raid_bio. Not |
| 977 | * this does not allocate any pages for rbio->pages. |
| 978 | */ |
| 979 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, |
| 980 | struct btrfs_bio *bbio, |
| 981 | u64 stripe_len) |
| 982 | { |
| 983 | struct btrfs_raid_bio *rbio; |
| 984 | int nr_data = 0; |
| 985 | int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; |
| 986 | int num_pages = rbio_nr_pages(stripe_len, real_stripes); |
| 987 | int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); |
| 988 | void *p; |
| 989 | |
| 990 | rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + |
| 991 | DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) * |
| 992 | sizeof(long), GFP_NOFS); |
| 993 | if (!rbio) |
| 994 | return ERR_PTR(-ENOMEM); |
| 995 | |
| 996 | bio_list_init(&rbio->bio_list); |
| 997 | INIT_LIST_HEAD(&rbio->plug_list); |
| 998 | spin_lock_init(&rbio->bio_list_lock); |
| 999 | INIT_LIST_HEAD(&rbio->stripe_cache); |
| 1000 | INIT_LIST_HEAD(&rbio->hash_list); |
| 1001 | rbio->bbio = bbio; |
| 1002 | rbio->fs_info = fs_info; |
| 1003 | rbio->stripe_len = stripe_len; |
| 1004 | rbio->nr_pages = num_pages; |
| 1005 | rbio->real_stripes = real_stripes; |
| 1006 | rbio->stripe_npages = stripe_npages; |
| 1007 | rbio->faila = -1; |
| 1008 | rbio->failb = -1; |
| 1009 | refcount_set(&rbio->refs, 1); |
| 1010 | atomic_set(&rbio->error, 0); |
| 1011 | atomic_set(&rbio->stripes_pending, 0); |
| 1012 | |
| 1013 | /* |
| 1014 | * the stripe_pages and bio_pages array point to the extra |
| 1015 | * memory we allocated past the end of the rbio |
| 1016 | */ |
| 1017 | p = rbio + 1; |
| 1018 | rbio->stripe_pages = p; |
| 1019 | rbio->bio_pages = p + sizeof(struct page *) * num_pages; |
| 1020 | rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; |
| 1021 | |
| 1022 | if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) |
| 1023 | nr_data = real_stripes - 1; |
| 1024 | else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) |
| 1025 | nr_data = real_stripes - 2; |
| 1026 | else |
| 1027 | BUG(); |
| 1028 | |
| 1029 | rbio->nr_data = nr_data; |
| 1030 | return rbio; |
| 1031 | } |
| 1032 | |
| 1033 | /* allocate pages for all the stripes in the bio, including parity */ |
| 1034 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) |
| 1035 | { |
| 1036 | int i; |
| 1037 | struct page *page; |
| 1038 | |
| 1039 | for (i = 0; i < rbio->nr_pages; i++) { |
| 1040 | if (rbio->stripe_pages[i]) |
| 1041 | continue; |
| 1042 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| 1043 | if (!page) |
| 1044 | return -ENOMEM; |
| 1045 | rbio->stripe_pages[i] = page; |
| 1046 | } |
| 1047 | return 0; |
| 1048 | } |
| 1049 | |
| 1050 | /* only allocate pages for p/q stripes */ |
| 1051 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) |
| 1052 | { |
| 1053 | int i; |
| 1054 | struct page *page; |
| 1055 | |
| 1056 | i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); |
| 1057 | |
| 1058 | for (; i < rbio->nr_pages; i++) { |
| 1059 | if (rbio->stripe_pages[i]) |
| 1060 | continue; |
| 1061 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| 1062 | if (!page) |
| 1063 | return -ENOMEM; |
| 1064 | rbio->stripe_pages[i] = page; |
| 1065 | } |
| 1066 | return 0; |
| 1067 | } |
| 1068 | |
| 1069 | /* |
| 1070 | * add a single page from a specific stripe into our list of bios for IO |
| 1071 | * this will try to merge into existing bios if possible, and returns |
| 1072 | * zero if all went well. |
| 1073 | */ |
| 1074 | static int rbio_add_io_page(struct btrfs_raid_bio *rbio, |
| 1075 | struct bio_list *bio_list, |
| 1076 | struct page *page, |
| 1077 | int stripe_nr, |
| 1078 | unsigned long page_index, |
| 1079 | unsigned long bio_max_len) |
| 1080 | { |
| 1081 | struct bio *last = bio_list->tail; |
| 1082 | u64 last_end = 0; |
| 1083 | int ret; |
| 1084 | struct bio *bio; |
| 1085 | struct btrfs_bio_stripe *stripe; |
| 1086 | u64 disk_start; |
| 1087 | |
| 1088 | stripe = &rbio->bbio->stripes[stripe_nr]; |
| 1089 | disk_start = stripe->physical + (page_index << PAGE_SHIFT); |
| 1090 | |
| 1091 | /* if the device is missing, just fail this stripe */ |
| 1092 | if (!stripe->dev->bdev) |
| 1093 | return fail_rbio_index(rbio, stripe_nr); |
| 1094 | |
| 1095 | /* see if we can add this page onto our existing bio */ |
| 1096 | if (last) { |
| 1097 | last_end = (u64)last->bi_iter.bi_sector << 9; |
| 1098 | last_end += last->bi_iter.bi_size; |
| 1099 | |
| 1100 | /* |
| 1101 | * we can't merge these if they are from different |
| 1102 | * devices or if they are not contiguous |
| 1103 | */ |
| 1104 | if (last_end == disk_start && stripe->dev->bdev && |
| 1105 | !last->bi_status && |
| 1106 | last->bi_disk == stripe->dev->bdev->bd_disk && |
| 1107 | last->bi_partno == stripe->dev->bdev->bd_partno) { |
| 1108 | ret = bio_add_page(last, page, PAGE_SIZE, 0); |
| 1109 | if (ret == PAGE_SIZE) |
| 1110 | return 0; |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | /* put a new bio on the list */ |
| 1115 | bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); |
| 1116 | bio->bi_iter.bi_size = 0; |
| 1117 | bio_set_dev(bio, stripe->dev->bdev); |
| 1118 | bio->bi_iter.bi_sector = disk_start >> 9; |
| 1119 | |
| 1120 | bio_add_page(bio, page, PAGE_SIZE, 0); |
| 1121 | bio_list_add(bio_list, bio); |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * while we're doing the read/modify/write cycle, we could |
| 1127 | * have errors in reading pages off the disk. This checks |
| 1128 | * for errors and if we're not able to read the page it'll |
| 1129 | * trigger parity reconstruction. The rmw will be finished |
| 1130 | * after we've reconstructed the failed stripes |
| 1131 | */ |
| 1132 | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) |
| 1133 | { |
| 1134 | if (rbio->faila >= 0 || rbio->failb >= 0) { |
| 1135 | BUG_ON(rbio->faila == rbio->real_stripes - 1); |
| 1136 | __raid56_parity_recover(rbio); |
| 1137 | } else { |
| 1138 | finish_rmw(rbio); |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | /* |
| 1143 | * helper function to walk our bio list and populate the bio_pages array with |
| 1144 | * the result. This seems expensive, but it is faster than constantly |
| 1145 | * searching through the bio list as we setup the IO in finish_rmw or stripe |
| 1146 | * reconstruction. |
| 1147 | * |
| 1148 | * This must be called before you trust the answers from page_in_rbio |
| 1149 | */ |
| 1150 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) |
| 1151 | { |
| 1152 | struct bio *bio; |
| 1153 | u64 start; |
| 1154 | unsigned long stripe_offset; |
| 1155 | unsigned long page_index; |
| 1156 | |
| 1157 | spin_lock_irq(&rbio->bio_list_lock); |
| 1158 | bio_list_for_each(bio, &rbio->bio_list) { |
| 1159 | struct bio_vec bvec; |
| 1160 | struct bvec_iter iter; |
| 1161 | int i = 0; |
| 1162 | |
| 1163 | start = (u64)bio->bi_iter.bi_sector << 9; |
| 1164 | stripe_offset = start - rbio->bbio->raid_map[0]; |
| 1165 | page_index = stripe_offset >> PAGE_SHIFT; |
| 1166 | |
| 1167 | if (bio_flagged(bio, BIO_CLONED)) |
| 1168 | bio->bi_iter = btrfs_io_bio(bio)->iter; |
| 1169 | |
| 1170 | bio_for_each_segment(bvec, bio, iter) { |
| 1171 | rbio->bio_pages[page_index + i] = bvec.bv_page; |
| 1172 | i++; |
| 1173 | } |
| 1174 | } |
| 1175 | spin_unlock_irq(&rbio->bio_list_lock); |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | * this is called from one of two situations. We either |
| 1180 | * have a full stripe from the higher layers, or we've read all |
