blob: f4397dd19583bab10693ad39d6d7aa68bba7ad92 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2009 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "volumes.h"
29#include "locking.h"
30#include "btrfs_inode.h"
31#include "async-thread.h"
32#include "free-space-cache.h"
33#include "inode-map.h"
34#include "qgroup.h"
35#include "print-tree.h"
36
37/*
38 * backref_node, mapping_node and tree_block start with this
39 */
40struct tree_entry {
41 struct rb_node rb_node;
42 u64 bytenr;
43};
44
45/*
46 * present a tree block in the backref cache
47 */
48struct backref_node {
49 struct rb_node rb_node;
50 u64 bytenr;
51
52 u64 new_bytenr;
53 /* objectid of tree block owner, can be not uptodate */
54 u64 owner;
55 /* link to pending, changed or detached list */
56 struct list_head list;
57 /* list of upper level blocks reference this block */
58 struct list_head upper;
59 /* list of child blocks in the cache */
60 struct list_head lower;
61 /* NULL if this node is not tree root */
62 struct btrfs_root *root;
63 /* extent buffer got by COW the block */
64 struct extent_buffer *eb;
65 /* level of tree block */
66 unsigned int level:8;
67 /* is the block in non-reference counted tree */
68 unsigned int cowonly:1;
69 /* 1 if no child node in the cache */
70 unsigned int lowest:1;
71 /* is the extent buffer locked */
72 unsigned int locked:1;
73 /* has the block been processed */
74 unsigned int processed:1;
75 /* have backrefs of this block been checked */
76 unsigned int checked:1;
77 /*
78 * 1 if corresponding block has been cowed but some upper
79 * level block pointers may not point to the new location
80 */
81 unsigned int pending:1;
82 /*
83 * 1 if the backref node isn't connected to any other
84 * backref node.
85 */
86 unsigned int detached:1;
87};
88
89/*
90 * present a block pointer in the backref cache
91 */
92struct backref_edge {
93 struct list_head list[2];
94 struct backref_node *node[2];
95};
96
97#define LOWER 0
98#define UPPER 1
99#define RELOCATION_RESERVED_NODES 256
100
101struct backref_cache {
102 /* red black tree of all backref nodes in the cache */
103 struct rb_root rb_root;
104 /* for passing backref nodes to btrfs_reloc_cow_block */
105 struct backref_node *path[BTRFS_MAX_LEVEL];
106 /*
107 * list of blocks that have been cowed but some block
108 * pointers in upper level blocks may not reflect the
109 * new location
110 */
111 struct list_head pending[BTRFS_MAX_LEVEL];
112 /* list of backref nodes with no child node */
113 struct list_head leaves;
114 /* list of blocks that have been cowed in current transaction */
115 struct list_head changed;
116 /* list of detached backref node. */
117 struct list_head detached;
118
119 u64 last_trans;
120
121 int nr_nodes;
122 int nr_edges;
123};
124
125/*
126 * map address of tree root to tree
127 */
128struct mapping_node {
129 struct rb_node rb_node;
130 u64 bytenr;
131 void *data;
132};
133
134struct mapping_tree {
135 struct rb_root rb_root;
136 spinlock_t lock;
137};
138
139/*
140 * present a tree block to process
141 */
142struct tree_block {
143 struct rb_node rb_node;
144 u64 bytenr;
145 struct btrfs_key key;
146 unsigned int level:8;
147 unsigned int key_ready:1;
148};
149
150#define MAX_EXTENTS 128
151
152struct file_extent_cluster {
153 u64 start;
154 u64 end;
155 u64 boundary[MAX_EXTENTS];
156 unsigned int nr;
157};
158
159struct reloc_control {
160 /* block group to relocate */
161 struct btrfs_block_group_cache *block_group;
162 /* extent tree */
163 struct btrfs_root *extent_root;
164 /* inode for moving data */
165 struct inode *data_inode;
166
167 struct btrfs_block_rsv *block_rsv;
168
169 struct backref_cache backref_cache;
170
171 struct file_extent_cluster cluster;
172 /* tree blocks have been processed */
173 struct extent_io_tree processed_blocks;
174 /* map start of tree root to corresponding reloc tree */
175 struct mapping_tree reloc_root_tree;
176 /* list of reloc trees */
177 struct list_head reloc_roots;
178 /* size of metadata reservation for merging reloc trees */
179 u64 merging_rsv_size;
180 /* size of relocated tree nodes */
181 u64 nodes_relocated;
182 /* reserved size for block group relocation*/
183 u64 reserved_bytes;
184
185 u64 search_start;
186 u64 extents_found;
187
188 unsigned int stage:8;
189 unsigned int create_reloc_tree:1;
190 unsigned int merge_reloc_tree:1;
191 unsigned int found_file_extent:1;
192};
193
194/* stages of data relocation */
195#define MOVE_DATA_EXTENTS 0
196#define UPDATE_DATA_PTRS 1
197
198static void remove_backref_node(struct backref_cache *cache,
199 struct backref_node *node);
200static void __mark_block_processed(struct reloc_control *rc,
201 struct backref_node *node);
202
203static void mapping_tree_init(struct mapping_tree *tree)
204{
205 tree->rb_root = RB_ROOT;
206 spin_lock_init(&tree->lock);
207}
208
209static void backref_cache_init(struct backref_cache *cache)
210{
211 int i;
212 cache->rb_root = RB_ROOT;
213 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
214 INIT_LIST_HEAD(&cache->pending[i]);
215 INIT_LIST_HEAD(&cache->changed);
216 INIT_LIST_HEAD(&cache->detached);
217 INIT_LIST_HEAD(&cache->leaves);
218}
219
220static void backref_cache_cleanup(struct backref_cache *cache)
221{
222 struct backref_node *node;
223 int i;
224
225 while (!list_empty(&cache->detached)) {
226 node = list_entry(cache->detached.next,
227 struct backref_node, list);
228 remove_backref_node(cache, node);
229 }
230
231 while (!list_empty(&cache->leaves)) {
232 node = list_entry(cache->leaves.next,
233 struct backref_node, lower);
234 remove_backref_node(cache, node);
235 }
236
237 cache->last_trans = 0;
238
239 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
240 ASSERT(list_empty(&cache->pending[i]));
241 ASSERT(list_empty(&cache->changed));
242 ASSERT(list_empty(&cache->detached));
243 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
244 ASSERT(!cache->nr_nodes);
245 ASSERT(!cache->nr_edges);
246}
247
248static struct backref_node *alloc_backref_node(struct backref_cache *cache)
249{
250 struct backref_node *node;
251
252 node = kzalloc(sizeof(*node), GFP_NOFS);
253 if (node) {
254 INIT_LIST_HEAD(&node->list);
255 INIT_LIST_HEAD(&node->upper);
256 INIT_LIST_HEAD(&node->lower);
257 RB_CLEAR_NODE(&node->rb_node);
258 cache->nr_nodes++;
259 }
260 return node;
261}
262
263static void free_backref_node(struct backref_cache *cache,
264 struct backref_node *node)
265{
266 if (node) {
267 cache->nr_nodes--;
268 kfree(node);
269 }
270}
271
272static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
273{
274 struct backref_edge *edge;
275
276 edge = kzalloc(sizeof(*edge), GFP_NOFS);
277 if (edge)
278 cache->nr_edges++;
279 return edge;
280}
281
282static void free_backref_edge(struct backref_cache *cache,
283 struct backref_edge *edge)
284{
285 if (edge) {
286 cache->nr_edges--;
287 kfree(edge);
288 }
289}
290
291static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
292 struct rb_node *node)
293{
294 struct rb_node **p = &root->rb_node;
295 struct rb_node *parent = NULL;
296 struct tree_entry *entry;
297
298 while (*p) {
299 parent = *p;
300 entry = rb_entry(parent, struct tree_entry, rb_node);
301
302 if (bytenr < entry->bytenr)
303 p = &(*p)->rb_left;
304 else if (bytenr > entry->bytenr)
305 p = &(*p)->rb_right;
306 else
307 return parent;
308 }
309
310 rb_link_node(node, parent, p);
311 rb_insert_color(node, root);
312 return NULL;
313}
314
315static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
316{
317 struct rb_node *n = root->rb_node;
318 struct tree_entry *entry;
319
320 while (n) {
321 entry = rb_entry(n, struct tree_entry, rb_node);
322
323 if (bytenr < entry->bytenr)
324 n = n->rb_left;
325 else if (bytenr > entry->bytenr)
326 n = n->rb_right;
327 else
328 return n;
329 }
330 return NULL;
331}
332
333static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
334{
335
336 struct btrfs_fs_info *fs_info = NULL;
337 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
338 rb_node);
339 if (bnode->root)
340 fs_info = bnode->root->fs_info;
341 btrfs_panic(fs_info, errno,
342 "Inconsistency in backref cache found at offset %llu",
343 bytenr);
344}
345
346/*
347 * walk up backref nodes until reach node presents tree root
348 */
349static struct backref_node *walk_up_backref(struct backref_node *node,
350 struct backref_edge *edges[],
351 int *index)
352{
353 struct backref_edge *edge;
354 int idx = *index;
355
356 while (!list_empty(&node->upper)) {
357 edge = list_entry(node->upper.next,
358 struct backref_edge, list[LOWER]);
359 edges[idx++] = edge;
360 node = edge->node[UPPER];
361 }
362 BUG_ON(node->detached);
363 *index = idx;
364 return node;
365}
366
367/*
368 * walk down backref nodes to find start of next reference path
369 */
370static struct backref_node *walk_down_backref(struct backref_edge *edges[],
371 int *index)
372{
373 struct backref_edge *edge;
374 struct backref_node *lower;
375 int idx = *index;
376
377 while (idx > 0) {
378 edge = edges[idx - 1];
379 lower = edge->node[LOWER];
380 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
381 idx--;
382 continue;
383 }
384 edge = list_entry(edge->list[LOWER].next,
385 struct backref_edge, list[LOWER]);
386 edges[idx - 1] = edge;
387 *index = idx;
388 return edge->node[UPPER];
389 }
390 *index = 0;
391 return NULL;
392}
393
394static void unlock_node_buffer(struct backref_node *node)
395{
396 if (node->locked) {
397 btrfs_tree_unlock(node->eb);
398 node->locked = 0;
399 }
400}
401
402static void drop_node_buffer(struct backref_node *node)
403{
404 if (node->eb) {
405 unlock_node_buffer(node);
406 free_extent_buffer(node->eb);
407 node->eb = NULL;
408 }
409}
410
411static void drop_backref_node(struct backref_cache *tree,
412 struct backref_node *node)
413{
414 BUG_ON(!list_empty(&node->upper));
415
416 drop_node_buffer(node);
417 list_del(&node->list);
418 list_del(&node->lower);
419 if (!RB_EMPTY_NODE(&node->rb_node))
420 rb_erase(&node->rb_node, &tree->rb_root);
421 free_backref_node(tree, node);
422}
423
424/*
425 * remove a backref node from the backref cache
426 */
427static void remove_backref_node(struct backref_cache *cache,
428 struct backref_node *node)
429{
430 struct backref_node *upper;
431 struct backref_edge *edge;
432
433 if (!node)
434 return;
435
436 BUG_ON(!node->lowest && !node->detached);
437 while (!list_empty(&node->upper)) {
438 edge = list_entry(node->upper.next, struct backref_edge,
439 list[LOWER]);
440 upper = edge->node[UPPER];
441 list_del(&edge->list[LOWER]);
442 list_del(&edge->list[UPPER]);
443 free_backref_edge(cache, edge);
444
445 if (RB_EMPTY_NODE(&upper->rb_node)) {
446 BUG_ON(!list_empty(&node->upper));
447 drop_backref_node(cache, node);
448 node = upper;
449 node->lowest = 1;
450 continue;
451 }
452 /*
453 * add the node to leaf node list if no other
454 * child block cached.
455 */
456 if (list_empty(&upper->lower)) {
457 list_add_tail(&upper->lower, &cache->leaves);
458 upper->lowest = 1;
459 }
460 }
461
462 drop_backref_node(cache, node);
463}
464
465static void update_backref_node(struct backref_cache *cache,
466 struct backref_node *node, u64 bytenr)
467{
468 struct rb_node *rb_node;
469 rb_erase(&node->rb_node, &cache->rb_root);
470 node->bytenr = bytenr;
471 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
472 if (rb_node)
473 backref_tree_panic(rb_node, -EEXIST, bytenr);
474}
475
476/*
477 * update backref cache after a transaction commit
478 */
479static int update_backref_cache(struct btrfs_trans_handle *trans,
480 struct backref_cache *cache)
481{
482 struct backref_node *node;
483 int level = 0;
484
485 if (cache->last_trans == 0) {
486 cache->last_trans = trans->transid;
487 return 0;
488 }
489
490 if (cache->last_trans == trans->transid)
491 return 0;
492
493 /*
494 * detached nodes are used to avoid unnecessary backref
495 * lookup. transaction commit changes the extent tree.
496 * so the detached nodes are no longer useful.
497 */
498 while (!list_empty(&cache->detached)) {
499 node = list_entry(cache->detached.next,
500 struct backref_node, list);
501 remove_backref_node(cache, node);
502 }
503
504 while (!list_empty(&cache->changed)) {
505 node = list_entry(cache->changed.next,
506 struct backref_node, list);
507 list_del_init(&node->list);
508 BUG_ON(node->pending);
509 update_backref_node(cache, node, node->new_bytenr);
510 }
511
512 /*
513 * some nodes can be left in the pending list if there were
514 * errors during processing the pending nodes.
515 */
516 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
517 list_for_each_entry(node, &cache->pending[level], list) {
518 BUG_ON(!node->pending);
519 if (node->bytenr == node->new_bytenr)
520 continue;
521 update_backref_node(cache, node, node->new_bytenr);
522 }
523 }
524
525 cache->last_trans = 0;
526 return 1;
527}
528
529
530static int should_ignore_root(struct btrfs_root *root)
531{
532 struct btrfs_root *reloc_root;
533
534 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
535 return 0;
536
537 reloc_root = root->reloc_root;
538 if (!reloc_root)
539 return 0;
540
541 if (btrfs_header_generation(reloc_root->commit_root) ==
542 root->fs_info->running_transaction->transid)
543 return 0;
544 /*
545 * if there is reloc tree and it was created in previous
546 * transaction backref lookup can find the reloc tree,
547 * so backref node for the fs tree root is useless for
548 * relocation.
549 */
550 return 1;
551}
552/*
553 * find reloc tree by address of tree root
554 */
555static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
556 u64 bytenr)
557{
558 struct rb_node *rb_node;
559 struct mapping_node *node;
560 struct btrfs_root *root = NULL;
561
562 spin_lock(&rc->reloc_root_tree.lock);
563 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
564 if (rb_node) {
565 node = rb_entry(rb_node, struct mapping_node, rb_node);
566 root = (struct btrfs_root *)node->data;
567 }
568 spin_unlock(&rc->reloc_root_tree.lock);
569 return root;
570}
571
572static int is_cowonly_root(u64 root_objectid)
573{
574 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
575 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
576 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
577 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
578 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
579 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
580 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
581 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
582 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
583 return 1;
584 return 0;
585}
586
587static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
588 u64 root_objectid)
589{
590 struct btrfs_key key;
591
592 key.objectid = root_objectid;
593 key.type = BTRFS_ROOT_ITEM_KEY;
594 if (is_cowonly_root(root_objectid))
595 key.offset = 0;
596 else
597 key.offset = (u64)-1;
598
599 return btrfs_get_fs_root(fs_info, &key, false);
600}
601
602#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
603static noinline_for_stack
604struct btrfs_root *find_tree_root(struct reloc_control *rc,
605 struct extent_buffer *leaf,
606 struct btrfs_extent_ref_v0 *ref0)
607{
608 struct btrfs_root *root;
609 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
610 u64 generation = btrfs_ref_generation_v0(leaf, ref0);
611
612 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
613
614 root = read_fs_root(rc->extent_root->fs_info, root_objectid);
615 BUG_ON(IS_ERR(root));
616
617 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
618 generation != btrfs_root_generation(&root->root_item))
619 return NULL;
620
621 return root;
622}
623#endif
624
625static noinline_for_stack
626int find_inline_backref(struct extent_buffer *leaf, int slot,
627 unsigned long *ptr, unsigned long *end)
628{
629 struct btrfs_key key;
630 struct btrfs_extent_item *ei;
631 struct btrfs_tree_block_info *bi;
632 u32 item_size;
633
634 btrfs_item_key_to_cpu(leaf, &key, slot);
635
636 item_size = btrfs_item_size_nr(leaf, slot);
637#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
638 if (item_size < sizeof(*ei)) {
639 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
640 return 1;
641 }
642#endif
643 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
644 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
645 BTRFS_EXTENT_FLAG_TREE_BLOCK));
646
647 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
648 item_size <= sizeof(*ei) + sizeof(*bi)) {
649 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
650 return 1;
651 }
652 if (key.type == BTRFS_METADATA_ITEM_KEY &&
653 item_size <= sizeof(*ei)) {
654 WARN_ON(item_size < sizeof(*ei));
655 return 1;
656 }
657
658 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
659 bi = (struct btrfs_tree_block_info *)(ei + 1);
660 *ptr = (unsigned long)(bi + 1);
661 } else {
662 *ptr = (unsigned long)(ei + 1);
663 }
664 *end = (unsigned long)ei + item_size;
665 return 0;
666}
667
668/*
669 * build backref tree for a given tree block. root of the backref tree
670 * corresponds the tree block, leaves of the backref tree correspond
671 * roots of b-trees that reference the tree block.
