blob: eb64d4b159e07580bf6b966e216b5b48600ea0c2 [file] [log] [blame]
rjw1f884582022-01-06 17:20:42 +08001/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/blkdev.h>
20#include <linux/module.h>
21#include <linux/buffer_head.h>
22#include <linux/fs.h>
23#include <linux/pagemap.h>
24#include <linux/highmem.h>
25#include <linux/time.h>
26#include <linux/init.h>
27#include <linux/seq_file.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mount.h>
31#include <linux/mpage.h>
32#include <linux/swap.h>
33#include <linux/writeback.h>
34#include <linux/statfs.h>
35#include <linux/compat.h>
36#include <linux/parser.h>
37#include <linux/ctype.h>
38#include <linux/namei.h>
39#include <linux/miscdevice.h>
40#include <linux/magic.h>
41#include <linux/slab.h>
42#include <linux/cleancache.h>
43#include <linux/ratelimit.h>
44#include <linux/btrfs.h>
45#include "delayed-inode.h"
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
50#include "print-tree.h"
51#include "hash.h"
52#include "props.h"
53#include "xattr.h"
54#include "volumes.h"
55#include "export.h"
56#include "compression.h"
57#include "rcu-string.h"
58#include "dev-replace.h"
59#include "free-space-cache.h"
60#include "backref.h"
61#include "tests/btrfs-tests.h"
62
63#include "qgroup.h"
64#include "backref.h"
65#define CREATE_TRACE_POINTS
66#include <trace/events/btrfs.h>
67
68static const struct super_operations btrfs_super_ops;
69static struct file_system_type btrfs_fs_type;
70
71static int btrfs_remount(struct super_block *sb, int *flags, char *data);
72
73const char *btrfs_decode_error(int errno)
74{
75 char *errstr = "unknown";
76
77 switch (errno) {
78 case -EIO:
79 errstr = "IO failure";
80 break;
81 case -ENOMEM:
82 errstr = "Out of memory";
83 break;
84 case -EROFS:
85 errstr = "Readonly filesystem";
86 break;
87 case -EEXIST:
88 errstr = "Object already exists";
89 break;
90 case -ENOSPC:
91 errstr = "No space left";
92 break;
93 case -ENOENT:
94 errstr = "No such entry";
95 break;
96 }
97
98 return errstr;
99}
100
101/* btrfs handle error by forcing the filesystem readonly */
102static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
103{
104 struct super_block *sb = fs_info->sb;
105
106 if (sb_rdonly(sb))
107 return;
108
109 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
110 sb->s_flags |= MS_RDONLY;
111 btrfs_info(fs_info, "forced readonly");
112 /*
113 * Note that a running device replace operation is not
114 * canceled here although there is no way to update
115 * the progress. It would add the risk of a deadlock,
116 * therefore the canceling is omitted. The only penalty
117 * is that some I/O remains active until the procedure
118 * completes. The next time when the filesystem is
119 * mounted writeable again, the device replace
120 * operation continues.
121 */
122 }
123}
124
125/*
126 * __btrfs_handle_fs_error decodes expected errors from the caller and
127 * invokes the approciate error response.
128 */
129__cold
130void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
131 unsigned int line, int errno, const char *fmt, ...)
132{
133 struct super_block *sb = fs_info->sb;
134#ifdef CONFIG_PRINTK
135 const char *errstr;
136#endif
137
138 /*
139 * Special case: if the error is EROFS, and we're already
140 * under MS_RDONLY, then it is safe here.
141 */
142 if (errno == -EROFS && sb_rdonly(sb))
143 return;
144
145#ifdef CONFIG_PRINTK
146 errstr = btrfs_decode_error(errno);
147 if (fmt) {
148 struct va_format vaf;
149 va_list args;
150
151 va_start(args, fmt);
152 vaf.fmt = fmt;
153 vaf.va = &args;
154
155 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 sb->s_id, function, line, errno, errstr, &vaf);
157 va_end(args);
158 } else {
159 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
160 sb->s_id, function, line, errno, errstr);
161 }
162#endif
163
164 /*
165 * Today we only save the error info to memory. Long term we'll
166 * also send it down to the disk
167 */
168 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
169
170 /* Don't go through full error handling during mount */
171 if (sb->s_flags & MS_BORN)
172 btrfs_handle_error(fs_info);
173}
174
175#ifdef CONFIG_PRINTK
176static const char * const logtypes[] = {
177 "emergency",
178 "alert",
179 "critical",
180 "error",
181 "warning",
182 "notice",
183 "info",
184 "debug",
185};
186
187
188/*
189 * Use one ratelimit state per log level so that a flood of less important
190 * messages doesn't cause more important ones to be dropped.
191 */
192static struct ratelimit_state printk_limits[] = {
193 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
194 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
195 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
196 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
197 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
198 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
199 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
200 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
201};
202
203void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
204{
205 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
206 struct va_format vaf;
207 va_list args;
208 int kern_level;
209 const char *type = logtypes[4];
210 struct ratelimit_state *ratelimit = &printk_limits[4];
211
212 va_start(args, fmt);
213
214 while ((kern_level = printk_get_level(fmt)) != 0) {
215 size_t size = printk_skip_level(fmt) - fmt;
216
217 if (kern_level >= '0' && kern_level <= '7') {
218 memcpy(lvl, fmt, size);
219 lvl[size] = '\0';
220 type = logtypes[kern_level - '0'];
221 ratelimit = &printk_limits[kern_level - '0'];
222 }
223 fmt += size;
224 }
225
226 vaf.fmt = fmt;
227 vaf.va = &args;
228
229 if (__ratelimit(ratelimit))
230 printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
231 fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
232
233 va_end(args);
234}
235#endif
236
237/*
238 * We only mark the transaction aborted and then set the file system read-only.
239 * This will prevent new transactions from starting or trying to join this
240 * one.
241 *
242 * This means that error recovery at the call site is limited to freeing
243 * any local memory allocations and passing the error code up without
244 * further cleanup. The transaction should complete as it normally would
245 * in the call path but will return -EIO.
246 *
247 * We'll complete the cleanup in btrfs_end_transaction and
248 * btrfs_commit_transaction.
249 */
250__cold
251void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
252 const char *function,
253 unsigned int line, int errno)
254{
255 struct btrfs_fs_info *fs_info = trans->fs_info;
256
257 trans->aborted = errno;
258 /* Nothing used. The other threads that have joined this
259 * transaction may be able to continue. */
260 if (!trans->dirty && list_empty(&trans->new_bgs)) {
261 const char *errstr;
262
263 errstr = btrfs_decode_error(errno);
264 btrfs_warn(fs_info,
265 "%s:%d: Aborting unused transaction(%s).",
266 function, line, errstr);
267 return;
268 }
269 WRITE_ONCE(trans->transaction->aborted, errno);
270 /* Wake up anybody who may be waiting on this transaction */
271 wake_up(&fs_info->transaction_wait);
272 wake_up(&fs_info->transaction_blocked_wait);
273 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
274}
275/*
276 * __btrfs_panic decodes unexpected, fatal errors from the caller,
277 * issues an alert, and either panics or BUGs, depending on mount options.
278 */
279__cold
280void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
281 unsigned int line, int errno, const char *fmt, ...)
282{
283 char *s_id = "<unknown>";
284 const char *errstr;
285 struct va_format vaf = { .fmt = fmt };
286 va_list args;
287
288 if (fs_info)
289 s_id = fs_info->sb->s_id;
290
291 va_start(args, fmt);
292 vaf.va = &args;
293
294 errstr = btrfs_decode_error(errno);
295 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
296 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
297 s_id, function, line, &vaf, errno, errstr);
298
299 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
300 function, line, &vaf, errno, errstr);
301 va_end(args);
302 /* Caller calls BUG() */
303}
304
305static void btrfs_put_super(struct super_block *sb)
306{
307 close_ctree(btrfs_sb(sb));
308}
309
310enum {
311 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
312 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
313 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
314 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
315 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
316 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
317 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
318 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
319 Opt_skip_balance, Opt_check_integrity,
320 Opt_check_integrity_including_extent_data,
321 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
322 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
323 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
324 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
325 Opt_nologreplay, Opt_norecovery,
326#ifdef CONFIG_BTRFS_DEBUG
327 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
328#endif
329 Opt_err,
330};
331
332static const match_table_t tokens = {
333 {Opt_degraded, "degraded"},
334 {Opt_subvol, "subvol=%s"},
335 {Opt_subvolid, "subvolid=%s"},
336 {Opt_device, "device=%s"},
337 {Opt_nodatasum, "nodatasum"},
338 {Opt_datasum, "datasum"},
339 {Opt_nodatacow, "nodatacow"},
340 {Opt_datacow, "datacow"},
341 {Opt_nobarrier, "nobarrier"},
342 {Opt_barrier, "barrier"},
343 {Opt_max_inline, "max_inline=%s"},
344 {Opt_alloc_start, "alloc_start=%s"},
345 {Opt_thread_pool, "thread_pool=%d"},
346 {Opt_compress, "compress"},
347 {Opt_compress_type, "compress=%s"},
348 {Opt_compress_force, "compress-force"},
349 {Opt_compress_force_type, "compress-force=%s"},
350 {Opt_ssd, "ssd"},
351 {Opt_ssd_spread, "ssd_spread"},
352 {Opt_nossd, "nossd"},
353 {Opt_acl, "acl"},
354 {Opt_noacl, "noacl"},
355 {Opt_notreelog, "notreelog"},
356 {Opt_treelog, "treelog"},
357 {Opt_nologreplay, "nologreplay"},
358 {Opt_norecovery, "norecovery"},
359 {Opt_flushoncommit, "flushoncommit"},
360 {Opt_noflushoncommit, "noflushoncommit"},
361 {Opt_ratio, "metadata_ratio=%d"},
362 {Opt_discard, "discard"},
363 {Opt_nodiscard, "nodiscard"},
364 {Opt_space_cache, "space_cache"},
365 {Opt_space_cache_version, "space_cache=%s"},
366 {Opt_clear_cache, "clear_cache"},
367 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
368 {Opt_enospc_debug, "enospc_debug"},
369 {Opt_noenospc_debug, "noenospc_debug"},
370 {Opt_subvolrootid, "subvolrootid=%d"},
371 {Opt_defrag, "autodefrag"},
372 {Opt_nodefrag, "noautodefrag"},
373 {Opt_inode_cache, "inode_cache"},
374 {Opt_noinode_cache, "noinode_cache"},
375 {Opt_no_space_cache, "nospace_cache"},
376 {Opt_recovery, "recovery"}, /* deprecated */
377 {Opt_usebackuproot, "usebackuproot"},
378 {Opt_skip_balance, "skip_balance"},
379 {Opt_check_integrity, "check_int"},
380 {Opt_check_integrity_including_extent_data, "check_int_data"},
381 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 {Opt_fatal_errors, "fatal_errors=%s"},
384 {Opt_commit_interval, "commit=%d"},
385#ifdef CONFIG_BTRFS_DEBUG
386 {Opt_fragment_data, "fragment=data"},
387 {Opt_fragment_metadata, "fragment=metadata"},
388 {Opt_fragment_all, "fragment=all"},
389#endif
390 {Opt_err, NULL},
391};
392
393/*
394 * Regular mount options parser. Everything that is needed only when
395 * reading in a new superblock is parsed here.