| 1181 | * the missing bits off disk. |
| 1182 | * |
| 1183 | * This will calculate the parity and then send down any |
| 1184 | * changed blocks. |
| 1185 | */ |
| 1186 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) |
| 1187 | { |
| 1188 | struct btrfs_bio *bbio = rbio->bbio; |
| 1189 | void *pointers[rbio->real_stripes]; |
| 1190 | int nr_data = rbio->nr_data; |
| 1191 | int stripe; |
| 1192 | int pagenr; |
| 1193 | int p_stripe = -1; |
| 1194 | int q_stripe = -1; |
| 1195 | struct bio_list bio_list; |
| 1196 | struct bio *bio; |
| 1197 | int ret; |
| 1198 | |
| 1199 | bio_list_init(&bio_list); |
| 1200 | |
| 1201 | if (rbio->real_stripes - rbio->nr_data == 1) { |
| 1202 | p_stripe = rbio->real_stripes - 1; |
| 1203 | } else if (rbio->real_stripes - rbio->nr_data == 2) { |
| 1204 | p_stripe = rbio->real_stripes - 2; |
| 1205 | q_stripe = rbio->real_stripes - 1; |
| 1206 | } else { |
| 1207 | BUG(); |
| 1208 | } |
| 1209 | |
| 1210 | /* at this point we either have a full stripe, |
| 1211 | * or we've read the full stripe from the drive. |
| 1212 | * recalculate the parity and write the new results. |
| 1213 | * |
| 1214 | * We're not allowed to add any new bios to the |
| 1215 | * bio list here, anyone else that wants to |
| 1216 | * change this stripe needs to do their own rmw. |
| 1217 | */ |
| 1218 | spin_lock_irq(&rbio->bio_list_lock); |
| 1219 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 1220 | spin_unlock_irq(&rbio->bio_list_lock); |
| 1221 | |
| 1222 | atomic_set(&rbio->error, 0); |
| 1223 | |
| 1224 | /* |
| 1225 | * now that we've set rmw_locked, run through the |
| 1226 | * bio list one last time and map the page pointers |
| 1227 | * |
| 1228 | * We don't cache full rbios because we're assuming |
| 1229 | * the higher layers are unlikely to use this area of |
| 1230 | * the disk again soon. If they do use it again, |
| 1231 | * hopefully they will send another full bio. |
| 1232 | */ |
| 1233 | index_rbio_pages(rbio); |
| 1234 | if (!rbio_is_full(rbio)) |
| 1235 | cache_rbio_pages(rbio); |
| 1236 | else |
| 1237 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| 1238 | |
| 1239 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| 1240 | struct page *p; |
| 1241 | /* first collect one page from each data stripe */ |
| 1242 | for (stripe = 0; stripe < nr_data; stripe++) { |
| 1243 | p = page_in_rbio(rbio, stripe, pagenr, 0); |
| 1244 | pointers[stripe] = kmap(p); |
| 1245 | } |
| 1246 | |
| 1247 | /* then add the parity stripe */ |
| 1248 | p = rbio_pstripe_page(rbio, pagenr); |
| 1249 | SetPageUptodate(p); |
| 1250 | pointers[stripe++] = kmap(p); |
| 1251 | |
| 1252 | if (q_stripe != -1) { |
| 1253 | |
| 1254 | /* |
| 1255 | * raid6, add the qstripe and call the |
| 1256 | * library function to fill in our p/q |
| 1257 | */ |
| 1258 | p = rbio_qstripe_page(rbio, pagenr); |
| 1259 | SetPageUptodate(p); |
| 1260 | pointers[stripe++] = kmap(p); |
| 1261 | |
| 1262 | raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, |
| 1263 | pointers); |
| 1264 | } else { |
| 1265 | /* raid5 */ |
| 1266 | memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); |
| 1267 | run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); |
| 1268 | } |
| 1269 | |
| 1270 | |
| 1271 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) |
| 1272 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
| 1273 | } |
| 1274 | |
| 1275 | /* |
| 1276 | * time to start writing. Make bios for everything from the |
| 1277 | * higher layers (the bio_list in our rbio) and our p/q. Ignore |
| 1278 | * everything else. |
| 1279 | */ |
| 1280 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| 1281 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| 1282 | struct page *page; |
| 1283 | if (stripe < rbio->nr_data) { |
| 1284 | page = page_in_rbio(rbio, stripe, pagenr, 1); |
| 1285 | if (!page) |
| 1286 | continue; |
| 1287 | } else { |
| 1288 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1289 | } |
| 1290 | |
| 1291 | ret = rbio_add_io_page(rbio, &bio_list, |
| 1292 | page, stripe, pagenr, rbio->stripe_len); |
| 1293 | if (ret) |
| 1294 | goto cleanup; |
| 1295 | } |
| 1296 | } |
| 1297 | |
| 1298 | if (likely(!bbio->num_tgtdevs)) |
| 1299 | goto write_data; |
| 1300 | |
| 1301 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| 1302 | if (!bbio->tgtdev_map[stripe]) |
| 1303 | continue; |
| 1304 | |
| 1305 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| 1306 | struct page *page; |
| 1307 | if (stripe < rbio->nr_data) { |
| 1308 | page = page_in_rbio(rbio, stripe, pagenr, 1); |
| 1309 | if (!page) |
| 1310 | continue; |
| 1311 | } else { |
| 1312 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1313 | } |
| 1314 | |
| 1315 | ret = rbio_add_io_page(rbio, &bio_list, page, |
| 1316 | rbio->bbio->tgtdev_map[stripe], |
| 1317 | pagenr, rbio->stripe_len); |
| 1318 | if (ret) |
| 1319 | goto cleanup; |
| 1320 | } |
| 1321 | } |
| 1322 | |
| 1323 | write_data: |
| 1324 | atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); |
| 1325 | BUG_ON(atomic_read(&rbio->stripes_pending) == 0); |
| 1326 | |
| 1327 | while (1) { |
| 1328 | bio = bio_list_pop(&bio_list); |
| 1329 | if (!bio) |
| 1330 | break; |
| 1331 | |
| 1332 | bio->bi_private = rbio; |
| 1333 | bio->bi_end_io = raid_write_end_io; |
| 1334 | bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
| 1335 | |
| 1336 | submit_bio(bio); |
| 1337 | } |
| 1338 | return; |
| 1339 | |
| 1340 | cleanup: |
| 1341 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| 1342 | } |
| 1343 | |
| 1344 | /* |
| 1345 | * helper to find the stripe number for a given bio. Used to figure out which |
| 1346 | * stripe has failed. This expects the bio to correspond to a physical disk, |
| 1347 | * so it looks up based on physical sector numbers. |
| 1348 | */ |
| 1349 | static int find_bio_stripe(struct btrfs_raid_bio *rbio, |
| 1350 | struct bio *bio) |
| 1351 | { |
| 1352 | u64 physical = bio->bi_iter.bi_sector; |
| 1353 | u64 stripe_start; |
| 1354 | int i; |
| 1355 | struct btrfs_bio_stripe *stripe; |
| 1356 | |
| 1357 | physical <<= 9; |
| 1358 | |
| 1359 | for (i = 0; i < rbio->bbio->num_stripes; i++) { |
| 1360 | stripe = &rbio->bbio->stripes[i]; |
| 1361 | stripe_start = stripe->physical; |
| 1362 | if (physical >= stripe_start && |
| 1363 | physical < stripe_start + rbio->stripe_len && |
| 1364 | stripe->dev->bdev && |
| 1365 | bio->bi_disk == stripe->dev->bdev->bd_disk && |
| 1366 | bio->bi_partno == stripe->dev->bdev->bd_partno) { |
| 1367 | return i; |
| 1368 | } |
| 1369 | } |
| 1370 | return -1; |
| 1371 | } |
| 1372 | |
| 1373 | /* |
| 1374 | * helper to find the stripe number for a given |
| 1375 | * bio (before mapping). Used to figure out which stripe has |
| 1376 | * failed. This looks up based on logical block numbers. |
| 1377 | */ |
| 1378 | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, |
| 1379 | struct bio *bio) |
| 1380 | { |
| 1381 | u64 logical = bio->bi_iter.bi_sector; |
| 1382 | u64 stripe_start; |
| 1383 | int i; |
| 1384 | |
| 1385 | logical <<= 9; |
| 1386 | |
| 1387 | for (i = 0; i < rbio->nr_data; i++) { |
| 1388 | stripe_start = rbio->bbio->raid_map[i]; |
| 1389 | if (logical >= stripe_start && |
| 1390 | logical < stripe_start + rbio->stripe_len) { |
| 1391 | return i; |
| 1392 | } |
| 1393 | } |
| 1394 | return -1; |
| 1395 | } |
| 1396 | |
| 1397 | /* |
| 1398 | * returns -EIO if we had too many failures |
| 1399 | */ |
| 1400 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) |