672 *
673 * the basic idea of this function is check backrefs of a given block
674 * to find upper level blocks that reference the block, and then check
675 * backrefs of these upper level blocks recursively. the recursion stop
676 * when tree root is reached or backrefs for the block is cached.
677 *
678 * NOTE: if we find backrefs for a block are cached, we know backrefs
679 * for all upper level blocks that directly/indirectly reference the
680 * block are also cached.
681 */
682static noinline_for_stack
683struct backref_node *build_backref_tree(struct reloc_control *rc,
684 struct btrfs_key *node_key,
685 int level, u64 bytenr)
686{
687 struct backref_cache *cache = &rc->backref_cache;
688 struct btrfs_path *path1;
689 struct btrfs_path *path2;
690 struct extent_buffer *eb;
691 struct btrfs_root *root;
692 struct backref_node *cur;
693 struct backref_node *upper;
694 struct backref_node *lower;
695 struct backref_node *node = NULL;
696 struct backref_node *exist = NULL;
697 struct backref_edge *edge;
698 struct rb_node *rb_node;
699 struct btrfs_key key;
700 unsigned long end;
701 unsigned long ptr;
702 LIST_HEAD(list);
703 LIST_HEAD(useless);
704 int cowonly;
705 int ret;
706 int err = 0;
707 bool need_check = true;
708
709 path1 = btrfs_alloc_path();
710 path2 = btrfs_alloc_path();
711 if (!path1 || !path2) {
712 err = -ENOMEM;
713 goto out;
714 }
715 path1->reada = READA_FORWARD;
716 path2->reada = READA_FORWARD;
717
718 node = alloc_backref_node(cache);
719 if (!node) {
720 err = -ENOMEM;
721 goto out;
722 }
723
724 node->bytenr = bytenr;
725 node->level = level;
726 node->lowest = 1;
727 cur = node;
728again:
729 end = 0;
730 ptr = 0;
731 key.objectid = cur->bytenr;
732 key.type = BTRFS_METADATA_ITEM_KEY;
733 key.offset = (u64)-1;
734
735 path1->search_commit_root = 1;
736 path1->skip_locking = 1;
737 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
738 0, 0);
739 if (ret < 0) {
740 err = ret;
741 goto out;
742 }
743 ASSERT(ret);
744 ASSERT(path1->slots[0]);
745
746 path1->slots[0]--;
747
748 WARN_ON(cur->checked);
749 if (!list_empty(&cur->upper)) {
750 /*
751 * the backref was added previously when processing
752 * backref of type BTRFS_TREE_BLOCK_REF_KEY
753 */
754 ASSERT(list_is_singular(&cur->upper));
755 edge = list_entry(cur->upper.next, struct backref_edge,
756 list[LOWER]);
757 ASSERT(list_empty(&edge->list[UPPER]));
758 exist = edge->node[UPPER];
759 /*
760 * add the upper level block to pending list if we need
761 * check its backrefs
762 */
763 if (!exist->checked)
764 list_add_tail(&edge->list[UPPER], &list);
765 } else {
766 exist = NULL;
767 }
768
769 while (1) {
770 cond_resched();
771 eb = path1->nodes[0];
772
773 if (ptr >= end) {
774 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
775 ret = btrfs_next_leaf(rc->extent_root, path1);
776 if (ret < 0) {
777 err = ret;
778 goto out;
779 }
780 if (ret > 0)
781 break;
782 eb = path1->nodes[0];
783 }
784
785 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
786 if (key.objectid != cur->bytenr) {
787 WARN_ON(exist);
788 break;
789 }
790
791 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
792 key.type == BTRFS_METADATA_ITEM_KEY) {
793 ret = find_inline_backref(eb, path1->slots[0],
794 &ptr, &end);
795 if (ret)
796 goto next;
797 }
798 }
799
800 if (ptr < end) {
801 /* update key for inline back ref */
802 struct btrfs_extent_inline_ref *iref;
803 int type;
804 iref = (struct btrfs_extent_inline_ref *)ptr;
805 type = btrfs_get_extent_inline_ref_type(eb, iref,
806 BTRFS_REF_TYPE_BLOCK);
807 if (type == BTRFS_REF_TYPE_INVALID) {
808 err = -EINVAL;
809 goto out;
810 }
811 key.type = type;
812 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
813
814 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
815 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
816 }
817
818 if (exist &&
819 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
820 exist->owner == key.offset) ||
821 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
822 exist->bytenr == key.offset))) {
823 exist = NULL;
824 goto next;
825 }
826
827#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
829 key.type == BTRFS_EXTENT_REF_V0_KEY) {
830 if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
831 struct btrfs_extent_ref_v0 *ref0;
832 ref0 = btrfs_item_ptr(eb, path1->slots[0],
833 struct btrfs_extent_ref_v0);
834 if (key.objectid == key.offset) {
835 root = find_tree_root(rc, eb, ref0);
836 if (root && !should_ignore_root(root))
837 cur->root = root;
838 else
839 list_add(&cur->list, &useless);
840 break;
841 }
842 if (is_cowonly_root(btrfs_ref_root_v0(eb,
843 ref0)))
844 cur->cowonly = 1;
845 }
846#else
847 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
848 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
849#endif
850 if (key.objectid == key.offset) {
851 /*
852 * only root blocks of reloc trees use
853 * backref of this type.
854 */
855 root = find_reloc_root(rc, cur->bytenr);
856 ASSERT(root);
857 cur->root = root;
858 break;
859 }
860
861 edge = alloc_backref_edge(cache);
862 if (!edge) {
863 err = -ENOMEM;
864 goto out;
865 }
866 rb_node = tree_search(&cache->rb_root, key.offset);
867 if (!rb_node) {
868 upper = alloc_backref_node(cache);
869 if (!upper) {
870 free_backref_edge(cache, edge);
871 err = -ENOMEM;
872 goto out;
873 }
874 upper->bytenr = key.offset;
875 upper->level = cur->level + 1;
876 /*
877 * backrefs for the upper level block isn't
878 * cached, add the block to pending list
879 */
880 list_add_tail(&edge->list[UPPER], &list);
881 } else {
882 upper = rb_entry(rb_node, struct backref_node,
883 rb_node);
884 ASSERT(upper->checked);
885 INIT_LIST_HEAD(&edge->list[UPPER]);
886 }
887 list_add_tail(&edge->list[LOWER], &cur->upper);
888 edge->node[LOWER] = cur;
889 edge->node[UPPER] = upper;
890
891 goto next;
892 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
893 goto next;
894 }
895
896 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
897 root = read_fs_root(rc->extent_root->fs_info, key.offset);
898 if (IS_ERR(root)) {
899 err = PTR_ERR(root);
900 goto out;
901 }
902
903 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
904 cur->cowonly = 1;
905
906 if (btrfs_root_level(&root->root_item) == cur->level) {
907 /* tree root */
908 ASSERT(btrfs_root_bytenr(&root->root_item) ==
909 cur->bytenr);
910 if (should_ignore_root(root))
911 list_add(&cur->list, &useless);
912 else
913 cur->root = root;
914 break;
915 }
916
917 level = cur->level + 1;
918
919 /*
920 * searching the tree to find upper level blocks
921 * reference the block.
922 */
923 path2->search_commit_root = 1;
924 path2->skip_locking = 1;
925 path2->lowest_level = level;
926 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
927 path2->lowest_level = 0;
928 if (ret < 0) {
929 err = ret;
930 goto out;
931 }
932 if (ret > 0 && path2->slots[level] > 0)
933 path2->slots[level]--;
934
935 eb = path2->nodes[level];
936 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
937 cur->bytenr) {
938 btrfs_err(root->fs_info,
939 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
940 cur->bytenr, level - 1, root->objectid,
941 node_key->objectid, node_key->type,
942 node_key->offset);
943 err = -ENOENT;
944 goto out;
945 }
946 lower = cur;
947 need_check = true;
948 for (; level < BTRFS_MAX_LEVEL; level++) {
949 if (!path2->nodes[level]) {
950 ASSERT(btrfs_root_bytenr(&root->root_item) ==
951 lower->bytenr);
952 if (should_ignore_root(root))
953 list_add(&lower->list, &useless);
954 else
955 lower->root = root;
956 break;
957 }
958
959 edge = alloc_backref_edge(cache);
960 if (!edge) {
961 err = -ENOMEM;
962 goto out;
963 }
964
965 eb = path2->nodes[level];
966 rb_node = tree_search(&cache->rb_root, eb->start);
967 if (!rb_node) {
968 upper = alloc_backref_node(cache);
969 if (!upper) {
970 free_backref_edge(cache, edge);
971 err = -ENOMEM;
972 goto out;
973 }
974 upper->bytenr = eb->start;
975 upper->owner = btrfs_header_owner(eb);
976 upper->level = lower->level + 1;
977 if (!test_bit(BTRFS_ROOT_REF_COWS,
978 &root->state))
979 upper->cowonly = 1;
980
981 /*
982 * if we know the block isn't shared
983 * we can void checking its backrefs.
984 */
985 if (btrfs_block_can_be_shared(root, eb))
986 upper->checked = 0;
987 else
988 upper->checked = 1;
989
990 /*
991 * add the block to pending list if we
992 * need check its backrefs, we only do this once
993 * while walking up a tree as we will catch
994 * anything else later on.
995 */
996 if (!upper->checked && need_check) {
997 need_check = false;
998 list_add_tail(&edge->list[UPPER],
999 &list);
1000 } else {
1001 if (upper->checked)
1002 need_check = true;
1003 INIT_LIST_HEAD(&edge->list[UPPER]);
1004 }
1005 } else {
1006 upper = rb_entry(rb_node, struct backref_node,
1007 rb_node);
1008 ASSERT(upper->checked);
1009 INIT_LIST_HEAD(&edge->list[UPPER]);
1010 if (!upper->owner)
1011 upper->owner = btrfs_header_owner(eb);
1012 }
1013 list_add_tail(&edge->list[LOWER], &lower->upper);
1014 edge->node[LOWER] = lower;
1015 edge->node[UPPER] = upper;
1016
1017 if (rb_node)
1018 break;
1019 lower = upper;
1020 upper = NULL;
1021 }
1022 btrfs_release_path(path2);
1023next:
1024 if (ptr < end) {
1025 ptr += btrfs_extent_inline_ref_size(key.type);
1026 if (ptr >= end) {
1027 WARN_ON(ptr > end);
1028 ptr = 0;
1029 end = 0;
1030 }
1031 }
1032 if (ptr >= end)
1033 path1->slots[0]++;
1034 }
1035 btrfs_release_path(path1);
1036
1037 cur->checked = 1;
1038 WARN_ON(exist);
1039
1040 /* the pending list isn't empty, take the first block to process */
1041 if (!list_empty(&list)) {
1042 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1043 list_del_init(&edge->list[UPPER]);
1044 cur = edge->node[UPPER];
1045 goto again;
1046 }
1047
1048 /*
1049 * everything goes well, connect backref nodes and insert backref nodes
1050 * into the cache.
1051 */
1052 ASSERT(node->checked);
1053 cowonly = node->cowonly;
1054 if (!cowonly) {
1055 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1056 &node->rb_node);
1057 if (rb_node)
1058 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1059 list_add_tail(&node->lower, &cache->leaves);
1060 }
1061
1062 list_for_each_entry(edge, &node->upper, list[LOWER])
1063 list_add_tail(&edge->list[UPPER], &list);
1064
1065 while (!list_empty(&list)) {
1066 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1067 list_del_init(&edge->list[UPPER]);
1068 upper = edge->node[UPPER];
1069 if (upper->detached) {
1070 list_del(&edge->list[LOWER]);
1071 lower = edge->node[LOWER];
1072 free_backref_edge(cache, edge);
1073 if (list_empty(&lower->upper))
1074 list_add(&lower->list, &useless);
1075 continue;
1076 }
1077
1078 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1079 if (upper->lowest) {
1080 list_del_init(&upper->lower);
1081 upper->lowest = 0;
1082 }
1083
1084 list_add_tail(&edge->list[UPPER], &upper->lower);
1085 continue;
1086 }
1087
1088 if (!upper->checked) {
1089 /*
1090 * Still want to blow up for developers since this is a
1091 * logic bug.
1092 */
1093 ASSERT(0);
1094 err = -EINVAL;
1095 goto out;
1096 }
1097 if (cowonly != upper->cowonly) {
1098 ASSERT(0);
1099 err = -EINVAL;
1100 goto out;
1101 }
1102
1103 if (!cowonly) {
1104 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1105 &upper->rb_node);
1106 if (rb_node)
1107 backref_tree_panic(rb_node, -EEXIST,
1108 upper->bytenr);
1109 }
1110
1111 list_add_tail(&edge->list[UPPER], &upper->lower);
1112
1113 list_for_each_entry(edge, &upper->upper, list[LOWER])
1114 list_add_tail(&edge->list[UPPER], &list);
1115 }
1116 /*
1117 * process useless backref nodes. backref nodes for tree leaves
1118 * are deleted from the cache. backref nodes for upper level
1119 * tree blocks are left in the cache to avoid unnecessary backref
1120 * lookup.
1121 */
1122 while (!list_empty(&useless)) {
1123 upper = list_entry(useless.next, struct backref_node, list);
1124 list_del_init(&upper->list);
1125 ASSERT(list_empty(&upper->upper));
1126 if (upper == node)
1127 node = NULL;
1128 if (upper->lowest) {
1129 list_del_init(&upper->lower);
1130 upper->lowest = 0;
1131 }
1132 while (!list_empty(&upper->lower)) {
1133 edge = list_entry(upper->lower.next,
1134 struct backref_edge, list[UPPER]);
1135 list_del(&edge->list[UPPER]);
1136 list_del(&edge->list[LOWER]);
1137 lower = edge->node[LOWER];
1138 free_backref_edge(cache, edge);
1139
1140 if (list_empty(&lower->upper))
1141 list_add(&lower->list, &useless);
1142 }
1143 __mark_block_processed(rc, upper);
1144 if (upper->level > 0) {
1145 list_add(&upper->list, &cache->detached);
1146 upper->detached = 1;
1147 } else {
1148 rb_erase(&upper->rb_node, &cache->rb_root);
1149 free_backref_node(cache, upper);
1150 }
1151 }
1152out:
1153 btrfs_free_path(path1);
1154 btrfs_free_path(path2);
1155 if (err) {
1156 while (!list_empty(&useless)) {
1157 lower = list_entry(useless.next,
1158 struct backref_node, list);
1159 list_del_init(&lower->list);
1160 }
1161 while (!list_empty(&list)) {
1162 edge = list_first_entry(&list, struct backref_edge,
1163 list[UPPER]);
1164 list_del(&edge->list[UPPER]);
1165 list_del(&edge->list[LOWER]);
1166 lower = edge->node[LOWER];
1167 upper = edge->node[UPPER];
1168 free_backref_edge(cache, edge);
1169
1170 /*
1171 * Lower is no longer linked to any upper backref nodes
1172 * and isn't in the cache, we can free it ourselves.
1173 */
1174 if (list_empty(&lower->upper) &&
1175 RB_EMPTY_NODE(&lower->rb_node))
1176 list_add(&lower->list, &useless);
1177
1178 if (!RB_EMPTY_NODE(&upper->rb_node))
1179 continue;
1180
1181 /* Add this guy's upper edges to the list to process */
1182 list_for_each_entry(edge, &upper->upper, list[LOWER])
1183 list_add_tail(&edge->list[UPPER], &list);
1184 if (list_empty(&upper->upper))
1185 list_add(&upper->list, &useless);
1186 }
1187
1188 while (!list_empty(&useless)) {
1189 lower = list_entry(useless.next,
1190 struct backref_node, list);
1191 list_del_init(&lower->list);
1192 if (lower == node)
1193 node = NULL;
1194 free_backref_node(cache, lower);
1195 }
1196
1197 remove_backref_node(cache, node);
1198 return ERR_PTR(err);
1199 }
1200 ASSERT(!node || !node->detached);
1201 return node;
1202}
1203
1204/*
1205 * helper to add backref node for the newly created snapshot.