396 * XXX JDM: This needs to be cleaned up for remount.
397 */
398int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
399 unsigned long new_flags)
400{
401 substring_t args[MAX_OPT_ARGS];
402 char *p, *num, *orig = NULL;
403 u64 cache_gen;
404 int intarg;
405 int ret = 0;
406 char *compress_type;
407 bool compress_force = false;
408 enum btrfs_compression_type saved_compress_type;
409 bool saved_compress_force;
410 int no_compress = 0;
411
412 cache_gen = btrfs_super_cache_generation(info->super_copy);
413 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
414 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
415 else if (cache_gen)
416 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
417
418 /*
419 * Even the options are empty, we still need to do extra check
420 * against new flags
421 */
422 if (!options)
423 goto check;
424
425 /*
426 * strsep changes the string, duplicate it because parse_options
427 * gets called twice
428 */
429 options = kstrdup(options, GFP_KERNEL);
430 if (!options)
431 return -ENOMEM;
432
433 orig = options;
434
435 while ((p = strsep(&options, ",")) != NULL) {
436 int token;
437 if (!*p)
438 continue;
439
440 token = match_token(p, tokens, args);
441 switch (token) {
442 case Opt_degraded:
443 btrfs_info(info, "allowing degraded mounts");
444 btrfs_set_opt(info->mount_opt, DEGRADED);
445 break;
446 case Opt_subvol:
447 case Opt_subvolid:
448 case Opt_subvolrootid:
449 case Opt_device:
450 /*
451 * These are parsed by btrfs_parse_early_options
452 * and can be happily ignored here.
453 */
454 break;
455 case Opt_nodatasum:
456 btrfs_set_and_info(info, NODATASUM,
457 "setting nodatasum");
458 break;
459 case Opt_datasum:
460 if (btrfs_test_opt(info, NODATASUM)) {
461 if (btrfs_test_opt(info, NODATACOW))
462 btrfs_info(info,
463 "setting datasum, datacow enabled");
464 else
465 btrfs_info(info, "setting datasum");
466 }
467 btrfs_clear_opt(info->mount_opt, NODATACOW);
468 btrfs_clear_opt(info->mount_opt, NODATASUM);
469 break;
470 case Opt_nodatacow:
471 if (!btrfs_test_opt(info, NODATACOW)) {
472 if (!btrfs_test_opt(info, COMPRESS) ||
473 !btrfs_test_opt(info, FORCE_COMPRESS)) {
474 btrfs_info(info,
475 "setting nodatacow, compression disabled");
476 } else {
477 btrfs_info(info, "setting nodatacow");
478 }
479 }
480 btrfs_clear_opt(info->mount_opt, COMPRESS);
481 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
482 btrfs_set_opt(info->mount_opt, NODATACOW);
483 btrfs_set_opt(info->mount_opt, NODATASUM);
484 break;
485 case Opt_datacow:
486 btrfs_clear_and_info(info, NODATACOW,
487 "setting datacow");
488 break;
489 case Opt_compress_force:
490 case Opt_compress_force_type:
491 compress_force = true;
492 /* Fallthrough */
493 case Opt_compress:
494 case Opt_compress_type:
495 saved_compress_type = btrfs_test_opt(info,
496 COMPRESS) ?
497 info->compress_type : BTRFS_COMPRESS_NONE;
498 saved_compress_force =
499 btrfs_test_opt(info, FORCE_COMPRESS);
500 if (token == Opt_compress ||
501 token == Opt_compress_force ||
502 strncmp(args[0].from, "zlib", 4) == 0) {
503 compress_type = "zlib";
504 info->compress_type = BTRFS_COMPRESS_ZLIB;
505 btrfs_set_opt(info->mount_opt, COMPRESS);
506 btrfs_clear_opt(info->mount_opt, NODATACOW);
507 btrfs_clear_opt(info->mount_opt, NODATASUM);
508 no_compress = 0;
509 } else if (strncmp(args[0].from, "lzo", 3) == 0) {
510 compress_type = "lzo";
511 info->compress_type = BTRFS_COMPRESS_LZO;
512 btrfs_set_opt(info->mount_opt, COMPRESS);
513 btrfs_clear_opt(info->mount_opt, NODATACOW);
514 btrfs_clear_opt(info->mount_opt, NODATASUM);
515 btrfs_set_fs_incompat(info, COMPRESS_LZO);
516 no_compress = 0;
517 } else if (strcmp(args[0].from, "zstd") == 0) {
518 compress_type = "zstd";
519 info->compress_type = BTRFS_COMPRESS_ZSTD;
520 btrfs_set_opt(info->mount_opt, COMPRESS);
521 btrfs_clear_opt(info->mount_opt, NODATACOW);
522 btrfs_clear_opt(info->mount_opt, NODATASUM);
523 btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
524 no_compress = 0;
525 } else if (strncmp(args[0].from, "no", 2) == 0) {
526 compress_type = "no";
527 btrfs_clear_opt(info->mount_opt, COMPRESS);
528 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
529 compress_force = false;
530 no_compress++;
531 } else {
532 ret = -EINVAL;
533 goto out;
534 }
535
536 if (compress_force) {
537 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
538 } else {
539 /*
540 * If we remount from compress-force=xxx to
541 * compress=xxx, we need clear FORCE_COMPRESS
542 * flag, otherwise, there is no way for users
543 * to disable forcible compression separately.