| 1401 | { |
| 1402 | unsigned long flags; |
| 1403 | int ret = 0; |
| 1404 | |
| 1405 | spin_lock_irqsave(&rbio->bio_list_lock, flags); |
| 1406 | |
| 1407 | /* we already know this stripe is bad, move on */ |
| 1408 | if (rbio->faila == failed || rbio->failb == failed) |
| 1409 | goto out; |
| 1410 | |
| 1411 | if (rbio->faila == -1) { |
| 1412 | /* first failure on this rbio */ |
| 1413 | rbio->faila = failed; |
| 1414 | atomic_inc(&rbio->error); |
| 1415 | } else if (rbio->failb == -1) { |
| 1416 | /* second failure on this rbio */ |
| 1417 | rbio->failb = failed; |
| 1418 | atomic_inc(&rbio->error); |
| 1419 | } else { |
| 1420 | ret = -EIO; |
| 1421 | } |
| 1422 | out: |
| 1423 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); |
| 1424 | |
| 1425 | return ret; |
| 1426 | } |
| 1427 | |
| 1428 | /* |
| 1429 | * helper to fail a stripe based on a physical disk |
| 1430 | * bio. |
| 1431 | */ |
| 1432 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, |
| 1433 | struct bio *bio) |
| 1434 | { |
| 1435 | int failed = find_bio_stripe(rbio, bio); |
| 1436 | |
| 1437 | if (failed < 0) |
| 1438 | return -EIO; |
| 1439 | |
| 1440 | return fail_rbio_index(rbio, failed); |
| 1441 | } |
| 1442 | |
| 1443 | /* |
| 1444 | * this sets each page in the bio uptodate. It should only be used on private |
| 1445 | * rbio pages, nothing that comes in from the higher layers |
| 1446 | */ |
| 1447 | static void set_bio_pages_uptodate(struct bio *bio) |
| 1448 | { |
| 1449 | struct bio_vec *bvec; |
| 1450 | int i; |
| 1451 | |
| 1452 | ASSERT(!bio_flagged(bio, BIO_CLONED)); |
| 1453 | |
| 1454 | bio_for_each_segment_all(bvec, bio, i) |
| 1455 | SetPageUptodate(bvec->bv_page); |
| 1456 | } |
| 1457 | |
| 1458 | /* |
| 1459 | * end io for the read phase of the rmw cycle. All the bios here are physical |
| 1460 | * stripe bios we've read from the disk so we can recalculate the parity of the |
| 1461 | * stripe. |
| 1462 | * |
| 1463 | * This will usually kick off finish_rmw once all the bios are read in, but it |
| 1464 | * may trigger parity reconstruction if we had any errors along the way |
| 1465 | */ |
| 1466 | static void raid_rmw_end_io(struct bio *bio) |
| 1467 | { |
| 1468 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 1469 | |
| 1470 | if (bio->bi_status) |
| 1471 | fail_bio_stripe(rbio, bio); |
| 1472 | else |
| 1473 | set_bio_pages_uptodate(bio); |
| 1474 | |
| 1475 | bio_put(bio); |
| 1476 | |
| 1477 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
| 1478 | return; |
| 1479 | |
| 1480 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
| 1481 | goto cleanup; |
| 1482 | |
| 1483 | /* |
| 1484 | * this will normally call finish_rmw to start our write |
| 1485 | * but if there are any failed stripes we'll reconstruct |
| 1486 | * from parity first |
| 1487 | */ |
| 1488 | validate_rbio_for_rmw(rbio); |
| 1489 | return; |
| 1490 | |
| 1491 | cleanup: |
| 1492 | |
| 1493 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| 1494 | } |
| 1495 | |
| 1496 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio) |
| 1497 | { |
| 1498 | btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL); |
| 1499 | btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); |
| 1500 | } |
| 1501 | |
| 1502 | static void async_read_rebuild(struct btrfs_raid_bio *rbio) |
| 1503 | { |
| 1504 | btrfs_init_work(&rbio->work, btrfs_rmw_helper, |
| 1505 | read_rebuild_work, NULL, NULL); |
| 1506 | |
| 1507 | btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); |
| 1508 | } |
| 1509 | |
| 1510 | /* |
| 1511 | * the stripe must be locked by the caller. It will |
| 1512 | * unlock after all the writes are done |
| 1513 | */ |
| 1514 | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) |
| 1515 | { |
| 1516 | int bios_to_read = 0; |
| 1517 | struct bio_list bio_list; |
| 1518 | int ret; |
| 1519 | int pagenr; |
| 1520 | int stripe; |
| 1521 | struct bio *bio; |
| 1522 | |
| 1523 | bio_list_init(&bio_list); |
| 1524 | |
| 1525 | ret = alloc_rbio_pages(rbio); |
| 1526 | if (ret) |
| 1527 | goto cleanup; |
| 1528 | |
| 1529 | index_rbio_pages(rbio); |
| 1530 | |
| 1531 | atomic_set(&rbio->error, 0); |
| 1532 | /* |
| 1533 | * build a list of bios to read all the missing parts of this |
| 1534 | * stripe |
| 1535 | */ |
| 1536 | for (stripe = 0; stripe < rbio->nr_data; stripe++) { |
| 1537 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| 1538 | struct page *page; |
| 1539 | /* |
| 1540 | * we want to find all the pages missing from |
| 1541 | * the rbio and read them from the disk. If |
| 1542 | * page_in_rbio finds a page in the bio list |
| 1543 | * we don't need to read it off the stripe. |
| 1544 | */ |
| 1545 | page = page_in_rbio(rbio, stripe, pagenr, 1); |
| 1546 | if (page) |
| 1547 | continue; |
| 1548 | |
| 1549 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1550 | /* |
| 1551 | * the bio cache may have handed us an uptodate |
| 1552 | * page. If so, be happy and use it |
| 1553 | */ |
| 1554 | if (PageUptodate(page)) |
| 1555 | continue; |
| 1556 | |
| 1557 | ret = rbio_add_io_page(rbio, &bio_list, page, |
| 1558 | stripe, pagenr, rbio->stripe_len); |
| 1559 | if (ret) |
| 1560 | goto cleanup; |
| 1561 | } |
| 1562 | } |
| 1563 | |
| 1564 | bios_to_read = bio_list_size(&bio_list); |
| 1565 | if (!bios_to_read) { |
| 1566 | /* |
| 1567 | * this can happen if others have merged with |
| 1568 | * us, it means there is nothing left to read. |
| 1569 | * But if there are missing devices it may not be |
| 1570 | * safe to do the full stripe write yet. |
| 1571 | */ |
| 1572 | goto finish; |
| 1573 | } |
| 1574 | |
| 1575 | /* |
| 1576 | * the bbio may be freed once we submit the last bio. Make sure |
| 1577 | * not to touch it after that |
| 1578 | */ |
| 1579 | atomic_set(&rbio->stripes_pending, bios_to_read); |
| 1580 | while (1) { |
| 1581 | bio = bio_list_pop(&bio_list); |
| 1582 | if (!bio) |
| 1583 | break; |
| 1584 | |
| 1585 | bio->bi_private = rbio; |
| 1586 | bio->bi_end_io = raid_rmw_end_io; |
| 1587 | bio_set_op_attrs(bio, REQ_OP_READ, 0); |
| 1588 | |
| 1589 | btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
| 1590 | |
| 1591 | submit_bio(bio); |
| 1592 | } |
| 1593 | /* the actual write will happen once the reads are done */ |
| 1594 | return 0; |
| 1595 | |
| 1596 | cleanup: |
| 1597 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| 1598 | return -EIO; |
| 1599 | |
| 1600 | finish: |
| 1601 | validate_rbio_for_rmw(rbio); |
| 1602 | return 0; |
| 1603 | } |
| 1604 | |
| 1605 | /* |
| 1606 | * if the upper layers pass in a full stripe, we thank them by only allocating |
| 1607 | * enough pages to hold the parity, and sending it all down quickly. |
| 1608 | */ |
| 1609 | static int full_stripe_write(struct btrfs_raid_bio *rbio) |
| 1610 | { |
| 1611 | int ret; |
| 1612 | |
| 1613 | ret = alloc_rbio_parity_pages(rbio); |
| 1614 | if (ret) { |
| 1615 | __free_raid_bio(rbio); |
| 1616 | return ret; |
| 1617 | } |
| 1618 | |
| 1619 | ret = lock_stripe_add(rbio); |
| 1620 | if (ret == 0) |
| 1621 | finish_rmw(rbio); |
| 1622 | return 0; |
| 1623 | } |
| 1624 | |
| 1625 | /* |
| 1626 | * partial stripe writes get handed over to async helpers. |
| 1627 | * We're really hoping to merge a few more writes into this |
| 1628 | * rbio before calculating new parity |
| 1629 | */ |
| 1630 | static int partial_stripe_write(struct btrfs_raid_bio *rbio) |
| 1631 | { |
| 1632 | int ret; |
| 1633 | |
| 1634 | ret = lock_stripe_add(rbio); |
| 1635 | if (ret == 0) |