1206 * the backref node is created by cloning backref node that
1207 * corresponds to root of source tree
1208 */
1209static int clone_backref_node(struct btrfs_trans_handle *trans,
1210 struct reloc_control *rc,
1211 struct btrfs_root *src,
1212 struct btrfs_root *dest)
1213{
1214 struct btrfs_root *reloc_root = src->reloc_root;
1215 struct backref_cache *cache = &rc->backref_cache;
1216 struct backref_node *node = NULL;
1217 struct backref_node *new_node;
1218 struct backref_edge *edge;
1219 struct backref_edge *new_edge;
1220 struct rb_node *rb_node;
1221
1222 if (cache->last_trans > 0)
1223 update_backref_cache(trans, cache);
1224
1225 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1226 if (rb_node) {
1227 node = rb_entry(rb_node, struct backref_node, rb_node);
1228 if (node->detached)
1229 node = NULL;
1230 else
1231 BUG_ON(node->new_bytenr != reloc_root->node->start);
1232 }
1233
1234 if (!node) {
1235 rb_node = tree_search(&cache->rb_root,
1236 reloc_root->commit_root->start);
1237 if (rb_node) {
1238 node = rb_entry(rb_node, struct backref_node,
1239 rb_node);
1240 BUG_ON(node->detached);
1241 }
1242 }
1243
1244 if (!node)
1245 return 0;
1246
1247 new_node = alloc_backref_node(cache);
1248 if (!new_node)
1249 return -ENOMEM;
1250
1251 new_node->bytenr = dest->node->start;
1252 new_node->level = node->level;
1253 new_node->lowest = node->lowest;
1254 new_node->checked = 1;
1255 new_node->root = dest;
1256
1257 if (!node->lowest) {
1258 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1259 new_edge = alloc_backref_edge(cache);
1260 if (!new_edge)
1261 goto fail;
1262
1263 new_edge->node[UPPER] = new_node;
1264 new_edge->node[LOWER] = edge->node[LOWER];
1265 list_add_tail(&new_edge->list[UPPER],
1266 &new_node->lower);
1267 }
1268 } else {
1269 list_add_tail(&new_node->lower, &cache->leaves);
1270 }
1271
1272 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1273 &new_node->rb_node);
1274 if (rb_node)
1275 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1276
1277 if (!new_node->lowest) {
1278 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1279 list_add_tail(&new_edge->list[LOWER],
1280 &new_edge->node[LOWER]->upper);
1281 }
1282 }
1283 return 0;
1284fail:
1285 while (!list_empty(&new_node->lower)) {
1286 new_edge = list_entry(new_node->lower.next,
1287 struct backref_edge, list[UPPER]);
1288 list_del(&new_edge->list[UPPER]);
1289 free_backref_edge(cache, new_edge);
1290 }
1291 free_backref_node(cache, new_node);
1292 return -ENOMEM;
1293}
1294
1295/*
1296 * helper to add 'address of tree root -> reloc tree' mapping
1297 */
1298static int __must_check __add_reloc_root(struct btrfs_root *root)
1299{
1300 struct btrfs_fs_info *fs_info = root->fs_info;
1301 struct rb_node *rb_node;
1302 struct mapping_node *node;
1303 struct reloc_control *rc = fs_info->reloc_ctl;
1304
1305 node = kmalloc(sizeof(*node), GFP_NOFS);
1306 if (!node)
1307 return -ENOMEM;
1308
1309 node->bytenr = root->commit_root->start;
1310 node->data = root;
1311
1312 spin_lock(&rc->reloc_root_tree.lock);
1313 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1314 node->bytenr, &node->rb_node);
1315 spin_unlock(&rc->reloc_root_tree.lock);
1316 if (rb_node) {
1317 btrfs_panic(fs_info, -EEXIST,
1318 "Duplicate root found for start=%llu while inserting into relocation tree",
1319 node->bytenr);
1320 }
1321
1322 list_add_tail(&root->root_list, &rc->reloc_roots);
1323 return 0;
1324}
1325
1326/*
1327 * helper to delete the 'address of tree root -> reloc tree'
1328 * mapping
1329 */
1330static void __del_reloc_root(struct btrfs_root *root)
1331{
1332 struct btrfs_fs_info *fs_info = root->fs_info;
1333 struct rb_node *rb_node;
1334 struct mapping_node *node = NULL;
1335 struct reloc_control *rc = fs_info->reloc_ctl;
1336
1337 if (rc && root->node) {
1338 spin_lock(&rc->reloc_root_tree.lock);
1339 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1340 root->commit_root->start);
1341 if (rb_node) {
1342 node = rb_entry(rb_node, struct mapping_node, rb_node);
1343 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1344 RB_CLEAR_NODE(&node->rb_node);
1345 }
1346 spin_unlock(&rc->reloc_root_tree.lock);
1347 if (!node)
1348 return;
1349 BUG_ON((struct btrfs_root *)node->data != root);
1350 }
1351
1352 spin_lock(&fs_info->trans_lock);
1353 list_del_init(&root->root_list);
1354 spin_unlock(&fs_info->trans_lock);
1355 kfree(node);
1356}
1357
1358/*
1359 * helper to update the 'address of tree root -> reloc tree'
1360 * mapping
1361 */
1362static int __update_reloc_root(struct btrfs_root *root)
1363{
1364 struct btrfs_fs_info *fs_info = root->fs_info;
1365 struct rb_node *rb_node;
1366 struct mapping_node *node = NULL;
1367 struct reloc_control *rc = fs_info->reloc_ctl;
1368
1369 spin_lock(&rc->reloc_root_tree.lock);
1370 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1371 root->commit_root->start);
1372 if (rb_node) {
1373 node = rb_entry(rb_node, struct mapping_node, rb_node);
1374 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1375 }
1376 spin_unlock(&rc->reloc_root_tree.lock);
1377
1378 if (!node)
1379 return 0;
1380 BUG_ON((struct btrfs_root *)node->data != root);
1381
1382 spin_lock(&rc->reloc_root_tree.lock);
1383 node->bytenr = root->node->start;
1384 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1385 node->bytenr, &node->rb_node);
1386 spin_unlock(&rc->reloc_root_tree.lock);
1387 if (rb_node)
1388 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1389 return 0;
1390}
1391
1392static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1393 struct btrfs_root *root, u64 objectid)
1394{
1395 struct btrfs_fs_info *fs_info = root->fs_info;
1396 struct btrfs_root *reloc_root;
1397 struct extent_buffer *eb;
1398 struct btrfs_root_item *root_item;
1399 struct btrfs_key root_key;
1400 int ret;
1401
1402 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1403 BUG_ON(!root_item);
1404
1405 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1406 root_key.type = BTRFS_ROOT_ITEM_KEY;
1407 root_key.offset = objectid;
1408
1409 if (root->root_key.objectid == objectid) {
1410 u64 commit_root_gen;
1411
1412 /* called by btrfs_init_reloc_root */
1413 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1414 BTRFS_TREE_RELOC_OBJECTID);
1415 BUG_ON(ret);
1416 /*
1417 * Set the last_snapshot field to the generation of the commit
1418 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1419 * correctly (returns true) when the relocation root is created
1420 * either inside the critical section of a transaction commit
1421 * (through transaction.c:qgroup_account_snapshot()) and when
1422 * it's created before the transaction commit is started.
1423 */
1424 commit_root_gen = btrfs_header_generation(root->commit_root);
1425 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1426 } else {
1427 /*
1428 * called by btrfs_reloc_post_snapshot_hook.
1429 * the source tree is a reloc tree, all tree blocks
1430 * modified after it was created have RELOC flag
1431 * set in their headers. so it's OK to not update
1432 * the 'last_snapshot'.
1433 */
1434 ret = btrfs_copy_root(trans, root, root->node, &eb,
1435 BTRFS_TREE_RELOC_OBJECTID);
1436 BUG_ON(ret);
1437 }
1438
1439 memcpy(root_item, &root->root_item, sizeof(*root_item));
1440 btrfs_set_root_bytenr(root_item, eb->start);
1441 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1442 btrfs_set_root_generation(root_item, trans->transid);
1443
1444 if (root->root_key.objectid == objectid) {
1445 btrfs_set_root_refs(root_item, 0);
1446 memset(&root_item->drop_progress, 0,
1447 sizeof(struct btrfs_disk_key));
1448 root_item->drop_level = 0;
1449 }
1450
1451 btrfs_tree_unlock(eb);
1452 free_extent_buffer(eb);
1453
1454 ret = btrfs_insert_root(trans, fs_info->tree_root,
1455 &root_key, root_item);
1456 BUG_ON(ret);
1457 kfree(root_item);
1458
1459 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1460 BUG_ON(IS_ERR(reloc_root));
1461 reloc_root->last_trans = trans->transid;
1462 return reloc_root;
1463}
1464
1465/*
1466 * create reloc tree for a given fs tree. reloc tree is just a
1467 * snapshot of the fs tree with special root objectid.
1468 */
1469int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root)
1471{
1472 struct btrfs_fs_info *fs_info = root->fs_info;
1473 struct btrfs_root *reloc_root;
1474 struct reloc_control *rc = fs_info->reloc_ctl;
1475 struct btrfs_block_rsv *rsv;
1476 int clear_rsv = 0;
1477 int ret;
1478
1479 if (root->reloc_root) {
1480 reloc_root = root->reloc_root;
1481 reloc_root->last_trans = trans->transid;
1482 return 0;
1483 }
1484
1485 if (!rc || !rc->create_reloc_tree ||
1486 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1487 return 0;
1488
1489 if (!trans->reloc_reserved) {
1490 rsv = trans->block_rsv;
1491 trans->block_rsv = rc->block_rsv;
1492 clear_rsv = 1;
1493 }
1494 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1495 if (clear_rsv)
1496 trans->block_rsv = rsv;
1497
1498 ret = __add_reloc_root(reloc_root);
1499 BUG_ON(ret < 0);
1500 root->reloc_root = reloc_root;
1501 return 0;
1502}
1503
1504/*
1505 * update root item of reloc tree
1506 */
1507int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1508 struct btrfs_root *root)
1509{
1510 struct btrfs_fs_info *fs_info = root->fs_info;
1511 struct btrfs_root *reloc_root;
1512 struct btrfs_root_item *root_item;
1513 int ret;
1514
1515 if (!root->reloc_root)
1516 goto out;
1517
1518 reloc_root = root->reloc_root;
1519 root_item = &reloc_root->root_item;
1520
1521 if (fs_info->reloc_ctl->merge_reloc_tree &&
1522 btrfs_root_refs(root_item) == 0) {
1523 root->reloc_root = NULL;
1524 __del_reloc_root(reloc_root);
1525 }
1526
1527 if (reloc_root->commit_root != reloc_root->node) {
1528 __update_reloc_root(reloc_root);
1529 btrfs_set_root_node(root_item, reloc_root->node);
1530 free_extent_buffer(reloc_root->commit_root);
1531 reloc_root->commit_root = btrfs_root_node(reloc_root);
1532 }
1533
1534 ret = btrfs_update_root(trans, fs_info->tree_root,
1535 &reloc_root->root_key, root_item);
1536 BUG_ON(ret);
1537
1538out:
1539 return 0;
1540}
1541
1542/*
1543 * helper to find first cached inode with inode number >= objectid
1544 * in a subvolume
1545 */
1546static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1547{
1548 struct rb_node *node;
1549 struct rb_node *prev;
1550 struct btrfs_inode *entry;
1551 struct inode *inode;
1552
1553 spin_lock(&root->inode_lock);
1554again:
1555 node = root->inode_tree.rb_node;
1556 prev = NULL;
1557 while (node) {
1558 prev = node;
1559 entry = rb_entry(node, struct btrfs_inode, rb_node);
1560
1561 if (objectid < btrfs_ino(entry))
1562 node = node->rb_left;
1563 else if (objectid > btrfs_ino(entry))
1564 node = node->rb_right;
1565 else
1566 break;
1567 }
1568 if (!node) {
1569 while (prev) {
1570 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1571 if (objectid <= btrfs_ino(entry)) {
1572 node = prev;
1573 break;
1574 }
1575 prev = rb_next(prev);
1576 }
1577 }
1578 while (node) {
1579 entry = rb_entry(node, struct btrfs_inode, rb_node);
1580 inode = igrab(&entry->vfs_inode);
1581 if (inode) {
1582 spin_unlock(&root->inode_lock);
1583 return inode;
1584 }
1585
1586 objectid = btrfs_ino(entry) + 1;
1587 if (cond_resched_lock(&root->inode_lock))
1588 goto again;
1589
1590 node = rb_next(node);
1591 }
1592 spin_unlock(&root->inode_lock);
1593 return NULL;
1594}
1595
1596static int in_block_group(u64 bytenr,
1597 struct btrfs_block_group_cache *block_group)
1598{
1599 if (bytenr >= block_group->key.objectid &&
1600 bytenr < block_group->key.objectid + block_group->key.offset)
1601 return 1;
1602 return 0;
1603}
1604
1605/*
1606 * get new location of data
1607 */
1608static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1609 u64 bytenr, u64 num_bytes)
1610{
1611 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1612 struct btrfs_path *path;
1613 struct btrfs_file_extent_item *fi;
1614 struct extent_buffer *leaf;
1615 int ret;
1616
1617 path = btrfs_alloc_path();
1618 if (!path)
1619 return -ENOMEM;
1620
1621 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1622 ret = btrfs_lookup_file_extent(NULL, root, path,
1623 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1624 if (ret < 0)
1625 goto out;
1626 if (ret > 0) {
1627 ret = -ENOENT;
1628 goto out;
1629 }
1630
1631 leaf = path->nodes[0];
1632 fi = btrfs_item_ptr(leaf, path->slots[0],
1633 struct btrfs_file_extent_item);
1634
1635 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1636 btrfs_file_extent_compression(leaf, fi) ||
1637 btrfs_file_extent_encryption(leaf, fi) ||
1638 btrfs_file_extent_other_encoding(leaf, fi));
1639
1640 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1641 ret = -EINVAL;
1642 goto out;
1643 }
1644
1645 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1646 ret = 0;
1647out:
1648 btrfs_free_path(path);
1649 return ret;
1650}
1651
1652/*
1653 * update file extent items in the tree leaf to point to
1654 * the new locations.
1655 */
1656static noinline_for_stack
1657int replace_file_extents(struct btrfs_trans_handle *trans,
1658 struct reloc_control *rc,
1659 struct btrfs_root *root,
1660 struct extent_buffer *leaf)
1661{
1662 struct btrfs_fs_info *fs_info = root->fs_info;
1663 struct btrfs_key key;
1664 struct btrfs_file_extent_item *fi;
1665 struct inode *inode = NULL;
1666 u64 parent;
1667 u64 bytenr;
1668 u64 new_bytenr = 0;
1669 u64 num_bytes;
1670 u64 end;
1671 u32 nritems;
1672 u32 i;
1673 int ret = 0;
1674 int first = 1;
1675 int dirty = 0;
1676
1677 if (rc->stage != UPDATE_DATA_PTRS)
1678 return 0;
1679
1680 /* reloc trees always use full backref */
1681 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1682 parent = leaf->start;
1683 else
1684 parent = 0;
1685
1686 nritems = btrfs_header_nritems(leaf);
1687 for (i = 0; i < nritems; i++) {
1688 cond_resched();
1689 btrfs_item_key_to_cpu(leaf, &key, i);
1690 if (key.type != BTRFS_EXTENT_DATA_KEY)
1691 continue;
1692 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1693 if (btrfs_file_extent_type(leaf, fi) ==
1694 BTRFS_FILE_EXTENT_INLINE)
1695 continue;
1696 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1697 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1698 if (bytenr == 0)
1699 continue;
1700 if (!in_block_group(bytenr, rc->block_group))
1701 continue;
1702
1703 /*
1704 * if we are modifying block in fs tree, wait for readpage
1705 * to complete and drop the extent cache
1706 */
1707 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1708 if (first) {
1709 inode = find_next_inode(root, key.objectid);
1710 first = 0;
1711 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1712 btrfs_add_delayed_iput(inode);
1713 inode = find_next_inode(root, key.objectid);
1714 }
1715 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1716 end = key.offset +
1717 btrfs_file_extent_num_bytes(leaf, fi);
1718 WARN_ON(!IS_ALIGNED(key.offset,
1719 fs_info->sectorsize));
1720 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1721 end--;
1722 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1723 key.offset, end);
1724 if (!ret)
1725 continue;
1726
1727 btrfs_drop_extent_cache(BTRFS_I(inode),
1728 key.offset, end, 1);
1729 unlock_extent(&BTRFS_I(inode)->io_tree,
1730 key.offset, end);
1731 }
1732 }
1733
1734 ret = get_new_location(rc->data_inode, &new_bytenr,
1735 bytenr, num_bytes);
1736 if (ret) {
1737 /*
1738 * Don't have to abort since we've not changed anything
1739 * in the file extent yet.
1740 */
1741 break;
1742 }
1743
1744 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1745 dirty = 1;
1746
1747 key.offset -= btrfs_file_extent_offset(leaf, fi);
1748 ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1749 num_bytes, parent,
1750 btrfs_header_owner(leaf),
1751 key.objectid, key.offset);
1752 if (ret) {
1753 btrfs_abort_transaction(trans, ret);
1754 break;
1755 }
1756
1757 ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1758 parent, btrfs_header_owner(leaf),
1759 key.objectid, key.offset);
1760 if (ret) {
1761 btrfs_abort_transaction(trans, ret);
1762 break;
1763 }
1764 }
1765 if (dirty)
1766 btrfs_mark_buffer_dirty(leaf);
1767 if (inode)
1768 btrfs_add_delayed_iput(inode);
1769 return ret;
1770}
1771
1772static noinline_for_stack
1773int memcmp_node_keys(struct extent_buffer *eb, int slot,
1774 struct btrfs_path *path, int level)
1775{
1776 struct btrfs_disk_key key1;
1777 struct btrfs_disk_key key2;
1778 btrfs_node_key(eb, &key1, slot);
1779 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1780 return memcmp(&key1, &key2, sizeof(key1));
1781}
1782
1783/*
1784 * try to replace tree blocks in fs tree with the new blocks
1785 * in reloc tree. tree blocks haven't been modified since the
1786 * reloc tree was create can be replaced.
1787 *
1788 * if a block was replaced, level of the block + 1 is returned.
1789 * if no block got replaced, 0 is returned. if there are other
1790 * errors, a negative error number is returned.