544 */
545 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
546 }
547 if ((btrfs_test_opt(info, COMPRESS) &&
548 (info->compress_type != saved_compress_type ||
549 compress_force != saved_compress_force)) ||
550 (!btrfs_test_opt(info, COMPRESS) &&
551 no_compress == 1)) {
552 btrfs_info(info, "%s %s compression",
553 (compress_force) ? "force" : "use",
554 compress_type);
555 }
556 compress_force = false;
557 break;
558 case Opt_ssd:
559 btrfs_set_and_info(info, SSD,
560 "enabling ssd optimizations");
561 btrfs_clear_opt(info->mount_opt, NOSSD);
562 break;
563 case Opt_ssd_spread:
564 btrfs_set_and_info(info, SSD,
565 "enabling ssd optimizations");
566 btrfs_set_and_info(info, SSD_SPREAD,
567 "using spread ssd allocation scheme");
568 btrfs_clear_opt(info->mount_opt, NOSSD);
569 break;
570 case Opt_nossd:
571 btrfs_set_opt(info->mount_opt, NOSSD);
572 btrfs_clear_and_info(info, SSD,
573 "not using ssd optimizations");
574 btrfs_clear_and_info(info, SSD_SPREAD,
575 "not using spread ssd allocation scheme");
576 break;
577 case Opt_barrier:
578 btrfs_clear_and_info(info, NOBARRIER,
579 "turning on barriers");
580 break;
581 case Opt_nobarrier:
582 btrfs_set_and_info(info, NOBARRIER,
583 "turning off barriers");
584 break;
585 case Opt_thread_pool:
586 ret = match_int(&args[0], &intarg);
587 if (ret) {
588 goto out;
589 } else if (intarg > 0) {
590 info->thread_pool_size = intarg;
591 } else {
592 ret = -EINVAL;
593 goto out;
594 }
595 break;
596 case Opt_max_inline:
597 num = match_strdup(&args[0]);
598 if (num) {
599 info->max_inline = memparse(num, NULL);
600 kfree(num);
601
602 if (info->max_inline) {
603 info->max_inline = min_t(u64,
604 info->max_inline,
605 info->sectorsize);
606 }
607 btrfs_info(info, "max_inline at %llu",
608 info->max_inline);
609 } else {
610 ret = -ENOMEM;
611 goto out;
612 }
613 break;
614 case Opt_alloc_start:
615 btrfs_info(info,
616 "option alloc_start is obsolete, ignored");
617 break;
618 case Opt_acl:
619#ifdef CONFIG_BTRFS_FS_POSIX_ACL
620 info->sb->s_flags |= MS_POSIXACL;
621 break;
622#else
623 btrfs_err(info, "support for ACL not compiled in!");
624 ret = -EINVAL;
625 goto out;
626#endif
627 case Opt_noacl:
628 info->sb->s_flags &= ~MS_POSIXACL;
629 break;
630 case Opt_notreelog:
631 btrfs_set_and_info(info, NOTREELOG,
632 "disabling tree log");
633 break;
634 case Opt_treelog:
635 btrfs_clear_and_info(info, NOTREELOG,
636 "enabling tree log");
637 break;
638 case Opt_norecovery:
639 case Opt_nologreplay:
640 btrfs_set_and_info(info, NOLOGREPLAY,
641 "disabling log replay at mount time");
642 break;
643 case Opt_flushoncommit:
644 btrfs_set_and_info(info, FLUSHONCOMMIT,
645 "turning on flush-on-commit");
646 break;
647 case Opt_noflushoncommit:
648 btrfs_clear_and_info(info, FLUSHONCOMMIT,
649 "turning off flush-on-commit");
650 break;
651 case Opt_ratio:
652 ret = match_int(&args[0], &intarg);
653 if (ret) {
654 goto out;
655 } else if (intarg >= 0) {
656 info->metadata_ratio = intarg;
657 btrfs_info(info, "metadata ratio %d",
658 info->metadata_ratio);
659 } else {
660 ret = -EINVAL;
661 goto out;
662 }
663 break;
664 case Opt_discard:
665 btrfs_set_and_info(info, DISCARD,
666 "turning on discard");
667 break;
668 case Opt_nodiscard:
669 btrfs_clear_and_info(info, DISCARD,
670 "turning off discard");
671 break;
672 case Opt_space_cache:
673 case Opt_space_cache_version:
674 if (token == Opt_space_cache ||
675 strcmp(args[0].from, "v1") == 0) {
676 btrfs_clear_opt(info->mount_opt,
677 FREE_SPACE_TREE);
678 btrfs_set_and_info(info, SPACE_CACHE,
679 "enabling disk space caching");
680 } else if (strcmp(args[0].from, "v2") == 0) {
681 btrfs_clear_opt(info->mount_opt,
682 SPACE_CACHE);
683 btrfs_set_and_info(info, FREE_SPACE_TREE,
684 "enabling free space tree");
685 } else {
686 ret = -EINVAL;
687 goto out;
688 }
689 break;
690 case Opt_rescan_uuid_tree:
691 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
692 break;
693 case Opt_no_space_cache:
694 if (btrfs_test_opt(info, SPACE_CACHE)) {
695 btrfs_clear_and_info(info, SPACE_CACHE,
696 "disabling disk space caching");
697 }
698 if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
699 btrfs_clear_and_info(info, FREE_SPACE_TREE,
700 "disabling free space tree");
701 }
702 break;
703 case Opt_inode_cache:
704 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
705 "enabling inode map caching");
706 break;
707 case Opt_noinode_cache:
708 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
709 "disabling inode map caching");
710 break;
711 case Opt_clear_cache:
712 btrfs_set_and_info(info, CLEAR_CACHE,
713 "force clearing of disk cache");
714 break;
715 case Opt_user_subvol_rm_allowed:
716 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
717 break;
718 case Opt_enospc_debug:
719 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
720 break;
721 case Opt_noenospc_debug:
722 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
723 break;
724 case Opt_defrag:
725 btrfs_set_and_info(info, AUTO_DEFRAG,
726 "enabling auto defrag");
727 break;
728 case Opt_nodefrag:
729 btrfs_clear_and_info(info, AUTO_DEFRAG,
730 "disabling auto defrag");
731 break;
732 case Opt_recovery:
733 btrfs_warn(info,
734 "'recovery' is deprecated, use 'usebackuproot' instead");
735 case Opt_usebackuproot:
736 btrfs_info(info,
737 "trying to use backup root at mount time");
738 btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
739 break;
740 case Opt_skip_balance:
741 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
742 break;
743#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
744 case Opt_check_integrity_including_extent_data:
745 btrfs_info(info,
746 "enabling check integrity including extent data");
747 btrfs_set_opt(info->mount_opt,
748 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
749 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
750 break;
751 case Opt_check_integrity:
752 btrfs_info(info, "enabling check integrity");
753 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
754 break;
755 case Opt_check_integrity_print_mask:
756 ret = match_int(&args[0], &intarg);
757 if (ret) {
758 goto out;
759 } else if (intarg >= 0) {
760 info->check_integrity_print_mask = intarg;
761 btrfs_info(info,
762 "check_integrity_print_mask 0x%x",
763 info->check_integrity_print_mask);
764 } else {
765 ret = -EINVAL;
766 goto out;
767 }
768 break;
769#else
770 case Opt_check_integrity_including_extent_data:
771 case Opt_check_integrity:
772 case Opt_check_integrity_print_mask:
773 btrfs_err(info,
774 "support for check_integrity* not compiled in!");
775 ret = -EINVAL;
776 goto out;
777#endif
778 case Opt_fatal_errors:
779 if (strcmp(args[0].from, "panic") == 0)
780 btrfs_set_opt(info->mount_opt,
781 PANIC_ON_FATAL_ERROR);
782 else if (strcmp(args[0].from, "bug") == 0)
783 btrfs_clear_opt(info->mount_opt,
784 PANIC_ON_FATAL_ERROR);
785 else {
786 ret = -EINVAL;
787 goto out;
788 }
789 break;
790 case Opt_commit_interval:
791 intarg = 0;
792 ret = match_int(&args[0], &intarg);
793 if (ret < 0) {
794 btrfs_err(info, "invalid commit interval");
795 ret = -EINVAL;
796 goto out;
797 }
798 if (intarg > 0) {
799 if (intarg > 300) {
800 btrfs_warn(info,
801 "excessive commit interval %d",
802 intarg);
803 }
804 info->commit_interval = intarg;
805 } else {
806 btrfs_info(info,
807 "using default commit interval %ds",
808 BTRFS_DEFAULT_COMMIT_INTERVAL);
809 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
810 }
811 break;
812#ifdef CONFIG_BTRFS_DEBUG
813 case Opt_fragment_all:
814 btrfs_info(info, "fragmenting all space");
815 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
816 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
817 break;
818 case Opt_fragment_metadata:
819 btrfs_info(info, "fragmenting metadata");
820 btrfs_set_opt(info->mount_opt,
821 FRAGMENT_METADATA);
822 break;
823 case Opt_fragment_data:
824 btrfs_info(info, "fragmenting data");
825 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
826 break;
827#endif
828 case Opt_err:
829 btrfs_info(info, "unrecognized mount option '%s'", p);
830 ret = -EINVAL;
831 goto out;
832 default:
833 break;
834 }
835 }
836check:
837 /*
838 * Extra check for current option against current flag
839 */
840 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
841 btrfs_err(info,
842 "nologreplay must be used with ro mount option");
843 ret = -EINVAL;
844 }
845out:
846 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
847 !btrfs_test_opt(info, FREE_SPACE_TREE) &&
848 !btrfs_test_opt(info, CLEAR_CACHE)) {
849 btrfs_err(info, "cannot disable free space tree");
850 ret = -EINVAL;
851
852 }
853 if (!ret && btrfs_test_opt(info, SPACE_CACHE))
854 btrfs_info(info, "disk space caching is enabled");
855 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
856 btrfs_info(info, "using free space tree");
857 kfree(orig);
858 return ret;
859}
860
861/*
862 * Parse mount options that are required early in the mount process.
863 *
864 * All other options will be parsed on much later in the mount process and
865 * only when we need to allocate a new super block.
866 */
867static int btrfs_parse_early_options(const char *options, fmode_t flags,
868 void *holder, char **subvol_name, u64 *subvol_objectid,
869 struct btrfs_fs_devices **fs_devices)
870{
871 substring_t args[MAX_OPT_ARGS];
872 char *device_name, *opts, *orig, *p;
873 char *num = NULL;
874 int error = 0;
875
876 if (!options)
877 return 0;
878
879 /*
880 * strsep changes the string, duplicate it because parse_options
881 * gets called twice
882 */
883 opts = kstrdup(options, GFP_KERNEL);
884 if (!opts)
885 return -ENOMEM;
886 orig = opts;
887
888 while ((p = strsep(&opts, ",")) != NULL) {
889 int token;
890 if (!*p)
891 continue;
892
893 token = match_token(p, tokens, args);
894 switch (token) {
895 case Opt_subvol:
896 kfree(*subvol_name);
897 *subvol_name = match_strdup(&args[0]);
898 if (!*subvol_name) {
899 error = -ENOMEM;
900 goto out;
901 }
902 break;
903 case Opt_subvolid:
904 num = match_strdup(&args[0]);
905 if (num) {
906 *subvol_objectid = memparse(num, NULL);
907 kfree(num);
908 /* we want the original fs_tree */
909 if (!*subvol_objectid)
910 *subvol_objectid =
911 BTRFS_FS_TREE_OBJECTID;
912 } else {
913 error = -EINVAL;
914 goto out;
915 }
916 break;
917 case Opt_subvolrootid:
918 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
919 break;
920 case Opt_device:
921 device_name = match_strdup(&args[0]);
922 if (!device_name) {
923 error = -ENOMEM;
924 goto out;
925 }
926 error = btrfs_scan_one_device(device_name,
927 flags, holder, fs_devices);
928 kfree(device_name);
929 if (error)
930 goto out;
931 break;
932 default:
933 break;
934 }
935 }
936
937out:
938 kfree(orig);
939 return error;
940}
941
942char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
943 u64 subvol_objectid)
944{
945 struct btrfs_root *root = fs_info->tree_root;
946 struct btrfs_root *fs_root;
947 struct btrfs_root_ref *root_ref;
948 struct btrfs_inode_ref *inode_ref;
949 struct btrfs_key key;
950 struct btrfs_path *path = NULL;
951 char *name = NULL, *ptr;
952 u64 dirid;
953 int len;
954 int ret;
955
956 path = btrfs_alloc_path();
957 if (!path) {
958 ret = -ENOMEM;
959 goto err;
960 }
961 path->leave_spinning = 1;
962
963 name = kmalloc(PATH_MAX, GFP_KERNEL);
964 if (!name) {
965 ret = -ENOMEM;
966 goto err;
967 }
968 ptr = name + PATH_MAX - 1;
969 ptr[0] = '\0';
970
971 /*
972 * Walk up the subvolume trees in the tree of tree roots by root
973 * backrefs until we hit the top-level subvolume.