| 1636 | async_rmw_stripe(rbio); |
| 1637 | return 0; |
| 1638 | } |
| 1639 | |
| 1640 | /* |
| 1641 | * sometimes while we were reading from the drive to |
| 1642 | * recalculate parity, enough new bios come into create |
| 1643 | * a full stripe. So we do a check here to see if we can |
| 1644 | * go directly to finish_rmw |
| 1645 | */ |
| 1646 | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) |
| 1647 | { |
| 1648 | /* head off into rmw land if we don't have a full stripe */ |
| 1649 | if (!rbio_is_full(rbio)) |
| 1650 | return partial_stripe_write(rbio); |
| 1651 | return full_stripe_write(rbio); |
| 1652 | } |
| 1653 | |
| 1654 | /* |
| 1655 | * We use plugging call backs to collect full stripes. |
| 1656 | * Any time we get a partial stripe write while plugged |
| 1657 | * we collect it into a list. When the unplug comes down, |
| 1658 | * we sort the list by logical block number and merge |
| 1659 | * everything we can into the same rbios |
| 1660 | */ |
| 1661 | struct btrfs_plug_cb { |
| 1662 | struct blk_plug_cb cb; |
| 1663 | struct btrfs_fs_info *info; |
| 1664 | struct list_head rbio_list; |
| 1665 | struct btrfs_work work; |
| 1666 | }; |
| 1667 | |
| 1668 | /* |
| 1669 | * rbios on the plug list are sorted for easier merging. |
| 1670 | */ |
| 1671 | static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) |
| 1672 | { |
| 1673 | struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, |
| 1674 | plug_list); |
| 1675 | struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, |
| 1676 | plug_list); |
| 1677 | u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; |
| 1678 | u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; |
| 1679 | |
| 1680 | if (a_sector < b_sector) |
| 1681 | return -1; |
| 1682 | if (a_sector > b_sector) |
| 1683 | return 1; |
| 1684 | return 0; |
| 1685 | } |
| 1686 | |
| 1687 | static void run_plug(struct btrfs_plug_cb *plug) |
| 1688 | { |
| 1689 | struct btrfs_raid_bio *cur; |
| 1690 | struct btrfs_raid_bio *last = NULL; |
| 1691 | |
| 1692 | /* |
| 1693 | * sort our plug list then try to merge |
| 1694 | * everything we can in hopes of creating full |
| 1695 | * stripes. |
| 1696 | */ |
| 1697 | list_sort(NULL, &plug->rbio_list, plug_cmp); |
| 1698 | while (!list_empty(&plug->rbio_list)) { |
| 1699 | cur = list_entry(plug->rbio_list.next, |
| 1700 | struct btrfs_raid_bio, plug_list); |
| 1701 | list_del_init(&cur->plug_list); |
| 1702 | |
| 1703 | if (rbio_is_full(cur)) { |
| 1704 | /* we have a full stripe, send it down */ |
| 1705 | full_stripe_write(cur); |
| 1706 | continue; |
| 1707 | } |
| 1708 | if (last) { |
| 1709 | if (rbio_can_merge(last, cur)) { |
| 1710 | merge_rbio(last, cur); |
| 1711 | __free_raid_bio(cur); |
| 1712 | continue; |
| 1713 | |
| 1714 | } |
| 1715 | __raid56_parity_write(last); |
| 1716 | } |
| 1717 | last = cur; |
| 1718 | } |
| 1719 | if (last) { |
| 1720 | __raid56_parity_write(last); |
| 1721 | } |
| 1722 | kfree(plug); |
| 1723 | } |
| 1724 | |
| 1725 | /* |
| 1726 | * if the unplug comes from schedule, we have to push the |
| 1727 | * work off to a helper thread |
| 1728 | */ |
| 1729 | static void unplug_work(struct btrfs_work *work) |
| 1730 | { |
| 1731 | struct btrfs_plug_cb *plug; |
| 1732 | plug = container_of(work, struct btrfs_plug_cb, work); |
| 1733 | run_plug(plug); |
| 1734 | } |
| 1735 | |
| 1736 | static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) |
| 1737 | { |
| 1738 | struct btrfs_plug_cb *plug; |
| 1739 | plug = container_of(cb, struct btrfs_plug_cb, cb); |
| 1740 | |
| 1741 | if (from_schedule) { |
| 1742 | btrfs_init_work(&plug->work, btrfs_rmw_helper, |
| 1743 | unplug_work, NULL, NULL); |
| 1744 | btrfs_queue_work(plug->info->rmw_workers, |
| 1745 | &plug->work); |
| 1746 | return; |
| 1747 | } |
| 1748 | run_plug(plug); |
| 1749 | } |
| 1750 | |
| 1751 | /* |
| 1752 | * our main entry point for writes from the rest of the FS. |
| 1753 | */ |
| 1754 | int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, |
| 1755 | struct btrfs_bio *bbio, u64 stripe_len) |
| 1756 | { |
| 1757 | struct btrfs_raid_bio *rbio; |
| 1758 | struct btrfs_plug_cb *plug = NULL; |
| 1759 | struct blk_plug_cb *cb; |
| 1760 | int ret; |
| 1761 | |
| 1762 | rbio = alloc_rbio(fs_info, bbio, stripe_len); |
| 1763 | if (IS_ERR(rbio)) { |
| 1764 | btrfs_put_bbio(bbio); |
| 1765 | return PTR_ERR(rbio); |
| 1766 | } |
| 1767 | bio_list_add(&rbio->bio_list, bio); |
| 1768 | rbio->bio_list_bytes = bio->bi_iter.bi_size; |
| 1769 | rbio->operation = BTRFS_RBIO_WRITE; |
| 1770 | |
| 1771 | btrfs_bio_counter_inc_noblocked(fs_info); |
| 1772 | rbio->generic_bio_cnt = 1; |
| 1773 | |
| 1774 | /* |
| 1775 | * don't plug on full rbios, just get them out the door |
| 1776 | * as quickly as we can |
| 1777 | */ |
| 1778 | if (rbio_is_full(rbio)) { |
| 1779 | ret = full_stripe_write(rbio); |
| 1780 | if (ret) |
| 1781 | btrfs_bio_counter_dec(fs_info); |
| 1782 | return ret; |
| 1783 | } |
| 1784 | |
| 1785 | cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); |
| 1786 | if (cb) { |
| 1787 | plug = container_of(cb, struct btrfs_plug_cb, cb); |
| 1788 | if (!plug->info) { |
| 1789 | plug->info = fs_info; |
| 1790 | INIT_LIST_HEAD(&plug->rbio_list); |
| 1791 | } |
| 1792 | list_add_tail(&rbio->plug_list, &plug->rbio_list); |
| 1793 | ret = 0; |
| 1794 | } else { |
| 1795 | ret = __raid56_parity_write(rbio); |
| 1796 | if (ret) |
| 1797 | btrfs_bio_counter_dec(fs_info); |
| 1798 | } |
| 1799 | return ret; |
| 1800 | } |
| 1801 | |
| 1802 | /* |
| 1803 | * all parity reconstruction happens here. We've read in everything |
| 1804 | * we can find from the drives and this does the heavy lifting of |
| 1805 | * sorting the good from the bad. |
| 1806 | */ |
| 1807 | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) |
| 1808 | { |
| 1809 | int pagenr, stripe; |
| 1810 | void **pointers; |
| 1811 | int faila = -1, failb = -1; |
| 1812 | struct page *page; |
| 1813 | blk_status_t err; |
| 1814 | int i; |
| 1815 | |
| 1816 | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
| 1817 | if (!pointers) { |
| 1818 | err = BLK_STS_RESOURCE; |
| 1819 | goto cleanup_io; |
| 1820 | } |
| 1821 | |
| 1822 | faila = rbio->faila; |
| 1823 | failb = rbio->failb; |
| 1824 | |
| 1825 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
| 1826 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { |
| 1827 | spin_lock_irq(&rbio->bio_list_lock); |
| 1828 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 1829 | spin_unlock_irq(&rbio->bio_list_lock); |
| 1830 | } |
| 1831 | |
| 1832 | index_rbio_pages(rbio); |
| 1833 | |
| 1834 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| 1835 | /* |
| 1836 | * Now we just use bitmap to mark the horizontal stripes in |
| 1837 | * which we have data when doing parity scrub. |
| 1838 | */ |
| 1839 | if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && |
| 1840 | !test_bit(pagenr, rbio->dbitmap)) |
| 1841 | continue; |
| 1842 | |
| 1843 | /* setup our array of pointers with pages |
| 1844 | * from each stripe |
| 1845 | */ |
| 1846 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| 1847 | /* |
| 1848 | * if we're rebuilding a read, we have to use |
| 1849 | * pages from the bio list |
| 1850 | */ |
| 1851 | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || |
| 1852 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && |
| 1853 | (stripe == faila || stripe == failb)) { |
| 1854 | page = page_in_rbio(rbio, stripe, pagenr, 0); |
| 1855 | } else { |