1791 */
1792static noinline_for_stack
1793int replace_path(struct btrfs_trans_handle *trans,
1794 struct btrfs_root *dest, struct btrfs_root *src,
1795 struct btrfs_path *path, struct btrfs_key *next_key,
1796 int lowest_level, int max_level)
1797{
1798 struct btrfs_fs_info *fs_info = dest->fs_info;
1799 struct extent_buffer *eb;
1800 struct extent_buffer *parent;
1801 struct btrfs_key key;
1802 u64 old_bytenr;
1803 u64 new_bytenr;
1804 u64 old_ptr_gen;
1805 u64 new_ptr_gen;
1806 u64 last_snapshot;
1807 u32 blocksize;
1808 int cow = 0;
1809 int level;
1810 int ret;
1811 int slot;
1812
1813 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1814 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1815
1816 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1817again:
1818 slot = path->slots[lowest_level];
1819 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1820
1821 eb = btrfs_lock_root_node(dest);
1822 btrfs_set_lock_blocking(eb);
1823 level = btrfs_header_level(eb);
1824
1825 if (level < lowest_level) {
1826 btrfs_tree_unlock(eb);
1827 free_extent_buffer(eb);
1828 return 0;
1829 }
1830
1831 if (cow) {
1832 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1833 BUG_ON(ret);
1834 }
1835 btrfs_set_lock_blocking(eb);
1836
1837 if (next_key) {
1838 next_key->objectid = (u64)-1;
1839 next_key->type = (u8)-1;
1840 next_key->offset = (u64)-1;
1841 }
1842
1843 parent = eb;
1844 while (1) {
1845 level = btrfs_header_level(parent);
1846 BUG_ON(level < lowest_level);
1847
1848 ret = btrfs_bin_search(parent, &key, level, &slot);
1849 if (ret && slot > 0)
1850 slot--;
1851
1852 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1853 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1854
1855 old_bytenr = btrfs_node_blockptr(parent, slot);
1856 blocksize = fs_info->nodesize;
1857 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1858
1859 if (level <= max_level) {
1860 eb = path->nodes[level];
1861 new_bytenr = btrfs_node_blockptr(eb,
1862 path->slots[level]);
1863 new_ptr_gen = btrfs_node_ptr_generation(eb,
1864 path->slots[level]);
1865 } else {
1866 new_bytenr = 0;
1867 new_ptr_gen = 0;
1868 }
1869
1870 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1871 ret = level;
1872 break;
1873 }
1874
1875 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1876 memcmp_node_keys(parent, slot, path, level)) {
1877 if (level <= lowest_level) {
1878 ret = 0;
1879 break;
1880 }
1881
1882 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen);
1883 if (IS_ERR(eb)) {
1884 ret = PTR_ERR(eb);
1885 break;
1886 } else if (!extent_buffer_uptodate(eb)) {
1887 ret = -EIO;
1888 free_extent_buffer(eb);
1889 break;
1890 }
1891 btrfs_tree_lock(eb);
1892 if (cow) {
1893 ret = btrfs_cow_block(trans, dest, eb, parent,
1894 slot, &eb);
1895 BUG_ON(ret);
1896 }
1897 btrfs_set_lock_blocking(eb);
1898
1899 btrfs_tree_unlock(parent);
1900 free_extent_buffer(parent);
1901
1902 parent = eb;
1903 continue;
1904 }
1905
1906 if (!cow) {
1907 btrfs_tree_unlock(parent);
1908 free_extent_buffer(parent);
1909 cow = 1;
1910 goto again;
1911 }
1912
1913 btrfs_node_key_to_cpu(path->nodes[level], &key,
1914 path->slots[level]);
1915 btrfs_release_path(path);
1916
1917 path->lowest_level = level;
1918 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1919 path->lowest_level = 0;
1920 BUG_ON(ret);
1921
1922 /*
1923 * Info qgroup to trace both subtrees.
1924 *
1925 * We must trace both trees.
1926 * 1) Tree reloc subtree
1927 * If not traced, we will leak data numbers
1928 * 2) Fs subtree
1929 * If not traced, we will double count old data
1930 * and tree block numbers, if current trans doesn't free
1931 * data reloc tree inode.
1932 */
1933 ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1934 btrfs_header_generation(parent),
1935 btrfs_header_level(parent));
1936 if (ret < 0)
1937 break;
1938 ret = btrfs_qgroup_trace_subtree(trans, dest,
1939 path->nodes[level],
1940 btrfs_header_generation(path->nodes[level]),
1941 btrfs_header_level(path->nodes[level]));
1942 if (ret < 0)
1943 break;
1944
1945 /*
1946 * swap blocks in fs tree and reloc tree.
1947 */
1948 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1949 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1950 btrfs_mark_buffer_dirty(parent);
1951
1952 btrfs_set_node_blockptr(path->nodes[level],
1953 path->slots[level], old_bytenr);
1954 btrfs_set_node_ptr_generation(path->nodes[level],
1955 path->slots[level], old_ptr_gen);
1956 btrfs_mark_buffer_dirty(path->nodes[level]);
1957
1958 ret = btrfs_inc_extent_ref(trans, fs_info, old_bytenr,
1959 blocksize, path->nodes[level]->start,
1960 src->root_key.objectid, level - 1, 0);
1961 BUG_ON(ret);
1962 ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1963 blocksize, 0, dest->root_key.objectid,
1964 level - 1, 0);
1965 BUG_ON(ret);
1966
1967 ret = btrfs_free_extent(trans, fs_info, new_bytenr, blocksize,
1968 path->nodes[level]->start,
1969 src->root_key.objectid, level - 1, 0);
1970 BUG_ON(ret);
1971
1972 ret = btrfs_free_extent(trans, fs_info, old_bytenr, blocksize,
1973 0, dest->root_key.objectid, level - 1,
1974 0);
1975 BUG_ON(ret);
1976
1977 btrfs_unlock_up_safe(path, 0);
1978
1979 ret = level;
1980 break;
1981 }
1982 btrfs_tree_unlock(parent);
1983 free_extent_buffer(parent);
1984 return ret;
1985}
1986
1987/*
1988 * helper to find next relocated block in reloc tree
1989 */
1990static noinline_for_stack
1991int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1992 int *level)
1993{
1994 struct extent_buffer *eb;
1995 int i;
1996 u64 last_snapshot;
1997 u32 nritems;
1998
1999 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2000
2001 for (i = 0; i < *level; i++) {
2002 free_extent_buffer(path->nodes[i]);
2003 path->nodes[i] = NULL;
2004 }
2005
2006 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
2007 eb = path->nodes[i];
2008 nritems = btrfs_header_nritems(eb);
2009 while (path->slots[i] + 1 < nritems) {
2010 path->slots[i]++;
2011 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2012 last_snapshot)
2013 continue;
2014
2015 *level = i;
2016 return 0;
2017 }
2018 free_extent_buffer(path->nodes[i]);
2019 path->nodes[i] = NULL;
2020 }
2021 return 1;
2022}
2023
2024/*
2025 * walk down reloc tree to find relocated block of lowest level
2026 */
2027static noinline_for_stack
2028int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2029 int *level)
2030{
2031 struct btrfs_fs_info *fs_info = root->fs_info;
2032 struct extent_buffer *eb = NULL;
2033 int i;
2034 u64 bytenr;
2035 u64 ptr_gen = 0;
2036 u64 last_snapshot;
2037 u32 nritems;
2038
2039 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2040
2041 for (i = *level; i > 0; i--) {
2042 eb = path->nodes[i];
2043 nritems = btrfs_header_nritems(eb);
2044 while (path->slots[i] < nritems) {
2045 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2046 if (ptr_gen > last_snapshot)
2047 break;
2048 path->slots[i]++;
2049 }
2050 if (path->slots[i] >= nritems) {
2051 if (i == *level)
2052 break;
2053 *level = i + 1;
2054 return 0;
2055 }
2056 if (i == 1) {
2057 *level = i;
2058 return 0;
2059 }
2060
2061 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2062 eb = read_tree_block(fs_info, bytenr, ptr_gen);
2063 if (IS_ERR(eb)) {
2064 return PTR_ERR(eb);
2065 } else if (!extent_buffer_uptodate(eb)) {
2066 free_extent_buffer(eb);
2067 return -EIO;
2068 }
2069 BUG_ON(btrfs_header_level(eb) != i - 1);
2070 path->nodes[i - 1] = eb;
2071 path->slots[i - 1] = 0;
2072 }
2073 return 1;
2074}
2075
2076/*
2077 * invalidate extent cache for file extents whose key in range of
2078 * [min_key, max_key)
2079 */
2080static int invalidate_extent_cache(struct btrfs_root *root,
2081 struct btrfs_key *min_key,
2082 struct btrfs_key *max_key)
2083{
2084 struct btrfs_fs_info *fs_info = root->fs_info;
2085 struct inode *inode = NULL;
2086 u64 objectid;
2087 u64 start, end;
2088 u64 ino;
2089
2090 objectid = min_key->objectid;
2091 while (1) {
2092 cond_resched();
2093 iput(inode);
2094
2095 if (objectid > max_key->objectid)
2096 break;
2097
2098 inode = find_next_inode(root, objectid);
2099 if (!inode)
2100 break;
2101 ino = btrfs_ino(BTRFS_I(inode));
2102
2103 if (ino > max_key->objectid) {
2104 iput(inode);
2105 break;
2106 }
2107
2108 objectid = ino + 1;
2109 if (!S_ISREG(inode->i_mode))
2110 continue;
2111
2112 if (unlikely(min_key->objectid == ino)) {
2113 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2114 continue;
2115 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2116 start = 0;
2117 else {
2118 start = min_key->offset;
2119 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2120 }
2121 } else {
2122 start = 0;
2123 }
2124
2125 if (unlikely(max_key->objectid == ino)) {
2126 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2127 continue;
2128 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2129 end = (u64)-1;
2130 } else {
2131 if (max_key->offset == 0)
2132 continue;
2133 end = max_key->offset;
2134 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2135 end--;
2136 }
2137 } else {
2138 end = (u64)-1;
2139 }
2140
2141 /* the lock_extent waits for readpage to complete */
2142 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2143 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2144 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2145 }
2146 return 0;
2147}
2148
2149static int find_next_key(struct btrfs_path *path, int level,
2150 struct btrfs_key *key)
2151
2152{
2153 while (level < BTRFS_MAX_LEVEL) {
2154 if (!path->nodes[level])
2155 break;
2156 if (path->slots[level] + 1 <
2157 btrfs_header_nritems(path->nodes[level])) {
2158 btrfs_node_key_to_cpu(path->nodes[level], key,
2159 path->slots[level] + 1);
2160 return 0;
2161 }
2162 level++;
2163 }
2164 return 1;
2165}
2166
2167/*
2168 * merge the relocated tree blocks in reloc tree with corresponding
2169 * fs tree.
2170 */
2171static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2172 struct btrfs_root *root)
2173{
2174 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2175 LIST_HEAD(inode_list);
2176 struct btrfs_key key;
2177 struct btrfs_key next_key;
2178 struct btrfs_trans_handle *trans = NULL;
2179 struct btrfs_root *reloc_root;
2180 struct btrfs_root_item *root_item;
2181 struct btrfs_path *path;
2182 struct extent_buffer *leaf;
2183 int level;
2184 int max_level;
2185 int replaced = 0;
2186 int ret;
2187 int err = 0;
2188 u32 min_reserved;
2189
2190 path = btrfs_alloc_path();
2191 if (!path)
2192 return -ENOMEM;
2193 path->reada = READA_FORWARD;
2194
2195 reloc_root = root->reloc_root;
2196 root_item = &reloc_root->root_item;
2197
2198 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2199 level = btrfs_root_level(root_item);
2200 extent_buffer_get(reloc_root->node);
2201 path->nodes[level] = reloc_root->node;
2202 path->slots[level] = 0;
2203 } else {
2204 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2205
2206 level = root_item->drop_level;
2207 BUG_ON(level == 0);
2208 path->lowest_level = level;
2209 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2210 path->lowest_level = 0;
2211 if (ret < 0) {
2212 btrfs_free_path(path);
2213 return ret;
2214 }
2215
2216 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2217 path->slots[level]);
2218 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2219
2220 btrfs_unlock_up_safe(path, 0);
2221 }
2222
2223 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2224 memset(&next_key, 0, sizeof(next_key));
2225
2226 while (1) {
2227 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2228 BTRFS_RESERVE_FLUSH_ALL);
2229 if (ret) {
2230 err = ret;
2231 goto out;
2232 }
2233 trans = btrfs_start_transaction(root, 0);
2234 if (IS_ERR(trans)) {
2235 err = PTR_ERR(trans);
2236 trans = NULL;
2237 goto out;
2238 }
2239 trans->block_rsv = rc->block_rsv;
2240
2241 replaced = 0;
2242 max_level = level;
2243
2244 ret = walk_down_reloc_tree(reloc_root, path, &level);
2245 if (ret < 0) {
2246 err = ret;
2247 goto out;
2248 }
2249 if (ret > 0)
2250 break;
2251
2252 if (!find_next_key(path, level, &key) &&
2253 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2254 ret = 0;
2255 } else {
2256 ret = replace_path(trans, root, reloc_root, path,
2257 &next_key, level, max_level);
2258 }
2259 if (ret < 0) {
2260 err = ret;
2261 goto out;
2262 }
2263
2264 if (ret > 0) {
2265 level = ret;
2266 btrfs_node_key_to_cpu(path->nodes[level], &key,
2267 path->slots[level]);
2268 replaced = 1;
2269 }
2270
2271 ret = walk_up_reloc_tree(reloc_root, path, &level);
2272 if (ret > 0)
2273 break;
2274
2275 BUG_ON(level == 0);
2276 /*
2277 * save the merging progress in the drop_progress.
2278 * this is OK since root refs == 1 in this case.
2279 */
2280 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2281 path->slots[level]);
2282 root_item->drop_level = level;
2283
2284 btrfs_end_transaction_throttle(trans);
2285 trans = NULL;
2286
2287 btrfs_btree_balance_dirty(fs_info);
2288
2289 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2290 invalidate_extent_cache(root, &key, &next_key);
2291 }
2292
2293 /*
2294 * handle the case only one block in the fs tree need to be
2295 * relocated and the block is tree root.
2296 */
2297 leaf = btrfs_lock_root_node(root);
2298 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2299 btrfs_tree_unlock(leaf);
2300 free_extent_buffer(leaf);
2301 if (ret < 0)
2302 err = ret;
2303out:
2304 btrfs_free_path(path);
2305
2306 if (err == 0) {
2307 memset(&root_item->drop_progress, 0,
2308 sizeof(root_item->drop_progress));
2309 root_item->drop_level = 0;
2310 btrfs_set_root_refs(root_item, 0);
2311 btrfs_update_reloc_root(trans, root);
2312 }
2313
2314 if (trans)
2315 btrfs_end_transaction_throttle(trans);
2316
2317 btrfs_btree_balance_dirty(fs_info);
2318
2319 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2320 invalidate_extent_cache(root, &key, &next_key);
2321
2322 return err;
2323}
2324
2325static noinline_for_stack
2326int prepare_to_merge(struct reloc_control *rc, int err)
2327{
2328 struct btrfs_root *root = rc->extent_root;
2329 struct btrfs_fs_info *fs_info = root->fs_info;
2330 struct btrfs_root *reloc_root;
2331 struct btrfs_trans_handle *trans;
2332 LIST_HEAD(reloc_roots);
2333 u64 num_bytes = 0;
2334 int ret;
2335
2336 mutex_lock(&fs_info->reloc_mutex);
2337 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2338 rc->merging_rsv_size += rc->nodes_relocated * 2;
2339 mutex_unlock(&fs_info->reloc_mutex);
2340
2341again:
2342 if (!err) {
2343 num_bytes = rc->merging_rsv_size;
2344 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2345 BTRFS_RESERVE_FLUSH_ALL);
2346 if (ret)
2347 err = ret;
2348 }
2349
2350 trans = btrfs_join_transaction(rc->extent_root);
2351 if (IS_ERR(trans)) {
2352 if (!err)
2353 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2354 num_bytes);
2355 return PTR_ERR(trans);
2356 }
2357
2358 if (!err) {
2359 if (num_bytes != rc->merging_rsv_size) {
2360 btrfs_end_transaction(trans);
2361 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2362 num_bytes);
2363 goto again;
2364 }
2365 }
2366
2367 rc->merge_reloc_tree = 1;
2368
2369 while (!list_empty(&rc->reloc_roots)) {
2370 reloc_root = list_entry(rc->reloc_roots.next,
2371 struct btrfs_root, root_list);
2372 list_del_init(&reloc_root->root_list);
2373
2374 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2375 BUG_ON(IS_ERR(root));
2376 BUG_ON(root->reloc_root != reloc_root);
2377
2378 /*
2379 * set reference count to 1, so btrfs_recover_relocation
2380 * knows it should resumes merging
2381 */
2382 if (!err)
2383 btrfs_set_root_refs(&reloc_root->root_item, 1);
2384 btrfs_update_reloc_root(trans, root);
2385
2386 list_add(&reloc_root->root_list, &reloc_roots);
2387 }
2388
2389 list_splice(&reloc_roots, &rc->reloc_roots);
2390
2391 if (!err)
2392 btrfs_commit_transaction(trans);
2393 else
2394 btrfs_end_transaction(trans);
2395 return err;
2396}
2397
2398static noinline_for_stack
2399void free_reloc_roots(struct list_head *list)
2400{
2401 struct btrfs_root *reloc_root;
2402
2403 while (!list_empty(list)) {
2404 reloc_root = list_entry(list->next, struct btrfs_root,
2405 root_list);
2406 __del_reloc_root(reloc_root);
2407 free_extent_buffer(reloc_root->node);
2408 free_extent_buffer(reloc_root->commit_root);
2409 reloc_root->node = NULL;
2410 reloc_root->commit_root = NULL;
2411 }
2412}
2413
2414static noinline_for_stack
2415void merge_reloc_roots(struct reloc_control *rc)
2416{
2417 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2418 struct btrfs_root *root;
2419 struct btrfs_root *reloc_root;
2420 LIST_HEAD(reloc_roots);
2421 int found = 0;
2422 int ret = 0;
2423again:
2424 root = rc->extent_root;
2425
2426 /*
2427 * this serializes us with btrfs_record_root_in_transaction,
2428 * we have to make sure nobody is in the middle of
2429 * adding their roots to the list while we are
2430 * doing this splice
2431 */
2432 mutex_lock(&fs_info->reloc_mutex);
2433 list_splice_init(&rc->reloc_roots, &reloc_roots);
2434 mutex_unlock(&fs_info->reloc_mutex);
2435
2436 while (!list_empty(&reloc_roots)) {
2437 found = 1;
2438 reloc_root = list_entry(reloc_roots.next,
2439 struct btrfs_root, root_list);
2440
2441 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2442 root = read_fs_root(fs_info,
2443 reloc_root->root_key.offset);
2444 BUG_ON(IS_ERR(root));
2445 BUG_ON(root->reloc_root != reloc_root);
2446
2447 ret = merge_reloc_root(rc, root);
2448 if (ret) {
2449 if (list_empty(&reloc_root->root_list))
2450 list_add_tail(&reloc_root->root_list,
2451 &reloc_roots);
2452 goto out;
2453 }
2454 } else {
2455 list_del_init(&reloc_root->root_list);
2456 }
2457
2458 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2459 if (ret < 0) {
2460 if (list_empty(&reloc_root->root_list))
2461 list_add_tail(&reloc_root->root_list,
2462 &reloc_roots);
2463 goto out;
2464 }
2465 }
2466
2467 if (found) {
2468 found = 0;
2469 goto again;
2470 }
2471out:
2472 if (ret) {
2473 btrfs_handle_fs_error(fs_info, ret, NULL);
2474 if (!list_empty(&reloc_roots))
2475 free_reloc_roots(&reloc_roots);
2476
2477 /* new reloc root may be added */
2478 mutex_lock(&fs_info->reloc_mutex);
2479 list_splice_init(&rc->reloc_roots, &reloc_roots);
2480 mutex_unlock(&fs_info->reloc_mutex);
2481 if (!list_empty(&reloc_roots))
2482 free_reloc_roots(&reloc_roots);
2483 }
2484
2485 /*
2486 * We used to have
2487 *
2488 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2489 *
2490 * here, but it's wrong. If we fail to start the transaction in
2491 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2492 * have actually been removed from the reloc_root_tree rb tree. This is
2493 * fine because we're bailing here, and we hold a reference on the root
2494 * for the list that holds it, so these roots will be cleaned up when we
2495 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2496 * will be cleaned up on unmount.