974 */
975 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
976 key.objectid = subvol_objectid;
977 key.type = BTRFS_ROOT_BACKREF_KEY;
978 key.offset = (u64)-1;
979
980 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
981 if (ret < 0) {
982 goto err;
983 } else if (ret > 0) {
984 ret = btrfs_previous_item(root, path, subvol_objectid,
985 BTRFS_ROOT_BACKREF_KEY);
986 if (ret < 0) {
987 goto err;
988 } else if (ret > 0) {
989 ret = -ENOENT;
990 goto err;
991 }
992 }
993
994 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
995 subvol_objectid = key.offset;
996
997 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
998 struct btrfs_root_ref);
999 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1000 ptr -= len + 1;
1001 if (ptr < name) {
1002 ret = -ENAMETOOLONG;
1003 goto err;
1004 }
1005 read_extent_buffer(path->nodes[0], ptr + 1,
1006 (unsigned long)(root_ref + 1), len);
1007 ptr[0] = '/';
1008 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1009 btrfs_release_path(path);
1010
1011 key.objectid = subvol_objectid;
1012 key.type = BTRFS_ROOT_ITEM_KEY;
1013 key.offset = (u64)-1;
1014 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1015 if (IS_ERR(fs_root)) {
1016 ret = PTR_ERR(fs_root);
1017 goto err;
1018 }
1019
1020 /*
1021 * Walk up the filesystem tree by inode refs until we hit the
1022 * root directory.
1023 */
1024 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1025 key.objectid = dirid;
1026 key.type = BTRFS_INODE_REF_KEY;
1027 key.offset = (u64)-1;
1028
1029 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1030 if (ret < 0) {
1031 goto err;
1032 } else if (ret > 0) {
1033 ret = btrfs_previous_item(fs_root, path, dirid,
1034 BTRFS_INODE_REF_KEY);
1035 if (ret < 0) {
1036 goto err;
1037 } else if (ret > 0) {
1038 ret = -ENOENT;
1039 goto err;
1040 }
1041 }
1042
1043 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1044 dirid = key.offset;
1045
1046 inode_ref = btrfs_item_ptr(path->nodes[0],
1047 path->slots[0],
1048 struct btrfs_inode_ref);
1049 len = btrfs_inode_ref_name_len(path->nodes[0],
1050 inode_ref);
1051 ptr -= len + 1;
1052 if (ptr < name) {
1053 ret = -ENAMETOOLONG;
1054 goto err;
1055 }
1056 read_extent_buffer(path->nodes[0], ptr + 1,
1057 (unsigned long)(inode_ref + 1), len);
1058 ptr[0] = '/';
1059 btrfs_release_path(path);
1060 }
1061 }
1062
1063 btrfs_free_path(path);
1064 if (ptr == name + PATH_MAX - 1) {
1065 name[0] = '/';
1066 name[1] = '\0';
1067 } else {
1068 memmove(name, ptr, name + PATH_MAX - ptr);
1069 }
1070 return name;
1071
1072err:
1073 btrfs_free_path(path);
1074 kfree(name);
1075 return ERR_PTR(ret);
1076}
1077
1078static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1079{
1080 struct btrfs_root *root = fs_info->tree_root;
1081 struct btrfs_dir_item *di;
1082 struct btrfs_path *path;
1083 struct btrfs_key location;
1084 u64 dir_id;
1085
1086 path = btrfs_alloc_path();
1087 if (!path)
1088 return -ENOMEM;
1089 path->leave_spinning = 1;
1090
1091 /*
1092 * Find the "default" dir item which points to the root item that we
1093 * will mount by default if we haven't been given a specific subvolume
1094 * to mount.
1095 */
1096 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1097 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1098 if (IS_ERR(di)) {
1099 btrfs_free_path(path);
1100 return PTR_ERR(di);
1101 }
1102 if (!di) {
1103 /*
1104 * Ok the default dir item isn't there. This is weird since
1105 * it's always been there, but don't freak out, just try and
1106 * mount the top-level subvolume.
1107 */
1108 btrfs_free_path(path);
1109 *objectid = BTRFS_FS_TREE_OBJECTID;
1110 return 0;
1111 }
1112
1113 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1114 btrfs_free_path(path);
1115 *objectid = location.objectid;
1116 return 0;
1117}
1118
1119static int btrfs_fill_super(struct super_block *sb,
1120 struct btrfs_fs_devices *fs_devices,
1121 void *data)
1122{
1123 struct inode *inode;
1124 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1125 struct btrfs_key key;
1126 int err;
1127
1128 sb->s_maxbytes = MAX_LFS_FILESIZE;
1129 sb->s_magic = BTRFS_SUPER_MAGIC;
1130 sb->s_op = &btrfs_super_ops;
1131 sb->s_d_op = &btrfs_dentry_operations;
1132 sb->s_export_op = &btrfs_export_ops;
1133 sb->s_xattr = btrfs_xattr_handlers;
1134 sb->s_time_gran = 1;
1135#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1136 sb->s_flags |= MS_POSIXACL;
1137#endif
1138 sb->s_flags |= SB_I_VERSION;
1139 sb->s_iflags |= SB_I_CGROUPWB;
1140
1141 err = super_setup_bdi(sb);
1142 if (err) {
1143 btrfs_err(fs_info, "super_setup_bdi failed");
1144 return err;
1145 }
1146
1147 err = open_ctree(sb, fs_devices, (char *)data);
1148 if (err) {
1149 btrfs_err(fs_info, "open_ctree failed");
1150 return err;
1151 }
1152
1153 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1154 key.type = BTRFS_INODE_ITEM_KEY;
1155 key.offset = 0;
1156 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1157 if (IS_ERR(inode)) {
1158 err = PTR_ERR(inode);
1159 goto fail_close;
1160 }
1161
1162 sb->s_root = d_make_root(inode);
1163 if (!sb->s_root) {
1164 err = -ENOMEM;
1165 goto fail_close;
1166 }
1167
1168 cleancache_init_fs(sb);
1169 sb->s_flags |= MS_ACTIVE;
1170 return 0;
1171
1172fail_close:
1173 close_ctree(fs_info);
1174 return err;
1175}
1176
1177int btrfs_sync_fs(struct super_block *sb, int wait)
1178{
1179 struct btrfs_trans_handle *trans;
1180 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1181 struct btrfs_root *root = fs_info->tree_root;
1182
1183 trace_btrfs_sync_fs(fs_info, wait);
1184
1185 if (!wait) {
1186 filemap_flush(fs_info->btree_inode->i_mapping);
1187 return 0;
1188 }
1189
1190 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1191
1192 trans = btrfs_attach_transaction_barrier(root);
1193 if (IS_ERR(trans)) {
1194 /* no transaction, don't bother */
1195 if (PTR_ERR(trans) == -ENOENT) {
1196 /*
1197 * Exit unless we have some pending changes
1198 * that need to go through commit
1199 */
1200 if (fs_info->pending_changes == 0)
1201 return 0;
1202 /*
1203 * A non-blocking test if the fs is frozen. We must not
1204 * start a new transaction here otherwise a deadlock
1205 * happens. The pending operations are delayed to the
1206 * next commit after thawing.