| 1856 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1857 | } |
| 1858 | pointers[stripe] = kmap(page); |
| 1859 | } |
| 1860 | |
| 1861 | /* all raid6 handling here */ |
| 1862 | if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { |
| 1863 | /* |
| 1864 | * single failure, rebuild from parity raid5 |
| 1865 | * style |
| 1866 | */ |
| 1867 | if (failb < 0) { |
| 1868 | if (faila == rbio->nr_data) { |
| 1869 | /* |
| 1870 | * Just the P stripe has failed, without |
| 1871 | * a bad data or Q stripe. |
| 1872 | * TODO, we should redo the xor here. |
| 1873 | */ |
| 1874 | err = BLK_STS_IOERR; |
| 1875 | goto cleanup; |
| 1876 | } |
| 1877 | /* |
| 1878 | * a single failure in raid6 is rebuilt |
| 1879 | * in the pstripe code below |
| 1880 | */ |
| 1881 | goto pstripe; |
| 1882 | } |
| 1883 | |
| 1884 | /* make sure our ps and qs are in order */ |
| 1885 | if (faila > failb) { |
| 1886 | int tmp = failb; |
| 1887 | failb = faila; |
| 1888 | faila = tmp; |
| 1889 | } |
| 1890 | |
| 1891 | /* if the q stripe is failed, do a pstripe reconstruction |
| 1892 | * from the xors. |
| 1893 | * If both the q stripe and the P stripe are failed, we're |
| 1894 | * here due to a crc mismatch and we can't give them the |
| 1895 | * data they want |
| 1896 | */ |
| 1897 | if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { |
| 1898 | if (rbio->bbio->raid_map[faila] == |
| 1899 | RAID5_P_STRIPE) { |
| 1900 | err = BLK_STS_IOERR; |
| 1901 | goto cleanup; |
| 1902 | } |
| 1903 | /* |
| 1904 | * otherwise we have one bad data stripe and |
| 1905 | * a good P stripe. raid5! |
| 1906 | */ |
| 1907 | goto pstripe; |
| 1908 | } |
| 1909 | |
| 1910 | if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { |
| 1911 | raid6_datap_recov(rbio->real_stripes, |
| 1912 | PAGE_SIZE, faila, pointers); |
| 1913 | } else { |
| 1914 | raid6_2data_recov(rbio->real_stripes, |
| 1915 | PAGE_SIZE, faila, failb, |
| 1916 | pointers); |
| 1917 | } |
| 1918 | } else { |
| 1919 | void *p; |
| 1920 | |
| 1921 | /* rebuild from P stripe here (raid5 or raid6) */ |
| 1922 | BUG_ON(failb != -1); |
| 1923 | pstripe: |
| 1924 | /* Copy parity block into failed block to start with */ |
| 1925 | memcpy(pointers[faila], |
| 1926 | pointers[rbio->nr_data], |
| 1927 | PAGE_SIZE); |
| 1928 | |
| 1929 | /* rearrange the pointer array */ |
| 1930 | p = pointers[faila]; |
| 1931 | for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) |
| 1932 | pointers[stripe] = pointers[stripe + 1]; |
| 1933 | pointers[rbio->nr_data - 1] = p; |
| 1934 | |
| 1935 | /* xor in the rest */ |
| 1936 | run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); |
| 1937 | } |
| 1938 | /* if we're doing this rebuild as part of an rmw, go through |
| 1939 | * and set all of our private rbio pages in the |
| 1940 | * failed stripes as uptodate. This way finish_rmw will |
| 1941 | * know they can be trusted. If this was a read reconstruction, |
| 1942 | * other endio functions will fiddle the uptodate bits |
| 1943 | */ |
| 1944 | if (rbio->operation == BTRFS_RBIO_WRITE) { |
| 1945 | for (i = 0; i < rbio->stripe_npages; i++) { |
| 1946 | if (faila != -1) { |
| 1947 | page = rbio_stripe_page(rbio, faila, i); |
| 1948 | SetPageUptodate(page); |
| 1949 | } |
| 1950 | if (failb != -1) { |
| 1951 | page = rbio_stripe_page(rbio, failb, i); |
| 1952 | SetPageUptodate(page); |
| 1953 | } |
| 1954 | } |
| 1955 | } |
| 1956 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| 1957 | /* |
| 1958 | * if we're rebuilding a read, we have to use |
| 1959 | * pages from the bio list |
| 1960 | */ |
| 1961 | if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || |
| 1962 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && |
| 1963 | (stripe == faila || stripe == failb)) { |
| 1964 | page = page_in_rbio(rbio, stripe, pagenr, 0); |
| 1965 | } else { |
| 1966 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1967 | } |
| 1968 | kunmap(page); |
| 1969 | } |
| 1970 | } |
| 1971 | |
| 1972 | err = BLK_STS_OK; |
| 1973 | cleanup: |
| 1974 | kfree(pointers); |
| 1975 | |
| 1976 | cleanup_io: |
| 1977 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { |
| 1978 | if (err == BLK_STS_OK) |
| 1979 | cache_rbio_pages(rbio); |
| 1980 | else |
| 1981 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| 1982 | |
| 1983 | rbio_orig_end_io(rbio, err); |
| 1984 | } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { |
| 1985 | rbio_orig_end_io(rbio, err); |
| 1986 | } else if (err == BLK_STS_OK) { |
| 1987 | rbio->faila = -1; |
| 1988 | rbio->failb = -1; |
| 1989 | |
| 1990 | if (rbio->operation == BTRFS_RBIO_WRITE) |
| 1991 | finish_rmw(rbio); |
| 1992 | else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) |
| 1993 | finish_parity_scrub(rbio, 0); |
| 1994 | else |
| 1995 | BUG(); |
| 1996 | } else { |
| 1997 | rbio_orig_end_io(rbio, err); |
| 1998 | } |
| 1999 | } |
| 2000 | |
| 2001 | /* |
| 2002 | * This is called only for stripes we've read from disk to |
| 2003 | * reconstruct the parity. |
| 2004 | */ |
| 2005 | static void raid_recover_end_io(struct bio *bio) |
| 2006 | { |
| 2007 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 2008 | |
| 2009 | /* |
| 2010 | * we only read stripe pages off the disk, set them |
| 2011 | * up to date if there were no errors |
| 2012 | */ |
| 2013 | if (bio->bi_status) |
| 2014 | fail_bio_stripe(rbio, bio); |
| 2015 | else |
| 2016 | set_bio_pages_uptodate(bio); |
| 2017 | bio_put(bio); |
| 2018 | |
| 2019 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
| 2020 | return; |
| 2021 | |
| 2022 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
| 2023 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| 2024 | else |
| 2025 | __raid_recover_end_io(rbio); |
| 2026 | } |
| 2027 | |
| 2028 | /* |
| 2029 | * reads everything we need off the disk to reconstruct |
| 2030 | * the parity. endio handlers trigger final reconstruction |
| 2031 | * when the IO is done. |
| 2032 | * |
| 2033 | * This is used both for reads from the higher layers and for |
| 2034 | * parity construction required to finish a rmw cycle. |
| 2035 | */ |
| 2036 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) |
| 2037 | { |
| 2038 | int bios_to_read = 0; |
| 2039 | struct bio_list bio_list; |
| 2040 | int ret; |
| 2041 | int pagenr; |
| 2042 | int stripe; |
| 2043 | struct bio *bio; |
| 2044 | |
| 2045 | bio_list_init(&bio_list); |
| 2046 | |
| 2047 | ret = alloc_rbio_pages(rbio); |
| 2048 | if (ret) |
| 2049 | goto cleanup; |
| 2050 | |
| 2051 | atomic_set(&rbio->error, 0); |
| 2052 | |
| 2053 | /* |
| 2054 | * read everything that hasn't failed. Thanks to the |
| 2055 | * stripe cache, it is possible that some or all of these |
| 2056 | * pages are going to be uptodate. |
| 2057 | */ |
| 2058 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| 2059 | if (rbio->faila == stripe || rbio->failb == stripe) { |
| 2060 | atomic_inc(&rbio->error); |
| 2061 | continue; |
| 2062 | } |
| 2063 | |
| 2064 | for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { |
| 2065 | struct page *p; |
| 2066 | |
| 2067 | /* |
| 2068 | * the rmw code may have already read this |
| 2069 | * page in |
| 2070 | */ |
| 2071 | p = rbio_stripe_page(rbio, stripe, pagenr); |
| 2072 | if (PageUptodate(p)) |
| 2073 | continue; |
| 2074 | |
| 2075 | ret = rbio_add_io_page(rbio, &bio_list, |
| 2076 | rbio_stripe_page(rbio, stripe, pagenr), |
| 2077 | stripe, pagenr, rbio->stripe_len); |
| 2078 | if (ret < 0) |
| 2079 | goto cleanup; |
| 2080 | } |
| 2081 | } |