2497 *
2498 * The remaining nodes will be cleaned up by free_reloc_control.
2499 */
2500}
2501
2502static void free_block_list(struct rb_root *blocks)
2503{
2504 struct tree_block *block;
2505 struct rb_node *rb_node;
2506 while ((rb_node = rb_first(blocks))) {
2507 block = rb_entry(rb_node, struct tree_block, rb_node);
2508 rb_erase(rb_node, blocks);
2509 kfree(block);
2510 }
2511}
2512
2513static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2514 struct btrfs_root *reloc_root)
2515{
2516 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2517 struct btrfs_root *root;
2518
2519 if (reloc_root->last_trans == trans->transid)
2520 return 0;
2521
2522 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2523 BUG_ON(IS_ERR(root));
2524 BUG_ON(root->reloc_root != reloc_root);
2525
2526 return btrfs_record_root_in_trans(trans, root);
2527}
2528
2529static noinline_for_stack
2530struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2531 struct reloc_control *rc,
2532 struct backref_node *node,
2533 struct backref_edge *edges[])
2534{
2535 struct backref_node *next;
2536 struct btrfs_root *root;
2537 int index = 0;
2538
2539 next = node;
2540 while (1) {
2541 cond_resched();
2542 next = walk_up_backref(next, edges, &index);
2543 root = next->root;
2544 BUG_ON(!root);
2545 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2546
2547 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2548 record_reloc_root_in_trans(trans, root);
2549 break;
2550 }
2551
2552 btrfs_record_root_in_trans(trans, root);
2553 root = root->reloc_root;
2554
2555 if (next->new_bytenr != root->node->start) {
2556 BUG_ON(next->new_bytenr);
2557 BUG_ON(!list_empty(&next->list));
2558 next->new_bytenr = root->node->start;
2559 next->root = root;
2560 list_add_tail(&next->list,
2561 &rc->backref_cache.changed);
2562 __mark_block_processed(rc, next);
2563 break;
2564 }
2565
2566 WARN_ON(1);
2567 root = NULL;
2568 next = walk_down_backref(edges, &index);
2569 if (!next || next->level <= node->level)
2570 break;
2571 }
2572 if (!root)
2573 return NULL;
2574
2575 next = node;
2576 /* setup backref node path for btrfs_reloc_cow_block */
2577 while (1) {
2578 rc->backref_cache.path[next->level] = next;
2579 if (--index < 0)
2580 break;
2581 next = edges[index]->node[UPPER];
2582 }
2583 return root;
2584}
2585
2586/*
2587 * select a tree root for relocation. return NULL if the block
2588 * is reference counted. we should use do_relocation() in this
2589 * case. return a tree root pointer if the block isn't reference
2590 * counted. return -ENOENT if the block is root of reloc tree.
2591 */
2592static noinline_for_stack
2593struct btrfs_root *select_one_root(struct backref_node *node)
2594{
2595 struct backref_node *next;
2596 struct btrfs_root *root;
2597 struct btrfs_root *fs_root = NULL;
2598 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2599 int index = 0;
2600
2601 next = node;
2602 while (1) {
2603 cond_resched();
2604 next = walk_up_backref(next, edges, &index);
2605 root = next->root;
2606 BUG_ON(!root);
2607
2608 /* no other choice for non-references counted tree */
2609 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2610 return root;
2611
2612 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2613 fs_root = root;
2614
2615 if (next != node)
2616 return NULL;
2617
2618 next = walk_down_backref(edges, &index);
2619 if (!next || next->level <= node->level)
2620 break;
2621 }
2622
2623 if (!fs_root)
2624 return ERR_PTR(-ENOENT);
2625 return fs_root;
2626}
2627
2628static noinline_for_stack
2629u64 calcu_metadata_size(struct reloc_control *rc,
2630 struct backref_node *node, int reserve)
2631{
2632 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2633 struct backref_node *next = node;
2634 struct backref_edge *edge;
2635 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2636 u64 num_bytes = 0;
2637 int index = 0;
2638
2639 BUG_ON(reserve && node->processed);
2640
2641 while (next) {
2642 cond_resched();
2643 while (1) {
2644 if (next->processed && (reserve || next != node))
2645 break;
2646
2647 num_bytes += fs_info->nodesize;
2648
2649 if (list_empty(&next->upper))
2650 break;
2651
2652 edge = list_entry(next->upper.next,
2653 struct backref_edge, list[LOWER]);
2654 edges[index++] = edge;
2655 next = edge->node[UPPER];
2656 }
2657 next = walk_down_backref(edges, &index);
2658 }
2659 return num_bytes;
2660}
2661
2662static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2663 struct reloc_control *rc,
2664 struct backref_node *node)
2665{
2666 struct btrfs_root *root = rc->extent_root;
2667 struct btrfs_fs_info *fs_info = root->fs_info;
2668 u64 num_bytes;
2669 int ret;
2670 u64 tmp;
2671
2672 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2673
2674 trans->block_rsv = rc->block_rsv;
2675 rc->reserved_bytes += num_bytes;
2676
2677 /*
2678 * We are under a transaction here so we can only do limited flushing.
2679 * If we get an enospc just kick back -EAGAIN so we know to drop the
2680 * transaction and try to refill when we can flush all the things.
2681 */
2682 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2683 BTRFS_RESERVE_FLUSH_LIMIT);
2684 if (ret) {
2685 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2686 while (tmp <= rc->reserved_bytes)
2687 tmp <<= 1;
2688 /*
2689 * only one thread can access block_rsv at this point,
2690 * so we don't need hold lock to protect block_rsv.
2691 * we expand more reservation size here to allow enough
2692 * space for relocation and we will return eailer in
2693 * enospc case.
2694 */
2695 rc->block_rsv->size = tmp + fs_info->nodesize *
2696 RELOCATION_RESERVED_NODES;
2697 return -EAGAIN;
2698 }
2699
2700 return 0;
2701}
2702
2703/*
2704 * relocate a block tree, and then update pointers in upper level
2705 * blocks that reference the block to point to the new location.
2706 *
2707 * if called by link_to_upper, the block has already been relocated.
2708 * in that case this function just updates pointers.
2709 */
2710static int do_relocation(struct btrfs_trans_handle *trans,
2711 struct reloc_control *rc,
2712 struct backref_node *node,
2713 struct btrfs_key *key,
2714 struct btrfs_path *path, int lowest)
2715{
2716 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2717 struct backref_node *upper;
2718 struct backref_edge *edge;
2719 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2720 struct btrfs_root *root;
2721 struct extent_buffer *eb;
2722 u32 blocksize;
2723 u64 bytenr;
2724 u64 generation;
2725 int slot;
2726 int ret;
2727 int err = 0;
2728
2729 BUG_ON(lowest && node->eb);
2730
2731 path->lowest_level = node->level + 1;
2732 rc->backref_cache.path[node->level] = node;
2733 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2734 cond_resched();
2735
2736 upper = edge->node[UPPER];
2737 root = select_reloc_root(trans, rc, upper, edges);
2738 BUG_ON(!root);
2739
2740 if (upper->eb && !upper->locked) {
2741 if (!lowest) {
2742 ret = btrfs_bin_search(upper->eb, key,
2743 upper->level, &slot);
2744 BUG_ON(ret);
2745 bytenr = btrfs_node_blockptr(upper->eb, slot);
2746 if (node->eb->start == bytenr)
2747 goto next;
2748 }
2749 drop_node_buffer(upper);
2750 }
2751
2752 if (!upper->eb) {
2753 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2754 if (ret) {
2755 if (ret < 0)
2756 err = ret;
2757 else
2758 err = -ENOENT;
2759
2760 btrfs_release_path(path);
2761 break;
2762 }
2763
2764 if (!upper->eb) {
2765 upper->eb = path->nodes[upper->level];
2766 path->nodes[upper->level] = NULL;
2767 } else {
2768 BUG_ON(upper->eb != path->nodes[upper->level]);
2769 }
2770
2771 upper->locked = 1;
2772 path->locks[upper->level] = 0;
2773
2774 slot = path->slots[upper->level];
2775 btrfs_release_path(path);
2776 } else {
2777 ret = btrfs_bin_search(upper->eb, key, upper->level,
2778 &slot);
2779 BUG_ON(ret);
2780 }
2781
2782 bytenr = btrfs_node_blockptr(upper->eb, slot);
2783 if (lowest) {
2784 if (bytenr != node->bytenr) {
2785 btrfs_err(root->fs_info,
2786 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2787 bytenr, node->bytenr, slot,
2788 upper->eb->start);
2789 err = -EIO;
2790 goto next;
2791 }
2792 } else {
2793 if (node->eb->start == bytenr)
2794 goto next;
2795 }
2796
2797 blocksize = root->fs_info->nodesize;
2798 generation = btrfs_node_ptr_generation(upper->eb, slot);
2799 eb = read_tree_block(fs_info, bytenr, generation);
2800 if (IS_ERR(eb)) {
2801 err = PTR_ERR(eb);
2802 goto next;
2803 } else if (!extent_buffer_uptodate(eb)) {
2804 free_extent_buffer(eb);
2805 err = -EIO;
2806 goto next;
2807 }
2808 btrfs_tree_lock(eb);
2809 btrfs_set_lock_blocking(eb);
2810
2811 if (!node->eb) {
2812 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2813 slot, &eb);
2814 btrfs_tree_unlock(eb);
2815 free_extent_buffer(eb);
2816 if (ret < 0) {
2817 err = ret;
2818 goto next;
2819 }
2820 BUG_ON(node->eb != eb);
2821 } else {
2822 btrfs_set_node_blockptr(upper->eb, slot,
2823 node->eb->start);
2824 btrfs_set_node_ptr_generation(upper->eb, slot,
2825 trans->transid);
2826 btrfs_mark_buffer_dirty(upper->eb);
2827
2828 ret = btrfs_inc_extent_ref(trans, root->fs_info,
2829 node->eb->start, blocksize,
2830 upper->eb->start,
2831 btrfs_header_owner(upper->eb),
2832 node->level, 0);
2833 BUG_ON(ret);
2834
2835 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2836 BUG_ON(ret);
2837 }
2838next:
2839 if (!upper->pending)
2840 drop_node_buffer(upper);
2841 else
2842 unlock_node_buffer(upper);
2843 if (err)
2844 break;
2845 }
2846
2847 if (!err && node->pending) {
2848 drop_node_buffer(node);
2849 list_move_tail(&node->list, &rc->backref_cache.changed);
2850 node->pending = 0;
2851 }
2852
2853 path->lowest_level = 0;
2854 BUG_ON(err == -ENOSPC);
2855 return err;
2856}
2857
2858static int link_to_upper(struct btrfs_trans_handle *trans,
2859 struct reloc_control *rc,
2860 struct backref_node *node,
2861 struct btrfs_path *path)
2862{
2863 struct btrfs_key key;
2864
2865 btrfs_node_key_to_cpu(node->eb, &key, 0);
2866 return do_relocation(trans, rc, node, &key, path, 0);
2867}
2868
2869static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2870 struct reloc_control *rc,
2871 struct btrfs_path *path, int err)
2872{
2873 LIST_HEAD(list);
2874 struct backref_cache *cache = &rc->backref_cache;
2875 struct backref_node *node;
2876 int level;
2877 int ret;
2878
2879 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2880 while (!list_empty(&cache->pending[level])) {
2881 node = list_entry(cache->pending[level].next,
2882 struct backref_node, list);
2883 list_move_tail(&node->list, &list);
2884 BUG_ON(!node->pending);
2885
2886 if (!err) {
2887 ret = link_to_upper(trans, rc, node, path);
2888 if (ret < 0)
2889 err = ret;
2890 }
2891 }
2892 list_splice_init(&list, &cache->pending[level]);
2893 }
2894 return err;
2895}
2896
2897static void mark_block_processed(struct reloc_control *rc,
2898 u64 bytenr, u32 blocksize)
2899{
2900 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2901 EXTENT_DIRTY);
2902}
2903
2904static void __mark_block_processed(struct reloc_control *rc,
2905 struct backref_node *node)
2906{
2907 u32 blocksize;
2908 if (node->level == 0 ||
2909 in_block_group(node->bytenr, rc->block_group)) {
2910 blocksize = rc->extent_root->fs_info->nodesize;
2911 mark_block_processed(rc, node->bytenr, blocksize);
2912 }
2913 node->processed = 1;
2914}
2915
2916/*
2917 * mark a block and all blocks directly/indirectly reference the block
2918 * as processed.