1207 */
1208 if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1209 __sb_end_write(sb, SB_FREEZE_WRITE);
1210 else
1211 return 0;
1212 trans = btrfs_start_transaction(root, 0);
1213 }
1214 if (IS_ERR(trans))
1215 return PTR_ERR(trans);
1216 }
1217 return btrfs_commit_transaction(trans);
1218}
1219
1220static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1221{
1222 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1223 char *compress_type;
1224 const char *subvol_name;
1225
1226 if (btrfs_test_opt(info, DEGRADED))
1227 seq_puts(seq, ",degraded");
1228 if (btrfs_test_opt(info, NODATASUM))
1229 seq_puts(seq, ",nodatasum");
1230 if (btrfs_test_opt(info, NODATACOW))
1231 seq_puts(seq, ",nodatacow");
1232 if (btrfs_test_opt(info, NOBARRIER))
1233 seq_puts(seq, ",nobarrier");
1234 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1235 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1236 if (info->thread_pool_size != min_t(unsigned long,
1237 num_online_cpus() + 2, 8))
1238 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1239 if (btrfs_test_opt(info, COMPRESS)) {
1240 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1241 compress_type = "zlib";
1242 else if (info->compress_type == BTRFS_COMPRESS_LZO)
1243 compress_type = "lzo";
1244 else
1245 compress_type = "zstd";
1246 if (btrfs_test_opt(info, FORCE_COMPRESS))
1247 seq_printf(seq, ",compress-force=%s", compress_type);
1248 else
1249 seq_printf(seq, ",compress=%s", compress_type);
1250 }
1251 if (btrfs_test_opt(info, NOSSD))
1252 seq_puts(seq, ",nossd");
1253 if (btrfs_test_opt(info, SSD_SPREAD))
1254 seq_puts(seq, ",ssd_spread");
1255 else if (btrfs_test_opt(info, SSD))
1256 seq_puts(seq, ",ssd");
1257 if (btrfs_test_opt(info, NOTREELOG))
1258 seq_puts(seq, ",notreelog");
1259 if (btrfs_test_opt(info, NOLOGREPLAY))
1260 seq_puts(seq, ",nologreplay");
1261 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1262 seq_puts(seq, ",flushoncommit");
1263 if (btrfs_test_opt(info, DISCARD))
1264 seq_puts(seq, ",discard");
1265 if (!(info->sb->s_flags & MS_POSIXACL))
1266 seq_puts(seq, ",noacl");
1267 if (btrfs_test_opt(info, SPACE_CACHE))
1268 seq_puts(seq, ",space_cache");
1269 else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1270 seq_puts(seq, ",space_cache=v2");
1271 else
1272 seq_puts(seq, ",nospace_cache");
1273 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1274 seq_puts(seq, ",rescan_uuid_tree");
1275 if (btrfs_test_opt(info, CLEAR_CACHE))
1276 seq_puts(seq, ",clear_cache");
1277 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1278 seq_puts(seq, ",user_subvol_rm_allowed");
1279 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1280 seq_puts(seq, ",enospc_debug");
1281 if (btrfs_test_opt(info, AUTO_DEFRAG))
1282 seq_puts(seq, ",autodefrag");
1283 if (btrfs_test_opt(info, INODE_MAP_CACHE))
1284 seq_puts(seq, ",inode_cache");
1285 if (btrfs_test_opt(info, SKIP_BALANCE))
1286 seq_puts(seq, ",skip_balance");
1287#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1288 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1289 seq_puts(seq, ",check_int_data");
1290 else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1291 seq_puts(seq, ",check_int");
1292 if (info->check_integrity_print_mask)
1293 seq_printf(seq, ",check_int_print_mask=%d",
1294 info->check_integrity_print_mask);
1295#endif
1296 if (info->metadata_ratio)
1297 seq_printf(seq, ",metadata_ratio=%d",
1298 info->metadata_ratio);
1299 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1300 seq_puts(seq, ",fatal_errors=panic");
1301 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1302 seq_printf(seq, ",commit=%d", info->commit_interval);
1303#ifdef CONFIG_BTRFS_DEBUG
1304 if (btrfs_test_opt(info, FRAGMENT_DATA))
1305 seq_puts(seq, ",fragment=data");
1306 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1307 seq_puts(seq, ",fragment=metadata");
1308#endif
1309 seq_printf(seq, ",subvolid=%llu",
1310 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1311 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1312 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1313 if (!IS_ERR(subvol_name)) {
1314 seq_puts(seq, ",subvol=");
1315 seq_escape(seq, subvol_name, " \t\n\\");
1316 kfree(subvol_name);
1317 }
1318 return 0;
1319}
1320
1321static int btrfs_test_super(struct super_block *s, void *data)
1322{
1323 struct btrfs_fs_info *p = data;
1324 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1325
1326 return fs_info->fs_devices == p->fs_devices;
1327}
1328
1329static int btrfs_set_super(struct super_block *s, void *data)
1330{
1331 int err = set_anon_super(s, data);
1332 if (!err)
1333 s->s_fs_info = data;
1334 return err;
1335}
1336
1337/*
1338 * subvolumes are identified by ino 256
1339 */
1340static inline int is_subvolume_inode(struct inode *inode)
1341{
1342 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1343 return 1;
1344 return 0;
1345}
1346
1347/*
1348 * This will add subvolid=0 to the argument string while removing any subvol=
1349 * and subvolid= arguments to make sure we get the top-level root for path
1350 * walking to the subvol we want.
1351 */
1352static char *setup_root_args(char *args)
1353{
1354 char *buf, *dst, *sep;
1355
1356 if (!args)
1357 return kstrdup("subvolid=0", GFP_KERNEL);
1358
1359 /* The worst case is that we add ",subvolid=0" to the end. */
1360 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1,
1361 GFP_KERNEL);
1362 if (!buf)
1363 return NULL;
1364
1365 while (1) {
1366 sep = strchrnul(args, ',');
1367 if (!strstarts(args, "subvol=") &&
1368 !strstarts(args, "subvolid=")) {
1369 memcpy(dst, args, sep - args);
1370 dst += sep - args;
1371 *dst++ = ',';
1372 }
1373 if (*sep)
1374 args = sep + 1;
1375 else
1376 break;
1377 }
1378 strcpy(dst, "subvolid=0");
1379
1380 return buf;
1381}
1382
1383static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1384 int flags, const char *device_name,
1385 char *data)
1386{
1387 struct dentry *root;
1388 struct vfsmount *mnt = NULL;
1389 char *newargs;
1390 int ret;
1391
1392 newargs = setup_root_args(data);
1393 if (!newargs) {
1394 root = ERR_PTR(-ENOMEM);
1395 goto out;
1396 }
1397
1398 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1399 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1400 if (flags & MS_RDONLY) {
1401 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1402 device_name, newargs);
1403 } else {
1404 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1405 device_name, newargs);
1406 if (IS_ERR(mnt)) {
1407 root = ERR_CAST(mnt);
1408 mnt = NULL;
1409 goto out;
1410 }
1411
1412 down_write(&mnt->mnt_sb->s_umount);
1413 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1414 up_write(&mnt->mnt_sb->s_umount);
1415 if (ret < 0) {
1416 root = ERR_PTR(ret);
1417 goto out;
1418 }
1419 }
1420 }
1421 if (IS_ERR(mnt)) {
1422 root = ERR_CAST(mnt);
1423 mnt = NULL;
1424 goto out;
1425 }
1426
1427 if (!subvol_name) {
1428 if (!subvol_objectid) {
1429 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1430 &subvol_objectid);
1431 if (ret) {
1432 root = ERR_PTR(ret);
1433 goto out;
1434 }
1435 }
1436 subvol_name = btrfs_get_subvol_name_from_objectid(
1437 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1438 if (IS_ERR(subvol_name)) {
1439 root = ERR_CAST(subvol_name);
1440 subvol_name = NULL;
1441 goto out;
1442 }
1443
1444 }
1445
1446 root = mount_subtree(mnt, subvol_name);
1447 /* mount_subtree() drops our reference on the vfsmount. */
1448 mnt = NULL;
1449
1450 if (!IS_ERR(root)) {
1451 struct super_block *s = root->d_sb;
1452 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1453 struct inode *root_inode = d_inode(root);
1454 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1455
1456 ret = 0;
1457 if (!is_subvolume_inode(root_inode)) {
1458 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1459 subvol_name);
1460 ret = -EINVAL;
1461 }
1462 if (subvol_objectid && root_objectid != subvol_objectid) {
1463 /*
1464 * This will also catch a race condition where a
1465 * subvolume which was passed by ID is renamed and
1466 * another subvolume is renamed over the old location.
1467 */
1468 btrfs_err(fs_info,
1469 "subvol '%s' does not match subvolid %llu",
1470 subvol_name, subvol_objectid);
1471 ret = -EINVAL;
1472 }
1473 if (ret) {
1474 dput(root);
1475 root = ERR_PTR(ret);
1476 deactivate_locked_super(s);
1477 }
1478 }
1479
1480out:
1481 mntput(mnt);
1482 kfree(newargs);
1483 kfree(subvol_name);
1484 return root;
1485}
1486
1487static int parse_security_options(char *orig_opts,
1488 struct security_mnt_opts *sec_opts)
1489{
1490 char *secdata = NULL;
1491 int ret = 0;
1492
1493 secdata = alloc_secdata();
1494 if (!secdata)
1495 return -ENOMEM;
1496 ret = security_sb_copy_data(orig_opts, secdata);
1497 if (ret) {
1498 free_secdata(secdata);
1499 return ret;
1500 }
1501 ret = security_sb_parse_opts_str(secdata, sec_opts);
1502 free_secdata(secdata);
1503 return ret;
1504}
1505
1506static int setup_security_options(struct btrfs_fs_info *fs_info,
1507 struct super_block *sb,
1508 struct security_mnt_opts *sec_opts)
1509{
1510 int ret = 0;
1511
1512 /*
1513 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1514 * is valid.
1515 */
1516 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1517 if (ret)
1518 return ret;
1519
1520#ifdef CONFIG_SECURITY
1521 if (!fs_info->security_opts.num_mnt_opts) {
1522 /* first time security setup, copy sec_opts to fs_info */
1523 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1524 } else {
1525 /*
1526 * Since SELinux (the only one supporting security_mnt_opts)
1527 * does NOT support changing context during remount/mount of
1528 * the same sb, this must be the same or part of the same
1529 * security options, just free it.