| 2082 | |
| 2083 | bios_to_read = bio_list_size(&bio_list); |
| 2084 | if (!bios_to_read) { |
| 2085 | /* |
| 2086 | * we might have no bios to read just because the pages |
| 2087 | * were up to date, or we might have no bios to read because |
| 2088 | * the devices were gone. |
| 2089 | */ |
| 2090 | if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { |
| 2091 | __raid_recover_end_io(rbio); |
| 2092 | goto out; |
| 2093 | } else { |
| 2094 | goto cleanup; |
| 2095 | } |
| 2096 | } |
| 2097 | |
| 2098 | /* |
| 2099 | * the bbio may be freed once we submit the last bio. Make sure |
| 2100 | * not to touch it after that |
| 2101 | */ |
| 2102 | atomic_set(&rbio->stripes_pending, bios_to_read); |
| 2103 | while (1) { |
| 2104 | bio = bio_list_pop(&bio_list); |
| 2105 | if (!bio) |
| 2106 | break; |
| 2107 | |
| 2108 | bio->bi_private = rbio; |
| 2109 | bio->bi_end_io = raid_recover_end_io; |
| 2110 | bio_set_op_attrs(bio, REQ_OP_READ, 0); |
| 2111 | |
| 2112 | btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
| 2113 | |
| 2114 | submit_bio(bio); |
| 2115 | } |
| 2116 | out: |
| 2117 | return 0; |
| 2118 | |
| 2119 | cleanup: |
| 2120 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD || |
| 2121 | rbio->operation == BTRFS_RBIO_REBUILD_MISSING) |
| 2122 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| 2123 | return -EIO; |
| 2124 | } |
| 2125 | |
| 2126 | /* |
| 2127 | * the main entry point for reads from the higher layers. This |
| 2128 | * is really only called when the normal read path had a failure, |
| 2129 | * so we assume the bio they send down corresponds to a failed part |
| 2130 | * of the drive. |
| 2131 | */ |
| 2132 | int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, |
| 2133 | struct btrfs_bio *bbio, u64 stripe_len, |
| 2134 | int mirror_num, int generic_io) |
| 2135 | { |
| 2136 | struct btrfs_raid_bio *rbio; |
| 2137 | int ret; |
| 2138 | |
| 2139 | if (generic_io) { |
| 2140 | ASSERT(bbio->mirror_num == mirror_num); |
| 2141 | btrfs_io_bio(bio)->mirror_num = mirror_num; |
| 2142 | } |
| 2143 | |
| 2144 | rbio = alloc_rbio(fs_info, bbio, stripe_len); |
| 2145 | if (IS_ERR(rbio)) { |
| 2146 | if (generic_io) |
| 2147 | btrfs_put_bbio(bbio); |
| 2148 | return PTR_ERR(rbio); |
| 2149 | } |
| 2150 | |
| 2151 | rbio->operation = BTRFS_RBIO_READ_REBUILD; |
| 2152 | bio_list_add(&rbio->bio_list, bio); |
| 2153 | rbio->bio_list_bytes = bio->bi_iter.bi_size; |
| 2154 | |
| 2155 | rbio->faila = find_logical_bio_stripe(rbio, bio); |
| 2156 | if (rbio->faila == -1) { |
| 2157 | btrfs_warn(fs_info, |
| 2158 | "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", |
| 2159 | __func__, (u64)bio->bi_iter.bi_sector << 9, |
| 2160 | (u64)bio->bi_iter.bi_size, bbio->map_type); |
| 2161 | if (generic_io) |
| 2162 | btrfs_put_bbio(bbio); |
| 2163 | kfree(rbio); |
| 2164 | return -EIO; |
| 2165 | } |
| 2166 | |
| 2167 | if (generic_io) { |
| 2168 | btrfs_bio_counter_inc_noblocked(fs_info); |
| 2169 | rbio->generic_bio_cnt = 1; |
| 2170 | } else { |
| 2171 | btrfs_get_bbio(bbio); |
| 2172 | } |
| 2173 | |
| 2174 | /* |
| 2175 | * Loop retry: |
| 2176 | * for 'mirror == 2', reconstruct from all other stripes. |
| 2177 | * for 'mirror_num > 2', select a stripe to fail on every retry. |
| 2178 | */ |
| 2179 | if (mirror_num > 2) { |
| 2180 | /* |
| 2181 | * 'mirror == 3' is to fail the p stripe and |
| 2182 | * reconstruct from the q stripe. 'mirror > 3' is to |
| 2183 | * fail a data stripe and reconstruct from p+q stripe. |
| 2184 | */ |
| 2185 | rbio->failb = rbio->real_stripes - (mirror_num - 1); |
| 2186 | ASSERT(rbio->failb > 0); |
| 2187 | if (rbio->failb <= rbio->faila) |
| 2188 | rbio->failb--; |
| 2189 | } |
| 2190 | |
| 2191 | ret = lock_stripe_add(rbio); |
| 2192 | |
| 2193 | /* |
| 2194 | * __raid56_parity_recover will end the bio with |
| 2195 | * any errors it hits. We don't want to return |
| 2196 | * its error value up the stack because our caller |
| 2197 | * will end up calling bio_endio with any nonzero |
| 2198 | * return |
| 2199 | */ |
| 2200 | if (ret == 0) |
| 2201 | __raid56_parity_recover(rbio); |
| 2202 | /* |
| 2203 | * our rbio has been added to the list of |
| 2204 | * rbios that will be handled after the |
| 2205 | * currently lock owner is done |
| 2206 | */ |
| 2207 | return 0; |
| 2208 | |
| 2209 | } |
| 2210 | |
| 2211 | static void rmw_work(struct btrfs_work *work) |
| 2212 | { |
| 2213 | struct btrfs_raid_bio *rbio; |
| 2214 | |
| 2215 | rbio = container_of(work, struct btrfs_raid_bio, work); |
| 2216 | raid56_rmw_stripe(rbio); |
| 2217 | } |
| 2218 | |
| 2219 | static void read_rebuild_work(struct btrfs_work *work) |
| 2220 | { |
| 2221 | struct btrfs_raid_bio *rbio; |
| 2222 | |
| 2223 | rbio = container_of(work, struct btrfs_raid_bio, work); |
| 2224 | __raid56_parity_recover(rbio); |
| 2225 | } |
| 2226 | |
| 2227 | /* |
| 2228 | * The following code is used to scrub/replace the parity stripe |
| 2229 | * |
| 2230 | * Caller must have already increased bio_counter for getting @bbio. |
| 2231 | * |
| 2232 | * Note: We need make sure all the pages that add into the scrub/replace |
| 2233 | * raid bio are correct and not be changed during the scrub/replace. That |
| 2234 | * is those pages just hold metadata or file data with checksum. |
| 2235 | */ |
| 2236 | |
| 2237 | struct btrfs_raid_bio * |
| 2238 | raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, |
| 2239 | struct btrfs_bio *bbio, u64 stripe_len, |
| 2240 | struct btrfs_device *scrub_dev, |
| 2241 | unsigned long *dbitmap, int stripe_nsectors) |
| 2242 | { |
| 2243 | struct btrfs_raid_bio *rbio; |
| 2244 | int i; |
| 2245 | |
| 2246 | rbio = alloc_rbio(fs_info, bbio, stripe_len); |
| 2247 | if (IS_ERR(rbio)) |
| 2248 | return NULL; |
| 2249 | bio_list_add(&rbio->bio_list, bio); |
| 2250 | /* |
| 2251 | * This is a special bio which is used to hold the completion handler |
| 2252 | * and make the scrub rbio is similar to the other types |
| 2253 | */ |
| 2254 | ASSERT(!bio->bi_iter.bi_size); |
| 2255 | rbio->operation = BTRFS_RBIO_PARITY_SCRUB; |
| 2256 | |
| 2257 | for (i = 0; i < rbio->real_stripes; i++) { |
| 2258 | if (bbio->stripes[i].dev == scrub_dev) { |
| 2259 | rbio->scrubp = i; |
| 2260 | break; |
| 2261 | } |
| 2262 | } |
| 2263 | |
| 2264 | /* Now we just support the sectorsize equals to page size */ |
| 2265 | ASSERT(fs_info->sectorsize == PAGE_SIZE); |
| 2266 | ASSERT(rbio->stripe_npages == stripe_nsectors); |
| 2267 | bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); |
| 2268 | |
| 2269 | /* |
| 2270 | * We have already increased bio_counter when getting bbio, record it |
| 2271 | * so we can free it at rbio_orig_end_io(). |
| 2272 | */ |
| 2273 | rbio->generic_bio_cnt = 1; |
| 2274 | |
| 2275 | return rbio; |
| 2276 | } |
| 2277 | |
| 2278 | /* Used for both parity scrub and missing. */ |
| 2279 | void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, |
| 2280 | u64 logical) |
| 2281 | { |
| 2282 | int stripe_offset; |
| 2283 | int index; |
| 2284 | |
| 2285 | ASSERT(logical >= rbio->bbio->raid_map[0]); |
| 2286 | ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + |
| 2287 | rbio->stripe_len * rbio->nr_data); |
| 2288 | stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); |
| 2289 | index = stripe_offset >> PAGE_SHIFT; |
| 2290 | rbio->bio_pages[index] = page; |
| 2291 | } |
| 2292 | |
| 2293 | /* |
| 2294 | * We just scrub the parity that we have correct data on the same horizontal, |