2919 */
2920static void update_processed_blocks(struct reloc_control *rc,
2921 struct backref_node *node)
2922{
2923 struct backref_node *next = node;
2924 struct backref_edge *edge;
2925 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2926 int index = 0;
2927
2928 while (next) {
2929 cond_resched();
2930 while (1) {
2931 if (next->processed)
2932 break;
2933
2934 __mark_block_processed(rc, next);
2935
2936 if (list_empty(&next->upper))
2937 break;
2938
2939 edge = list_entry(next->upper.next,
2940 struct backref_edge, list[LOWER]);
2941 edges[index++] = edge;
2942 next = edge->node[UPPER];
2943 }
2944 next = walk_down_backref(edges, &index);
2945 }
2946}
2947
2948static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2949{
2950 u32 blocksize = rc->extent_root->fs_info->nodesize;
2951
2952 if (test_range_bit(&rc->processed_blocks, bytenr,
2953 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2954 return 1;
2955 return 0;
2956}
2957
2958static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2959 struct tree_block *block)
2960{
2961 struct extent_buffer *eb;
2962
2963 BUG_ON(block->key_ready);
2964 eb = read_tree_block(fs_info, block->bytenr, block->key.offset);
2965 if (IS_ERR(eb)) {
2966 return PTR_ERR(eb);
2967 } else if (!extent_buffer_uptodate(eb)) {
2968 free_extent_buffer(eb);
2969 return -EIO;
2970 }
2971 WARN_ON(btrfs_header_level(eb) != block->level);
2972 if (block->level == 0)
2973 btrfs_item_key_to_cpu(eb, &block->key, 0);
2974 else
2975 btrfs_node_key_to_cpu(eb, &block->key, 0);
2976 free_extent_buffer(eb);
2977 block->key_ready = 1;
2978 return 0;
2979}
2980
2981/*
2982 * helper function to relocate a tree block
2983 */
2984static int relocate_tree_block(struct btrfs_trans_handle *trans,
2985 struct reloc_control *rc,
2986 struct backref_node *node,
2987 struct btrfs_key *key,
2988 struct btrfs_path *path)
2989{
2990 struct btrfs_root *root;
2991 int ret = 0;
2992
2993 if (!node)
2994 return 0;
2995
2996 BUG_ON(node->processed);
2997 root = select_one_root(node);
2998 if (root == ERR_PTR(-ENOENT)) {
2999 update_processed_blocks(rc, node);
3000 goto out;
3001 }
3002
3003 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3004 ret = reserve_metadata_space(trans, rc, node);
3005 if (ret)
3006 goto out;
3007 }
3008
3009 if (root) {
3010 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3011 BUG_ON(node->new_bytenr);
3012 BUG_ON(!list_empty(&node->list));
3013 btrfs_record_root_in_trans(trans, root);
3014 root = root->reloc_root;
3015 node->new_bytenr = root->node->start;
3016 node->root = root;
3017 list_add_tail(&node->list, &rc->backref_cache.changed);
3018 } else {
3019 path->lowest_level = node->level;
3020 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3021 btrfs_release_path(path);
3022 if (ret > 0)
3023 ret = 0;
3024 }
3025 if (!ret)
3026 update_processed_blocks(rc, node);
3027 } else {
3028 ret = do_relocation(trans, rc, node, key, path, 1);
3029 }
3030out:
3031 if (ret || node->level == 0 || node->cowonly)
3032 remove_backref_node(&rc->backref_cache, node);
3033 return ret;
3034}
3035
3036/*
3037 * relocate a list of blocks
3038 */
3039static noinline_for_stack
3040int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3041 struct reloc_control *rc, struct rb_root *blocks)
3042{
3043 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3044 struct backref_node *node;
3045 struct btrfs_path *path;
3046 struct tree_block *block;
3047 struct rb_node *rb_node;
3048 int ret;
3049 int err = 0;
3050
3051 path = btrfs_alloc_path();
3052 if (!path) {
3053 err = -ENOMEM;
3054 goto out_free_blocks;
3055 }
3056
3057 rb_node = rb_first(blocks);
3058 while (rb_node) {
3059 block = rb_entry(rb_node, struct tree_block, rb_node);
3060 if (!block->key_ready)
3061 readahead_tree_block(fs_info, block->bytenr);
3062 rb_node = rb_next(rb_node);
3063 }
3064
3065 rb_node = rb_first(blocks);
3066 while (rb_node) {
3067 block = rb_entry(rb_node, struct tree_block, rb_node);
3068 if (!block->key_ready) {
3069 err = get_tree_block_key(fs_info, block);
3070 if (err)
3071 goto out_free_path;
3072 }
3073 rb_node = rb_next(rb_node);
3074 }
3075
3076 rb_node = rb_first(blocks);
3077 while (rb_node) {
3078 block = rb_entry(rb_node, struct tree_block, rb_node);
3079
3080 node = build_backref_tree(rc, &block->key,
3081 block->level, block->bytenr);
3082 if (IS_ERR(node)) {
3083 err = PTR_ERR(node);
3084 goto out;
3085 }
3086
3087 ret = relocate_tree_block(trans, rc, node, &block->key,
3088 path);
3089 if (ret < 0) {
3090 if (ret != -EAGAIN || rb_node == rb_first(blocks))
3091 err = ret;
3092 goto out;
3093 }
3094 rb_node = rb_next(rb_node);
3095 }
3096out:
3097 err = finish_pending_nodes(trans, rc, path, err);
3098
3099out_free_path:
3100 btrfs_free_path(path);
3101out_free_blocks:
3102 free_block_list(blocks);
3103 return err;
3104}
3105
3106static noinline_for_stack
3107int prealloc_file_extent_cluster(struct inode *inode,
3108 struct file_extent_cluster *cluster)
3109{
3110 u64 alloc_hint = 0;
3111 u64 start;
3112 u64 end;
3113 u64 offset = BTRFS_I(inode)->index_cnt;
3114 u64 num_bytes;
3115 int nr = 0;
3116 int ret = 0;
3117 u64 prealloc_start = cluster->start - offset;
3118 u64 prealloc_end = cluster->end - offset;
3119 u64 cur_offset;
3120 struct extent_changeset *data_reserved = NULL;
3121
3122 BUG_ON(cluster->start != cluster->boundary[0]);
3123 inode_lock(inode);
3124
3125 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3126 prealloc_end + 1 - prealloc_start);
3127 if (ret)
3128 goto out;
3129
3130 cur_offset = prealloc_start;
3131 while (nr < cluster->nr) {
3132 start = cluster->boundary[nr] - offset;
3133 if (nr + 1 < cluster->nr)
3134 end = cluster->boundary[nr + 1] - 1 - offset;
3135 else
3136 end = cluster->end - offset;
3137
3138 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3139 num_bytes = end + 1 - start;
3140 if (cur_offset < start)
3141 btrfs_free_reserved_data_space(inode, data_reserved,
3142 cur_offset, start - cur_offset);
3143 ret = btrfs_prealloc_file_range(inode, 0, start,
3144 num_bytes, num_bytes,
3145 end + 1, &alloc_hint);
3146 cur_offset = end + 1;
3147 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3148 if (ret)
3149 break;
3150 nr++;
3151 }
3152 if (cur_offset < prealloc_end)
3153 btrfs_free_reserved_data_space(inode, data_reserved,
3154 cur_offset, prealloc_end + 1 - cur_offset);
3155out:
3156 inode_unlock(inode);
3157 extent_changeset_free(data_reserved);
3158 return ret;
3159}
3160
3161static noinline_for_stack
3162int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3163 u64 block_start)
3164{
3165 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3166 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3167 struct extent_map *em;
3168 int ret = 0;
3169
3170 em = alloc_extent_map();
3171 if (!em)
3172 return -ENOMEM;
3173
3174 em->start = start;
3175 em->len = end + 1 - start;
3176 em->block_len = em->len;
3177 em->block_start = block_start;
3178 em->bdev = fs_info->fs_devices->latest_bdev;
3179 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3180
3181 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3182 while (1) {
3183 write_lock(&em_tree->lock);
3184 ret = add_extent_mapping(em_tree, em, 0);
3185 write_unlock(&em_tree->lock);
3186 if (ret != -EEXIST) {
3187 free_extent_map(em);
3188 break;
3189 }
3190 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3191 }
3192 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3193 return ret;
3194}
3195
3196static int relocate_file_extent_cluster(struct inode *inode,
3197 struct file_extent_cluster *cluster)
3198{
3199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3200 u64 page_start;
3201 u64 page_end;
3202 u64 offset = BTRFS_I(inode)->index_cnt;
3203 unsigned long index;
3204 unsigned long last_index;
3205 struct page *page;
3206 struct file_ra_state *ra;
3207 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3208 int nr = 0;
3209 int ret = 0;
3210
3211 if (!cluster->nr)
3212 return 0;
3213
3214 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3215 if (!ra)
3216 return -ENOMEM;
3217
3218 ret = prealloc_file_extent_cluster(inode, cluster);
3219 if (ret)
3220 goto out;
3221
3222 file_ra_state_init(ra, inode->i_mapping);
3223
3224 ret = setup_extent_mapping(inode, cluster->start - offset,
3225 cluster->end - offset, cluster->start);
3226 if (ret)
3227 goto out;
3228
3229 index = (cluster->start - offset) >> PAGE_SHIFT;
3230 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3231 while (index <= last_index) {
3232 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3233 PAGE_SIZE);
3234 if (ret)
3235 goto out;
3236
3237 page = find_lock_page(inode->i_mapping, index);
3238 if (!page) {
3239 page_cache_sync_readahead(inode->i_mapping,
3240 ra, NULL, index,
3241 last_index + 1 - index);
3242 page = find_or_create_page(inode->i_mapping, index,
3243 mask);
3244 if (!page) {
3245 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3246 PAGE_SIZE);
3247 ret = -ENOMEM;
3248 goto out;
3249 }
3250 }
3251
3252 if (PageReadahead(page)) {
3253 page_cache_async_readahead(inode->i_mapping,
3254 ra, NULL, page, index,
3255 last_index + 1 - index);
3256 }
3257
3258 if (!PageUptodate(page)) {
3259 btrfs_readpage(NULL, page);
3260 lock_page(page);
3261 if (!PageUptodate(page)) {
3262 unlock_page(page);
3263 put_page(page);
3264 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3265 PAGE_SIZE);
3266 ret = -EIO;
3267 goto out;
3268 }
3269 }
3270
3271 page_start = page_offset(page);
3272 page_end = page_start + PAGE_SIZE - 1;
3273
3274 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3275
3276 set_page_extent_mapped(page);
3277
3278 if (nr < cluster->nr &&
3279 page_start + offset == cluster->boundary[nr]) {
3280 set_extent_bits(&BTRFS_I(inode)->io_tree,
3281 page_start, page_end,
3282 EXTENT_BOUNDARY);
3283 nr++;
3284 }
3285
3286 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
3287 set_page_dirty(page);
3288
3289 unlock_extent(&BTRFS_I(inode)->io_tree,
3290 page_start, page_end);
3291 unlock_page(page);
3292 put_page(page);
3293
3294 index++;
3295 balance_dirty_pages_ratelimited(inode->i_mapping);
3296 btrfs_throttle(fs_info);
3297 }
3298 WARN_ON(nr != cluster->nr);
3299out:
3300 kfree(ra);
3301 return ret;
3302}
3303
3304static noinline_for_stack
3305int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3306 struct file_extent_cluster *cluster)
3307{
3308 int ret;
3309
3310 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3311 ret = relocate_file_extent_cluster(inode, cluster);
3312 if (ret)
3313 return ret;
3314 cluster->nr = 0;
3315 }
3316
3317 if (!cluster->nr)
3318 cluster->start = extent_key->objectid;
3319 else
3320 BUG_ON(cluster->nr >= MAX_EXTENTS);
3321 cluster->end = extent_key->objectid + extent_key->offset - 1;
3322 cluster->boundary[cluster->nr] = extent_key->objectid;
3323 cluster->nr++;
3324
3325 if (cluster->nr >= MAX_EXTENTS) {
3326 ret = relocate_file_extent_cluster(inode, cluster);
3327 if (ret)
3328 return ret;
3329 cluster->nr = 0;
3330 }
3331 return 0;
3332}
3333
3334#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3335static int get_ref_objectid_v0(struct reloc_control *rc,
3336 struct btrfs_path *path,
3337 struct btrfs_key *extent_key,
3338 u64 *ref_objectid, int *path_change)
3339{
3340 struct btrfs_key key;
3341 struct extent_buffer *leaf;
3342 struct btrfs_extent_ref_v0 *ref0;
3343 int ret;
3344 int slot;
3345
3346 leaf = path->nodes[0];
3347 slot = path->slots[0];
3348 while (1) {
3349 if (slot >= btrfs_header_nritems(leaf)) {
3350 ret = btrfs_next_leaf(rc->extent_root, path);
3351 if (ret < 0)
3352 return ret;
3353 BUG_ON(ret > 0);
3354 leaf = path->nodes[0];
3355 slot = path->slots[0];
3356 if (path_change)
3357 *path_change = 1;
3358 }
3359 btrfs_item_key_to_cpu(leaf, &key, slot);
3360 if (key.objectid != extent_key->objectid)
3361 return -ENOENT;
3362
3363 if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3364 slot++;
3365 continue;
3366 }
3367 ref0 = btrfs_item_ptr(leaf, slot,
3368 struct btrfs_extent_ref_v0);
3369 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3370 break;
3371 }
3372 return 0;
3373}
3374#endif
3375
3376/*
3377 * helper to add a tree block to the list.
3378 * the major work is getting the generation and level of the block
3379 */
3380static int add_tree_block(struct reloc_control *rc,
3381 struct btrfs_key *extent_key,
3382 struct btrfs_path *path,
3383 struct rb_root *blocks)
3384{
3385 struct extent_buffer *eb;
3386 struct btrfs_extent_item *ei;
3387 struct btrfs_tree_block_info *bi;
3388 struct tree_block *block;
3389 struct rb_node *rb_node;
3390 u32 item_size;
3391 int level = -1;
3392 u64 generation;
3393
3394 eb = path->nodes[0];
3395 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3396
3397 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3398 item_size >= sizeof(*ei) + sizeof(*bi)) {
3399 ei = btrfs_item_ptr(eb, path->slots[0],
3400 struct btrfs_extent_item);
3401 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3402 bi = (struct btrfs_tree_block_info *)(ei + 1);
3403 level = btrfs_tree_block_level(eb, bi);
3404 } else {
3405 level = (int)extent_key->offset;
3406 }
3407 generation = btrfs_extent_generation(eb, ei);
3408 } else {
3409#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3410 u64 ref_owner;
3411 int ret;
3412
3413 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3414 ret = get_ref_objectid_v0(rc, path, extent_key,
3415 &ref_owner, NULL);
3416 if (ret < 0)
3417 return ret;
3418 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3419 level = (int)ref_owner;
3420 /* FIXME: get real generation */
3421 generation = 0;
3422#else
3423 BUG();
3424#endif
3425 }
3426
3427 btrfs_release_path(path);
3428
3429 BUG_ON(level == -1);
3430
3431 block = kmalloc(sizeof(*block), GFP_NOFS);
3432 if (!block)
3433 return -ENOMEM;
3434
3435 block->bytenr = extent_key->objectid;
3436 block->key.objectid = rc->extent_root->fs_info->nodesize;
3437 block->key.offset = generation;
3438 block->level = level;
3439 block->key_ready = 0;
3440
3441 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3442 if (rb_node)
3443 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3444
3445 return 0;
3446}
3447
3448/*
3449 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3450 */
3451static int __add_tree_block(struct reloc_control *rc,
3452 u64 bytenr, u32 blocksize,
3453 struct rb_root *blocks)
3454{
3455 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456 struct btrfs_path *path;
3457 struct btrfs_key key;
3458 int ret;
3459 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3460
3461 if (tree_block_processed(bytenr, rc))
3462 return 0;
3463
3464 if (tree_search(blocks, bytenr))
3465 return 0;
3466
3467 path = btrfs_alloc_path();
3468 if (!path)
3469 return -ENOMEM;
3470again:
3471 key.objectid = bytenr;
3472 if (skinny) {
3473 key.type = BTRFS_METADATA_ITEM_KEY;
3474 key.offset = (u64)-1;
3475 } else {
3476 key.type = BTRFS_EXTENT_ITEM_KEY;
3477 key.offset = blocksize;
3478 }
3479
3480 path->search_commit_root = 1;
3481 path->skip_locking = 1;
3482 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3483 if (ret < 0)
3484 goto out;
3485
3486 if (ret > 0 && skinny) {
3487 if (path->slots[0]) {
3488 path->slots[0]--;
3489 btrfs_item_key_to_cpu(path->nodes[0], &key,
3490 path->slots[0]);
3491 if (key.objectid == bytenr &&
3492 (key.type == BTRFS_METADATA_ITEM_KEY ||
3493 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3494 key.offset == blocksize)))
3495 ret = 0;
3496 }
3497
3498 if (ret) {
3499 skinny = false;
3500 btrfs_release_path(path);
3501 goto again;
3502 }
3503 }
3504 if (ret) {
3505 ASSERT(ret == 1);
3506 btrfs_print_leaf(path->nodes[0]);
3507 btrfs_err(fs_info,
3508 "tree block extent item (%llu) is not found in extent tree",
3509 bytenr);
3510 WARN_ON(1);
3511 ret = -EINVAL;
3512 goto out;
3513 }
3514
3515 ret = add_tree_block(rc, &key, path, blocks);
3516out:
3517 btrfs_free_path(path);
3518 return ret;
3519}
3520
3521/*
3522 * helper to check if the block use full backrefs for pointers in it
3523 */
3524static int block_use_full_backref(struct reloc_control *rc,
3525 struct extent_buffer *eb)
3526{
3527 u64 flags;
3528 int ret;
3529
3530 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3531 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3532 return 1;
3533
3534 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3535 eb->start, btrfs_header_level(eb), 1,
3536 NULL, &flags);
3537 BUG_ON(ret);
3538
3539 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3540 ret = 1;
3541 else
3542 ret = 0;
3543 return ret;
3544}
3545
3546static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3547 struct btrfs_block_group_cache *block_group,
3548 struct inode *inode,
3549 u64 ino)
3550{
3551 struct btrfs_key key;
3552 struct btrfs_root *root = fs_info->tree_root;
3553 struct btrfs_trans_handle *trans;
3554 int ret = 0;
3555
3556 if (inode)
3557 goto truncate;
3558
3559 key.objectid = ino;
3560 key.type = BTRFS_INODE_ITEM_KEY;
3561 key.offset = 0;
3562
3563 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3564 if (IS_ERR(inode) || is_bad_inode(inode)) {
3565 if (!IS_ERR(inode))
3566 iput(inode);
3567 return -ENOENT;
3568 }
3569
3570truncate:
3571 ret = btrfs_check_trunc_cache_free_space(fs_info,
3572 &fs_info->global_block_rsv);
3573 if (ret)
3574 goto out;
3575
3576 trans = btrfs_join_transaction(root);
3577 if (IS_ERR(trans)) {
3578 ret = PTR_ERR(trans);
3579 goto out;
3580 }
3581
3582 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3583
3584 btrfs_end_transaction(trans);
3585 btrfs_btree_balance_dirty(fs_info);
3586out:
3587 iput(inode);
3588 return ret;
3589}
3590
3591/*
3592 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3593 * this function scans fs tree to find blocks reference the data extent
3594 */
3595static int find_data_references(struct reloc_control *rc,
3596 struct btrfs_key *extent_key,
3597 struct extent_buffer *leaf,
3598 struct btrfs_extent_data_ref *ref,
3599 struct rb_root *blocks)
3600{
3601 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3602 struct btrfs_path *path;
3603 struct tree_block *block;
3604 struct btrfs_root *root;
3605 struct btrfs_file_extent_item *fi;
3606 struct rb_node *rb_node;
3607 struct btrfs_key key;
3608 u64 ref_root;
3609 u64 ref_objectid;
3610 u64 ref_offset;
3611 u32 ref_count;
3612 u32 nritems;
3613 int err = 0;
3614 int added = 0;
3615 int counted;
3616 int ret;
3617
3618 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3619 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3620 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3621 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3622
3623 /*
3624 * This is an extent belonging to the free space cache, lets just delete
3625 * it and redo the search.