1530 */
1531 security_free_mnt_opts(sec_opts);
1532 }
1533#endif
1534 return ret;
1535}
1536
1537/*
1538 * Find a superblock for the given device / mount point.
1539 *
1540 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1541 * for multiple device setup. Make sure to keep it in sync.
1542 */
1543static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1544 const char *device_name, void *data)
1545{
1546 struct block_device *bdev = NULL;
1547 struct super_block *s;
1548 struct btrfs_fs_devices *fs_devices = NULL;
1549 struct btrfs_fs_info *fs_info = NULL;
1550 struct security_mnt_opts new_sec_opts;
1551 fmode_t mode = FMODE_READ;
1552 char *subvol_name = NULL;
1553 u64 subvol_objectid = 0;
1554 int error = 0;
1555
1556 if (!(flags & MS_RDONLY))
1557 mode |= FMODE_WRITE;
1558
1559 error = btrfs_parse_early_options(data, mode, fs_type,
1560 &subvol_name, &subvol_objectid,
1561 &fs_devices);
1562 if (error) {
1563 kfree(subvol_name);
1564 return ERR_PTR(error);
1565 }
1566
1567 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1568 /* mount_subvol() will free subvol_name. */
1569 return mount_subvol(subvol_name, subvol_objectid, flags,
1570 device_name, data);
1571 }
1572
1573 security_init_mnt_opts(&new_sec_opts);
1574 if (data) {
1575 error = parse_security_options(data, &new_sec_opts);
1576 if (error)
1577 return ERR_PTR(error);
1578 }
1579
1580 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1581 if (error)
1582 goto error_sec_opts;
1583
1584 /*
1585 * Setup a dummy root and fs_info for test/set super. This is because
1586 * we don't actually fill this stuff out until open_ctree, but we need
1587 * it for searching for existing supers, so this lets us do that and
1588 * then open_ctree will properly initialize everything later.
1589 */
1590 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1591 if (!fs_info) {
1592 error = -ENOMEM;
1593 goto error_sec_opts;
1594 }
1595
1596 fs_info->fs_devices = fs_devices;
1597
1598 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1599 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1600 security_init_mnt_opts(&fs_info->security_opts);
1601 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1602 error = -ENOMEM;
1603 goto error_fs_info;
1604 }
1605
1606 error = btrfs_open_devices(fs_devices, mode, fs_type);
1607 if (error)
1608 goto error_fs_info;
1609
1610 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1611 error = -EACCES;
1612 goto error_close_devices;
1613 }
1614
1615 bdev = fs_devices->latest_bdev;
1616 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1617 fs_info);
1618 if (IS_ERR(s)) {
1619 error = PTR_ERR(s);
1620 goto error_close_devices;
1621 }
1622
1623 if (s->s_root) {
1624 btrfs_close_devices(fs_devices);
1625 free_fs_info(fs_info);
1626 if ((flags ^ s->s_flags) & MS_RDONLY)
1627 error = -EBUSY;
1628 } else {
1629 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1630 btrfs_sb(s)->bdev_holder = fs_type;
1631 error = btrfs_fill_super(s, fs_devices, data);
1632 }
1633 if (error) {
1634 deactivate_locked_super(s);
1635 goto error_sec_opts;
1636 }
1637
1638 fs_info = btrfs_sb(s);
1639 error = setup_security_options(fs_info, s, &new_sec_opts);
1640 if (error) {
1641 deactivate_locked_super(s);
1642 goto error_sec_opts;
1643 }
1644
1645 return dget(s->s_root);
1646
1647error_close_devices:
1648 btrfs_close_devices(fs_devices);
1649error_fs_info:
1650 free_fs_info(fs_info);
1651error_sec_opts:
1652 security_free_mnt_opts(&new_sec_opts);
1653 return ERR_PTR(error);
1654}
1655
1656static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1657 int new_pool_size, int old_pool_size)
1658{
1659 if (new_pool_size == old_pool_size)
1660 return;
1661
1662 fs_info->thread_pool_size = new_pool_size;
1663
1664 btrfs_info(fs_info, "resize thread pool %d -> %d",
1665 old_pool_size, new_pool_size);
1666
1667 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1668 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1669 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1670 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1671 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1672 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1673 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1674 new_pool_size);
1675 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1676 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1677 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1678 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1679 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1680 new_pool_size);
1681}
1682
1683static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1684{
1685 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1686}
1687
1688static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1689 unsigned long old_opts, int flags)
1690{
1691 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1692 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1693 (flags & MS_RDONLY))) {
1694 /* wait for any defraggers to finish */
1695 wait_event(fs_info->transaction_wait,
1696 (atomic_read(&fs_info->defrag_running) == 0));
1697 if (flags & MS_RDONLY)
1698 sync_filesystem(fs_info->sb);
1699 }
1700}
1701
1702static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1703 unsigned long old_opts)
1704{
1705 /*
1706 * We need to cleanup all defragable inodes if the autodefragment is
1707 * close or the filesystem is read only.
1708 */
1709 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1710 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1711 btrfs_cleanup_defrag_inodes(fs_info);
1712 }
1713
1714 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1715}
1716
1717static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1718{
1719 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1720 struct btrfs_root *root = fs_info->tree_root;
1721 unsigned old_flags = sb->s_flags;
1722 unsigned long old_opts = fs_info->mount_opt;
1723 unsigned long old_compress_type = fs_info->compress_type;
1724 u64 old_max_inline = fs_info->max_inline;
1725 int old_thread_pool_size = fs_info->thread_pool_size;
1726 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1727 int ret;
1728
1729 sync_filesystem(sb);
1730 btrfs_remount_prepare(fs_info);
1731
1732 if (data) {
1733 struct security_mnt_opts new_sec_opts;
1734
1735 security_init_mnt_opts(&new_sec_opts);
1736 ret = parse_security_options(data, &new_sec_opts);
1737 if (ret)
1738 goto restore;
1739 ret = setup_security_options(fs_info, sb,
1740 &new_sec_opts);
1741 if (ret) {
1742 security_free_mnt_opts(&new_sec_opts);
1743 goto restore;
1744 }
1745 }
1746
1747 ret = btrfs_parse_options(fs_info, data, *flags);
1748 if (ret) {
1749 ret = -EINVAL;
1750 goto restore;
1751 }
1752
1753 btrfs_remount_begin(fs_info, old_opts, *flags);
1754 btrfs_resize_thread_pool(fs_info,
1755 fs_info->thread_pool_size, old_thread_pool_size);
1756
1757 if ((bool)(*flags & MS_RDONLY) == sb_rdonly(sb))
1758 goto out;
1759
1760 if (*flags & MS_RDONLY) {
1761 /*
1762 * this also happens on 'umount -rf' or on shutdown, when
1763 * the filesystem is busy.
1764 */
1765 cancel_work_sync(&fs_info->async_reclaim_work);
1766
1767 /* wait for the uuid_scan task to finish */
1768 down(&fs_info->uuid_tree_rescan_sem);
1769 /* avoid complains from lockdep et al. */
1770 up(&fs_info->uuid_tree_rescan_sem);
1771
1772 sb->s_flags |= MS_RDONLY;
1773
1774 /*
1775 * Setting MS_RDONLY will put the cleaner thread to
1776 * sleep at the next loop if it's already active.
1777 * If it's already asleep, we'll leave unused block
1778 * groups on disk until we're mounted read-write again
1779 * unless we clean them up here.
1780 */
1781 btrfs_delete_unused_bgs(fs_info);
1782
1783 btrfs_dev_replace_suspend_for_unmount(fs_info);
1784 btrfs_scrub_cancel(fs_info);
1785 btrfs_pause_balance(fs_info);
1786
1787 ret = btrfs_commit_super(fs_info);
1788 if (ret)
1789 goto restore;
1790 } else {
1791 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1792 btrfs_err(fs_info,
1793 "Remounting read-write after error is not allowed");
1794 ret = -EINVAL;
1795 goto restore;
1796 }
1797 if (fs_info->fs_devices->rw_devices == 0) {
1798 ret = -EACCES;
1799 goto restore;
1800 }
1801
1802 if (!btrfs_check_rw_degradable(fs_info)) {
1803 btrfs_warn(fs_info,
1804 "too many missing devices, writeable remount is not allowed");
1805 ret = -EACCES;
1806 goto restore;
1807 }
1808
1809 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1810 btrfs_warn(fs_info,
1811 "mount required to replay tree-log, cannot remount read-write");
1812 ret = -EINVAL;
1813 goto restore;
1814 }
1815
1816 ret = btrfs_cleanup_fs_roots(fs_info);
1817 if (ret)
1818 goto restore;
1819
1820 /* recover relocation */
1821 mutex_lock(&fs_info->cleaner_mutex);
1822 ret = btrfs_recover_relocation(root);
1823 mutex_unlock(&fs_info->cleaner_mutex);
1824 if (ret)
1825 goto restore;
1826
1827 ret = btrfs_resume_balance_async(fs_info);
1828 if (ret)
1829 goto restore;
1830
1831 ret = btrfs_resume_dev_replace_async(fs_info);
1832 if (ret) {
1833 btrfs_warn(fs_info, "failed to resume dev_replace");
1834 goto restore;
1835 }
1836
1837 btrfs_qgroup_rescan_resume(fs_info);
1838
1839 if (!fs_info->uuid_root) {
1840 btrfs_info(fs_info, "creating UUID tree");
1841 ret = btrfs_create_uuid_tree(fs_info);
1842 if (ret) {
1843 btrfs_warn(fs_info,
1844 "failed to create the UUID tree %d",
1845 ret);
1846 goto restore;
1847 }
1848 }
1849 sb->s_flags &= ~MS_RDONLY;
1850
1851 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1852 }
1853out:
1854 wake_up_process(fs_info->transaction_kthread);
1855 btrfs_remount_cleanup(fs_info, old_opts);
1856 return 0;
1857
1858restore:
1859 /* We've hit an error - don't reset MS_RDONLY */
1860 if (sb_rdonly(sb))
1861 old_flags |= MS_RDONLY;
1862 sb->s_flags = old_flags;
1863 fs_info->mount_opt = old_opts;
1864 fs_info->compress_type = old_compress_type;
1865 fs_info->max_inline = old_max_inline;
1866 btrfs_resize_thread_pool(fs_info,
1867 old_thread_pool_size, fs_info->thread_pool_size);
1868 fs_info->metadata_ratio = old_metadata_ratio;
1869 btrfs_remount_cleanup(fs_info, old_opts);
1870 return ret;
1871}
1872
1873/* Used to sort the devices by max_avail(descending sort) */
1874static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1875 const void *dev_info2)
1876{
1877 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1878 ((struct btrfs_device_info *)dev_info2)->max_avail)
1879 return -1;
1880 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1881 ((struct btrfs_device_info *)dev_info2)->max_avail)
1882 return 1;
1883 else
1884 return 0;
1885}
1886
1887/*
1888 * sort the devices by max_avail, in which max free extent size of each device
1889 * is stored.(Descending Sort)
1890 */
1891static inline void btrfs_descending_sort_devices(
1892 struct btrfs_device_info *devices,
1893 size_t nr_devices)
1894{
1895 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1896 btrfs_cmp_device_free_bytes, NULL);
1897}
1898
1899/*
1900 * The helper to calc the free space on the devices that can be used to store
1901 * file data.