| 2295 | * so we needn't allocate all pages for all the stripes. |
| 2296 | */ |
| 2297 | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) |
| 2298 | { |
| 2299 | int i; |
| 2300 | int bit; |
| 2301 | int index; |
| 2302 | struct page *page; |
| 2303 | |
| 2304 | for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { |
| 2305 | for (i = 0; i < rbio->real_stripes; i++) { |
| 2306 | index = i * rbio->stripe_npages + bit; |
| 2307 | if (rbio->stripe_pages[index]) |
| 2308 | continue; |
| 2309 | |
| 2310 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| 2311 | if (!page) |
| 2312 | return -ENOMEM; |
| 2313 | rbio->stripe_pages[index] = page; |
| 2314 | } |
| 2315 | } |
| 2316 | return 0; |
| 2317 | } |
| 2318 | |
| 2319 | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, |
| 2320 | int need_check) |
| 2321 | { |
| 2322 | struct btrfs_bio *bbio = rbio->bbio; |
| 2323 | void *pointers[rbio->real_stripes]; |
| 2324 | DECLARE_BITMAP(pbitmap, rbio->stripe_npages); |
| 2325 | int nr_data = rbio->nr_data; |
| 2326 | int stripe; |
| 2327 | int pagenr; |
| 2328 | int p_stripe = -1; |
| 2329 | int q_stripe = -1; |
| 2330 | struct page *p_page = NULL; |
| 2331 | struct page *q_page = NULL; |
| 2332 | struct bio_list bio_list; |
| 2333 | struct bio *bio; |
| 2334 | int is_replace = 0; |
| 2335 | int ret; |
| 2336 | |
| 2337 | bio_list_init(&bio_list); |
| 2338 | |
| 2339 | if (rbio->real_stripes - rbio->nr_data == 1) { |
| 2340 | p_stripe = rbio->real_stripes - 1; |
| 2341 | } else if (rbio->real_stripes - rbio->nr_data == 2) { |
| 2342 | p_stripe = rbio->real_stripes - 2; |
| 2343 | q_stripe = rbio->real_stripes - 1; |
| 2344 | } else { |
| 2345 | BUG(); |
| 2346 | } |
| 2347 | |
| 2348 | if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { |
| 2349 | is_replace = 1; |
| 2350 | bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); |
| 2351 | } |
| 2352 | |
| 2353 | /* |
| 2354 | * Because the higher layers(scrubber) are unlikely to |
| 2355 | * use this area of the disk again soon, so don't cache |
| 2356 | * it. |
| 2357 | */ |
| 2358 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| 2359 | |
| 2360 | if (!need_check) |
| 2361 | goto writeback; |
| 2362 | |
| 2363 | p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| 2364 | if (!p_page) |
| 2365 | goto cleanup; |
| 2366 | SetPageUptodate(p_page); |
| 2367 | |
| 2368 | if (q_stripe != -1) { |
| 2369 | q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| 2370 | if (!q_page) { |
| 2371 | __free_page(p_page); |
| 2372 | goto cleanup; |
| 2373 | } |
| 2374 | SetPageUptodate(q_page); |
| 2375 | } |
| 2376 | |
| 2377 | atomic_set(&rbio->error, 0); |
| 2378 | |
| 2379 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { |
| 2380 | struct page *p; |
| 2381 | void *parity; |
| 2382 | /* first collect one page from each data stripe */ |
| 2383 | for (stripe = 0; stripe < nr_data; stripe++) { |
| 2384 | p = page_in_rbio(rbio, stripe, pagenr, 0); |
| 2385 | pointers[stripe] = kmap(p); |
| 2386 | } |
| 2387 | |
| 2388 | /* then add the parity stripe */ |
| 2389 | pointers[stripe++] = kmap(p_page); |
| 2390 | |
| 2391 | if (q_stripe != -1) { |
| 2392 | |
| 2393 | /* |
| 2394 | * raid6, add the qstripe and call the |
| 2395 | * library function to fill in our p/q |
| 2396 | */ |
| 2397 | pointers[stripe++] = kmap(q_page); |
| 2398 | |
| 2399 | raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, |
| 2400 | pointers); |
| 2401 | } else { |
| 2402 | /* raid5 */ |
| 2403 | memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); |
| 2404 | run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); |
| 2405 | } |
| 2406 | |
| 2407 | /* Check scrubbing parity and repair it */ |
| 2408 | p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); |
| 2409 | parity = kmap(p); |
| 2410 | if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) |
| 2411 | memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE); |
| 2412 | else |
| 2413 | /* Parity is right, needn't writeback */ |
| 2414 | bitmap_clear(rbio->dbitmap, pagenr, 1); |
| 2415 | kunmap(p); |
| 2416 | |
| 2417 | for (stripe = 0; stripe < nr_data; stripe++) |
| 2418 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
| 2419 | kunmap(p_page); |
| 2420 | } |
| 2421 | |
| 2422 | __free_page(p_page); |
| 2423 | if (q_page) |
| 2424 | __free_page(q_page); |
| 2425 | |
| 2426 | writeback: |
| 2427 | /* |
| 2428 | * time to start writing. Make bios for everything from the |
| 2429 | * higher layers (the bio_list in our rbio) and our p/q. Ignore |
| 2430 | * everything else. |
| 2431 | */ |
| 2432 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { |
| 2433 | struct page *page; |
| 2434 | |
| 2435 | page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); |
| 2436 | ret = rbio_add_io_page(rbio, &bio_list, |
| 2437 | page, rbio->scrubp, pagenr, rbio->stripe_len); |
| 2438 | if (ret) |
| 2439 | goto cleanup; |
| 2440 | } |
| 2441 | |
| 2442 | if (!is_replace) |
| 2443 | goto submit_write; |
| 2444 | |
| 2445 | for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { |
| 2446 | struct page *page; |
| 2447 | |
| 2448 | page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); |
| 2449 | ret = rbio_add_io_page(rbio, &bio_list, page, |
| 2450 | bbio->tgtdev_map[rbio->scrubp], |
| 2451 | pagenr, rbio->stripe_len); |
| 2452 | if (ret) |
| 2453 | goto cleanup; |
| 2454 | } |
| 2455 | |
| 2456 | submit_write: |
| 2457 | nr_data = bio_list_size(&bio_list); |
| 2458 | if (!nr_data) { |
| 2459 | /* Every parity is right */ |
| 2460 | rbio_orig_end_io(rbio, BLK_STS_OK); |
| 2461 | return; |
| 2462 | } |
| 2463 | |
| 2464 | atomic_set(&rbio->stripes_pending, nr_data); |
| 2465 | |
| 2466 | while (1) { |
| 2467 | bio = bio_list_pop(&bio_list); |
| 2468 | if (!bio) |
| 2469 | break; |
| 2470 | |
| 2471 | bio->bi_private = rbio; |
| 2472 | bio->bi_end_io = raid_write_end_io; |
| 2473 | bio_set_op_attrs(bio, REQ_OP_WRITE, 0); |
| 2474 | |
| 2475 | submit_bio(bio); |
| 2476 | } |
| 2477 | return; |
| 2478 | |
| 2479 | cleanup: |
| 2480 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| 2481 | } |
| 2482 | |
| 2483 | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) |
| 2484 | { |
| 2485 | if (stripe >= 0 && stripe < rbio->nr_data) |
| 2486 | return 1; |
| 2487 | return 0; |
| 2488 | } |
| 2489 | |
| 2490 | /* |
| 2491 | * While we're doing the parity check and repair, we could have errors |
| 2492 | * in reading pages off the disk. This checks for errors and if we're |
| 2493 | * not able to read the page it'll trigger parity reconstruction. The |
| 2494 | * parity scrub will be finished after we've reconstructed the failed |
| 2495 | * stripes |
| 2496 | */ |
| 2497 | static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) |
| 2498 | { |
| 2499 | if (atomic_read(&rbio->error) > rbio->bbio->max_errors) |
| 2500 | goto cleanup; |
| 2501 | |
| 2502 | if (rbio->faila >= 0 || rbio->failb >= 0) { |
| 2503 | int dfail = 0, failp = -1; |
| 2504 | |
| 2505 | if (is_data_stripe(rbio, rbio->faila)) |
| 2506 | dfail++; |
| 2507 | else if (is_parity_stripe(rbio->faila)) |
| 2508 | failp = rbio->faila; |
| 2509 | |
| 2510 | if (is_data_stripe(rbio, rbio->failb)) |
| 2511 | dfail++; |
| 2512 | else if (is_parity_stripe(rbio->failb)) |
| 2513 | failp = rbio->failb; |
| 2514 | |
| 2515 | /* |
| 2516 | * Because we can not use a scrubbing parity to repair |
| 2517 | * the data, so the capability of the repair is declined. |
| 2518 | * (In the case of RAID5, we can not repair anything) |
| 2519 | */ |