3626 */
3627 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3628 ret = delete_block_group_cache(fs_info, rc->block_group,
3629 NULL, ref_objectid);
3630 if (ret != -ENOENT)
3631 return ret;
3632 ret = 0;
3633 }
3634
3635 path = btrfs_alloc_path();
3636 if (!path)
3637 return -ENOMEM;
3638 path->reada = READA_FORWARD;
3639
3640 root = read_fs_root(fs_info, ref_root);
3641 if (IS_ERR(root)) {
3642 err = PTR_ERR(root);
3643 goto out;
3644 }
3645
3646 key.objectid = ref_objectid;
3647 key.type = BTRFS_EXTENT_DATA_KEY;
3648 if (ref_offset > ((u64)-1 << 32))
3649 key.offset = 0;
3650 else
3651 key.offset = ref_offset;
3652
3653 path->search_commit_root = 1;
3654 path->skip_locking = 1;
3655 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3656 if (ret < 0) {
3657 err = ret;
3658 goto out;
3659 }
3660
3661 leaf = path->nodes[0];
3662 nritems = btrfs_header_nritems(leaf);
3663 /*
3664 * the references in tree blocks that use full backrefs
3665 * are not counted in
3666 */
3667 if (block_use_full_backref(rc, leaf))
3668 counted = 0;
3669 else
3670 counted = 1;
3671 rb_node = tree_search(blocks, leaf->start);
3672 if (rb_node) {
3673 if (counted)
3674 added = 1;
3675 else
3676 path->slots[0] = nritems;
3677 }
3678
3679 while (ref_count > 0) {
3680 while (path->slots[0] >= nritems) {
3681 ret = btrfs_next_leaf(root, path);
3682 if (ret < 0) {
3683 err = ret;
3684 goto out;
3685 }
3686 if (WARN_ON(ret > 0))
3687 goto out;
3688
3689 leaf = path->nodes[0];
3690 nritems = btrfs_header_nritems(leaf);
3691 added = 0;
3692
3693 if (block_use_full_backref(rc, leaf))
3694 counted = 0;
3695 else
3696 counted = 1;
3697 rb_node = tree_search(blocks, leaf->start);
3698 if (rb_node) {
3699 if (counted)
3700 added = 1;
3701 else
3702 path->slots[0] = nritems;
3703 }
3704 }
3705
3706 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3707 if (WARN_ON(key.objectid != ref_objectid ||
3708 key.type != BTRFS_EXTENT_DATA_KEY))
3709 break;
3710
3711 fi = btrfs_item_ptr(leaf, path->slots[0],
3712 struct btrfs_file_extent_item);
3713
3714 if (btrfs_file_extent_type(leaf, fi) ==
3715 BTRFS_FILE_EXTENT_INLINE)
3716 goto next;
3717
3718 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3719 extent_key->objectid)
3720 goto next;
3721
3722 key.offset -= btrfs_file_extent_offset(leaf, fi);
3723 if (key.offset != ref_offset)
3724 goto next;
3725
3726 if (counted)
3727 ref_count--;
3728 if (added)
3729 goto next;
3730
3731 if (!tree_block_processed(leaf->start, rc)) {
3732 block = kmalloc(sizeof(*block), GFP_NOFS);
3733 if (!block) {
3734 err = -ENOMEM;
3735 break;
3736 }
3737 block->bytenr = leaf->start;
3738 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3739 block->level = 0;
3740 block->key_ready = 1;
3741 rb_node = tree_insert(blocks, block->bytenr,
3742 &block->rb_node);
3743 if (rb_node)
3744 backref_tree_panic(rb_node, -EEXIST,
3745 block->bytenr);
3746 }
3747 if (counted)
3748 added = 1;
3749 else
3750 path->slots[0] = nritems;
3751next:
3752 path->slots[0]++;
3753
3754 }
3755out:
3756 btrfs_free_path(path);
3757 return err;
3758}
3759
3760/*
3761 * helper to find all tree blocks that reference a given data extent
3762 */
3763static noinline_for_stack
3764int add_data_references(struct reloc_control *rc,
3765 struct btrfs_key *extent_key,
3766 struct btrfs_path *path,
3767 struct rb_root *blocks)
3768{
3769 struct btrfs_key key;
3770 struct extent_buffer *eb;
3771 struct btrfs_extent_data_ref *dref;
3772 struct btrfs_extent_inline_ref *iref;
3773 unsigned long ptr;
3774 unsigned long end;
3775 u32 blocksize = rc->extent_root->fs_info->nodesize;
3776 int ret = 0;
3777 int err = 0;
3778
3779 eb = path->nodes[0];
3780 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3781 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3782#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3783 if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3784 ptr = end;
3785 else
3786#endif
3787 ptr += sizeof(struct btrfs_extent_item);
3788
3789 while (ptr < end) {
3790 iref = (struct btrfs_extent_inline_ref *)ptr;
3791 key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3792 BTRFS_REF_TYPE_DATA);
3793 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3794 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3795 ret = __add_tree_block(rc, key.offset, blocksize,
3796 blocks);
3797 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3798 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3799 ret = find_data_references(rc, extent_key,
3800 eb, dref, blocks);
3801 } else {
3802 ret = -EINVAL;
3803 btrfs_err(rc->extent_root->fs_info,
3804 "extent %llu slot %d has an invalid inline ref type",
3805 eb->start, path->slots[0]);
3806 }
3807 if (ret) {
3808 err = ret;
3809 goto out;
3810 }
3811 ptr += btrfs_extent_inline_ref_size(key.type);
3812 }
3813 WARN_ON(ptr > end);
3814
3815 while (1) {
3816 cond_resched();
3817 eb = path->nodes[0];
3818 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3819 ret = btrfs_next_leaf(rc->extent_root, path);
3820 if (ret < 0) {
3821 err = ret;
3822 break;
3823 }
3824 if (ret > 0)
3825 break;
3826 eb = path->nodes[0];
3827 }
3828
3829 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3830 if (key.objectid != extent_key->objectid)
3831 break;
3832
3833#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3834 if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3835 key.type == BTRFS_EXTENT_REF_V0_KEY) {
3836#else
3837 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3838 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3839#endif
3840 ret = __add_tree_block(rc, key.offset, blocksize,
3841 blocks);
3842 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3843 dref = btrfs_item_ptr(eb, path->slots[0],
3844 struct btrfs_extent_data_ref);
3845 ret = find_data_references(rc, extent_key,
3846 eb, dref, blocks);
3847 } else {
3848 ret = 0;
3849 }
3850 if (ret) {
3851 err = ret;
3852 break;
3853 }
3854 path->slots[0]++;
3855 }
3856out:
3857 btrfs_release_path(path);
3858 if (err)
3859 free_block_list(blocks);
3860 return err;
3861}
3862
3863/*
3864 * helper to find next unprocessed extent
3865 */
3866static noinline_for_stack
3867int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3868 struct btrfs_key *extent_key)
3869{
3870 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3871 struct btrfs_key key;
3872 struct extent_buffer *leaf;
3873 u64 start, end, last;
3874 int ret;
3875
3876 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3877 while (1) {
3878 cond_resched();
3879 if (rc->search_start >= last) {
3880 ret = 1;
3881 break;
3882 }
3883
3884 key.objectid = rc->search_start;
3885 key.type = BTRFS_EXTENT_ITEM_KEY;
3886 key.offset = 0;
3887
3888 path->search_commit_root = 1;
3889 path->skip_locking = 1;
3890 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3891 0, 0);
3892 if (ret < 0)
3893 break;
3894next:
3895 leaf = path->nodes[0];
3896 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3897 ret = btrfs_next_leaf(rc->extent_root, path);
3898 if (ret != 0)
3899 break;
3900 leaf = path->nodes[0];
3901 }
3902
3903 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3904 if (key.objectid >= last) {
3905 ret = 1;
3906 break;
3907 }
3908
3909 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3910 key.type != BTRFS_METADATA_ITEM_KEY) {
3911 path->slots[0]++;
3912 goto next;
3913 }
3914
3915 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3916 key.objectid + key.offset <= rc->search_start) {
3917 path->slots[0]++;
3918 goto next;
3919 }
3920
3921 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3922 key.objectid + fs_info->nodesize <=
3923 rc->search_start) {
3924 path->slots[0]++;
3925 goto next;
3926 }
3927
3928 ret = find_first_extent_bit(&rc->processed_blocks,
3929 key.objectid, &start, &end,
3930 EXTENT_DIRTY, NULL);
3931
3932 if (ret == 0 && start <= key.objectid) {
3933 btrfs_release_path(path);
3934 rc->search_start = end + 1;
3935 } else {
3936 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3937 rc->search_start = key.objectid + key.offset;
3938 else
3939 rc->search_start = key.objectid +
3940 fs_info->nodesize;
3941 memcpy(extent_key, &key, sizeof(key));
3942 return 0;
3943 }
3944 }
3945 btrfs_release_path(path);
3946 return ret;
3947}
3948
3949static void set_reloc_control(struct reloc_control *rc)
3950{
3951 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3952
3953 mutex_lock(&fs_info->reloc_mutex);
3954 fs_info->reloc_ctl = rc;
3955 mutex_unlock(&fs_info->reloc_mutex);
3956}
3957
3958static void unset_reloc_control(struct reloc_control *rc)
3959{
3960 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3961
3962 mutex_lock(&fs_info->reloc_mutex);
3963 fs_info->reloc_ctl = NULL;
3964 mutex_unlock(&fs_info->reloc_mutex);
3965}
3966
3967static int check_extent_flags(u64 flags)
3968{
3969 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3970 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3971 return 1;
3972 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3973 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3974 return 1;
3975 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3976 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3977 return 1;
3978 return 0;
3979}
3980
3981static noinline_for_stack
3982int prepare_to_relocate(struct reloc_control *rc)
3983{
3984 struct btrfs_trans_handle *trans;
3985 int ret;
3986
3987 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3988 BTRFS_BLOCK_RSV_TEMP);
3989 if (!rc->block_rsv)
3990 return -ENOMEM;
3991
3992 memset(&rc->cluster, 0, sizeof(rc->cluster));
3993 rc->search_start = rc->block_group->key.objectid;
3994 rc->extents_found = 0;
3995 rc->nodes_relocated = 0;
3996 rc->merging_rsv_size = 0;
3997 rc->reserved_bytes = 0;
3998 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3999 RELOCATION_RESERVED_NODES;
4000 ret = btrfs_block_rsv_refill(rc->extent_root,
4001 rc->block_rsv, rc->block_rsv->size,
4002 BTRFS_RESERVE_FLUSH_ALL);
4003 if (ret)
4004 return ret;
4005
4006 rc->create_reloc_tree = 1;
4007 set_reloc_control(rc);
4008
4009 trans = btrfs_join_transaction(rc->extent_root);
4010 if (IS_ERR(trans)) {
4011 unset_reloc_control(rc);
4012 /*
4013 * extent tree is not a ref_cow tree and has no reloc_root to
4014 * cleanup. And callers are responsible to free the above
4015 * block rsv.
4016 */
4017 return PTR_ERR(trans);
4018 }
4019 btrfs_commit_transaction(trans);
4020 return 0;
4021}
4022
4023static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4024{
4025 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4026 struct rb_root blocks = RB_ROOT;
4027 struct btrfs_key key;
4028 struct btrfs_trans_handle *trans = NULL;
4029 struct btrfs_path *path;
4030 struct btrfs_extent_item *ei;
4031 u64 flags;
4032 u32 item_size;
4033 int ret;
4034 int err = 0;
4035 int progress = 0;
4036
4037 path = btrfs_alloc_path();
4038 if (!path)
4039 return -ENOMEM;
4040 path->reada = READA_FORWARD;
4041
4042 ret = prepare_to_relocate(rc);
4043 if (ret) {
4044 err = ret;
4045 goto out_free;
4046 }
4047
4048 while (1) {
4049 rc->reserved_bytes = 0;
4050 ret = btrfs_block_rsv_refill(rc->extent_root,
4051 rc->block_rsv, rc->block_rsv->size,
4052 BTRFS_RESERVE_FLUSH_ALL);
4053 if (ret) {
4054 err = ret;
4055 break;
4056 }
4057 progress++;
4058 trans = btrfs_start_transaction(rc->extent_root, 0);
4059 if (IS_ERR(trans)) {
4060 err = PTR_ERR(trans);
4061 trans = NULL;
4062 break;
4063 }
4064restart:
4065 if (update_backref_cache(trans, &rc->backref_cache)) {
4066 btrfs_end_transaction(trans);
4067 trans = NULL;
4068 continue;
4069 }
4070
4071 ret = find_next_extent(rc, path, &key);
4072 if (ret < 0)
4073 err = ret;
4074 if (ret != 0)
4075 break;
4076
4077 rc->extents_found++;
4078
4079 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4080 struct btrfs_extent_item);
4081 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4082 if (item_size >= sizeof(*ei)) {
4083 flags = btrfs_extent_flags(path->nodes[0], ei);
4084 ret = check_extent_flags(flags);
4085 BUG_ON(ret);
4086
4087 } else {
4088#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4089 u64 ref_owner;
4090 int path_change = 0;
4091
4092 BUG_ON(item_size !=
4093 sizeof(struct btrfs_extent_item_v0));
4094 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4095 &path_change);
4096 if (ret < 0) {
4097 err = ret;
4098 break;
4099 }
4100 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4101 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4102 else
4103 flags = BTRFS_EXTENT_FLAG_DATA;
4104
4105 if (path_change) {
4106 btrfs_release_path(path);
4107
4108 path->search_commit_root = 1;
4109 path->skip_locking = 1;
4110 ret = btrfs_search_slot(NULL, rc->extent_root,
4111 &key, path, 0, 0);
4112 if (ret < 0) {
4113 err = ret;
4114 break;
4115 }
4116 BUG_ON(ret > 0);
4117 }
4118#else
4119 BUG();
4120#endif
4121 }
4122
4123 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4124 ret = add_tree_block(rc, &key, path, &blocks);
4125 } else if (rc->stage == UPDATE_DATA_PTRS &&
4126 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4127 ret = add_data_references(rc, &key, path, &blocks);
4128 } else {
4129 btrfs_release_path(path);
4130 ret = 0;
4131 }
4132 if (ret < 0) {
4133 err = ret;
4134 break;
4135 }
4136
4137 if (!RB_EMPTY_ROOT(&blocks)) {
4138 ret = relocate_tree_blocks(trans, rc, &blocks);
4139 if (ret < 0) {
4140 /*
4141 * if we fail to relocate tree blocks, force to update
4142 * backref cache when committing transaction.
4143 */
4144 rc->backref_cache.last_trans = trans->transid - 1;
4145
4146 if (ret != -EAGAIN) {
4147 err = ret;
4148 break;
4149 }
4150 rc->extents_found--;
4151 rc->search_start = key.objectid;
4152 }
4153 }
4154
4155 btrfs_end_transaction_throttle(trans);
4156 btrfs_btree_balance_dirty(fs_info);
4157 trans = NULL;
4158
4159 if (rc->stage == MOVE_DATA_EXTENTS &&
4160 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4161 rc->found_file_extent = 1;
4162 ret = relocate_data_extent(rc->data_inode,
4163 &key, &rc->cluster);
4164 if (ret < 0) {
4165 err = ret;
4166 break;
4167 }
4168 }
4169 }
4170 if (trans && progress && err == -ENOSPC) {
4171 ret = btrfs_force_chunk_alloc(trans, fs_info,
4172 rc->block_group->flags);
4173 if (ret == 1) {
4174 err = 0;
4175 progress = 0;
4176 goto restart;
4177 }
4178 }
4179
4180 btrfs_release_path(path);
4181 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4182
4183 if (trans) {
4184 btrfs_end_transaction_throttle(trans);
4185 btrfs_btree_balance_dirty(fs_info);
4186 }
4187
4188 if (!err) {
4189 ret = relocate_file_extent_cluster(rc->data_inode,
4190 &rc->cluster);
4191 if (ret < 0)
4192 err = ret;
4193 }
4194
4195 rc->create_reloc_tree = 0;
4196 set_reloc_control(rc);
4197
4198 backref_cache_cleanup(&rc->backref_cache);
4199 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4200
4201 err = prepare_to_merge(rc, err);
4202
4203 merge_reloc_roots(rc);
4204
4205 rc->merge_reloc_tree = 0;
4206 unset_reloc_control(rc);
4207 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4208
4209 /* get rid of pinned extents */
4210 trans = btrfs_join_transaction(rc->extent_root);
4211 if (IS_ERR(trans)) {
4212 err = PTR_ERR(trans);
4213 goto out_free;
4214 }
4215 btrfs_commit_transaction(trans);
4216out_free:
4217 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4218 btrfs_free_path(path);
4219 return err;
4220}
4221
4222static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4223 struct btrfs_root *root, u64 objectid)
4224{
4225 struct btrfs_path *path;
4226 struct btrfs_inode_item *item;
4227 struct extent_buffer *leaf;
4228 int ret;
4229
4230 path = btrfs_alloc_path();
4231 if (!path)
4232 return -ENOMEM;
4233
4234 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4235 if (ret)
4236 goto out;
4237
4238 leaf = path->nodes[0];
4239 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4240 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4241 btrfs_set_inode_generation(leaf, item, 1);
4242 btrfs_set_inode_size(leaf, item, 0);
4243 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4244 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4245 BTRFS_INODE_PREALLOC);
4246 btrfs_mark_buffer_dirty(leaf);
4247out:
4248 btrfs_free_path(path);
4249 return ret;
4250}
4251
4252/*
4253 * helper to create inode for data relocation.