1902 */
1903static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1904 u64 *free_bytes)
1905{
1906 struct btrfs_device_info *devices_info;
1907 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1908 struct btrfs_device *device;
1909 u64 skip_space;
1910 u64 type;
1911 u64 avail_space;
1912 u64 min_stripe_size;
1913 int min_stripes = 1, num_stripes = 1;
1914 int i = 0, nr_devices;
1915
1916 /*
1917 * We aren't under the device list lock, so this is racy-ish, but good
1918 * enough for our purposes.
1919 */
1920 nr_devices = fs_info->fs_devices->open_devices;
1921 if (!nr_devices) {
1922 smp_mb();
1923 nr_devices = fs_info->fs_devices->open_devices;
1924 ASSERT(nr_devices);
1925 if (!nr_devices) {
1926 *free_bytes = 0;
1927 return 0;
1928 }
1929 }
1930
1931 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1932 GFP_KERNEL);
1933 if (!devices_info)
1934 return -ENOMEM;
1935
1936 /* calc min stripe number for data space allocation */
1937 type = btrfs_data_alloc_profile(fs_info);
1938 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1939 min_stripes = 2;
1940 num_stripes = nr_devices;
1941 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1942 min_stripes = 2;
1943 num_stripes = 2;
1944 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1945 min_stripes = 4;
1946 num_stripes = 4;
1947 }
1948
1949 if (type & BTRFS_BLOCK_GROUP_DUP)
1950 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1951 else
1952 min_stripe_size = BTRFS_STRIPE_LEN;
1953
1954 rcu_read_lock();
1955 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1956 if (!device->in_fs_metadata || !device->bdev ||
1957 device->is_tgtdev_for_dev_replace)
1958 continue;
1959
1960 if (i >= nr_devices)
1961 break;
1962
1963 avail_space = device->total_bytes - device->bytes_used;
1964
1965 /* align with stripe_len */
1966 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1967 avail_space *= BTRFS_STRIPE_LEN;
1968
1969 /*
1970 * In order to avoid overwriting the superblock on the drive,
1971 * btrfs starts at an offset of at least 1MB when doing chunk
1972 * allocation.
1973 */
1974 skip_space = SZ_1M;
1975
1976 /*
1977 * we can use the free space in [0, skip_space - 1], subtract
1978 * it from the total.
1979 */
1980 if (avail_space && avail_space >= skip_space)
1981 avail_space -= skip_space;
1982 else
1983 avail_space = 0;
1984
1985 if (avail_space < min_stripe_size)
1986 continue;
1987
1988 devices_info[i].dev = device;
1989 devices_info[i].max_avail = avail_space;
1990
1991 i++;
1992 }
1993 rcu_read_unlock();
1994
1995 nr_devices = i;
1996
1997 btrfs_descending_sort_devices(devices_info, nr_devices);
1998
1999 i = nr_devices - 1;
2000 avail_space = 0;
2001 while (nr_devices >= min_stripes) {
2002 if (num_stripes > nr_devices)
2003 num_stripes = nr_devices;
2004
2005 if (devices_info[i].max_avail >= min_stripe_size) {
2006 int j;
2007 u64 alloc_size;
2008
2009 avail_space += devices_info[i].max_avail * num_stripes;
2010 alloc_size = devices_info[i].max_avail;
2011 for (j = i + 1 - num_stripes; j <= i; j++)
2012 devices_info[j].max_avail -= alloc_size;
2013 }
2014 i--;
2015 nr_devices--;
2016 }
2017
2018 kfree(devices_info);
2019 *free_bytes = avail_space;
2020 return 0;
2021}
2022
2023/*
2024 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2025 *
2026 * If there's a redundant raid level at DATA block groups, use the respective
2027 * multiplier to scale the sizes.
2028 *
2029 * Unused device space usage is based on simulating the chunk allocator
2030 * algorithm that respects the device sizes and order of allocations. This is
2031 * a close approximation of the actual use but there are other factors that may
2032 * change the result (like a new metadata chunk).
2033 *
2034 * If metadata is exhausted, f_bavail will be 0.
2035 */
2036static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2037{
2038 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2039 struct btrfs_super_block *disk_super = fs_info->super_copy;
2040 struct list_head *head = &fs_info->space_info;
2041 struct btrfs_space_info *found;
2042 u64 total_used = 0;
2043 u64 total_free_data = 0;
2044 u64 total_free_meta = 0;
2045 int bits = dentry->d_sb->s_blocksize_bits;
2046 __be32 *fsid = (__be32 *)fs_info->fsid;
2047 unsigned factor = 1;
2048 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2049 int ret;
2050 u64 thresh = 0;
2051 int mixed = 0;
2052
2053 rcu_read_lock();
2054 list_for_each_entry_rcu(found, head, list) {
2055 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2056 int i;
2057
2058 total_free_data += found->disk_total - found->disk_used;
2059 total_free_data -=
2060 btrfs_account_ro_block_groups_free_space(found);
2061
2062 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2063 if (!list_empty(&found->block_groups[i])) {
2064 switch (i) {
2065 case BTRFS_RAID_DUP:
2066 case BTRFS_RAID_RAID1:
2067 case BTRFS_RAID_RAID10:
2068 factor = 2;
2069 }
2070 }
2071 }
2072 }
2073
2074 /*
2075 * Metadata in mixed block goup profiles are accounted in data
2076 */
2077 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2078 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2079 mixed = 1;
2080 else
2081 total_free_meta += found->disk_total -
2082 found->disk_used;
2083 }
2084
2085 total_used += found->disk_used;
2086 }
2087
2088 rcu_read_unlock();
2089
2090 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2091 buf->f_blocks >>= bits;
2092 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2093
2094 /* Account global block reserve as used, it's in logical size already */
2095 spin_lock(&block_rsv->lock);
2096 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2097 if (buf->f_bfree >= block_rsv->size >> bits)
2098 buf->f_bfree -= block_rsv->size >> bits;
2099 else
2100 buf->f_bfree = 0;
2101 spin_unlock(&block_rsv->lock);
2102
2103 buf->f_bavail = div_u64(total_free_data, factor);
2104 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2105 if (ret)
2106 return ret;
2107 buf->f_bavail += div_u64(total_free_data, factor);
2108 buf->f_bavail = buf->f_bavail >> bits;
2109
2110 /*
2111 * We calculate the remaining metadata space minus global reserve. If
2112 * this is (supposedly) smaller than zero, there's no space. But this
2113 * does not hold in practice, the exhausted state happens where's still
2114 * some positive delta. So we apply some guesswork and compare the
2115 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2116 *
2117 * We probably cannot calculate the exact threshold value because this
2118 * depends on the internal reservations requested by various
2119 * operations, so some operations that consume a few metadata will
2120 * succeed even if the Avail is zero. But this is better than the other
2121 * way around.
2122 */
2123 thresh = 4 * 1024 * 1024;
2124
2125 /*
2126 * We only want to claim there's no available space if we can no longer
2127 * allocate chunks for our metadata profile and our global reserve will
2128 * not fit in the free metadata space. If we aren't ->full then we
2129 * still can allocate chunks and thus are fine using the currently
2130 * calculated f_bavail.