| 2520 | if (dfail > rbio->bbio->max_errors - 1) |
| 2521 | goto cleanup; |
| 2522 | |
| 2523 | /* |
| 2524 | * If all data is good, only parity is correctly, just |
| 2525 | * repair the parity. |
| 2526 | */ |
| 2527 | if (dfail == 0) { |
| 2528 | finish_parity_scrub(rbio, 0); |
| 2529 | return; |
| 2530 | } |
| 2531 | |
| 2532 | /* |
| 2533 | * Here means we got one corrupted data stripe and one |
| 2534 | * corrupted parity on RAID6, if the corrupted parity |
| 2535 | * is scrubbing parity, luckily, use the other one to repair |
| 2536 | * the data, or we can not repair the data stripe. |
| 2537 | */ |
| 2538 | if (failp != rbio->scrubp) |
| 2539 | goto cleanup; |
| 2540 | |
| 2541 | __raid_recover_end_io(rbio); |
| 2542 | } else { |
| 2543 | finish_parity_scrub(rbio, 1); |
| 2544 | } |
| 2545 | return; |
| 2546 | |
| 2547 | cleanup: |
| 2548 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| 2549 | } |
| 2550 | |
| 2551 | /* |
| 2552 | * end io for the read phase of the rmw cycle. All the bios here are physical |
| 2553 | * stripe bios we've read from the disk so we can recalculate the parity of the |
| 2554 | * stripe. |
| 2555 | * |
| 2556 | * This will usually kick off finish_rmw once all the bios are read in, but it |
| 2557 | * may trigger parity reconstruction if we had any errors along the way |
| 2558 | */ |
| 2559 | static void raid56_parity_scrub_end_io(struct bio *bio) |
| 2560 | { |
| 2561 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 2562 | |
| 2563 | if (bio->bi_status) |
| 2564 | fail_bio_stripe(rbio, bio); |
| 2565 | else |
| 2566 | set_bio_pages_uptodate(bio); |
| 2567 | |
| 2568 | bio_put(bio); |
| 2569 | |
| 2570 | if (!atomic_dec_and_test(&rbio->stripes_pending)) |
| 2571 | return; |
| 2572 | |
| 2573 | /* |
| 2574 | * this will normally call finish_rmw to start our write |
| 2575 | * but if there are any failed stripes we'll reconstruct |
| 2576 | * from parity first |
| 2577 | */ |
| 2578 | validate_rbio_for_parity_scrub(rbio); |
| 2579 | } |
| 2580 | |
| 2581 | static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) |
| 2582 | { |
| 2583 | int bios_to_read = 0; |
| 2584 | struct bio_list bio_list; |
| 2585 | int ret; |
| 2586 | int pagenr; |
| 2587 | int stripe; |
| 2588 | struct bio *bio; |
| 2589 | |
| 2590 | ret = alloc_rbio_essential_pages(rbio); |
| 2591 | if (ret) |
| 2592 | goto cleanup; |
| 2593 | |
| 2594 | bio_list_init(&bio_list); |
| 2595 | |
| 2596 | atomic_set(&rbio->error, 0); |
| 2597 | /* |
| 2598 | * build a list of bios to read all the missing parts of this |
| 2599 | * stripe |
| 2600 | */ |
| 2601 | for (stripe = 0; stripe < rbio->real_stripes; stripe++) { |
| 2602 | for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { |
| 2603 | struct page *page; |
| 2604 | /* |
| 2605 | * we want to find all the pages missing from |
| 2606 | * the rbio and read them from the disk. If |
| 2607 | * page_in_rbio finds a page in the bio list |
| 2608 | * we don't need to read it off the stripe. |
| 2609 | */ |
| 2610 | page = page_in_rbio(rbio, stripe, pagenr, 1); |
| 2611 | if (page) |
| 2612 | continue; |
| 2613 | |
| 2614 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 2615 | /* |
| 2616 | * the bio cache may have handed us an uptodate |
| 2617 | * page. If so, be happy and use it |
| 2618 | */ |
| 2619 | if (PageUptodate(page)) |
| 2620 | continue; |
| 2621 | |
| 2622 | ret = rbio_add_io_page(rbio, &bio_list, page, |
| 2623 | stripe, pagenr, rbio->stripe_len); |
| 2624 | if (ret) |
| 2625 | goto cleanup; |
| 2626 | } |
| 2627 | } |
| 2628 | |
| 2629 | bios_to_read = bio_list_size(&bio_list); |
| 2630 | if (!bios_to_read) { |
| 2631 | /* |
| 2632 | * this can happen if others have merged with |
| 2633 | * us, it means there is nothing left to read. |
| 2634 | * But if there are missing devices it may not be |
| 2635 | * safe to do the full stripe write yet. |
| 2636 | */ |
| 2637 | goto finish; |
| 2638 | } |
| 2639 | |
| 2640 | /* |
| 2641 | * the bbio may be freed once we submit the last bio. Make sure |
| 2642 | * not to touch it after that |
| 2643 | */ |
| 2644 | atomic_set(&rbio->stripes_pending, bios_to_read); |
| 2645 | while (1) { |
| 2646 | bio = bio_list_pop(&bio_list); |
| 2647 | if (!bio) |
| 2648 | break; |
| 2649 | |
| 2650 | bio->bi_private = rbio; |
| 2651 | bio->bi_end_io = raid56_parity_scrub_end_io; |
| 2652 | bio_set_op_attrs(bio, REQ_OP_READ, 0); |
| 2653 | |
| 2654 | btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); |
| 2655 | |
| 2656 | submit_bio(bio); |
| 2657 | } |
| 2658 | /* the actual write will happen once the reads are done */ |
| 2659 | return; |
| 2660 | |
| 2661 | cleanup: |
| 2662 | rbio_orig_end_io(rbio, BLK_STS_IOERR); |
| 2663 | return; |
| 2664 | |
| 2665 | finish: |
| 2666 | validate_rbio_for_parity_scrub(rbio); |
| 2667 | } |
| 2668 | |
| 2669 | static void scrub_parity_work(struct btrfs_work *work) |
| 2670 | { |
| 2671 | struct btrfs_raid_bio *rbio; |
| 2672 | |
| 2673 | rbio = container_of(work, struct btrfs_raid_bio, work); |
| 2674 | raid56_parity_scrub_stripe(rbio); |
| 2675 | } |
| 2676 | |
| 2677 | static void async_scrub_parity(struct btrfs_raid_bio *rbio) |
| 2678 | { |
| 2679 | btrfs_init_work(&rbio->work, btrfs_rmw_helper, |
| 2680 | scrub_parity_work, NULL, NULL); |
| 2681 | |
| 2682 | btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); |
| 2683 | } |
| 2684 | |
| 2685 | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) |
| 2686 | { |
| 2687 | if (!lock_stripe_add(rbio)) |
| 2688 | async_scrub_parity(rbio); |
| 2689 | } |
| 2690 | |
| 2691 | /* The following code is used for dev replace of a missing RAID 5/6 device. */ |
| 2692 | |
| 2693 | struct btrfs_raid_bio * |
| 2694 | raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, |
| 2695 | struct btrfs_bio *bbio, u64 length) |
| 2696 | { |
| 2697 | struct btrfs_raid_bio *rbio; |
| 2698 | |
| 2699 | rbio = alloc_rbio(fs_info, bbio, length); |
| 2700 | if (IS_ERR(rbio)) |
| 2701 | return NULL; |
| 2702 | |
| 2703 | rbio->operation = BTRFS_RBIO_REBUILD_MISSING; |
| 2704 | bio_list_add(&rbio->bio_list, bio); |
| 2705 | /* |
| 2706 | * This is a special bio which is used to hold the completion handler |
| 2707 | * and make the scrub rbio is similar to the other types |
| 2708 | */ |
| 2709 | ASSERT(!bio->bi_iter.bi_size); |
| 2710 | |
| 2711 | rbio->faila = find_logical_bio_stripe(rbio, bio); |
| 2712 | if (rbio->faila == -1) { |
| 2713 | BUG(); |
| 2714 | kfree(rbio); |
| 2715 | return NULL; |
| 2716 | } |
| 2717 | |
| 2718 | /* |
| 2719 | * When we get bbio, we have already increased bio_counter, record it |
| 2720 | * so we can free it at rbio_orig_end_io() |
| 2721 | */ |
| 2722 | rbio->generic_bio_cnt = 1; |
| 2723 | |
| 2724 | return rbio; |
| 2725 | } |
| 2726 | |
| 2727 | static void missing_raid56_work(struct btrfs_work *work) |
| 2728 | { |
| 2729 | struct btrfs_raid_bio *rbio; |
| 2730 | |
| 2731 | rbio = container_of(work, struct btrfs_raid_bio, work); |
| 2732 | __raid56_parity_recover(rbio); |
| 2733 | } |
| 2734 | |
| 2735 | static void async_missing_raid56(struct btrfs_raid_bio *rbio) |
| 2736 | { |
| 2737 | btrfs_init_work(&rbio->work, btrfs_rmw_helper, |
| 2738 | missing_raid56_work, NULL, NULL); |
| 2739 | |
| 2740 | btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); |
| 2741 | } |
| 2742 | |
| 2743 | void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) |
| 2744 | { |
| 2745 | if (!lock_stripe_add(rbio)) |
| 2746 | async_missing_raid56(rbio); |
| 2747 | } |