4254 * the inode is in data relocation tree and its link count is 0
4255 */
4256static noinline_for_stack
4257struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4258 struct btrfs_block_group_cache *group)
4259{
4260 struct inode *inode = NULL;
4261 struct btrfs_trans_handle *trans;
4262 struct btrfs_root *root;
4263 struct btrfs_key key;
4264 u64 objectid;
4265 int err = 0;
4266
4267 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4268 if (IS_ERR(root))
4269 return ERR_CAST(root);
4270
4271 trans = btrfs_start_transaction(root, 6);
4272 if (IS_ERR(trans))
4273 return ERR_CAST(trans);
4274
4275 err = btrfs_find_free_objectid(root, &objectid);
4276 if (err)
4277 goto out;
4278
4279 err = __insert_orphan_inode(trans, root, objectid);
4280 BUG_ON(err);
4281
4282 key.objectid = objectid;
4283 key.type = BTRFS_INODE_ITEM_KEY;
4284 key.offset = 0;
4285 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4286 BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4287 BTRFS_I(inode)->index_cnt = group->key.objectid;
4288
4289 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4290out:
4291 btrfs_end_transaction(trans);
4292 btrfs_btree_balance_dirty(fs_info);
4293 if (err) {
4294 if (inode)
4295 iput(inode);
4296 inode = ERR_PTR(err);
4297 }
4298 return inode;
4299}
4300
4301static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4302{
4303 struct reloc_control *rc;
4304
4305 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4306 if (!rc)
4307 return NULL;
4308
4309 INIT_LIST_HEAD(&rc->reloc_roots);
4310 backref_cache_init(&rc->backref_cache);
4311 mapping_tree_init(&rc->reloc_root_tree);
4312 extent_io_tree_init(&rc->processed_blocks, NULL);
4313 return rc;
4314}
4315
4316/*
4317 * Print the block group being relocated
4318 */
4319static void describe_relocation(struct btrfs_fs_info *fs_info,
4320 struct btrfs_block_group_cache *block_group)
4321{
4322 char buf[128]; /* prefixed by a '|' that'll be dropped */
4323 u64 flags = block_group->flags;
4324
4325 /* Shouldn't happen */
4326 if (!flags) {
4327 strcpy(buf, "|NONE");
4328 } else {
4329 char *bp = buf;
4330
4331#define DESCRIBE_FLAG(f, d) \
4332 if (flags & BTRFS_BLOCK_GROUP_##f) { \
4333 bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4334 flags &= ~BTRFS_BLOCK_GROUP_##f; \
4335 }
4336 DESCRIBE_FLAG(DATA, "data");
4337 DESCRIBE_FLAG(SYSTEM, "system");
4338 DESCRIBE_FLAG(METADATA, "metadata");
4339 DESCRIBE_FLAG(RAID0, "raid0");
4340 DESCRIBE_FLAG(RAID1, "raid1");
4341 DESCRIBE_FLAG(DUP, "dup");
4342 DESCRIBE_FLAG(RAID10, "raid10");
4343 DESCRIBE_FLAG(RAID5, "raid5");
4344 DESCRIBE_FLAG(RAID6, "raid6");
4345 if (flags)
4346 snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4347#undef DESCRIBE_FLAG
4348 }
4349
4350 btrfs_info(fs_info,
4351 "relocating block group %llu flags %s",
4352 block_group->key.objectid, buf + 1);
4353}
4354
4355/*
4356 * function to relocate all extents in a block group.
4357 */
4358int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4359{
4360 struct btrfs_root *extent_root = fs_info->extent_root;
4361 struct reloc_control *rc;
4362 struct inode *inode;
4363 struct btrfs_path *path;
4364 int ret;
4365 int rw = 0;
4366 int err = 0;
4367
4368 rc = alloc_reloc_control(fs_info);
4369 if (!rc)
4370 return -ENOMEM;
4371
4372 rc->extent_root = extent_root;
4373
4374 rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4375 BUG_ON(!rc->block_group);
4376
4377 ret = btrfs_inc_block_group_ro(fs_info, rc->block_group);
4378 if (ret) {
4379 err = ret;
4380 goto out;
4381 }
4382 rw = 1;
4383
4384 path = btrfs_alloc_path();
4385 if (!path) {
4386 err = -ENOMEM;
4387 goto out;
4388 }
4389
4390 inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4391 btrfs_free_path(path);
4392
4393 if (!IS_ERR(inode))
4394 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4395 else
4396 ret = PTR_ERR(inode);
4397
4398 if (ret && ret != -ENOENT) {
4399 err = ret;
4400 goto out;
4401 }
4402
4403 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4404 if (IS_ERR(rc->data_inode)) {
4405 err = PTR_ERR(rc->data_inode);
4406 rc->data_inode = NULL;
4407 goto out;
4408 }
4409
4410 describe_relocation(fs_info, rc->block_group);
4411
4412 btrfs_wait_block_group_reservations(rc->block_group);
4413 btrfs_wait_nocow_writers(rc->block_group);
4414 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4415 rc->block_group->key.objectid,
4416 rc->block_group->key.offset);
4417
4418 while (1) {
4419 mutex_lock(&fs_info->cleaner_mutex);
4420 ret = relocate_block_group(rc);
4421 mutex_unlock(&fs_info->cleaner_mutex);
4422 if (ret < 0)
4423 err = ret;
4424
4425 /*
4426 * We may have gotten ENOSPC after we already dirtied some
4427 * extents. If writeout happens while we're relocating a
4428 * different block group we could end up hitting the
4429 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4430 * btrfs_reloc_cow_block. Make sure we write everything out
4431 * properly so we don't trip over this problem, and then break
4432 * out of the loop if we hit an error.
4433 */
4434 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4435 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4436 (u64)-1);
4437 if (ret)
4438 err = ret;
4439 invalidate_mapping_pages(rc->data_inode->i_mapping,
4440 0, -1);
4441 rc->stage = UPDATE_DATA_PTRS;
4442 }
4443
4444 if (err < 0)
4445 goto out;
4446
4447 if (rc->extents_found == 0)
4448 break;
4449
4450 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4451
4452 }
4453
4454 WARN_ON(rc->block_group->pinned > 0);
4455 WARN_ON(rc->block_group->reserved > 0);
4456 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4457out:
4458 if (err && rw)
4459 btrfs_dec_block_group_ro(rc->block_group);
4460 iput(rc->data_inode);
4461 btrfs_put_block_group(rc->block_group);
4462 kfree(rc);
4463 return err;
4464}
4465
4466static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4467{
4468 struct btrfs_fs_info *fs_info = root->fs_info;
4469 struct btrfs_trans_handle *trans;
4470 int ret, err;
4471
4472 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4473 if (IS_ERR(trans))
4474 return PTR_ERR(trans);
4475
4476 memset(&root->root_item.drop_progress, 0,
4477 sizeof(root->root_item.drop_progress));
4478 root->root_item.drop_level = 0;
4479 btrfs_set_root_refs(&root->root_item, 0);
4480 ret = btrfs_update_root(trans, fs_info->tree_root,
4481 &root->root_key, &root->root_item);
4482
4483 err = btrfs_end_transaction(trans);
4484 if (err)
4485 return err;
4486 return ret;
4487}
4488
4489/*
4490 * recover relocation interrupted by system crash.
4491 *
4492 * this function resumes merging reloc trees with corresponding fs trees.
4493 * this is important for keeping the sharing of tree blocks
4494 */
4495int btrfs_recover_relocation(struct btrfs_root *root)
4496{
4497 struct btrfs_fs_info *fs_info = root->fs_info;
4498 LIST_HEAD(reloc_roots);
4499 struct btrfs_key key;
4500 struct btrfs_root *fs_root;
4501 struct btrfs_root *reloc_root;
4502 struct btrfs_path *path;
4503 struct extent_buffer *leaf;
4504 struct reloc_control *rc = NULL;
4505 struct btrfs_trans_handle *trans;
4506 int ret;
4507 int err = 0;
4508
4509 path = btrfs_alloc_path();
4510 if (!path)
4511 return -ENOMEM;
4512 path->reada = READA_BACK;
4513
4514 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4515 key.type = BTRFS_ROOT_ITEM_KEY;
4516 key.offset = (u64)-1;
4517
4518 while (1) {
4519 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4520 path, 0, 0);
4521 if (ret < 0) {
4522 err = ret;
4523 goto out;
4524 }
4525 if (ret > 0) {
4526 if (path->slots[0] == 0)
4527 break;
4528 path->slots[0]--;
4529 }
4530 leaf = path->nodes[0];
4531 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4532 btrfs_release_path(path);
4533
4534 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4535 key.type != BTRFS_ROOT_ITEM_KEY)
4536 break;
4537
4538 reloc_root = btrfs_read_fs_root(root, &key);
4539 if (IS_ERR(reloc_root)) {
4540 err = PTR_ERR(reloc_root);
4541 goto out;
4542 }
4543
4544 list_add(&reloc_root->root_list, &reloc_roots);
4545
4546 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4547 fs_root = read_fs_root(fs_info,
4548 reloc_root->root_key.offset);
4549 if (IS_ERR(fs_root)) {
4550 ret = PTR_ERR(fs_root);
4551 if (ret != -ENOENT) {
4552 err = ret;
4553 goto out;
4554 }
4555 ret = mark_garbage_root(reloc_root);
4556 if (ret < 0) {
4557 err = ret;
4558 goto out;
4559 }
4560 }
4561 }
4562
4563 if (key.offset == 0)
4564 break;
4565
4566 key.offset--;
4567 }
4568 btrfs_release_path(path);
4569
4570 if (list_empty(&reloc_roots))
4571 goto out;
4572
4573 rc = alloc_reloc_control(fs_info);
4574 if (!rc) {
4575 err = -ENOMEM;
4576 goto out;
4577 }
4578
4579 rc->extent_root = fs_info->extent_root;
4580
4581 set_reloc_control(rc);
4582
4583 trans = btrfs_join_transaction(rc->extent_root);
4584 if (IS_ERR(trans)) {
4585 unset_reloc_control(rc);
4586 err = PTR_ERR(trans);
4587 goto out_free;
4588 }
4589
4590 rc->merge_reloc_tree = 1;
4591
4592 while (!list_empty(&reloc_roots)) {
4593 reloc_root = list_entry(reloc_roots.next,
4594 struct btrfs_root, root_list);
4595 list_del(&reloc_root->root_list);
4596
4597 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4598 list_add_tail(&reloc_root->root_list,
4599 &rc->reloc_roots);
4600 continue;
4601 }
4602
4603 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4604 if (IS_ERR(fs_root)) {
4605 err = PTR_ERR(fs_root);
4606 list_add_tail(&reloc_root->root_list, &reloc_roots);
4607 goto out_free;
4608 }
4609
4610 err = __add_reloc_root(reloc_root);
4611 BUG_ON(err < 0); /* -ENOMEM or logic error */
4612 fs_root->reloc_root = reloc_root;
4613 }
4614
4615 err = btrfs_commit_transaction(trans);
4616 if (err)
4617 goto out_free;
4618
4619 merge_reloc_roots(rc);
4620
4621 unset_reloc_control(rc);
4622
4623 trans = btrfs_join_transaction(rc->extent_root);
4624 if (IS_ERR(trans)) {
4625 err = PTR_ERR(trans);
4626 goto out_free;
4627 }
4628 err = btrfs_commit_transaction(trans);
4629out_free:
4630 kfree(rc);
4631out:
4632 if (!list_empty(&reloc_roots))
4633 free_reloc_roots(&reloc_roots);
4634
4635 btrfs_free_path(path);
4636
4637 if (err == 0) {
4638 /* cleanup orphan inode in data relocation tree */
4639 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4640 if (IS_ERR(fs_root))
4641 err = PTR_ERR(fs_root);
4642 else
4643 err = btrfs_orphan_cleanup(fs_root);
4644 }
4645 return err;
4646}
4647
4648/*
4649 * helper to add ordered checksum for data relocation.
4650 *
4651 * cloning checksum properly handles the nodatasum extents.
4652 * it also saves CPU time to re-calculate the checksum.
4653 */
4654int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4655{
4656 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4657 struct btrfs_ordered_sum *sums;
4658 struct btrfs_ordered_extent *ordered;
4659 int ret;
4660 u64 disk_bytenr;
4661 u64 new_bytenr;
4662 LIST_HEAD(list);
4663
4664 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4665 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4666
4667 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4668 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4669 disk_bytenr + len - 1, &list, 0);
4670 if (ret)
4671 goto out;
4672
4673 while (!list_empty(&list)) {
4674 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4675 list_del_init(&sums->list);
4676
4677 /*
4678 * We need to offset the new_bytenr based on where the csum is.
4679 * We need to do this because we will read in entire prealloc
4680 * extents but we may have written to say the middle of the
4681 * prealloc extent, so we need to make sure the csum goes with
4682 * the right disk offset.
4683 *
4684 * We can do this because the data reloc inode refers strictly
4685 * to the on disk bytes, so we don't have to worry about
4686 * disk_len vs real len like with real inodes since it's all
4687 * disk length.
4688 */
4689 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4690 sums->bytenr = new_bytenr;
4691
4692 btrfs_add_ordered_sum(inode, ordered, sums);
4693 }
4694out:
4695 btrfs_put_ordered_extent(ordered);
4696 return ret;
4697}
4698
4699int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4700 struct btrfs_root *root, struct extent_buffer *buf,
4701 struct extent_buffer *cow)
4702{
4703 struct btrfs_fs_info *fs_info = root->fs_info;
4704 struct reloc_control *rc;
4705 struct backref_node *node;
4706 int first_cow = 0;
4707 int level;
4708 int ret = 0;
4709
4710 rc = fs_info->reloc_ctl;
4711 if (!rc)
4712 return 0;
4713
4714 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4715 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4716
4717 level = btrfs_header_level(buf);
4718 if (btrfs_header_generation(buf) <=
4719 btrfs_root_last_snapshot(&root->root_item))
4720 first_cow = 1;
4721
4722 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4723 rc->create_reloc_tree) {
4724 WARN_ON(!first_cow && level == 0);
4725
4726 node = rc->backref_cache.path[level];
4727 BUG_ON(node->bytenr != buf->start &&
4728 node->new_bytenr != buf->start);
4729
4730 drop_node_buffer(node);
4731 extent_buffer_get(cow);
4732 node->eb = cow;
4733 node->new_bytenr = cow->start;
4734
4735 if (!node->pending) {
4736 list_move_tail(&node->list,
4737 &rc->backref_cache.pending[level]);
4738 node->pending = 1;
4739 }
4740
4741 if (first_cow)
4742 __mark_block_processed(rc, node);
4743
4744 if (first_cow && level > 0)
4745 rc->nodes_relocated += buf->len;
4746 }
4747
4748 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4749 ret = replace_file_extents(trans, rc, root, cow);
4750 return ret;
4751}
4752
4753/*
4754 * called before creating snapshot. it calculates metadata reservation
4755 * required for relocating tree blocks in the snapshot
4756 */
4757void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4758 u64 *bytes_to_reserve)
4759{
4760 struct btrfs_root *root;
4761 struct reloc_control *rc;
4762
4763 root = pending->root;
4764 if (!root->reloc_root)
4765 return;
4766
4767 rc = root->fs_info->reloc_ctl;
4768 if (!rc->merge_reloc_tree)
4769 return;
4770
4771 root = root->reloc_root;
4772 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4773 /*
4774 * relocation is in the stage of merging trees. the space
4775 * used by merging a reloc tree is twice the size of
4776 * relocated tree nodes in the worst case. half for cowing
4777 * the reloc tree, half for cowing the fs tree. the space
4778 * used by cowing the reloc tree will be freed after the
4779 * tree is dropped. if we create snapshot, cowing the fs
4780 * tree may use more space than it frees. so we need
4781 * reserve extra space.
4782 */
4783 *bytes_to_reserve += rc->nodes_relocated;
4784}
4785
4786/*
4787 * called after snapshot is created. migrate block reservation
4788 * and create reloc root for the newly created snapshot
4789 */
4790int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4791 struct btrfs_pending_snapshot *pending)
4792{
4793 struct btrfs_root *root = pending->root;
4794 struct btrfs_root *reloc_root;
4795 struct btrfs_root *new_root;
4796 struct reloc_control *rc;
4797 int ret;
4798
4799 if (!root->reloc_root)
4800 return 0;
4801
4802 rc = root->fs_info->reloc_ctl;
4803 rc->merging_rsv_size += rc->nodes_relocated;
4804
4805 if (rc->merge_reloc_tree) {
4806 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4807 rc->block_rsv,
4808 rc->nodes_relocated, 1);
4809 if (ret)
4810 return ret;
4811 }
4812
4813 new_root = pending->snap;
4814 reloc_root = create_reloc_root(trans, root->reloc_root,
4815 new_root->root_key.objectid);
4816 if (IS_ERR(reloc_root))
4817 return PTR_ERR(reloc_root);
4818
4819 ret = __add_reloc_root(reloc_root);
4820 BUG_ON(ret < 0);
4821 new_root->reloc_root = reloc_root;
4822
4823 if (rc->create_reloc_tree)
4824 ret = clone_backref_node(trans, rc, root, reloc_root);
4825 return ret;
4826}