2131 */
2132 if (!mixed && block_rsv->space_info->full &&
2133 total_free_meta - thresh < block_rsv->size)
2134 buf->f_bavail = 0;
2135
2136 buf->f_type = BTRFS_SUPER_MAGIC;
2137 buf->f_bsize = dentry->d_sb->s_blocksize;
2138 buf->f_namelen = BTRFS_NAME_LEN;
2139
2140 /* We treat it as constant endianness (it doesn't matter _which_)
2141 because we want the fsid to come out the same whether mounted
2142 on a big-endian or little-endian host */
2143 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2144 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2145 /* Mask in the root object ID too, to disambiguate subvols */
2146 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2147 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2148
2149 return 0;
2150}
2151
2152static void btrfs_kill_super(struct super_block *sb)
2153{
2154 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2155 kill_anon_super(sb);
2156 free_fs_info(fs_info);
2157}
2158
2159static struct file_system_type btrfs_fs_type = {
2160 .owner = THIS_MODULE,
2161 .name = "btrfs",
2162 .mount = btrfs_mount,
2163 .kill_sb = btrfs_kill_super,
2164 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2165};
2166MODULE_ALIAS_FS("btrfs");
2167
2168static int btrfs_control_open(struct inode *inode, struct file *file)
2169{
2170 /*
2171 * The control file's private_data is used to hold the
2172 * transaction when it is started and is used to keep
2173 * track of whether a transaction is already in progress.
2174 */
2175 file->private_data = NULL;
2176 return 0;
2177}
2178
2179/*
2180 * used by btrfsctl to scan devices when no FS is mounted
2181 */
2182static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2183 unsigned long arg)
2184{
2185 struct btrfs_ioctl_vol_args *vol;
2186 struct btrfs_fs_devices *fs_devices;
2187 int ret = -ENOTTY;
2188
2189 if (!capable(CAP_SYS_ADMIN))
2190 return -EPERM;
2191
2192 vol = memdup_user((void __user *)arg, sizeof(*vol));
2193 if (IS_ERR(vol))
2194 return PTR_ERR(vol);
2195 vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2196
2197 switch (cmd) {
2198 case BTRFS_IOC_SCAN_DEV:
2199 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2200 &btrfs_fs_type, &fs_devices);
2201 break;
2202 case BTRFS_IOC_DEVICES_READY:
2203 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2204 &btrfs_fs_type, &fs_devices);
2205 if (ret)
2206 break;
2207 ret = !(fs_devices->num_devices == fs_devices->total_devices);
2208 break;
2209 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2210 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2211 break;
2212 }
2213
2214 kfree(vol);
2215 return ret;
2216}
2217
2218static int btrfs_freeze(struct super_block *sb)
2219{
2220 struct btrfs_trans_handle *trans;
2221 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2222 struct btrfs_root *root = fs_info->tree_root;
2223
2224 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2225 /*
2226 * We don't need a barrier here, we'll wait for any transaction that
2227 * could be in progress on other threads (and do delayed iputs that
2228 * we want to avoid on a frozen filesystem), or do the commit
2229 * ourselves.
2230 */
2231 trans = btrfs_attach_transaction_barrier(root);
2232 if (IS_ERR(trans)) {
2233 /* no transaction, don't bother */
2234 if (PTR_ERR(trans) == -ENOENT)
2235 return 0;
2236 return PTR_ERR(trans);
2237 }
2238 return btrfs_commit_transaction(trans);
2239}
2240
2241static int btrfs_unfreeze(struct super_block *sb)
2242{
2243 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2244
2245 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2246 return 0;
2247}
2248
2249static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2250{
2251 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2252 struct btrfs_fs_devices *cur_devices;
2253 struct btrfs_device *dev, *first_dev = NULL;
2254 struct list_head *head;
2255 struct rcu_string *name;
2256
2257 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2258 cur_devices = fs_info->fs_devices;
2259 while (cur_devices) {
2260 head = &cur_devices->devices;
2261 list_for_each_entry(dev, head, dev_list) {
2262 if (dev->missing)
2263 continue;
2264 if (!dev->name)
2265 continue;
2266 if (!first_dev || dev->devid < first_dev->devid)
2267 first_dev = dev;
2268 }
2269 cur_devices = cur_devices->seed;
2270 }
2271
2272 if (first_dev) {
2273 rcu_read_lock();
2274 name = rcu_dereference(first_dev->name);
2275 seq_escape(m, name->str, " \t\n\\");
2276 rcu_read_unlock();
2277 } else {
2278 WARN_ON(1);
2279 }
2280 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2281 return 0;
2282}
2283
2284static const struct super_operations btrfs_super_ops = {
2285 .drop_inode = btrfs_drop_inode,
2286 .evict_inode = btrfs_evict_inode,
2287 .put_super = btrfs_put_super,
2288 .sync_fs = btrfs_sync_fs,
2289 .show_options = btrfs_show_options,
2290 .show_devname = btrfs_show_devname,
2291 .alloc_inode = btrfs_alloc_inode,
2292 .destroy_inode = btrfs_destroy_inode,
2293 .statfs = btrfs_statfs,
2294 .remount_fs = btrfs_remount,
2295 .freeze_fs = btrfs_freeze,
2296 .unfreeze_fs = btrfs_unfreeze,
2297};
2298
2299static const struct file_operations btrfs_ctl_fops = {
2300 .open = btrfs_control_open,
2301 .unlocked_ioctl = btrfs_control_ioctl,
2302 .compat_ioctl = btrfs_control_ioctl,
2303 .owner = THIS_MODULE,
2304 .llseek = noop_llseek,
2305};
2306
2307static struct miscdevice btrfs_misc = {
2308 .minor = BTRFS_MINOR,
2309 .name = "btrfs-control",
2310 .fops = &btrfs_ctl_fops
2311};
2312
2313MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2314MODULE_ALIAS("devname:btrfs-control");
2315
2316static int btrfs_interface_init(void)
2317{
2318 return misc_register(&btrfs_misc);
2319}
2320
2321static void btrfs_interface_exit(void)
2322{
2323 misc_deregister(&btrfs_misc);
2324}
2325
2326static void btrfs_print_mod_info(void)
2327{
2328 pr_info("Btrfs loaded, crc32c=%s"
2329#ifdef CONFIG_BTRFS_DEBUG
2330 ", debug=on"
2331#endif
2332#ifdef CONFIG_BTRFS_ASSERT
2333 ", assert=on"
2334#endif
2335#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2336 ", integrity-checker=on"
2337#endif
2338 "\n",
2339 btrfs_crc32c_impl());
2340}
2341
2342static int __init init_btrfs_fs(void)
2343{
2344 int err;
2345
2346 err = btrfs_hash_init();
2347 if (err)
2348 return err;
2349
2350 btrfs_props_init();
2351
2352 err = btrfs_init_sysfs();
2353 if (err)
2354 goto free_hash;
2355
2356 btrfs_init_compress();
2357
2358 err = btrfs_init_cachep();
2359 if (err)
2360 goto free_compress;
2361
2362 err = extent_io_init();
2363 if (err)
2364 goto free_cachep;
2365
2366 err = extent_map_init();
2367 if (err)
2368 goto free_extent_io;
2369
2370 err = ordered_data_init();
2371 if (err)
2372 goto free_extent_map;
2373
2374 err = btrfs_delayed_inode_init();
2375 if (err)
2376 goto free_ordered_data;
2377
2378 err = btrfs_auto_defrag_init();
2379 if (err)
2380 goto free_delayed_inode;
2381
2382 err = btrfs_delayed_ref_init();
2383 if (err)
2384 goto free_auto_defrag;
2385
2386 err = btrfs_prelim_ref_init();
2387 if (err)
2388 goto free_delayed_ref;
2389
2390 err = btrfs_end_io_wq_init();
2391 if (err)
2392 goto free_prelim_ref;
2393
2394 err = btrfs_interface_init();
2395 if (err)
2396 goto free_end_io_wq;
2397
2398 btrfs_init_lockdep();
2399
2400 btrfs_print_mod_info();
2401
2402 err = btrfs_run_sanity_tests();
2403 if (err)
2404 goto unregister_ioctl;
2405
2406 err = register_filesystem(&btrfs_fs_type);
2407 if (err)
2408 goto unregister_ioctl;
2409
2410 return 0;
2411
2412unregister_ioctl:
2413 btrfs_interface_exit();
2414free_end_io_wq:
2415 btrfs_end_io_wq_exit();
2416free_prelim_ref:
2417 btrfs_prelim_ref_exit();
2418free_delayed_ref:
2419 btrfs_delayed_ref_exit();
2420free_auto_defrag:
2421 btrfs_auto_defrag_exit();
2422free_delayed_inode:
2423 btrfs_delayed_inode_exit();
2424free_ordered_data:
2425 ordered_data_exit();
2426free_extent_map:
2427 extent_map_exit();
2428free_extent_io:
2429 extent_io_exit();
2430free_cachep:
2431 btrfs_destroy_cachep();
2432free_compress:
2433 btrfs_exit_compress();
2434 btrfs_exit_sysfs();
2435free_hash:
2436 btrfs_hash_exit();
2437 return err;
2438}
2439
2440static void __exit exit_btrfs_fs(void)
2441{
2442 btrfs_destroy_cachep();
2443 btrfs_delayed_ref_exit();
2444 btrfs_auto_defrag_exit();
2445 btrfs_delayed_inode_exit();
2446 btrfs_prelim_ref_exit();
2447 ordered_data_exit();
2448 extent_map_exit();
2449 extent_io_exit();
2450 btrfs_interface_exit();
2451 btrfs_end_io_wq_exit();
2452 unregister_filesystem(&btrfs_fs_type);
2453 btrfs_exit_sysfs();
2454 btrfs_cleanup_fs_uuids();
2455 btrfs_exit_compress();
2456 btrfs_hash_exit();
2457}
2458
2459late_initcall(init_btrfs_fs);
2460module_exit(exit_btrfs_fs)
2461
2462MODULE_LICENSE("GPL");